Sample records for channel control-blade interference

  1. Using King Vision video laryngoscope with a channeled blade prolongs time for tracheal intubation in different training levels, compared to non-channeled blade.

    PubMed

    Kriege, Marc; Alflen, Christian; Noppens, Ruediger R

    2017-01-01

    It is generally accepted that using a video laryngoscope is associated with an improved visualization of the glottis. However, correctly placing the endotracheal tube might be challenging. Channeled video laryngoscopic blades have an endotracheal tube already pre-loaded, allowing to advance the tube once the glottis is visualized. We hypothesized that use of a channel blade with pre-loaded endotracheal tube results in a faster intubation, compared to a curved Macintosh blade video laryngoscope. After ethical approval and informed consent, patients were randomized to receive endotracheal Intubation with either the King Vision® video laryngoscope with curved blade (control) or channeled blade (channeled). Success rate, evaluation of the glottis view (percentage of glottic opening (POGO), Cormack&Lehane (C&L)) and intubating time were evaluated. Over a two-month period, a total of 46 patients (control n = 23; channeled n = 23) were examined. The first attempt success rates were comparable between groups (control 100% (23/23) vs. channeled 96% (22/23); p = 0.31). Overall intubation time was significantly shorter with control (median 40 sec; IQR [24-58]), compared to channeled (59 sec [40-74]; p = 0.03). There were no differences in glottis visualization between groups. Compared with the King Vision channeled blade, time for tracheal intubation was shorter with the control group using a non-channeled blade. First attempt success and visualization of the glottis were comparable. These data do not support the hypothesis that a channeled blade is superior to a curved video laryngoscopic blade without tube guidance. ClinicalTrials.gov NCT02344030.

  2. Active control of fan noise from a turbofan engine

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.

    1993-01-01

    A three channel active control system is applied to an operational turbofan engine in order to reduce tonal noise produced by both the fan and high pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provides blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. In order to minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three channel controller by up to 16 dB over a 60 deg angle about the engine axis. A single channel controller could produce reduction over a 30 deg angle. The experimental results show the control to be robust. Simultaneous control of two tones is done with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 dBA and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high pressure compressor fundamental tones.

  3. Active control of fan noise from a turbofan engine

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burdisso, Ricardo A.; Fuller, Christopher R.; O'Brien, Walter F.

    1994-01-01

    A three-channel active control system is applied to an operational turbofan engine to reduce tonal noise produced by both the fan and the high-pressure compressor. The control approach is the feedforward filtered-x least-mean-square algorithm implemented on a digital signal processing board. Reference transducers mounted on the engine case provide blade passing and harmonics frequency information to the controller. Error information is provided by large area microphones placed in the acoustic far field. To minimize the error signal, the controller actuates loudspeakers mounted on the inlet to produce destructive interference. The sound pressure level of the fundamental tone of the fan was reduced using the three-channel controller by up to 16 dB over a +/- 30-deg angle about the engine axis. A single-channel controller could produce reduction over a +/- 15-deg angle. The experimental results show the control to be robust. Outside of the areas contolled, the levels of the tone actually increased due to the generation of radial modes by the control sources. Simultaneous control of two tones is achieved with parallel controllers. The fundamental and the first harmonic tones of the fan were controlled simultaneously with reductions of 12 and 5 dBA, respectively, measured on the engine axis. Simultaneous control was also demonstrated for the fan fundamental and the high-pressure compressor fundamental tones.

  4. Composite adaptive control of belt polishing force for aero-engine blade

    NASA Astrophysics Data System (ADS)

    Zhsao, Pengbing; Shi, Yaoyao

    2013-09-01

    The existing methods for blade polishing mainly focus on robot polishing and manual grinding. Due to the difficulty in high-precision control of the polishing force, the blade surface precision is very low in robot polishing, in particular, quality of the inlet and exhaust edges can not satisfy the processing requirements. Manual grinding has low efficiency, high labor intensity and unstable processing quality, moreover, the polished surface is vulnerable to burn, and the surface precision and integrity are difficult to ensure. In order to further improve the profile accuracy and surface quality, a pneumatic flexible polishing force-exerting mechanism is designed and a dual-mode switching composite adaptive control(DSCAC) strategy is proposed, which combines Bang-Bang control and model reference adaptive control based on fuzzy neural network(MRACFNN) together. By the mode decision-making mechanism, Bang-Bang control is used to track the control command signal quickly when the actual polishing force is far away from the target value, and MRACFNN is utilized in smaller error ranges to improve the system robustness and control precision. Based on the mathematical model of the force-exerting mechanism, simulation analysis is implemented on DSCAC. Simulation results show that the output polishing force can better track the given signal. Finally, the blade polishing experiments are carried out on the designed polishing equipment. Experimental results show that DSCAC can effectively mitigate the influence of gas compressibility, valve dead-time effect, valve nonlinear flow, cylinder friction, measurement noise and other interference on the control precision of polishing force, which has high control precision, strong robustness, strong anti-interference ability and other advantages compared with MRACFNN. The proposed research achieves high-precision control of the polishing force, effectively improves the blade machining precision and surface consistency, and significantly reduces the surface roughness.

  5. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    DOEpatents

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  6. Blade for a gas turbine

    DOEpatents

    Liang, George

    2010-10-26

    A blade is provided for a gas turbine. The blade comprises a main body comprising a cooling fluid entrance channel; a cooling fluid collector in communication with the cooling fluid entrance channel; a plurality of side channels extending through an outer wall of the main body and communicating with the cooling fluid collector and a cooling fluid cavity; a cooling fluid exit channel communicating with the cooling fluid cavity; and a plurality of exit bores extending from the cooling fluid exit channel through the main body outer wall.

  7. The effect of active control on the performance and wake characteristics of an axial-flow Marine Hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Hill, Craig; Vanness, Katherine; Stewart, Andy; Polagye, Brian; Aliseda, Alberto

    2016-11-01

    Turbulence-induced unsteady forcing on turbines extracting power from river, tidal, or ocean currents will affect performance, wake characteristics, and structural integrity. A laboratory-scale axial-flow turbine, 0 . 45 m in diameter, incorporating rotor speed sensing and independent blade pitch control has been designed and tested with the goal of increasing efficiency and/or decreasing structural loading. Laboratory experiments were completed in a 1 m wide, 0.75 m deep open-channel flume at moderate Reynolds number (Rec =6104 -2105) and turbulence intensity (T . I . = 2 - 10 %). A load cell connecting the hub to the shaft provided instantaneous forces and moments on the device, quantifying turbine performance under unsteady inflow and for different controls. To mitigate loads, blade pitch angles were controlled via individual stepper motors, while a six-axis load cell mounted at the root of one blade measured instantaneous blade forces and moments, providing insights into variable loading due to turbulent inflow and blade-tower interactions. Wake characteristics with active pitch control were compared to fixed blade pitch and rotor speed operation. Results are discussed in the context of optimization of design for axial-flow Marine Hydrokinetic turbines.

  8. Study of design and technology factors influencing gas turbine blade cooling

    NASA Astrophysics Data System (ADS)

    Shevchenko, I. V.; Garanin, I. V.; Rogalev, A. N.; Kindra, V. O.; Khudyakova, V. P.

    2017-11-01

    The knowledge of aerodynamic and thermal parameters of turbulators used in order to design an efficient blade cooling system. However, all experimental tests of the hydraulic and thermal characteristics of the turbulators were conducted on the rectangular shape channels with a strongly defined air flow direction. The actual blades have geometry of the channels that essentially differs from the rectangular shape. Specifically, the air flow in the back cavity of a blade with one and half-pass cooling channel changes its direction throughout the feather height. In most cases the ribs and pins are made with a tilt to the channel walls, which is determined by the moving element design of a mould for the ceramic rod element fabrication. All of the factors described above may result in the blade thermohydraulic model being developed failing to fully simulate the air flow and the heat exchange processes in some sections of the cooling path. Hence, the design temperature field will differ from the temperature field of an actual blade. This article studied the numerical data of design and technology factors influencing heat transfer in the cooling channels. The results obtained showed their substantial impact on the blade cooling efficiency.

  9. Analysis of novel low specific speed pump designs

    NASA Astrophysics Data System (ADS)

    Klas, R.; Pochylý, F.; Rudolf, P.

    2014-03-01

    Centrifugal pumps with very low specific speed present significant design challenges. Narrow blade channels, large surface area of hub and shroud discs relative to the blade area, and the presence of significant of blade channel vortices are typical features linked with the difficulty to achieve head and efficiency requirements for such designs. This paper presents an investigation of two novel designs of very low specific speed impellers: impeller having blades with very thick trailing edges and impeller with thick trailing edges and recirculating channels, which are bored along the impeller circumference. Numerical simulations and experimental measurements were used to study the flow dynamics of those new designs. It was shown that thick trailing edges suppress local eddies in the blade channels and decrease energy dissipation due to excessive swirling. Furthermore the recirculating channels will increase the circumferential velocity component on impeller outlet thus increasing the specific energy, albeit adversely affecting the hydraulic efficiency. Analysis of the energy dissipation in the volute showed that the number of the recirculating channels, their geometry and location, all have significant impact on the magnitude of dissipated energy and its distribution which in turn influences the shape of the head curve and the stability of the pump operation. Energy dissipation within whole pump interior (blade channels, volute, rotor- stator gaps) was also studied.

  10. Design of multi-modal obstruction to control tonal fan noise using modulation principles

    NASA Astrophysics Data System (ADS)

    Gérard, Anthony; Moreau, Stéphane; Berry, Alain; Masson, Patrice

    2015-11-01

    The approach presented in this paper uses a combination of obstructions in the upstream flow of subsonic axial fans with B blades to destructively interfere with the primary tonal noise at the blade passage frequency. The first step of the proposed experimental method consists in identifying the independent radiation of B - 1 and B lobed obstructions at the control microphones. During this identification step, rotating obstructions allow for the frequencies of primary and secondary tonal noise to be slightly shifted in the spectrum due to modulation principles. The magnitude of the secondary tonal noise generated by each obstruction can be adjusted by varying the size of the lobes of the obstruction, and the phase of the secondary tonal noise is related to the angular position of the obstruction. The control obstructions are then optimized by combining the B - 1 and B lobed obstructions to significantly reduce the acoustic power at blade passage frequency.

  11. Darrieus rotor aerodynamics

    NASA Astrophysics Data System (ADS)

    Klimas, P. C.

    1982-05-01

    A summary of the progress of modeling the aerodynamic effects on the blades of a Darrieus wind turbine is presented. Interference is discussed in terms of blade/blade wake interaction and improvements in single and multiple stream tube models, of vortex simulations of blades and their wakes, and a hybrid momentum/vortex code to combine fast computation time with interference-describing capabilities. An empirical model has been developed for treating the properties of dynamic stall such as airfoil geometry, Reynolds number, reduced frequency, angle-of-attack, and Mach number. Pitching circulation has been subjected to simulation as potential flow about a two-dimensional flat plate, along with applications of the concepts of virtual camber and virtual incidence, with a cambered airfoil operating in a rectilinear flowfield. Finally, a need to develop a loading model suitable for nonsymmetrical blade sections is indicated, as well as blade behavior in a dynamic, curvilinear regime.

  12. A New Hybrid Scheme for Preventing Channel Interference and Collision in Mobile Networks

    NASA Astrophysics Data System (ADS)

    Kim, Kyungjun; Han, Kijun

    This paper proposes a new hybrid scheme based on a given set of channels for preventing channel interference and collision in mobile networks. The proposed scheme is designed for improving system performance, focusing on enhancement of performance related to path breakage and channel interference. The objective of this scheme is to improve the performance of inter-node communication. Simulation results from this paper show that the new hybrid scheme can reduce a more control message overhead than a conventional random scheme.

  13. Data Reduction Procedures for Laser Velocimeter Measurements in Turbomachinery Rotors

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    1994-01-01

    Blade-to-blade velocity distributions based on laser velocimeter data acquired in compressor or fan rotors are increasingly used as benchmark data for the verification and calibration of turbomachinery computational fluid dynamics (CFD) codes. Using laser Doppler velocimeter (LDV) data for this purpose, however, must be done cautiously. Aside from the still not fully resolved issue of the seed particle response in complex flowfields, there is an important inherent difference between CFD predictions and LDV blade-to-blade velocity distributions. CFD codes calculate velocity fields for an idealized rotor passage. LDV data, on the other hand, stem from the actual geometry of all blade channels in a rotor. The geometry often varies from channel to channel as a result of manufacturing tolerances, assembly tolerances, and incurred operational damage or changes in the rotor individual blades.

  14. RAC-multi: reader anti-collision algorithm for multichannel mobile RFID networks.

    PubMed

    Shin, Kwangcheol; Song, Wonil

    2010-01-01

    At present, RFID is installed on mobile devices such as mobile phones or PDAs and provides a means to obtain information about objects equipped with an RFID tag over a multi-channeled telecommunication networks. To use mobile RFIDs, reader collision problems should be addressed given that readers are continuously moving. Moreover, in a multichannel environment for mobile RFIDs, interference between adjacent channels should be considered. This work first defines a new concept of a reader collision problem between adjacent channels and then suggests a novel reader anti-collision algorithm for RFID readers that use multiple channels. To avoid interference with adjacent channels, the suggested algorithm separates data channels into odd and even numbered channels and allocates odd-numbered channels first to readers. It also sets an unused channel between the control channel and data channels to ensure that control messages and the signal of the adjacent channel experience no interference. Experimental results show that suggested algorithm shows throughput improvements ranging from 29% to 46% for tag identifications compared to the GENTLE reader anti-collision algorithm for multichannel RFID networks.

  15. RAC-Multi: Reader Anti-Collision Algorithm for Multichannel Mobile RFID Networks

    PubMed Central

    Shin, Kwangcheol; Song, Wonil

    2010-01-01

    At present, RFID is installed on mobile devices such as mobile phones or PDAs and provides a means to obtain information about objects equipped with an RFID tag over a multi-channeled telecommunication networks. To use mobile RFIDs, reader collision problems should be addressed given that readers are continuously moving. Moreover, in a multichannel environment for mobile RFIDs, interference between adjacent channels should be considered. This work first defines a new concept of a reader collision problem between adjacent channels and then suggests a novel reader anti-collision algorithm for RFID readers that use multiple channels. To avoid interference with adjacent channels, the suggested algorithm separates data channels into odd and even numbered channels and allocates odd-numbered channels first to readers. It also sets an unused channel between the control channel and data channels to ensure that control messages and the signal of the adjacent channel experience no interference. Experimental results show that suggested algorithm shows throughput improvements ranging from 29% to 46% for tag identifications compared to the GENTLE reader anti-collision algorithm for multichannel RFID networks. PMID:22315528

  16. Diffusion-weighted imaging in patients with acute brain ischemia at 3 T: current possibilities and future perspectives comparing conventional echoplanar diffusion-weighted imaging and fast spin echo diffusion-weighted imaging sequences using BLADE (PROPELLER).

    PubMed

    Fries, Peter; Runge, Val M; Kirchin, Miles A; Stemmer, Alto; Naul, L Gill; Wiliams, Kenneth D; Reith, Wolfgang; Bücker, Arno; Schneider, Günther

    2009-06-01

    To compare diffusion-weighted imaging (DWI) based on a fast spin echo (FSE) sequence using BLADE (PROPELLER) with conventional DWI-echoplanar imaging (EPI) techniques at 3 T and to demonstrate the influence of hardware developments on signal-to-noise ratio (SNR) with these techniques using 12- and 32-channel head coils. Fourteen patients with brain ischemia were evaluated with DWI using EPI and FSE BLADE sequences, with a 12-channel head coil, in the axial plane and 1 additional plane (either sagittal or coronal). SNR and CNR were calculated from region-of-interest measurements. Scans were evaluated in a blinded fashion by 2 experienced neuroradiologists. SNR of both DWI techniques was evaluated in 12 healthy volunteers using different parallel imaging (PI) factors (for the EPI sequence) and both the 12- and 32-channel coils. DWI-BLADE sequences acquired with the 12-channel coil revealed a significant reduction in SNR (mean +/- SD) of ischemic lesions (SNR(lesion) [5.0 +/- 2.5]), normal brain (SNR(brain) [3.0 +/- 1.9]), and subsequently in CNR (3.0 +/- 1.8) as compared with the DWI-EPI sequence (SNR(lesion) [9.3 +/- 5.2], SNR(brain) [7.7 +/- 3.5], CNR [6.1 +/- 2.8], P < 0.001). Despite this reduction in SNR and CNR, the blinded read revealed a marked preference for the DWI-BLADE sequence, or equality between the sequences, in the majority of patients because lesion detection was degraded by susceptibility artifacts on axial DWI-EPI scans in 14% to 43% of cases (but in no instance with the DWI-BLADE sequence). In particular, preference for the DWI-BLADE sequence or equality between the 2 techniques for lesion detection in the brainstem and cerebellum was observed. On some DWI-BLADE scans, in the additional plane, radial-like artifacts degraded lesion detection.In volunteers, SNR was significantly improved using the 32-channel coil, irrespective of scan technique. Comparing DWI-EPI acquired with the 12-channel coil (iPAT = 2) to DWI-BLADE acquired with the 32-channel coil, comparable SNR values were obtained. The 32-channel coil also makes feasible, with DWI-EPI, an increase in the PI factor to 4, which allows for a further reduction of bulk susceptibility artifacts. However, still DWI-BLADE sequences performed better because of absence of bulk susceptibility artifacts at comparable SNR values. Despite lower SNR at comparable PI factors, DWI-BLADE sequences acquired using the 12-channel coil are preferable in most instances, as compared with DWI-EPI sequences, because of the absence of susceptibility artifacts and subsequently improved depiction of ischemic lesions in the brainstem and cerebellum. With the 32-channel coil, recently FDA approved, DWI-BLADE acquired with an iPAT = 2 provides comparable SNR without bulk susceptibility artifacts as compared with the DWI-EPI sequences acquired for clinical routine to date and has the potential to replace the standard DWI technique for special indications like DWI of the cerebellum and the brainstem or in presence of metallic implants or hemorrhage.

  17. Experimental and Theoretical Study of Propeller Spinner/Shank Interference. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Cornell, C. C.

    1986-01-01

    A fundamental experimental and theoretical investigation into the aerodynamic interference associated with propeller spinner and shank regions was conducted. The research program involved a theoretical assessment of solutions previously proposed, followed by a systematic experimental study to supplement the existing data base. As a result, a refined computational procedure was established for prediction of interference effects in terms of interference drag and resolved into propeller thrust and torque components. These quantities were examined with attention to engineering parameters such as two spinner finess ratios, three blade shank forms, and two/three/four/six/eight blades. Consideration of the physics of the phenomena aided in the logical deduction of two individual interference quantities (cascade effects and spinner/shank juncture interference). These interference effects were semi-empirically modeled using existing theories and placed into a compatible form with an existing propeller performance scheme which provided the basis for examples of application.

  18. Incompressible lifting-surface aerodynamics for a rotor-stator combination

    NASA Technical Reports Server (NTRS)

    Ramachandra, S. M.

    1984-01-01

    Current literature on the three dimensional flow through compressor cascades deals with a row of rotor blades in isolation. Since the distance between the rotor and stator is usually 10 to 20 percent of the blade chord, the aerodynamic interference between them has to be considered for a proper evaluation of the aerothermodynamic performance of the stage. A unified approach to the aerodynamics of the incompressible flow through a stage is presented that uses the lifting surface theory for a compressor cascade of arbitrary camber and thickness distribution. The effects of rotor stator interference are represented as a linear function of the rotor and stator flows separately. The loading distribution on the rotor and stator flows separately. The loading distribution on the rotor and stator blades and the interference factor are determined concurrently through a matrix iteration process.

  19. Near wall cooling for a highly tapered turbine blade

    DOEpatents

    Liang, George [Palm City, FL

    2011-03-08

    A turbine blade having a pressure sidewall and a suction sidewall connected at chordally spaced leading and trailing edges to define a cooling cavity. Pressure and suction side inner walls extend radially within the cooling cavity and define pressure and suction side near wall chambers. A plurality of mid-chord channels extend radially from a radially intermediate location on the blade to a tip passage at the blade tip for connecting the pressure side and suction side near wall chambers in fluid communication with the tip passage. In addition, radially extending leading edge and trailing edge flow channels are located adjacent to the leading and trailing edges, respectively, and cooling fluid flows in a triple-pass serpentine path as it flows through the leading edge flow channel, the near wall chambers and the trailing edge flow channel.

  20. Experience and assessment of the DOE-NASA Mod-1 2000-Kilowatt wind turbine generator at Boone, North Carolina

    NASA Technical Reports Server (NTRS)

    Collins, J. L.; Shaltenc, R. K.; Poor, R. H.; Barton, R. S.

    1982-01-01

    The Mod 1 program objectives are defined. The Mod 1 wind turbine is described. In addition to the steel blade operated on the wind turbine, a composite blade was designed and manufactured. During the early phase of the manufacturing cycle of Mod 1A configuration was designed that identified concepts such as partial span control, a soft tower, and upwind teetered rotors that were incorporated in second and third generation industry designs. The Mod 1 electrical system performed as designed, with voltage flicker characteristics within acceptable utility limits. Power output versus wind speed equaled or exceeded design predictions. The wind turbine control system was operated successfully at the site and remotely from the utility dispatcher's office. During wind turbine operations, television interference was experienced by the local residents. As a consequence, operations were restricted. Although not implemented, two potential solutions were identified. In addition to television interference, a few local residents complained bout objectionable sound, particularly the 'thump' as the blade passed behind the tower. To eliminate objections, the sound generation level was reduced by 10 dB by reducing the rotor speed from 35 rpm to 23 rpm. Bolts in the drive train fractured. A solution was identified but not implemented. The public reaction toward the Mod 1 wind turbine program was overwhelmingly favorable.

  1. The numerical study of the rake angle of impeller blade in centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Drozdov, A.; Galerkin, Y.

    2017-08-01

    Investigated impellers have blade surfaces formed by straight generatrix. Blade profiles on shroud and disc surfaces are optimized by velocity diagram control (inviscid, quasi-three dimensional calculations). The blade profiles at hub and shroud blade-to-blade surfaces must be coordinated. A designer can choose the generatrix position at a trailing edge for it. The position is defined by the rake angle that is the angle between a trailing edge generatrix and a meridional plane. Two stages with 3D impellers, vaneless diffusers and return channels were investigated. Seven candidates of impellers of these stages with rake angles in range plus-minus 30 degrees were designed and investigated by quasi-three-dimensional inviscid calculation. CFD-calculations were made for the stages with these impellers. The optimal rake angle is minus 20 degrees for the high flow rate impeller due to lesser blade surface area and favorable meridian velocity field. Zero rake angle is optimal for the medium flow rate impeller where blade surface area is not so important. The combination of inviscid and viscid calculations is the informative instrument for further studies.

  2. Adaptor assembly for coupling turbine blades to rotor disks

    DOEpatents

    Delvaux, John McConnel; Garcia-Crespo, Andres Jose; Joyce, Kilmer Joseph; Tindell, Allan Randall

    2014-06-03

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is disclosed. The adaptor assembly may generally include an adaptor body having a root configured to be received within the root slot. The adaptor body may also define a slot having an open end configured to receive the blade root. The adaptor body may further define a channel. The adaptor assembly may also include a plate having an outwardly extending foot. The foot may be configured to be received within the channel. Additionally, the plate may be configured to cover at least a portion of the open end of the slot when the foot is received within the channel.

  3. Bargaining and the MISO Interference Channel

    NASA Astrophysics Data System (ADS)

    Nokleby, Matthew; Swindlehurst, A. Lee

    2009-12-01

    We examine the MISO interference channel under cooperative bargaining theory. Bargaining approaches such as the Nash and Kalai-Smorodinsky solutions have previously been used in wireless networks to strike a balance between max-sum efficiency and max-min equity in users' rates. However, cooperative bargaining for the MISO interference channel has only been studied extensively for the two-user case. We present an algorithm that finds the optimal Kalai-Smorodinsky beamformers for an arbitrary number of users. We also consider joint scheduling and beamformer selection, using gradient ascent to find a stationary point of the Kalai-Smorodinsky objective function. When interference is strong, the flexibility allowed by scheduling compensates for the performance loss due to local optimization. Finally, we explore the benefits of power control, showing that power control provides nontrivial throughput gains when the number of transmitter/receiver pairs is greater than the number of transmit antennas.

  4. Experimental and Numerical Investigation of Conjugate Heat Transfer in Rib-roughened Duct

    DTIC Science & Technology

    2011-10-01

    investigations. The targeted application is the ribbed internal cooling channels used in turbine blades . A test section is built to model the underlying...physics of the conjugate heat transfer phenomena in a turbine blade . The investigation focuses on measurements conducive to turbulence characterization...approach simulates the heat transfer occurring from the free- stream hot gas side, through the blade thickness, towards the internal cooling channels and it

  5. Interwoven channels for internal cooling of airfoil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Adam M.

    An apparatus and method for passing fluid flow through at least a portion of a blade of turbomachinery, such as a gas turbine or the like. The fluid flow is directed through a plurality of flow channels which are interwoven with each other. Each flow channel is non-intersecting with any other flow channel and thus does not contact fluid flowing within any other flow channel. The method and apparatus can be used to reduce heat transfer and thus reduce thermal stresses, particularly in the blade.

  6. Cooling arrangement for a tapered turbine blade

    DOEpatents

    Liang, George

    2010-07-27

    A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

  7. Research and development of asymmetrical heat transfer augmentation method in radial channels of blades for high temperature gas turbines

    NASA Astrophysics Data System (ADS)

    Shevchenko, I. V.; Rogalev, A. N.; Garanin, I. V.; Vegera, A. N.; Kindra, V. O.

    2017-11-01

    The serpentine-like one and half-pass cooling channel systems are primarily used in blades fabricated by the lost-wax casting process. The heat transfer turbulators like cross-sectional or angled ribs used in channels of the midchord region failed to eliminate the temperature irregularity from the suction and pressure sides, which is reaching 200°C for a first stage blade of the high-pressure turbine for an aircraft engine. This paper presents the results of a numerical and experimental test of an advanced heat transfer augmentation system in radial channels developed for alignment of the temperature field from the suction and pressure sides. A numerical simulation of three-dimensional coolant flow for a wide range of Reynolds numbers was carried out using ANSYS CFX software. Effect of geometrical parameters on the heat removal asymmetry was determined. The test results of a blade with the proposed intensification system conducted in a liquid-metal thermostat confirmed the accuracy of calculations. Based on the experimental data, the dependencies for calculation of heat transfer coefficients to the cooling air in the blade studied were obtained.

  8. SSME single crystal turbine blade dynamics

    NASA Technical Reports Server (NTRS)

    Moss, Larry A.; Smith, Todd E.

    1987-01-01

    A study was performed to determine the dynamic characteristics of the Space Shuttle main engine high pressure fuel turbopump (HPFTP) blades made of single crystal (SC) material. The first and second stage drive turbine blades of HPFTP were examined. The nonrotating natural frequencies were determined experimentally and analytically. The experimental results of the SC second stage blade were used to verify the analytical procedures. The analytical study examined the SC first stage blade natural frequencies with respect to crystal orientation at typical operating conditions. The SC blade dynamic response was predicted to be less than the directionally solidified blade. Crystal axis orientation optimization indicated the third mode interference will exist in any SC orientation.

  9. Channel flow analysis. [velocity distribution throughout blade flow field

    NASA Technical Reports Server (NTRS)

    Katsanis, T.

    1973-01-01

    The design of a proper blade profile requires calculation of the blade row flow field in order to determine the velocities on the blade surfaces. An analysis theory is presented for several methods used for this calculation and associated computer programs that were developed are discussed.

  10. System for Suppressing Vibration in Turbomachine Components

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R. (Inventor); Provenza, Andrew J. (Inventor); Choi, Benjamin B. (Inventor); Bakhle, Milind A. (Inventor); Min, James B (Inventor); Stefko, George L. (Inventor); Kussmann, John A (Inventor); Fougere, Alan J (Inventor)

    2013-01-01

    Disclosed is a system for suppressing vibration and noise mitigation in structures such as blades in turbomachinery. The system includes flexible piezoelectric patches which are secured on or imbedded in turbomachinery blades which, in one embodiment, comprises eight (8) fan blades. The system further includes a capacitor plate coupler and a power transfer apparatus, which may both be arranged into one assembly, that respectively transfer data and power. Each of the capacitive plate coupler and power transfer apparatus is configured so that one part is attached to a fixed member while another part is attached to a rotatable member with an air gap there between. The system still further includes a processor that has 16 channels, eight of which serve as sensor channels, and the remaining eight, serving as actuation channels. The processor collects and analyzes the sensor signals and, in turn, outputs corrective signals for vibration/noise suppression of the turbine blades.

  11. Flow in a centrifugal fan impeller at off-design conditions

    NASA Astrophysics Data System (ADS)

    Wright, T.; Tzou, K. T. S.; Madhavan, S.

    1984-06-01

    A fully three-dimensional finite element analysis of inviscid, incompressible blade channel flow is the basis of the present study of both predicted and measured surface velocity and pressure distributions in the internal flow channels of a centrifugal fan impeller, for volume flow rates of 80-125 percent the design flow rate. The experimental results made extensive use of blade and sidewall surface pressure taps installed in a scale model of an airfoil-bladed centrifugal fan impeller. The results obtained illustrate the ability of both flow analyses to predict the dominant features of the impeller flow field, including peak blade surface velocities and adverse gradients at flows far from the design point. Insight is also gained into the limiting channel diffusion values for typical centrifugal cascade performance, together with the influence of viscous effects, as seen in deviations from ideal flow predictions.

  12. SSME single-crystal turbine blade dynamics

    NASA Technical Reports Server (NTRS)

    Moss, Larry A.

    1988-01-01

    A study was performrd to determine the dynamic characteristics of the Space Shuttle Main Engine high pressure fuel turbopump (HPFTP) blades made of single crystal (SC) material. The first and second stage drive turbine blades of HPFTP were examined. The nonrotating natural frequencies were determined experimentally and analytically. The experimental results of the SC second stage blade were used to verify the analytical procedures. The study examined the SC first stage blade natural frequencies with respect to crystal orientation at typical operating conditions. The SC blade dynamic response was predicted to be less than the directionally solidified base. Crystal axis orientation optimization indicated that the third mode interference will exist in any SC orientation.

  13. Asynchronous, Decentralized DS-CDMA Using Feedback-Controlled Spreading Sequences for Time-Dispersive Channels

    NASA Astrophysics Data System (ADS)

    Miyatake, Teruhiko; Chiba, Kazuki; Hamamura, Masanori; Tachikawa, Shin'ichi

    We propose a novel asynchronous direct-sequence codedivision multiple access (DS-CDMA) using feedback-controlled spreading sequences (FCSSs) (FCSS/DS-CDMA). At the receiver of FCSS/DS-CDMA, the code-orthogonalizing filter (COF) produces a spreading sequence, and the receiver returns the spreading sequence to the transmitter. Then the transmitter uses the spreading sequence as its updated version. The performance of FCSS/DS-CDMA is evaluated over time-dispersive channels. The results indicate that FCSS/DS-CDMA greatly suppresses both the intersymbol interference (ISI) and multiple access interference (MAI) over time-invariant channels. FCSS/DS-CDMA is applicable to the decentralized multiple access.

  14. Optimizing parameters of GTU cycle and design values of air-gas channel in a gas turbine with cooled nozzle and rotor blades

    NASA Astrophysics Data System (ADS)

    Kler, A. M.; Zakharov, Yu. B.

    2012-09-01

    The authors have formulated the problem of joint optimization of pressure and temperature of combustion products before gas turbine, profiles of nozzle and rotor blades of gas turbine, and cooling air flow rates through nozzle and rotor blades. The article offers an original approach to optimization of profiles of gas turbine blades where the optimized profiles are presented as linear combinations of preliminarily formed basic profiles. The given examples relate to optimization of the gas turbine unit on the criterion of power efficiency at preliminary heat removal from air flows supplied for the air-gas channel cooling and without such removal.

  15. Blade design and performance analysis on the horizontal axis tidal current turbine for low water level channel

    NASA Astrophysics Data System (ADS)

    Chen, C. C.; Choi, Y. D.; Y Yoon, H.

    2013-12-01

    Most tidal current turbine design are focused on middle and large scale for deep sea, less attention was paid in low water level channel, such as the region around the islands, coastal seas and rivers. This study aims to develop a horizontal axis tidal current turbine rotor blade which is applicable to low water level island region in southwest of Korea. The blade design is made by using BEMT(blade element momentum theory). The section airfoil profile of NACA63-415 is used, which shows good performance of lift coefficient and drag coefficient. Power coefficient, pressure and velocity distributions are investigated according to TSR by CFD analysis.

  16. Low-coherence interferometric tip-clearance probe

    NASA Astrophysics Data System (ADS)

    Kempe, Andreas; Schlamp, Stefan; Rösgen, Thomas; Haffner, Ken

    2003-08-01

    We propose an all-fiber, self-calibrating, economical probe that is capable of near-real-time, single-port, simultaneous blade-to-blade tip-clearance measurements with submillimeter accuracy (typically <100 μm, absolute) in the first stages of a gas turbine. Our probe relies on the interference between backreflected light from the blade tips during the 1-μs blade passage time and a frequency-shifted reference with variable time delay, making use of a low-coherence light source. A single optical fiber of arbitrary length connects the self-contained optics and electronics to the turbine.

  17. "Space slitter" for film or tape

    NASA Technical Reports Server (NTRS)

    Johnson, W. H.

    1978-01-01

    Device cuts film or tape into strips by guiding film in channel under cutting blades. Device is operated by lifting pressure bar to insert blades into film. Film is then pulled through blades. Cutter has potential uses in advertising, commercial art, and publishing fields.

  18. Air-structure coupling features analysis of mining contra-rotating axial flow fan cascade

    NASA Astrophysics Data System (ADS)

    Chen, Q. G.; Sun, W.; Li, F.; Zhang, Y. J.

    2013-12-01

    The interaction between contra-rotating axial flow fan blade and working gas has been studied by means of establishing air-structure coupling control equation and combining Computational Fluid Dynamics (CFD) and Computational solid mechanics (CSM). Based on the single flow channel model, the Finite Volume Method was used to make the field discrete. Additionally, the SIMPLE algorithm, the Standard k-ε model and the Arbitrary Lagrangian-Eulerian dynamic grids technology were utilized to get the airflow motion by solving the discrete governing equations. At the same time, the Finite Element Method was used to make the field discrete to solve dynamic response characteristics of blade. Based on weak coupling method, data exchange from the fluid solver and the solid solver was processed on the coupling interface. Then interpolation was used to obtain the coupling characteristics. The results showed that the blade's maximum amplitude was on the tip of the last-stage blade and aerodynamic force signal could reflect the blade working conditions to some extent. By analyzing the flow regime in contra-rotating axial flow fan, it could be found that the vortex core region was mainly in the blade surface, the hub and the blade clearance. In those regions, the turbulence intensity was very high. The last-stage blade's operating life is shorter than that of the pre-stage blade due to the fatigue fracture occurs much more easily on the last-stage blade which bears more stress.

  19. Cutting roller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, G.; Weikert, N.B.

    1984-05-29

    A cutting roller for a mining machine, having a substantially conical closure member arranged to face the workings and a tubular body member which has a larger diameter at the end nearer the face working face than at the discharge end. The tubular member carries at least one cutting blade, and the closure member mounts at least one cutting blade; each blade is provided at its edge region with a plurality of bit holders for the attachment of cutter bits. The outer surface of the body member merges into the substantially conical closure member in a smooth, even curve, somore » that the outside diameter of the body member in the region of the working face is substantially greater than the diameter in the region of the discharge end of the cutting roller. The roller is provided with liquid distribution channels on each cutting blade, which channels are connected to a single liquid distribution ring channel in the region of the substantially conical closure member.« less

  20. Control valves and cascades for the first stages of turbines with ultrasupercritical steam parameters

    NASA Astrophysics Data System (ADS)

    Zaryankin, A. E.; Rogalev, N. D.; Rogalev, A. N.; Garanin, I. V.; Osipov, S. K.; Grigoriev, E. Yu.

    2016-06-01

    This paper considers the problems that will unavoidably be encountered in the creation of new-generation turbines operated at ultrasupercritical initial steam parameters, namely, the development of new control and shutoff valves, the reduction of end energy losses in blade cascades and steam leaks in high-pressure cylinders (HPCs), the elimination of effect produced by regenerative steam bleedoffs on the afterextraction stage, the cooling of a blade cascade, etc. Some possible solutions are given for the two first of the listed problems. The conclusion about the need for the transition to new-generation control valves in the development of new advanced steam turbines with ultrasupercritical initial steam parameters has been made. From the viewpoint of their design, the considered new-generation valves differ from the known contemporary constructions by a shaped axially symmetric confusor channel and perforated zones on the streamlined spool surface and the inlet diffuser saddle part. The analysis of the vibration behavior of new-generation valves has demonstrated a decrease in the dynamic loads acting on their stems. To reduce the end energy losses in nozzle or blade cascades with small aspect ratios, it is proposed to use finned shrouds in the interblade channels. The cross section of fins has a triangular profile, and their height must be comparable with the thickness of the boundary layer in the outlet cross section of a cascade and, provisionally, be smaller than 8% of the cascade chord.

  1. Theoretical performance of cross-wind axis turbines with results for a catenary vertical axis configuration

    NASA Technical Reports Server (NTRS)

    Muraca, R. J.; Stephens, M. V.; Dagenhart, J. R.

    1975-01-01

    A general analysis capable of predicting performance characteristics of cross-wind axis turbines was developed, including the effects of airfoil geometry, support struts, blade aspect ratio, windmill solidity, blade interference and curved flow. The results were compared with available wind tunnel results for a catenary blade shape. A theoretical performance curve for an aerodynamically efficient straight blade configuration was also presented. In addition, a linearized analytical solution applicable for straight configurations was developed. A listing of the computer program developed for numerical solutions of the general performance equations is included in the appendix.

  2. Estimation of Efficiency of the Cooling Channel of the Nozzle Blade of Gas-Turbine Engines

    NASA Astrophysics Data System (ADS)

    Vikulin, A. V.; Yaroslavtsev, N. L.; Zemlyanaya, V. A.

    2018-02-01

    The main direction of improvement of gas-turbine plants (GTP) and gas-turbine engines (GTE) is increasing the gas temperature at the turbine inlet. For the solution of this problem, promising systems of intensification of heat exchange in cooled turbine blades are developed. With this purpose, studies of the efficiency of the cooling channel of the nozzle blade in the basic modification and of the channel after constructive measures for improvement of the cooling system by the method of calorimetry in a liquid-metal thermostat were conducted. The combined system of heat-exchange intensification with the complicated scheme of branched channels is developed; it consists of a vortex matrix and three rows of inclined intermittent trip strips. The maximum value of hydraulic resistance ξ is observed at the first row of the trip strips, which is connected with the effect of dynamic impact of airflow on the channel walls, its turbulence, and rotation by 117° at the inlet to the channels formed by the trip strips. These factors explain the high value of hydraulic resistance equal to 3.7-3.4 for the first row of the trip strips. The obtained effect was also confirmed by the results of thermal tests, i.e., the unevenness of heat transfer on the back and on the trough of the blade is observed at the first row of the trip strips, which amounts 8-12%. This unevenness has a fading character; at the second row of the trip strips, it amounts to 3-7%, and it is almost absent at the third row. At the area of vortex matrix, the intensity of heat exchange on the blade back is higher as compared to the trough, which is explained by the different height of the matrix ribs on its opposite sides. The design changes in the nozzle blade of basic modification made it possible to increase the intensity of heat exchange by 20-50% in the area of the vortex matrix and by 15-30% on the section of inclined intermittent trip strips. As a result of research, new criteria dependences for the complicated systems of heat exchange intensification were obtained. The design of nozzle blades can be used when developing the promising high-temperature gas turbines.

  3. Multiple piece turbine blade

    DOEpatents

    Kimmel, Keith D [Jupiter, FL

    2012-05-29

    A turbine rotor blade with a spar and shell construction, the spar including an internal cooling supply channel extending from an inlet end on a root section and ending near the tip end, and a plurality of external cooling channels formed on both side of the spar, where a middle external cooling channel is connected to the internal cooling supply channels through a row of holes located at a middle section of the channels. The spar and the shell are held together by hooks that define serpentine flow passages for the cooling air and include an upper serpentine flow circuit and a lower serpentine flow circuit. the serpentine flow circuits all discharge into a leading edge passage or a trailing edge passage.

  4. A multichannel amplitude and relative-phase controller for active sound quality control

    NASA Astrophysics Data System (ADS)

    Mosquera-Sánchez, Jaime A.; Desmet, Wim; de Oliveira, Leopoldo P. R.

    2017-05-01

    The enhancement of the sound quality of periodic disturbances for a number of listeners within an enclosure often confronts difficulties given by cross-channel interferences, which arise from simultaneously profiling the primary sound at each error sensor. These interferences may deteriorate the original sound among each listener, which is an unacceptable result from the point of view of sound quality control. In this paper we provide experimental evidence on controlling both amplitude and relative-phase functions of stationary complex primary sounds for a number of listeners within a cavity, attaining amplifications of twice the original value, reductions on the order of 70 dB, and relative-phase shifts between ± π rad, still in a free-of-interference control scenario. To accomplish such burdensome control targets, we have designed a multichannel active sound profiling scheme that bases its operation on exchanging time-domain control signals among the control units during uptime. Provided the real parts of the eigenvalues of persistently excited control matrices are positive, the proposed multichannel array is able to counterbalance cross-channel interferences, while attaining demanding control targets. Moreover, regularization of unstable control matrices is not seen to prevent the proposed array to provide free-of-interference amplitude and relative-phase control, but the system performance is degraded, as a function of the amount of regularization needed. The assessment of Loudness and Roughness metrics on the controlled primary sound proves that the proposed distributed control scheme noticeably outperforms current techniques, since active amplitude- and/or relative-phase-based enhancement of the auditory qualities of a primary sound no longer implies in causing interferences among different positions. In this regard, experimental results also confirm the effectiveness of the proposed scheme on stably enhancing the sound qualities of periodic sounds for multiple listeners within a cavity.

  5. Wireless Inductive Power Device Suppresses Blade Vibrations

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.

    2011-01-01

    Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it possible to moderate vibration on or in turbomachinery blades by providing 100 W of wireless electrical power and actuation control to thin, lightweight vibration-suppressing piezoelectric patches (eight actuation and eight sensor patches in this prototype, for a total of 16 channels) positioned strategically on the surface of, or within, titanium fan blades, or embedded in composite fan blades. This approach moves significantly closer to the ultimate integration of "active" vibration suppression technology into jet engines and other turbomachinery devices such as turbine electrical generators used in the power industry. The novel feature of this device is in its utilization of wireless technology to simultaneously sense and actively control vibration in rotating or stationary turbomachinery blades using piezoelectric patches. In the past, wireless technology was used solely for sensing and diagnostics. This technology, however, will accomplish much more, in terms of simultaneously sensing, suppressing blade vibration, and making it possible for detailed study of vibration impact in turbomachinery blades.

  6. Numerical Simulation and Experimental Study of a Dental Handpiece Air Turbine

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Neng; Chiang, Hsiao-Wei D.; Chang, Ya-Yi

    2011-06-01

    Dental air turbine handpieces have been widely used in clinical dentistry for over 30 years, however, little work has been reported on their performance. In dental air turbine handpieces, the types of flow channel and turbine blade shape can have very different designs. These different designs can have major influence on the torque, rotating speed, and power performance. This research is focused on the turbine blade and the flow channel designs. Using numerical simulation and experiments, the key design parameters which influence the performance of dental hand pieces can be studied. Three types of dental air turbine designs with different turbine blades, nozzle angles, nozzle flow channels, and shroud clearances were tested and analyzed. Very good agreement was demonstrated between the numerical simulation analyses and the experiments. Using the analytical model, parametric studies were performed to identify key design parameters.

  7. Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor

    NASA Astrophysics Data System (ADS)

    Pfister, T.; Büttner, L.; Czarske, J.; Krain, H.; Schodl, R.

    2006-07-01

    This paper presents a novel fibre optic laser Doppler position sensor for single blade tip clearance and vibration measurements at turbo machines, which offers high temporal resolution and high position resolution simultaneously. The sensor principle is based on the generation of a measurement volume consisting of two superposed fan-like interference fringe systems with contrary fringe spacing gradients using wavelength division multiplexing. A flexible and robust measurement system with an all-passive fibre coupled measurement head has been realized employing diffractive and refractive optics. Measurements of tip clearance and rotor vibrations at a transonic centrifugal compressor performed during operation at up to 50 000 rpm (833 Hz) corresponding to 21.7 kHz blade frequency and 586 m s-1 blade tip velocity are presented. The results are in excellent agreement with those of capacitive probes. The mean uncertainty of the position measurement was around 20 µm and, thus, considerably better than for conventional tip clearance probes. Consequently, this sensor is capable of fulfilling the requirements for future active clearance control systems and has great potential for in situ and online tip clearance and vibration measurements at metallic and non-metallic turbine blades with high precision.

  8. Noise from propellers with symmetrical sections at zero blade angle, II

    NASA Technical Reports Server (NTRS)

    Deming, A F

    1938-01-01

    In a previous paper (Technical Note No. 605), a theory was developed that required an empirical relation to calculate sound pressures for the higher harmonics. Further investigation indicated that the modified theory agrees with experiment and that the empirical relation was due to an interference phenomenon peculiar to the test arrangement used. Comparison is made between the test results for a two-blade arrangement and the theory. The comparison is made for sound pressures in the plane of the revolving blades for varying values of tip velocity. Comparison is also made at constant tip velocity for all values of azimuth angle B. A further check is made between the theory and the experimental results for the fundamental of a four-blade arrangement with blades of the same dimensions as those used in the two-blade arrangement.

  9. A comparison of theory and flight test of the BO 105/BMR in hover and forward flight

    NASA Technical Reports Server (NTRS)

    Mirick, Paul H.

    1988-01-01

    Four cases were selected for comparison with theoretical predictions using stability data obtained during the flight test of the Bearingless Main Rotor (BMR) on a Messerschmidt-Boelkow-Blohm BO 105 helicopter. The four cases selected form the flight test included two ground resonance cases and two air resonance cases. The BMR used four modified BO 105 blades attached to a bearingless hub. The hub consisted of dual fiberglass C-channel beams attached to the hub center at 0.0238R and attached to the blade root at 0.25R with blade pitch control provided by a torque tube. Analyses from Bell Helicopter Textron, Boeing Vertol, and Sikorsky Aircraft were compared with the data and the correlation ranged from very poor-to-poor to poor-to-fair.

  10. Out-of-band and adjacent-channel interference reduction by analog nonlinear filters

    NASA Astrophysics Data System (ADS)

    Nikitin, Alexei V.; Davidchack, Ruslan L.; Smith, Jeffrey E.

    2015-12-01

    In a perfect world, we would have `brick wall' filters, no-distortion amplifiers and mixers, and well-coordinated spectrum operations. The real world, however, is prone to various types of unintentional and intentional interference of technogenic (man-made) origin that can disrupt critical communication systems. In this paper, we introduce a methodology for mitigating technogenic interference in communication channels by analog nonlinear filters, with an emphasis on the mitigation of out-of-band and adjacent-channel interference. Interference induced in a communications receiver by external transmitters can be viewed as wide-band non-Gaussian noise affecting a narrower-band signal of interest. This noise may contain a strong component within the receiver passband, which may dominate over the thermal noise. While the total wide-band interference seen by the receiver may or may not be impulsive, we demonstrate that the interfering component due to power emitted by the transmitter into the receiver channel is likely to appear impulsive under a wide range of conditions. We give an example of mechanisms of impulsive interference in digital communication systems resulting from the nonsmooth nature of any physically realizable modulation scheme for transmission of a digital (discontinuous) message. We show that impulsive interference can be effectively mitigated by nonlinear differential limiters (NDLs). An NDL can be configured to behave linearly when the input signal does not contain outliers. When outliers are encountered, the nonlinear response of the NDL limits the magnitude of the respective outliers in the output signal. The signal quality is improved in excess of that achievable by the respective linear filter, increasing the capacity of a communications channel. The behavior of an NDL, and its degree of nonlinearity, is controlled by a single parameter in a manner that enables significantly better overall suppression of the noise-containing impulsive components compared to the respective linear filter. Adaptive configurations of NDLs are similarly controlled by a single parameter and are suitable for improving quality of nonstationary signals under time-varying noise conditions. NDLs are designed to be fully compatible with existing linear devices and systems and to be used as an enhancement, or as a low-cost alternative, to the state-of-art interference mitigation methods.

  11. Study on performance and flow field of an undershot cross-flow water turbine comprising different number of blades

    NASA Astrophysics Data System (ADS)

    Nishi, Yasuyuki; Hatano, Kentaro; Inagaki, Terumi

    2017-10-01

    Recently, small hydroelectric generators have gained attention as a further development in water turbine technology for ultra low head drops in open channels. The authors have evaluated the application of cross-flow water turbines in open channels as an undershot type after removing the casings and guide vanes to substantially simplify these water turbines. However, because undershot cross-flow water turbines are designed on the basis of cross-flow water turbine runners used in typical pipelines, it remains unclear whether the number of blades has an effect on the performance or flow fields. Thus, in this research, experiments and numerical analyses are employed to study the performance and flow fields of undershot cross-flow water turbines with varying number of blades. The findings show that the turbine output and torque are lower, the fluctuation is significantly higher, and the turbine efficiency is higher for runners with 8 blades as opposed to those with 24 blades.

  12. Fusion of a FBG-based health monitoring system for wind turbines with a fiber-optic lightning detection system

    NASA Astrophysics Data System (ADS)

    Krämer, Sebastian G. M.; Wiesent, Benjamin; Müller, Mathias S.; Puente León, Fernando; Méndez Hernández, Yarú

    2008-04-01

    Wind turbine blades are made of composite materials and reach a length of more than 42 meters. Developments for modern offshore turbines are working on about 60 meters long blades. Hence, with the increasing height of the turbines and the remote locations of the structures, health monitoring systems are becoming more and more important. Therefore, fiber-optic sensor systems are well-suited, as they are lightweight, immune against electromagnetic interference (EMI), and as they can be multiplexed. Based on two separately existing concepts for strain measurements and lightning detection on wind turbines, a fused system is presented. The strain measurement system is based on a reflective fiber-Bragg-grating (FBG) network embedded in the composite structure of the blade. For lightning detection, transmissive &fiber-optic magnetic field sensors based on the Faraday effect are used to register the lightning parameters and estimate the impact point. Hence, an existing lightning detection system will be augmented, due to the fusion, by the capability to measure strain, temperature and vibration. Load, strain, temperature and impact detection information can be incorporated into the turbine's monitoring or SCADA system and remote controlled by operators. Data analysis techniques allow dynamic maintenance scheduling to become a reality, what is of special interest for the cost-effective maintenance of large offshore or badly attainable onshore wind parks. To prove the feasibility of this sensor fusion on one optical fiber, interferences between both sensor systems are investigated and evaluated.

  13. CW Interference Effects on High Data Rate Transmission Through the ACTS Wideband Channel

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Ngo, Duc H.; Tran, Quang K.; Tran, Diepchi T.; Yu, John; Kachmar, Brian A.; Svoboda, James S.

    1996-01-01

    Satellite communications channels are susceptible to various sources of interference. Wideband channels have a proportionally greater probability of receiving interference than narrowband channels. NASA's Advanced Communications Technology Satellite (ACTS) includes a 900 MHz bandwidth hardlimiting transponder which has provided an opportunity for the study of interference effects of wideband channels. A series of interference tests using two independent ACTS ground terminals measured the effects of continuous-wave (CW) uplink interference on the bit-error rate of a 220 Mbps digitally modulated carrier. These results indicate the susceptibility of high data rate transmissions to CW interference and are compared to results obtained with a laboratory hardware-based system simulation and a computer simulation.

  14. Deflection Measurements on Propeller 5503 in Ahead and Crashback

    DTIC Science & Technology

    2016-10-01

    the dots on the blade that were visible for the run . Not all points could be determined for each picture during each run . One issue discovered with...Channel (LCC) in February and April of 2009. The deflection of the blades was measured using defocused particle image velocimetry. Comparisons were made... Blade Deflection Measurement CalTech

  15. Investigation of the unsteady pressure distribution on the blades of an axial flow fan

    NASA Technical Reports Server (NTRS)

    Henderson, R. E.; Franke, G. F.

    1978-01-01

    The unsteady response of a stator blade caused by the interaction of the stator with the wakes of an upstream rotor was investigated. Unsteady pressure distributions were measured using a blade instrumented with a series miniature pressure transducers. The influence of several geometrical and flow parameters - rotor/stator spacing, stator solidity and stator incidence angle - were studied to determine the unsteady response of the stator to these parameters. A major influence on the stator unsteady response is due to the stator solidity. At high solidities the blade-to-blade interference has a larger contribution. While the range of rotor/stator spacings investigated had a minor influence, the effect of stator incidence angle is significant. The data indicate the existence of an optimum positive incidence which minimizes the unsteady response.

  16. Co-Channel Interference Mitigation Using Satellite Based Receivers

    DTIC Science & Technology

    2014-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS CO-CHANNEL INTERFERENCE MITIGATION USING SATELLITE BASED RECEIVERS by John E. Patterson...07-02-2012 to 12-19-2014 4. TITLE AND SUBTITLE CO-CHANNEL INTERFERENCE MITIGATION USING SATELLITE BASED RE- CEIVERS 5. FUNDING NUMBERS 6. AUTHOR(S...Approved for public release; distribution is unlimited CO-CHANNEL INTERFERENCE MITIGATION USING SATELLITE BASED RECEIVERS John E. Patterson Commander

  17. Modeling channel interference in an orbital angular momentum-multiplexed laser link

    NASA Astrophysics Data System (ADS)

    Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.

    2009-08-01

    We study the effects of optical turbulence on the energy crosstalk among constituent orbital angular momentum (OAM) states in a vortex-based multi-channel laser communication link and determine channel interference in terms of turbulence strength and OAM state separation. We characterize the channel interference as a function of C2n and transmit OAM state, and propose probability models to predict the random fluctuations in the received signals for such architecture. Simulations indicate that turbulence-induced channel interference is mutually correlated across receive channels.

  18. Design and two dimensional cascade test of a jet-flap turbine stator blade with ratio of axial chord to spacing of 0.5

    NASA Technical Reports Server (NTRS)

    Stabe, R. G.

    1971-01-01

    A jet-flap blade was designed for a velocity diagram typical of the first-stage stator of a jet engine turbine and was tested in a simple two-dimensional cascade of six blades. The principal measurements were blade surface static pressure and cross-channel surveys of exit total pressure, static pressure, and flow angle. The results of the experimental investigation include blade loading, exit angle, flow, and loss data for a range of exit critical velocity ratios and three jet flow conditions.

  19. 28 CFR 541.13 - Prohibited acts and disciplinary severity scale.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... personal safety; e.g., hack-saw blade) A. Recommend parole date rescission or retardation.B. Forfeit earned... disrupts or interferes with the security or orderly running of the institution or the Bureau of Prisons... interferes with the security or orderly running of the institution or the Bureau of Prisons. (Conduct must be...

  20. In-situ position and vibration measurement of rough surfaces using laser Doppler distance sensors

    NASA Astrophysics Data System (ADS)

    Czarske, J.; Pfister, T.; Günther, P.; Büttner, L.

    2009-06-01

    In-situ measurement of distances and shapes as well as dynamic deformations and vibrations of fast moving and especially rotating objects, such as gear shafts and turbine blades, is an important task at process control. We recently developed a laser Doppler distance frequency sensor, employing two superposed fan-shaped interference fringe systems with contrary fringe spacing gradients. Via two Doppler frequency evaluations the non-incremental position (i.e. distance) and the tangential velocity of rotating bodies are determined simultaneously. The distance uncertainty is in contrast to e.g. triangulation in principle independent of the object velocity. This unique feature allows micrometer resolutions of fast moved rough surfaces. The novel sensor was applied at turbo machines in order to control the tip clearance. The measurements at a transonic centrifugal compressor were performed during operation at up to 50,000 rpm, i.e. 586 m/s velocity of the blade tips. Due to the operational conditions such as temperatures of up to 300 °C, a flexible and robust measurement system with a passive fiber-coupled sensor, using diffractive optics, has been realized. Since the tip clearance of individual blades could be temporally resolved an analysis of blade vibrations was possible. A Fourier transformation of the blade distances results in an average period of 3 revolutions corresponding to a frequency of 1/3 of the rotary frequency. Additionally, a laser Doppler distance sensor using two tilted fringe systems and phase evaluation will be presented. This phase sensor exhibits a minimum position resolution of σz = 140 nm. It allows precise in-situ shape measurements at grinding and turning processes.

  1. Numerical and experimental evidence of the inter-blade cavitation vortex development at deep part load operation of a Francis turbine

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Müller, A.; Favrel, A.; Landry, C.; Avellan, F.

    2016-11-01

    Francis turbines are subject to various types of the cavitation flow depending on the operating conditions. In order to compensate for the stochastic nature of renewable energy sources, it is more and more required to extend the operating range of the generating units, from deep part load to full load conditions. In the deep part load condition, the formation of cavitation vortices in the turbine blade to blade channels called inter-blade cavitation vortex is often observed. The understanding of the dynamic characteristics of these inter-blade vortices and their formation mechanisms is of key importance in an effort of developing reliable flow simulation tools. This paper reports the numerical and experimental investigations carried out in order to establish the vortex characteristics, especially the inception and the development of the vortex structure. The unsteady RANS simulation for the multiphase flow is performed with the SST- SAS turbulence model by using the commercial flow solver ANSYS CFX. The simulation results in terms of the vortex structure and the cavitation volume are evaluated by comparing them to the flow visualizations of the blade channel acquired through a specially instrumented guide vane as well as from the downstream of the runner across the draft tube cone. The inter-blade cavitation vortex is successfully captured by the simulation and both numerical and experimental results evidence that the inter-blade vortices are attached to the runner hub.

  2. T1-weighted brain imaging with a 32-channel coil at 3T using TurboFLASH BLADE compared with standard cartesian k-space sampling.

    PubMed

    Attenberger, Ulrike I; Runge, Val M; Williams, Kenneth D; Stemmer, Alto; Michaely, Henrik J; Schoenberg, Stefan O; Reiser, Maximilian F; Wintersperger, Bernd J

    2009-03-01

    Motion artifacts often markedly degrade image quality in clinical scans. The BLADE technique offers an alternative k-space sampling scheme reducing the effect of patient related motion on image quality. The purpose of this study is the comparison of imaging artifacts, signal-to-noise (SNR), and contrast-to-noise ratio (CNR) of a new turboFLASH BLADE k-space trajectory with the standard Cartesian k-space sampling for brain imaging, using a 32-channel coil at 3T. The results from 32 patients included after informed consent are reported. This study was performed with a 32-channel head coil on a 3T scanner. Sagittal and axial T1-weighted FLASH sequences (TR/TE 250/2.46 milliseconds, flip angle 70-degree), acquired with Cartesian k-space sampling and T1-weighted turboFLASH sequences (TR/TE/TIsag/TIax 3200/2.77/1144/1056 milliseconds, flip angle 20-degree), using PROPELLER (BLADE) k-space trajectory, were compared. SNR and CNR were evaluated using a paired student t test. The frequency of motion artifacts was assessed in a blinded read. To analyze the differences between both techniques a McNemar test was performed. A P value <0.05 was considered statistically significant. From the blinded read, the overall preference in terms of diagnostic image quality was statistically significant in favor of the BLADE turboFLASH data sets, compared with standard FLASH for both sagittal (P < 0.0001) and axial (P < 0.0001) planes. The frequency of motion artifacts from the scalp was higher for standard FLASH sequences than for BLADE sequences on both axial (47%, P < 0.0003) and sagittal (69%, P < 0.0001) planes. BLADE was preferred in 100% (sagittal plane) and 80% (axial plane) of in-patient data sets and in 68% (sagittal plane) and 73% (axial plane) of out-patient data sets.The BLADE T1 scan did have lower SNRmean (BLADEax 179 +/- 98, Cartesianax 475 +/- 145, BLADEsag 171 +/- 51, and Cartesiansag 697 +/- 129) with P values indicating accordingly a statistically significant difference (Pax <0.0001, Psag < 0.0001), because of the fundamental difference in imaging approach (FLASH vs. turboFLASH). Differences for CNR were also statistically significant, independent of imaging plane (Pax = 0.001, Psag = 0.02). Results demonstrate that turboFLASH BLADE is applicable at 3T with a 32-channel head coil for T1-weighted imaging, with reduced ghost artifacts. This approach offers the first truly clinically applicable T1-weighted BLADE technique for brain imaging at 3T, with consistent excellent image quality.

  3. The Unsteady Temperature Field in a Turbine Blade Cooling Channel

    DTIC Science & Technology

    2003-03-01

    SYB) 39-1 The Unsteady Temperature Field in a Turbine Blade Cooling Channel T . Arts Von Karman Institute for Fluid Dynamics 72, chausse de Waterloo...wall coordinates (y+ and T +) are used for this purpose: ν = − ρ−= τ+τ + uyy q TT uCT wall wall p (1) (SYB) 39...poor performance of the Baldwin-Lomax model and, up to some extent, of the standard k-ε model (Fig. 5). 0 5 10 15 20 25 1 10 100 1000 10000 Y+ T

  4. Algebraic grid generation for coolant passages of turbine blades with serpentine channels and pin fins

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Roelke, R. J.; Steinthorsson, E.

    1991-01-01

    In order to study numerically details of the flow and heat transfer within coolant passages of turbine blades, a method must first be developed to generate grid systems within the very complicated geometries involved. In this study, a grid generation package was developed that is capable of generating the required grid systems. The package developed is based on an algebraic grid generation technique that permits the user considerable control over how grid points are to be distributed in a very explicit way. These controls include orthogonality of grid lines next to boundary surfaces and ability to cluster about arbitrary points, lines, and surfaces. This paper describes that grid generation package and shows how it can be used to generate grid systems within complicated-shaped coolant passages via an example.

  5. Electric field controlled spin interference in a system with Rashba spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciftja, Orion, E-mail: ogciftja@pvamu.edu

    There have been intense research efforts over the last years focused on understanding the Rashba spin-orbit coupling effect from the perspective of possible spintronics applications. An important component of this line of research is aimed at control and manipulation of electron’s spin degrees of freedom in semiconductor quantum dot devices. A promising way to achieve this goal is to make use of the tunable Rashba effect that relies on the spin-orbit interaction in a two-dimensional electron system embedded in a host semiconducting material that lacks inversion-symmetry. This way, the Rashba spin-orbit coupling effect may potentially lead to fabrication of amore » new generation of spintronic devices where control of spin, thus magnetic properties, is achieved via an electric field and not a magnetic field. In this work we investigate theoretically the electron’s spin interference and accumulation process in a Rashba spin-orbit coupled system consisting of a pair of two-dimensional semiconductor quantum dots connected to each other via two conducting semi-circular channels. The strength of the confinement energy on the quantum dots is tuned by gate potentials that allow “leakage” of electrons from one dot to another. While going through the conducting channels, the electrons are spin-orbit coupled to a microscopically generated electric field applied perpendicular to the two-dimensional system. We show that interference of spin wave functions of electrons travelling through the two channels gives rise to interference/conductance patterns that lead to the observation of the geometric Berry’s phase. Achieving a predictable and measurable observation of Berry’s phase allows one to control the spin dynamics of the electrons. It is demonstrated that this system allows use of a microscopically generated electric field to control Berry’s phase, thus, enables one to tune the spin-dependent interference pattern and spintronic properties with no need for injection of spin-polarized electrons.« less

  6. Numerical performance evaluation of design modifications on a centrifugal pump impeller running in reverse mode

    NASA Astrophysics Data System (ADS)

    Kassanos, Ioannis; Chrysovergis, Marios; Anagnostopoulos, John; Papantonis, Dimitris; Charalampopoulos, George

    2016-06-01

    In this paper the effect of impeller design variations on the performance of a centrifugal pump running as turbine is presented. Numerical simulations were performed after introducing various modifications in the design for various operating conditions. Specifically, the effects of the inlet edge shape, the meridional channel width, the number of blades and the addition of splitter blades on impeller performance was investigated. The results showed that, an increase in efficiency can be achieved by increasing the number of blades and by introducing splitter blades.

  7. Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network.

    PubMed

    Choi, Sangil; Park, Jong Hyuk

    2016-12-02

    Wireless mesh networks (WMNs) have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA) algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM). In addition, MICA achieves much lower throughput variation among the destination nodes than MCM.

  8. Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network

    PubMed Central

    Choi, Sangil; Park, Jong Hyuk

    2016-01-01

    Wireless mesh networks (WMNs) have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA) algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM). In addition, MICA achieves much lower throughput variation among the destination nodes than MCM. PMID:27918438

  9. Experimental validation of tonal noise control from subsonic axial fans using flow control obstructions

    NASA Astrophysics Data System (ADS)

    Gérard, Anthony; Berry, Alain; Masson, Patrice; Gervais, Yves

    2009-03-01

    This paper presents the acoustic performance of a novel approach for the passive adaptive control of tonal noise radiated from subsonic fans. Tonal noise originates from non-uniform flow that causes circumferentially varying blade forces and gives rise to a considerably larger radiated dipolar sound at the blade passage frequency (BPF) and its harmonics compared to the tonal noise generated by a uniform flow. The approach presented in this paper uses obstructions in the flow to destructively interfere with the primary tonal noise arising from various flow conditions. The acoustic radiation of the obstructions is first demonstrated experimentally. Indirect on-axis acoustic measurements are used to validate the analytical prediction of the circumferential spectrum of the blade unsteady lift and related indicators generated by the trapezoidal and sinusoidal obstructions presented in Ref. [A. Gérard, A. Berry, P. Masson, Y. Gervais, Modelling of tonal noise control from subsonic axial fans using flow control obstructions, Journal of Sound and Vibration (2008), this issue, doi: 10.1016/j.jsv.2008.09.027.] and also by cylindrical obstructions used in the literature. The directivity and sound power attenuation are then given in free field for the control of the BPF tone generated by rotor/outlet guide vane (OGV) interaction and the control of an amplified BPF tone generated by the rotor/OGV interaction with an added triangular obstruction between two outlet guide vanes to enhance the primary non-uniform flow. Global control was demonstrated in free field, attenuation up to 8.4 dB of the acoustic power at BPF has been measured. Finally, the aerodynamic performances of the automotive fan used in this study are almost not affected by the presence of the control obstruction.

  10. Centralized Routing and Scheduling Using Multi-Channel System Single Transceiver in 802.16d

    NASA Astrophysics Data System (ADS)

    Al-Hemyari, A.; Noordin, N. K.; Ng, Chee Kyun; Ismail, A.; Khatun, S.

    This paper proposes a cross-layer optimized strategy that reduces the effect of interferences from neighboring nodes within a mesh networks. This cross-layer design relies on the routing information in network layer and the scheduling table in medium access control (MAC) layer. A proposed routing algorithm in network layer is exploited to find the best route for all subscriber stations (SS). Also, a proposed centralized scheduling algorithm in MAC layer is exploited to assign a time slot for each possible node transmission. The cross-layer optimized strategy is using multi-channel single transceiver and single channel single transceiver systems for WiMAX mesh networks (WMNs). Each node in WMN has a transceiver that can be tuned to any available channel for eliminating the secondary interference. Among the considered parameters in the performance analysis are interference from the neighboring nodes, hop count to the base station (BS), number of children per node, slot reuse, load balancing, quality of services (QoS), and node identifier (ID). Results show that the proposed algorithms significantly improve the system performance in terms of length of scheduling, channel utilization ratio (CUR), system throughput, and average end to end transmission delay.

  11. Topological Interference Management for K-User Downlink Massive MIMO Relay Network Channel.

    PubMed

    Selvaprabhu, Poongundran; Chinnadurai, Sunil; Li, Jun; Lee, Moon Ho

    2017-08-17

    In this paper, we study the emergence of topological interference alignment and the characterizing features of a multi-user broadcast interference relay channel. We propose an alternative transmission strategy named the relay space-time interference alignment (R-STIA) technique, in which a K -user multiple-input-multiple-output (MIMO) interference channel has massive antennas at the transmitter and relay. Severe interference from unknown transmitters affects the downlink relay network channel and degrades the system performance. An additional (unintended) receiver is introduced in the proposed R-STIA technique to overcome the above problem, since it has the ability to decode the desired signals for the intended receiver by considering cooperation between the receivers. The additional receiver also helps in recovering and reconstructing the interference signals with limited channel state information at the relay (CSIR). The Alamouti space-time transmission technique and minimum mean square error (MMSE) linear precoder are also used in the proposed scheme to detect the presence of interference signals. Numerical results show that the proposed R-STIA technique achieves a better performance in terms of the bit error rate (BER) and sum-rate compared to the existing broadcast channel schemes.

  12. Topological Interference Management for K-User Downlink Massive MIMO Relay Network Channel

    PubMed Central

    Li, Jun; Lee, Moon Ho

    2017-01-01

    In this paper, we study the emergence of topological interference alignment and the characterizing features of a multi-user broadcast interference relay channel. We propose an alternative transmission strategy named the relay space-time interference alignment (R-STIA) technique, in which a K-user multiple-input-multiple-output (MIMO) interference channel has massive antennas at the transmitter and relay. Severe interference from unknown transmitters affects the downlink relay network channel and degrades the system performance. An additional (unintended) receiver is introduced in the proposed R-STIA technique to overcome the above problem, since it has the ability to decode the desired signals for the intended receiver by considering cooperation between the receivers. The additional receiver also helps in recovering and reconstructing the interference signals with limited channel state information at the relay (CSIR). The Alamouti space-time transmission technique and minimum mean square error (MMSE) linear precoder are also used in the proposed scheme to detect the presence of interference signals. Numerical results show that the proposed R-STIA technique achieves a better performance in terms of the bit error rate (BER) and sum-rate compared to the existing broadcast channel schemes. PMID:28817071

  13. Flow behavior in inlet guide vanes of radial turbines

    NASA Technical Reports Server (NTRS)

    Sokhey, J.; Tabakoff, W.; Hosny, W. M.

    1975-01-01

    Scroll flow is discussed. Streamline pattern and velocity distribution in the guide vanes are calculated. The blade surface temperature distribution is also determined. The effects of the blade shapes and the nozzle channel width on the velocity profiles at inlet to the guide vanes are investigated.

  14. Compressible, unsteady lifting-surface theory for a helicopter rotor in forward flight

    NASA Technical Reports Server (NTRS)

    Runyan, H. L.; Tai, H.

    1985-01-01

    A lifting-surface theory has been developed for a helicopter rotor in forward flight for compressible and incompressible flow. The method utilizes the concept of the linearized acceleration potential and makes use of the doublet lattice procedure. Calculations demonstrating the application of the method are given in terms of the lift distribution on a one-bladed rotor, a two-bladed rotor, and a rotor with swept-forward and swept-back tips. Also, the lift on a rotor vibrating in a pitching mode at 4 per revolution is given. Compressibility effects and interference effects for a two-bladed rotor are discussed.

  15. Design and Testing of an Erosion Resistant Ultrasonic De-Icing System for Rotorcraft Blades

    DTIC Science & Technology

    2013-08-01

    need for pneumatic slip rings , and the potential of holes located on the blade to clog. The 11-gallon tank adds significant weight and only protects...icing were the need of heavy pneumatic slip rings , and the need for a coating able to protect against both rain and sand erosion. 14 1.1.4.6...feet in diameter at an RPM of 1000 (see Figure 49). Four slip rings carry 48 signal channels and 24 power channels from the rotating frame of the

  16. [Research on the method of interference correction for nondispersive infrared multi-component gas analysis].

    PubMed

    Sun, You-Wen; Liu, Wen-Qing; Wang, Shi-Mei; Huang, Shu-Hua; Yu, Xiao-Man

    2011-10-01

    A method of interference correction for nondispersive infrared multi-component gas analysis was described. According to the successive integral gas absorption models and methods, the influence of temperature and air pressure on the integral line strengths and linetype was considered, and based on Lorentz detuning linetypes, the absorption cross sections and response coefficients of H2O, CO2, CO, and NO on each filter channel were obtained. The four dimension linear regression equations for interference correction were established by response coefficients, the absorption cross interference was corrected by solving the multi-dimensional linear regression equations, and after interference correction, the pure absorbance signal on each filter channel was only controlled by the corresponding target gas concentration. When the sample cell was filled with gas mixture with a certain concentration proportion of CO, NO and CO2, the pure absorbance after interference correction was used for concentration inversion, the inversion concentration error for CO2 is 2.0%, the inversion concentration error for CO is 1.6%, and the inversion concentration error for NO is 1.7%. Both the theory and experiment prove that the interference correction method proposed for NDIR multi-component gas analysis is feasible.

  17. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    PubMed

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-08-12

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally.

  18. Compressor blade clearance measurement using capacitance and phase lock techniques

    NASA Astrophysics Data System (ADS)

    Demers, Rosario N.

    1986-11-01

    The clearance measurement system has several unique features which mimimize problems plaguing earlier systems. These include tuning stability and sensitivity drift. Both these problems are intensified by the environmental factors present in compressors i.e., wide temperature fluctuations, vibrations, and conductive contamination of probe tips. The circuitry in this new system provides phase lock feedback to control tuning and shut calibration to measure sensitivity. The use of high frequency excitation lowers the probe tip impedance, thus miminizing the effects of contamination. A prototype has been built and tested. The ability to calibrate has been demonstrated. An eight channel system is now being constructed for use in the Compressor Research Facility at Wright-Patterson AFB. The efficiency of a turbine engine is to a large extent dependent upon the mechanical tolerances maintained between its moving parts. On critical tolerance is the blade span. Although this tolerance may not appear severe, the impact on compressor efficiency is dramatic. The penalty in percent efficiency has been shown to be three times the percent clearance to blade span ratio. In addition, each percent loss in compressor efficiency represents one half percent loss in specific fuel consumption. Factors which affect blade tip clearance are identified.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo

    High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less

  20. Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer

    DOE PAGES

    Na, Ji Sung; Koo, Eunmo; Munoz-Esparza, Domingo; ...

    2015-12-28

    High-resolution large-eddy simulation of the flow over a large wind farm (64 wind turbines) is performed using the HIGRAD/FIRETEC-WindBlade model, which is a high-performance computing wind turbine–atmosphere interaction model that uses the Lagrangian actuator line method to represent rotating turbine blades. These high-resolution large-eddy simulation results are used to parameterize the thrust and power coefficients that contain information about turbine interference effects within the wind farm. Those coefficients are then incorporated into the WRF (Weather Research and Forecasting) model in order to evaluate interference effects in larger-scale models. In the high-resolution WindBlade wind farm simulation, insufficient distance between turbines createsmore » the interference between turbines, including significant vertical variations in momentum and turbulent intensity. The characteristics of the wake are further investigated by analyzing the distribution of the vorticity and turbulent intensity. Quadrant analysis in the turbine and post-turbine areas reveals that the ejection motion induced by the presence of the wind turbines is dominant compared to that in the other quadrants, indicating that the sweep motion is increased at the location where strong wake recovery occurs. Regional-scale WRF simulations reveal that although the turbulent mixing induced by the wind farm is partly diffused to the upper region, there is no significant change in the boundary layer depth. The velocity deficit does not appear to be very sensitive to the local distribution of turbine coefficients. However, differences of about 5% on parameterized turbulent kinetic energy were found depending on the turbine coefficient distribution. Furthermore, turbine coefficients that consider interference in the wind farm should be used in wind farm parameterization for larger-scale models to better describe sub-grid scale turbulent processes.« less

  1. Experimental Investigation of Inter-Blade Vortices in a Model Francis Turbine

    NASA Astrophysics Data System (ADS)

    LIU, Demin; LIU, Xiaobing; ZHAO, Yongzhi

    2017-07-01

    The inter-blade vortex in a Francis turbine becomes one of the main hydraulic factors that are likely to cause blade erosion at deep part load operating conditions. However, the causes and the mechanism of inter-blade vortex are still under investigation according to present researches. Thus the causes of inter-blade vortex and the effect of different hydraulic parameters on the inter-blade vortex are investigated experimentally. The whole life cycle of the inter-blade vortex is observed by a high speed camera. The test results illustrate the whole life cycle of the inter-blade vortex from generation to separation and even to fading. It is observed that the inter-blade vortex becomes stronger with the decreasing of flow and head, which leads to pressure fluctuation. Meanwhile, the pressure fluctuations in the vane-less area and the draft tube section become stronger when inter-blade vortices exist in the blade channel. The turbine will be damaged if operating in the inter-blade vortex zone, so its operating range must be far away from that zone. This paper reveals the main cause of the inter-blade vortex which is the larger incidence angle between the inflow angle and the blade angle on the leading edge of the runner at deep part load operating conditions.

  2. Note: Experimental observation of nano-channel pattern in light sheet laser interference nanolithography system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, Kavya; Mondal, Partha Pratim, E-mail: partha@iap.iisc.ernet.in

    We experimentally observed nano-channel-like pattern in a light-sheet based interference nanolithography system. The optical system created nano-channel-like patterned illumination. Coherent counter-propagating light sheets are made to interfere at and near geometrical focus along the propagation z-axis. This results in the formation of nano-channel-like pattern (of size ≈ 300 nm and inter-channel periodicity of ≈337.5 nm) inside the sample due to constructive and destructive interference. In addition, the technique has the ability to generate large area patterning using larger light-sheets. Exciting applications are in the broad field of nanotechnology (nano-electronics and nano-fluidics).

  3. Adaptive limited feedback for interference alignment in MIMO interference channels.

    PubMed

    Zhang, Yang; Zhao, Chenglin; Meng, Juan; Li, Shibao; Li, Li

    2016-01-01

    It is very important that the radar sensor network has autonomous capabilities such as self-managing, etc. Quite often, MIMO interference channels are applied to radar sensor networks, and for self-managing purpose, interference management in MIMO interference channels is critical. Interference alignment (IA) has the potential to dramatically improve system throughput by effectively mitigating interference in multi-user networks at high signal-to-noise (SNR). However, the implementation of IA predominantly relays on perfect and global channel state information (CSI) at all transceivers. A large amount of CSI has to be fed back to all transmitters, resulting in a proliferation of feedback bits. Thus, IA with limited feedback has been introduced to reduce the sum feedback overhead. In this paper, by exploiting the advantage of heterogeneous path loss, we first investigate the throughput of IA with limited feedback in interference channels while each user transmits multi-streams simultaneously, then we get the upper bound of sum rate in terms of the transmit power and feedback bits. Moreover, we propose a dynamic feedback scheme via bit allocation to reduce the throughput loss due to limited feedback. Simulation results demonstrate that the dynamic feedback scheme achieves better performance in terms of sum rate.

  4. AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS

    NASA Technical Reports Server (NTRS)

    Crouse, J. E.

    1994-01-01

    The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified with fourth-degree polynomial functions of path distance from the maximum thickness point. Input to the aerodynamic and blading design program includes the annulus profile, the overall compressor mass flow, the pressure ratio, and the rotative speed. A number of input parameters are also used to specify and control the blade row aerodynamics and geometry. The output from the aerodynamic solution has an overall blade row and compressor performance summary followed by blade element parameters for the individual blade rows. If desired, the blade coordinates in the streamwise direction for internal flow analysis codes and the coordinates on plane sections through blades for fabrication drawings may be stored and printed. The aerodynamic and blading design program for multistage axial-flow compressors is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 series computer with a central memory requirement of approximately 470K of 8 bit bytes. This program was developed in 1981.

  5. Quasi-three-dimensional flow solution by meridional plane analysis

    NASA Technical Reports Server (NTRS)

    Katsanis, T.; Mcnally, W. D.

    1974-01-01

    A computer program has been developed to obtain subsonic or shockfree transonic, nonviscous flow analysis on the hub-shroud mid-channel flow surface of a turbomachine. The analysis may be for any annular passage, with or without blades. The blades may be fixed or rotating and may be twisted and leaned. The flow may be axial, radial or mixed. Blade surface velocities over the entire blade are approximated based on the rate of change of angular momentum. This gives a 3-D flow picture based on a 2-D analysis. The paper discusses the method used for the program and shows examples of the type of passages and blade rows which can be analyzed. Also, some numerical examples are given to show how the program can be used for practical assistance in design of blading, annular passages, and annular diffusers.

  6. Comparison of Computational-Model and Experimental-Example Trained Neural Networks for Processing Speckled Fringe Patterns

    NASA Technical Reports Server (NTRS)

    Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.

    1998-01-01

    The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model-generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.

  7. Comparison of Computational, Model and Experimental, Example Trained Neural Networks for Processing Speckled Fringe Patterns

    NASA Technical Reports Server (NTRS)

    Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.

    1998-01-01

    The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model- generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.

  8. Efficient algorithms for solution of interference cancellation and channel estimation for mobile OFDM system

    NASA Astrophysics Data System (ADS)

    Fan, Tong-liang; Wen, Yu-cang; Kadri, Chaibou

    Orthogonal frequency-division multiplexing (OFDM) is robust against frequency selective fading because of the increase of the symbol duration. However, the time-varying nature of the channel causes inter-carrier interference (ICI) which destroys the orthogonal of sub-carriers and degrades the system performance severely. To alleviate the detrimental effect of ICI, there is a need for ICI mitigation within one OFDM symbol. We propose an iterative Inter-Carrier Interference (ICI) estimation and cancellation technique for OFDM systems based on regularized constrained total least squares. In the proposed scheme, ICI aren't treated as additional additive white Gaussian noise (AWGN). The effect of Inter-Carrier Interference (ICI) and inter-symbol interference (ISI) on channel estimation is regarded as perturbation of channel. We propose a novel algorithm for channel estimation o based on regularized constrained total least squares. Computer simulations show that significant improvement can be obtained by the proposed scheme in fast fading channels.

  9. Experimental and theoretical investigation of three-dimensional turbulent boundary layers and turbulence characteristics inside an axial flow inducer passage. Final Report. Ph.D. Thesis, Jun. 1971

    NASA Technical Reports Server (NTRS)

    Anand, A. K.; Lakshminarayana, B.

    1977-01-01

    Analytical and experimental investigations of the characteristics of three dimensional turbulent boundary layers in a rotating helical passage of an inducer rotor are reported. Expressions are developed for the velocity profiles in the inner layer, where the viscous effects dominate, in the outer layer, where the viscous effects are small, and in the interference layer, where the end walls influence the flow. The prediction of boundary layer growth is based on the momentum integral technique. The equations derived are general enough to be valid for all turbomachinery rotors with arbitrary pressure gradients. The experimental investigations are carried out in a flat plate inducer 3 feet in diameter. The mean velocity profiles, turbulence intensities and shear stresses, wall shear stress, and limiting streamline angles are measured at various radial and chordwise locations by using rotating probes. The measurements are in general agreement with the predictions. The radial flows are well represented by an expression which includes the effect of stagger angle and radial pressure gradient. The radial flows in the rotor channel are higher than those on a single blade. The collateral region exists only very near the blade surface. The radial component of turbulence intensity is higher than the streamwise component because of the effect of rotation.

  10. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    PubMed Central

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C. F.; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally. PMID:26274964

  11. Laboratory Report on the Investigation of the Flow around Two Turbine-Blade Profiles using the Interferometer Method

    NASA Technical Reports Server (NTRS)

    vonVietinghoff-Scheel, K.

    1947-01-01

    At the request of the Junkers Aircraft and Engine Construction Company, Engine Division, Dessau Main Plant, an investigation was made using the interferometer method on the two turbine-blade profiles submitted. The interferometer method enables making visible the differences in density and consequently the boundary layers that develop when a flow is directed on the profile. Recognition of the points on the profile at which separation of flow occurs is thus possible. By means of the interference photographs the extent of the dead-water region may be ascertained. The size of the dead-water region provides evidence as to the quality of the flow and allows a qualitative estimate of the amount of the flow losses. Interference photographs thus provide means of judging the utility of profiles under specific operating conditions and provide suggestions for possible changes of profile contours that might help to improve flow relations. Conclusions may be drawn concerning the influence of the blade-spacing ratio, the inlet-air angle, and the connection between the curvature of the profile contour and the point of separation of the flow from the profile surface.

  12. Support System Effects on the DLR-F6 Transport Configuration in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa B.; Hunter, Craig A.; Gatlin, Gregory M.

    2009-01-01

    An experimental investigation of the DLR-F6 generic transport configuration was conducted in the NASA NTF for use in the Drag Prediction Workshop. As data from this experimental investigation was collected, a large difference in drag values was seen between the NTF test and an ONERA test that was conducted several years ago. After much investigation, it was determined that this difference was likely due to a sting effect correction applied to the ONERA data which NTF does not use. This insight led to the present work. In this study, a computational assessment has been undertaken to investigate model support system interference effects on the DLR-F6 transport configuration. The configurations computed during this investigation were the isolated wing-body, the wing-body with the full support system (blade and sting), the wing-body with just the blade, and the wing-body with just the sting. The results from this investigation show the same trends that ONERA saw when they conducted a similar experimental investigation in the S2MA tunnel. Computational results suggest that the blade contributed an interference type of effect, the sting contributed a general blockage effect, and the full support system combined these effects.

  13. Diffusion weighted imaging: a comprehensive evaluation of a fast spin echo DWI sequence with BLADE (PROPELLER) k-space sampling at 3 T, using a 32-channel head coil in acute brain ischemia.

    PubMed

    Attenberger, Ulrike I; Runge, Val M; Stemmer, Alto; Williams, Kenneth D; Naul, L Gill; Michaely, Henrik J; Schoenberg, Stefan O; Reiser, Maximilian F; Wintersperger, Bernd J

    2009-10-01

    To evaluate the signal-to-noise ratio (SNR) and diagnostic quality of diffusion weighted imaging (DWI) using a fast spin echo (FSE) sequence with BLADE k-space trajectory at 3 T in combination with a 32-channel head coil. The scan was compared with a standard spin echo (SE) echo-planar imaging (EPI) DWI and a high resolution SE EPI DWI sequence. Fourteen patients with acute brain ischemia were included in this Institutional Review Board approved study. All patients were evaluated with 3 different image sequences, using a 3 T scanner and a 32-channel head coil: (a) a standard SE EPI DWI (matrix size 192 x 192), (b) a high resolution SE EPI DWI (matrix size of 256 x 256) and (c) a FSE DWI BLADE (matrix size 192 x 192). The SNR of the 3 scans was compared in 10 healthy volunteers by a paired student t test. Image quality was evaluated with 4 dedicated questions in a blinded read: (1) The scans were ranked in terms of bulk susceptibility artifact. (2) The scan preference for diagnosis of any diffusion abnormality that might occur and (3) the preference for visualization of the diffusion abnormality actually present was determined. (4) The influence of bulk susceptibility on image evaluation for the diffusion abnormality present was assessed. For visualization of the diffusion abnormality present, BLADE DWI was the scan sequence preferred most by both readers (reader 1: 41.7%, reader 2: 35.7%). For visualization of any diffusion abnormality present, BLADE DWI was the preferred scan in 13 of 14 cases for reader 1 (93%) and in 11 of 14 cases for reader 2 (78.6%). No high resolution SE EPI DWI scan was rated best by reader 1. Reader 2 rated the high resolution SE EPI DWI scan superior in only 1 of 56 judgments. The standard EPI DWI sequence (21.8 +/- 5.3) had in comparison to the high resolution EPI DWI (11.9 +/- 2.6) and the BLADE DWI scans (11.3 +/- 3.8) significantly higher SNR mean values. Our preliminary data demonstrates the feasibility of a FSE EPI DWI scan with radial-like k-space sampling, using a 32-channel coil at 3 T in acute brain ischemia. The BLADE DWI was the preferred scan for the detection of acute diffusion abnormalities because of the lack of bulk susceptibility artifacts.

  14. Numerical investigation of heat transfer on film-cooled turbine blades.

    PubMed

    Ginibre, P; Lefebvre, M; Liamis, N

    2001-05-01

    The accurate heat transfer prediction of film-cooled blades is a key issue for the aerothermal turbine design. For this purpose, advanced numerical methods have been developed at Snecma Moteurs. The goal of this paper is the assessment of a three-dimensional Navier-Stokes solver, based on the ONERA CANARI-COMET code, devoted to the steady aerothermal computations of film-cooled blades. The code uses a multidomain approach to discretize the blade to blade channel with overlapping structured meshes for the injection holes. The turbulence closure is done by means of either Michel mixing length model or Spalart-Allmaras one transport equation model. Computations of thin 3D slices of three film-cooled nozzle guide vane blades with multiple injections are performed. Aerothermal predictions are compared to experiments carried out by the von Karman Institute. The behavior of the turbulence models is discussed, and velocity and temperature injection profiles are investigated.

  15. Innovation in Vertical Axis Hydrokinetic Turbine – Straight Blade Cascaded (VAHT-SBC) design and testing for low current speed power generation

    NASA Astrophysics Data System (ADS)

    Hantoro, R.; Utama, I. K. A. P.; Arief, I. S.; Ismail, A.; Manggala, S. W.

    2018-05-01

    This study examines an innovative turbine with the addition of the number and arrangement of straight blade cascaded (SBC). SBC is a combination of passive variable-pitch and fixed pitch of each turbine arm. This study was conducted in an open channel flow that has a current velocity (V-m/s) of 1.1, 1.2, and 1.3. RPM and torque ware measured for coefficient of performance (Cp) and tip speed ratio (TSR) calculation. Without changing the turbine dimension, the employment of cascaded blade (three blades in each arm) contributes to improve energy extraction significantly. A significant increase in Cp value is seen when 9 blades (3 cascaded blades per arm) are used with a Cp 0.42 value at TSR 2.19. This value has reached 93% of the maximum theoritical Cp value.

  16. Incidence loss for fan turbine rotor blade in two-dimensional cascade

    NASA Technical Reports Server (NTRS)

    Kline, J. F.; Moffitt, T. P.; Stabe, R. G.

    1983-01-01

    The effect of incidence angle on the aerodynamic performance of a fan turbine rotor blade was investigated experimentally in a two dimensional cascade. The test covered a range of incidence angles from -15 deg to 10 deg and exit ideal critical velocity ratios from 0.75 to 0.95. The principal measurements were blade-surface static pressures and cross-channel survey of exit total pressure, static pressure, and flow angle. Flow adjacent to surfaces was examined using a visualization technique. The results of the investigation include blade-surface velocity distribution and overall kinetic energy loss coefficients for the incidence angles and exit velocity ratios tested. The measured losses are compared with those from a reference core turbine rotor blade and also with two common analytical methods of predicting incidence loss.

  17. Secondary flow spanwise deviation model for the stators of NASA middle compressor stages

    NASA Technical Reports Server (NTRS)

    Roberts, W. B.; Sandercock, D. M.

    1984-01-01

    A model of the spanwise variation of deviation for stator blades is presented. Deviation is defined as the difference between the passage mean flow angle and the metal angle at the outlet of a blade element of an axial compressor stage. The variation of deviation is taken as the difference above or below that predicted by blade element, (i.e., two-dimensional) theory at any spanwise location. The variation of deviation is dependent upon the blade camber, solidity and inlet boundary layer thickness at the hub or tip end-wall, and the blade channel aspect ratio. If these parameters are known or can be calculated, the model provides a reasonable approximation of the spanwise variation of deviation for most compressor middle stage stators operating at subsonic inlet Mach numbers.

  18. Investigation of Blade Angle of an Open Cross-Flow Runner

    NASA Astrophysics Data System (ADS)

    Katayama, Yusuke; Iio, Shouichiro; Veerapun, Salisa; Uchiyama, Tomomi

    2015-04-01

    The aim of this study was to develop a nano-hydraulic turbine utilizing drop structure in irrigation channels or industrial waterways. This study was focused on an open-type cross-flow turbine without any attached equipment for cost reduction and easy maintenance. In this study, the authors used an artificial indoor waterfall as lab model. Test runner which is a simple structure of 20 circular arc-shaped blades sandwiched by two circular plates was used The optimum inlet blade angle and the relationship between the power performance and the flow rate approaching theoretically and experimentally were investigated. As a result, the optimum inlet blade angle due to the flow rate was changed. Additionally, allocation rate of power output in 1st stage and 2nd stage is changed by the blade inlet angle.

  19. TACT1- TRANSIENT THERMAL ANALYSIS OF A COOLED TURBINE BLADE OR VANE EQUIPPED WITH A COOLANT INSERT

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.

    1994-01-01

    As turbine-engine core operating conditions become more severe, designers must develop more effective means of cooling blades and vanes. In order to design reliable, cooled turbine blades, advanced transient thermal calculation techniques are required. The TACT1 computer program was developed to perform transient and steady-state heat-transfer and coolant-flow analyses for cooled blades, given the outside hot-gas boundary condition, the coolant inlet conditions, the geometry of the blade shell, and the cooling configuration. TACT1 can analyze turbine blades, or vanes, equipped with a central coolant-plenum insert from which coolant-air impinges on the inner surface of the blade shell. Coolant-side heat-transfer coefficients are calculated with the heat transfer mode at each station being user specified as either impingement with crossflow, forced convection channel flow, or forced convection over pin fins. A limited capability to handle film cooling is also available in the program. The TACT1 program solves for the blade temperature distribution using a transient energy equation for each node. The nodal energy balances are linearized, one-dimensional, heat-conduction equations which are applied at the wall-outer-surface node, at the junction of the cladding and the metal node, and at the wall-inner-surface node. At the mid-metal node a linear, three-dimensional, heat-conduction equation is used. Similarly, the coolant pressure distribution is determined by solving the set of transfer momentum equations for the one-dimensional flow between adjacent fluid nodes. In the coolant channel, energy and momentum equations for one-dimensional compressible flow, including friction and heat transfer, are used for the elemental channel length between two coolant nodes. The TACT1 program first obtains a steady-state solution using iterative calculations to obtain convergence of stable temperatures, pressures, coolant-flow split, and overall coolant mass balance. Transient calculations are based on the steady-state solutions obtained. Input to the TACT1 program includes a geometrical description of the blade and insert, the nodal spacing to be used, and the boundary conditions describing the outside hot-gas and the coolant-inlet conditions. The program output includes the value of nodal temperatures and pressures at each iteration. The final solution output includes the temperature at each coolant node, and the coolant flow rates and Reynolds numbers. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 480K of 8 bit bytes. The TACT1 program was developed in 1978.

  20. Cascade flow analysis by Navier-Stokes equation

    NASA Astrophysics Data System (ADS)

    Nozaki, Osamu

    1987-06-01

    As the performance of the large electronic computer has improved, numerical simulation of the flow around the blade of the aircraft, for instance, is being actively conducted. In the compressor and turbine cascades of aircraft engine, multiple blades are put side by side closely, and the pressure gradient in the flow direction is large. Thus they have more complicated properties than the independent blade. At present, therefore, it is the mainstream to use potential, Euler's equation, etc., as the basic equation but, for knowing the phenomenon caused by the viscosity like the interference of shock waves and boundary layers, it is necessary to solve the Navier-Stokes (N-S) equation. A two-dimensional cascade analysis program was developed by the N-S equation by expanding the two-dimensional high Reynolds number transonic profile analysis code NSFOIL and the lattice formation program AFMESH for the independent blade, which were already developed so as to fit the cascade flow.

  1. Joint Interference Alignment and Power Allocation for K-User Multicell MIMO Channel through Staggered Antenna Switching.

    PubMed

    Selvaprabhu, Poongundran; Chinnadurai, Sunil; Sarker, Md Abdul Latif; Lee, Moon Ho

    2018-01-28

    In this paper, we characterise the joint interference alignment (IA) and power allocation strategies for a K -user multicell multiple-input multiple-output (MIMO) Gaussian interference channel. We consider a MIMO interference channel with blind-IA through staggered antenna switching on the receiver. We explore the power allocation and feasibility condition for cooperative cell-edge (CE) mobile users (MUs) by assuming that the channel state information is unknown. The new insight behind the transmission strategy of the proposed scheme is premeditated (randomly generated transmission strategy) and partial cooperative CE MUs, where the transmitter is equipped with a conventional antenna, the receiver is equipped with a reconfigurable multimode antenna (staggered antenna switching pattern), and the receiver switches between preset T modes. Our proposed scheme assists and aligns the desired signals and interference signals to cancel the common interference signals because the received signal must have a corresponding independent signal subspace. The capacity for a K -user multicell MIMO Gaussian interference channel with reconfigurable multimode antennas is completely characterised. Furthermore, we show that the proposed K -user multicell MIMO scheduling and K -user L -cell CEUs partial cooperation algorithms elaborate the generalisation of K -user IA and power allocation strategies. The numerical results demonstrate that the proposed intercell interference scheme with partial-cooperative CE MUs achieves better capacity and signal-to-interference plus noise ratio (SINR) performance compared to noncooperative CE MUs and without intercell interference schemes.

  2. Joint Interference Alignment and Power Allocation for K-User Multicell MIMO Channel through Staggered Antenna Switching

    PubMed Central

    2018-01-01

    In this paper, we characterise the joint interference alignment (IA) and power allocation strategies for a K-user multicell multiple-input multiple-output (MIMO) Gaussian interference channel. We consider a MIMO interference channel with blind-IA through staggered antenna switching on the receiver. We explore the power allocation and feasibility condition for cooperative cell-edge (CE) mobile users (MUs) by assuming that the channel state information is unknown. The new insight behind the transmission strategy of the proposed scheme is premeditated (randomly generated transmission strategy) and partial cooperative CE MUs, where the transmitter is equipped with a conventional antenna, the receiver is equipped with a reconfigurable multimode antenna (staggered antenna switching pattern), and the receiver switches between preset T modes. Our proposed scheme assists and aligns the desired signals and interference signals to cancel the common interference signals because the received signal must have a corresponding independent signal subspace. The capacity for a K-user multicell MIMO Gaussian interference channel with reconfigurable multimode antennas is completely characterised. Furthermore, we show that the proposed K-user multicell MIMO scheduling and K-user L-cell CEUs partial cooperation algorithms elaborate the generalisation of K-user IA and power allocation strategies. The numerical results demonstrate that the proposed intercell interference scheme with partial-cooperative CE MUs achieves better capacity and signal-to-interference plus noise ratio (SINR) performance compared to noncooperative CE MUs and without intercell interference schemes. PMID:29382100

  3. 76 FR 5521 - Innovation in the Broadcast Television Bands

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-01

    ... raise the possibility of interference to radio astronomy operations on channel 37 or to services... interference to radio astronomy operations on channel 37 or to operations of other services above channel 51... astronomy that are at 608-614 MHz (at channel 37). The Commission requests comments on this proposed plan...

  4. 47 CFR 97.205 - Repeater station.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... case, the licensee of the non-coordinated repeater has primary responsibility to resolve the interference. (d) A repeater may be automatically controlled. (e) Ancillary functions of a repeater that are available to users on the input channel are not considered remotely controlled functions of the station...

  5. 47 CFR 97.205 - Repeater station.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... case, the licensee of the non-coordinated repeater has primary responsibility to resolve the interference. (d) A repeater may be automatically controlled. (e) Ancillary functions of a repeater that are available to users on the input channel are not considered remotely controlled functions of the station...

  6. 47 CFR 97.205 - Repeater station.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... case, the licensee of the non-coordinated repeater has primary responsibility to resolve the interference. (d) A repeater may be automatically controlled. (e) Ancillary functions of a repeater that are available to users on the input channel are not considered remotely controlled functions of the station...

  7. 47 CFR 97.205 - Repeater station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... case, the licensee of the non-coordinated repeater has primary responsibility to resolve the interference. (d) A repeater may be automatically controlled. (e) Ancillary functions of a repeater that are available to users on the input channel are not considered remotely controlled functions of the station...

  8. 47 CFR 97.205 - Repeater station.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... case, the licensee of the non-coordinated repeater has primary responsibility to resolve the interference. (d) A repeater may be automatically controlled. (e) Ancillary functions of a repeater that are available to users on the input channel are not considered remotely controlled functions of the station...

  9. 47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... this section, interference prediction analysis is based on the interference thresholds (D/U signal.... Predictions of interference to co-channel DTV broadcast, digital Class A TV, digital LPTV and digital TV....” Predictions of interference to co-channel TV broadcast, Class A TV, LPTV and TV translator stations will be...

  10. 47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... this section, interference prediction analysis is based on the interference thresholds (D/U signal.... Predictions of interference to co-channel DTV broadcast, digital Class A TV, digital LPTV and digital TV....” Predictions of interference to co-channel TV broadcast, Class A TV, LPTV and TV translator stations will be...

  11. 47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... this section, interference prediction analysis is based on the interference thresholds (D/U signal.... Predictions of interference to co-channel DTV broadcast, digital Class A TV, digital LPTV and digital TV....” Predictions of interference to co-channel TV broadcast, Class A TV, LPTV and TV translator stations will be...

  12. 47 CFR 74.793 - Digital low power TV and TV translator station protection of broadcast stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... this section, interference prediction analysis is based on the interference thresholds (D/U signal.... Predictions of interference to co-channel DTV broadcast, digital Class A TV, digital LPTV and digital TV....” Predictions of interference to co-channel TV broadcast, Class A TV, LPTV and TV translator stations will be...

  13. Effects of fade distribution on a mobile satellite downlink and uplink performance in a frequency reuse cellular configuration

    NASA Technical Reports Server (NTRS)

    Boutin, Karl; Lecours, Michel; Pelletier, Marcel; Delisle, Gilles Y.

    1990-01-01

    In a mobile satellite system with a frequency reuse cellular configuration, significant co-channel interference can be experienced due to the antenna sidelobe level. The signal will be subjected not only to its own fading, but also to the effect of the varying degree of fading on co-channel interferer, and this interference will behave differently in the up and in the down link. This paper presents a quantitative evaluation of the combined effects of fades and co-channel interference on a mobile satellite link.

  14. Regulating Effect of Asymmetrical Impeller on the Flow Distributions of Double-sided Centrifugal Compressor

    NASA Astrophysics Data System (ADS)

    Yang, Ce; Liu, Yixiong; Yang, Dengfeng; Wang, Benjiang

    2017-11-01

    To achieve the rebalance of flow distributions of double-sided impellers, a method of improving the radius of rear impeller is presented in this paper. It is found that the flow distributions of front and rear impeller can be adjusted effectively by increasing the radius of rear impeller, thus improves the balance of flow distributions of front and rear impeller. Meanwhile, the working conversion mode process of double-sided centrifugal compressor is also changed. Further analysis shows that the flowrates of blade channels in front impeller are mainly influenced by the circumferential distributions of static pressure in the volute. But the flowrates of rear impeller blade channels are influenced by the outlet flow field of bent duct besides the effects of static pressure distributions in the volute. In the airflow interaction area downstream, the flowrate of blade channel is obviously smaller. By increasing the radius of rear impeller, the work capacity of rear impeller is enhanced, the working mode conversion process from parallel working mode of double-sided impeller to the single impeller working mode is delayed, and the stable working range of double-sided compressor is broadened.

  15. Evaluate interference in digital channels

    NASA Technical Reports Server (NTRS)

    Davarian, F.; Sumida, J.

    1985-01-01

    Any future mobile satellite service (MSS) which is to provide simultaneous mobile communications for a large number of users will have to make very efficient use of the spectrum. As the spectrum available for an MSS is limited, the system's channels should be packed as closely together as possible, with minimum-width guard bands. In addition the employment of frequency reuse schemes is an important factor. Difficulties regarding these solutions are related to the introduction of interference in the link. A balance must be achieved between the competing aims of spectrum conservation and low interference. While the interference phenomenon in narrowband FM voice channels is reasonably well understood, very little effort, however, has been devoted to the problem in digital radios. Attention is given to work, which illuminates the effects of cochannel and adjacent channel interference on digital FM (FSK) radios.

  16. Light Vector Meson Photoproduction off of 1H at Jefferson Lab and p-w Interference in the Leptonic Decay Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djalali, Chaden; Paolone, Michael; Weygand, Dennis

    2014-09-01

    Although the phenomena of r – w interference has been studied at great length in pionic decay channel over the past 50 years, a study of the interference in a purely electromagnetic production and decay channel has never been performed on an elementary proton target until now. The only published photo-production data of the r - w leptonic decay channel was obtained in the early seventies on C and Be. An investigation of the r - w interference on a Hydrogen was recently completed at Jefferson Lab with the CLAS detector. The di-lepton spectra was fit with two inter- feringmore » relativistic Breit-Wigner functions, and the interference phase was extracted. Preliminary results will be compared to the previous experimental studies in nuclei.« less

  17. Top surface blade residues and the central channel water molecules are conserved in every repeat of the integrin-like β-propeller structures.

    PubMed

    Denesyuk, Alexander; Denessiouk, Konstantin; Johnson, Mark S

    2018-02-01

    An integrin-like β-propeller domain contains seven repeats of a four-stranded antiparallel β-sheet motif (blades). Previously we described a 3D structural motif within each blade of the integrin-type β-propeller. Here, we show unique structural links that join different blades of the β-propeller structure, which together with the structural motif for a single blade are repeated in a β-propeller to provide the functional top face of the barrel, found to be involved in protein-protein interactions and substrate recognition. We compare functional top face diagrams of the integrin-type β-propeller domain and two non-integrin type β-propeller domains of virginiamycin B lyase and WD Repeat-Containing Protein 5. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Reduction of Helicopter Blade-Vortex Interaction Noise by Active Rotor Control Technology

    NASA Technical Reports Server (NTRS)

    Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Brooks, Thomas F.; Philippe, Jean J.; Prieur, Jean

    1997-01-01

    Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations, Published by Elsevier Science Ltd.

  19. Theory and simulation of multi-channel interference (MCI) widely tunable lasers.

    PubMed

    Chen, Quanan; Lu, Qiaoyin; Guo, Weihua

    2015-07-13

    A novel design of an InP-based monolithic widely tunable laser, multi-channel interference (MCI) laser, is proposed and presented for the first time. The device is comprised of a gain section, a common phase section and a multi-channel interference section. The multi-channel interference section contains a 1x8 splitter based on cascaded 1 × 2 multi-mode interferometers (MMIs) and eight arms with unequal length difference. The rear part of each arm is integrated with a one-port multi-mode interference reflector (MIR). Mode selection of the MCI laser is realized by the constructive interference of the lights reflected back by the eight arms. Through optimizing the arm length difference, a tuning range of more than 40 nm covering the whole C band, a threshold current around 11.5 mA and an side-mode-suppression-ratio (SMSR) up to 48 dB have been predicted for this widely tunable laser. Detailed design principle and numerical simulation results are presented.

  20. DIY physics - the paper scraper paper

    NASA Astrophysics Data System (ADS)

    Graham, G. R.

    1989-01-01

    A wallpaper scraper is made the subject of a number of simple experiments. Interference fringes are used to measure the thickness and refractive index of a surface coating and vibrations of the blade are studied using both traditional and modern methods.

  1. The response of turbine engine rotors to interference rubs

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.

    1980-01-01

    A method was developed for the direct integration of a rotor dynamics system experiencing a blade loss induced rotor rub. Both blade loss and rotor rub were simulated on a rotor typical of a small gas turbine. A small change in the coefficient of friction (from 0.1 to 0.2) caused the rotor to change from forward to backward whirl and to theoretically destroy itself in a few rotations. This method provides an analytical capability to study the susceptibility of rotors to rub induced backward whirl problems.

  2. Joint channel estimation and multi-user detection for multipath fading channels in DS-CDMA systems

    NASA Astrophysics Data System (ADS)

    Wu, Sau-Hsuan; Kuo, C.-C. Jay

    2002-11-01

    The technique of joint blind channel estimation and multiple access interference (MAI) suppression for an asynchronous code-division multiple-access (CDMA) system is investigated in this research. To identify and track dispersive time-varying fading channels and to avoid the phase ambiguity that come with the second-order statistic approaches, a sliding-window scheme using the expectation maximization (EM) algorithm is proposed. The complexity of joint channel equalization and symbol detection for all users increases exponentially with system loading and the channel memory. The situation is exacerbated if strong inter-symbol interference (ISI) exists. To reduce the complexity and the number of samples required for channel estimation, a blind multiuser detector is developed. Together with multi-stage interference cancellation using soft outputs provided by this detector, our algorithm can track fading channels with no phase ambiguity even when channel gains attenuate close to zero.

  3. A study of helicopter gust response alleviation by automatic control

    NASA Technical Reports Server (NTRS)

    Saito, S.

    1983-01-01

    Two control schemes designed to alleviate gust-induced vibration are analytically investigated for a helicopter with four articulated blades. One is an individual blade pitch control scheme. The other is an adaptive blade pitch control algorithm based on linear optimal control theory. In both controllers, control inputs to alleviate gust response are superimposed on the conventional control inputs required to maintain the trim condition. A sinusoidal vertical gust model and a step gust model are used. The individual blade pitch control, in this research, is composed of sensors and a pitch control actuator for each blade. Each sensor can detect flapwise (or lead-lag or torsionwise) deflection of the respective blade. The acturator controls the blade pitch angle for gust alleviation. Theoretical calculations to predict the performance of this feedback system have been conducted by means of the harmonic method. The adaptive blade pitch control system is composed of a set of measurements (oscillatory hub forces and moments), an identification system using a Kalman filter, and a control system based on the minimization of the quadratic performance function.

  4. Design of a new VTOL UAV by combining cycloidal blades and FanWing propellers

    NASA Astrophysics Data System (ADS)

    Li, Daizong

    Though the propelling principles of Cycloidal Blades and FanWing propellers are totally different, their structures are similar. Therefore, it is possible to develop an aircraft which combines both types of the propulsion modes of Cyclogyro and FanWing aircrafts. For this kind of aircraft, Cycloidal Blades Mode provides capabilities of Vertical Take-Off and Landing, Instantly Alterable Vector Thrusting, and Low Noise. The FanWing Mode provides capabilities of High Efficiency, Energy-Saving, and Cannot-Stall Low-Speed Cruising. Besides, because both of these propellers are observably better than conventional screw propeller in terms of efficiency, so this type of VTOL UAV could fly with Long Endurance. Furthermore, the usage of flying-wing takes advantage of high structure utilization and high aerodynamic efficiency, eliminates the interference of fuselage and tail, and overcomes flying wing's shortcomings of pitching direction instability and difficulty of control. A new magnetic suspension track-type cycloidal propulsion system is also presented in the paper to solve problems of heavy structure, high mechanical resistance, and low reliability in the traditional cycloidal propellers. The further purpose of this design is to trying to make long-endurance VTOL aircraft and Practical Flying Cars possible in reality, and to bring a new era to the aviation industry.

  5. A method to combine hydrodynamics and constructive design in the optimization of the runner blades of Kaplan turbines

    NASA Astrophysics Data System (ADS)

    Miclosina, C. O.; Balint, D. I.; Campian, C. V.; Frunzaverde, D.; Ion, I.

    2012-11-01

    This paper deals with the optimization of the axial hydraulic turbines of Kaplan type. The optimization of the runner blade is presented systematically from two points of view: hydrodynamic and constructive. Combining these aspects in order to gain a safer operation when unsteady effects occur in the runner of the turbine is attempted. The design and optimization of the runner blade is performed with QTurbo3D software developed at the Center for Research in Hydraulics, Automation and Thermal Processes (CCHAPT) from "Eftimie Murgu" University of Resita, Romania. QTurbo3D software offers possibilities to design the meridian channel of hydraulic turbines design the blades and optimize the runner blade. 3D modeling and motion analysis of the runner blade operating mechanism are accomplished using SolidWorks software. The purpose of motion study is to obtain forces, torques or stresses in the runner blade operating mechanism, necessary to estimate its lifetime. This paper clearly states the importance of combining the hydrodynamics with the structural design in the optimization procedure of the runner of hydraulic turbines.

  6. The dynamic flexural response of propeller blades. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Djordjevic, S. Z.

    1982-01-01

    The determination of the torsional constants of three blade models having NACA four-digit symmetrical airfoil cross sections is presented. Values were obtained for these models analytically and experimentally. Results were also obtained for three other models having rectangular, elliptical, and parabolic cross sections. Complete modal analyses were performed for five blade models. The identification of modal parameters was done for cases when the blades were modeled as either undamped or damped multi-degree-of-freedom systems. For the experimental phase of this study, the modal testing was performed using a Dual Channel FFT analyzer and an impact hammer (which produced an impulsive excitation). The natural frequency and damping of each mode in the frequency range up to 2 kHz were measured. A small computer code was developed to calculate the dynamic response of the blade models for comparison with the experimental results. A comparison of the undamped and damped cases was made for all five blade models at the instant of maximum excitation force. The program was capable of handling models where the excitation forces were distributed arbitrarily along the length of the blade.

  7. Mechanism study on pressure fluctuation of pump-turbine runner with large blade lean angle

    NASA Astrophysics Data System (ADS)

    Yulin, Fan; Xuhe, Wang; Baoshan, Zhu; Dongyue, Zhou; Xijun, Zhou

    2016-11-01

    Excessive pressure fluctuations in the vaneless space can cause mechanical vibration and even mechanical failures in pump-turbine operation. Mechanism studies on the pressure fluctuations and optimization design of blade geometry to reduce the pressure fluctuations have important significance in industrial production. In the present paper, two pump-turbine runners with big positive and negative blade lean angle were designed by using a multiobjective design strategy. Model test showed that the runner with negative blade lean angle not only had better power performance, but also had lower pressure fluctuation than the runner with positive blade lean angle. In order to figure out the mechanism of pressure fluctuation reduction in the vaneless;jik8space, full passage model for both runners were built and transient CFD computations were conducted to simulate the flow states inside the channel. Detailed flow field analyses indicated that the difference of low-pressure area in the trailing edge of blade pressure side were the main causes of pressure fluctuation reduction in the vaneless space.

  8. Kinematics and constraints associated with swashplate blade pitch control

    NASA Technical Reports Server (NTRS)

    Leyland, Jane A.

    1993-01-01

    An important class of techniques to reduce helicopter vibration is based on using a Higher Harmonic controller to optimally define the Higher Harmonic blade pitch. These techniques typically require solution of a general optimization problem requiring the determination of a control vector which minimizes a performance index where functions of the control vector are subject to inequality constraints. Six possible constraint functions associated with swashplate blade pitch control were identified and defined. These functions constrain: (1) blade pitch Fourier Coefficients expressed in the Rotating System, (2) blade pitch Fourier Coefficients expressed in the Nonrotating System, (3) stroke of the individual actuators expressed in the Nonrotating System, (4) blade pitch expressed as a function of blade azimuth and actuator stroke, (5) time rate-of-change of the aforementioned parameters, and (6) required actuator power. The aforementioned constraints and the associated kinematics of swashplate blade pitch control by means of the strokes of the individual actuators are documented.

  9. Hub-mounted actuators for blade pitch collective control

    NASA Technical Reports Server (NTRS)

    Luecke, Greg R. (Inventor); Jeffery, Philip A. E. (Inventor)

    1985-01-01

    Blade collective pitch control is provided for a rotor system by rotary actuators located between adjacent blades. Each actuator is connected to the leading edge of one adjacent blade and the trailing edge of the other adjacent blade.

  10. Study of noise and inflow distortion sources in the NASA QF-1B fan using measured blade and vane pressures

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1977-01-01

    Pressure transducers were installed on the blades and vanes of QF-1B, a transonic-tip-speed fan from the NASA Quiet Fan Program which was tested on the outdoor quiet fan test facility at NASA-Lewis. Signals from the transducers and from far field microphones were analyzed to determine sources of nonuniform inflow and noise. The nonuniform inflow was mostly unsteady with roughly equal contributions from atmospheric turbulence and rig interference. The rig interference was largest at the bottom and appeared to be generated by the support structure which was located behind the inlet lip under the fan. Interaction of this inflow distortion was the dominant source of noise at 1, 2, and 3 times blade passing frequency (BPF) at 60, 70, and 80 percent of design speed. At 90 percent speed, noise at BPF was dominated by the steady rotor field. A broadband spectrum peak centered at about 2.2 times BPF was identified as rotor/stator interaction stemming from a high frequency rotor exit flow component. The remaining broadband energy from 0.3 to 3.5 times BPF was attributed to the better known type of rotor/stator interaction associated with rotor wake turbulence.

  11. Strong Overtones Modes in Inelastic Electron Tunneling Spectroscopy with Cross-Conjugated Molecules: A Prediction from Theory

    PubMed Central

    2013-01-01

    Cross-conjugated molecules are known to exhibit destructive quantum interference, a property that has recently received considerable attention in single-molecule electronics. Destructive quantum interference can be understood as an antiresonance in the elastic transmission near the Fermi energy and leading to suppressed levels of elastic current. In most theoretical studies, only the elastic contributions to the current are taken into account. In this paper, we study the inelastic contributions to the current in cross-conjugated molecules and find that while the inelastic contribution to the current is larger than for molecules without interference, the overall behavior of the molecule is still dominated by the quantum interference feature. Second, an ongoing challenge for single molecule electronics is understanding and controlling the local geometry at the molecule-surface interface. With this in mind, we investigate a spectroscopic method capable of providing insight into these junctions for cross-conjugated molecules: inelastic electron tunneling spectroscopy (IETS). IETS has the advantage that the molecule interface is probed directly by the tunneling current. Previously, it has been thought that overtones are not observable in IETS. Here, overtones are predicted to be strong and, in some cases, the dominant spectroscopic features. We study the origin of the overtones and find that the interference features in these molecules are the key ingredient. The interference feature is a property of the transmission channels of the π system only, and consequently, in the vicinity of the interference feature, the transmission channels of the σ system and the π system become equally transmissive. This allows for scattering between the different transmission channels, which serves as a pathway to bypass the interference feature. A simple model calculation is able to reproduce the results obtained from atomistic calculations, and we use this to interpret these findings. PMID:24067128

  12. Study of secondary-flow patterns in an annular cascade of turbine nozzle blades with vortex design

    NASA Technical Reports Server (NTRS)

    Rohlik, Harold E; Allen, Hubert W; Herzig, Howard Z

    1953-01-01

    In order to increase understanding of the origin of losses in a turbine, the secondary-flow components in the boundary layers and the blade wakes of an annular cascade of turbine nozzle blades (vortex design) was investigated. A detailed study was made of the total-pressure contours and, particularly, of the inner-wall loss cores downstream of the blades. The inner-wall loss core associated with a blade of the turbine-nozzle cascade is largely the accumulation of low-momentum fluids originating elsewhere in the cascade. This accumulation is effected by a secondary-flow mechanism which acts to transport the low-momentum fluids across the channels on the walls and radially in the blade wakes and boundary layers. The patterns of secondary flow were determined by use of hydrogen sulfide traces, paint, flow fences, and total pressure surveys. At one flow condition investigated, the radial transport of low-momentum fluid in the blade wake and on the suction surface near the trailing edge accounted for 65 percent of the loss core; 30 percent resulted from flow in the thickened boundary layer on the suction surface and 35 percent from flow in the blade wake.

  13. User's manual for UCAP: Unified Counter-Rotation Aero-Acoustics Program

    NASA Technical Reports Server (NTRS)

    Culver, E. M.; Mccolgan, C. J.

    1993-01-01

    This is the user's manual for the Unified Counter-rotation Aeroacoustics Program (UCAP), the counter-rotation derivative of the UAAP (Unified Aero-Acoustic Program). The purpose of this program is to predict steady and unsteady air loading on the blades and the noise produced by a counter-rotation Prop-Fan. The aerodynamic method is based on linear potential theory with corrections for nonlinearity associated with axial flux induction, vortex lift on the blades, and rotor-to-rotor interference. The theory for acoustics and the theory for individual blade loading and wakes are derived in Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise, Volume 1 (NASA CR-4329). This user's manual also includes a brief explanation of the theory used for the modelling of counter-rotation.

  14. User's manual for UCAP: Unified Counter-Rotation Aero-Acoustics Program

    NASA Astrophysics Data System (ADS)

    Culver, E. M.; McColgan, C. J.

    1993-04-01

    This is the user's manual for the Unified Counter-rotation Aeroacoustics Program (UCAP), the counter-rotation derivative of the UAAP (Unified Aero-Acoustic Program). The purpose of this program is to predict steady and unsteady air loading on the blades and the noise produced by a counter-rotation Prop-Fan. The aerodynamic method is based on linear potential theory with corrections for nonlinearity associated with axial flux induction, vortex lift on the blades, and rotor-to-rotor interference. The theory for acoustics and the theory for individual blade loading and wakes are derived in Unified Aeroacoustics Analysis for High Speed Turboprop Aerodynamics and Noise, Volume 1 (NASA CR-4329). This user's manual also includes a brief explanation of the theory used for the modelling of counter-rotation.

  15. Prediction of Unshsrouded Rotor Blade Tip Heat Transfer

    NASA Technical Reports Server (NTRS)

    Ameri, A. A.; Steinthorsson, E.

    1994-01-01

    The rate of heat transfer on the tip of a turbine rotor blade and on the blade surface in the vicinity of the tip, was successfully predicted. The computations were performed with a multiblock computer code which solves the Reynolds Averaged Navier-Stokes equations using an efficient multigrid method. The case considered for the present calculations was the Space Shuttle Main Engine (SSME) high pressure fuel side turbine. The predictions of the blade tip heat transfer agreed reasonably well with the experimental measurements using the present level of grid refinement. On the tip surface, regions with high rate of heat transfer was found to exist close to the pressure side and suction side edges. Enhancement of the heat transfer was also observed on the blade surface near the tip. Further comparison of the predictions was performed with results obtained from correlations based on fully developed channel flow.

  16. Aeroelastic Considerations For Rotorcraft Primary Control with On-Blade Elevons

    NASA Technical Reports Server (NTRS)

    Ormiston, Robert A.; Rutkowski, Michael (Technical Monitor)

    2001-01-01

    Replacing the helicopter rotor swashplate and blade pitch control system with on-blade elevon control surfaces for primary flight control may significantly reduce weight and drag to improve mission performance. Simplified analyses are used to examine the basic aeroelastic characteristics of such rotor blades, including pitch and flap dynamic response, elevon reversal, and elevon control effectiveness. The profile power penalty associated with deflections of elevon control surfaces buried within the blade planform is also evaluated. Results suggest that with aeroelastic design for pitch frequencies in the neighborhood of 2/rev, reasonable elevon control effectiveness may be achieved and that, together with collective pitch indexing, the aerodynamic profile power penalty of on-blade control surface deflections may be minimized.

  17. Examination of propeller sound production using large eddy simulation

    NASA Astrophysics Data System (ADS)

    Keller, Jacob; Kumar, Praveen; Mahesh, Krishnan

    2018-06-01

    The flow field of a five-bladed marine propeller operating at design condition, obtained using large eddy simulation, is used to calculate the resulting far-field sound. The results of three acoustic formulations are compared, and the effects of the underlying assumptions are quantified. The integral form of the Ffowcs-Williams and Hawkings (FW-H) equation is solved on the propeller surface, which is discretized into a collection of N radial strips. Further assumptions are made to reduce FW-H to a Curle acoustic analogy and a point-force dipole model. Results show that although the individual blades are strongly tonal in the rotor plane, the propeller is acoustically compact at low frequency and the tonal sound interferes destructively in the far field. The propeller is found to be acoustically compact for frequencies up to 100 times the rotation rate. The overall far-field acoustic signature is broadband. Locations of maximum sound of the propeller occur along the axis of rotation both up and downstream. The propeller hub is found to be a source of significant sound to observers in the rotor plane, due to flow separation and interaction with the blade-root wakes. The majority of the propeller sound is generated by localized unsteadiness at the blade tip, which is caused by shedding of the tip vortex. Tonal blade sound is found to be caused by the periodic motion of the loaded blades. Turbulence created in the blade boundary layer is convected past the blade trailing edge leading to generation of broadband noise along the blade. Acoustic energy is distributed among higher frequencies as local Reynolds number increases radially along the blades. Sound source correlation and spectra are examined in the context of noise modeling.

  18. FastICA peel-off for ECG interference removal from surface EMG.

    PubMed

    Chen, Maoqi; Zhang, Xu; Chen, Xiang; Zhu, Mingxing; Li, Guanglin; Zhou, Ping

    2016-06-13

    Multi-channel recording of surface electromyographyic (EMG) signals is very likely to be contaminated by electrocardiographic (ECG) interference, specifically when the surface electrode is placed on muscles close to the heart. A novel fast independent component analysis (FastICA) based peel-off method is presented to remove ECG interference contaminating multi-channel surface EMG signals. Although demonstrating spatial variability in waveform shape, the ECG interference in different channels shares the same firing instants. Utilizing the firing information estimated from FastICA, ECG interference can be separated from surface EMG by a "peel off" processing. The performance of the method was quantified with synthetic signals by combining a series of experimentally recorded "clean" surface EMG and "pure" ECG interference. It was demonstrated that the new method can remove ECG interference efficiently with little distortion to surface EMG amplitude and frequency. The proposed method was also validated using experimental surface EMG signals contaminated by ECG interference. The proposed FastICA peel-off method can be used as a new and practical solution to eliminating ECG interference from multichannel EMG recordings.

  19. Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer

    NASA Astrophysics Data System (ADS)

    Szwaba, Ryszard; Kaczynski, Piotr; Telega, Janusz; Doerffer, Piotr

    2017-12-01

    This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a corner fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features.

  20. Aerodynamic models for a Darrieus wind turbine

    NASA Astrophysics Data System (ADS)

    Fraunie, P.; Beguier, C.; Paraschivoiu, I.; Delclaux, F.

    1982-11-01

    Various models proposed for the aerodynamics of Darrieus wind turbines are reviewed. The magnitude of the L/D ratio for a Darrieus rotor blade is dependent on the profile, the Re, boundary layer characteristics, and the three-dimensional flow effects. The aerodynamic efficiency is theoretically the Betz limit, and the interference of one blade with another is constrained by the drag force integrated over all points on the actuator disk. A single streamtube model can predict the power available in a Darrieus, but the model lacks definition of the flow structure and the cyclic stresses. Techniques for calculating the velocity profiles and the consequent induced velocity at the blades are presented. The multiple streamtube theory has been devised to account for the repartition of the velocity in the rotor interior. The model has been expanded as the double multiple streamtube theory at Sandia Laboratories. Futher work is necessary, however, to include the effects of dynamic decoupling at high rotation speeds and to accurately describe blade behavior.

  1. Interference effects for Higgs boson mediated Z -pair plus jet production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John M.; Ellis, R. Keith; Furlan, Elisabetta

    2014-11-25

    Here, we study interference effects in the production channel ZZ + jet, in particular focusing on the role of the Higgs boson. This production channel receives contributions both from Higgs boson mediated diagrams via the decay H → ZZ (signal diagrams), as well as from diagrams where the Z bosons couple directly to a quark loop (background diagrams). We consider the partonic processes gggZZ and gqmore » $$\\bar{q}$$ZZ in which interference between signal and background diagrams first occurs. Since interference is primarily an off-resonant effect for the Higgs boson, we treat the Z bosons as on shell. Thus our analysis is limited to the region above threshold, where the invariant mass of the Z-pair mZZ satisfies the condition m ZZ>2m Z. In the region m ZZ > 300 GeV we find that the interference in the ZZ + jet channel is qualitatively similar to interference in the inclusive ZZ channel. Moreover, the rates are sufficient to study these effects at the LHC once jet-binned data become available.« less

  2. IFT&E Industry Report Wind Turbine-Radar Interference Test Summary.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karlson, Benjamin; LeBlanc, Bruce Philip.; Minster, David G

    2014-10-01

    Wind turbines have grown in size and capacity with today's average turbine having a power capacity of around 1.9 MW, reaching to heights of over 495 feet from ground to blade tip, and operating with speeds at the tip of the blade up to 200 knots. When these machines are installed within the line-of-sight of a radar system, they can cause significant clutter and interference, detrimentally impacting the primary surveillance radar (PSR) performance. The Massachusetts Institute of Technology's Lincoln Laboratory (MIT LL) and Sandia National Laboratories (SNL) were co-funded to conduct field tests and evaluations over two years in ordermore » to: I. Characterize the impact of wind turbines on existing Program-of-Record (POR) air surveillance radars; II. Assess near-term technologies proposed by industry that have the potential to mitigate the interference from wind turbines on radar systems; and III. Collect data and increase technical understanding of interference issues to advance development of long-term mitigation strategies. MIT LL and SNL managed the tests and evaluated resulting data from three flight campaigns to test eight mitigation technologies on terminal (short) and long-range (60 nmi and 250 nmi) radar systems. Combined across the three flight campaigns, more than 460 of hours of flight time were logged. This paper summarizes the Interagency Field Test & Evaluation (IFT&E) program and publicly- available results from the tests. It will also discuss the current wind turbine-radar interference evaluation process within the government and a proposed process to deploy mitigation technologies.« less

  3. Experimental investigation of cross-over jets in a rib-roughened trailing-edge cooling channel

    NASA Astrophysics Data System (ADS)

    Xue, Fei

    Increasing the rotor inlet temperature can dramatically increase the efficiency and power output of the gas turbine engine. However, the melting point of turbine blade material limits the realistic upper bound of the rotor inlet temperature. As a result, the development of high temperature turbine blade material and advanced turbine blade cooling technology determines the future of turbine blade engine. Adding impingement jet holes and rib turbulators in the inner cooling channel of the gas turbine blades are two effective ways to enhance the cooling effects. The purpose of this study is to figure out the influence of different combinations of jet holes and rib turbulators on the heat transfer efficiency. A tabletop scale test model is used in the study to simulate the cooling cavity of trailing edge and its feed channel in a real gas turbine blade. The Dimensional Analysis Theory is used in the study to eliminate the influence of scaling. Two different crossover slots are tested with 5 different rib arrangements, and each of the test geometries is tested for 6 jet Reynolds numbers ranging from 10,000 to 36,000. The two different crossover slots are the crossover slots with 0 and 5 degree tilt angles. The four different rib arrangements are ribs with 0 degree, 45 degree, 90 degree and 135 degree angles of attack with respect to the flow direction. Furthermore, a smooth test section (no ribs) was also tested. The steady state liquid crystal thermography is used to quantify the heat transfer performance of the target areas. The variation of Nusselt number versus Reynolds number is plotted for each of the 10 geometries. Also, the variation of Nusselt number versus Reynolds number are compared for different rib angles of attack with the same crossover slot tilt angle, and between different crossover slots tilt angles with the same rib angle. The results show that, the area-weighted average Nusselt number increases monotonically with the Reynolds number; the target areas near the open end have a larger Nusselt number comparing with the ones near the close end; the 90 degree rib angle has the highest Nusselt number among the 4 rib angles of attack and the smooth wall channel; the crossover slots with 0 degree tilt angle produce higher convective heat transfer coefficients than the crossover slots with 5 degree tilt angle. Possible physical explanations for the result are offered by the author.

  4. Multiple damage identification on a wind turbine blade using a structural neural system

    NASA Astrophysics Data System (ADS)

    Kirikera, Goutham R.; Schulz, Mark J.; Sundaresan, Mannur J.

    2007-04-01

    A large number of sensors are required to perform real-time structural health monitoring (SHM) to detect acoustic emissions (AE) produced by damage growth on large complicated structures. This requires a large number of high sampling rate data acquisition channels to analyze high frequency signals. To overcome the cost and complexity of having such a large data acquisition system, a structural neural system (SNS) was developed. The SNS reduces the required number of data acquisition channels and predicts the location of damage within a sensor grid. The sensor grid uses interconnected sensor nodes to form continuous sensors. The combination of continuous sensors and the biomimetic parallel processing of the SNS tremendously reduce the complexity of SHM. A wave simulation algorithm (WSA) was developed to understand the flexural wave propagation in composite structures and to utilize the code for developing the SNS. Simulation of AE responses in a plate and comparison with experimental results are shown in the paper. The SNS was recently tested by a team of researchers from University of Cincinnati and North Carolina A&T State University during a quasi-static proof test of a 9 meter long wind turbine blade at the National Renewable Energy Laboratory (NREL) test facility in Golden, Colorado. Twelve piezoelectric sensor nodes were used to form four continuous sensors to monitor the condition of the blade during the test. The four continuous sensors are used as inputs to the SNS. There are only two analog output channels of the SNS, and these signals are digitized and analyzed in a computer to detect damage. In the test of the wind turbine blade, multiple damages were identified and later verified by sectioning of the blade. The results of damage identification using the SNS during this proof test will be shown in this paper. Overall, the SNS is very sensitive and can detect damage on complex structures with ribs, joints, and different materials, and the system relatively inexpensive and simple to implement on large structures.

  5. Numerical simulations of heat transfer distribution of a two-pass square channel with V-rib turbulator and bleed holes

    NASA Astrophysics Data System (ADS)

    Kumar, Sourabh; Amano, R. S.; Lucci, Jose Martinez

    2013-08-01

    The blade tip region in gas turbine encounters high thermal loads due to temperature difference and hence efforts for high durability and safe operations are essential. Improved and robust methods of cooling are required to downgrade heat transfer rate to turbine blades. The blade tip regions, which are exposed to high gas flow, suffers high local thermal load which are due to external tip leakage. Jet impingement, pin cooling etc. are techniques used for cooling blades. A more usual way is to use serpentine passage with 180-degree turn. In this study, numerical simulation of heat transfer distribution of a two-pass square channel with rib turbulators and bleed holes were done. Periodical rib turbulators and bleed holes were used in the channel. The ribs arrangement were 60 degree V rib, 60 degree inverted V ribs, combination of 60 degree V rib at inlet and 60 inverted V rib at outlet section and combination of Inverted V at inlet and V rib at the outlet. The results were numerically computed using Fluent with Reynolds number of 12,500 and 28,500. Turbulence models used for computations were k-ω-SST and RSM. Temperature based and shear stress based techniques were used for heat transfer distribution prediction. The results for 60 degree V rib, 60 degree inverted V ribs were compared with the experimental results for validation of the results obtained. Detailed distribution shows distinctive peaks in heat transfer around bleed holes and rib turbulator. Comparisons of the overall performance of the models with different orientation of rib turbulator are presented. It is found that due to the combination of 60 degree inverted V rib in inlet and 60 V rib in outlet with bleed holes provides better heat treatment. It is suggested that the use of rib turbulator with bleed holes provides suitable for augmenting blade cooling to achieve an optimal balance between thermal and mechanical design requirements.

  6. Methodology of Blade Unsteady Pressure Measurement in the NASA Transonic Flutter Cascade

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; McFarland, E. R.; Capece, V. R.; Jett, T. A.; Senyitko, R. G.

    2002-01-01

    In this report the methodology adopted to measure unsteady pressures on blade surfaces in the NASA Transonic Flutter Cascade under conditions of simulated blade flutter is described. The previous work done in this cascade reported that the oscillating cascade produced waves, which for some interblade phase angles reflected off the wind tunnel walls back into the cascade, interfered with the cascade unsteady aerodynamics, and contaminated the acquired data. To alleviate the problems with data contamination due to the back wall interference, a method of influence coefficients was selected for the future unsteady work in this cascade. In this approach only one blade in the cascade is oscillated at a time. The majority of the report is concerned with the experimental technique used and the experimental data generated in the facility. The report presents a list of all test conditions for the small amplitude of blade oscillations, and shows examples of some of the results achieved. The report does not discuss data analysis procedures like ensemble averaging, frequency analysis, and unsteady blade loading diagrams reconstructed using the influence coefficient method. Finally, the report presents the lessons learned from this phase of the experimental effort, and suggests the improvements and directions of the experimental work for tests to be carried out for large oscillation amplitudes.

  7. Active Blade Vibration Control Being Developed and Tested

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter

    2003-01-01

    Gas turbine engines are currently being designed to have increased performance, lower weight and manufacturing costs, and higher reliability. Consequently, turbomachinery components, such as turbine and compressor blades, have designs that are susceptible to new vibration problems and eventual in-service failure due to high-cycle fatigue. To address this problem, researchers at the NASA Glenn Research Center are developing and testing innovative active blade vibration control concepts. Preliminary results of using an active blade vibration control system, involving a rotor supported by an active magnetic bearing in Glenn's Dynamic Spin Rig, indicate promising results (see the photograph). Active blade vibration control was achieved using feedback of blade strain gauge signals within the magnetic bearing control loop. The vibration amplitude was reduced substantially (see the graphs). Also, vibration amplitude amplification was demonstrated; this could be used to enhance structural mode identification, if desired. These results were for a nonrotating two-bladed disk. Tests for rotating blades are planned. Current and future active blade vibration control research is planned to use a fully magnetically suspended rotor and smart materials. For the fully magnetically suspended rotor work, three magnetic bearings (two radial and one axial) will be used as actuators instead of one magnetic bearing. This will allow additional degrees of freedom to be used for control. For the smart materials work, control effectors located on and off the blade will be considered. Piezoelectric materials will be considered for on-the-blade actuation, and actuator placement on a stator vane, or other nearby structure, will be investigated for off-the-blade actuation. Initial work will focus on determining the feasibility of these methods by performing basic analysis and simple experiments involving feedback control.

  8. Measurement and analysis of the noise radiated by low Mach numbers centrifugal blowers

    NASA Astrophysics Data System (ADS)

    Yeager, D. M.; Lauchle, G. C.

    1987-11-01

    The broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices is investigated. An interdisciplinary approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller which was placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. New frequency-domain expressions for the correlation area and dipole source strength per unit area on a surface immersed in turbulence were developed which can be used to characterize the noise generation process over a rigid surface immersed in turbulence. An investigation of the noise radiated from the single, isolated airfoil (impeller blade) was performed using modern correlation and spectral analysis techniques.

  9. Controlling Separation in Turbomachines

    NASA Technical Reports Server (NTRS)

    Evans, Simon; Himmel, Christoph; Power, Bronwyn; Wakelam, Christian; Xu, Liping; Hynes, Tom; Hodson, Howard

    2010-01-01

    Four examples of flow control: 1) Passive control of LP turbine blades (Laminar separation control). 2) Aspiration of a conventional axial compressor blade (Turbulent separation control). 3) Compressor blade designed for aspiration (Turbulent separation control). 4.Control of intakes in crosswinds (Turbulent separation control).

  10. Incidence loss for a core turbine rotor blade in a two-dimensional cascade

    NASA Technical Reports Server (NTRS)

    Stabe, R. G.; Kline, J. F.

    1974-01-01

    The effect of incidence angle on the aerodynamic performance of an uncooled core turbine rotor blade was investigated experimentally in a two-dimensional cascade. The cascade test covered a range of incidence angles from minus 15 deg to 15 deg in 5-degree increments and a range of pressure ratios corresponding to ideal exit critical velocity ratios of 0.6 to 0.95. The principal measurements were blade-surface static pressures and cross-channel surveys of exit total pressure, static pressure, and flow angle. The results of the investigation include blade-surface velocity distribution and overall performance in terms of weight flow and loss for the range of incidence angles and exit velocity ratios investigated. The measured losses are also compared with two common methods of predicting incidence loss.

  11. Low-Speed Fan Noise Reduction With Trailing Edge Blowing

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Tweedt, Daniel L.; Fite, E. Brian; Envia, Edmane

    2002-01-01

    An experimental proof-of-concept test was conducted to demonstrate reduction of rotor-stator interaction noise through rotor-trailing edge blowing. The velocity deficit from the viscous wake of the rotor blades was reduced by injecting air into the wake from a trailing edge slot. Composite hollow rotor blades with internal flow passages were designed based on analytical codes modeling the internal flow. The hollow blade with interior guide vanes creates flow channels through which externally supplied air flows from the root of the blade to the trailing edge. The impact of the rotor wake-stator interaction on the acoustics was also predicted analytically. The Active Noise Control Fan, located at the NASA Glenn Research Center, was used as the proof- of-concept test bed. In-duct mode and farfield directivity acoustic data were acquired at blowing rates (defined as mass supplied to trailing edge blowing system divided by fan mass flow) ranging from 0.5 to 2.0 percent. The first three blade passing frequency harmonics at fan rotational speeds of 1700 to 1900 rpm were analyzed. The acoustic tone power levels (PWL) in the inlet and exhaust were reduced 11.5 and -0.1, 7.2 and 11.4, 11.8 and 19.4 PWL dB, respectively. The farfield tone power levels at the first three harmonics were reduced 5.4, 10.6, and 12.4 dB PWL. At selected conditions, two-component hotwire and stator vane unsteady surface pressures were acquired. These measurements illustrate the physics behind the noise reduction.

  12. Aharanov-Bohm quantum interference in a reconfigurable electron system

    NASA Astrophysics Data System (ADS)

    Irvin, P.; Lu, S.; Annadi, A.; Cheng, G.; Tomczyk, M.; Huang, M.; Levy, J.; Lee, J.-W.; Lee, H.; Eom, C.-B.

    Aharanov-Bohm (AB) interference can arise in transport experiments when magnetic flux threads through two or more transport channels. The existence of this behavior requires long-range ballistic transport and is typically observed only in exceptionally clean materials. We observe AB interference in wide (w 100 nm) channels created at the LaAlO3/SrTiO3 interface using conductive AFM lithography. Interference occurs above a critical field B 4 T and increases in magnitude with increasing magnetic field. The period of oscillation implies a ballistic length that greatly exceeds the micron-scale length of the channel, consistent with Fabry-Perot interference in 1D channels. The conditions under which AB oscillations are observed will be discussed in the context of the electron pairing mechanism in LaAlO3/SrTiO3. We gratefully acknowledge financial support from AFOSR FA9550-12-1-0342 (CBE), NSF DMR-1234096 (CBE), and ONR N00014-15-1-2847 (JL).

  13. Interference susceptibility measurements for an MSK satellite communication link

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Fujikawa, Gene

    1992-01-01

    The results are presented of measurements of the degradation of an MSK satellite link due to modulated and CW (unmodulated) interference. These measurements were made using a hardware based satellite communication link simulator at NASA-Lewis. The results indicate the amount of bit error rate degradation caused by CW interference as a function of frequency and power level, and the degradation caused by adjacent channel and cochannel modulated interference as a function of interference power level. Results were obtained for both the uplink case (including satellite nonlinearity) and the downlink case (linear channel).

  14. Study of the Efficiency of the Polarization-Diversity Reception of a Very Low Frequency Signal Against the Background of Atmospheric Noise and Jamming in the Communication-Channel Model

    NASA Astrophysics Data System (ADS)

    Metelev, S. A.; Lvov, A. V.

    2017-12-01

    We propose a model of forming the signals and interference in the very low frequency wave range. Using this model, we determine the potentials of the space-polarization interference compensators in a communication channel with natural interference and jamming.

  15. Optimization of an Active Twist Rotor Blade Planform for Improved Active Response and Forward Flight Performance

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K; Wilbur, Matthew L.

    2014-01-01

    A study was conducted to identify the optimum blade tip planform for a model-scale active twist rotor. The analysis identified blade tip design traits which simultaneously reduce rotor power of an unactuated rotor while leveraging aeromechanical couplings to tailor the active response of the blade. Optimizing the blade tip planform for minimum rotor power in forward flight provided a 5 percent improvement in performance compared to a rectangular blade tip, but reduced the vibration control authority of active twist actuation by 75 percent. Optimizing for maximum blade twist response increased the vibration control authority by 50 percent compared to the rectangular blade tip, with little effect on performance. Combined response and power optimization resulted in a blade tip design which provided similar vibration control authority to the rectangular blade tip, but with a 3.4 percent improvement in rotor performance in forward flight.

  16. Flexible Blades for Wind Turbines

    NASA Astrophysics Data System (ADS)

    Collins, Madeline Carlisle; Macphee, David; Harris, Caleb

    2016-11-01

    Previous research has shown that windmills with flexible blades are more efficient than those with rigid blades. Flexibility offers passive pitch control, preferable to active pitch control which is costly and requires maintenance. Flexible blades morph such that the blade more closely resembles its design point at part load and over load. The lift-to-drag ratios on individual blades was investigated. A mold was designed and machined from an acrylic slab for the casting of blades with a NACA 0012 cross section. A flexible blade was cast from silicone and a rigid blade was cast from polyurethane. Each of these blades was tested in a wind tunnel, cantilever mounted, spanning the whole test section. The angle of attack was varied by rotating the mount. All tests were performed at the same wind speed. A load cell within the mount measured forces on the blade, from which the lift and drag forces were calculated. The stall point for the flexible blade occurred later than for the rigid blade, which agrees with previous research. Lift-to-drag ratios were larger for the flexible blade at all angles of attack tested. Flexible blades seem to be a viable option for passive pitch control. Future research will include different airfoil cross sections, wind speeds, and blade materials. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  17. Numerical and in-situ investigations of water hammer effects in Drava river Kaplan turbine hydropower plants

    NASA Astrophysics Data System (ADS)

    Bergant, A.; Gregorc, B.; Gale, J.

    2012-11-01

    This paper deals with critical flow regimes that may induce unacceptable water hammer in Kaplan turbine hydropower plants. Water hammer analysis should be performed for normal, emergency and catastrophic operating conditions. Hydropower plants with Kaplan turbines are usually comprised of relatively short inlet and outlet conduits. The rigid water hammer theory can be used for this case. For hydropower plants with long penstocks the elastic water hammer should be used. Some Kaplan turbine units are installed in systems with long open channels. In this case, water level oscillations in the channels should be carefully investigated. Computational results are compared with results of measurements in recently rehabilitated seven Drava river hydroelectric power plants in Slovenia. Water hammer in the six power plants is controlled by appropriate adjustment of the wicket gates and runner blades closing/opening manoeuvres. Due to very long inflow and outflow open channels in Zlatoličje HPP a special vaned pressure regulating device attenuates extreme pressures in Kaplan turbine flow-passage system and controls unsteady flow in both open channels. Comparisons of results include normal operating regimes. The agreement between computed and measured results is reasonable.

  18. Investigation of three-dimensional flow field in a turbine including rotor/stator interaction. I - Design development and performance of the research facility

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Camci, C.; Halliwell, I.; Zaccaria, M.

    1992-01-01

    A description of the Axial Flow Turbine Research Facility (AFTRF) installed at the Turbomachinery Laboratory of the Pennsylvania State University is presented in this paper. The facility diameter is 91.66 cm (3 feet) and the hub-to-tip ratio of the blading is 0.73. The flow path consists of turbulence generating grid, 23 nozzle vane and 29 rotor blades followed by outlet guide vanes. The blading design, carried out by General Electric Company personnel, embody modern HP turbine design philosophy, loading and flow coefficient, reaction, aspect ratio, and blade turning angles; all within the current aircraft engine design turbine practice. State-of-the-art quasi-3D blade design techniques were used to design the vane and the blade shapes. The vanes and blades are heavily instrumented with fast response pressure, shear stress, and velocity probes and have provision for flow visualization and laser Doppler anemometer measurement. Furthermore, provision has been made for detailed nozzle wake, rotor wake and boundary layer surveys. A 150 channel slip ring unit is used for transmitting the rotor data to a stationary instrumentation system. All the design objectives have been met.

  19. Design of Linear Control System for Wind Turbine Blade Fatigue Testing

    NASA Astrophysics Data System (ADS)

    Toft, Anders; Roe-Poulsen, Bjarke; Christiansen, Rasmus; Knudsen, Torben

    2016-09-01

    This paper proposes a linear method for wind turbine blade fatigue testing at Siemens Wind Power. The setup consists of a blade, an actuator (motor and load mass) that acts on the blade with a sinusoidal moment, and a distribution of strain gauges to measure the blade flexure. Based on the frequency of the sinusoidal input, the blade will start oscillating with a given gain, hence the objective of the fatigue test is to make the blade oscillate with a controlled amplitude. The system currently in use is based on frequency control, which involves some non-linearities that make the system difficult to control. To make a linear controller, a different approach has been chosen, namely making a controller which is not regulating on the input frequency, but on the input amplitude. A non-linear mechanical model for the blade and the motor has been constructed. This model has been simplified based on the desired output, namely the amplitude of the blade. Furthermore, the model has been linearised to make it suitable for linear analysis and control design methods. The controller is designed based on a simplified and linearised model, and its gain parameter determined using pole placement. The model variants have been simulated in the MATLAB toolbox Simulink, which shows that the controller design based on the simple model performs adequately with the non-linear model. Moreover, the developed controller solves the robustness issue found in the existent solution and also reduces the needed energy for actuation as it always operates at the blade eigenfrequency.

  20. Thermal mechanical analysis of applications with internal heat generation

    NASA Astrophysics Data System (ADS)

    Govindarajan, Srisharan Garg

    The radioactive tracer Technetium-99m is widely used in medical imaging and is derived from its parent isotope Molybedenum-99 (Mo-99) by radioactive decay. The majority of Molybdenum-99 (Mo-99) produced internationally is extracted from high enriched uranium (HEU) dispersion targets that have been irradiated. To alleviate proliferation risks associated with HEU-based targets, the use of non-HEU sources is being mandated. However, the conversion of HEU to LEU based dispersion targets affects the Mo-99 available for chemical extraction. A possible approach to increase the uranium density, to recover the loss in Mo-99 production-per-target, is to use an LEU metal foil placed within an aluminum cladding to form a composite structure. The target is expected to contain the fission products and to dissipate the generated heat to the reactor coolant. In the event of interfacial separation, an increase in the thermal resistance could lead to an unacceptable rise in the LEU temperature and stresses in the target. The target can be deemed structurally safe as long as the thermally induced stresses are within the yield strength of the cladding and welds. As with the thermal and structural safety of the annular target, the thermally induced deflection of the BORALRTM-based control blades, used by the University of Missouri Research Reactor (MURRRTM ), during reactor operation has been analyzed. The boron, which is the neutron absorber in BORAL, and aluminum mixture (BORAL meat) and the aluminum cladding are bonded together through powder metallurgy to establish an adherent bonded plate. As the BORAL absorbs both neutron particles and gamma rays, there is volumetric heat generation and a corresponding rise in temperature. Since the BORAL meat and aluminum cladding materials have different thermal expansion coefficients, the blade may have a tendency to deform as the blade temperature changes and the materials expand at different rates. In addition to the composite nature of the control blade, spatial variations in temperature within the control blade occur from the non-uniform heat generation within the BORAL as a result of the non-uniform thermal neutron flux along the longitudinal direction when the control blade is partially withdrawn. There is also variation in the heating profile through the thickness and about the circumferential width of the control blade. Mathematical curve-fits are generated for the non-uniform volumetric heat generation profile caused by the thermal neutron absorption and the functions are applied as heating conditions within a finite element model of the control blade built using the commercial finite element code Abaqus FEA. The finite element model is solved as a fully coupled thermal mechanical problem as in the case of the annular target. The resulting deflection is compared with the channel gap to determine if there is a significant risk of the control blade binding during reactor operation. Hence, this dissertation will consist of two sections. The first section will seek to present the thermal and structural safety analyses of the annular targets for the production of molybdenum-99. Since there hasn't been any detailed, documented, study on these annular targets in the past, the work complied in this dissertation will help to understand the thermal-mechanical behavior and failure margins of the target during in-vessel irradiation. As the work presented in this dissertation provides a general performance analysis envelope for the annular target, the tools developed in the process can also be used as useful references for future analyses that are specific to any reactor. The numerical analysis approach adopted and the analytical models developed, can also be applied to other applications, outside the Mo-99 project domain, where internal heat generation exists such as in electronic components and nuclear reactor control blades. The second section will focus on estimating the thermally induced deflection and hence establish operational safety of the BORAL control blades used at the Missouri University Research Reactor (MURR) to support their relicensing efforts with the Nuclear Regulatory Commission (NRC). The common theme in both these sections is the nuclear heat source, high heat flux, non-uniform heating, composite structures and differential thermal expansion. The goal is to establish the target and component operational safety, and also provide documented analysis that can be referred to in the future.

  1. Heat Transfer in a Complex Trailing Edge Passage for a High Pressure Turbine Blade - Part 1: Experimental Measurements. Part 1; Experimental Measurements

    NASA Technical Reports Server (NTRS)

    Bunker, Ronald S.; Wetzel, Todd G.; Rigby, David L.; Reddy, D. R. (Technical Monitor)

    2000-01-01

    A combined experimental and computational study has been performed to investigate the detailed heat transfer coefficient distributions within a complex blade trailing edge passage. The experimental measurements are made using a steady liquid crystal thermography technique applied to one major side of the passage. The geometry of the trailing edge passage is that of a two-pass serpentine circuit with a sharp 180-degree turning region at the tip. The upflow channel is split by interrupted ribs into two major subchannels, one of which is turbulated. This channel has an average aspect ratio of roughly 14:1. The spanwise extent of the channel geometry includes both area convergence from root to tip, as well as taper towards the trailing edge apex. The average section Reynolds numbers tested in this upflow channel range from 55,000 to 98,000. The tip section contains a turning vane near the extreme comer. The downflow channel has an aspect ratio of about 5:1, and also includes convergence and taper. Turbulators of varying sizes are included in this channel also. Both detailed heat transfer and pressure distribution measurements are presented. The pressure measurements are incorporated into a flow network model illustrating the major loss contributors.

  2. 76 FR 13065 - Airworthiness Directives; Eurocopter France Model AS-365N2, AS 365 N3, and SA-365N1 Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... replacing the aluminum tail rotor (T/R) blade pitch control shaft with a steel T/R blade pitch control shaft... prevent failure of the T/R blade pitch control shaft, loss of T/R control, and subsequent loss of control... SA-365N1 helicopters, all serial numbers, with an aluminum T/R blade pitch control shaft, part number...

  3. Integrated fiber optic light probe: Measurement of static deflections in rotating turbomachinery

    NASA Astrophysics Data System (ADS)

    Dhadwal, Harbans S.; Mehmud, Ali; Khan, Romel; Kurkov, Anatole

    1996-02-01

    This paper describes the design, fabrication, and testing of an integrated fiber optic light probe system for monitoring blade tip deflections, vibrational modes, and changes in blade tip clearances in the compressor stage of rotating turbomachinery. The system comprises a set of integrated fiber optic light probes which are positioned to detect the passing blade tip at the leading and the trailing edges. In this configuration measurements of both blade vibrations and steady-state blade deflection can be obtained from the timing information provided by each light probe, which comprises an integrated fiber optic transmitting channel and a number of high numerical aperture receiving fibers, all mounted in the same cylindrical housing. A spatial resolution of 50 μm is possible with the integrated fiber optic technology, while keeping the outer diameter below 2.5 mm. Additionally, one fiber sensor provides a capability of monitoring changes in the blade tip clearance of the order of 10 μm. Measurements from a single stage compressor facility and an engine-fan rig in a 9 ft×15 ft subsonic wind tunnel are presented.

  4. The turbomachine blading design using S2-S1 approach

    NASA Technical Reports Server (NTRS)

    Luu, T. S.; Bencherif, L.; Viney, B.; Duc, J. M. Nguyen

    1991-01-01

    The boundary conditions corresponding to the design problem when the blades being simulated by the bound vorticity distribution are presented. The 3D flow is analyzed by the two steps S2 - S1 approach. In the first step, the number of blades is supposed to be infinite, the vortex distribution is transformed into an axisymmetric one, so that the flow field can be analyzed in a meridional plane. The thickness distribution of the blade producing the flow channel striction is taken into account by the modification of metric tensor in the continuity equation. Using the meridional stream function to define the flow field, the mass conservation is satisfied automatically. The governing equation is deduced from the relation between the azimuthal component of the vorticity and the meridional velocity. The value of the azimuthal component of the vorticity is provided by the hub to shroud equilibrium condition. This step leads to the determination of the axisymmetric stream sheets as well as the approximate camber surface of the blade. In the second step, the finite number of blades is taken into account, the inverse problem corresponding to the blade to blade flow confined in each stream sheet is analyzed. The momentum equation implies that the free vortex of the absolute velocity must be tangential to the stream sheet. The governing equation for the blade to blade flow stream function is deduced from this condition. At the beginning, the upper and the lower surfaces of the blades are created from the camber surface obtained from the first step with the assigned thickness distribution. The bound vorticity distribution and the penetrating flux conservation applied on the presumed blade surface constitute the boundary conditions of the inverse problem. The detection of this flux leads to the rectification of the geometry of the blades.

  5. A Method for Dynamically Selecting the Best Frequency Hopping Technique in Industrial Wireless Sensor Network Applications

    PubMed Central

    Fernández de Gorostiza, Erlantz; Mabe, Jon

    2018-01-01

    Industrial wireless applications often share the communication channel with other wireless technologies and communication protocols. This coexistence produces interferences and transmission errors which require appropriate mechanisms to manage retransmissions. Nevertheless, these mechanisms increase the network latency and overhead due to the retransmissions. Thus, the loss of data packets and the measures to handle them produce an undesirable drop in the QoS and hinder the overall robustness and energy efficiency of the network. Interference avoidance mechanisms, such as frequency hopping techniques, reduce the need for retransmissions due to interferences but they are often tailored to specific scenarios and are not easily adapted to other use cases. On the other hand, the total absence of interference avoidance mechanisms introduces a security risk because the communication channel may be intentionally attacked and interfered with to hinder or totally block it. In this paper we propose a method for supporting the design of communication solutions under dynamic channel interference conditions and we implement dynamic management policies for frequency hopping technique and channel selection at runtime. The method considers several standard frequency hopping techniques and quality metrics, and the quality and status of the available frequency channels to propose the best combined solution to minimize the side effects of interferences. A simulation tool has been developed and used in this work to validate the method. PMID:29473910

  6. A Method for Dynamically Selecting the Best Frequency Hopping Technique in Industrial Wireless Sensor Network Applications.

    PubMed

    Fernández de Gorostiza, Erlantz; Berzosa, Jorge; Mabe, Jon; Cortiñas, Roberto

    2018-02-23

    Industrial wireless applications often share the communication channel with other wireless technologies and communication protocols. This coexistence produces interferences and transmission errors which require appropriate mechanisms to manage retransmissions. Nevertheless, these mechanisms increase the network latency and overhead due to the retransmissions. Thus, the loss of data packets and the measures to handle them produce an undesirable drop in the QoS and hinder the overall robustness and energy efficiency of the network. Interference avoidance mechanisms, such as frequency hopping techniques, reduce the need for retransmissions due to interferences but they are often tailored to specific scenarios and are not easily adapted to other use cases. On the other hand, the total absence of interference avoidance mechanisms introduces a security risk because the communication channel may be intentionally attacked and interfered with to hinder or totally block it. In this paper we propose a method for supporting the design of communication solutions under dynamic channel interference conditions and we implement dynamic management policies for frequency hopping technique and channel selection at runtime. The method considers several standard frequency hopping techniques and quality metrics, and the quality and status of the available frequency channels to propose the best combined solution to minimize the side effects of interferences. A simulation tool has been developed and used in this work to validate the method.

  7. Theoretical study of the effect of ground proximity on the induced efficiency of helicopter rotors

    NASA Technical Reports Server (NTRS)

    Heyson, H. H.

    1977-01-01

    A study of rotors in forward flight within ground effect showed that the ground-induced interference is an upwash and a decrease in forward velocity. The interference velocities are large, oppose the normal flow through the rotor, and have large effects on the induced efficiency. Hovering with small ground clearances may result in significant blade stall. As speed is increased from hover in ground effect, power initially increases rather than decreases. At very low heights above the ground, the power requirements become nonlinear with speed as a result of the streamwise interference. The streamwise interference becomes greater as the wake approaches the ground and eventually distorts the wake to form the ground vortex which contributes to certain observed directional stability problems.

  8. Modeling Smart Structure of Wind Turbine Blade

    NASA Astrophysics Data System (ADS)

    Qiao, Yin-hu; Han, Jiang; Zhang, Chun-yan; Chen, Jie-ping

    2012-06-01

    With the increasing size of wind turbine blades, the need for more sophisticated load control techniques has induced the interest for aerodynamic control systems with build-in intelligence on the blades. The paper aims to provide a way for modeling the adaptive wind turbine blades and analyze its ability for vibration suppress. It consists of the modeling of the adaptive wind turbine blades with the wire of piezoelectric material embedded in blade matrix, and smart sandwich structure of wind turbine blade. By using this model, an active vibration method which effectively suppresses the vibrations of the smart blade is designed.

  9. Single versus double blade technique for skin incision and deep dissection in surgery for closed fracture: a prospective randomised control study.

    PubMed

    Trikha, V; Saini, P; Mathur, P; Agarwal, A; Kumar, S V; Choudhary, B

    2016-04-01

    To compare blade cultures in surgery for closed fracture using a single or double blade technique to determine whether the current practice of double blade technique is justified. 155 men and 29 women aged 20 to 60 (mean, 35) years who underwent surgery for closed fracture with healthy skin at the incision site were included. Patients were block randomised to the single (n=92) or double (n=92) blade technique. Blades were sent for bacteriological analysis. Outcome measures were early surgical site infection (SSI) within 30 days and cultures from the blades. The 2 groups were comparable in baseline characteristics. In the single blade group, 6 surgical blades and 2 control blades showed positive cultures; 4 patients developed SSI, but only one had a positive culture from the surgical blade (with different organism isolated from the wound culture). In the double blade group, 6 skin blades, 7 deep blades, and 0 control blade showed positive culture; only 2 patients had the same bacteria grown from both skin and deep blade. Five patients developed SSI, but only one patient had a positive culture from the deep blade (with different organism isolated from the wound culture). The difference in incidence of culture-positive blade or SSI between the 2 groups was not significant. The relative risk of SSI in the single blade group was 0.8. Positive blade culture was not associated with SSI in the single or double blade group. The practice of changing blade following skin incision has no effect on reducing early SSI in surgery for closed fracture in healthy patients with healthy skin.

  10. Reduction of gas flow nonuniformity in gas turbine engines by means of gas-dynamic methods

    NASA Astrophysics Data System (ADS)

    Matveev, V.; Baturin, O.; Kolmakova, D.; Popov, G.

    2017-08-01

    Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and as a consequence to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity as the source of dynamic stresses in the rotor blades. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. On the basis of existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.

  11. Turbine airfoil fabricated from tapered extrusions

    DOEpatents

    Marra, John J

    2013-07-16

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  12. Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling

    DOEpatents

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J

    2015-01-06

    A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.

  13. Application of the results of experimental and numerical turbulent flow researches based on pressure pulsations analysis

    NASA Astrophysics Data System (ADS)

    Kovalnogov, Vladislav N.; Fedorov, Ruslan V.; Khakhalev, Yuri A.; Khakhaleva, Larisa V.; Chukalin, Andrei V.

    2017-07-01

    The numerical investigation of the turbulent flow with the impacts, based on a modified Prandtl mixing-length model with using of the analysis of pulsations of pressure, calculation of structure and a friction factor of a turbulent flow is made. These results under the study allowed us to propose a new design of a cooled turbine blade and gas turbine mobile. The turbine blade comprises a combined cooling and cylindrical cavity on the blade surface, and on the inner surfaces of the cooling channels too damping cavity located on the guide vanes of the compressor of a gas turbine engine, increase the supply of gas-dynamic stability of the compressor of a gas turbine engine, reduce the resistance of the guide blades, and increase the efficiency of the turbine engine.

  14. Laser Anemometer Measurements of the Flow Field in a 4:1 Pressure Ratio Centrifugal Impeller

    NASA Technical Reports Server (NTRS)

    Skoch, G. J.; Prahst, P. S.; Wernet, M. P.; Wood, J. R.; Strazisar, A. J.

    1997-01-01

    A laser-doppler anemometer was used to obtain flow-field velocity measurements in a 4:1 pressure ratio, 4.54 kg/s (10 lbm/s), centrifugal impeller, with splitter blades and backsweep, which was configured with a vaneless diffuser. Measured through-flow velocities are reported for ten quasi-orthogonal survey planes at locations ranging from 1% to 99% of main blade chord. Measured through-flow velocities are compared to those predicted by a 3-D viscous steady flow analysis (Dawes) code. The measurements show the development and progression through the impeller and vaneless diffuser of a through-flow velocity deficit which results from the tip clearance flow and accumulation of low momentum fluid centrifuged from the blade and hub surfaces. Flow traces from the CFD analysis show the origin of this deficit which begins to grow in the inlet region of the impeller where it is first detected near the suction surface side of the passage. It then moves toward the pressure side of the channel, due to the movement of tip clearance flow across the impeller passage, where it is cut by the splitter blade leading edge. As blade loading increases toward the rear of the channel the deficit region is driven back toward the suction surface by the cross-passage pressure gradient. There is no evidence of a large wake region that might result from flow separation and the impeller efficiency is relatively high. The flow field in this impeller is quite similar to that documented previously by NASA Lewis in a large low-speed backswept impeller.

  15. Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems

    PubMed Central

    Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang

    2008-01-01

    There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934

  16. 16 CFR 1205.5 - Walk-behind rotary power mower controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Walk-behind rotary power mower controls... rotary power mower controls. (a) Blade control systems—(1) Requirements for blade control. A walk-behind rotary power mower shall have a blade control system that will perform the following functions: (i...

  17. Unconventional signal detection techniques with Gaussian probability mixtures adaptation in non-AWGN channels: full resolution receiver

    NASA Astrophysics Data System (ADS)

    Chabdarov, Shamil M.; Nadeev, Adel F.; Chickrin, Dmitry E.; Faizullin, Rashid R.

    2011-04-01

    In this paper we discuss unconventional detection technique also known as «full resolution receiver». This receiver uses Gaussian probability mixtures for interference structure adaptation. Full resolution receiver is alternative to conventional matched filter receivers in the case of non-Gaussian interferences. For the DS-CDMA forward channel with presence of complex interferences sufficient performance increasing was shown.

  18. Multiuser TOA Estimation Algorithm in DS-CDMA Sparse Channel for Radiolocation

    NASA Astrophysics Data System (ADS)

    Kim, Sunwoo

    This letter considers multiuser time delay estimation in a sparse channel environment for radiolocation. The generalized successive interference cancellation (GSIC) algorithm is used to eliminate the multiple access interference (MAI). To adapt GSIC to sparse channels the alternating maximization (AM) algorithm is considered, and the continuous time delay of each path is estimated without requiring a priori known data sequences.

  19. Combined wind turbine fatigue and ultimate load reduction by individual blade control

    NASA Astrophysics Data System (ADS)

    Han, Y.; Leithead, W. E.

    2014-06-01

    If each blade of the wind turbine has individual pitch actuator, there is possibility of employing the pitch system to mitigate structural loads through advanced control methods. Previously, considerable reduction of blade lifetime equivalent fatigue loads has been achieved by Individual Blade Control (IBC) and in addition, it has also been shown the potential in blade ultimate loads reduction. However, both fatigue and ultimate loads impact on the design and life of wind turbine blades. In this paper, the design and application of IBC that concurrently reduce both blade fatigue and ultimate loads is investigated. The contributions of blade load spectral components, which are 1P, 2P and edgewise mode from blade in-plane and/or out-of-plane bending moments, are firstly explored. Four different control options for reducing various combinations of these load components are compared. In response to the different spectral peaks of both fatigue and ultimate loads, the controller has been designed so that it can act on different frequency components which vary with wind speed. The performance of the IBC controller on fatigue and ultimate load reduction is assessed by simulating a 5MW exemplar wind turbine. Simulation results show that with a proper selection of controlling inputs at different wind speed, the use of a single combined IBC can achieve satisfactory reduction on both fatigue and ultimate loads.

  20. 75 FR 48618 - Airworthiness Directives; Eurocopter France Model AS-365N2, AS 365 N3, and SA-365N1 Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-11

    ... aluminum tail rotor (T/R) blade pitch control shaft with a steel T/R blade pitch control shaft. This... are intended to prevent failure of the T/R blade pitch control shaft, loss of T/R control, and... an aluminum T/R blade pitch control shaft, part number (P/N) 365A33.6161.20 or P/N 365A33.6161.21...

  1. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  2. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1994-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  3. Inhibition of cardiac inward rectifier currents by cationic amphiphilic drugs.

    PubMed

    van der Heyden, M A G; Stary-Weinzinger, A; Sanchez-Chapula, J A

    2013-09-01

    Cardiac inward rectifier channels belong to three different classes of the KIR channel protein family. The KIR2.x proteins generate the classical inward rectifier current, IK1, while KIR3 and KIR6 members are responsible for the acetylcholine responsive and ATP sensitive inward rectifier currents IKAch and IKATP, respectively. Aberrant function of these channels has been correlated with severe cardiac arrhythmias, indicating their significant contribution to normal cardiac electrophysiology. A common feature of inward rectifier channels is their dependence on the lipid phosphatidyl-4,5-bisphospate (PIP2) interaction for functional activity. Cationic amphiphilic drugs (CADs) are one of the largest classes of pharmaceutical compounds. Several widely used CADs have been associated with inward rectifier current disturbances, and recent evidence points to interference of the channel-PIP2 interaction as the underlying mechanism of action. Here, we will review how six of these well known drugs, used for treatment in various different conditions, interfere in cardiac inward rectifier functioning. In contrast, KIR channel inhibition by the anionic anesthetic thiopental is achieved by a different mechanism of channel-PIP2 interference. We will discuss the latest basic science insights of functional inward rectifier current characteristics, recently derived KIR channel structures and specific PIP2-receptor interactions at the molecular level and provide insight in how these drugs interfere in the structure-function relationships.

  4. Stall Flutter Control of a Smart Blade Section Undergoing Asymmetric Limit Oscillations

    DOE PAGES

    Li, Nailu; Balas, Mark J.; Nikoueeyan, Pourya; ...

    2016-01-01

    Stall flutter is an aeroelastic phenomenon resulting in unwanted oscillatory loads on the blade, such as wind turbine blade, helicopter rotor blade, and other flexible wing blades. While the stall flutter and related aeroelastic control have been studied theoretically and experimentally, microtab control of asymmetric limit cycle oscillations (LCOs) in stall flutter cases has not been generally investigated. This paper presents an aeroservoelastic model to study the microtab control of the blade section undergoing moderate stall flutter and deep stall flutter separately. The effects of different dynamic stall conditions and the consequent asymmetric LCOs for both stall cases are simulatedmore » and analyzed. Then, for the design of the stall flutter controller, the potential sensor signal for the stall flutter, the microtab control capability of the stall flutter, and the control algorithm for the stall flutter are studied. Lastly, the improvement and the superiority of the proposed adaptive stall flutter controller are shown by comparison with a simple stall flutter controller.« less

  5. Part 1 - Experimental study of the pressure fluctuations on propeller turbine runner blades during steady-state operation

    NASA Astrophysics Data System (ADS)

    Houde, S.; Fraser, R.; Ciocan, G. D.; Deschênes, C.

    2012-11-01

    A good evaluation of the unsteady pressure field on hydraulic turbine blades is critical in evaluating the turbine lifespan and its maintenance schedule. Low-head turbines such as Kaplan and Propeller, using a relatively low number of blades supported only at the hub, may also undergo significant deflections at the blade tips which will lead to higher amplitude vibration compared to Francis turbines. Furthermore, the precise evaluation of the unsteady pressure distribution on low-head turbines is still a challenge for computational fluid dynamics (CFD). Within the framework of an international research consortium on low-head turbines, a research project was instigated at the Hydraulic Machines Laboratory in Laval University (LAMH) to perform experimental measurements of the unsteady pressure field on propeller turbine model runner blades. The main objective of the project was to measure the pressure fluctuations on a wide band of frequencies, both in a blade-to-blade channel and on the pressure and suction side of the same blade, to provide validation data for CFD computations. To do so, a 32 channels telemetric data transmission system was used to extract the signal of 31 pressure transducers and two strain gages from the rotating part at an acquisition frequency of 5 KHz. The miniature piezoelectric pressure transducers were placed on two adjacent runner blades according to an estimated pressure distribution coming from flow simulations. Two suction sides and one pressure side were instrumented. The strain gages were mounted in full-bridge on both pressure and suction sides to measure the blade span wise deflection. In order to provide boundary conditions for flow simulations, the test bench conditions during the measurements were acquired. The measurements were made in different operating conditions ranging from part load, where a cavitating vortex occurs, to full load under different heads. The results enabled the identification and the quantification of the major known sources of pressure fluctuation as well as some unexpected ones. The paper first presents the experimental methodology discussing relevant topics such as telemetric system setup, transducers calibration and errors analysis. The main results are then presented to illustrate the relative amplitude of the main source of pressure fluctuations under different operating conditions. The discussion and conclusion addresses the important observations stemming from the data analysis and illustrates that most of the results can be correlated with the known behavior of hydraulic turbines while some require further investigation.

  6. Forced responses on a radial turbine with nozzle guide vanes

    NASA Astrophysics Data System (ADS)

    Liu, Yixiong; Yang, Ce; Ma, Chaochen; Lao, DaZhong

    2014-04-01

    Radial turbines with nozzle guide vanes are widely used in various size turbochargers. However, due to the interferences with guide vanes, the blades of impellers are exposed to intense unsteady aerodynamic excitations, which cause blade vibrations and lead to high cycle failures (HCF). Moreover, the harmonic resonance in some frequency regions are unavoidable due to the wide operation conditions. Aiming to achieve a detail insight into vibration characteristics of radial flow turbine, a numerical method based on fluid structure interaction (FSI) is presented. Firstly, the unsteady aerodynamic loads are determined by computational fluid dynamics (CFD). And the fluctuating pressures are transformed from time domain to frequency domain by fast Fourier-transform (FFT). Then, the entire rotor model is adopted to analyze frequencies and mode shapes considering mistuning in finite element (FE) method. Meanwhile, harmonic analyses, applying the pressure fluctuation from CFD, are conducted to investigate the impeller vibration behavior and blade forced response in frequency domain. The prediction of the vibration dynamic stress shows acceptable agreement to the blade actual damage in consistent tendency.

  7. Control system for a vertical axis windmill

    DOEpatents

    Brulle, Robert V.

    1983-10-18

    A vertical axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90.degree. and 270.degree. to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  8. Control system for a vertical-axis windmill

    DOEpatents

    Brulle, R.V.

    1981-09-03

    A vertical-axis windmill having a rotating structure is provided with a series of articulated vertical blades whose positions are controlled to maintain a constant RPM for the rotating structure, when wind speed is sufficient. A microprocessor controller is used to process information on wind speed, wind direction and RPM of the rotating structure to develop an electrical signal for establishing blade position. The preferred embodiment of the invention, when connected to a utility grid, is designed to generate 40 kilowatts of power when exposed to a 20 mile per hour wind. The control system for the windmill includes electrical blade actuators that modulate the blades of the rotating structure. Blade modulation controls the blade angle of attack, which in turn controls the RPM of the rotor. In the preferred embodiment, the microprocessor controller provides the operation logic and control functions. A wind speed sensor provides inputs to start or stop the windmill, and a wind direction sensor is used to keep the blade flip region at 90 and 270/sup 0/ to the wind. The control system is designed to maintain constant rotor RPM when wind speed is between 10 and 40 miles per hour.

  9. Performance Evaluation of Cognitive Interference Channels Using a Spectrum Overlay Strategy

    NASA Technical Reports Server (NTRS)

    Knoblock, Eric J.

    2018-01-01

    The use of cognitive radios (CR) and cooperative communications techniques may assist in interference mitigation via sensing of the environment and dynamically altering communications parameters through the use of various mechanisms - one of which is the overlay technique. This report provides a performance analysis of an interference channel with a cognitive transceiver operating in an overlay configuration to evaluate the gains from using cognition. As shown in this report, a cognitive transceiver can simultaneously share spectrum while enhancing performance of non-cognitive nodes via knowledge of the communications channel as well as knowledge of neighboring users' modulation and coding schemes.

  10. Acoustic pressures emanating from a turbomachine stage

    NASA Technical Reports Server (NTRS)

    Ramachandra, S. M.

    1984-01-01

    A knowledge of the acoustic energy emission of each blade row of a turbomachine is useful for estimating the overall noise level of the machine and for determining its discrete frequency noise content. Because of the close spacing between the rotor and stator of a compressor stage, the strong aerodynamic interactions between them have to be included in obtaining the resultant flow field. A three dimensional theory for determining the discrete frequency noise content of an axial compressor consisting of a rotor and a stator each with a finite number of blades are outlined. The lifting surface theory and the linearized equation of an ideal, nonsteady compressible fluid motion are used for thin blades of arbitrary cross section. The combined pressure field at a point of the fluid is constructed by linear addition of the rotor and stator solutions together with an interference factor obtained by matching them for net zero vorticity behind the stage.

  11. Effectiveness enhancement of a cycloidal wind turbine by individual active control of blade motion

    NASA Astrophysics Data System (ADS)

    Hwang, In Seong; Lee, Yun Han; Kim, Seung Jo

    2007-04-01

    In this paper, a research for the effectiveness enhancement of a Cycloidal Wind Turbine by individual active control of blade motion is described. To improve the performance of the power generation system, which consists of several straight blades rotating about axis in parallel direction, the cycloidal blade system and the individual active blade control method are adopted. It has advantages comparing with horizontal axis wind turbine or conventional vertical axis wind turbine because it maintains optimal blade pitch angles according to wind speed, wind direction and rotor rotating speed to produce high electric power at any conditions. It can do self-starting and shows good efficiency at low wind speed and complex wind condition. Optimal blade pitch angle paths are obtained through CFD analysis according to rotor rotating speed and wind speed. The individual rotor blade control system consists of sensors, actuators and microcontroller. To realize the actuating device, servo motors are installed to each rotor blade. Actuating speed and actuating force are calculated to compare with the capacities of servo motor, and some delays of blade pitch angles are corrected experimentally. Performance experiment is carried out by the wind blowing equipment and Labview system, and the rotor rotates from 50 to 100 rpm according to the electric load. From this research, it is concluded that developing new vertical axis wind turbine, Cycloidal Wind Turbine which is adopting individual active blade pitch control method can be a good model for small wind turbine in urban environment.

  12. Advanced Noise Control Fan: A 20-Year Retrospective

    NASA Technical Reports Server (NTRS)

    Sutliff, Dan

    2016-01-01

    The ANCF test bed is used for evaluating fan noise reduction concepts, developing noise measurement technologies, and providing a database for Aero-acoustic code development. Rig Capabilities: 4 foot 16 bladed rotor @ 2500 rpm, Auxiliary air delivery system (3 lbm/sec @ 6/12 psi), Variable configuration (rotor pitch angle, stator count/position, duct length), synthetic acoustic noise generation (tone/broadband). Measurement Capabilities: 112 channels dynamic data system, Unique rotating rake mode measuremen, Farfield (variable radius), Duct wall microphones, Stator vane microphones, Two component CTA w/ traversing, ESP for static pressures.

  13. FIBER AND INTEGRATED OPTICS: Analysis of the characteristics of a radio signal at the output of a multimode interference-type fiber channel

    NASA Astrophysics Data System (ADS)

    Bratchikov, A. N.; Glukhov, I. P.

    1992-02-01

    An analysis is made of a theoretical model of an interference fiber channel for transmission of microwave signals. It is assumed that the channel consists of a multimode fiber waveguide with a step or graded refractive-index profile. A typical statistic of a longitudinal distribution of inhomogeneities is also assumed. Calculations are reported of the interference losses, the spectral profile of the output radio signal, the signal/noise ratio in the channel, and of the dependences of these parameters on: the type, diameter, and the length of the multimode fiber waveguide; the spectral width of the radiation source; the frequency offset between the interfering optical signals.

  14. IQ imbalance tolerable parallel-channel DMT transmission for coherent optical OFDMA access network

    NASA Astrophysics Data System (ADS)

    Jung, Sang-Min; Mun, Kyoung-Hak; Jung, Sun-Young; Han, Sang-Kook

    2016-12-01

    Phase diversity of coherent optical communication provides spectrally efficient higher-order modulation for optical communications. However, in-phase/quadrature (IQ) imbalance in coherent optical communication degrades transmission performance by introducing unwanted signal distortions. In a coherent optical orthogonal frequency division multiple access (OFDMA) passive optical network (PON), IQ imbalance-induced signal distortions degrade transmission performance by interferences of mirror subcarriers, inter-symbol interference (ISI), and inter-channel interference (ICI). We propose parallel-channel discrete multitone (DMT) transmission to mitigate transceiver IQ imbalance-induced signal distortions in coherent orthogonal frequency division multiplexing (OFDM) transmissions. We experimentally demonstrate the effectiveness of parallel-channel DMT transmission compared with that of OFDM transmission in the presence of IQ imbalance.

  15. Application of a Channel Design Method to High-Solidity Cascades and Tests of an Impulse Cascade with 90 Degrees of Turning

    NASA Technical Reports Server (NTRS)

    Stanitz, John D; Sheldrake, Leonard J

    1953-01-01

    A technique is developed for the application of a channel design method to the design of high-solidity cascades with prescribed velocity distributions as a function of arc length along the blade-element profile. The technique is applied to both incompressible and subsonic compressible, nonviscous, irrotational fluid motion. For compressible flow, the ratio of specific heats is assumed equal to -1.0. An impulse cascade with 90 degree turning was designed for incompressible flow and was tested at the design angle of attack over a range of downstream Mach number from 0.2 to coke flow. To achieve good efficiency, the cascade was designed for prescribed velocities and maximum blade loading according to limitations imposed by considerations of boundary-layer separation.

  16. Flow structure and heat exchange analysis in internal cooling channel of gas turbine blade

    NASA Astrophysics Data System (ADS)

    Szwaba, Ryszard; Kaczynski, Piotr; Doerffer, Piotr; Telega, Janusz

    2016-08-01

    This paper presents the study of the flow structure and heat transfer, and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade. The investigations focus on heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include corner fillet, ribs with fillet radii and special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.

  17. Active Piezoelectric Vibration Control of Subscale Composite Fan Blades

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Min, James B.; Kray, Nicholas

    2012-01-01

    As part of the Fundamental Aeronautics program, researchers at NASA Glenn Research Center (GRC) are investigating new technologies supporting the development of lighter, quieter, and more efficient fans for turbomachinery applications. High performance fan blades designed to achieve such goals will be subjected to higher levels of aerodynamic excitations which could lead to more serious and complex vibration problems. Piezoelectric materials have been proposed as a means of decreasing engine blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. To investigate this idea, spin testing was performed on two General Electric Aviation (GE) subscale composite fan blades in the NASA GRC Dynamic Spin Rig Facility. The first bending mode (1B) was targeted for vibration control. Because these subscale blades are very thin, the piezoelectric material was surface-mounted on the blades. Three thin piezoelectric patches were applied to each blade two actuator patches and one small sensor patch. These flexible macro-fiber-composite patches were placed in a location of high resonant strain for the 1B mode. The blades were tested up to 5000 rpm, with patches used as sensors, as excitation for the blade, and as part of open- and closed-loop vibration control. Results show that with a single actuator patch, active vibration control causes the damping ratio to increase from a baseline of 0.3% critical damping to about 1.0% damping at 0 RPM. As the rotor speed approaches 5000 RPM, the actively controlled blade damping ratio decreases to about 0.5% damping. This occurs primarily because of centrifugal blade stiffening, and can be observed by the decrease in the generalized electromechanical coupling with rotor speed.

  18. An extended smart utilization medium access control (ESU-MAC) protocol for ad hoc wireless systems

    NASA Astrophysics Data System (ADS)

    Vashishtha, Jyoti; Sinha, Aakash

    2006-05-01

    The demand for spontaneous setup of a wireless communication system has increased in recent years for areas like battlefield, disaster relief operations etc., where a pre-deployment of network infrastructure is difficult or unavailable. A mobile ad-hoc network (MANET) is a promising solution, but poses a lot of challenges for all the design layers, specifically medium access control (MAC) layer. Recent existing works have used the concepts of multi-channel and power control in designing MAC layer protocols. SU-MAC developed by the same authors, efficiently uses the 'available' data and control bandwidth to send control information and results in increased throughput via decreasing contention on the control channel. However, SU-MAC protocol was limited for static ad-hoc network and also faced the busy-receiver node problem. We present the Extended SU-MAC (ESU-MAC) protocol which works mobile nodes. Also, we significantly improve the scheme of control information exchange in ESU-MAC to overcome the busy-receiver node problem and thus, further avoid the blockage of control channel for longer periods of time. A power control scheme is used as before to reduce interference and to effectively re-use the available bandwidth. Simulation results show that ESU-MAC protocol is promising for mobile, ad-hoc network in terms of reduced contention at the control channel and improved throughput because of channel re-use. Results show a considerable increase in throughput compared to SU-MAC which could be attributed to increased accessibility of control channel and improved utilization of data channels due to superior control information exchange scheme.

  19. Ramp-integration technique for capacitance-type blade-tip clearance measurement

    NASA Astrophysics Data System (ADS)

    Sarma, Garimella R.; Barranger, John P.

    The analysis of a proposed new technique for capacitance type blade tip clearance measurement is presented. The capacitance between the blade tip and a mounted capacitance electrode within a guard ring forms one of the feedback elements of a high speed operational amplifier. The differential equation governing the operational amplifier circuit is formulated and solved for two types of inputs to the amplifier - a constant voltage and a ramp. The resultant solution shows an output that contains a term that is proportional to the derivative of the product of the input voltage and the time constant of the feedback network. The blade tip clearance capacitance is obtained by subtracting the output of a balancing reference channel followed by integration. The proposed sampled data algorithm corrects for environmental effects and varying rotor speeds on-line, making the system suitable for turbine instrumentation. System requirements, block diagrams, and a typical application are included.

  20. Ramp-integration technique for capacitance-type blade-tip clearance measurement

    NASA Astrophysics Data System (ADS)

    Sarma, G. R.; Barranger, J. P.

    1986-05-01

    The analysis of a proposed new technique for capacitance type blade tip clearance measurement is presented. The capacitance between the blade tip and a mounted capacitance electrode within a guard ring forms one of the feedback elements of a high speed operational amplifier. The differential equation governing the operational amplifier circuit is formulated and solved for two types of inputs to the amplifier - a constant voltage and a ramp. The resultant solutions shows an output that contains a term that is proportional to the derivative of the product of the input voltage and the time constant of the feedback network. The blade tip clearance capacitance is obtained by subtracting the output of a balancing reference channel followed by integration. The proposed sampled data algorithm corrects the environmental effects and varying rotor speeds on-line, making the system suitable for turbine instrumentation. System requirements, block diagrams, and typical application are included.

  1. An improved computer model for prediction of axial gas turbine performance losses

    NASA Technical Reports Server (NTRS)

    Jenkins, R. M.

    1984-01-01

    The calculation model performs a rapid preliminary pitchline optimization of axial gas turbine annular flowpath geometry, as well as an initial estimate of blade profile shapes, given only a minimum of thermodynamic cycle requirements. No geometric parameters need be specified. The following preliminary design data are determined: (1) the optimum flowpath geometry, within mechanical stress limits; (2) initial estimates of cascade blade shapes; and (3) predictions of expected turbine performance. The model uses an inverse calculation technique whereby blade profiles are generated by designing channels to yield a specified velocity distribution on the two walls. Velocity distributions are then used to calculate the cascade loss parameters. Calculated blade shapes are used primarily to determine whether the assumed velocity loadings are physically realistic. Model verification is accomplished by comparison of predicted turbine geometry and performance with an array of seven NASA single-stage axial gas turbine configurations.

  2. Ramp-integration technique for capacitance-type blade-tip clearance measurement

    NASA Technical Reports Server (NTRS)

    Sarma, Garimella R.; Barranger, John P.

    1986-01-01

    The analysis of a proposed new technique for capacitance type blade tip clearance measurement is presented. The capacitance between the blade tip and a mounted capacitance electrode within a guard ring forms one of the feedback elements of a high speed operational amplifier. The differential equation governing the operational amplifier circuit is formulated and solved for two types of inputs to the amplifier - a constant voltage and a ramp. The resultant solution shows an output that contains a term that is proportional to the derivative of the product of the input voltage and the time constant of the feedback network. The blade tip clearance capacitance is obtained by subtracting the output of a balancing reference channel followed by integration. The proposed sampled data algorithm corrects for environmental effects and varying rotor speeds on-line, making the system suitable for turbine instrumentation. System requirements, block diagrams, and a typical application are included.

  3. Ramp-integration technique for capacitance-type blade-tip clearance measurement

    NASA Technical Reports Server (NTRS)

    Sarma, G. R.; Barranger, J. P.

    1986-01-01

    The analysis of a proposed new technique for capacitance type blade tip clearance measurement is presented. The capacitance between the blade tip and a mounted capacitance electrode within a guard ring forms one of the feedback elements of a high speed operational amplifier. The differential equation governing the operational amplifier circuit is formulated and solved for two types of inputs to the amplifier - a constant voltage and a ramp. The resultant solutions shows an output that contains a term that is proportional to the derivative of the product of the input voltage and the time constant of the feedback network. The blade tip clearance capacitance is obtained by subtracting the output of a balancing reference channel followed by integration. The proposed sampled data algorithm corrects the environmental effects and varying rotor speeds on-line, making the system suitable for turbine instrumentation. System requirements, block diagrams, and typical application are included.

  4. A comprehensive method for preliminary design optimization of axial gas turbine stages

    NASA Technical Reports Server (NTRS)

    Jenkins, R. M.

    1982-01-01

    A method is presented that performs a rapid, reasonably accurate preliminary pitchline optimization of axial gas turbine annular flowpath geometry, as well as an initial estimate of blade profile shapes, given only a minimum of thermodynamic cycle requirements. No geometric parameters need be specified. The following preliminary design data are determined: (1) the optimum flowpath geometry, within mechanical stress limits; (2) initial estimates of cascade blade shapes; (3) predictions of expected turbine performance. The method uses an inverse calculation technique whereby blade profiles are generated by designing channels to yield a specified velocity distribution on the two walls. Velocity distributions are then used to calculate the cascade loss parameters. Calculated blade shapes are used primarily to determine whether the assumed velocity loadings are physically realistic. Model verification is accomplished by comparison of predicted turbine geometry and performance with four existing single stage turbines.

  5. Self-organizing feature maps for dynamic control of radio resources in CDMA microcellular networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    1998-03-01

    The application of artificial neural networks to the channel assignment problem for cellular code-division multiple access (CDMA) cellular networks has previously been investigated. CDMA takes advantage of voice activity and spatial isolation because its capacity is only interference limited, unlike time-division multiple access (TDMA) and frequency-division multiple access (FDMA) where capacities are bandwidth-limited. Any reduction in interference in CDMA translates linearly into increased capacity. To satisfy the high demands for new services and improved connectivity for mobile communications, microcellular and picocellular systems are being introduced. For these systems, there is a need to develop robust and efficient management procedures for the allocation of power and spectrum to maximize radio capacity. Topology-conserving mappings play an important role in the biological processing of sensory inputs. The same principles underlying Kohonen's self-organizing feature maps (SOFMs) are applied to the adaptive control of radio resources to minimize interference, hence, maximize capacity in direct-sequence (DS) CDMA networks. The approach based on SOFMs is applied to some published examples of both theoretical and empirical models of DS/CDMA microcellular networks in metropolitan areas. The results of the approach for these examples are informally compared to the performance of algorithms, based on Hopfield- Tank neural networks and on genetic algorithms, for the channel assignment problem.

  6. Analysis of Effectiveness of Phoenix Entry Reaction Control System

    NASA Technical Reports Server (NTRS)

    Dyakonov, Artem A.; Glass, Christopher E.; Desai, Prasun, N.; VanNorman, John W.

    2008-01-01

    Interaction between the external flowfield and the reaction control system (RCS) thruster plumes of the Phoenix capsule during entry has been investigated. The analysis covered rarefied, transitional, hypersonic and supersonic flight regimes. Performance of pitch, yaw and roll control authority channels was evaluated, with specific emphasis on the yaw channel due to its low nominal yaw control authority. Because Phoenix had already been constructed and its RCS could not be modified before flight, an assessment of RCS efficacy along the trajectory was needed to determine possible issues and to make necessary software changes. Effectiveness of the system at various regimes was evaluated using a hybrid DSMC-CFD technique, based on DSMC Analysis Code (DAC) code and General Aerodynamic Simulation Program (GASP), the LAURA (Langley Aerothermal Upwind Relaxation Algorithm) code, and the FUN3D (Fully Unstructured 3D) code. Results of the analysis at hypersonic and supersonic conditions suggest a significant aero-RCS interference which reduced the efficacy of the thrusters and could likely produce control reversal. Very little aero-RCS interference was predicted in rarefied and transitional regimes. A recommendation was made to the project to widen controller system deadbands to minimize (if not eliminate) the use of RCS thrusters through hypersonic and supersonic flight regimes, where their performance would be uncertain.

  7. 77 FR 20518 - Airworthiness Directives; Agusta S.p.A. Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-05

    ... intended to prevent loss of the blade tip weight, loss of a blade, and subsequent loss of control of the... airworthy blade. This AD is prompted by incidents where a blade tip weight separated from a blade in flight... a blade tip weight separating from a blade in flight, and the subsequent investigation showed that...

  8. Measurement and Analysis of the Noise Radiated by Low Mach Number Centrifugal Blowers.

    NASA Astrophysics Data System (ADS)

    Yeager, David Marvin

    An investigation was performed of the broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices. An interdisciplinary experimental approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Results showed that the centrifugal blower is a distributed, random noise source, unlike an axial fan which exhibited the effects of a coherent, interacting source distribution. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. Both circumferential and spanwise mean flow nonuniformities were identified along with a region of increased turbulence just downstream of the scroll cutoff. The fluid incidence angle, normally taken as an indicator of blower performance, was estimated from mean flow data as deviating considerably from an ideal impeller design. An investigation of the noise radiated from the single, isolated airfoil was performed using modern correlation and spectral analysis techniques. Radiation from the single blade in flow was characterized using newly developed expressions for the correlation area and the dipole source strength per unit area, and from the relationship between the blade surface pressure and the incident turbulent flow field. Results showed that radiation from the single blade was dominated by the effects of the incident turbulence. Normalized correlations areas of approximately 25% were measured at low frequencies. While the noise generation was more efficient at the trailing edge of the isolated blade, more noise was radiated from the region near the leading edge.

  9. Free-space optics mode-wavelength division multiplexing system using LG modes based on decision feedback equalization

    NASA Astrophysics Data System (ADS)

    Amphawan, Angela; Ghazi, Alaan; Al-dawoodi, Aras

    2017-11-01

    A free-space optics mode-wavelength division multiplexing (MWDM) system using Laguerre-Gaussian (LG) modes is designed using decision feedback equalization for controlling mode coupling and combating inter symbol interference so as to increase channel diversity. In this paper, a data rate of 24 Gbps is achieved for a FSO MWDM channel of 2.6 km in length using feedback equalization. Simulation results show significant improvement in eye diagrams and bit-error rates before and after decision feedback equalization.

  10. Achieving more efficient operation of the nozzle vane and rotor blade rows of gas turbines through using nonaxisymmetric end wall surfaces of interblade channels

    NASA Astrophysics Data System (ADS)

    Inozemtsev, A. A.; Samokhvalov, N. Yu.; Tikhonov, A. S.

    2012-09-01

    Results from a numerical study of three versions of the end-wall generatrix of the interblade channel used in the second-stage nozzle vanes of a prospective engine's turbine are presented. Recommendations for designing nonaxisymmetric end-wall surfaces are suggested based on the obtained data.

  11. 28 CFR 541.3 - Prohibited acts and available sanctions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... harm to others; or those hazardous to institutional security or personal safety; e.g., hack-saw blade... which disrupts or interferes with the security or orderly running of the institution or the Bureau of... running of the institution or the Bureau of Prisons most like another High severity prohibited act. This...

  12. 28 CFR 541.3 - Prohibited acts and available sanctions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... harm to others; or those hazardous to institutional security or personal safety; e.g., hack-saw blade... which disrupts or interferes with the security or orderly running of the institution or the Bureau of... running of the institution or the Bureau of Prisons most like another High severity prohibited act. This...

  13. 28 CFR 541.3 - Prohibited acts and available sanctions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... harm to others; or those hazardous to institutional security or personal safety; e.g., hack-saw blade... which disrupts or interferes with the security or orderly running of the institution or the Bureau of... running of the institution or the Bureau of Prisons most like another High severity prohibited act. This...

  14. 28 CFR 541.3 - Prohibited acts and available sanctions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... harm to others; or those hazardous to institutional security or personal safety; e.g., hack-saw blade... which disrupts or interferes with the security or orderly running of the institution or the Bureau of... running of the institution or the Bureau of Prisons most like another High severity prohibited act. This...

  15. A Comparative Study of Co-Channel Interference Suppression Techniques

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon; Satorius, Ed; Paparisto, Gent; Polydoros, Andreas

    1997-01-01

    We describe three methods of combatting co-channel interference (CCI): a cross-coupled phase-locked loop (CCPLL); a phase-tracking circuit (PTC), and joint Viterbi estimation based on the maximum likelihood principle. In the case of co-channel FM-modulated voice signals, the CCPLL and PTC methods typically outperform the maximum likelihood estimators when the modulation parameters are dissimilar. However, as the modulation parameters become identical, joint Viterbi estimation provides for a more robust estimate of the co-channel signals and does not suffer as much from "signal switching" which especially plagues the CCPLL approach. Good performance for the PTC requires both dissimilar modulation parameters and a priori knowledge of the co-channel signal amplitudes. The CCPLL and joint Viterbi estimators, on the other hand, incorporate accurate amplitude estimates. In addition, application of the joint Viterbi algorithm to demodulating co-channel digital (BPSK) signals in a multipath environment is also discussed. It is shown in this case that if the interference is sufficiently small, a single trellis model is most effective in demodulating the co-channel signals.

  16. Self-consistent Dark Matter simplified models with an s-channel scalar mediator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Nicole F.; Busoni, Giorgio; Sanderson, Isaac W., E-mail: n.bell@unimelb.edu.au, E-mail: giorgio.busoni@unimelb.edu.au, E-mail: isanderson@student.unimelb.edu.au

    We examine Simplified Models in which fermionic DM interacts with Standard Model (SM) fermions via the exchange of an s -channel scalar mediator. The single-mediator version of this model is not gauge invariant, and instead we must consider models with two scalar mediators which mix and interfere. The minimal gauge invariant scenario involves the mixing of a new singlet scalar with the Standard Model Higgs boson, and is tightly constrained. We construct two Higgs doublet model (2HDM) extensions of this scenario, where the singlet mixes with the 2nd Higgs doublet. Compared with the one doublet model, this provides greater freedommore » for the masses and mixing angle of the scalar mediators, and their coupling to SM fermions. We outline constraints on these models, and discuss Yukawa structures that allow enhanced couplings, yet keep potentially dangerous flavour violating processes under control. We examine the direct detection phenomenology of these models, accounting for interference of the scalar mediators, and interference of different quarks in the nucleus. Regions of parameter space consistent with direct detection measurements are determined.« less

  17. Wind Turbine Load Mitigation based on Multivariable Robust Control and Blade Root Sensors

    NASA Astrophysics Data System (ADS)

    Díaz de Corcuera, A.; Pujana-Arrese, A.; Ezquerra, J. M.; Segurola, E.; Landaluze, J.

    2014-12-01

    This paper presents two H∞ multivariable robust controllers based on blade root sensors' information for individual pitch angle control. The wind turbine of 5 MW defined in the Upwind European project is the reference non-linear model used in this research work, which has been modelled in the GH Bladed 4.0 software package. The main objective of these controllers is load mitigation in different components of wind turbines during power production in the above rated control zone. The first proposed multi-input multi-output (MIMO) individual pitch H" controller mitigates the wind effect on the tower side-to-side acceleration and reduces the asymmetrical loads which appear in the rotor due to its misalignment. The second individual pitch H" multivariable controller mitigates the loads on the three blades reducing the wind effect on the bending flapwise and edgewise momentums in the blades. The designed H" controllers have been validated in GH Bladed and an exhaustive analysis has been carried out to calculate fatigue load reduction on wind turbine components, as well as to analyze load mitigation in some extreme cases.

  18. Integrated Fiber-Optic Light Probe: Measurement of Static Deflections in Rotating Turbomachinery

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.

    1998-01-01

    At the NASA Lewis Research Center, in cooperation with Integrated Fiber Optic Systems, Inc., an integrated fiber-optic light probe system was designed, fabricated, and tested for monitoring blade tip deflections, vibrations, and to some extent, changes in the blade tip clearances of a turbomachinery fan or a compressor rotor. The system comprises a set of integrated fiber-optic light probes that are positioned to detect the passing blade tip at the leading and trailing edges. In this configuration, measurements of both nonsynchronous blade vibrations and steady-state blade deflections can be made from the timing information provided by each light probe-consisting of an integrated fiber-optic transmitting channel and numerical aperture receiving fibers, all mounted in the same cylindrical housing. With integrated fiber-optic technology, a spatial resolution of 50 mm is possible while the outer diameter is kept below 2.5 mm. To evaluate these probes, we took measurements in a single-stage compressor facility and an advanced fan rig in Lewis' 9- by 15-Foot Low-Speed Wind Tunnel.

  19. Tip Clearance Control Using Plasma Actuators

    DTIC Science & Technology

    2007-03-01

    Clearance Control Using Plasma Actuators 4 posed by Denton (1993). A number of investigators have used partial shrouds, or " winglet " designs to...main molded blade with a span of 3.42 in., a removable molded blade segment with a span of 0.1875 in., and removable blade tip winglets made of glass...segment and the main blade to vary the distance between the blade end and the front wall of the cascade section. The winglets were machined using a

  20. Gas-Dynamic Methods to Reduce Gas Flow Nonuniformity from the Annular Frames of Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Kolmakova, D.; Popov, G.

    2018-01-01

    Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and consequently to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. Based on existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.

  1. Stability Analysis of the Slowed-Rotor Compound Helicopter Configuration

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Floros, Matthew W.

    2004-01-01

    The stability and control of rotors at high advance ratio are considered. Teetering, articulated, gimbaled, and rigid hub types are considered for a compound helicopter (rotor and fixed wing). Stability predictions obtained using an analytical rigid flapping blade analysis, a rigid blade CAMRAD II model, and an elastic blade CAMRAD II model are compared. For the flapping blade analysis, the teetering rotor is the most stable, 5howing no instabilities up to an advance ratio of 3 and a Lock number of 18. With an elastic blade model, the teetering rotor is unstable at an advance ratio of 1.5. Analysis of the trim controls and blade flapping shows that for small positive collective pitch, trim can be maintained without excessive control input or flapping angles.

  2. Low pressure cooling seal system for a gas turbine engine

    DOEpatents

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  3. Metasurface-Enabled Remote Quantum Interference.

    PubMed

    Jha, Pankaj K; Ni, Xingjie; Wu, Chihhui; Wang, Yuan; Zhang, Xiang

    2015-07-10

    An anisotropic quantum vacuum (AQV) opens novel pathways for controlling light-matter interaction in quantum optics, condensed matter physics, etc. Here, we theoretically demonstrate a strong AQV over macroscopic distances enabled by a judiciously designed array of subwavelength-scale nanoantennas-a metasurface. We harness the phase-control ability and the polarization-dependent response of the metasurface to achieve strong anisotropy in the decay rate of a quantum emitter located over distances of hundreds of wavelengths. Such an AQV induces quantum interference among radiative decay channels in an atom with orthogonal transitions. Quantum vacuum engineering with metasurfaces holds promise for exploring new paradigms of long-range light-matter interaction for atom optics, solid-state quantum optics, quantum information processing, etc.

  4. A type of all-optical logic gate based on graphene surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoting; Tian, Jinping; Yang, Rongcao

    2017-11-01

    In this paper, a novel type of all-optical logic device based on graphene surface plasmon polaritons (GSP) is proposed. By utilizing linear interference between the GSP waves propagating in the different channels, this new structure can realize six different basic logic gates including OR, XOR, NOT, AND, NOR, and NAND. The state of ;ON/OFF; of each input channel can be well controlled by tuning the optical conductivity of graphene sheets, which can be further controlled by changing the external gate voltage. This type of logic gate is compact in geometrical sizes and is a potential block in the integration of nanophotonic devices.

  5. Recent Advances in Heliogyro Solar Sail Structural Dynamics, Stability, and Control Research

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Warren, Jerry E.; Horta, Lucas G.; Lyle, Karen H.; Juang, Jer-Nan; Gibbs, S. Chad; Dowell, Earl H.; Guerrant, Daniel V.; Lawrence, Dale

    2015-01-01

    Results from recent NASA sponsored research on the structural dynamics, stability, and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, and solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment. Recent results from terrestrial 1-g blade dynamics and control experiments on "rope ladder" membrane blade analogs, and small-scale in vacuo system identification experiments with hanging and spinning high-aspect ratio membranes will also be presented. A low-cost, rideshare payload heliogyro technology demonstration mission concept is used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, and is also described. Blade torsional dynamic response and control are also shown to be significantly improved through the use of edge stiffening structural features or inclusion of modest tip masses to increase centrifugal stiffening of the blade structure. An output-only system identification procedure suitable for on-orbit blade dynamics investigations is also developed and validated using ground tests of spinning sub-scale heliogyro blade models. Overall, analytical and experimental investigations to date indicate no intractable stability or control issues for the heliogyro solar sail concept.

  6. Remote-Controlled Rotorcraft Blade Vibration and Modal Analysis at Low Frequencies

    DTIC Science & Technology

    2016-02-01

    modal analysis, remote-controlled helicopter , remote-controlled rotorcraft, HUMS for rotorcraft 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...Experimental Setup 1 4. Results 4 4.1 Rotor Blade Acceleration 4 4.2 Modal Analysis: Using an Impact Hammer 7 4.3 Dynamic Response Revisited 8 5... Rotor blade response to shaker outputting 1-V sine wave at 100 Hz ....5 Fig. 6 Rotor blade response to shaker outputting 1-V sine sweep from 20- to 100

  7. Control Study for Five-axis Dynamic Spin Rig Using Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Johnson, Dexter; Provenza, Andrew; Morrison, Carlos; Montague, Gerald

    2003-01-01

    The NASA Glenn Research Center (GRC) has developed a magnetic bearing system for the Dynamic Spin Rig (DSR) with a fully suspended shaft that is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. Two heteropolar radial magnetic bearings and a thrust magnetic bearing and the associated control system were integrated into the DSR to provide magnetic excitation as well as non-contact mag- netic suspension of a 15.88 kg (35 lb) vertical rotor with blades to induce turbomachinery blade vibration. For rotor levitation, a proportional-integral-derivative (PID) controller with a special feature for multidirectional radial excitation worked well to both support and shake the shaft with blades. However, more advanced controllers were developed and successfully tested to determine the optimal controller in terms of sensor and processing noise reduction, smaller rotor orbits, more blade vibration amplitude, and energy savings for the system. The test results of a variety of controllers that were demonstrated up to 10.000 rpm are shown. Furthermore, rotor excitation operation and conceptual study of active blade vibration control are addressed.

  8. Active Vibration Reduction of Titanium Alloy Fan Blades (FAN1) Using Piezoelectric Materials

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Kauffman, Jeffrey; Duffy, Kirsten; Provenza, Andrew; Morrison, Carlos

    2010-01-01

    The NASA Glenn Research Center is developing smart adaptive structures to improve fan blade damping at resonances using piezoelectric (PE) transducers. In this paper, a digital resonant control technique emulating passive shunt circuits is used to demonstrate vibration reduction of FAN1 Ti real fan blade at the several target modes. Single-mode control and multi-mode control using one piezoelectric material are demonstrated. Also a conceptual study of how to implement this digital control system into the rotating fan blade is discussed.

  9. Modal analysis of an aircraft engine fan noise

    NASA Astrophysics Data System (ADS)

    Gorodkova, Natalia; Chursin, Valeriy; Bersenev, Yuliy; Burdakov, Ruslan; Siner, Aleksandr; Viskova, Tatiana

    2016-10-01

    The fan is one of the main noise sources of an aircraft engine. To reduce fan noise and provide liner optimization in the inlet it is necessary to research modal structure of the fan noise. The present paper contains results of acoustic tests on installation for mode generation that consists of 34-channel generator and the inlet updated for mounting of 100 microphones, the experiments were provided in new anechoic chamber of Perm National Research Polytechnic University, the engine with the same inlet was also tested in the open test bench conditions, and results of the fan noise modal structure are presented. For modal structure educting, all 100 channels were synchronously registered in a given frequency range. The measured data were analyzed with PULSE analyzer using fast Fourier transform with a frequency resolution 8..16 Hz. Single modes with numbers from 0 to 35 at frequencies 500; 630; 800; 1000; 1250; 1600 Hz and different combinations of modes at frequencies 1000, 1600, 2000, 2500 Hz were set during tests. Modes with small enough numbers are generated well on the laboratory installation, high-number modes generate additional modes caused by a complicated interference pattern of sound field in the inlet. Open test bench results showed that there are also a lot of harmonic components at frequencies lower than fan BPF. Under 0.65 of cut off there is only one distinct mode, other modes with close and less numbers appear from 0.7 of cut off and above. At power regimes 0.76 and 0.94 of cut off the highest mode also changes from positive to negative mode number area. Numbers of the highest modes change smoothly enough with the growth of power regime. At power regimes with Mach>1 (0.7 of cut off and above) on circumference of blade wheel there is a well-defined noise of shock waves at rotor frequency harmonics that appears at the range between the first rotor frequency and fan blade passing frequency (BPF). It is planned to continue researching of sound field modal structure with acoustic measurements in near and far field.

  10. Development of Static Balance Measurement and Correction Compound Platform for Single Blade of Controllable Pitch Propeller

    NASA Astrophysics Data System (ADS)

    Chao, Zhang; Shijie, Su; Yilin, Yang; Guofu, Wang; Chao, Wang

    2017-11-01

    Aiming at the static balance of the controllable pitch propeller (CPP), a high efficiency static balance method based on the double-layer structure of the measuring table and gantry robot is adopted to realize the integration of torque measurement and corrected polish for controllable pitch propeller blade. The control system was developed by Microsoft Visual Studio 2015, and a composite platform prototype was developed. Through this prototype, conduct an experiment on the complete process of torque measurement and corrected polish based on a 300kg class controllable pitch propeller blade. The results show that the composite platform can correct the static balance of blade with a correct, efficient and labor-saving operation, and can replace the traditional method on static balance of the blade.

  11. Permeability and Strength Measurements on Sintered, Porous, Hollow Turbine Blades Made by the American Electro Metal Corporation under Office of Naval Research Contract N-ONR-295 (01)

    NASA Technical Reports Server (NTRS)

    Richards, Hadley T.; Livingood, N.B.

    1954-01-01

    An experimental investigation was made to determine the permeability and strength characteristics of a number of sintered, porous, hollow turbine rotor blades and to determine the effectiveness of the blade fabrication method on permeability control. The test blades were fabricated by the American Electro Metal Corporation under a contract with the Office of Naval Research, Department of the Navy, and were submitted to the NACA for testing. Of the 22 test blades submitted, ten were sintered but not coined, five were sintered and coined, and seven were sintered and not coined but contained perforated reinforcements integral with the blade shells. Representative samples of each group of blades were tested. Large variations in permeability in both chordwise and spanwise directions were found. Local deviations as large as 155 to -85 percent from prescribed values were found in chordwise permeability. Only one blade, an uncoined one, had a chordwise permeability variations which reasonably approached that specified. Even for this blade, local deviations exceeded 10 percent. Spanwise permeability, specified to be held constant, varied as much as 50 percent from root to tip for both an uncoined and a coined blade. Previous NACA analyses have shown that in order to maintain proper control of blade wall temperatures, permeability variations must not exceed plus or minus 10 percent. Satisfactory control of permeability in either the chordwise or the spanwise direction was not achieved in the blades tested. Spin tests made at room temperature for six blades revealed the highest material rupture strength to be 8926 pounds per square inch. This value is about one third the strength required for rotor blades in present-day turbojet engines. The lowest value of blade strength was 1436 pounds per square inch.

  12. Investigation of Dynamic Aerodynamics and Control of Wind Turbine Sections Under Relevant Inflow/Blade Attitude Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naughton, Jonathan W.

    2014-08-05

    The growth of wind turbines has led to highly variable loading on the blades. Coupled with the relative reduced stiffness of longer blades, the need to control loading on the blades has become important. One method of controlling loads and maximizing energy extraction is local control of the flow on the wind turbine blades. The goal of the present work was to better understand the sources of the unsteady loading and then to control them. This is accomplished through an experimental effort to characterize the unsteadiness and the effect of a Gurney flap on the flow, as well as anmore » analytical effort to develop control approaches. It was planned to combine these two efforts to demonstrate control of a wind tunnel test model, but that final piece still remains to be accomplished.« less

  13. Stability Analysis of the Slowed-Rotor Compound Helicopter Configuration

    NASA Technical Reports Server (NTRS)

    Floros, Matthew W.; Johnson, Wayne

    2007-01-01

    The stability and control of rotors at high advance ratio are considered. Teetering, articulated, gimbaled, and rigid hub types are considered for a compound helicopter (rotor and fixed wing). Stability predictions obtained using an analytical rigid flapping blade analysis, a rigid blade CAMRAD II model, and an elastic blade CAMRAD II model are compared. For the flapping blade analysis, the teetering rotor is the most stable, showing no instabilities up to an advance ratio of 3 and a Lock number of 18. A notional elastic blade model of a teetering rotor is unstable at an advance ratio of 1.5, independent of pitch frequency. Analysis of the trim controls and blade flapping shows that for small positive collective pitch, trim can be maintained without excessive control input or flapping angles.

  14. Active Robust Control of Elastic Blade Element Containing Magnetorheological Fluid

    NASA Astrophysics Data System (ADS)

    Sivrioglu, Selim; Cakmak Bolat, Fevzi

    2018-03-01

    This research study proposes a new active control structure to suppress vibrations of a small-scale wind turbine blade filled with magnetorheological (MR) fluid and actuated by an electromagnet. The aluminum blade structure is manufactured using the airfoil with SH3055 code number which is designed for use on small wind turbines. An interaction model between MR fluid and the electromagnetic actuator is derived. A norm based multi-objective H2/H∞ controller is designed using the model of the elastic blade element. The H2/H∞ controller is experimentally realized under the impact and steady state aerodynamic load conditions. The results of experiments show that the MR fluid is effective for suppressing vibrations of the blade structure.

  15. Anisotropic piezoelectric twist actuation of helicopter rotor blades: Aeroelastic analysis and design optimization

    NASA Astrophysics Data System (ADS)

    Wilkie, William Keats

    1997-12-01

    An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain a soluti An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain amited additional piezoelectric material mass, it is shown that blade twist actuation approaches which exploit in-plane piezoelectric free-stain anisotropies are capable of producing amplitudes of oscillatory blade twisting sufficient for rotor vibration reduction applications. The second study examines the effectiveness of using embedded piezoelectric actuator laminae to alleviate vibratory loads due to retreating blade stall. A 10 to 15 percent improvement in dynamic stall limited forward flight speed, and a 5 percent improvement in stall limited rotor thrust were numerically demonstrated for the active twist rotor blade relative to a conventional blade design. The active twist blades are also demonstrated to be more susceptible than the conventional blades to dynamic stall induced vibratory loads when not operating with twist actuation. This is the result of designing the active twist blades with low torsional stiffness in order to maximize piezoelectric twist authority. Determining the optimum tradeoff between blade torsional stiffness and piezoelectric twist actuation authority is the subject of the third study. For this investigation, a linearized hovering-flight eigenvalue analysis is developed. Linear optimal control theory is then utilized to develop an optimum active twist blade design in terms of reducing structural energy and control effort cost. The forward flight vibratory loads characteristics of the torsional stiffness optimized active twist blade are then examined using the nonlinear, forward flight aeroelastic analysis. The optimized active twist rotor blade is shown to have improved passive and active vibratory loads characteristics relative to the baseline active twist blades.

  16. A comprehensive PIV measurement campaign on a fully equipped helicopter model

    NASA Astrophysics Data System (ADS)

    De Gregorio, Fabrizio; Pengel, Kurt; Kindler, Kolja

    2012-07-01

    The flow field around a helicopter is characterised by its inherent complexity including effects of fluid-structure interference, shock-boundary layer interaction, and dynamic stall. Since the advancement of computational fluid dynamics and computing capabilities has led to an increasing demand for experimental validation data, a comprehensive wind tunnel test campaign of a fully equipped and motorised generic medium transport helicopter was conducted in the framework of the GOAHEAD project. Different model configurations (with or without main/tail rotor blades) and several flight conditions were investigated. In this paper, the results of the three-component velocity field measurements around the model are surveyed. The effect of the interaction between the main rotor wake and the fuselage for cruise/tail shake flight conditions was analysed based on the flow characteristics downstream from the rotor hub and the rear fuselage hatch. The results indicated a sensible increment of the intensity of the vortex shedding from the lower part of the fuselage and a strong interaction between the blade vortex filaments and the wakes shed by the rotor hub and by the engine exhaust areas. The pitch-up phenomenon was addressed, detecting the blade tip vortices impacting on the horizontal tail plane. For high-speed forward flight, the shock wave formation on the advancing blade was detected, measuring the location on the blade chord and the intensity. Furthermore, dynamic stall on the retreating main rotor blade in high-speed forward flight was observed at r/ R = 0.5 and 0.6. The analysis of the substructures forming the dynamic stall vortex revealed an unexpected spatial concentration suggesting a rotational stabilisation of large-scale structures on the blade.

  17. Active noise control: a review of the field.

    PubMed

    Gordon, R T; Vining, W D

    1992-11-01

    Active noise control (ANC) is the application of the principle of the superposition of waves to noise attenuation problems. Much progress has been made toward applying ANC to narrow-band, low-frequency noise in confined spaces. During this same period, the application of ANC to broad-band noise or noise in three-dimensional spaces has seen little progress because of the recent quantification of serious physical limitations, most importantly, noncausality, stability, spatial mismatch, and the infinite gain controller requirement. ANC employs superposition to induce destructive interference to affect the attenuation of noise. ANC was believed to utilize the mechanism of phase cancellation to achieve the desired attenuation. However, current literature points to other mechanisms that may be operating in ANC. Categories of ANC are one-dimensional field and duct noise, enclosed spaces and interior noise, noise in three-dimensional spaces, and personal hearing protection. Development of active noise control stems from potential advantages in cost, size, and effectiveness. There are two approaches to ANC. In the first, the original sound is processed and injected back into the sound field in antiphase. The second approach is to synthesize a cancelling waveform. ANC of turbulent flow in pipes and ducts is the largest area in the field. Much work into the actual mechanism involved and the causal versus noncausal aspects of system controllers has been done. Fan and propeller noise can be divided into two categories: noise generated directly as the blade passing tones and noise generated as a result of blade tip turbulence inducing vibration in structures. Three-dimensional spaces present a noise environment where physical limitations are magnified and the infinite gain controller requirement is confronted. Personal hearing protection has been shown to be best suited to the control of periodic, low-frequency noise.

  18. Advanced turbine blade tip seal system

    NASA Technical Reports Server (NTRS)

    Zelahy, J. W.

    1981-01-01

    An advanced blade/shroud system designed to maintain close clearance between blade tips and turbine shrouds and at the same time, be resistant to environmental effects including high temperature oxidation, hot corrosion, and thermal cycling is described. Increased efficiency and increased blade life are attained by using the advanced blade tip seal system. Features of the system include improved clearance control when blade tips preferentially wear the shrouds and a superior single crystal superalloy tip. The tip design, joint location, characterization of the single crystal tip alloy, the abrasive tip treatment, and the component and engine test are among the factors addressed. Results of wear testing, quality control plans, and the total manufacturing cycle required to fully process the blades are also discussed.

  19. Load attenuating passively adaptive wind turbine blade

    DOEpatents

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-07

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  20. Load attenuating passively adaptive wind turbine blade

    DOEpatents

    Veers, Paul S.; Lobitz, Donald W.

    2003-01-01

    A method and apparatus for improving wind turbine performance by alleviating loads and controlling the rotor. The invention employs the use of a passively adaptive blade that senses the wind velocity or rotational speed, and accordingly modifies its aerodynamic configuration. The invention exploits the load mitigation prospects of a blade that twists toward feather as it bends. The invention includes passively adaptive wind turbine rotors or blades with currently preferred power control features. The apparatus is a composite fiber horizontal axis wind-turbine blade, in which a substantial majority of fibers in the blade skin are inclined at angles of between 15 and 30 degrees to the axis of the blade, to produces passive adaptive aeroelastic tailoring (bend-twist coupling) to alleviate loading without unduly jeopardizing performance.

  1. Hot-blade stripper for polyester insulation on FCC

    NASA Technical Reports Server (NTRS)

    Angele, W.; Chambers, C. M.

    1971-01-01

    Stripper incorporates a blade which is electrically heated to a controlled temperature. Heated blade softens and strips insulation from cable while paper ribbon removes insulation material and keeps blade clean for next operation.

  2. 75 FR 76263 - Inmate Discipline Program/Special Housing Units: Subpart Revision and Clarification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... security or orderly running of the institution or the Bureau of Prisons most like another prohibited act in... harm to others; or those hazardous to institutional security or personal safety; e.g., hack-saw blade... Conduct which disrupts or interferes with the security or orderly running of the institution or the Bureau...

  3. Comparison of neural network applications for channel assignment in cellular TDMA networks and dynamically sectored PCS networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    1997-04-01

    The use of artificial neural networks (NNs) to address the channel assignment problem (CAP) for cellular time-division multiple access and code-division multiple access networks has previously been investigated by this author and many others. The investigations to date have been based on a hexagonal cell structure established by omnidirectional antennas at the base stations. No account was taken of the use of spatial isolation enabled by directional antennas to reduce interference between mobiles. Any reduction in interference translates into increased capacity and consequently alters the performance of the NNs. Previous studies have sought to improve the performance of Hopfield- Tank network algorithms and self-organizing feature map algorithms applied primarily to static channel assignment (SCA) for cellular networks that handle uniformly distributed, stationary traffic in each cell for a single type of service. The resulting algorithms minimize energy functions representing interference constraint and ad hoc conditions that promote convergence to optimal solutions. While the structures of the derived neural network algorithms (NNAs) offer the potential advantages of inherent parallelism and adaptability to changing system conditions, this potential has yet to be fulfilled the CAP for emerging mobile networks. The next-generation communication infrastructures must accommodate dynamic operating conditions. Macrocell topologies are being refined to microcells and picocells that can be dynamically sectored by adaptively controlled, directional antennas and programmable transceivers. These networks must support the time-varying demands for personal communication services (PCS) that simultaneously carry voice, data and video and, thus, require new dynamic channel assignment (DCA) algorithms. This paper examines the impact of dynamic cell sectoring and geometric conditioning on NNAs developed for SCA in omnicell networks with stationary traffic to improve the metrics of convergence rate and call blocking. Genetic algorithms (GAs) are also considered in PCS networks as a means to overcome the known weakness of Hopfield NNAs in determining global minima. The resulting GAs for DCA in PCS networks are compared to improved DCA algorithms based on Hopfield NNs for stationary cellular networks. Algorithm performance is compared on the basis of rate of convergence, blocking probability, analytic complexity, and parametric sensitivity to transient traffic demands and channel interference.

  4. The use of optimization techniques to design controlled diffusion compressor blading

    NASA Technical Reports Server (NTRS)

    Sanger, N. L.

    1982-01-01

    A method for automating compressor blade design using numerical optimization, and applied to the design of a controlled diffusion stator blade row is presented. A general purpose optimization procedure is employed, based on conjugate directions for locally unconstrained problems and on feasible directions for locally constrained problems. Coupled to the optimizer is an analysis package consisting of three analysis programs which calculate blade geometry, inviscid flow, and blade surface boundary layers. The optimizing concepts and selection of design objective and constraints are described. The procedure for automating the design of a two dimensional blade section is discussed, and design results are presented.

  5. Performance Comparison of Wireless Sensor Network Standard Protocols in an Aerospace Environment: ISA100.11a and ZigBee

    NASA Technical Reports Server (NTRS)

    Wagner, Raymond S.; Barton, Richard J.

    2011-01-01

    Wireless Sensor Networks (WSNs) can provide a substantial benefit in spacecraft systems, reducing launch weight and providing unprecedented flexibility by allowing instrumentation capabilities to grow and change over time. Achieving data transport reliability on par with that of wired systems, however, can prove extremely challenging in practice. Fortunately, much progress has been made in developing standard WSN radio protocols for applications from non-critical home automation to mission-critical industrial process control. The relative performances of candidate protocols must be compared in representative aerospace environments, however, to determine their suitability for spaceflight applications. In this paper, we will present the results of a rigorous laboratory analysis of the performance of two standards-based, low power, low data rate WSN protocols: ZigBee Pro and ISA100.11a. Both are based on IEEE 802.15.4 and augment that standard's specifications to build complete, multi-hop networking stacks. ZigBee Pro targets primarily the home and office automation markets, providing an ad-hoc protocol that is computationally lightweight and easy to implement in inexpensive system-on-a-chip components. As a result of this simplicity, however, ZigBee Pro can be susceptible to radio frequency (RF) interference. ISA100.11a, on the other hand, targets the industrial process control market, providing a robust, centrally-managed protocol capable of tolerating a significant amount of RF interference. To achieve these gains, a coordinated channel hopping mechanism is employed, which entails a greater computational complexity than ZigBee and requires more sophisticated and costly hardware. To guide future aerospace deployments, we must understand how well these standards relatively perform in analog environments under expected operating conditions. Specifically, we are interested in evaluating goodput -- application level throughput -- in a representative crewed environment in the presence of varying levels of 802.11g Wi-Fi traffic. To do so, we use the NASA Johnson Space Center Wireless Habitat Testbed (WHT), a metallic, habitation-sized module designed for co-existence testing of wireless systems. In its quiescent state, the sealed WHT provides an RF-quiet environment to which we can selectively add interfering systems; it also provides a realistic level of multi-path self-interference for systems under investigation. In our test, we deploy two representative five node networks, configured in a star topology with all nodes reporting directly to a WSN gateway. Each ZigBee network WSN node is built using a Texas Instruments (TI) CC2530 system-on-a-chip radio running TI's ZigBee Pro Z-stack. Each ISA100.11a network node is built using a Nivis VersaNode 210 system-on-a-chip radio. In both cases, radios interface with TI MSP430-F5438 microcontroller implementing a common test application. Interference is provided by a D-link 802.11g Wi-Fi router transporting traffic generated using the Iperf network testing tool. For the single-channel ZigBee network, effects of both direct and indirect Wi-Fi interference are evaluated. For the channel-hopping ISA100.11a network, effects of interference from multiple Wi-Fi routers configured in non-overlapping 802.11g channels are evaluated. Our results show that, in general, the more lightweight ZigBee network performs well at low interference levels, but performance degrades as interference increases. Conversely, the more complex and costly ISA100.11a network continues to perform well as Wi-Fi interference levels increase.

  6. Impulsive interference in communication channels and its mitigation by SPART and other nonlinear filters

    NASA Astrophysics Data System (ADS)

    Nikitin, Alexei V.; Epard, Marc; Lancaster, John B.; Lutes, Robert L.; Shumaker, Eric A.

    2012-12-01

    A strong digital communication transmitter in close physical proximity to a receiver of a weak signal can noticeably interfere with the latter even when the respective channels are tens or hundreds of megahertz apart. When time domain observations are made in the signal chain of the receiver between the first mixer and the baseband, this interference is likely to appear impulsive. The impulsive nature of this interference provides an opportunity to reduce its power by nonlinear filtering, improving the quality of the receiver channel. This article describes the mitigation, by a particular nonlinear filter, of the impulsive out-of-band (OOB) interference induced in High Speed Downlink Packet Access (HSDPA) by WiFi transmissions, protocols which coexist in many 3G smartphones and mobile hotspots. Our measurements show a decrease in the maximum error-free bit rate of a 1.95 GHz HSDPA receiver caused by the impulsive interference from an OOB 2.4 GHz WiFi transmission, sometimes down to a small fraction of the rate observed in the absence of the interference. We apply a nonlinear SPART filter to recover a noticeable portion of the lost rate and maintain an error-free connection under much higher levels of the WiFi interference than a receiver that does not contain such a filter. These measurements support our wider investigation of OOB interference resulting from digital modulation, which appears impulsive in a receiver, and its mitigation by nonlinear filters.

  7. Global Sliding Mode Control for the Bank-to-Turn of Hypersonic Glide Vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Yu, Y. F.; Yan, P. P.; Fan, Y. H.; Guo, X. W.

    2017-03-01

    The technology of Bank-to-Turn has been recognized as an attractive direction due to their significance for the control of hypersonic glide vehicle. Strong coupling existing among pitch, yaw and roll channel was a great challenge for banking to turn, and thus a novel global sliding mode controller was designed for hypersonic glider in this paper. Considering the coupling among channels as interference, we can use invariance principle of sliding mode motion to realize the decoupling control. The global sliding mode control system could eliminate the stage of reaching, which can lead to the realization of whole systematic process decoupling control. When the global sliding mode factor was designed, a minimum norm pole assignment method of the sliding mode matrix was introduced to improve the robustness of the system. The method of continuity of symbolic function was adopted to overcome the chatter, which furtherly modify the transient performance of the system. The simulation results show that this method has good performance of three channel decoupling control and guidance command tracking. And it can meet the requirements of the dynamic performance of the system.

  8. Development of a fiber optic compressor blade sensor

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans Singh

    1995-01-01

    A complete working prototype of the fiber optic blade tip sensor was first tested in the laboratory, followed by a thorough evaluation at NASA W8 Single Compressor Stage Facility in Lewis Research Center. Subsequently, a complete system with three parallel channels was fabricated and delivered to Dr. Kurkov. The final system was tested in the Subsonic Wind Tunnel Facility, in parallel with The General Electric Company's light probe system. The results at all operating speeds were comparable. This report provides a brief description of the system and presents a summary of the experimental results.

  9. FORTRAN program for calculating velocities and streamlines on the hub-shroud mid-channel flow surface of an axial- or mixed-flow turbomachine. 1: User's manual

    NASA Technical Reports Server (NTRS)

    Katsanis, T.

    1973-01-01

    A FORTRAN 4 computer program has been developed that obtains a subsonic or shock-free transonic flow solution on the hub-shroud mid-channel flow surface of a turbomachine. The blade row may be fixed or rotating, and may be twisted and leaned. Flow may be axial or mixed, up to 45 deg from axial. Upstream and downstream flow variables may vary from hub to shroud, and provision is made to correct for loss of stagnation pressure. The results include velocities, streamlines, and flow angles on the flow surface; and approximate blade surface velocities. Subsonic solutions are obtained by a finite-difference stream-function solution. Transonic solutions are obtained by a velocity-gradient method, using information from a finite-difference stream-function solution at a reduced mass flow.

  10. FORTRAN program for calculating velocities and streamlines on the hub-shroud mid-channel flow surface of an axial-or mixed-flow turbomachine. 2: Programmer's manual

    NASA Technical Reports Server (NTRS)

    Katsanis, T.; Mcnally, W. D.

    1974-01-01

    A FORTRAN-IV computer program, MERIDL, has been developed that obtains a subsonic or shock-free transonic flow solution on the hub-shroud mid-channel flow surface of a turbomachine. The blade row may be fixed or rotating and may be twisted and leaned. Flow may be axial or mixed, up to 45 deg from axial. Upstream and downstream flow variables can vary from hub to shroud, and provision is made to correct for loss of stagnation pressure. The results include velocities, streamlines, and flow angles on the flow surface and approximate blade surface velocities. Subsonic solutions are obtained by a finite-difference stream-function solution. Transonic solutions are obtained by a velocity-gradient method, using information from a finite-difference stream-function solution at a reduced mass flow.

  11. Vibration reduction in helicopter rotors using an actively controlled partial span trailing edge flap located on the blade

    NASA Technical Reports Server (NTRS)

    Millott, T. A.; Friedmann, P. P.

    1994-01-01

    This report describes an analytical study of vibration reduction in a four-bladed helicopter rotor using an actively controlled, partial span, trailing edge flap located on the blade. The vibration reduction produced by the actively controlled flap (ACF) is compared with that obtained using individual blade control (IBC), in which the entire blade is oscillated in pitch. For both cases a deterministic feedback controller is implemented to reduce the 4/rev hub loads. For all cases considered, the ACF produced vibration reduction comparable with that obtained using IBC, but consumed only 10-30% of the power required to implement IBC. A careful parametric study is conducted to determine the influence of blade torsional stiffness, spanwise location of the control flap, and hinge moment correction on the vibration reduction characteristics of the ACF. The results clearly demonstrate the feasibility of this new approach to vibration reduction. It should be emphasized than the ACF, used together with a conventional swashplate, is completely decoupled from the primary flight control system and thus it has no influence on the airworthiness of the helicopter. This attribute is potentially a significant advantage when compared to IBC.

  12. Hover Testing of the NASA/Army/MIT Active Twist Rotor Prototype Blade

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Wilkie, W. Keats; Cesnik, Carlos E. S.; Shin, Sangloon

    2000-01-01

    Helicopter rotor individual blade control promises to provide a mechanism for increased rotor performance and reduced rotorcraft vibrations and noise. Active material methods, such as piezoelectrically actuated trailing-edge flaps and strain-induced rotor blade twisting, provide a means of accomplishing individual blade control without the need for hydraulic power in the rotating system. Recent studies have indicated that controlled strain induced blade twisting can be attained using piezoelectric active fiber composite technology. In order to validate these findings experimentally, a cooperative effort between NASA Langley Research Center, the Army Research Laboratory, and the MIT Active Materials and Structures Laboratory has been developed. As a result of this collaboration an aeroelastically-scaled active-twist model rotor blade has been designed and fabricated for testing in the heavy gas environment of the Langley Transonic Dynamics Tunnel (TDT). The results of hover tests of the active-twist prototype blade are presented in this paper. Comparisons with applicable analytical predictions of active-twist frequency response in hovering flight are also presented.

  13. Computational investigation of flow control by means of tubercles on Darrieus wind turbine blades

    NASA Astrophysics Data System (ADS)

    Sevinç, K.; Özdamar, G.; Şentürk, U.; Özdamar, A.

    2015-09-01

    This work presents the current status of the computational study of the boundary layer control of a vertical axis wind turbine blade by modifying the blade geometry for use in wind energy conversion. The control method is a passive method which comprises the implementation of the tubercle geometry of a humpback whale flipper onto the leading edge of the blades. The baseline design is an H-type, three-bladed Darrieus turbine with a NACA 0015 cross-section. Finite-volume based software ANSYS Fluent was used in the simulations. Using the optimum control parameters for a NACA 634-021 profile given by Johari et al. (2006), turbine blades were modified. Three dimensional, unsteady, turbulent simulations for the blade were conducted to look for a possible improvement on the performance. The flow structure on the blades was investigated and flow phenomena such as separation and stall were examined to understand their impact on the overall performance. For a tip speed ratio of 2.12, good agreement was obtained in the validation of the baseline model with a relative error in time- averaged power coefficient of 1.05%. Modified turbine simulations with a less expensive but less accurate turbulence model yielded a decrease in power coefficient. Results are shown comparatively.

  14. Interference Canceller Based on Cycle-and-Add Property for Single User Detection in DS-CDMA

    NASA Astrophysics Data System (ADS)

    Hettiarachchi, Ranga; Yokoyama, Mitsuo; Uehara, Hideyuki; Ohira, Takashi

    In this paper, performance of a novel interference cancellation technique for the single user detection in a direct-sequence code-division multiple access (DS-CDMA) system has been investigated. This new algorithm is based on the Cycle-and-Add property of PN (Pseudorandom Noise) sequences and can be applied for both synchronous and asynchronous systems. The proposed strategy provides a simple method that can delete interference signals one by one in spite of the power levels of interferences. Therefore, it is possible to overcome the near-far problem (NFP) in a successive manner without using transmit power control (TPC) techniques. The validity of the proposed procedure is corroborated by computer simulations in additive white Gaussian noise (AWGN) and frequency-nonselective fading channels. Performance results indicate that the proposed receiver outperforms the conventional receiver and, in many cases, it does so with a considerable gain.

  15. Coded DS-CDMA Systems with Iterative Channel Estimation and no Pilot Symbols

    DTIC Science & Technology

    2010-08-01

    ar X iv :1 00 8. 31 96 v1 [ cs .I T ] 1 9 A ug 2 01 0 1 Coded DS - CDMA Systems with Iterative Channel Estimation and no Pilot Symbols Don...sequence code-division multiple-access ( DS - CDMA ) systems with quadriphase-shift keying in which channel estimation, coherent demodulation, and decoding...amplitude, phase, and the interference power spectral density (PSD) due to the combined interference and thermal noise is proposed for DS - CDMA systems

  16. Effect of Free Stream Turbulence on the Performance of a Marine Hydrokinetic Turbine

    NASA Astrophysics Data System (ADS)

    Vinod, Ashwin; Banerjee, Arindam

    2015-11-01

    The effects of controlled and elevated levels of free stream turbulence on the performance characteristics of a three bladed, constant chord, untwisted marine hydrokinetic turbine is tested experimentally. Controlled homogeneous free stream turbulence levels ranging from 3% to ~20% are achieved by employing an active grid turbulence generator that is placed at the entrance of the water channel test section and is equipped with motor controlled winglet shafts. In addition to free stream turbulence, various (turbine) operating conditions such as the free stream velocity and rotational speed are varied. A comparison of performance characteristics that includes the mean and standard deviations of the power coefficient (CP) , and thrust coefficient (CT) will be presented and compared to the case of a laminar free stream with FST levels <1%.

  17. Channel simulation to facilitate mobile-satellite communications research

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz

    1987-01-01

    The mobile-satellite-service channel simulator, which is a facility for an end-to-end hardware simulation of mobile satellite communications links is discussed. Propagation effects, Doppler, interference, band limiting, satellite nonlinearity, and thermal noise have been incorporated into the simulator. The propagation environment in which the simulator needs to operate and the architecture of the simulator are described. The simulator is composed of: a mobile/fixed transmitter, interference transmitters, a propagation path simulator, a spacecraft, and a fixed/mobile receiver. Data from application experiments conducted with the channel simulator are presented; the noise converison technique to evaluate interference effects, the error floor phenomenon of digital multipath fading links, and the fade margin associated with a noncoherent receiver are examined. Diagrams of the simulator are provided.

  18. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 1: Engineering studies

    NASA Technical Reports Server (NTRS)

    Alexander, H. R.; Smith, K. E.; Mcveigh, M. A.; Dixon, P. G.; Mcmanus, B. L.

    1979-01-01

    Composite structures technology is applied in a preliminary design study of advanced technology blades and hubs for the XV-15 tilt rotor research demonstrator aircraft. Significant improvements in XV-15 hover and cruise performance are available using blades designed for compatibility with the existing aircraft, i.e., blade installation would not require modification of the airframe, hub or upper controls. Provision of a low risk nonmechanical control system was also studied, and a development specification is given.

  19. Design and performance of controlled-diffusion stator compared with original double-circular-arc stator

    NASA Technical Reports Server (NTRS)

    Gelder, Thomas F.; Schmidt, James F.; Suder, Kenneth L.; Hathaway, Michael D.

    1987-01-01

    The capabilities of two stators, one with controlled-diffusion (CD) blade sections and one with double-circular-arc (DCA) blade sections, were compared. A CD stator was designed and tested that had the same chord length but half the blades of the DCA stator. The same fan rotor (tip speed, 429 m/sec; pressure ratio, 1.65) was used with each stator row. The design and analysis system is briefly described. The overall stage and rotor performances with each stator are compared, as are selected blade element data. The minimum overall efficiency decrement across the stator was approximately 1 percentage point greater with the CD blade sections than with the DCA blade sections.

  20. Ionotropic glutamate receptor (iGluR)-like channels mediate MAMP-induced calcium influx in Arabidopsis thaliana.

    PubMed

    Kwaaitaal, Mark; Huisman, Rik; Maintz, Jens; Reinstädler, Anja; Panstruga, Ralph

    2011-12-15

    Binding of specific microbial epitopes [MAMPs (microbe-associated molecular patterns)] to PRRs (pattern recognition receptors) and subsequent receptor kinase activation are key steps in plant innate immunity. One of the earliest detectable events after MAMP perception is a rapid and transient rise in cytosolic Ca2+ levels. In plants, knowledge about the signalling events leading to Ca2+ influx and on the molecular identity of the channels involved is scarce. We used a transgenic Arabidopsis thaliana line stably expressing the luminescent aequorin Ca2+ biosensor to monitor pharmacological interference with Ca2+ signatures following treatment with the bacterial peptide MAMPs flg22 and elf18, and the fungal carbohydrate MAMP chitin. Using a comprehensive set of compounds known to impede Ca2+-transport processes in plants and animals we found strong evidence for a prominent role of amino acid-controlled Ca2+ fluxes, probably through iGluR (ionotropic glutamate receptor)-like channels. Interference with amino acid-mediated Ca2+ fluxes modulates MAMP-triggered MAPK (mitogen-activated protein kinase) activity and affects MAMP-induced accumulation of defence gene transcripts. We conclude that the initiation of innate immune responses upon flg22, elf18 and chitin recognition involves apoplastic Ca2+ influx via iGluR-like channels.

  1. Effect of external turbulence on the efficiency of film cooling with coolant injection into a transverse trench

    NASA Astrophysics Data System (ADS)

    Khalatov, A. A.; Panchenko, N. A.; Severin, S. D.

    2017-09-01

    Film cooling is among the basic methods used for thermal protection of blades in modern high-temperature gas turbines. Results of computer simulation of film cooling with coolant injection via a row of conventional inclined holes or a row of holes in a trench are presented in this paper. The ANSYS CFX 14 commercial software package was used for CFD-modeling. The effect is studied of the mainstream turbulence on the film cooling efficiency for the blowing ratio range between 0.6 and 2.3 and three different turbulence intensities of 1, 5, and 10%. The mainstream velocity was 150 and 400 m/s, while the temperatures of the mainstream and the injected coolant were 1100 and 500°C, respectively. It is demonstrated that, for the coolant injection via one row of trenched holes, an increase in the mainstream turbulence intensity reduces the film cooling efficiency in the entire investigated range of blowing ratios. It was revealed that freestream turbulence had varied effects on the film cooling efficiency depending on the blowing ratio and mainstream velocity in a blade channel. Thus, an increase in the mainstream turbulence intensity from 1 to 10% decreases the surface-averaged film cooling efficiency by 3-10% at a high mainstream velocity (400 m/s) in the blade channel and by 12-23% at a moderate velocity (of 150 m/s). Here, lower film cooling efficiencies correspond to higher blowing ratios. The effect of mainstream turbulence intensity on the film cooling efficiency decreases with increasing the mainstream velocity in the modeled channel for both investigated configurations.

  2. Testing and Performance Analysis of the Multichannel Error Correction Code Decoder

    NASA Technical Reports Server (NTRS)

    Soni, Nitin J.

    1996-01-01

    This report provides the test results and performance analysis of the multichannel error correction code decoder (MED) system for a regenerative satellite with asynchronous, frequency-division multiple access (FDMA) uplink channels. It discusses the system performance relative to various critical parameters: the coding length, data pattern, unique word value, unique word threshold, and adjacent-channel interference. Testing was performed under laboratory conditions and used a computer control interface with specifically developed control software to vary these parameters. Needed technologies - the high-speed Bose Chaudhuri-Hocquenghem (BCH) codec from Harris Corporation and the TRW multichannel demultiplexer/demodulator (MCDD) - were fully integrated into the mesh very small aperture terminal (VSAT) onboard processing architecture and were demonstrated.

  3. The mechanosensory calcium-selective ion channel: key component of a plasmalemmal control centre?

    NASA Technical Reports Server (NTRS)

    Pickard, B. G.; Ding, J. P.

    1993-01-01

    Mechanosensory calcium-selective ion channels probably serve to detect not only mechanical stress but also electrical, thermal, and diverse chemical stimuli. Because all stimuli result in a common output, most notably a shift in second messenger calcium concentration, the channels are presumed to serve as signal integrators. Further, insofar as second messenger calcium in turn gives rise to mechanical, electrical, and diverse chemical changes, the channels are postulated to initiate regulatory feedbacks. It is proposed that the channels and the feedback loops play a wide range of roles in regulating normal plant function, as well as in mediating disturbance of normal function by environmental stressors and various pathogens. In developing evidence for the physiological performance of the channel, a model for a cluster of regulatory plasmalemmal proteins and cytoskeletal elements grouped around a set of wall-to-membrane and transmembrane linkers has proved useful. An illustration of how the model might operate is presented. It is founded on the demonstration that several xenobiotics interfere both with normal channel behaviour and with gravitropic reception. Accordingly, the first part of the illustration deals with how the channels and the control system within which they putatively operate might initiate gravitropism. Assuming that gravitropism is an asymmetric expression of growth, the activities of the channels and the plasmalemmal control system are extrapolated to account for regulation of both rate and allometry of cell expansion. Finally, it is discussed how light, hormones, redox agents and herbicides could in principle affect growth via the putative plasmalemmal control cluster or centre.

  4. Coherent molecular transistor: control through variation of the gate wave function.

    PubMed

    Ernzerhof, Matthias

    2014-03-21

    In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.

  5. Extracellular Calcium Has Multiple Targets to Control Cell Proliferation.

    PubMed

    Capiod, Thierry

    2016-01-01

    Calcium channels and the two G-protein coupled receptors sensing extracellular calcium, calcium-sensing receptor (CaSR) and GPRC6a, are the two main means by which extracellular calcium can signal to cells and regulate many cellular processes including cell proliferation, migration and invasion of tumoral cells. Many intracellular signaling pathways are sensitive to cytosolic calcium rises and conversely intracellular signaling pathways can modulate calcium channel expression and activity. Calcium channels are undoubtedly involved in the former while the CaSR and GPRC6a are most likely to interfere with the latter. As for neurotransmitters, calcium ions use plasma membrane channels and GPCR to trigger cytosolic free calcium concentration rises and intracellular signaling and regulatory pathways activation. Calcium sensing GPCR, CaSR and GPRC6a, allow a supplemental degree of control and as for metabotropic receptors, they not only modulate calcium channel expression but they may also control calcium-dependent K+ channels. The multiplicity of intracellular signaling pathways involved, their sensitivity to local and global intracellular calcium increase and to CaSR and GPRC6a stimulation, the presence of membrane signalplex, all this confers the cells the plasticity they need to convert the effects of extracellular calcium into complex physiological responses and therefore determine their fate.

  6. Development of flow separation control system to reduce the vibration of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Young; Kim, Ho-Hyun; Han, Jong-Seob; Han, Jae-Hung

    2017-04-01

    The size of wind turbine blade has been continuously increased. Large-scale wind turbine blades induce loud noise, vibration; and maintenance difficulty is also increased. It causes the eventual increases of the cost of energy. The vibration of wind turbine blade is caused by several reasons such as a blade rotation, tower shadow, wind shear, and flow separation of a wind turbine blade. This wind speed variation changes in local angle of attack of the blades and create the vibration. The variation of local angle of attack influences the lift coefficient and causes the large change of the lift. In this study, we focus on the lift coefficient control using a flow control device to reduce the vibration. DU35-A15 airfoil was employed as baseline model. A plasma actuator was installed to generate the upwind jet in order to control the lift coefficient. Wind tunnel experiment was performed to demonstrate of the performance of the plasma actuator. The results show the plasma actuator can induce the flow separation compared with the baseline model. In addition, the actuator can delay the flow separation depending on the input AC frequency with the same actuator configuration.

  7. Relevance of aerodynamic modelling for load reduction control strategies of two-bladed wind turbines

    NASA Astrophysics Data System (ADS)

    Luhmann, B.; Cheng, P. W.

    2014-06-01

    A new load reduction concept is being developed for the two-bladed prototype of the Skywind 3.5MW wind turbine. Due to transport and installation advantages both offshore and in complex terrain two-bladed turbine designs are potentially more cost-effective than comparable three-bladed configurations. A disadvantage of two-bladed wind turbines is the increased fatigue loading, which is a result of asymmetrically distributed rotor forces. The innovative load reduction concept of the Skywind prototype consists of a combination of cyclic pitch control and tumbling rotor kinematics to mitigate periodic structural loading. Aerodynamic design tools must be able to model correctly the advanced dynamics of the rotor. In this paper the impact of the aerodynamic modelling approach is investigated for critical operational modes of a two-bladed wind turbine. Using a lifting line free wake vortex code (FVM) the physical limitations of the classical blade element momentum theory (BEM) can be evaluated. During regular operation vertical shear and yawed inflow are the main contributors to periodic blade load asymmetry. It is shown that the near wake interaction of the blades under such conditions is not fully captured by the correction models of BEM approach. The differing prediction of local induction causes a high fatigue load uncertainty especially for two-bladed turbines. The implementation of both cyclic pitch control and a tumbling rotor can mitigate the fatigue loading by increasing the aerodynamic and structural damping. The influence of the time and space variant vorticity distribution in the near wake is evaluated in detail for different cyclic pitch control functions and tumble dynamics respectively. It is demonstrated that dynamic inflow as well as wake blade interaction have a significant impact on the calculated blade forces and need to be accounted for by the aerodynamic modelling approach. Aeroelastic simulations are carried out using the high fidelity multi body simulation software SIMPACK. The aerodynamic loads are calculated using ECN's AeroModule and NREL's BEM code Aerodynl3.

  8. Decoupling control of vehicle chassis system based on neural network inverse system

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Zhao, Wanzhong; Luan, Zhongkai; Gao, Qi; Deng, Ke

    2018-06-01

    Steering and suspension are two important subsystems affecting the handling stability and riding comfort of the chassis system. In order to avoid the interference and coupling of the control channels between active front steering (AFS) and active suspension subsystems (ASS), this paper presents a composite decoupling control method, which consists of a neural network inverse system and a robust controller. The neural network inverse system is composed of a static neural network with several integrators and state feedback of the original chassis system to approach the inverse system of the nonlinear systems. The existence of the inverse system for the chassis system is proved by the reversibility derivation of Interactor algorithm. The robust controller is based on the internal model control (IMC), which is designed to improve the robustness and anti-interference of the decoupled system by adding a pre-compensation controller to the pseudo linear system. The results of the simulation and vehicle test show that the proposed decoupling controller has excellent decoupling performance, which can transform the multivariable system into a number of single input and single output systems, and eliminate the mutual influence and interference. Furthermore, it has satisfactory tracking capability and robust performance, which can improve the comprehensive performance of the chassis system.

  9. Numerical Modeling of Hydrokinetic Turbines and their Environmental Effects

    NASA Astrophysics Data System (ADS)

    Javaherchi, T.; Seydel, J.; Aliseda, A.

    2010-12-01

    The search for predictable renewable energy has led research into marine hydrokinetic energy. Electricity can be generated from tidally-induced currents through turbines located in regions of high current speed and relatively low secondary flow intensity. Although significant technological challenges exist, the main obstacle in the development and commercial deployment of marine hydrokinetic (MHK) turbines is the uncertainty in the environmental effect of devices. The velocity deficit in the turbulent wake of the turbine might enhance the sedimentation process of suspended particles in the water column and lead to deposition into artificial patterns that alter the benthic ecosystem. Pressure fluctuations across turbine blades and in blade tip vortices can damage internal organs of marine species as they swim through the device. These are just a few examples of the important potential environmental effects of MHK turbines that need to be addressed and investigated a priori before pilot and large scale deployment. We have developed a hierarchy of numerical models to simulate the turbulent wake behind a well characterized two bladed turbine. The results from these models (Sliding Mesh, Rotating Reference Frame, Virtual Blade Model and Actuator Disk Model) have been validated and are been used to investigate the efficiency and physical changes introduced in the environment by single or multiple MHK turbines. We will present results from sedimenting particles and model juvenile fish, with relative densities of 1.2 and 0.95, respectively. The settling velocity and terminal location on the bottom of the tidal channel is computed and compared to the simulated flow in a channel without turbines. We have observed an enhanced sedimentation, and we will quantify the degree of enhancement and the parameter range within which it is significant. For the slightly buoyant particles representing fish, the pressure history is studied statistically with particular attention to the high magnitudes of pressure fluctuation occurring over short periods of time. These high impulse conditions are correlated with damage thresholds obtained from laboratory experiments in the literature. *Supported by DOE through the National Northwest Marine Renewable Energy Center Top view of the channel with turbine hub located at (0,0). Particle sedimentation is enhanced closer to the turbine location and effect of hub can be seen at the end of the channel.

  10. Broadband Noise Reduction of a Low-Speed Fan Noise Using Trailing Edge Blowing

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2005-01-01

    An experimental proof-of-concept test was conducted to demonstrate reduction of rotor-stator interaction noise through the use of rotor-trailing edge blowing. The velocity deficit from the viscous wake of the rotor blades was reduced by injecting air into the wake from a continuous trailing edge slot. Hollow blades with interior guide vanes create flow channels through which externally supplied air flows from the blade root to the trailing edge. A previous paper documented the substantial tonal reductions of this Trailing Edge Rotor Blowing (TERB) fan. This report documents the broadband characteristics of TERB. The Active Noise Control Fan (ANCF), located at the NASA Glenn Research Center, was used as the proof-of-concept test bed. Two-component hotwire data behind the rotor, unsteady surface pressures on the stator vane, and farfield directivity acoustic data were acquired at blowing rates of 1.1, 1.5, and 1.8 percent of the total fan mass flow. The results indicate a substantial reduction in the rotor wake turbulent velocity and in the stator vane unsteady surface pressures. Based on the physics of the noise generation, these indirect measurements indicate the prospect of broadband noise reduction. However, since the broadband noise generated by the ANCF is rotor-dominated, any change in the rotor-stator interaction broadband noise levels is barely distinguishable in the farfield measurements.

  11. Multicyclic control for helicopters - Research in progress at Ames Research Center

    NASA Technical Reports Server (NTRS)

    Mccloud, J. L., III

    1980-01-01

    The term multicyclic control describes a blade pitch control technique used by helicopter designers to alleviate vibration in rotorcraft. Because rotor-induced vibrations are periodic, a multicyclic system, synchronized to the main rotor's azimuth position, is suitable. Many types of rotors - ranging from the jet-flap and circulation-control rotors to the conventional full-blade feathering rotors - have utilized multicyclic control. Multicyclic control systems may be designed to reduce blade-bending stresses, to reduce rotor-induced vibration, and to improve rotor performance. Rotor types are reviewed, primarily to highlight their differences. The increased use of composites in blade construction is seen to indicate that vibration alleviation will be the prime focus of multicyclic control. Adaptive feedback control systems, which also incorporate gust alleviation, are considered to be the ultimate application of multicyclic control.

  12. The investigation of a variable camber blade lift control for helicopter rotor systems

    NASA Technical Reports Server (NTRS)

    Awani, A. O.

    1982-01-01

    A new rotor configuration called the variable camber rotor was investigated numerically for its potential to reduce helicopter control loads and improve hover performance. This rotor differs from a conventional rotor in that it incorporates a deflectable 50% chord trailing edge flap to control rotor lift, and a non-feathering (fixed) forward portion. Lift control is achieved by linking the blade flap to a conventional swashplate mechanism; therefore, it is pilot action to the flap deflection that controls rotor lift and tip path plane tilt. This report presents the aerodynamic characteristics of the flapped and unflapped airfoils, evaluations of aerodynamics techniques to minimize flap hinge moment, comparative hover rotor performance and the physical concepts of the blade motion and rotor control. All the results presented herein are based on numerical analyses. The assessment of payoff for the total configuration in comparison with a conventional blade, having the same physical characteristics as an H-34 helicopter rotor blade was examined for hover only.

  13. Cooperative Interference Alignment for the Multiple Access Channel

    DTIC Science & Technology

    2015-11-01

    Communications. I. INTRODUCTION Conventional wireless networks were previously thought to be interference-limited, where interference is mainly caused by...interference-free capacity for any number of users K at high SNR. This fundamental result showed that wireless networks are not interference-limited as...decoding of the K users’ messages. This is applicable in uplink transmissions in cellular communications, where mobiles transmit independent messages

  14. Vibration Reduction of Helicopter Blade Using Variable Dampers: A Feasibility Study

    NASA Technical Reports Server (NTRS)

    Lee, George C.; Liang, Zach; Gan, Quan; Niu, Tiecheng

    2002-01-01

    In the report, the investigation of controlling helicopter-blade lead-lag vibration is described. Current practice of adding passive damping may be improved to handle large dynamic range of the blade with several peaks of vibration resonance. To minimize extra-large damping forces that may damage the control system of blade, passive dampers should have relatively small damping coefficients, which in turn limit the effectiveness. By providing variable damping, a much larger damping coefficient to suppress the vibration can be realized. If the damping force reaches the maximum allowed threshold, the damper will be automatically switched into the mode with smaller damping coefficient to maintain near-constant damping force. Furthermore, the proposed control system will also have a fail-safe feature to guarantee the basic performation of a typical passive damper. The proposed control strategy to avoid resonant regions in the frequency domain is to generate variable damping force in combination with the supporting stiffness to manipulate the restoring force and conservative energy of the controlled blade system. Two control algorithms are developed and verified by a prototype variable damper, a digital controller and corresponding algorithms. Primary experiments show good potentials for the proposed variable damper: about 66% and 82% reductions in displacement at 1/3 length and the root of the blade respectively.

  15. Active Control of Blade Tonals in Underwater Vehicles

    DTIC Science & Technology

    2006-12-01

    Because the stator is a streamlined shape the wake deficit responsible for blade tonal noise is due mainly to surface drag, which can be thought of as a... wake deficit , the vortex rollup at this stage is not very repeatable. Therefore, this type of wake may not be the best suited for controlling blade ...sinusoidal and non-sinusoidal move profiles. This model was also able to capture the baseline wake deficit measured. 2-dimensional blade interaction was

  16. Application of Out-of-Plane Warping to Control Rotor Blade Twist

    NASA Technical Reports Server (NTRS)

    VanWeddingen, Yannick; Bauchau, Olivier; Kottapalli, Sesi; Ozbay, Serkan; Mehrotra, Yogesh

    2012-01-01

    The goal of this ongoing study is to develop and demonstrate the feasibility of a blade actuation system to dynamically change the twist, and/or the camber, of an airfoil section and, consequently, alter the in-flight aerodynamic loading on the blade for efficient flight control. The required analytical and finite element tools are under development to enable an accurate and comprehensive aeroelastic assessment of the current Full-Blade Warping and 3D Warping Actuated Trailing Edge Flap concepts. The feasibility of the current concepts for swashplateless rotors and higher harmonic blade control is also being investigated. In particular, the aim is to complete the following objectives, some of which have been completed (as noted below) and others that are currently ongoing: i) Develop a Vlasov finite element model and validate against the ABAQUS shell models (completed). ii) Implement the 3D warping actuation concept within the comprehensive analysis code DYMORE. iii) Perform preliminary aeroelastic simulations of blades using DYMORE with 3D warping actuation: a) Investigate the blade behavior under 1 per/rev actuation. Determine whether sufficient twist can be generated and sustained to achieve primary blade control. b) Investigate the behavior of a trailing edge flap configuration under higher harmonic excitations. Determine how much twist can be obtained at the harmonics 2-5 per/rev. iv) Determine actuator specifications such as the power required, load and displacements, and identify the stress and strain distributions in the actuated blades. In general, the completion of Item ii) above will give an additional research capability in rotorcraft dynamics analyses, i.e., the capability to calculate the rotor blade twist due to warping, something that is not currently available in any of the existing comprehensive rotorcraft analyses.

  17. Outage Probability of MRC for κ-μ Shadowed Fading Channels under Co-Channel Interference.

    PubMed

    Chen, Changfang; Shu, Minglei; Wang, Yinglong; Yang, Ming; Zhang, Chongqing

    2016-01-01

    In this paper, exact closed-form expressions are derived for the outage probability (OP) of the maximal ratio combining (MRC) scheme in the κ-μ shadowed fading channels, in which both the independent and correlated shadowing components are considered. The scenario assumes the received desired signals are corrupted by the independent Rayleigh-faded co-channel interference (CCI) and background white Gaussian noise. To this end, first, the probability density function (PDF) of the κ-μ shadowed fading distribution is obtained in the form of a power series. Then the incomplete generalized moment-generating function (IG-MGF) of the received signal-to-interference-plus-noise ratio (SINR) is derived in the closed form. By using the IG-MGF results, closed-form expressions for the OP of MRC scheme are obtained over the κ-μ shadowed fading channels. Simulation results are included to validate the correctness of the analytical derivations. These new statistical results can be applied to the modeling and analysis of several wireless communication systems, such as body centric communications.

  18. Outage Probability of MRC for κ-μ Shadowed Fading Channels under Co-Channel Interference

    PubMed Central

    Chen, Changfang; Shu, Minglei; Wang, Yinglong; Yang, Ming; Zhang, Chongqing

    2016-01-01

    In this paper, exact closed-form expressions are derived for the outage probability (OP) of the maximal ratio combining (MRC) scheme in the κ-μ shadowed fading channels, in which both the independent and correlated shadowing components are considered. The scenario assumes the received desired signals are corrupted by the independent Rayleigh-faded co-channel interference (CCI) and background white Gaussian noise. To this end, first, the probability density function (PDF) of the κ-μ shadowed fading distribution is obtained in the form of a power series. Then the incomplete generalized moment-generating function (IG-MGF) of the received signal-to-interference-plus-noise ratio (SINR) is derived in the closed form. By using the IG-MGF results, closed-form expressions for the OP of MRC scheme are obtained over the κ-μ shadowed fading channels. Simulation results are included to validate the correctness of the analytical derivations. These new statistical results can be applied to the modeling and analysis of several wireless communication systems, such as body centric communications. PMID:27851817

  19. Adaptive detection of noise signal according to Neumann-Pearson criterion

    NASA Astrophysics Data System (ADS)

    Padiryakov, Y. A.

    1985-03-01

    Optimum detection according to the Neumann-Pearson criterion is considered in the case of a random Gaussian noise signal, stationary during measurement, and a stationary random Gaussian background interference. Detection is based on two samples, their statistics characterized by estimates of their spectral densities, it being a priori known that sample A from the signal channel is either the sum of signal and interference or interference alone and sample B from the reference interference channel is an interference with the same spectral density as that of the interference in sample A for both hypotheses. The probability of correct detection is maximized on the average, first in the 2N-dimensional space of signal spectral density and interference spectral density readings, by fixing the probability of false alarm at each point so as to stabilize it at a constant level against variation of the interference spectral density. Deterministic decision rules are established. The algorithm is then reduced to equivalent detection in the N-dimensional space of the ratio of sample A readings to sample B readings.

  20. Out-of-hospital tracheal intubation with single-use versus reusable metal laryngoscope blades: a multicenter randomized controlled trial.

    PubMed

    Jabre, Patricia; Galinski, Michel; Ricard-Hibon, Agnes; Devaud, Marie Laure; Ruscev, Mirko; Kulstad, Erik; Vicaut, Eric; Adnet, Fréderic; Margenet, Alain; Marty, Jean; Combes, Xavier

    2011-03-01

    Emergency tracheal intubation is reported to be more difficult with single-use plastic than with reusable metal laryngoscope blades in both inhospital and out-of-hospital settings. Single-use metal blades have been developed but have not been compared with conventional metal blades. This controlled trial compares the efficacy and safety of single-use metal blades with reusable metal blades in out-of-hospital emergency tracheal intubation. This randomized controlled trial was carried out in France with out-of-hospital emergency medical units (Services de Médecine d'Urgence et de Réanimation). This was a multicenter prospective noninferiority randomized controlled trial in adult out-of-hospital patients requiring emergency tracheal intubation. Patients were randomly assigned to either single-use or reusable metal laryngoscope blades and intubated by a senior physician or a nurse anesthetist. The primary outcome was first-pass intubation success. Secondary outcomes were incidence of difficult intubation, need for alternate airway devices, and early intubation-related complications (esophageal intubation, mainstem intubation, vomiting, pulmonary aspiration, dental trauma, bronchospasm or laryngospasm, ventricular tachycardia, arterial desaturation, hypotension, or cardiac arrest). The study included 817 patients, including 409 intubated with single-use blades and 408 with a reusable blade. First-pass intubation success was similar in both groups: 292 (71.4%) for single-use blades, 290 (71.1%) for reusable blades. The 95% confidence interval (CI) for the difference in treatments (0.3%; 95% CI -5.9% to 6.5%) did not include the prespecified inferiority margin of -7%. There was no difference in rate of difficult intubation (difference 3%; 95% CI -7% to 2%), need for alternate airway (difference 4%; 95% CI -8% to 1%), or early complication rate (difference 3%; 95% CI -3% to 8%). First-pass out-of-hospital tracheal intubation success with single-use metal laryngoscopy blades was noninferior to first-pass success with reusable metal laryngoscope blades. Copyright © 2010 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  1. TDM/FM/FDMA - A modulation technique for multiple-beam satellites which precludes cochannel interference and allows non-uniform geographic distribution of user channels

    NASA Technical Reports Server (NTRS)

    Springett, J. C.

    1982-01-01

    The technique outlined in this paper is intended to eliminate the problems of cochannel interference and uniform geographic distribution of user channels which arise in conventional designs for a multiple spot beam communication satellite to serve mobile telephony users across the CONUS. By time multiplexing FM/FDMA signal ensembles so that only those beams operating on distinct frequency subbands are allowed to transmit concurrently, cochannel interference arising from simultaneous frequency subband reuse is precluded. Thus, time disjoint frequency reuse is accomplished over a repetitive sequence of fixed time slots. By assigning different size subbands to each time slot, a market of nonuniform users can be accommodated. The technique results in a greatly simplified antenna feed system design for the satellite, at a cost of imposing the need for time slot synchronization on the mobile FM receivers whose ability for rejecting adjacent channel interference is somewhat diminished.

  2. TDM/FM/FDMA - A modulation technique for multiple-beam satellites which precludes cochannel interference and allows non-uniform geographic distribution of user channels

    NASA Astrophysics Data System (ADS)

    Springett, J. C.

    The technique outlined in this paper is intended to eliminate the problems of cochannel interference and uniform geographic distribution of user channels which arise in conventional designs for a multiple spot beam communication satellite to serve mobile telephony users across the CONUS. By time multiplexing FM/FDMA signal ensembles so that only those beams operating on distinct frequency subbands are allowed to transmit concurrently, cochannel interference arising from simultaneous frequency subband reuse is precluded. Thus, time disjoint frequency reuse is accomplished over a repetitive sequence of fixed time slots. By assigning different size subbands to each time slot, a market of nonuniform users can be accommodated. The technique results in a greatly simplified antenna feed system design for the satellite, at a cost of imposing the need for time slot synchronization on the mobile FM receivers whose ability for rejecting adjacent channel interference is somewhat diminished.

  3. A calculation procedure for viscous flow in turbomachines, volume 3. [computer programs

    NASA Technical Reports Server (NTRS)

    Khalil, I.; Sheoran, Y.; Tabakoff, W.

    1980-01-01

    A method for analyzing the nonadiabatic viscous flow through turbomachine blade passages was developed. The field analysis is based upon the numerical integration of the full incompressible Navier-Stokes equations, together with the energy equation on the blade-to-blade surface. A FORTRAN IV computer program was written based on this method. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system. The flow may be axial, radial or mixed and there may be a change in stream channel thickness in the through-flow direction. The inputs required for two FORTRAN IV programs are presented. The first program considers laminar flows and the second can handle turbulent flows. Numerical examples are included to illustrate the use of the program, and to show the results that are obtained.

  4. NONLINEAR AND FIBER OPTICS: Analysis of the mode noise in interference fiber channels used for the distribution of microwave signals

    NASA Astrophysics Data System (ADS)

    Bratchikov, A. N.; Glukhov, I. P.

    1991-03-01

    The results are given of a statistical theory of the speckle generalized to interference channels used for the distribution of microwave signals using multimode fiber waveguides with step and graded refractive-index profiles. A method is described for estimating the mode noise level in the open and closed regimes with one longitudinal speckle. The influence of the degree of mode filtering, losses at microbends, and spectral properties of a laser source on the statistical properties and the mode noise level is demonstrated. Numerical estimates are obtained of the ratio of the powers of the signal and mode noise for interference channels with typical parameters of fiber waveguides and a qualitative description is given of the effect of the mode noise.

  5. Achievable degrees of freedom of MIMO two-way relay interference channel with delayed CSIT

    NASA Astrophysics Data System (ADS)

    Li, Qingyun; Wu, Gang; Li, Shaoqian

    2016-10-01

    In this paper, assuming each node has delayed channel state information at the transmitter (CSIT), we investigate the achievable degrees of freedom (DOF) of MIMO two-way relay interference channel in frequency division duplex (FDD) systems, where there are K user pairs (i.e., 2K users) and each user in a user pair exchanges messages with the other user in the same user pair simultaneously via an intermediate relay. We propose a two-stage transmission scheme and derive the closed-form expressions for its achievable DOF.

  6. AeroMACS Interference Simulations for Global Airports

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Apaza, Rafael D.

    2012-01-01

    Ran 18 scenarios with Visualyse Professional interference software (presented 2 most realistic scenarios). Scenario A: 85 large airports can transmit 1650 mW on each of 11 channels. 173 medium airports can transmit 825 mW on each of 6 channels. 5951 small airports can transmit 275 mW on one channel. Reducing power allowed for small airports in Scenario B increases allowable power for large and medium airports, but should not be necessary as Scenario A levels are more than adequate. These power limitations are conservative because we are assuming worst case with 100% duty.

  7. Analysis and control on changeable wheel tool system of hybrid grinding and polishing machine tool for blade finishing

    NASA Astrophysics Data System (ADS)

    He, Qiuwei; Lv, Xingming; Wang, Xin; Qu, Xingtian; Zhao, Ji

    2017-01-01

    Blade is the key component in the energy power equipment of turbine, aircraft engines and so on. Researches on the process and equipment for blade finishing become one of important and difficult point. To control precisely tool system of developed hybrid grinding and polishing machine tool for blade finishing, the tool system with changeable wheel for belt polishing is analyzed in this paper. Firstly, the belt length and wrap angle of each wheel in different position of tension wheel swing angle in the process of changing wheel is analyzed. The reasonable belt length is calculated by using MATLAB, and relationships between wrap angle of each wheel and cylinder expansion amount of contact wheel are obtained. Then, the control system for changeable wheel tool structure is developed. Lastly, the surface roughness of blade finishing is verified by experiments. Theoretical analysis and experimental results show that reasonable belt length and wheel wrap angle can be obtained by proposed analysis method, the changeable wheel tool system can be controlled precisely, and the surface roughness of blade after grinding meets the design requirements.

  8. Multicyclic Controllable Twist Rotor Data Analysis

    NASA Technical Reports Server (NTRS)

    Wei, F. S.; Weisbrich, A. L.

    1979-01-01

    Rsults provide functional relationship between rotor performance, blade vibratory loads and dual control settings and indicate that multicyclic control produced significant reductions in blade flatwise bending moments and blade root actuator control loads. Higher harmonic terms of servo flap deflection were found to be most pronounced in flatwise bending moment, transmission vertical vibration and pitch link vibratory load equations. The existing test hardware represents a satisfactory configuration for demonstrating MCTR technology and defining a data base for additional wind tunnel testing.

  9. Use of Blade Lean in Turbomachinery Redesign

    NASA Technical Reports Server (NTRS)

    Moore, John; Moore, Joan G.; Lupi, Alex

    1993-01-01

    Blade lean is used to improve the uniformity of exit flow distributions from turbomachinery blading. In turbines, it has been used to control secondary flows by tailoring blade turning to reduce flow overturning and underturning and to create more uniform loss distributions from hub to shroud. In the present study, the Pump Consortium centrifugal impeller has been redesigned using blade lean. The flow at the exit of the baseline impeller had large blade-to-blade variations, creating a highly unsteady flow for the downstream diffuser. Blade lean is used to redesign the flow to move the high loss fluid from the suction side to the hub, significantly reducing blade-toblade variations at the exit.

  10. Channel Measurements for Automatic Vehicle Monitoring Systems

    DOT National Transportation Integrated Search

    1974-03-01

    Co-channel and adjacent channel electromagnetic interference measurements were conducted on the Sierra Research Corp. and the Chicago Transit Authority automatic vehicle monitoring systems. These measurements were made to determine if the automatic v...

  11. Reconfigurable high-speed optical fibre networks: Optical wavelength conversion and switching using VCSELs to eliminate channel collisions

    NASA Astrophysics Data System (ADS)

    Boiyo, Duncan Kiboi; Chabata, T. V.; Kipnoo, E. K. Rotich; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.

    2017-01-01

    We experimentally provide an alternative solution to channel collisions through up-wavelength conversion and switching by using vertical cavity surface-emitting lasers (VCSELs). This has been achieved by utilizing purely optical wavelength conversion on VCSELs at the low attenuation, 1550 nm transmission window. The corresponding transmission and bit error-rate (BER) performance evaluation is also presented. In this paper, two 1550 nm VCSELs with 50-150 GHz channel spacing are modulated with a 10 Gb/s NRZ PRBS 27-1 data and their interferences investigated. A channel interference penalty range of 0.15-1.63 dB is incurred for 150-50 GHz channel spacing without transmission. To avoid channel collisions and to minimize high interference penalties, the transmitting VCSEL with data is injected into the side-mode of a slave VCSEL to obtain a new up converted wavelength. A 16 dB extinction ratio of the incoming wavelength is achieved when a 15 dBm transmitting beam is injected into the side-mode of a -4.5 dBm slave VCSEL. At 8.5 Gb/s, a 1.1 dB conversion and a 0.5 dB transmission penalties are realized when the converted wavelength is transmitted over a 24.7 km G.655 fibre. This work offers a low-cost, effective wavelength conversion and channel switching to reduce channel collision probability by reconfiguring channels at the node of networks.

  12. High-fidelity Modeling of Local Effects of Damage for Derated Offshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    Richards, Phillip W.; Griffith, D. Todd; Hodges, Dewey H.

    2014-06-01

    Offshore wind power production is an attractive clean energy option, but the difficulty of access can lead to expensive and rare opportunities for maintenance. As part of the Structural Health and Prognostics Management (SHPM) project at Sandia National Laboratories, smart loads management (controls) are investigated for their potential to increase the fatigue life of offshore wind turbine rotor blades. Derating refers to altering the rotor angular speed and blade pitch to limit power production and loads on the rotor blades. High- fidelity analysis techniques like 3D finite element modeling (FEM) should be used alongside beam models of wind turbine blades to characterize these control strategies in terms of their effect to mitigate fatigue damage and extend life of turbine blades. This study will consider a commonly encountered damage type for wind turbine blades, the trailing edge disbond, and show how FEM can be used to quantify the effect of operations and control strategies designed to extend the fatigue life of damaged blades. The Virtual Crack Closure Technique (VCCT) will be used to post-process the displacement and stress results to provide estimates of damage severity/criticality and provide a means to estimate the fatigue life under a given operations and control strategy.

  13. Active twist control methodology for vibration reduction of a helicopter with dissimilar rotor system

    NASA Astrophysics Data System (ADS)

    Pawar, Prashant M.; Jung, Sung Nam

    2009-03-01

    In this work, an active vibration reduction of hingeless composite rotor blades with dissimilarity is investigated using the active twist concept and the optimal control theory. The induced shear strain on the actuation mechanism by the piezoelectric constant d15 from the PZN-8% PT-based single-crystal material is used to achieve more active twisting to suppress the extra vibrations. The optimal control algorithm is based on the minimization of an objective function comprised of quadratic functions of vibratory hub loads and voltage control harmonics. The blade-to-blade dissimilarity is modeled using the stiffness degradation of composite blades. The optimal controller is applied to various possible dissimilarities arising from different damage patterns of composite blades. The governing equations of motion are derived using Hamilton's principle. The effects of composite materials and smart actuators are incorporated into the comprehensive aeroelastic analysis system. Numerical results showing the impact of addressing the blade dissimilarities on hub vibrations and voltage inputs required to suppress the vibrations are demonstrated. It is observed that all vibratory shear forces are reduced considerably and the major harmonics of moments are reduced significantly. However, the controller needs further improvement to suppress 1/rev moment loads. A mechanism to achieve vibration reduction for the dissimilar rotor system has also been identified.

  14. Frequency Hopping, Multiple Frequency-Shift Keying, Coding, and Optimal Partial-Band Jamming.

    DTIC Science & Technology

    1982-08-01

    receivers appropriate for these two strategies. Each receiver is noncoherent (a coherent receiver is generally impractical) and implements hard...Advances in Coding and Modulation for Noncoherent Channels Affected by Fading, Partial Band, and Multiple- . Access Interference, in A. J. Viterbi...Modulation for Noncoherent Channels Affected by Fading, Partial Band, and Multiple-Access interference, in A. J. Viterbi, ed., Advances in Coumunication

  15. Controlled laboratory testing of arthroscopic shaver systems: do blades, contact pressure, and speed influence their performance?

    PubMed

    Wieser, Karl; Erschbamer, Matthias; Neuhofer, Stefan; Ek, Eugene T; Gerber, Christian; Meyer, Dominik C

    2012-10-01

    The purposes of this study were (1) to establish a reproducible, standardized testing protocol to evaluate the performance of different shaver systems and blades in a controlled, laboratory setting, and (2) to determine the optimal use of different blades with respect to the influence of contact pressure and speed of blade rotation. A holding device was developed for reproducible testing of soft-tissue (tendon and meniscal) resection performance in a submerged environment, after loading of the shaver with interchangeable weights. The Karl Storz Powershaver S2 (Karl Storz, Tuttlingen, Germany), the Stryker Power Shaver System (Stryker, Kalamazoo, MI), and the Dyonics Power Shaver System (Smith & Nephew, Andover, MA) were tested, with different 5.5-mm shaver blades and varied contact pressure and rotation speed. For quality testing, serrated shaver blades were evaluated at 40× image magnification. Overall, more than 150 test cycles were performed. No significant differences could be detected between comparable blade types from different manufacturers. Shavers with a serrated inner blade and smooth outer blade performed significantly better than the standard smooth resectors (P < .001). Teeth on the outer layer of the blade did not lead to any further improvement of resection (P = .482). Optimal contact pressure ranged between 6 and 8 N, and optimal speed was found to be 2,000 to 2,500 rpm. Minimal blunting of the shaver blades occurred after soft-tissue resection; however, with bone resection, progressive blunting of the shaver blades was observed. Arthroscopic shavers can be tested in a controlled setting. The performance of the tested shaver types appears to be fairly independent of the manufacturer. For tendon resection, a smooth outer blade and serrated inner blade were optimal. This is one of the first established independent and quantitative assessments of arthroscopic shaver systems and blades. We believe that this study will assist the surgeon in choosing the optimal tool for the desired effect. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  16. Sequential ranging integration times in the presence of CW interference in the ranging channel

    NASA Technical Reports Server (NTRS)

    Mathur, Ashok; Nguyen, Tien

    1986-01-01

    The Deep Space Network (DSN), managed by the Jet Propulsion Laboratory for NASA, is used primarily for communication with interplanetary spacecraft. The high sensitivity required to achieve planetary communications makes the DSN very susceptible to radio-frequency interference (RFI). In this paper, an analytical model is presented of the performance degradation of the DSN sequential ranging subsystem in the presence of downlink CW interference in the ranging channel. A trade-off between the ranging component integration times and the ranging signal-to-noise ratio to achieve a desired level of range measurement accuracy and the probability of error in the code components is also presented. Numerical results presented illustrate the required trade-offs under various interference conditions.

  17. Optimization-based channel constrained data aggregation routing algorithms in multi-radio wireless sensor networks.

    PubMed

    Yen, Hong-Hsu

    2009-01-01

    In wireless sensor networks, data aggregation routing could reduce the number of data transmissions so as to achieve energy efficient transmission. However, data aggregation introduces data retransmission that is caused by co-channel interference from neighboring sensor nodes. This kind of co-channel interference could result in extra energy consumption and significant latency from retransmission. This will jeopardize the benefits of data aggregation. One possible solution to circumvent data retransmission caused by co-channel interference is to assign different channels to every sensor node that is within each other's interference range on the data aggregation tree. By associating each radio with a different channel, a sensor node could receive data from all the children nodes on the data aggregation tree simultaneously. This could reduce the latency from the data source nodes back to the sink so as to meet the user's delay QoS. Since the number of radios on each sensor node and the number of non-overlapping channels are all limited resources in wireless sensor networks, a challenging question here is to minimize the total transmission cost under limited number of non-overlapping channels in multi-radio wireless sensor networks. This channel constrained data aggregation routing problem in multi-radio wireless sensor networks is an NP-hard problem. I first model this problem as a mixed integer and linear programming problem where the objective is to minimize the total transmission subject to the data aggregation routing, channel and radio resources constraints. The solution approach is based on the Lagrangean relaxation technique to relax some constraints into the objective function and then to derive a set of independent subproblems. By optimally solving these subproblems, it can not only calculate the lower bound of the original primal problem but also provide useful information to get the primal feasible solutions. By incorporating these Lagrangean multipliers as the link arc weight, the optimization-based heuristics are proposed to get energy-efficient data aggregation tree with better resource (channel and radio) utilization. From the computational experiments, the proposed optimization-based approach is superior to existing heuristics under all tested cases.

  18. Weak Defect Identification for Centrifugal Compressor Blade Crack Based on Pressure Sensors and Genetic Algorithm.

    PubMed

    Li, Hongkun; He, Changbo; Malekian, Reza; Li, Zhixiong

    2018-04-19

    The Centrifugal compressor is a piece of key equipment for petrochemical factories. As the core component of a compressor, the blades suffer periodic vibration and flow induced excitation mechanism, which will lead to the occurrence of crack defect. Moreover, the induced blade defect usually has a serious impact on the normal operation of compressors and the safety of operators. Therefore, an effective blade crack identification method is particularly important for the reliable operation of compressors. Conventional non-destructive testing and evaluation (NDT&E) methods can detect the blade defect effectively, however, the compressors should shut down during the testing process which is time-consuming and costly. In addition, it can be known these methods are not suitable for the long-term on-line condition monitoring and cannot identify the blade defect in time. Therefore, the effective on-line condition monitoring and weak defect identification method should be further studied and proposed. Considering the blade vibration information is difficult to measure directly, pressure sensors mounted on the casing are used to sample airflow pressure pulsation signal on-line near the rotating impeller for the purpose of monitoring the blade condition indirectly in this paper. A big problem is that the blade abnormal vibration amplitude induced by the crack is always small and this feature information will be much weaker in the pressure signal. Therefore, it is usually difficult to identify blade defect characteristic frequency embedded in pressure pulsation signal by general signal processing methods due to the weakness of the feature information and the interference of strong noise. In this paper, continuous wavelet transform (CWT) is used to pre-process the sampled signal first. Then, the method of bistable stochastic resonance (SR) based on Woods-Saxon and Gaussian (WSG) potential is applied to enhance the weak characteristic frequency contained in the pressure pulsation signal. Genetic algorithm (GA) is used to obtain optimal parameters for this SR system to improve its feature enhancement performance. The analysis result of experimental signal shows the validity of the proposed method for the enhancement and identification of weak defect characteristic. In the end, strain test is carried out to further verify the accuracy and reliability of the analysis result obtained by pressure pulsation signal.

  19. Weak Defect Identification for Centrifugal Compressor Blade Crack Based on Pressure Sensors and Genetic Algorithm

    PubMed Central

    Li, Hongkun; He, Changbo

    2018-01-01

    The Centrifugal compressor is a piece of key equipment for petrochemical factories. As the core component of a compressor, the blades suffer periodic vibration and flow induced excitation mechanism, which will lead to the occurrence of crack defect. Moreover, the induced blade defect usually has a serious impact on the normal operation of compressors and the safety of operators. Therefore, an effective blade crack identification method is particularly important for the reliable operation of compressors. Conventional non-destructive testing and evaluation (NDT&E) methods can detect the blade defect effectively, however, the compressors should shut down during the testing process which is time-consuming and costly. In addition, it can be known these methods are not suitable for the long-term on-line condition monitoring and cannot identify the blade defect in time. Therefore, the effective on-line condition monitoring and weak defect identification method should be further studied and proposed. Considering the blade vibration information is difficult to measure directly, pressure sensors mounted on the casing are used to sample airflow pressure pulsation signal on-line near the rotating impeller for the purpose of monitoring the blade condition indirectly in this paper. A big problem is that the blade abnormal vibration amplitude induced by the crack is always small and this feature information will be much weaker in the pressure signal. Therefore, it is usually difficult to identify blade defect characteristic frequency embedded in pressure pulsation signal by general signal processing methods due to the weakness of the feature information and the interference of strong noise. In this paper, continuous wavelet transform (CWT) is used to pre-process the sampled signal first. Then, the method of bistable stochastic resonance (SR) based on Woods-Saxon and Gaussian (WSG) potential is applied to enhance the weak characteristic frequency contained in the pressure pulsation signal. Genetic algorithm (GA) is used to obtain optimal parameters for this SR system to improve its feature enhancement performance. The analysis result of experimental signal shows the validity of the proposed method for the enhancement and identification of weak defect characteristic. In the end, strain test is carried out to further verify the accuracy and reliability of the analysis result obtained by pressure pulsation signal. PMID:29671821

  20. Photonic-based liquid level transmitter using Mach-Zehnder interferometer for industrial application

    NASA Astrophysics Data System (ADS)

    Singh, Yadvendra; Raghuwanshi, Sanjeev K.; Kumar, Manish

    2018-02-01

    In the present scenario the process control industries mainly uses 1-5 Volt or 4-20 mA protocol for transmitting the measured signal to remote location operators. These types of protocol prone to interference and limited data transfer rate. To overcome these types of limitation we proposed photonic based transmitter for liquid level measurement which will enhance data transfer rate and interference reduction to eliminate noise signal in the channel during transmission to make transmission more reliable, accurate and consistent in performance. The required mathematical derivation and the principle of operation of the transmitter are shown in the paper.

  1. New technology in turbine aerodynamics

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    A cursory review is presented of some of the recent work that has been done in turbine aerodynamic research at NASA-Lewis Research Center. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. An extensive bibliography is included. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Turbines currently being investigated make use of advanced blading concepts designed to maintain high efficiency under conditions of high aerodynamic loading. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flow fields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  2. Field testing of linear individual pitch control on the two-bladed controls advanced research turbine

    DOE PAGES

    van Solingen, Edwin; Fleming, Paul A.; Scholbrock, Andrew; ...

    2015-04-17

    This paper presents the results of field tests using linear individual pitch control (LIPC) on the two-bladed Controls Advanced Research Turbine 2 (CART2) at the National Renewable Energy Laboratory (NREL). LIPC has recently been introduced as an alternative to the conventional individual pitch control (IPC) strategy for two-bladed wind turbines. The main advantage of LIPC over conventional IPC is that it requires, at most, only two feedback loops to potentially reduce the periodic blade loads. In previous work, LIPC was designed to implement blade pitch angles at a fixed frequency (e.g., the once-per-revolution (1P) frequency), which made it only applicablemore » in above-rated wind turbine operating conditions. In this study, LIPC is extended to below-rated operating conditions by gain scheduling the controller on the rotor speed. With this extension, LIPC and conventional IPC are successfully applied to the NREL CART2 wind turbine. Lastly, the field-test results obtained during the measurement campaign indicate that LIPC significantly reduces the wind turbine loads for both below-rated and above-rated operation.« less

  3. Interference Analysis for Highly Directional 60 GHz Mesh Networks: The Case for Rethinking Medium Access Control

    DTIC Science & Technology

    2010-11-24

    Helmken, “Performance analysis of coherent DS - CDMA systems in a Nakagami fading channel with arbitrary parameters,” Vehicular Technology, IEEE...Transactions on, vol. 46, no. 2, pp. 289–297, may 1997. [26] M. Sunay and P. McLane, “Calculating error probabilities for DS - CDMA systems: when not to use

  4. Space-Time Joint Interference Cancellation Using Fuzzy-Inference-Based Adaptive Filtering Techniques in Frequency-Selective Multipath Channels

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Chang; Lin, Hsuan-Yu; Chen, Yu-Fan; Wen, Jyh-Horng

    2006-12-01

    An adaptive minimum mean-square error (MMSE) array receiver based on the fuzzy-logic recursive least-squares (RLS) algorithm is developed for asynchronous DS-CDMA interference suppression in the presence of frequency-selective multipath fading. This receiver employs a fuzzy-logic control mechanism to perform the nonlinear mapping of the squared error and squared error variation, denoted by ([InlineEquation not available: see fulltext.],[InlineEquation not available: see fulltext.]), into a forgetting factor[InlineEquation not available: see fulltext.]. For the real-time applicability, a computationally efficient version of the proposed receiver is derived based on the least-mean-square (LMS) algorithm using the fuzzy-inference-controlled step-size[InlineEquation not available: see fulltext.]. This receiver is capable of providing both fast convergence/tracking capability as well as small steady-state misadjustment as compared with conventional LMS- and RLS-based MMSE DS-CDMA receivers. Simulations show that the fuzzy-logic LMS and RLS algorithms outperform, respectively, other variable step-size LMS (VSS-LMS) and variable forgetting factor RLS (VFF-RLS) algorithms at least 3 dB and 1.5 dB in bit-error-rate (BER) for multipath fading channels.

  5. Integrated-Optic Wavelength Multiplexer In Glass Fabricated By A Charge Controlled Ion Exchange

    NASA Astrophysics Data System (ADS)

    Klein, R.; Jestel, D.; Lilienhof, H. J.; Rottman, F.; Voges, E.

    1989-02-01

    Integrated-optic wavelength division multiplexing (WDM) is commonly used in communication systems. These WDM-devices are also well suited to build up optical fiber networks for both intensity and interferometric sensor types. The operation principle of our wavelength division multiplexing devise is based on the wavelength dependent two-mode interference in a two-moded waveguide, which is coupled adiabatically to the single-mode input and output strip waveguides. The single-mode input and output waveguides are connected via two Y-branches ( "'kJ- 1° branching angle ) with a two-moded intersection region. The ratio of the light powers in the single-mode output waveguides depends on wavelength . The two-mode interference within the two-moded center waveguide leads to an almost wavelength periodic transmission caracteristic . Dual-channel multiplexers/demultiplexers were fabricated by a charge controlled field assisted pottasium exchange in B-270 glass (Desag). The devices have a typical channel separation of 30 - 40 nm and a far-end crosstalk attenuation of better than 16 dB. The operation wavelength regions of the fabricated devices are 0.6 - 0.8 µm and 1.3 - 1.6 µm, respectively.

  6. Fiber-optic laser Doppler turbine tip clearance probe

    NASA Astrophysics Data System (ADS)

    Büttner, Lars; Pfister, Thorsten; Czarske, Jürgen

    2006-05-01

    A laser Doppler based method for in situ single blade tip clearance measurements of turbomachines with high precision is presented for what we believe is the first time. The sensor is based on two superposed fanlike interference fringe systems generated by two laser wavelengths from a fiber-coupled, passive, and therefore compact measurement head employing diffractive optics. Tip clearance measurements at a transonic centrifugal compressor performed during operation at 50,000 rpm (833 Hz, 586 m/s tip speed) are reported. At these speeds the measured uncertainty of the tip position was less than 20 μm, a factor of 2 more accurate than that of capacitive probes. The sensor offers great potential for in situ and online high-precision tip clearance measurements of metallic and nonmetallic turbine blades.

  7. Rotorcraft application of advanced computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Stanaway, Sharon

    1991-01-01

    The objective was to develop the capability to compute the unsteady viscous flow around rotor-body combinations. In the interest of tractability, the problem was divided into subprograms for: (1) computing the flow around a rotor blade in isolation; (2) computing the flow around a fuselage in isolation, and (3) integrating the pieces. Considerable progress has already been made by others toward computing the rotor in isolation (Srinivasen) and this work focused on the remaining tasks. These tasks required formulating a multi-block strategy for combining rotating blades and nonrotating components (i.e., a fuselage). Then an appropriate configuration was chosen for which suitable rotor body interference test data exists. Next, surface and volume grids were generated and state-of-the-art CFD codes were modified and applied to the problem.

  8. Fiber-optic laser Doppler turbine tip clearance probe.

    PubMed

    Büttner, Lars; Pfister, Thorsten; Czarske, Jürgen

    2006-05-01

    A laser Doppler based method for in situ single blade tip clearance measurements of turbomachines with high precision is presented for what we believe is the first time. The sensor is based on two superposed fanlike interference fringe systems generated by two laser wavelengths from a fiber-coupled, passive, and therefore compact measurement head employing diffractive optics. Tip clearance measurements at a transonic centrifugal compressor performed during operation at 50,000 rpm (833 Hz, 586 m/s tip speed) are reported. At these speeds the measured uncertainty of the tip position was less than 20 microm, a factor of 2 more accurate than that of capacitive probes. The sensor offers great potential for in situ and online high-precision tip clearance measurements of metallic and nonmetallic turbine blades.

  9. Interference-Robust Transmission in Wireless Sensor Networks

    PubMed Central

    Han, Jin-Seok; Lee, Yong-Hwan

    2016-01-01

    Low-power wireless sensor networks (WSNs) operating in unlicensed spectrum bands may seriously suffer from interference from other coexisting radio systems, such as IEEE 802.11 wireless local area networks. In this paper, we consider the improvement of the transmission performance of low-power WSNs by adjusting the transmission rate and the payload size in response to the change of co-channel interference. We estimate the probability of transmission failure and the data throughput and then determine the payload size to maximize the throughput performance. We investigate that the transmission time maximizing the normalized throughput is not much affected by the transmission rate, but rather by the interference condition. We adjust the transmission rate and the transmission time in response to the change of the channel and interference condition, respectively. Finally, we verify the performance of the proposed scheme by computer simulation. The simulation results show that the proposed scheme significantly improves data throughput compared with conventional schemes while preserving energy efficiency even in the presence of interference. PMID:27854249

  10. Interference-Robust Transmission in Wireless Sensor Networks.

    PubMed

    Han, Jin-Seok; Lee, Yong-Hwan

    2016-11-14

    Low-power wireless sensor networks (WSNs) operating in unlicensed spectrum bands may seriously suffer from interference from other coexisting radio systems, such as IEEE 802.11 wireless local area networks. In this paper, we consider the improvement of the transmission performance of low-power WSNs by adjusting the transmission rate and the payload size in response to the change of co-channel interference. We estimate the probability of transmission failure and the data throughput and then determine the payload size to maximize the throughput performance. We investigate that the transmission time maximizing the normalized throughput is not much affected by the transmission rate, but rather by the interference condition. We adjust the transmission rate and the transmission time in response to the change of the channel and interference condition, respectively. Finally, we verify the performance of the proposed scheme by computer simulation. The simulation results show that the proposed scheme significantly improves data throughput compared with conventional schemes while preserving energy efficiency even in the presence of interference.

  11. Wind blade spar cap and method of making

    DOEpatents

    Mohamed, Mansour H [Raleigh, NC

    2008-05-27

    A wind blade spar cap for strengthening a wind blade including an integral, unitary three-dimensional woven material having a first end and a second end, corresponding to a root end of the blade and a tip end of the blade, wherein the material tapers in width from the first to the second end while maintaining a constant thickness and decreasing weight therebetween, the cap being capable of being affixed to the blade for providing increased strength with controlled variation in weight from the root end to the tip end based upon the tapered width of the material thereof. The present inventions also include the method of making the wind blade spar cap and a wind blade including the wind blade spar cap.

  12. A Reliable Data Transmission Model for IEEE 802.15.4e Enabled Wireless Sensor Network under WiFi Interference.

    PubMed

    Sahoo, Prasan Kumar; Pattanaik, Sudhir Ranjan; Wu, Shih-Lin

    2017-06-07

    The IEEE 802.15.4e standard proposes Medium Access Control (MAC) to support collision-free wireless channel access mechanisms for industrial, commercial and healthcare applications. However, unnecessary wastage of energy and bandwidth consumption occur due to inefficient backoff management and collisions. In this paper, a new channel access mechanism is designed for the buffer constraint sensor devices to reduce the packet drop rate, energy consumption and collisions. In order to avoid collision due to the hidden terminal problem, a new frame structure is designed for the data transmission. A new superframe structure is proposed to mitigate the problems due to WiFi and ZigBee interference. A modified superframe structure with a new retransmission opportunity for failure devices is proposed to reduce the collisions and retransmission delay with high reliability. Performance evaluation and validation of our scheme indicate that the packet drop rate, throughput, reliability, energy consumption and average delay of the nodes can be improved significantly.

  13. A Reliable Data Transmission Model for IEEE 802.15.4e Enabled Wireless Sensor Network under WiFi Interference

    PubMed Central

    Sahoo, Prasan Kumar; Pattanaik, Sudhir Ranjan; Wu, Shih-Lin

    2017-01-01

    The IEEE 802.15.4e standard proposes Medium Access Control (MAC) to support collision-free wireless channel access mechanisms for industrial, commercial and healthcare applications. However, unnecessary wastage of energy and bandwidth consumption occur due to inefficient backoff management and collisions. In this paper, a new channel access mechanism is designed for the buffer constraint sensor devices to reduce the packet drop rate, energy consumption and collisions. In order to avoid collision due to the hidden terminal problem, a new frame structure is designed for the data transmission. A new superframe structure is proposed to mitigate the problems due to WiFi and ZigBee interference. A modified superframe structure with a new retransmission opportunity for failure devices is proposed to reduce the collisions and retransmission delay with high reliability. Performance evaluation and validation of our scheme indicate that the packet drop rate, throughput, reliability, energy consumption and average delay of the nodes can be improved significantly. PMID:28590434

  14. Apparatus and method for forming a workpiece surface into a non-rotationally symmetric shape

    DOEpatents

    Dow, Thomas A.; Garrard, Kenneth P.; Moorefield, II, George M.; Taylor, Lauren W.

    1995-11-21

    A turning machine includes a controller for generating both aspherical and non-symmetrical shape components defining the predetermined shape, and a controller for controlling a spindle and a positionable cutting blade to thereby form a predetermined non-rotationally symmetric shape in a workpiece surface. The apparatus includes a rotatable spindle for rotatably mounting the workpiece about an axis, a spindle encoder for sensing an angular position of the rotating workpiece, the cutting blade, and radial and transverse positioners for relatively positioning the cutting blade and workpiece along respective radial and transverse directions. The controller cooperates with a fast transverse positioner for positioning the cutting blade in predetermined varying transverse positions during a revolution of the workpiece.

  15. LAM-1 and FAT Genes Control Development of the Leaf Blade in Nicotiana sylvestris.

    PubMed Central

    McHale, NA

    1993-01-01

    Leaf primordia of the lam-1 mutant of Nicotiana sylvestris grow normally in length but remain bladeless throughout development. The blade initiation site is established at the normal time and position in lam-1 primordia. Anticlinal divisions proceed normally in the outer L1 and L2 layers, but the inner L3 cells fail to establish the periclinal divisions that normally generate the middle mesophyll core. The lam-1 mutation also blocks formation of blade mesophyll from distal L2 cells. This suggests that LAM-1 controls a common step in initiation of blade tissue from the L2 and L3 lineage of the primordium. Another recessive mutation (fat) was isolated in N. sylvestris that induces abnormal periclinal divisions in the mesophyll during blade initiation and expansion. This generates a blade approximately twice its normal thickness by doubling the number of mesophyll cell layers from four to approximately eight. Presumably, the fat mutation defines a negative regulator involved in repression of periclinal divisions in the blade. The lam-1 fat double mutant shows radial proliferation of mesophyll cells at the blade initiation site. This produces a highly disorganized, club-shaped blade that appears to represent an additive effect of the lam-1 and fat mutations on blade founder cells. PMID:12271096

  16. A simplified model predicting the weight of the load carrying beam in a wind turbine blade

    NASA Astrophysics Data System (ADS)

    Mikkelsen, Lars P.

    2016-07-01

    Based on a simplified beam model, the loads, stresses and deflections experienced by a wind turbine blade of a given length is estimated. Due to the simplicity of the model used, the model is well suited for work investigating scaling effects of wind turbine blades. Presently, the model is used to predict the weight of the load carrying beam when using glass fibre reinforced polymers, carbon fibre reinforced polymers or an aluminium alloy as the construction material. Thereby, it is found that the weight of a glass fibre wind turbine blade is increased from 0.5 to 33 tons when the blade length grows from 20 to 90 m. In addition, it can be seen that for a blade using glass fibre reinforced polymers, the design is controlled by the deflection and thereby the material stiffness in order to avoid the blade to hit the tower. On the other hand if using aluminium, the design will be controlled by the fatigue resistance in order to making the material survive the 100 to 500 million load cycles experience of the wind turbine blade throughout the lifetime. The aluminium blade is also found to be considerably heavier compared with the composite blades.

  17. Design and performance of controlled-diffusion stator compared with original double-circular-arc stator

    NASA Technical Reports Server (NTRS)

    Gelder, Thomas F.; Schmidt, James F.; Suder, Kenneth L.; Hathaway, Michael D.

    1987-01-01

    The capabilities of two stators, one with controlled-diffusion (CD) blade sections and one with double-circular-arc (DCA) blade sections, were compared. A CD stator was designed and tested that had the same chord length but half the blades of the DCA stator. The same fan rotor (tip speed, 429 m/sec; pressure ratio, 1.65) was used with each stator row. The design and analysis system is briefly described. The overall stage and rotor performances with each stator are compared, as are selected blade element data. The minimum overall efficiency decrement across the stator was approximately 1 percentage point greater with the CD balde sections than with the DCA blade sections.

  18. Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel

    PubMed Central

    Sakin, Sayef Azad; Alamri, Atif; Tran, Nguyen H.

    2017-01-01

    Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies. PMID:29215591

  19. Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel.

    PubMed

    Sakin, Sayef Azad; Razzaque, Md Abdur; Hassan, Mohammad Mehedi; Alamri, Atif; Tran, Nguyen H; Fortino, Giancarlo

    2017-12-07

    Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies.

  20. Coupling optical and electrical gating for electronic readout of quantum dot dynamics

    NASA Astrophysics Data System (ADS)

    Vasudevan, Smitha; Walczak, Kamil; Ghosh, Avik W.

    2010-08-01

    We explore the coherent transfer of electronic signatures from a strongly correlated, optically gated nanoscale quantum dot to a weakly interacting, electrically backgated microscale channel. In this unique side-coupled “ T ” geometry for transport, we predict a mechanism for detecting Rabi oscillations induced in the dot through quantum, rather than electrostatic means. This detection shows up directly in the dc conductance-voltage spectrum as a field-tunable split in the Fano lineshape arising due to interference between the dipole coupled dot states and the channel continuum. The split is further modified by the Coulomb interactions within the dot that influence the detuning of the Rabi oscillations. Furthermore, time resolving the signal we see clear beats when the Rabi frequencies approach the intrinsic Bohr frequencies in the dot. Capturing these coupled dynamics requires attention to memory effects and quantum interference in the channel as well as many-body effects in the dot. We accomplish this coupling by combining a Fock-space master equation for the dot dynamics with the phase-coherent, non-Markovian time-dependent nonequilibrium Green’s function transport formalism in the channel through a properly evaluated self-energy and a Coulomb integral. The strength of the interactions can further be modulated using a backgate that controls the degree of hybridization and charge polarization at the transistor surface.

  1. Operation of Darrieus turbines in constant circulation framework

    NASA Astrophysics Data System (ADS)

    Gorle, J. M. R.; Chatellier, L.; Pons, F.; Ba, M.

    2017-07-01

    Analytical and computational studies of flow across a low-speed marine turbine of Darrieus type with pitching blades have been carried out for flowfield and performance evaluation. The objective of this study is to develop efficient blade pitching laws to arrest or control the vortex shedding from the blades during turbine's operation. This is achieved by imparting an arbitrary constant amount of circulation to the blades, where Kelvin's theorem is respected. This paper presents the extension of the application of conformal mapping to produce the time-dependent flow over a rotating turbine blade in order to develop a quantified relationship between the blade's orientation with respect to the rotor's tangent and its rotational motion. The flow development is based on the analytical treatment given to potential flow formulation through Laurent series decomposition, where the Kutta condition is satisfied. The pitch control law and the analytical modeling of the hydrodynamic forces acting on the blade are derived based on Kelvin's theorem for the conservation of circulation. The application of this pitch control law in the real flow conditions is however limited due to viscous losses and rotational effects. Therefore, a 2D computational fluid dynamics (CFD) study with the shear stress transport (SST) k -ω turbulence model has been performed to examine the flow across a 4-bladed turbine model. While validating the analytical work, the numerical investigation reveals the applicability and limitations of circulation-controlled blade pitching laws in real flow conditions. In particular, a reference equivalent angle of attack is defined, which must be contained in a tight range in order to effectively prevent vortex shedding at a given tip-speed ratio.

  2. Investigation of heat transfer and flow using ribs within gas turbine blade cooling passage: Experimental and hybrid LES/RANS modeling

    NASA Astrophysics Data System (ADS)

    Kumar, Sourabh

    Gas turbines are extensively used for aircraft propulsion, land based power generation and various industrial applications. Developments in innovative gas turbine cooling technology enhance the efficiency and power output, with an increase in turbine rotor inlet temperatures. These advancements of turbine cooling have allowed engine design to exceed normal material temperature limits. For internal cooling design, techniques for heat extraction from the surfaces exposed to hot stream are based on the increase of heat transfer areas and on promotion of turbulence of the cooling flow. In this study, it is obtained by casting repeated continuous V and broken V shaped ribs on one side of the two pass square channel into the core of blade. Despite extensive research on ribs, only few papers have validated the numerical data with experimental results in two pass channel. In the present study, detailed experimental investigation is carried out for two pass square channels with 180° turn. Detailed heat transfer distribution occurring in the ribbed passage is reported for steady state experiment. Four different combinations of 60° and Broken 60° V ribs in channel are considered. Thermocouples are used to obtain the temperature on the channel surface and local heat transfer coefficients are obtained for various Reynolds numbers, within the turbulent flow regime. Area averaged data are calculated in order to compare the overall performance of the tested ribbed surface and to evaluate the degree of heat transfer enhancement induced by the ribs with. Flow within the channels is characterized by heat transfer enhancing ribs, bends, rotation and buoyancy effects. Computational Fluid Dynamics (CFD) simulations were carried out for the same geometries using different turbulence models such as k-o Shear stress transport (SST) and Reynolds stress model (RSM). These CFD simulations were based on advanced computing in order to improve the accuracy of three dimensional metal temperature prediction which can be applied routinely in the design stage of turbine cooled vanes and blades. This study presents an attempt to collect information about Nusselt number inside the ribbed duct and a series of measurement is performed in steady state eliminating the error sources inherently connected with transient method. A Large Eddy Simulation (LES) is carried out on the best V and Broken V rib arrangements to analyze the flow pattern inside the channel. A novel method is devised to analyze the results obtained from CFD simulation. Hybrid LES/Reynolds Averaged Navier Strokes (RANS) modeling is used to modify Reynolds stresses using Algebraic Stress Model (ASM).

  3. Wind turbine rotor hub and teeter joint

    DOEpatents

    Coleman, Clint; Kurth, William T.; Jankowski, Joseph

    1994-10-11

    A rotor hub is provided for coupling a wind turbine rotor blade and a shaft. The hub has a yoke with a body which is connected to the shaft, and extension portions which are connected to teeter bearing blocks, each of which has an aperture. The blocks are connected to a saddle which envelops the rotor blade by one or two shafts which pass through the apertures in the bearing blocks. The saddle and blade are separated by a rubber interface which provides for distribution of stress over a larger portion of the blade. Two teeter control mechanisms, which may include hydraulic pistons and springs, are connected to the rotor blade and to the yoke at extension portions. These control mechanisms provide end-of-stroke damping, braking, and stiffness based on the teeter angle and speed of the blade.

  4. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2011-09-30

    channel interference mitigation for underwater acoustic MIMO - OFDM . 3) Turbo equalization for OFDM modulated physical layer network coding. 4) Blind CFO...Underwater Acoustic MIMO - OFDM . MIMO - OFDM has been actively studied for high data rate communications over the bandwidthlimited underwater acoustic...with the cochannel interference (CCI) due to parallel transmissions in MIMO - OFDM . Our proposed receiver has the following components: 1

  5. Smart helicopter rotor with active blade tips

    NASA Astrophysics Data System (ADS)

    Bernhard, Andreas Paul Friedrich

    2000-10-01

    The smart active blade tip (SABT) rotor is an on-blade rotor vibration reduction system, incorporating active blade tips that can be independently pitched with respect to the main blade. The active blade tip rotor development included an experimental test program culminating in a Mach scale hover test, and a parallel development of a coupled, elastic actuator and rotor blade analysis for preliminary design studies and hover performance prediction. The experimental testing focussed on a small scale rotor on a bearingless Bell-412 hub. The fabricated Mach-scale active-tip rotor has a diameter of 1.524 m, a blade chord of 76.2 mm and incorporated a 10% span active tip. The nominal operating speed is 2000 rpm, giving a tip Mach number of 0.47. The blade tips are driven by a novel piezo-induced bending-torsion coupled actuator beam, located spanwise in the hollow mid-cell of the main rotor blade. In hover at 2000 rpm, at 2 deg collective, and for an actuation of 125 Vrms, the measured blade tip deflection at the first four rotor harmonics is between +/-1.7 and +/-2.8 deg, increasing to +/-5.3 deg at 5/rev with resonant amplification. The corresponding oscillatory amplitude of the rotor thrust coefficient is between 0.7 · 10-3 and 1.3 · 10-1 at the first four rotor harmonics, increasing to 2.1 · 10-3 at 5/rev. In general, the experimental blade tip frequency response and corresponding rotor thrust response are well captured by the analysis. The flexbeam root flap bending moment is predicted in trend, but is significantly over-estimated. The blade tips did not deflect as expected at high collective settings, because of the blade tip shaft locking up in the bearing. This is caused by the high flap bending moment on the blade tip shaft. Redesign of the blade tip shaft assembly and bearing support is identified as the primary design improvement for future research. The active blade tip rotor was also used as a testbed for the evaluation of an adaptive neural-network based control algorithm. Effective background vibration reduction of an intentional 1/rev hover imbalance was demonstrated. The control algorithm also showed the capability to generate desired multi-frequency control loads on the hub, based on artificial signal injection into the vibration measurement. The research program demonstrates the technical feasibility of the active blade tip concept for vibration reduction and warrants further investigation in terms of closed loop forward flight tests in the windtunnel and full scale design studies.

  6. Bottom-up fabrication of paper-based microchips by blade coating of cellulose microfibers on a patterned surface.

    PubMed

    Gao, Bingbing; Liu, Hong; Gu, Zhongze

    2014-12-23

    We report a method for the bottom-up fabrication of paper-based capillary microchips by the blade coating of cellulose microfibers on a patterned surface. The fabrication process is similar to the paper-making process in which an aqueous suspension of cellulose microfibers is used as the starting material and is blade-coated onto a polypropylene substrate patterned using an inkjet printer. After water evaporation, the cellulose microfibers form a porous, hydrophilic, paperlike pattern that wicks aqueous solution by capillary action. This method enables simple, fast, inexpensive fabrication of paper-based capillary channels with both width and height down to about 10 μm. When this method is used, the capillary microfluidic chip for the colorimetric detection of glucose and total protein is fabricated, and the assay requires only 0.30 μL of sample, which is 240 times smaller than for paper devices fabricated using photolithography.

  7. New technology in turbine aerodynamics.

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.; Moffitt, T. P.

    1972-01-01

    Cursory review of some recent work that has been done in turbine aerodynamic research. Topics discussed include the aerodynamic effect of turbine coolant, high work-factor (ratio of stage work to square of blade speed) turbines, and computer methods for turbine design and performance prediction. Experimental cooled-turbine aerodynamics programs using two-dimensional cascades, full annular cascades, and cold rotating turbine stage tests are discussed with some typical results presented. Analytically predicted results for cooled blade performance are compared to experimental results. The problems and some of the current programs associated with the use of very high work factors for fan-drive turbines of high-bypass-ratio engines are discussed. Computer programs have been developed for turbine design-point performance, off-design performance, supersonic blade profile design, and the calculation of channel velocities for subsonic and transonic flowfields. The use of these programs for the design and analysis of axial and radial turbines is discussed.

  8. Demonstration of an elastically coupled twist control concept for tilt rotor blade application

    NASA Technical Reports Server (NTRS)

    Lake, R. C.; Nixon, M. W.; Wilbur, M. L.; Singleton, J. D.; Mirick, P. H.

    1994-01-01

    The purpose of this Note is to present results from an analytic/experimental study that investigated the potential for passively changing blade twist through the use of extension-twist coupling. A set of composite model rotor blades was manufactured from existing blade molds for a low-twist metal helicopter rotor blade, with a view toward establishing a preliminary proof concept for extension-twist-coupled rotor blades. Data were obtained in hover for both a ballasted and unballasted blade configuration in sea-level atmospheric conditions. Test data were compared with results obtained from a geometrically nonlinear analysis of a detailed finite element model of the rotor blade developed in MSC/NASTRAN.

  9. Reduction of Helicopter BVI Noise, Vibration, and Power Consumption Through Individual Blade Control

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.; Blaas, Achim; Teves, Dietrich; Kube, Roland; Warmbrodt, William (Technical Monitor)

    1994-01-01

    A wind tunnel test was conducted with a full-scale BO 105 helicopter rotor to evaluate the potential of open-loop individual blade control (IBC) to improve rotor performance, to reduce blade vortex interaction (BVI) noise, and to alleviate helicopter vibrations. The wind tunnel test was an international collaborative effort between NASA/U.S. Army AFDD, ZF Luftfahrttechnik, Eurocopter Deutschland, and the German Aerospace Laboratory (DLR) and was conducted under the auspices of the U.S./German MOU on Rotorcraft Aeromechanics. In this test the normal blade pitch links of the rotor were replaced by servo-actuators so that the pitch of each blade could be controlled independently of the other blades. The specially designed servoactuators and IBC control system were designed and manufactured by ZF Luftfahrttechnik, GmbH. The wind tunnel test was conducted in the 40- by 80-Foot Wind Tunnel at the NASA Ames Research Center. An extensive amount of measurement information was acquired for each IBC data point. These data include rotor performance, static and dynamic hub forces and moments, rotor loads, control loads, inboard and outboard blade pitch motion, and BVI noise data. The data indicated very significant (80 percent) simultaneous reductions in both BVI noise and hub vibrations could be obtained using multi-harmonic input at the critical descent (terminal approach) condition. The data also showed that performance improvements of up to 7 percent could be obtained using 2P input at high-speed forward flight conditions.

  10. Subcycle engineering of laser filamentation in gas by harmonic seeding

    NASA Astrophysics Data System (ADS)

    Béjot, P.; Karras, G.; Billard, F.; Doussot, J.; Hertz, E.; Lavorel, B.; Faucher, O.

    2015-11-01

    Manipulating at will the propagation dynamics of high power laser pulses is a long-standing dream whose accomplishment would lead to the control of fascinating physical phenomena emerging from laser-matter interaction. The present work represents a significant step towards such a control by manipulating the nonlinear optical response of the gas medium. This is accomplished by shaping an intense laser pulse experiencing filamentation at the subcycle level with a relatively weak (≃1 % ) third-harmonic radiation. The control results from quantum interference between a single- and a two-color (mixing the fundamental frequency with its third-harmonic) ionization channel. This mechanism, which depends on the relative phase between the two electric fields, is responsible for wide refractive index modifications in relation with significant enhancement or suppression of the ionization rate. As a first application, we demonstrate the production and control of an axially modulated plasma channel.

  11. Field Research Validation Sites | Wind | NREL

    Science.gov Websites

    , independent pitch control of the Controls Advanced Research Turbine (CART) blades Variable-speed or constant CART2 600-kW Turbine Model: Westinghouse Blades: 2 Hub height: 36.6 m Rotor diameter: 42.6 m Extensively instrumented CART3 600-kW Turbine Model: Westinghouse Blades: 3 Hub height: 36.6 m Rotor diameter: 42.6 m

  12. Attitude Dynamics, Stability, and Control of a Heliogyro Solar Sail

    NASA Astrophysics Data System (ADS)

    Pimienta-Penalver, Adonis Reinier

    A heliogyro solar sail concept, dubbed `HELIOS', is proposed as an alternative to deep space missions without the need for on-board propellant. Although this type of solar sail has existed in concept for several decades, and some previous studies have investigated certain aspects of its operation, a significant amount of research is still needed to analyze the dynamic and control characteristics of the structure under the projected range of orbital conditions. This work presents an improvement upon the existing discrete-mass models of the heliogyro blade, and the extension of its application from a single membrane blade to a fully-coupled approximation of the dynamics of the HELIOS system with multiple spinning membrane blades around a central hub. The incorporation of structural stiffness and external forcing effects into the model is demonstrated to add a further degree of fidelity in simulating the stability properties of the system. Additionally, the approximated dynamics of multiple-blade heliogyro structures are examined under the effect of solar radiation pressure. Lastly, this study evaluates a control algorithm at each blade root to impose structural integrity and attitude control by coordinating well-known helicopter blade pitching profiles.

  13. Airborne system for detection and location of radio interference sources

    NASA Astrophysics Data System (ADS)

    Audone, Bruno; Pastore, Alberto

    1992-11-01

    The rapid expansion of telecommunication has practically saturated every band of Radio Frequency Spectrum; a similar expansion of electrical and electronic devices has affected all radio communications which are, in some way, influenced by a large amount of interferences, either intentionally or unintentionally produced. Operational consequences of these interferences, particularly in the frequency channels used for aeronautical services, can be extremely dangerous, making mandatory a tight control of Electromagnetic Spectrum. The present paper analyzes the requirements and the problems related to the surveillance, for civil application, of the Electromagnetic Spectrum between 20 and 1000 MHz, with particular attention to the detection and location of radio interference sources; after a brief introduction and the indication of the advantages of an airborne versus ground installation, the airborne system designed by Alenia in cooperation with Italian Ministry of Post and Telecommunication, its practical implementation and the prototype installation on board of a small twin turboprop aircraft for experimentation purposes is presented. The results of the flight tests are also analyzed and discussed.

  14. Computational Assessment of Aft-Body Closure for the HSR Reference H Configuration

    NASA Technical Reports Server (NTRS)

    Londenberg, W. Kelly

    1999-01-01

    A study has been conducted to determine how well the USM3D unstructured Euler solver can be utilized to predict the flow over the High Speed Research (HSR) Reference H configuration with an ultimate goal of prediction of Sting interference so after body closure effects may be evaluated. This study has shown that the code can be used to predict the interference effects of a lower mounted blade sting with a high degree of confidence. It has been shown that wing and fuselage pressures, both levels and trends, can be predicted well. Force and moment levels are not predicted well but experimental trends are predicted. Based upon this, predicted force and moment increments are assumed to be predicted accurately. Deflection of the horizontal tail was found to cause a non-linear increment from the non-deflected sting interference effects.

  15. Optimization of Darrieus turbines with an upwind and downwind momentum model

    NASA Astrophysics Data System (ADS)

    Loth, J. L.; McCoy, H.

    1983-08-01

    This paper presents a theoretical aerodynamic performance optimization for two dimensional vertical axis wind turbines. A momentum type wake model is introduced with separate cosine type interference coefficients for the up and downwind half of the rotor. The cosine type loading permits the rotor blades to become unloaded near the junction of the upwind and downwind rotor halves. Both the optimum and the off design magnitude of the interference coefficients are obtained by equating the drag on each of the rotor halves to that on each of two cosine loaded actuator discs in series. The values for the optimum rotor efficiency, solidity and corresponding interference coefficients have been obtained in a closed form analytic solution by maximizing the power extracted from the downwind rotor half as well as from the entire rotor. A numerical solution was required when viscous effects were incorporated in the rotor optimization.

  16. Adaptive suppression of power line interference in ultra-low field magnetic resonance imaging in an unshielded environment

    NASA Astrophysics Data System (ADS)

    Huang, Xiaolei; Dong, Hui; Qiu, Yang; Li, Bo; Tao, Quan; Zhang, Yi; Krause, Hans-Joachim; Offenhäusser, Andreas; Xie, Xiaoming

    2018-01-01

    Power-line harmonic interference and fixed-frequency noise peaks may cause stripe-artifacts in ultra-low field (ULF) magnetic resonance imaging (MRI) in an unshielded environment and in a conductively shielded room. In this paper we describe an adaptive suppression method to eliminate these artifacts in MRI images. This technique utilizes spatial correlation of the interference from different positions, and is realized by subtracting the outputs of the reference channel(s) from those of the signal channel(s) using wavelet analysis and the least squares method. The adaptive suppression method is first implemented to remove the image artifacts in simulation. We then experimentally demonstrate the feasibility of this technique by adding three orthogonal superconducting quantum interference device (SQUID) magnetometers as reference channels to compensate the output of one 2nd-order gradiometer. The experimental results show great improvement in the imaging quality in both 1D and 2D MRI images at two common imaging frequencies, 1.3 kHz and 4.8 kHz. At both frequencies, the effective compensation bandwidth is as high as 2 kHz. Furthermore, we examine the longitudinal relaxation times of the same sample before and after compensation, and show that the MRI properties of the sample did not change after applying adaptive suppression. This technique can effectively increase the imaging bandwidth and be applied to ULF MRI detected by either SQUIDs or Faraday coil in both an unshielded environment and a conductively shielded room.

  17. Water channel experiments of a novel fully-passive flapping-foil turbine

    NASA Astrophysics Data System (ADS)

    Boudreau, Matthieu; Dumas, Guy; Rahimpour, Mostafa; Oshkai, Peter

    2016-11-01

    Experiments have been conducted to assess the performances of a fully-passive flapping-foil hydrokinetic turbine for which the blade's motions are stemming from the interaction between the blade's elastic supports (springs and dampers) and the flow field. Previous numerical studies conducted by Peng & Zhu (2009) and Zhu (2012) have proved that a simplified version of such a turbine can extract a substantial amount of energy from the flow while offering the potential to greatly simplify the complex mechanical apparatus needed to constrain and link the blade's pitching and heaving motions in the case of the more classical flapping-foil turbine (e.g., Kinsey et al., 2011). Based on the promising numerical investigations of Veilleux (2014) and Veilleux & Dumas (2016), who proposed a more general version of this novel concept, a prototype has been built and tested in a water channel at a chord Reynolds number of 17,000. Periodic motions of large amplitudes have been observed leading to interesting energy harvesting efficiencies reaching 25% for some specific sets of structural parameters. The sensitivity of the turbine's dynamics to each of the seven structural parameters appearing in the equations of motion has been experimentally evaluated around a case close to the optimal one. Financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged by the authors.

  18. Methods and apparatus for twist bend coupled (TCB) wind turbine blades

    DOEpatents

    Moroz, Emilian Mieczyslaw; LeMieux, David Lawrence; Pierce, Kirk Gee

    2006-10-10

    A method for controlling a wind turbine having twist bend coupled rotor blades on a rotor mechanically coupled to a generator includes determining a speed of a rotor blade tip of the wind turbine, measuring a current twist distribution and current blade loading, and adjusting a torque of a generator to change the speed of the rotor blade tip to thereby increase an energy capture power coefficient of the wind turbine.

  19. Small Unmanned Aircraft Electromagnetic Interference (EMI) Initial Assessment

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Ippolito, Corey; Rogers, Christopher; Kerczewski, Robert; Downey, Alan; Matheou, Konstantin

    2018-01-01

    With many applications envisioned for small Unmanned Aircraft Systems (sUAS), and potentially millions of sUAS expected to be in operation in the future, the electromagnetic interference environment associated with the sUAS is of interest to understanding the potential performance impacts on the sUAS command and control communications link as well as the sUAS payload and payload links. As part of NASA's UAS Traffic Management (UTM) Project, flight experiments are planned to characterize the RF environment at altitudes up to 400 ft to better understand how UTM command and control links can be expected to perform. The flight experiments will use an RF channel sensing payload attached to an sUAS. In terms of the payload being capable of measuring relatively low level signals at altitude, electromagnetic interference (EMI) emanating from the sUAS vehicle itself could potentially complicate the measurement process. For this reason, NASA was interested in measuring the EMI performance of the sUAS planned for these flight experiments, a DJI model S1000. The S1000 was thus measured in a controlled EMI test chamber at the NASA Ames Research Center. The S1000 is a carbon fiber based platform with eight rotors. As such, the EMI test results represent potential performance of a number of similar sUAS types. sUAS platforms significantly different from the S1000 may also require EMI testing, and the method employed for NASA's S1000 EMI tests can be applied to other platforms. In this paper we describe the UTM project, the RF channel sensing payload, the EMI testing method and EMI test results for the S1000, and discuss the implications of these results.

  20. Small Unmanned Aircraft Electromagnetic Interference (EMI) Initial Assessment

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Ippolito, Corey; Rogers, Christopher; Kerczewski, Robert; Downey, Alan; Matheou, Konstantin

    2018-01-01

    With many applications envisioned for small Unmanned Aircraft Systems (sUAS), and potentially millions of sUAS expected to be in operation in the future, the electromagnetic interference environment associated with the sUAS is of interest to understanding the potential performance impacts on the sUAS command and control communications link as well as the sUAS payload and payload links. As part of NASAâ€"TM"s UAS Traffic Management (UTM) Project, flight experiments are planned to characterize the RF environment at altitudes up to 400 ft to better understand how UTM command and control links can be expected to perform. The flight experiments will use an RF channel sensing payload attached to an sUAS. In terms of the payload being capable of measuring relatively low level signals at altitude, electromagnetic interference (EMI) emanating from the sUAS vehicle itself could potentially complicate the measurement process. For this reason, NASA was interested in measuring the EMI performance of the sUAS planned for these flight experiments, a DJI model S1000. The S1000 was thus measured in a controlled EMI test chamber at the NASA Ames Research Center. The S1000 is a carbon fiber based platform with eight rotors. As such, the EMI test results represent potential performance of a number of similar sUAS types. sUAS platforms significantly different from the S1000 may also require EMI testing, and the method employed for NASAâ€"TM"s S1000 EMI tests can be applied to other platforms. In this paper we describe the UTM project, the RF channel sensing payload, the EMI testing method and EMI test results for the S1000, and discuss the implications of these results.

  1. Novel Cyclorotor Control System for Operation at Curtate and Prolate Advance Ratios

    DTIC Science & Technology

    2012-03-06

    control mechanisms used until now pitch the blade by attaching control rods from the blade to a rotating eccentric ring. By varying the position of...this eccentric ring the blades are pitched approximately in a sinusoidal manner with variable amplitude and phase; however, this sinusoidal pitching...Florida, June 25-28, 2007. 19Gerhardt, H., "Paddle Wheel Rotorcraft," U.S. Patent 5,265,827, November 30, 1993. 20Bohorquez, F., Rankins, F., Baeder, J

  2. Active control of turbomachine discrete tones

    NASA Technical Reports Server (NTRS)

    Fleeter, Sanford

    1994-01-01

    This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.

  3. Active control of turbomachine discrete tones

    NASA Astrophysics Data System (ADS)

    Fleeter, Sanford

    This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.

  4. A DS-UWB Cognitive Radio System Based on Bridge Function Smart Codes

    NASA Astrophysics Data System (ADS)

    Xu, Yafei; Hong, Sheng; Zhao, Guodong; Zhang, Fengyuan; di, Jinshan; Zhang, Qishan

    This paper proposes a direct-sequence UWB Gaussian pulse of cognitive radio systems based on bridge function smart sequence matrix and the Gaussian pulse. As the system uses the spreading sequence code, that is the bridge function smart code sequence, the zero correlation zones (ZCZs) which the bridge function sequences' auto-correlation functions had, could reduce multipath fading of the pulse interference. The Modulated channel signal was sent into the IEEE 802.15.3a UWB channel. We analysis the ZCZs's inhibition to the interference multipath interference (MPI), as one of the main system sources interferences. The simulation in SIMULINK/MATLAB is described in detail. The result shows the system has better performance by comparison with that employing Walsh sequence square matrix, and it was verified by the formula in principle.

  5. 47 CFR 15.707 - Permissible channels of operation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of each such area as set forth in § 15.712(d). These channels will be listed in the TV bands database... on available channels as determined by the TV bands database and in accordance with the interference...

  6. Surface controlled blade stabilizer

    DOEpatents

    Russell, Larry R.

    1983-01-01

    Drill string stabilizer apparatus, controllable to expand and retract entirely from the surface by control of drill string pressure, wherein increase of drill string pressure from the surface closes a valve to create a piston means which is moved down by drill string pressure to expand the stabilizer blades, said valve being opened and the piston moving upward upon reduction of drill string pressure to retract the stabilizer blades. Upward and downward movements of the piston and an actuator sleeve therebelow are controlled by a barrel cam acting between the housing and the actuator sleeve.

  7. Analyzing the dynamic response of rotating blades in small-scale wind turbines

    NASA Astrophysics Data System (ADS)

    Hsiung, Wan-Ying; Huang, Yu-Ting; Loh, Chin-Hsiung; Loh, Kenneth J.; Kamisky, Robert J.; Nip, Danny; van Dam, Cornelis

    2014-03-01

    The objective of this study was to validate modal analysis, system identification and damage detection of small-scale rotating wind turbine blades in the laboratory and in the field. Here, wind turbine blades were instrumented with accelerometers and strain gages, and data acquisition was achieved using a prototype wireless sensing system. In the first portion of this study conducted in the laboratory, sensors were installed onto metallic structural elements that were fabricated to be representative of an actual wind blade. In order to control the excitation (rotation of the wind blade), a motor was used to spin the blades at controlled angular velocities. The wind turbine was installed on a shaking table for testing under rotation of turbine blades. Data measured by the sensors were recorded while the blade was operated at different speeds. On the other hand, the second part of this study utilized a small-scale wind turbine system mounted on the rooftop of a building. The main difference, as compared to the lab tests, was that the field tests relied on actual wind excitations (as opposed to a controlled motor). The raw data from both tests were analyzed using signal processing and system identification techniques for deriving the model response of the blades. The multivariate singular spectrum analysis (MSSA) and covariance-driven stochastic subspace identification method (SSI-COV) were used to identify the dynamic characteristics of the system. Damage of one turbine blade (loose bolts connection) in the lab test was also conducted. The extracted modal properties for both undamaged and damage cases under different ambient or forced excitations (earthquake loading) were compared. These tests confirmed that dynamic characterization of rotating wind turbines was feasible, and the results will guide future monitoring studies planned for larger-scale systems.

  8. Active control of wake/blade-row interaction noise through the use of blade surface actuators

    NASA Technical Reports Server (NTRS)

    Kousen, Kenneth A.; Verdon, Joseph M.

    1993-01-01

    A combined analytical/computational approach for controlling of the noise generated by wake/blade-row interaction through the use of anti-sound actuators on the blade surfaces is described. A representative two-dimensional section of a fan stage, composed of an upstream fan rotor and a downstream fan exit guide vane (FEGV), is examined. An existing model for the wakes generated by the rotor is analyzed to provide realistic magnitudes for the vortical excitations imposed at the inlet to the FEGV. The acoustic response of the FEGV is determined at multiples of the blade passing frequency (BPF) by using the linearized unsteady flow analysis, LINFLO. Acoustic field contours are presented at each multiple of BPF illustrating the generated acoustic response disturbances. Anti-sound is then provided by placing oscillating control surfaces, whose lengths and locations are specified arbitrarily, on the blades. An analysis is then conducted to determine the complex amplitudes required for the control surface motions to best reduce the noise. It is demonstrated that if the number of acoustic response modes to be controlled is equal to the number of available independent control surfaces, complete noise cancellation can be achieved. A weighted least squares minimization procedure for the control equations is given for cases in which the number of acoustic modes exceeds the number of available control surfaces. The effectiveness of the control is measured by the magnitude of a propagating acoustic response vector, which is related to the circumferentially averaged sound pressure level (SPL), and is minimized by a standard least-squares minimization procedure.

  9. Active control of wake/blade-row interaction noise through the use of blade surface actuators

    NASA Astrophysics Data System (ADS)

    Kousen, Kenneth A.; Verdon, Joseph M.

    1993-12-01

    A combined analytical/computational approach for controlling of the noise generated by wake/blade-row interaction through the use of anti-sound actuators on the blade surfaces is described. A representative two-dimensional section of a fan stage, composed of an upstream fan rotor and a downstream fan exit guide vane (FEGV), is examined. An existing model for the wakes generated by the rotor is analyzed to provide realistic magnitudes for the vortical excitations imposed at the inlet to the FEGV. The acoustic response of the FEGV is determined at multiples of the blade passing frequency (BPF) by using the linearized unsteady flow analysis, LINFLO. Acoustic field contours are presented at each multiple of BPF illustrating the generated acoustic response disturbances. Anti-sound is then provided by placing oscillating control surfaces, whose lengths and locations are specified arbitrarily, on the blades. An analysis is then conducted to determine the complex amplitudes required for the control surface motions to best reduce the noise. It is demonstrated that if the number of acoustic response modes to be controlled is equal to the number of available independent control surfaces, complete noise cancellation can be achieved. A weighted least squares minimization procedure for the control equations is given for cases in which the number of acoustic modes exceeds the number of available control surfaces. The effectiveness of the control is measured by the magnitude of a propagating acoustic response vector, which is related to the circumferentially averaged sound pressure level (SPL), and is minimized by a standard least-squares minimization procedure.

  10. Optics learning through affordable kit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P, Anusha N, E-mail: anushnp@gmail.com, E-mail: chitrashaji@gmail.com, E-mail: aloksharan@gmail.com; Shaji, Chitra, E-mail: anushnp@gmail.com, E-mail: chitrashaji@gmail.com, E-mail: aloksharan@gmail.com; Sharan, Alok, E-mail: anushnp@gmail.com, E-mail: chitrashaji@gmail.com, E-mail: aloksharan@gmail.com

    2014-10-15

    An affordable kit which helps to understand some of the optical phenomena qualitatively and quantitatively is presented in this paper. It supplements optics taught in classes. The kit consists of equipments which are available in the market at nominal cost such as laser pointer, lenses, glass plates, razor blades, coins, ball bearing etc. Experiments which come under wave optics (interference and diffraction) and ray optics (reflection and refraction) are explained using this kit.

  11. Wind Power Generation Design Considerations.

    DTIC Science & Technology

    1984-12-01

    DISTRIBUTION 4 I o ....................................... . . . e . * * TABLES Number Page I Wind Turbine Characteristics II 0- 2 Maximum Economic Life II 3...Ratio of Blade Tip Speed to Wind Speed 10 4 Interference with Microwave and TV Reception by Wind Turbines 13 5 Typical Flow Patterns Over Two...18 * 12 Annual Mean Wind Power Density 21 5 FIGURES (Cont’d) Number Page 13 Wind - Turbine /Generator Types Currently Being Tested on Utility Sites 22 14

  12. Open cycle ocean thermal energy conversion steam control and bypass system

    DOEpatents

    Wittig, J. Michael; Jennings, Stephen J.

    1980-01-01

    Two sets of hinged control doors for regulating motive steam flow from an evaporator to a condenser alternatively through a set of turbine blades in a steam bypass around the turbine blades. The evaporator has a toroidal shaped casing situated about the turbine's vertical axis of rotation and an outlet opening therein for discharging motive steam into an annular steam flow path defined between the turbine's radially inner and outer casing structures. The turbine blades extend across the steam flow path intermediate the evaporator and condenser. The first set of control doors is arranged to prevent steam access to the upstream side of the turbine blades and the second set of control doors acts as a bypass around the blades so as to maintain equilibrium between the evaporator and condenser during non-rotation of the turbine. The first set of control doors preferably extend, when closed, between the evaporator casing and the turbine's outer casing and, when open, extend away from the axis of rotation. The second set of control doors preferably constitute a portion of the turbine's outer casing downstream from the blades when closed and extend, when open, toward the axis of rotation. The first and second sets of control doors are normally held in the open and closed positions respectively by locking pins which may be retracted upon detecting an abnormal operating condition respectively to permit their closing and opening and provide steam flow from the evaporator to the condenser.

  13. Cascaded neural networks for sequenced propagation estimation, multiuser detection, and adaptive radio resource control of third-generation wireless networks for multimedia services

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    1999-03-01

    A hybrid neural network approach is presented to estimate radio propagation characteristics and multiuser interference and to evaluate their combined impact on throughput, latency and information loss in third-generation (3G) wireless networks. The latter three performance parameters influence the quality of service (QoS) for multimedia services under consideration for 3G networks. These networks, based on a hierarchical architecture of overlaying macrocells on top of micro- and picocells, are planned to operate in mobile urban and indoor environments with service demands emanating from circuit-switched, packet-switched and satellite-based traffic sources. Candidate radio interfaces for these networks employ a form of wideband CDMA in 5-MHz and wider-bandwidth channels, with possible asynchronous operation of the mobile subscribers. The proposed neural network (NN) architecture allocates network resources to optimize QoS metrics. Parameters of the radio propagation channel are estimated, followed by control of an adaptive antenna array at the base station to minimize interference, and then joint multiuser detection is performed at the base station receiver. These adaptive processing stages are implemented as a sequence of NN techniques that provide their estimates as inputs to a final- stage Kohonen self-organizing feature map (SOFM). The SOFM optimizes the allocation of available network resources to satisfy QoS requirements for variable-rate voice, data and video services. As the first stage of the sequence, a modified feed-forward multilayer perceptron NN is trained on the pilot signals of the mobile subscribers to estimate the parameters of shadowing, multipath fading and delays on the uplinks. A recurrent NN (RNN) forms the second stage to control base stations' adaptive antenna arrays to minimize intra-cell interference. The third stage is based on a Hopfield NN (HNN), modified to detect multiple users on the uplink radio channels to mitigate multiaccess interference, control carrier-sense multiple-access (CSMA) protocols, and refine call handoff procedures. In the final stage, the Kohonen SOFM, operating in a hybrid continuous and discrete space, adaptively allocates the resources of antenna-based cell sectorization, activity monitoring, variable-rate coding, power control, handoff and caller admission to meet user demands for various multimedia services at minimum QoS levels. The performance of the NN cascade is evaluated through simulation of a candidate 3G wireless network using W-CDMA parameters in a small-cell environment. The simulated network consists of a representative number of cells. Mobile users with typical movement patterns are assumed. QoS requirements for different classes of multimedia services are considered. The proposed method is shown to provide relatively low probability of new call blocking and handoff dropping, while maintaining efficient use of the network's radio resources.

  14. Aerodynamic Analysis of Morphing Blades

    NASA Astrophysics Data System (ADS)

    Harris, Caleb; Macphee, David; Carlisle, Madeline

    2016-11-01

    Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  15. The styryl dye FM1-43 suppresses odorant responses in a subset of olfactory neurons by blocking cyclic nucleotide-gated (CNG) channels.

    PubMed

    Breunig, Esther; Kludt, Eugen; Czesnik, Dirk; Schild, Detlev

    2011-08-12

    Many olfactory receptor neurons use a cAMP-dependent transduction mechanism to transduce odorants into depolarizations. This signaling cascade is characterized by a sequence of two currents: a cation current through cyclic nucleotide-gated channels followed by a chloride current through calcium-activated chloride channels. To date, it is not possible to interfere with these generator channels under physiological conditions with potent and specific blockers. In this study we identified the styryl dye FM1-43 as a potent blocker of native olfactory cyclic nucleotide-gated channels. Furthermore, we characterized this substance to stain olfactory receptor neurons that are endowed with cAMP-dependent transduction. This allows optical differentiation and pharmacological interference with olfactory receptor neurons at the level of the signal transduction.

  16. Zero-forcing pre-coding for MIMO WiMAX transceivers: Performance analysis and implementation issues

    NASA Astrophysics Data System (ADS)

    Cattoni, A. F.; Le Moullec, Y.; Sacchi, C.

    Next generation wireless communication networks are expected to achieve ever increasing data rates. Multi-User Multiple-Input-Multiple-Output (MU-MIMO) is a key technique to obtain the expected performance, because such a technique combines the high capacity achievable using MIMO channel with the benefits of space division multiple access. In MU-MIMO systems, the base stations transmit signals to two or more users over the same channel, for this reason every user can experience inter-user interference. This paper provides a capacity analysis of an online, interference-based pre-coding algorithm able to mitigate the multi-user interference of the MU-MIMO systems in the context of a realistic WiMAX application scenario. Simulation results show that pre-coding can significantly increase the channel capacity. Furthermore, the paper presents several feasibility considerations for implementation of the analyzed technique in a possible FPGA-based software defined radio.

  17. Efficient source separation algorithms for acoustic fall detection using a microsoft kinect.

    PubMed

    Li, Yun; Ho, K C; Popescu, Mihail

    2014-03-01

    Falls have become a common health problem among older adults. In previous study, we proposed an acoustic fall detection system (acoustic FADE) that employed a microphone array and beamforming to provide automatic fall detection. However, the previous acoustic FADE had difficulties in detecting the fall signal in environments where interference comes from the fall direction, the number of interferences exceeds FADE's ability to handle or a fall is occluded. To address these issues, in this paper, we propose two blind source separation (BSS) methods for extracting the fall signal out of the interferences to improve the fall classification task. We first propose the single-channel BSS by using nonnegative matrix factorization (NMF) to automatically decompose the mixture into a linear combination of several basis components. Based on the distinct patterns of the bases of falls, we identify them efficiently and then construct the interference free fall signal. Next, we extend the single-channel BSS to the multichannel case through a joint NMF over all channels followed by a delay-and-sum beamformer for additional ambient noise reduction. In our experiments, we used the Microsoft Kinect to collect the acoustic data in real-home environments. The results show that in environments with high interference and background noise levels, the fall detection performance is significantly improved using the proposed BSS approaches.

  18. Identification and mitigation of interference sources present in SSB-based wireless MRI receiver arrays

    PubMed Central

    Riffe, Matthew J.; Twieg, Michael D.; Gudino, Natalia; Blumenthal, Colin J.; Heilman, Jeremy A.; Griswold, Mark A.

    2013-01-01

    Purpose Single sideband amplitude modulation (SSB) is an appealing platform for highly parallel wireless MRI detector arrays because the spacing between channels is ideally limited only by the MRI signal bandwidth. However this assumes that no other sources of interference are present outside that bandwidth. This work investigates the practical interference between multiple SSB-encoded MRI signals. Methods Noise from coil preamplifiers and carrier bleed-through are identified as sources of interference. Two different SSB systems were designed for 1.5T with different noise filtering properties. We show how the differences between the filtered noise profiles impact the received MR signal’s dynamic range (DRsig) and image signal-to-noise ratio (SNR) through simulation, bench measurements, and phantom imaging experiments. Results When operating individually in the MR scanner, both SSB systems were shown to minimally impact the original DRsig and SNR. On the other hand, when all eight channels were operating simultaneously, an average SNR loss was observed to be 12% in the one system, while a second system with more complex filtering was able to achieve a 3% loss in SNR. Conclusion Successful wireless transmission of multiple SSB-encoded MRI signals is possible as long as channel interference is properly managed through design and simulation. PMID:23413242

  19. Design and fabrication of composite blades for the Mod-1 wind turbine generator

    NASA Technical Reports Server (NTRS)

    Batesole, W. R.; Gunsallus, C. T.

    1981-01-01

    The design, tooling, fabrication, quality control, and testing phases carried out to date, as well as testing still planned are described. Differences from the 150 foot blade which were introduced for cost and manufacturing improvement purposes are discussed as well as the lightning protection system installed in the blades. Actual costs and manhours expended for Blade No. 2 are provided as a base, along with a projection of costs for the blade in production.

  20. Industrial SO2 emissions monitoring using a portable multi-channel gas analyzer with an optimized retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Y. W.; Liu, C.; Xie, P. H.; Hartl, A.; Chan, K. L.; Tian, Y.; Wang, W.; Qin, M.; Liu, J. G.; Liu, W. Q.

    2015-12-01

    In this paper, we demonstrate achieving accurate industrial SO2 emissions monitoring using a portable multi-channel gas analyzer with an optimized retrieval algorithm. The introduced analyzer features with large dynamic measurement range and correction of interferences from other co-existing infrared absorbers, e.g., NO, CO, CO2, NO2, CH4, HC, N2O and H2O. Both effects have been the major limitations of industrial SO2 emissions monitoring. The multi-channel gas analyzer measures 11 different wavelength channels simultaneously in order to achieve correction of several major problems of an infrared gas analyzer, including system drift, conflict of sensitivity, interferences among different infrared absorbers and limitation of measurement range. The optimized algorithm makes use of a 3rd polynomial rather than a constant factor to quantify gas-to-gas interference. The measurement results show good performance in both linear and nonlinear range, thereby solving the problem that the conventional interference correction is restricted by the linearity of both intended and interfering channels. The result implies that the measurement range of the developed multi-channel analyzer can be extended to the nonlinear absorption region. The measurement range and accuracy are evaluated by experimental laboratory calibration. An excellent agreement was achieved with a Pearson correlation coefficient (r2) of 0.99977 with measurement range from ~5 ppmv to 10 000 ppmv and measurement error <2 %. The instrument was also deployed for field measurement. Emissions from 3 different factories were measured. The emissions of these factories have been characterized with different co-existing infrared absorbers, covering a wide range of concentration levels. We compared our measurements with the commercial SO2 analyzers. The overall good agreements are achieved.

  1. Adiabatic Quantum Computation: Coherent Control Back Action.

    PubMed

    Goswami, Debabrata

    2006-11-22

    Though attractive from scalability aspects, optical approaches to quantum computing are highly prone to decoherence and rapid population loss due to nonradiative processes such as vibrational redistribution. We show that such effects can be reduced by adiabatic coherent control, in which quantum interference between multiple excitation pathways is used to cancel coupling to the unwanted, non-radiative channels. We focus on experimentally demonstrated adiabatic controlled population transfer experiments wherein the details on the coherence aspects are yet to be explored theoretically but are important for quantum computation. Such quantum computing schemes also form a back-action connection to coherent control developments.

  2. Using a shock control bump to improve the performance of an axial compressor blade section

    NASA Astrophysics Data System (ADS)

    Mazaheri, K.; Khatibirad, S.

    2017-03-01

    Here, we use numerical analysis to study the effects of a shock control bump (SCB) on the performance of a transonic axial compressor blade section and to optimize its shape and location to improve the compressor performance. A section of the NASA rotor 67 blade is used for this study. Two Bézier curves, each consisting of seven control points, are used to model the suction and pressure surfaces of the blade section. The SCB is modeled with the Hicks-Henne function and, using five design parameters, is added to the suction side. The total pressure loss through a cascade of blade sections is selected as the cost function. A continuous adjoint optimization method is used along with a RANS solver to find a new blade section shape. A grid independence study is performed, and all optimization and flow solver algorithms are validated. Two single-point optimizations are performed in the design condition and in an off-design condition. It is shown that both optimized shapes have overall better performance for both on-design and off-design conditions. An analysis is given regarding how the SCB has changed the wave structure between blade sections resulting in a more favorable flow pattern.

  3. Advanced Technology Blade testing on the XV-15 Tilt Rotor Research Aircraft

    NASA Technical Reports Server (NTRS)

    Wellman, Brent

    1992-01-01

    The XV-15 Tilt Rotor Research Aircraft has just completed the first series of flight tests with the Advanced Technology Blade (ATB) rotor system. The ATB are designed specifically for flight research and provide the ability to alter blade sweep and tip shape. A number of problems were encountered from first installation through envelope expansion to airplane mode flight that required innovative solutions to establish a suitable flight envelope. Prior to operation, the blade retention hardware had to be requalified to a higher rated centrifugal load, because the blade weight was higher than expected. Early flights in the helicopter mode revealed unacceptably high vibratory control system loads which required a temporary modification of the rotor controls to achieve higher speed flight and conversion to airplane mode. The airspeed in airplane mode was limited, however, because of large static control loads. Furthermore, analyses based on refined ATB blade mass and inertia properties indicated a previously unknown high-speed blade mode instability, also requiring airplane-mode maximum airspeed to be restricted. Most recently, a structural failure of an ATB cuff (root fairing) assembly retention structure required a redesign of the assembly. All problems have been addressed and satisfactory solutions have been found to allow continued productive flight research of the emerging tilt rotor concept.

  4. Wind turbine generators with active radar signature control blades

    NASA Astrophysics Data System (ADS)

    Tennant, Alan; Chambers, Barry

    2004-07-01

    The large radar cross section of wind turbine generator (WTG) blades combined with high tip speeds can produce significant Doppler returns when illuminated by a radar. Normally, an air traffic control radar system will filter out large returns from stationary targets, however the Doppler shifts introduced by the WTG are interpreted as moving aircraft that can confuse radar operators and compromise safety. A possible solution to this problem that we are investigating is to incorporate an active layer into the structure of the WTG blades that can be used to dynamically modulate the RCS of the blade return. The active blade can operate in one of two modes: firstly the blade RCS can be modulated to provide a Doppler return that is outside the detectable range of the radar receiver system so that it is rejected: a second mode of operation is to introduce specific coding on to the Doppler returns so that they may be uniquely identified and rejected. The active layer used in the system consists of a frequency selective surface controlled by semiconductor diodes and is a development of techniques that we have developed for active radar absorbers. Results of experimental work using a 10GHz Doppler radar and scale model WTG with active Doppler imparting blades are presented.

  5. Optical beat interference noise reduction in OFDMA optical access link using self-homodyne balanced detection

    NASA Astrophysics Data System (ADS)

    Jung, Sang-Min; Won, Yong-Yuk; Han, Sang-Kook

    2013-12-01

    A Novel technique for reducing the OBI noise in optical OFDMA-PON uplink is presented. OFDMA is a multipleaccess/ multiplexing scheme that can provide multiplexing operation of user data streams onto the downlink sub-channels and uplink multiple access by means of dividing OFDM subcarriers as sub-channels. The main issue of high-speed, single-wavelength upstream OFDMA-PON arises from optical beating interference noise. Because the sub-channels are allocated dynamically to multiple access users over same nominal wavelength, it generates the optical beating interference among upstream signals. In this paper, we proposed a novel scheme using self-homodyne balanced detection in the optical line terminal (OLT) to reduce OBI noise which is generated in the uplink transmission of OFDMA-PON system. When multiple OFDMA sub-channels over the same nominal wavelength are received at the same time in the proposed architecture, OBI noises can be removed using balanced detection. Using discrete multitone modulation (DMT) to generate real valued OFDM signals, the proposed technique is verified through experimental demonstration.

  6. Possible role of interference, protein noise, and sink effects in nonphotochemical quenching in photosynthetic complexes.

    PubMed

    Berman, Gennady P; Nesterov, Alexander I; Gurvitz, Shmuel; Sayre, Richard T

    2017-01-01

    We analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the "damaging" and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In our model, both damaging and "dissipative" charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimic the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. These equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.

  7. Possible role of interference, protein noise, and sink effects in nonphotochemical quenching in photosynthetic complexes

    DOE PAGES

    Berman, Gennady P.; Nesterov, Alexander I.; Gurvitz, Shmuel; ...

    2016-04-30

    Here, we analyze theoretically a simple and consistent quantum mechanical model that reveals the possible role of quantum interference, protein noise, and sink effects in the nonphotochemical quenching (NPQ) in light-harvesting complexes (LHCs). The model consists of a network of five interconnected sites (excitonic states of light-sensitive molecules) responsible for the NPQ mechanism. The model also includes the “damaging” and the dissipative channels. The damaging channel is responsible for production of singlet oxygen and other destructive outcomes. In this model, both damaging and “dissipative” charge transfer channels are described by discrete electron energy levels attached to their sinks, that mimicmore » the continuum part of electron energy spectrum. All five excitonic sites interact with the protein environment that is modeled using a stochastic process. Our approach allowed us to derive the exact and closed system of linear ordinary differential equations for the reduced density matrix and its first momentums. Moreover, these equations are solved numerically including for strong interactions between the light-sensitive molecules and protein environment. As an example, we apply our model to demonstrate possible contributions of quantum interference, protein noise, and sink effects in the NPQ mechanism in the CP29 minor LHC. The numerical simulations show that using proper combination of quantum interference effects, properties of noise, and sinks, one can significantly suppress the damaging channel. Finally, our findings demonstrate the possible role of interference, protein noise, and sink effects for modeling, engineering, and optimizing the performance of the NPQ processes in both natural and artificial light-harvesting complexes.« less

  8. Power turbine ventilation system

    NASA Technical Reports Server (NTRS)

    Wakeman, Thomas G. (Inventor); Brown, Richard W. (Inventor)

    1991-01-01

    Air control mechanism within a power turbine section of a gas turbine engine. The power turbine section includes a rotor and at least one variable pitch propulsor blade. The propulsor blade is coupled to and extends radially outwardly of the rotor. A first annular fairing is rotatable with the propulsor blade and interposed between the propulsor blade and the rotor. A second fairing is located longitudinally adjacent to the first fairing. The first fairing and the second fairing are differentially rotatable. The air control mechanism includes a platform fixedly coupled to a radially inner end of the propulsor blade. The platform is generally positioned in a first opening and a first fairing. The platform and the first fairing define an outer space. In a first position corresponding with a first propulsor blade pitch, the platform is substantially conformal with the first fairing. In a second position corresponding with the second propulsor blade pitch, an edge portion of the platform is displaced radially outwardly from the first fairing. When the blades are in the second position and rotating about the engine axis, the displacement of the edge portion with respect to the first fairing allows air to flow from the outer space to the annular cavity.

  9. Truthful Channel Sharing for Self Coexistence of Overlapping Medical Body Area Networks

    PubMed Central

    Dutkiewicz, Eryk; Zheng, Guanglou

    2016-01-01

    As defined by IEEE 802.15.6 standard, channel sharing is a potential method to coordinate inter-network interference among Medical Body Area Networks (MBANs) that are close to one another. However, channel sharing opens up new vulnerabilities as selfish MBANs may manipulate their online channel requests to gain unfair advantage over others. In this paper, we address this issue by proposing a truthful online channel sharing algorithm and a companion protocol that allocates channel efficiently and truthfully by punishing MBANs for misreporting their channel request parameters such as time, duration and bid for the channel. We first present an online channel sharing scheme for unit-length channel requests and prove that it is truthful. We then generalize our model to settings with variable-length channel requests, where we propose a critical value based channel pricing and preemption scheme. A bid adjustment procedure prevents unbeneficial preemption by artificially raising the ongoing winner’s bid controlled by a penalty factor λ. Our scheme can efficiently detect selfish behaviors by monitoring a trust parameter α of each MBAN and punish MBANs from cheating by suspending their requests. Our extensive simulation results show our scheme can achieve a total profit that is more than 85% of the offline optimum method in the typical MBAN settings. PMID:26844888

  10. Development of an active twist rotor blade with distributed actuation and orthotropic material

    NASA Astrophysics Data System (ADS)

    Wierach, Peter; Riemenschneider, Johannes; Keye, Stefan

    2005-05-01

    Individual blade control (IBC) as well as higher harmonic control (HHC) for helicopter rotors promises to be a method to increase flight performance and to reduce vibration and noise. For those controls, an additional twist actuation of the rotor blade is needed. The developed concept comprises the implementation of distributed piezoelectric actuation into the rotor blade skin. In order to maximize the twist within given constraints, as torsional rigidity and given actuator design, the concept takes advantage of an orthotropic rotor blade skin. That way, a combination of shear actuation with orthotropic coupling generates more twist than each one of these effects alone. Previous approaches with distributed actuation used actuators operating in +/-45° direction with quasi-isotropic composites. A FE-Model of the blade was developed and validated using a simplified demonstrator. The objective of this study was to identify the effects of various geometric and material parameters to optimize the active twist performance of the blades. The whole development was embedded in an iterative process followed by an objective assessment. For this purpose a detailed structural model on the basis of the BO105 model rotor blade was developed, to predict the performance with respect to rotor dynamics, stability, aerodynamics and acoustics. Rotor dynamic simulations provided an initial overview of the active twist rotor performance. In comparison to the BO105 baseline rotor a noise reduction of 3 dB was predicted for an active twist of 0.8° at the blade tip. Additionally, a power reduction of 2.3% at 87m/s based on a 2.5 to BO105 was computed. A demonstrator blade with a rotor radius of 2m has been designed and manufactured. This blade will be tested to prove, that the calculated maximum twist can also be achieved under centrifugal loads.

  11. Spectrum Orbit Utilization Program Documentation: SOUP5 Version 3.8 User's Manual, Volume 2, Appendices a Through G

    NASA Technical Reports Server (NTRS)

    Davidson, J.; Ottey, H. R.; Sawitz, P.; Zusman, F. S.

    1985-01-01

    The appendixes of the user manual are presented. Input forms which may be used to prepare data for the SOUP5V3.4 of the R2BCSAT-83 data base are given. The IBM job control language which can be used to run the SOUP5 system from a magnetic tape is described. Copies of a run using the delivered tape and IBM OS/MVS Job Control Language card deck are illustrated. Numerical limits on scenario data requests are listed. Error handling, error messages and editing procedures are also listed. Instructions as to how to enter a protection ratio template are given. And relation between PARC prameter, channelization, channel families, and interference categories are also listed.

  12. Ultrasail

    NASA Technical Reports Server (NTRS)

    Burton, R.; Benavides, G.; Coverston, V.; Hartmann, W.; Hargens, J.; Westerhoff, J.; Jones, Jonathan (Technical Monitor)

    2003-01-01

    Ultrasail is a complete sail system for the launch, deployment, stabilization and control of very large solar sails enabling reduced mission times for interplanetary and deep space spacecraft. Ultrasail is an innovative, non-traditional approach to propulsion technology achieved by combining propulsion and control systems developed for formation-flying microsatellites with an innovative solar sail architecture to achieve sq km-class controllable sail areas, sail subsystem area densities of 1 gm per sq m, and thrust levels equivalent to 400 kW ion thruster systems used for comparable deep space missions. Ultrasail can conceivably even achieve outer planetary rendezvous, a deep space capability now reserved for high-mass nuclear and chemical systems. Ultrasail is a Delta IV-launched multi-blade spin-stabilized system with blade lengths as long as 50 km, reminiscent of the MacNeal Heliogyro. The primary innovation is the near-elimination of sail supporting structures by attaching the sail tip to a rigid formation-flying microsatellite truss which deploys the sail blade, and which then articulates the blade to provide attitude control, including spin stabilization and precession of the spin axis. These tip microsatellites are controlled by a solar-powered 3-axis microthruster system (electric or cold gas) to maintain proper sail film tension during deployment and spin-up. The satellite mass also provides a stabilizing centrifugal force on the blade while in rotation. Understanding the dynamics of individual blades is key to the overall dynamics of Ultrasail. Forces and torques that must be modeled include those due to solar pressure, those generated by the microsatellite at the blade tip and by torques applied at the blade root. Centrifugal forces also play a significant role in the deployment and maintenance of the sail configuration. To capture the dynamics of the overall system, the equations of motion for the blades have been derived. Using these differential equations, a control law will be derived to maneuver Ultrasail. This law involves the pitching of the individual blades thereby moving the distribution of the radiation pressure on each individual blade and inducing a resultant torque on the system. The direction of the angular momentum vector and its rate of precession can be controlled through the pitch angle of the blades. The Ultrasail trajectory is also being studied. Optimal or near-optimal trajectories are being generated to showcase Ultrasail performance. Various missions, e.g. outer planet and solar polar missions for observation of the Sun, are currently being investigated to demonstrate the performance enhancements generated by Ultrasail technology. Calculus-of-variations-based optimization software is used to produce optimal Ultrasail trajectories. The performance of these trajectories is being compared to optimal results generated with other propulsion models, including chemical propulsion, ion propulsion, and competing solar sail concepts. Results of these studies will quantify the performance of Ultrasail compared to existing solar sail concepts for high energy missions.

  13. Heat Transfer in a Complex Trailing Edge Passage for a High Pressure Turbine Blade. Part 2:; Simulation Results

    NASA Technical Reports Server (NTRS)

    Rigby, David L.; Bunker, Ronald S.

    2002-01-01

    A combined experimental and numerical study to investigate the heat transfer distribution in a complex blade trailing edge passage was conducted. The geometry consists of a two pass serpentine passage with taper toward the trailing edge, as well as from hub to tip. The upflow channel has an average aspect ratio of roughly 14:1, while the exit passage aspect ratio is about 5:1. The upflow channel is split in an interrupted way and is smooth on the trailing edge side of the split and turbulated on the other side. A turning vane is placed near the tip of the upflow channel. Reynolds numbers in the range of 31,000 to 61,000, based on inlet conditions, were simulated numerically. The simulation was performed using the Glenn-HT code, a full three-dimensional Navier-Stokes solver using the Wilcox k-omega turbulence model. A structured multi-block grid is used with approximately 4.5 million cells and average y+ values on the order of unity. Pressure and heat transfer distributions are presented with comparison to the experimental data. While there are some regions with discrepancies, in general the agreement is very good for both pressure and heat transfer.

  14. 47 CFR 74.604 - Interference avoidance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... common channel for TV pickup, TV STL, or TV relay purposes in the same area and simultaneous operation is... will have the following priority for purposes of interference protection: (1) All fixed links for full...

  15. 47 CFR 74.604 - Interference avoidance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... common channel for TV pickup, TV STL, or TV relay purposes in the same area and simultaneous operation is... will have the following priority for purposes of interference protection: (1) All fixed links for full...

  16. Boundary-Layer Control to Helicopter Rotor Blades.

    NASA Image and Video Library

    1957-01-22

    Experimental investigation of boundary-layer control to helicopter rotor blades to increase forward speed capabilities. 3/4 front view. Shaft angle - 35deg. John Mc.Cloud in picture. He was a good guy.

  17. Diagnosis of occlusal dysesthesia utilizing prefrontal hemodynamic activity with slight occlusal interference.

    PubMed

    Ono, Yumie; Ishikawa, Yu; Munakata, Motohiro; Shibuya, Tomoaki; Shimada, Atsushi; Miyachi, Hideo; Wake, Hiroyuki; Tamaki, Katsushi

    2016-11-01

    Clinical diagnosis of occlusal dysesthesia (OD), also referred to as phantom bite syndrome, is currently based on the absence of objective occlusal discrepancy despite the persistent complaint of uncomfortable bite sensation. We previously demonstrated that the subjective feeling of occlusal discomfort generated by artificial occlusal interference can be objectively evaluated using prefrontal hemodynamic activity in young healthy individuals. The aim of this study was to investigate whether dental patients with and without OD show distinct prefrontal activity during grinding behavior with an occlusal interference. Six dental patients with OD (OD group) and eight patients without OD (control group) grinded piled occlusal strips placed between their first molars and reported their perception and discomfort thresholds during continuous monitoring of prefrontal hemodynamic activity with a portable functional near-infrared spectroscopy. Although patients without OD showed the typical hemodynamic pattern of increased oxyhemoglobin and reduced deoxyhemoglobin (HHb) concentration, those with OD showed persistent incremental increases of HHb concentration that began at the loading of occlusal strips on their molars before they executed grinding. The intensities of the task-related HHb activities showed statistically significant differences between OD and control groups, particularly at channel 3, arranged over the left frontal pole cortex. When the discrimination criterion was set using the intensity values of channel 3 from both groups, the overall accuracy of the OD discrimination was 92.9%. Although physiological interpretation has yet to be elucidated, the task-related response of an increase in HHb may be a useful neuronal signature to characterize dental patients with OD.

  18. Diagnosis of occlusal dysesthesia utilizing prefrontal hemodynamic activity with slight occlusal interference

    PubMed Central

    Ishikawa, Yu; Munakata, Motohiro; Shibuya, Tomoaki; Shimada, Atsushi; Miyachi, Hideo; Wake, Hiroyuki; Tamaki, Katsushi

    2016-01-01

    Clinical diagnosis of occlusal dysesthesia (OD), also referred to as phantom bite syndrome, is currently based on the absence of objective occlusal discrepancy despite the persistent complaint of uncomfortable bite sensation. We previously demonstrated that the subjective feeling of occlusal discomfort generated by artificial occlusal interference can be objectively evaluated using prefrontal hemodynamic activity in young healthy individuals. The aim of this study was to investigate whether dental patients with and without OD show distinct prefrontal activity during grinding behavior with an occlusal interference. Six dental patients with OD (OD group) and eight patients without OD (control group) grinded piled occlusal strips placed between their first molars and reported their perception and discomfort thresholds during continuous monitoring of prefrontal hemodynamic activity with a portable functional near‐infrared spectroscopy. Although patients without OD showed the typical hemodynamic pattern of increased oxyhemoglobin and reduced deoxyhemoglobin (HHb) concentration, those with OD showed persistent incremental increases of HHb concentration that began at the loading of occlusal strips on their molars before they executed grinding. The intensities of the task‐related HHb activities showed statistically significant differences between OD and control groups, particularly at channel 3, arranged over the left frontal pole cortex. When the discrimination criterion was set using the intensity values of channel 3 from both groups, the overall accuracy of the OD discrimination was 92.9%. Although physiological interpretation has yet to be elucidated, the task‐related response of an increase in HHb may be a useful neuronal signature to characterize dental patients with OD. PMID:29744159

  19. Analysis of a Near Field MIMO Wireless Channel Using 5.6 GHz Dipole Antennas

    NASA Astrophysics Data System (ADS)

    Maricar, Mohamed Ismaeel; Gradoni, Gabriele; Greedy, Steve; Ivrlac, Michel T.; Nossek, Josef A.; Phang, Sendy; Creagh, Stephen C.; Tanner, Gregor; Thomas, David W. P.

    2016-05-01

    Understanding the impact of interference upon the performance of a multiple input multiple output (MIMO) based device is of paramount importance in ensuring a design is both resilient and robust. In this work the effect of element-element interference in the creation of multiple channels of a wireless link approaching the near-field regime is studied. The elements of the 2-antenna transmit- and receive-arrays are chosen to be identical folded dipole antennas operating at 5.6 GHz. We find that two equally strong channels can be created even if the antennas interact at sub-wavelength distances, thus confirming previous theoretical predictions.

  20. Detection and compensation of power imbalances for DP-QAM transmitter using reconfigurable interference

    NASA Astrophysics Data System (ADS)

    Yue, Yang; Wang, Qiang; Zhang, Bo; Vovan, Andre; Anderson, Jon

    2017-01-01

    DP-QAM is one of the most promising paths towards 400-Gb/s and 1-Tb/s commercial optical communications systems. For DP-QAM transmitter, different tributary channel powers lead to IQ or XY power imbalance. Large uncompensated IQ or XY power imbalance can significantly degrade the performance in the coherent optical communications system. In this work, we propose and experimentally demonstrate a technique to detect and compensate DP-QAM transmitter power imbalances for tributary channels. By reconfigurably interfering de-skewed identical BPSK channels, the optical powers of any two tributaries can be balanced by minimizing the output power from their optical interference.

  1. The impact of the CACNA1C risk allele on limbic structures and facial emotions recognition in bipolar disorder subjects and healthy controls.

    PubMed

    Soeiro-de-Souza, Márcio Gerhardt; Otaduy, Maria Concepción Garcia; Dias, Carolina Zadres; Bio, Danielle S; Machado-Vieira, Rodrigo; Moreno, Ricardo Alberto

    2012-12-01

    Impairments in facial emotion recognition (FER) have been reported in bipolar disorder (BD) during all mood states. FER has been the focus of functional magnetic resonance imaging studies evaluating differential activation of limbic regions. Recently, the α1-C subunit of the L-type voltage-gated calcium channel (CACNA1C) gene has been described as a risk gene for BD and its Met allele found to increase CACNA1C mRNA expression. In healthy controls, the CACNA1C risk (Met) allele has been reported to increase limbic system activation during emotional stimuli and also to impact on cognitive function. The aim of this study was to investigate the impact of CACNA1C genotype on FER scores and limbic system morphology in subjects with BD and healthy controls. Thirty-nine euthymic BD I subjects and 40 healthy controls were submitted to a FER recognition test battery and genotyped for CACNA1C. Subjects were also examined with a 3D 3-Tesla structural imaging protocol. The CACNA1C risk allele for BD was associated to FER impairment in BD, while in controls nothing was observed. The CACNA1C genotype did not impact on amygdala or hippocampus volume neither in BD nor controls. Sample size. The present findings suggest that a polymorphism in calcium channels interferes FER phenotype exclusively in BD and doesn't interfere on limbic structures morphology. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Corner flow control in high through-flow axial commercial fan/booster using blade 3-D optimization

    NASA Astrophysics Data System (ADS)

    Zhu, Fang; Jin, Donghai; Gui, Xingmin

    2012-02-01

    This study is aimed at using blade 3-D optimization to control corner flows in the high through-flow fan/booster of a high bypass ratio commercial turbofan engine. Two kinds of blade 3-D optimization, end-bending and bow, are focused on. On account of the respective operation mode and environment, the approach to 3-D aerodynamic modeling of rotor blades is different from stator vanes. Based on the understanding of the mechanism of the corner flow and the consideration of intensity problem for rotors, this paper uses a variety of blade 3-D optimization approaches, such as loading distribution optimization, perturbation of departure angles and stacking-axis manipulation, which are suitable for rotors and stators respectively. The obtained 3-D blades and vanes can improve the corner flow features by end-bending and bow effects. The results of this study show that flows in corners of the fan/booster, such as the fan hub region, the tip and hub of the vanes of the booster, are very complex and dominated by 3-D effects. The secondary flows there are found to have a strong detrimental effect on the compressor performance. The effects of both end-bending and bow can improve the flow separation in corners, but the specific ways they work and application scope are somewhat different. Redesigning the blades via blade 3-D optimization to control the corner flow has effectively reduced the loss generation and improved the stall margin by a large amount.

  3. Coordinated Beamforming for MISO Interference Channel: Complexity Analysis and Efficient Algorithms

    DTIC Science & Technology

    2010-01-01

    Algorithm The cyclic coordinate descent algorithm is also known as the nonlinear Gauss - Seidel iteration [32]. There are several studies of this type of...vkρ(vi−1). It can be shown that the above BB gradient projection direction is always a descent direction. The R-linear convergence of the BB method has...KKT solution ) of the inexact pricing algorithm for MISO interference channel. The latter is interesting since the convergence of the original pricing

  4. Implementation of a Biaxial Resonant Fatigue Test Method on a Large Wind Turbine Blade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snowberg, D.; Dana, S.; Hughes, S.

    2014-09-01

    A biaxial resonant test method was utilized to simultaneously fatigue test a wind turbine blade in the flap and edge (lead-lag) direction. Biaxial resonant blade fatigue testing is an accelerated life test method utilizing oscillating masses on the blade; each mass is independently oscillated at the respective flap and edge blade resonant frequency. The flap and edge resonant frequency were not controlled, nor were they constant for this demonstrated test method. This biaxial resonant test method presented surmountable challenges in test setup simulation, control and data processing. Biaxial resonant testing has the potential to complete test projects faster than single-axismore » testing. The load modulation during a biaxial resonant test may necessitate periodic load application above targets or higher applied test cycles.« less

  5. Evaluation of Rotor Structural and Aerodynamic Loads using Measured Blade Properties

    NASA Technical Reports Server (NTRS)

    Jung, Sung N.; You, Young-Hyun; Lau, Benton H.; Johnson, Wayne; Lim, Joon W.

    2012-01-01

    The structural properties of Higher harmonic Aeroacoustic Rotor Test (HART I) blades have been measured using the original set of blades tested in the wind tunnel in 1994. A comprehensive rotor dynamics analysis is performed to address the effect of the measured blade properties on airloads, blade motions, and structural loads of the rotor. The measurements include bending and torsion stiffness, geometric offsets, and mass and inertia properties of the blade. The measured properties are correlated against the estimated values obtained initially by the manufacturer of the blades. The previously estimated blade properties showed consistently higher stiffnesses, up to 30% for the flap bending in the blade inboard root section. The measured offset between the center of gravity and the elastic axis is larger by about 5% chord length, as compared with the estimated value. The comprehensive rotor dynamics analysis was carried out using the measured blade property set for HART I rotor with and without HHC (Higher Harmonic Control) pitch inputs. A significant improvement on blade motions and structural loads is obtained with the measured blade properties.

  6. Laryngoscope plastic blades in scheduled general anesthesia patients: a comparative randomized study.

    PubMed

    Galinski, Michel; Catineau, Jean; Rayeh, Fatima; Muret, Jane; Ciebiera, Jean-Pierre; Plantevin, Frédéric; Foucrier, Arnaud; Tual, Loic; Combes, Xavier; Adnet, Frédéric

    2011-03-01

    To compare two brands of disposable plastic laryngoscope blades, Vital View plastic blades and Heine XP plastic blades, with the reusable Heine Classic+ Macintosh metal blades. Prospective randomized, controlled, single-blinded study. Operating room of a university-affiliated hospital. 519 patients without criteria for predicted difficult intubation, undergoing scheduled surgery during general anesthesia. Patients were randomized to three groups according to laryngoscope blade brand. Difficult tracheal intubation was evaluated by the Intubation Difficulty Scale (IDS) (IDS > 5 = procedure involving moderate to major difficulty). The percentage of intubations with an IDS > 5 was 3.1% in Group M (metal blade group), 5.1% in Group V (Vital View plastic blade group), and 10.0% in Group H (Heine plastic blade group). A significant difference was noted between Groups M and H (P = 0.02) but not between Groups M and V. Intubation may be more challenging when using Heine XP plastic blades but no significant difference exists between Vital-View plastic blades and Heine Classic+ metal blades. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Heat transfer in internal channel of a blade: Effects of rotation in a trailing edge cooling system

    NASA Astrophysics Data System (ADS)

    Andrei, Luca; Andreini, Antonio; Bonanni, Leonardo; Facchini, Bruno

    2012-06-01

    The aerothermal performance of a trailing edge (TE) internal cooling system of a high pressure gas turbine blade was evaluated under stationary and rotating conditions. The investigated geometry consists of a 30:1 scaled model reproducing a typical wedge shaped discharge duct with one row of enlarged pedestals. The airflow pattern inside the device simulates a highly loaded rotor blade cooling scheme with a 90 [deg] turning flow from the radial hub inlet to the tangential TE outlet. Two different tip configurations were tested, the first one with a completely closed section, the second one with a 5 holes outlet surfaces discharging at ambient pressure. In order to assess rotation effects, a rotating test rig, composed of a rotating arm holding both the PMMA TE model and the instrumentation, was purposely developed and manufactured. A thin Inconel heating foil and wide band Thermo-chromic Liquid Crystals are used to perform steady state heat transfer measurements on the blade pressure side. A rotary joint ensures the pneumatic connection between the blower and the rotating apparatus; moreover several slip rings are used for both instrumentation power supply and thermocouple connection. A parallel CFD analysis involving steady-state RANS modeling was conducted to allow an insight of the flow field inside the redirecting channel and the interpedestal ducts to better interpret the developing vortical structures. Low-Reynolds grid clustering permits to integrate up to the wall both the momentum and the thermal boundary layer. Calculations were performed by means of an in-house developed pressure based solver exploiting the k-ω SST turbulence model implemented in the framework of the open-source finite volume discretization toolbox OpenFOAM®. Analyzed flow conditions correspond to Reynolds number of 20000 in the hub inlet section and angular speed varies to obtain rotation numbers in the range from 0 to 0.3. The orientation of the rotation axis is orthogonal to the heated surface as to resemble a 90 [deg] blade metal angle. Results are reported in terms of detailed heat transfer coefficient 2D maps on the suction side surface as well as spanwise profiles inside the pedestal ducts.

  8. Adaptive suppression of power line interference in ultra-low field magnetic resonance imaging in an unshielded environment.

    PubMed

    Huang, Xiaolei; Dong, Hui; Qiu, Yang; Li, Bo; Tao, Quan; Zhang, Yi; Krause, Hans-Joachim; Offenhäusser, Andreas; Xie, Xiaoming

    2018-01-01

    Power-line harmonic interference and fixed-frequency noise peaks may cause stripe-artifacts in ultra-low field (ULF) magnetic resonance imaging (MRI) in an unshielded environment and in a conductively shielded room. In this paper we describe an adaptive suppression method to eliminate these artifacts in MRI images. This technique utilizes spatial correlation of the interference from different positions, and is realized by subtracting the outputs of the reference channel(s) from those of the signal channel(s) using wavelet analysis and the least squares method. The adaptive suppression method is first implemented to remove the image artifacts in simulation. We then experimentally demonstrate the feasibility of this technique by adding three orthogonal superconducting quantum interference device (SQUID) magnetometers as reference channels to compensate the output of one 2nd-order gradiometer. The experimental results show great improvement in the imaging quality in both 1D and 2D MRI images at two common imaging frequencies, 1.3 kHz and 4.8 kHz. At both frequencies, the effective compensation bandwidth is as high as 2 kHz. Furthermore, we examine the longitudinal relaxation times of the same sample before and after compensation, and show that the MRI properties of the sample did not change after applying adaptive suppression. This technique can effectively increase the imaging bandwidth and be applied to ULF MRI detected by either SQUIDs or Faraday coil in both an unshielded environment and a conductively shielded room. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Optical transmission modules for multi-channel superconducting quantum interference device readouts.

    PubMed

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2013-12-01

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  10. Construction, testing and development of large wind energy facilities

    NASA Technical Reports Server (NTRS)

    Windheim, R. (Editor); Cuntze, R. (Editor)

    1982-01-01

    Building large rotor blades and control of oscillations in large facilities are discussed. It is concluded that the technical problems in the design of large rotor blades and control of oscillations can be solved.

  11. A Comparison Study of Magnetic Bearing Controllers for a Fully Suspended Dynamic Spin Rig

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Johnson, Dexter; Morrison, Carlos; Mehmed, Oral; Huff, Dennis (Technical Monitor)

    2002-01-01

    NASA Glenn Research Center (GRC) has developed a fully suspended magnetic bearing system for the Dynamic Spin Rig (DSR) that is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. Two heteropolar radial magnetic bearings and a thrust bearing and the associated control system were integrated into the DSR to provide noncontact magnetic suspension and mechanical excitation of the 35 lb vertical rotor with blades to induce turbomachinery blade vibration. A simple proportional-integral-derivative (PID) controller with a special feature for multidirectional radial excitation worked very well to both support and shake the shaft with blades. However, more advanced controllers were developed and successfully tested to determine the optimal controller in terms of sensor and processing noise reduction, smaller rotor orbits, and energy savings for the system. The test results of a variety of controllers we demonstrated up to the rig's maximum allowable speed of 10,000 rpm are shown.

  12. Study to eliminate ground resonance using active controls

    NASA Technical Reports Server (NTRS)

    Straub, F. K.

    1984-01-01

    The effectiveness of active control blade feathering in increasing rotor body damping and the possibility to eliminate ground resonance instabilities were investigated. An analytical model representing rotor flapping and lead-lag degrees of freedom and body pitch, roll, longitudinal and lateral motion is developed. Active control blade feathering is implemented as state variable feedback through a conventional swashplate. The influence of various feedback states, feedback gain, and weighting between the cyclic controls is studied through stability and response analyses. It is shown that blade cyclic inplane motion, roll rate and roll acceleration feedback can add considerable damping to the system and eliminate ground resonance instabilities, which the feedback phase is also a powerful parameter, if chosen properly, it maximizes augmentation of the inherent regressing lag mode damping. It is shown that rotor configuration parameters, like blade root hinge offset, flapping stiffness, and precone considerably influence the control effectiveness. It is found that active control is particularly powerful for hingeless and bearingless rotor systems.

  13. Flow control of a centrifugal fan in a commercial air conditioner

    NASA Astrophysics Data System (ADS)

    Kim, Jiyu; Bang, Kyeongtae; Choi, Haecheon; Seo, Eung Ryeol; Kang, Yonghun

    2015-11-01

    Air-conditioning fans require a low noise level to provide user comfort and quietness. The aerodynamic noise sources are generated by highly unsteady, turbulent structures near the fan blade. In this study, we investigate the flow characteristics of a centrifugal fan in an air-conditioner indoor unit and suggest control ideas to develop a low noise fan. The experiment is conducted at the operation condition where the Reynolds number is 163000 based on the blade tip velocity and chord length. Intermittent separation occurs at the blade leading edge and thus flow significantly fluctuates there, whereas vortex shedding occurs at the blade trailing edge. Furthermore, the discharge flow observed in the axial plane near the shroud shows low-frequency intermittent behaviors, resulting in high Reynolds stresses. To control these flow structures, we modify the shapes of the blade leading edge and shroud of the centrifugal fan and obtain noise reduction. The flow characteristics of the base and modified fans will be discussed. Supported by 0420-20130051.

  14. Photonic channels for quantum communication

    PubMed

    van Enk SJ; Cirac; Zoller

    1998-01-09

    A general photonic channel for quantum communication is defined. By means of local quantum computing with a few auxiliary atoms, this channel can be reduced to one with effectively less noise. A scheme based on quantum interference is proposed that iteratively improves the fidelity of distant entangled particles.

  15. Rotor blade construction for circulation control aircraft

    NASA Technical Reports Server (NTRS)

    Carter, Sr., Donald R. (Inventor); Sedlak, Matthew (Inventor); Krauss, Timothy A. (Inventor)

    1986-01-01

    A circulation control aircraft rotor blade having a spanwise Coanda surface 16 and a plurality of spanwise extending flexible composite material panels 18 cooperating with the surface to define slots for the discharge of compressed air from within the blade with each panel having first flexure means 60 associated with screw adjustments 36 for establishing a slot opening preload and second flexure means 62 associated with screw adjustments 38 for establishing a slot maximum opening.

  16. Tides Stabilize Deltas until Humans Interfere

    NASA Astrophysics Data System (ADS)

    Hoitink, T.; Zheng Bing, W.; Vermeulen, B.; Huismans, Y.; Kastner, K.

    2017-12-01

    Despite global concerns about river delta degradation caused by extraction of natural resources, sediment retention by reservoirs and sea-level rise, human activity in the world's largest deltas intensifies. In this review, we argue that tides tend to stabilize deltas until humans interfere. Under natural circumstances, delta channels subject to tides are more stable than their fluvial-dominated counterparts. The oscillatory tidal flow counteracts the processes responsible for bank erosion, which explains why unprotected tidal channels migrate only slowly. Peak river discharges attenuate the tides, which creates storage space to accommodate the extra river discharge during extreme events and as a consequence, reduce flood risk. With stronger tides, the river discharge is being distributed more evenly over the various branches in a delta, preventing silting up of smaller channels. Human interference in deltas is massive. Storm surge barriers are constructed, new land is being reclaimed and large-scale sand excavation takes place, to collect building material. Evidence from deltas around the globe shows that in human-controlled deltas the tidal motion often plays a destabilizing role. In channels of the Rhine-Meuse Delta, some 100 scour holes are identified, which relates to the altered tidal motion after completion of a storm surge barrier. Sand mining has led to widespread river bank failures in the tidally-influenced Mekong Delta. The catastrophic flood event in the Gauges-Brahmaputra Delta by Cyclone Aila, which caused the inundation of an embanked polder area for over two years, was preceded by river bank erosion at the mouths of formal tidal channels that were blocked by the embankment. Efforts to predict the developments of degrading deltas are few. Existing delta models are capable of reproducing expanding deltas, which is essentially a matter of simulating the transport of sediment from source in a catchment to the sink in a delta. Processes of soil compaction, mixing of sands and clay, and the influence of peat layers complicate the prediction of delta erosion. Considering sea-level rise, sediment depletion and all the direct human modifications in deltas, there is a need for a new generation delta models using quantified erosion resistance from geological records.

  17. Application of a quasi-3D inviscid flow and boundary layer analysis to the hub-shroud contouring of a radial turbine

    NASA Technical Reports Server (NTRS)

    Civinskas, K.; Povinelli, L. A.

    1984-01-01

    Application of a quasi-3D approach to the aerodynamic analysis of several radial turbine configurations is described. The objective was to improve the rotor aerodynamic characteristics by hub-shroud contouring. The approach relies on available 2D inviscid methods coupled with boundary layer analysis to calculate profile, mixing, and endwall losses. Windage, tip clearance, incidence, and secondary flow losses are estimated from correlations. To eliminate separation along the hub and blade suction surfaces of a baseline rotor, the analysis was also applied to three alternate hub-shroud geometries. Emphasis was on elimination of an inducer velocity overshoot as well as increasing hub velocities. While separation was never eliminated, the extent of the separated area was progressively reduced. Results are presented in terms of mid-channel and blade surface velocities; kinetic energy loss coefficients; and efficiency. The calculation demonstrates a first step for a systematic approach to radial turbine design that can be used to identify and control aerodynamic characteristics that ultimately determine heat transfer and component life. Experimentation will be required to assess the extent to which flow and boundary layer behavior were predicted correctly.

  18. Application of a quasi-3D inviscid flow and boundary layer analysis to the hub-shroud contouring of a radial turbine

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.; Povinelli, L. A.

    1984-01-01

    Application of a quasi-3D approach to the aerodynamic analysis of several radial turbine configurations is described. The objective was to improve the rotor aerodynamic characteristics by hub-shroud contouring. The approach relies on available 2D inviscid methods coupled with boundary layer analysis to calculate profile, mixing, and endwall losses. Windage, tip clearance, incidence, and secondary flow losses are estimated from correlations. To eliminate separation along the hub and blade suction surfaces of a baseline rotor, the analysis was also applied to three alternate hub-shroud geometries. Emphasis was on elimination an inducer velocity overshoot as well as increasing hub velocities. While separation was never eliminated, the extent of the separated area was progressively reduced. Results are presented in terms of mid-channel and blade surface velocities; kinetic energy loss coefficients; and efficiency. The calculation demonstrates a first step for a systematic approach to radial turbine design that can be used to identify and control aerodynamic characteristics that ultimately determine heat transfer and component life. Experimentation will be required to assess the extent to which flow and boundary layer behavior were predicted correctly.

  19. Prediction and control of coupled-mode flutter in future wind turbine blades

    NASA Astrophysics Data System (ADS)

    Modarres-Sadeghi, Yahya; Currier, Todd; Caracoglia, Luca; Lackner, Matthew; Hollot, Christopher

    2017-11-01

    Coupled-mode flutter can be observed in future offshore wind turbine blades. We have shown this fact by considering various candidate blade designs, in all of which the blade's first torsional mode couples with one of its flapwise modes, resulting in coupled-mode flutter. We have shown how the ratio of these two natural frequencies can result in blades with a critical flutter speed even lower than their rated speed, especially for blades with low torsional natural frequencies. We have also shown how the stochastic nature of the system parameters (as an example, due to uncertainties in the manufacturing process) can significantly influence the onset of instability. We have proposed techniques to predict the onset of these instabilities and the resulting limit-cycle response, and strategies to control them, by either postponing the onset of instability, or lowering the magnitude of the limit-cycle response. The work is supported by the National Science Foundation, Award CBET-1437988 and Collaborative Awards CMMI-1462646 and CMMI-1462774.

  20. Comparative study on the performance of power and bandwidth efficient modulations in LMSS under fading and interference

    NASA Technical Reports Server (NTRS)

    Liu, Jian; Kim, Junghwan; Kwatra, S. C.; Stevens, Grady H.

    1991-01-01

    Aspects of error performance of various power and bandwidth efficient modulations for the land mobile satellite systems (LMSS) were investigated under multipath fading and interferences by using Monte-Carlo simulation. A differential detection for 16QAM (quadrature amplitude modulation) was proposed to cope with Ricean fading and Doppler shift. Computer simulation results show that the performance of 16QAM with differential detection is as good as that of 16PSK with coherent detection and 3 dB better than that of 16PSK with differential detection, although it degrades by about 4.5 dB as compared to 16QAM with coherent detection under an additive white Gaussian noise (AWGN) channel. For the nonlinear channels, 16QAM with modified signal constellations is introduced and analyzed. The simulation results show that the modified 16QAM exhibits a gain of 2.5 dB over 16PSK under traveling-wave tube nonlinearity, and about 4 dB gain over 16PSK at the bit error rate of 10 exp -5 under AWGN. Computer simulation results for modified 16 QAM under cochannel interference and adjacent-channel interference are also presented.

  1. North Wind 4kW passive control system design

    NASA Technical Reports Server (NTRS)

    Currin, H.

    1981-01-01

    An overview of a mechanical rotor control design is presented. Operation at constant RPM and rapid response are obtained by using blade pitch moments for both sensing control need and blade pitch actuation. The basic concept, static or equilibrium design, and dynamic analysis are briefly presented.

  2. Two-photon geometrical phase

    NASA Astrophysics Data System (ADS)

    Strekalov, D. V.; Shih, Y. H.

    1997-10-01

    An advanced wave model is applied to a two-photon interference experiment to show that the observed interference effect is due to the geometrical phase of a two-photon state produced in spontaneous parametric down-conversion. The polarization state of the signal-idler pair is changed adiabatically so that the ``loop'' on the Poincaré sphere is opened in the signal channel and closed in the idler channel. Therefore, we observed an essentially nonlocal geometrical phase, shared by the entangled photon pair, or a biphoton.

  3. JT8D-15/17 High Pressure Turbine Root Discharged Blade Performance Improvement. [engine design

    NASA Technical Reports Server (NTRS)

    Janus, A. S.

    1981-01-01

    The JT8D high pressure turbine blade and seal were modified, using a more efficient blade cooling system, improved airfoil aerodynamics, more effective control of secondary flows, and improved blade tip sealing. Engine testing was conducted to determine the effect of these improvements on performance. The modified turbine package demonstrated significant thrust specific fuel consumption and exhaust gas temperature improvements in sea level and altitude engine tests. Inspection of the improved blade and seal hardware after testing revealed no unusual wear or degradation.

  4. Aerodynamic load control strategy of wind turbine in microgrid

    NASA Astrophysics Data System (ADS)

    Wang, Xiangming; Liu, Heshun; Chen, Yanfei

    2017-12-01

    A control strategy is proposed in the paper to optimize the aerodynamic load of the wind turbine in micro-grid. In grid-connection mode, the wind turbine adopts a new individual variable pitch control strategy. The pitch angle of the blade is rapidly given by the controller, and the pitch angle of each blade is fine tuned by the weight coefficient distributor. In islanding mode, according to the requirements of energy storage system, a given power tracking control method based on fuzzy PID control is proposed. Simulation result shows that this control strategy can effectively improve the axial aerodynamic load of the blade under rated wind speed in grid-connection mode, and ensure the smooth operation of the micro-grid in islanding mode.

  5. Rotorcraft Brownout Advanced Understanding, Control, and Mitigation

    DTIC Science & Technology

    2014-10-31

    rotor disk loading , blade loading , number and placement of rotors, number of blades, blade twist, blade tip shape, fuselage shape, as well as...Mechanical Engineering • Ramani Duraiswami, Ph.D., Associate Professor, Department of Computer Science & Insti- tute for Advanced Computer Studies • Nail ...23, 2013. 71. Mulinti, R., Corfman, K., and Kiger, K. T., “Particle-Turbulence Interaction of Suspended Load by Forced Jet Impinging on a Mobile

  6. Predicted and experimental aerodynamic forces on the Darrieus rotor

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.

    1983-12-01

    The present paper compares the aerodynamic loads predicted by a double-multiple-streamtube model with wind tunnel measurements for a straight-bladed Darrieus rotor. Thus the CARDAA computer code uses two constant-interference factors in the induced velocity for estimating the aerodynamic loads. This code has been improved by considering the variation in the upwind and downwind induced velocities as a function of the blade position, and, in this case, the CARDAAV code is used. The Boeing-Vertol dynamic-stall model is incorporated in both the CARDAA and CARDAAV codes, and a better approach is obtained. The transient normal- and tangential-force coefficients predicted with and without dynamic-stall effects are compared with wind tunnel data for one and two NACA 0018 straight-bladed rotors. The results are given for a rotor with a large solidity (chord-to-radius ratio of 0.20) at two tip-speed ratios (X = 1.5 and 3.0) and at a low Reynolds number of 3.8 x 10 to the 4th. The comparisons between experimental data and theoretical results show the CARDAAV predictions to be more accurate than those estimated by the CARDAA code.

  7. The environmental impact of the use of large wind turbines

    NASA Astrophysics Data System (ADS)

    Manning, P. T.

    The existing data base on the environmental impact of large wind energy conversion systems (WECS) is explored. The maximum blade throw distance has been calculated at 850 m, with a 5% probability of more than 300 m. Good design and inspection procedures reduce the risk. Ice throw can be prevented by aircraft deicing techniques, but detectors are still necessary. TV interference is ameliorated by the use of composite blades and directional antennas, by relocating the nearst transmission or relay station, or by introduction of cable TV. Microwave transmission effects can be avoided by careful siting of WECS in a favorable line of sight whenever within 1 km of a transmitter. Visual impact studies have produced few adverse opinions. Noise has not proved an intractable problem, although 30 dB levels have been exceeded 2100 m downwind of the Mod 2 WECS. Further studies are necessary on the effects of heightened ground turbulence produced by large WECS. It is expected that few birds will be harmed by slowly rotating blades in the birds' natural domain, a projection confirmed by sporadic studies. Finally, aircraft collisions are regarded as unlikely and actual land use, mostly confined to rural areas, is minimal.

  8. Integral Twist Actuation of Helicopter Rotor Blades for Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Shin, SangJoon; Cesnik, Carlos E. S.

    2001-01-01

    Active integral twist control for vibration reduction of helicopter rotors during forward flight is investigated. The twist deformation is obtained using embedded anisotropic piezocomposite actuators. An analytical framework is developed to examine integrally-twisted blades and their aeroelastic response during different flight conditions: frequency domain analysis for hover, and time domain analysis for forward flight. Both stem from the same three-dimensional electroelastic beam formulation with geometrical-exactness, and axe coupled with a finite-state dynamic inflow aerodynamics model. A prototype Active Twist Rotor blade was designed with this framework using Active Fiber Composites as the actuator. The ATR prototype blade was successfully tested under non-rotating conditions. Hover testing was conducted to evaluate structural integrity and dynamic response. In both conditions, a very good correlation was obtained against the analysis. Finally, a four-bladed ATR system is built and tested to demonstrate its concept in forward flight. This experiment was conducted at NASA Langley Tansonic Dynamics Tunnel and represents the first-of-a-kind Mach-scaled fully-active-twist rotor system to undergo forward flight test. In parallel, the impact upon the fixed- and rotating-system loads is estimated by the analysis. While discrepancies are found in the amplitude of the loads under actuation, the predicted trend of load variation with respect to its control phase correlates well. It was also shown, both experimentally and numerically, that the ATR blade design has the potential for hub vibratory load reduction of up to 90% using individual blade control actuation. Using the numerical framework, system identification is performed to estimate the harmonic transfer functions. The linear time-periodic system can be represented by a linear time-invariant system under the three modes of blade actuation: collective, longitudinal cyclic, and lateral cyclic. A vibration minimizing controller is designed based on this result, which implements classical disturbance rejection algorithm with some modifications. The controller is simulated numerically, and more than 90% of the 4P hub vibratory load is eliminated. By accomplishing the experimental and analytical steps described in this thesis, the present concept is found to be a viable candidate for future generation low-vibration helicopters. Also, the analytical framework is shown to be very appropriate for exploring active blade designs, aeroelastic behavior prediction, and as simulation tool for closed-loop controllers.

  9. Probing coherence aspects of adiabatic quantum computation and control.

    PubMed

    Goswami, Debabrata

    2007-09-28

    Quantum interference between multiple excitation pathways can be used to cancel the couplings to the unwanted, nonradiative channels resulting in robustly controlling decoherence through adiabatic coherent control approaches. We propose a useful quantification of the two-level character in a multilevel system by considering the evolution of the coherent character in the quantum system as represented by the off-diagonal density matrix elements, which switches from real to imaginary as the excitation process changes from being resonant to completely adiabatic. Such counterintuitive results can be explained in terms of continuous population exchange in comparison to no population exchange under the adiabatic condition.

  10. Investigation of the validity of Reynolds averaged turbulence models at the frequencies that occur in turbomachinery

    NASA Technical Reports Server (NTRS)

    Kuhn, Gary D.

    1988-01-01

    Turbulent flows subjected to various kinds of unsteady disturbances were simulated using a large-eddy-simulation computer code for flow in a channel. The disturbances were: a normal velocity expressed as a traveling wave on one wall of the channel; staggered blowing and suction distributions on the opposite walls of the channel; and oscillations of the mean flow through the channel. The wall boundary conditions were designed to simulate the effects of wakes of a stator stage passing through a rotor channel in a turbine. The oscillating flow simulated the effects of a pressure pulse moving over the rotor blade boundary layer. The objective of the simulations was to provide better understanding of the effects of time-dependent disturbances on the turbulence of a boundary layer and of the underlying physical phenomena regarding the basic interaction between the turbulence and external disturbances of the type found in turbomachinery. Results showed that turbulence is sensitive to certain ranges of frequencies of disturbances. However, no direct connection was found between the frequency of imposed disturbances and characteristic burst frequency of turbulence. New insight into the nature of turbulence at high frequencies was found. The viscous phenomena near solid walls was found to be the dominant influence for high frequency perturbations. At high frequencies, the turbulence was found to be undisturbed, remaining the same as for the steady mean flow. A transition range exists between the high frequency range and the low, or quasi-steady, range in which the turbulence is not predictable by either quasi-steady models or the steady flow model. The limiting lowest frequency for use of the steady flow turbulence model is that for which the viscous Stokes layer based on the blade passing frequency is thicker than the laminar sublayer.

  11. Tool mark striations in pig skin produced by stabs from a serrated blade.

    PubMed

    Pounder, Derrick J; Bhatt, Shivani; Cormack, Lesley; Hunt, Bill A C

    2011-03-01

    Stab wounds produced by serrated blades are generally indistinguishable from stab wounds produced by non-serrated blades, except when visible tool mark striations are left on severed cartilage. Using a pig-skin experimental model, we explored the possibility that similar striations may be left in skin. Stabs into pig skin were made using a straight spine coarsely serrated blade (121), a drop point finely serrated blade (20), a clip point irregular coarsely serrated blade (20), a drop point coarsely serrated blade (15), and as controls 2 non-serrated blades (40). Tool mark striations could be seen on the skin wall of the stab canal in all stabs made using serrated blades but in none with non-serrated blades.The striation pattern, reflecting the class characteristics of the serrated blade, was the same as that described in cartilage but less well defined. Fixation of the specimen with Carnoy's solution best preserved visible striations, and fixation with formaldehyde after staining with 5% Neutral Red was also satisfactory. Casting with vinyl polysiloxane dental impression material greatly facilitated photo-documentation. Applying the technique to homicidal stabbings may help identify stab wounds produced with serrated blades.

  12. A compendium of controlled diffusion blades generated by an automated inverse design procedure

    NASA Technical Reports Server (NTRS)

    Sanz, Jose M.

    1989-01-01

    A set of sample cases was produced to test an automated design procedure developed at the NASA Lewis Research Center for the design of controlled diffusion blades. The range of application of the automated design procedure is documented. The results presented include characteristic compressor and turbine blade sections produced with the automated design code as well as various other airfoils produced with the base design method prior to the incorporation of the automated procedure.

  13. Computational fluid dynamics study of the variable-pitch split-blade fan concept

    NASA Technical Reports Server (NTRS)

    Kepler, C. E.; Elmquist, A. R.; Davis, R. L.

    1992-01-01

    A computational fluid dynamics study was conducted to evaluate the feasibility of the variable-pitch split-blade supersonic fan concept. This fan configuration was conceived as a means to enable a supersonic fan to switch from the supersonic through-flow type of operation at high speeds to a conventional fan with subsonic inflow and outflow at low speeds. During this off-design, low-speed mode of operation, the fan would operate with a substantial static pressure rise across the blade row like a conventional transonic fan; the front (variable-pitch) blade would be aligned with the incoming flow, and the aft blade would remain fixed in the position set by the supersonic design conditions. Because of these geometrical features, this low speed configuration would inherently have a large amount of turning and, thereby, would have the potential for a large total pressure increase in a single stage. Such a high-turning blade configuration is prone to flow separation; it was hoped that the channeling of the flow between the blades would act like a slotted wing and help alleviate this problem. A total of 20 blade configurations representing various supersonic and transonic configurations were evaluated using a Navier Stokes CFD program called ADAPTNS because of its adaptive grid features. The flow fields generated by this computational procedure were processed by another data reduction program which calculated average flow properties and simulated fan performance. These results were employed to make quantitative comparisons and evaluations of blade performance. The supersonic split-blade configurations generated performance comparable to a single-blade supersonic, through-flow fan configuration. Simulated rotor total pressure ratios of the order of 2.5 or better were achieved for Mach 2.0 inflow conditions. The corresponding fan efficiencies were approximately 75 percent or better. The transonic split-blade configurations having large amounts of turning were able to generate large amounts of total turning and achieve simulated total pressure ratios of 3.0 or better with subsonic inflow conditions. These configurations had large losses and low fan efficiencies in the 70's percent. They had large separated regions and low velocity wakes. Additional turning and diffusion of this flow in a subsequent stator row would probably be very inefficient. The high total pressure ratios indicated by the rotor performance would be substantially reduced by the stators, and the stage efficiency would be substantially lower. Such performance leaves this dual-mode fan concept less attractive than originally postulated.

  14. On the development of a magnetoresistive sensor for blade tip timing and blade tip clearance measurement systems

    NASA Astrophysics Data System (ADS)

    Tomassini, R.; Rossi, G.; Brouckaert, J.-F.

    2014-05-01

    The accurate control of the gap between static and rotating components is vital to preserve the mechanical integrity and ensure a correct functioning of any rotating machinery. Moreover, tip leakage above the airfoil tip results in relevant aerodynamic losses. One way to measure and to monitor blade tip gaps is by the so-called Blade Tip Clearance (BTC) technique. Another fundamental phenomenon to control in the turbomachines is the vibration of the blades. For more than half a century, this has been performed by installing strain gauges on the blades and using telemetry to transmit the signals. The Blade Tip Timing (BTT) technique, (i.e. measuring the blade time of arrival from the casing at different angular locations with proximity sensors) is currently being adopted by all manufacturers as a replacement for the classical strain gauge technique because of its non-intrusive character. This paper presents a novel magnetoresistive sensor for blade tip timing and blade tip clearance systems, which offers high temporal and high spatial resolution simultaneously. The sensing element adopted is a Wheatstone bridge of Permalloy elements. The principle of the sensor is based on the variation of magnetic field at the passage of ferromagnetic objects. Two different configurations have been realized, a digital and an analogue sensor. Measurements of tip clearance have been performed in an high speed compressor and the calibration curve is reported. Measurements of blade vibration have been carried out in a dedicated calibration bench; results are presented and discussed. The magnetoresistive sensor is characterized by high repeatability, low manufacturing costs and measurement accuracy in line with the main probes used in turbomachinery testing. The novel sensor has great potential and is capable of fulfilling the requirements for a simultaneous BTC and BTT measurement system.

  15. A study of the viscous and nonadiabatic flow in radial turbines

    NASA Technical Reports Server (NTRS)

    Khalil, I.; Tabakoff, W.

    1981-01-01

    A method for analyzing the viscous nonadiabatic flow within turbomachine rotors is presented. The field analysis is based upon the numerical integration of the incompressible Navier-Stokes equations together with the energy equation over the rotors blade-to-blade stream channels. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system that suits the most complicated blade geometries. Effects of turbulence are modeled with two equations; one expressing the development of the turbulence kinetic energy and the other its dissipation rate. The method of analysis is applied to a radial inflow turbine. The solution obtained indicates the severity of the complex interaction mechanism that occurs between different flow regimes (i.e., boundary layers, recirculating eddies, separation zones, etc.). Comparison with nonviscous flow solutions tend to justify strongly the inadequacy of using the latter with standard boundary layer techniques to obtain viscous flow details within turbomachine rotors. Capabilities and limitations of the present method of analysis are discussed.

  16. Recent advances in laser triangulation-based measurement of airfoil surfaces

    NASA Astrophysics Data System (ADS)

    Hageniers, Omer L.

    1995-01-01

    The measurement of aircraft jet engine turbine and compressor blades requires a high degree of accuracy. This paper will address the development and performance attributes of a noncontact electro-optical gaging system specifically designed to meet the airfoil dimensional measurement requirements inherent in turbine and compressor blade manufacture and repair. The system described consists of the following key components: a high accuracy, dual channel, laser based optical sensor, a four degree of freedom mechanical manipulator system and a computer based operator interface. Measurement modes of the system include point by point data gathering at rates up to 3 points per second and an 'on-the-fly' mode where points can be gathered at data rates up to 20 points per second at surface scanning speeds of up to 1 inch per second. Overall system accuracy is +/- 0.0005 inches in a configuration that is useable in the blade manufacturing area. The systems ability to input design data from CAD data bases and output measurement data in a CAD compatible data format is discussed.

  17. Coolant Density and Control Blade History Effects in Extended BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J; Marshall, William BJ J; Bowman, Stephen M

    2015-01-01

    Oak Ridge National Laboratory and the US Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (k eff) calculations and predicted spent fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date investigating some aspects of extended BUC. (The technicalmore » basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper.) Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC: (1) the effect of axial void profile and (2) the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of a modern operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. Although a single cycle does not provide complete data, the data obtained are sufficient to determine the primary effects and to identify conservative modeling approaches. These data were used in a study of the effect of axial void profile. The first stage of the study was determination of the necessary moderator density temporal fidelity in depletion modeling. After the required temporal fidelity was established, multiple void profiles were used to examine the effect on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied was control blade history. Control blades are inserted in various locations and at varying degrees during BWR operation based on the core loading pattern. When present during depletion, control blades harden the neutron spectrum locally because they displace the moderator and absorb thermal neutrons. The investigation of the effect of control blades on post operational cask reactivity is documented herein, as is the effect of multiple (continuous and intermittent) exposure periods with control blades inserted. The coupled effects of control blade presence on power density, void profile, or burnup profile will be addressed in future work.« less

  18. Implementation of a Helicopter Flight Simulator with Individual Blade Control

    NASA Astrophysics Data System (ADS)

    Zinchiak, Andrew G.

    2011-12-01

    Nearly all modern helicopters are designed with a swashplate-based system for control of the main rotor blades. However, the swashplate-based approach does not provide the level of redundancy necessary to cope with abnormal actuator conditions. For example, if an actuator fails (becomes locked) on the main rotor, the cyclic inputs are consequently fixed and the helicopter may become stuck in a flight maneuver. This can obviously be seen as a catastrophic failure, and would likely lead to a crash. These types of failures can be overcome with the application of individual blade control (IBC). IBC is achieved using the blade pitch control method, which provides complete authority of the aerodynamic characteristics of each rotor blade at any given time by replacing the normally rigid pitch links between the swashplate and the pitch horn of the blade with hydraulic or electronic actuators. Thus, IBC can provide the redundancy necessary for subsystem failure accommodation. In this research effort, a simulation environment is developed to investigate the potential of the IBC main rotor configuration for fault-tolerant control. To examine the applications of IBC to failure scenarios and fault-tolerant controls, a conventional, swashplate-based linear model is first developed for hover and forward flight scenarios based on the UH-60 Black Hawk helicopter. The linear modeling techniques for the swashplate-based helicopter are then adapted and expanded to include IBC. Using these modified techniques, an IBC based mathematical model of the UH-60 helicopter is developed for the purposes of simulation and analysis. The methodology can be used to model and implement a different aircraft if geometric, gravimetric, and general aerodynamic data are available. Without the kinetic restrictions of the swashplate, the IBC model effectively decouples the cyclic control inputs between different blades. Simulations of the IBC model prove that the primary control functions can be manually reconfigured after local actuator failures are initiated, thus preventing a catastrophic failure or crash. Furthermore, this simulator promises to be a useful tool for the design, testing, and analysis of fault-tolerant control laws.

  19. Extending the impulse response in order to reduce errors due to impulse noise and signal fading

    NASA Technical Reports Server (NTRS)

    Webb, Joseph A.; Rolls, Andrew J.; Sirisena, H. R.

    1988-01-01

    A finite impulse response (FIR) digital smearing filter was designed to produce maximum intersymbol interference and maximum extension of the impulse response of the signal in a noiseless binary channel. A matched FIR desmearing filter at the receiver then reduced the intersymbol interference to zero. Signal fades were simulated by means of 100 percent signal blockage in the channel. Smearing and desmearing filters of length 256, 512, and 1024 were used for these simulations. Results indicate that impulse response extension by means of bit smearing appears to be a useful technique for correcting errors due to impulse noise or signal fading in a binary channel.

  20. Robust transceiver design for reciprocal M × N interference channel based on statistical linearization approximation

    NASA Astrophysics Data System (ADS)

    Mayvan, Ali D.; Aghaeinia, Hassan; Kazemi, Mohammad

    2017-12-01

    This paper focuses on robust transceiver design for throughput enhancement on the interference channel (IC), under imperfect channel state information (CSI). In this paper, two algorithms are proposed to improve the throughput of the multi-input multi-output (MIMO) IC. Each transmitter and receiver has, respectively, M and N antennas and IC operates in a time division duplex mode. In the first proposed algorithm, each transceiver adjusts its filter to maximize the expected value of signal-to-interference-plus-noise ratio (SINR). On the other hand, the second algorithm tries to minimize the variances of the SINRs to hedge against the variability due to CSI error. Taylor expansion is exploited to approximate the effect of CSI imperfection on mean and variance. The proposed robust algorithms utilize the reciprocity of wireless networks to optimize the estimated statistical properties in two different working modes. Monte Carlo simulations are employed to investigate sum rate performance of the proposed algorithms and the advantage of incorporating variation minimization into the transceiver design.

  1. Nuclear interference in the Coulomb explosion of H2+ in short vuv laser fields.

    PubMed

    Førre, Morten; Barmaki, Samira; Bachau, Henri

    2009-03-27

    We report ab initio calculations of H2+ three-photon ionization by vuv/fs 10(12) W/cm(2) laser pulses including electronic and vibrational degrees of freedom in the Born-Oppenheimer approximation. The initial nuclear wave packet of H2+(1ssigma(g)) is assumed to be equal to the H2 vibrational ground state. For pulse durations longer than 10 fs, we find an unexpected modulation in the kinetic energy spectra of the correlated fragments (H++H+). It is shown that the structures in the spectra originate from the interference between a direct and a sequential dissociation channel. While the first channel is open even for relatively short pulses, the sequential one only opens for pulse durations longer than 10 fs. In the latter case we show that interference between the two components results in a modulated kinetic energy release spectrum in the dissociation channel 3dsigma(g), which is reflected in the ionization spectrum.

  2. Interference-free SDMA for FBMC-OQAM

    NASA Astrophysics Data System (ADS)

    Horlin, François; Fickers, Jessica; Deleu, Thibault; Louveaux, Jérome

    2013-12-01

    Filter-bank multi-carrier (FBMC) modulations have recently been considered for the emerging wireless communication systems as a means to improve the utilization of the physical resources and the robustness to channel time variations. FBMC divides the overall frequency channel in a set of subchannels of bandwidth proportionally decreasing with the number of subchannels. If the number of subchannels is high enough, the bandwidth of each subchannel is small enough to assume that it is approximately flat. On the other hand, space-division multiple access (SDMA) is a recognized technique to support multiple access in the downlink of a multi-user system. The user signals are precoded at the base station equipped with multiple antennas to separate the users in the spatial domain. The application of SDMA to FBMC is unfortunately difficult when the channel is too frequency selective (or when the number of subchannels to too small) to assume flat subchannels. In that case, the system suffers from inter-symbol and inter-subchannel interference, besides the multi-user interference inherent to SDMA. State-of-the art solutions simply neglect the inter-symbol/subchannel interference. This article proposes a new SDMA precoder for FBMC capable of mitigating the three sources of interference. It is constructed per subchannel in order to keep an acceptable complexity and has the structure of a filter applied on each subchannel and its neighbors at twice the symbol rate. Numerical results demonstrate that the precoder can get rid of all the interference present in the system and benefit therefore from the diversity and power gains achievable with multiple antenna systems.

  3. Periodic control of the individual-blade-control helicopter rotor

    NASA Technical Reports Server (NTRS)

    Mckillip, R. M., Jr.

    1985-01-01

    This paper describes the results of an investigation into methods of controller design for linear periodic systems utilizing an extension of modern control methods. Trends present in the selection of various cost functions are outlined, and closed-loop controller results are demonstrated for two cases: first, on an analog computer simulation of the rigid out of plane flapping dynamics of a single rotor blade, and second, on a 4 ft diameter single-bladed model helicopter rotor in the MIT 5 x 7 subsonic wind tunnel, both for various high levels of advance ratio. It is shown that modal control using the IBC concept is possible over a large range of advance ratios with only a modest amount of computational power required.

  4. Vertical axis wind turbine power regulation through centrifugally pumped lift spoiling

    NASA Astrophysics Data System (ADS)

    Klimas, P. C.; Sladky, J. F., Jr.

    This paper describes an approach for lowering the rated windspeeds of Darrieus-type vertical axis wind turbines (VAWTs) whose blades are hollow aluminum extrusions. The blades, which when rotating act as centrifugal pumps, are fitted with a series of small perforations distributed along a portion of the blades' span. By valving the ends of the hollow blades, flow into the blade ends and out of the perforations may be controlled. This flow can induce premature aerodynamic stall on the blade elements, thereby reducing both the rated power of the turbine and its cost-of-energy. The concept has been proven on the Sandia National Laboratories 5-m diameter research VAWT and force balance and flow visualization wind tunnel tests have been conducted using a blade section designed for the VAWT application.

  5. 29 CFR 1910.243 - Guarding of portable powered tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... circular saws. (i) All portable, power-driven circular saws having a blade diameter greater than 2 in.... (2) Switches and controls. (i) All hand-held powered circular saws having a blade diameter greater... diameter, belt sanders, reciprocating saws, saber, scroll, and jig saws with blade shanks greater than a...

  6. 29 CFR 1910.243 - Guarding of portable powered tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... circular saws. (i) All portable, power-driven circular saws having a blade diameter greater than 2 in.... (2) Switches and controls. (i) All hand-held powered circular saws having a blade diameter greater... diameter, belt sanders, reciprocating saws, saber, scroll, and jig saws with blade shanks greater than a...

  7. 29 CFR 1910.243 - Guarding of portable powered tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... circular saws. (i) All portable, power-driven circular saws having a blade diameter greater than 2 in.... (2) Switches and controls. (i) All hand-held powered circular saws having a blade diameter greater... diameter, belt sanders, reciprocating saws, saber, scroll, and jig saws with blade shanks greater than a...

  8. 29 CFR 1910.243 - Guarding of portable powered tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... circular saws. (i) All portable, power-driven circular saws having a blade diameter greater than 2 in.... (2) Switches and controls. (i) All hand-held powered circular saws having a blade diameter greater... diameter, belt sanders, reciprocating saws, saber, scroll, and jig saws with blade shanks greater than a...

  9. 29 CFR 1910.243 - Guarding of portable powered tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... circular saws. (i) All portable, power-driven circular saws having a blade diameter greater than 2 in.... (2) Switches and controls. (i) All hand-held powered circular saws having a blade diameter greater... diameter, belt sanders, reciprocating saws, saber, scroll, and jig saws with blade shanks greater than a...

  10. Rotorcraft Blade-Vortex Interaction Controller

    NASA Technical Reports Server (NTRS)

    Schmitz, Fredric H. (Inventor)

    1995-01-01

    Blade-vortex interaction noises, sometimes referred to as 'blade slap', are avoided by increasing the absolute value of inflow to the rotor system of a rotorcraft. This is accomplished by creating a drag force which causes the angle of the tip-path plane of the rotor system to become more negative or more positive.

  11. 47 CFR 22.599 - Assignment of 72-76 MHz channels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 22.599 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service Point-To-Point Operation § 22.599 Assignment of 72-76 MHz channels. Because of the potential for interference to the reception of TV Channels 4 and 5...

  12. 47 CFR 15.707 - Permissible channels of operation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... These channels will be identified and protected in the TV bands database(s). (b) Operation on available...) of this section and as determined by a TV bands database in accordance with the interference...

  13. Flow Instability and Flow Control Scaling Laws

    NASA Astrophysics Data System (ADS)

    van Ness, Daniel; Corke, Thomas; Morris, Scott

    2006-11-01

    A flow instability that is receptive to perturbations is present in the tip clearance leakage flow over the tip of a turbine blade. This instability was investigated through the introduction of active flow control in the viscous flow field. Control was implemented in the form of a dielectric barrier discharge created by a weakly-ionized plasma actuation arrangement. The experimental setup consisted of a low-speed linear turbine cascade made up of an array of nine Pratt & Whitney ``PakB'' turbine blades. This idealized cascade configuration was used to examine the tip clearance leakage flow that exists within the low pressure turbine stage of a gas-turbine engine. The center blade of the cascade array had a variable tip clearance up to five percent chord. Reynolds numbers based on axial blade chord varied from 10^4 to 10^5. Multi-port pressure probe measurements, as well as Stereo Particle Image Velocimetry were used to document the dependence of the instability on the frequency and amplitude of flow control perturbations. Scaling laws based on the variation of blade tip clearance height and inflow conditions were investigated. These results permitted an improved understanding of the mechanism of flow instability.

  14. A fuzzy reinforcement learning approach to power control in wireless transmitters.

    PubMed

    Vengerov, David; Bambos, Nicholas; Berenji, Hamid R

    2005-08-01

    We address the issue of power-controlled shared channel access in wireless networks supporting packetized data traffic. We formulate this problem using the dynamic programming framework and present a new distributed fuzzy reinforcement learning algorithm (ACFRL-2) capable of adequately solving a class of problems to which the power control problem belongs. Our experimental results show that the algorithm converges almost deterministically to a neighborhood of optimal parameter values, as opposed to a very noisy stochastic convergence of earlier algorithms. The main tradeoff facing a transmitter is to balance its current power level with future backlog in the presence of stochastically changing interference. Simulation experiments demonstrate that the ACFRL-2 algorithm achieves significant performance gains over the standard power control approach used in CDMA2000. Such a large improvement is explained by the fact that ACFRL-2 allows transmitters to learn implicit coordination policies, which back off under stressful channel conditions as opposed to engaging in escalating "power wars."

  15. Intracycle angular velocity control of cross-flow turbines

    NASA Astrophysics Data System (ADS)

    Strom, Benjamin; Brunton, Steven L.; Polagye, Brian

    2017-08-01

    Cross-flow turbines, also known as vertical-axis turbines, are attractive for power generation from wind and water currents. Some cross-flow turbine designs optimize unsteady fluid forces and maximize power output by controlling blade kinematics within one rotation. One established method is to dynamically pitch the blades. Here we introduce a mechanically simpler alternative: optimize the turbine rotation rate as a function of angular blade position. We demonstrate experimentally that this approach results in a 59% increase in power output over standard control methods. Analysis of fluid forcing and blade kinematics suggest that power increase is achieved through modification of the local flow conditions and alignment of fluid force and rotation rate extrema. The result is a low-speed, structurally robust turbine that achieves high efficiency and could enable a new generation of environmentally benign turbines for renewable power generation.

  16. NASA Subsonic Jet Transport Noise Reduction Research

    DTIC Science & Technology

    2000-09-01

    optical and acoustical interference. Figure 7 shows the concept and data from the installation of arrays of Herschel- Quincke tubes in the duct...tube row 16 tube row Herschel- Quincke Tube Tube length 12.5cm d = 3.8cm L = 9.2cm 2250 2350 2450 2500...Blade passage frequency, Hz R el at iv e p o w er , d B JT15D Turbofan Engine 4 d B Figure 7. Application of Herschel- Quincke tubes for

  17. Tip clearance noise of axial flow fans operating at design and off-design condition

    NASA Astrophysics Data System (ADS)

    Fukano, T.; Jang, C.-M.

    2004-08-01

    The noise due to tip clearance (TC) flow in axial flow fans operating at a design and off-design conditions is analyzed by an experimental measurement using two hot-wire probes rotating with the fan blades. The unsteady nature of the spectra of the real-time velocities measured by two hot-wire sensors in a vortical flow region is investigated by using cross-correlation coefficient and retarded time of the two fluctuating velocities. The results show that the noise due to TC flow consists of a discrete frequency noise due to periodic velocity fluctuation and a broadband noise due to velocity fluctuation in the blade passage. The peak frequencies in a vortical flow are mainly observed below at four harmonic blade passing frequency. The discrete frequency component of velocity fluctuation at the off-design operating conditions is generated in vortical flow region as well as in reverse flow region. The peak frequency can be an important noise source when the fans are rotated with a high rotational speed. The authors propose a spiral pattern of velocity fluctuation in the vortical flow to describe the generation mechanism of the peak frequency in the vortical flow. In addition, noise increase due to TC flow at low flow rate condition is analyzed with relation to the distribution of velocity fluctuation due to the interference between the tip leakage vortex and the adjacent pressure surface of the blade.

  18. A New Approach to Interference Excision in Radio Astronomy: Real-Time Adaptive Cancellation

    NASA Astrophysics Data System (ADS)

    Barnbaum, Cecilia; Bradley, Richard F.

    1998-11-01

    Every year, an increasing amount of radio-frequency (RF) spectrum in the VHF, UHF, and microwave bands is being utilized to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Such services already cause problems for radio astronomy even in very remote observing sites, and the potential for this form of light pollution to grow is alarming. Preventive measures to eliminate interference through FCC legislation and ITU agreements can be effective; however, many times this approach is inadequate and interference excision at the receiver is necessary. Conventional techniques such as RF filters, RF shielding, and postprocessing of data have been only somewhat successful, but none has been sufficient. Adaptive interference cancellation is a real-time approach to interference excision that has not been used before in radio astronomy. We describe here, for the first time, adaptive interference cancellation in the context of radio astronomy instrumentation, and we present initial results for our prototype receiver. In the 1960s, analog adaptive interference cancelers were developed that obtain a high degree of cancellation in problems of radio communications and radar. However, analog systems lack the dynamic range, noised performance, and versatility required by radio astronomy. The concept of digital adaptive interference cancellation was introduced in the mid-1960s as a way to reduce unwanted noise in low-frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartments of automobiles. These audio-frequency applications require bandwidths of only a few tens of kilohertz. Only recently has high-speed digital filter technology made high dynamic range adaptive canceling possible in a bandwidth as large as a few megahertz, finally opening the door to application in radio astronomy. We have built a prototype adaptive canceler that consists of two receivers: the primary channel (input from the main beam of the telescope) and a separate reference channel. The primary channel receives the desired astronomical signal corrupted by RFI (radio-frequency interference) coming in the sidelobes of the main beam. A separate reference antenna is designed to receive only the RFI. The reference channel input is processed using a digital adaptive filter and then subtracted from the primary channel input, producing the system output. The weighting coefficients of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the canceler locks onto the RFI, and the filter adjusts itself to minimize the effect of the RFI at the system output. We have designed the adaptive canceler with an intermediate frequency (IF) of 40 MHz. This prototype system will ultimately be functional with a variety of radio astronomy receivers in the microwave band. We have also built a prototype receiver centered at 100 MHz (in the FM broadcast band) to test the adaptive canceler with actual interferers, which are well characterized. The initial laboratory tests of the adaptive canceler are encouraging, with attenuation of strong frequency-modulated (FM) interference to 72 dB (a factor of more than 10 million), which is at the performance limit of our measurements. We also consider requirements of the system and the RFI environment for effective adaptive canceling.

  19. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    NASA Technical Reports Server (NTRS)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  20. Projection Moire Interferometry for Rotorcraft Applications: Deformation Measurements of Active Twist Rotor Blades

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Soto, Hector L.; South, Bruce W.

    2002-01-01

    Projection Moire Interferometry (PMI) has been used during wind tunnel tests to obtain azimuthally dependent blade bending and twist measurements for a 4-bladed Active Twist Rotor (ATR) system in simulated forward flight. The ATR concept offers a means to reduce rotor vibratory loads and noise by using piezoelectric active fiber composite actuators embedded in the blade structure to twist each blade as they rotate throughout the rotor azimuth. The twist imparted on the blades for blade control causes significant changes in blade loading, resulting in complex blade deformation consisting of coupled bending and twist. Measurement of this blade deformation is critical in understanding the overall behavior of the ATR system and the physical mechanisms causing the reduction in rotor loads and noise. PMI is a non-contacting, video-based optical measurement technique capable of obtaining spatially continuous structural deformation measurements over the entire object surface within the PMI system field-of-view. When applied to rotorcraft testing, PMI can be used to measure the azimuth-dependent blade bending and twist along the full span of the rotor blade. This paper presents the PMI technique as applied to rotorcraft testing, and provides results obtained during the ATR tests demonstrating the PMI system performance. PMI measurements acquired at select blade actuation conditions generating minimum and maximum rotor loads are provided to explore the interrelationship between rotor loads, blade bending, and twist.

  1. Flipping interferometry and its application for quantitative phase microscopy in a micro-channel.

    PubMed

    Roitshtain, Darina; Turko, Nir A; Javidi, Bahram; Shaked, Natan T

    2016-05-15

    We present a portable, off-axis interferometric module for quantitative phase microscopy of live cells, positioned at the exit port of a coherently illuminated inverted microscope. The module creates on the digital camera an interference pattern between the image of the sample and its flipped version. The proposed simplified module is based on a retro-reflector modification in an external Michelson interferometer. The module does not contain any lenses, pinholes, or gratings and its alignment is straightforward. Still, it allows full control of the off-axis angle and does not suffer from ghost images. As experimentally demonstrated, the module is useful for quantitative phase microscopy of live cells rapidly flowing in a micro-channel.

  2. Test Rig for Active Turbine Blade Tip Clearance Control Concepts: An Update

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn; Steinetz, Bruce; Oswald, Jay; DeCastro, Jonathan; Melcher, Kevin

    2006-01-01

    The objective is to develop and demonstrate a fast-acting active clearance control system to improve turbine engine performance, reduce emissions, and increase service life. System studies have shown the benefits of reducing blade tip clearances in modern turbine engines. Minimizing blade tip clearances throughout the engine will contribute materially to meeting NASA's Ultra-Efficient Engine Technology (UEET) turbine engine project goals. NASA GRC is examining two candidate approaches including rub-avoidance and regeneration which are explained in subsequent slides.

  3. Helicopter Maritime Environment Trainer: Maintenance Manual (Simulateur D’Entrainement Virtuel pour Helicoptere Maritime: Manual D’Entretien)

    DTIC Science & Technology

    2011-06-01

    rotor blades. This increases or decreases the angle of attack of all the blades simultaneously and, consequently, the tilt or vertical thrust...is the primary horizontal control for the main rotor. Directional control is accomplished by tilting the main rotor that produces a directional...thrust in that direction. The rotor is tilted by changing the pitch of each blade individually as it makes a complete rotation. The cyclic pitch change

  4. Augmented Adaptive Control of a Wind Turbine in the Presence of Structural Modes

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Balas, Mark J.; Wright, Alan D.

    2010-01-01

    Wind turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, potentially causing component fatigue and failure. Two key technology drivers for turbine manufacturers are increasing turbine up time and reducing maintenance costs. Since the trend in wind turbine design is towards larger, more flexible turbines with lower frequency structural modes, manufacturers will want to develop methods to operate in the presence of these modes. Accurate models of the dynamic characteristics of new wind turbines are often not available due to the complexity and expense of the modeling task, making wind turbines ideally suited to adaptive control. In this paper, we develop theory for adaptive control with rejection of disturbances in the presence of modes that inhibit the controller. We use this method to design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the interference of certain structural modes in feedback. The control objective is accomplished by collectively pitching the turbine blades. The adaptive pitch controller for Region 3 is compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller.

  5. Modern HF Communications.

    DTIC Science & Technology

    1983-05-01

    World War II - at least with the planners and those interested in technological advances. The propagation problems for example are numerous. (i) In the...durations may on occasions be only a few seconds , or even milliseconds. 4.1 Effects of Noise and Interference in the Model The simplified channel...such changes. If manual control procedures are used, response times will be at best a few tens of seconds and there will be no chance of the system

  6. Independent Blade Pitch Controller Design for a Three-Bladed Turbine Using Disturbance Accommodating Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Wright, Alan D.; Johnson, Kathryn E.

    Two independent pitch controllers (IPCs) based on the disturbance accommodating control (DAC) algorithm are designed for the three-bladed Controls Advanced Research Turbine to regulate rotor speed and to mitigate blade root flapwise bending loads in above-rated wind speed. One of the DAC-based IPCs is designed based on a transformed symmetrical-asymmetrical (TSA) turbine model, with wind disturbances being modeled as a collective horizontal component and an asymmetrical linear shear component. Another DAC-based IPC is designed based on a multiblade coordinate (MBC) transformed turbine model, with a horizontal component and a vertical shear component being modeled as step waveform disturbance. Both ofmore » the DAC-based IPCs are found via a regulation equation solved by Kronecker product. Actuator dynamics are considered in the design processes to compensate for actuator phase delay. The simulation study shows the effectiveness of the proposed DAC-based IPCs compared to a proportional-integral (PI) collective pitch controller (CPC). Improvement on rotor speed regulation and once-per-revolution and twice-per-revolution load reductions has been observed in the proposed IPC designs.« less

  7. Independent Blade Pitch Controller Design for a Three-Bladed Turbine Using Disturbance Accommodating Control: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Na; Wright, Alan D.; Johnson, Kathryn E.

    Two independent pitch controllers (IPCs) based on the disturbance accommodating control (DAC) algorithm are designed for the three-bladed Controls Advanced Research Turbine to regulate rotor speed and to mitigate blade root flapwise bending loads in above-rated wind speed. One of the DAC-based IPCs is designed based on a transformed symmetrical-asymmetrical (TSA) turbine model, with wind disturbances being modeled as a collective horizontal component and an asymmetrical linear shear component. Another DAC-based IPC is designed based on a multiblade coordinate (MBC) transformed turbine model, with a horizontal component and a vertical shear component being modeled as step waveform disturbance. Both ofmore » the DAC-based IPCs are found via a regulation equation solved by Kronecker product. Actuator dynamics are considered in the design processes to compensate for actuator phase delay. The simulation study shows the effectiveness of the proposed DAC-based IPCs compared to a proportional-integral (PI) collective pitch controller (CPC). Improvement on rotor speed regulation and once-per-revolution and twice-per-revolution load reductions has been observed in the proposed IPC designs.« less

  8. Performance Analysis of Iterative Channel Estimation and Multiuser Detection in Multipath DS-CDMA Channels

    NASA Astrophysics Data System (ADS)

    Li, Husheng; Betz, Sharon M.; Poor, H. Vincent

    2007-05-01

    This paper examines the performance of decision feedback based iterative channel estimation and multiuser detection in channel coded aperiodic DS-CDMA systems operating over multipath fading channels. First, explicit expressions describing the performance of channel estimation and parallel interference cancellation based multiuser detection are developed. These results are then combined to characterize the evolution of the performance of a system that iterates among channel estimation, multiuser detection and channel decoding. Sufficient conditions for convergence of this system to a unique fixed point are developed.

  9. The Slotted Blade Axial-Flow Blower

    DTIC Science & Technology

    1955-09-01

    YORK 18, NEW YORK w is|’ .THE SLOTTED BLADE AXIAL-FLOW BLOVER AUG 0 1 13941J F Dr. H. E. Sheets, Member ASME Chief Research and Development Engineer ... blades of an axial flow blower. The subject of boundary-layer control has attracted considerable attention in respect to the isolated airfoil (1)1 but... blades . Flow through airfoils displays a region of laminar flow beginning at the leading edge. Further downstream, at approximately the location of the

  10. Investigation of Rotor Performance and Loads of a UH-60A Individual Blade Control System

    DTIC Science & Technology

    2010-05-01

    the pitch link for each rotor blade with an actuator so that the blade root pitch angles could be changed independently. This design was previously...with the ultimate goal of providing the technology for timely and cost-effective design and development of new rotors. Analytical studies on IBC [8...rotor with coincident flap and lag articulation provided at the blade root by elastomeric bearings. This bearing, through the rotor spindle , also

  11. Design of helicopter rotor blades with actuators made of a piezomacrofiber composite

    NASA Astrophysics Data System (ADS)

    Glukhikh, S.; Barkanov, E.; Kovalev, A.; Masarati, P.; Morandini, M.; Riemenschneider, J.; Wierach, P.

    2008-01-01

    For reducing the vibration and noise of helicopter rotor blades, the method of their controlled twisting by using built-in deformation actuators is employed. In this paper, the influence of various design parameters of the blades, including the location of actuators made of a piezomacrofiber material, on the twist angle is evaluated. The results of a parametric analysis performed allowed us to refine the statement of an optimization problem for the rotor blades.

  12. Online monitoring of dynamic tip clearance of turbine blades in high temperature environments

    NASA Astrophysics Data System (ADS)

    Han, Yu; Zhong, Chong; Zhu, Xiaoliang; Zhe, Jiang

    2018-04-01

    Minimized tip clearance reduces the gas leakage over turbine blade tips and improves the thrust and efficiency of turbomachinery. An accurate tip clearance sensor, measuring the dynamic clearances between blade tips and the turbine case, is a critical component for tip clearance control. This paper presents a robust inductive tip clearance sensor capable of monitoring dynamic tip clearances of turbine machines in high-temperature environments and at high rotational speeds. The sensor can also self-sense the temperature at a blade tip in situ such that temperature effect on tip clearance measurement can be estimated and compensated. To evaluate the sensor’s performance, the sensor was tested for measuring the tip clearances of turbine blades under various working temperatures ranging from 700 K to 1300 K and at turbine rotational speeds ranging from 3000 to 10 000 rpm. The blade tip clearance was varied from 50 to 2000 µm. The experiment results proved that the sensor can accurately measure the blade tip clearances with a temporal resolution of 10 µm. The capability of accurately measuring the tip clearances at high temperatures (~1300 K) and high turbine rotation speeds (~30 000 rpm), along with its compact size, makes it promising for online monitoring and active control of blade tip clearances of high-temperature turbomachinery.

  13. Effects of wireless packet loss in industrial process control systems.

    PubMed

    Liu, Yongkang; Candell, Richard; Moayeri, Nader

    2017-05-01

    Timely and reliable sensing and actuation control are essential in networked control. This depends on not only the precision/quality of the sensors and actuators used but also on how well the communications links between the field instruments and the controller have been designed. Wireless networking offers simple deployment, reconfigurability, scalability, and reduced operational expenditure, and is easier to upgrade than wired solutions. However, the adoption of wireless networking has been slow in industrial process control due to the stochastic and less than 100% reliable nature of wireless communications and lack of a model to evaluate the effects of such communications imperfections on the overall control performance. In this paper, we study how control performance is affected by wireless link quality, which in turn is adversely affected by severe propagation loss in harsh industrial environments, co-channel interference, and unintended interference from other devices. We select the Tennessee Eastman Challenge Model (TE) for our study. A decentralized process control system, first proposed by N. Ricker, is adopted that employs 41 sensors and 12 actuators to manage the production process in the TE plant. We consider the scenario where wireless links are used to periodically transmit essential sensor measurement data, such as pressure, temperature and chemical composition to the controller as well as control commands to manipulate the actuators according to predetermined setpoints. We consider two models for packet loss in the wireless links, namely, an independent and identically distributed (IID) packet loss model and the two-state Gilbert-Elliot (GE) channel model. While the former is a random loss model, the latter can model bursty losses. With each channel model, the performance of the simulated decentralized controller using wireless links is compared with the one using wired links providing instant and 100% reliable communications. The sensitivity of the controller to the burstiness of packet loss is also characterized in different process stages. The performance results indicate that wireless links with redundant bandwidth reservation can meet the requirements of the TE process model under normal operational conditions. When disturbances are introduced in the TE plant model, wireless packet loss during transitions between process stages need further protection in severely impaired links. Techniques such as retransmission scheduling, multipath routing and enhanced physical layer design are discussed and the latest industrial wireless protocols are compared. Published by Elsevier Ltd.

  14. Effects of Wireless Packet Loss in Industrial Process Control Systems

    PubMed Central

    Liu, Yongkang; Candell, Richard; Moayeri, Nader

    2017-01-01

    Timely and reliable sensing and actuation control are essential in networked control. This depends on not only the precision/quality of the sensors and actuators used but also on how well the communications links between the field instruments and the controller have been designed. Wireless networking offers simple deployment, reconfigurability, scalability, and reduced operational expenditure, and is easier to upgrade than wired solutions. However, the adoption of wireless networking has been slow in industrial process control due to the stochastic and less than 100 % reliable nature of wireless communications and lack of a model to evaluate the effects of such communications imperfections on the overall control performance. In this paper, we study how control performance is affected by wireless link quality, which in turn is adversely affected by severe propagation loss in harsh industrial environments, co-channel interference, and unintended interference from other devices. We select the Tennessee Eastman Challenge Model (TE) for our study. A decentralized process control system, first proposed by N. Ricker, is adopted that employs 41 sensors and 12 actuators to manage the production process in the TE plant. We consider the scenario where wireless links are used to periodically transmit essential sensor measurement data, such as pressure, temperature and chemical composition to the controller as well as control commands to manipulate the actuators according to predetermined setpoints. We consider two models for packet loss in the wireless links, namely, an independent and identically distributed (IID) packet loss model and the two-state Gilbert-Elliot (GE) channel model. While the former is a random loss model, the latter can model bursty losses. With each channel model, the performance of the simulated decentralized controller using wireless links is compared with the one using wired links providing instant and 100 % reliable communications. The sensitivity of the controller to the burstiness of packet loss is also characterized in different process stages. The performance results indicate that wireless links with redundant bandwidth reservation can meet the requirements of the TE process model under normal operational conditions. When disturbances are introduced in the TE plant model, wireless packet loss during transitions between process stages need further protection in severely impaired links. Techniques such as retransmission scheduling, multipath routing and enhanced physical layer design are discussed and the latest industrial wireless protocols are compared. PMID:28190566

  15. Effect of individual blade control on noise radiation

    NASA Technical Reports Server (NTRS)

    Swanson, S. M.; Jacklin, Stephen A.; Niesl, G.; Blaas, Achim; Kube, R.

    1995-01-01

    In a joint research program of NASA Ames Research Center, ZF Luftfahrttechnik, the German Aerospace Research Establishment (DLR), and EUROCOPTER Deutschland, a wind tunnel test was performed to evaluate the effects of Individual Blade Control (IBC) on rotor noise. This test was conducted in the 40x80 ft wind tunnel at NASA Ames Research Center, utilizing a full scale MBB-BO 105 four-bladed rotor system. Three microphones were installed for determination of the radiated noise, two of them on a moveable traverse below the advancing blade side and one in a fixed location below the retreating side. Acoustic results are presented for flight conditions with Blade-Vortex-Interaction (BVI) noise radiation. High noise level reductions were measured for single harmonic control inputs. In addition to the single harmonic inputs, multi-harmonic inputs were evaluated by superimposing 2/rev to 6/rev harmonics. For the first time the efficiency of sharp wavelets (60 deg and 90 deg width) on acoustic noise were measured. In order to achieve an adequate wavelet shape at the blade tip, corrections were made to account for the blade torsional behavior. In parallel with the acoustic measurements, vibratory loads were measured during the BVI flight condition to correlate the effects of IBC on noise and vibrations. It is shown how noise levels and vibrations are affected by specific IBC control inputs. In addition, correlations are made between noise levels and acoustic time histories with IBC phase and amplitude variations. For one IBC input mode with high noise reducing efficiency, a sweep of the moveable microphone traverse below the advancing side shows the effect on BVI noise directivity.

  16. Frequency-selective fading statistics of shallow-water acoustic communication channel with a few multipaths

    NASA Astrophysics Data System (ADS)

    Bae, Minja; Park, Jihyun; Kim, Jongju; Xue, Dandan; Park, Kyu-Chil; Yoon, Jong Rak

    2016-07-01

    The bit error rate of an underwater acoustic communication system is related to multipath fading statistics, which determine the signal-to-noise ratio. The amplitude and delay of each path depend on sea surface roughness, propagation medium properties, and source-to-receiver range as a function of frequency. Therefore, received signals will show frequency-dependent fading. A shallow-water acoustic communication channel generally shows a few strong multipaths that interfere with each other and the resulting interference affects the fading statistics model. In this study, frequency-selective fading statistics are modeled on the basis of the phasor representation of the complex path amplitude. The fading statistics distribution is parameterized by the frequency-dependent constructive or destructive interference of multipaths. At a 16 m depth with a muddy bottom, a wave height of 0.2 m, and source-to-receiver ranges of 100 and 400 m, fading statistics tend to show a Rayleigh distribution at a destructive interference frequency, but a Rice distribution at a constructive interference frequency. The theoretical fading statistics well matched the experimental ones.

  17. Aerodynamic analysis of the Darrieus rotor including secondary effects

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.; Delclaux, F.; Fraunie, P.; Beguier, C.

    1983-10-01

    An aerodynamic analysis is made of two variants of the two-actuator-disk theory for modeling the Darrieus wind turbine. The double-multiple-streamtube model with constant and variable interference factors, including secondary effects, is examined for a Darrieus rotor. The influence of the secondary effects, namely, the blade geometry and profile type, the rotating tower, and the presence of struts and aerodynamic spoilers, is relatively significant, especially at high tip-speed ratios. Variation of the induced velocity as a function of the azimuthal angle allows a more accurate calculation of the aerodynamic loads on the downwind zone of the rotor with respect to the assumed constant interference factors. The theoretical results were compared with available experimental data for the Magdalen Islands wind turbine and Sandia-type machines (straight-line/circular-arc shape).

  18. Boby-Vortex Interaction, Sound Generation and Destructive Interference

    NASA Technical Reports Server (NTRS)

    Kao, Hsiao C.

    2000-01-01

    It is generally recognized that interaction of vortices with downstream blades is a major source of noise production. To analyze this problem numerically, a two-dimensional model of inviscid flow together with the method of matched asymptotic expansions is proposed. The method of matched asymptotic expansions is used to match the inner region of incompressible flow to the outer region of compressible flow. Because of incompressibility, relatively simple numerical methods are available to treat multiple vortices and multiple bodies of arbitrary shape. Disturbances from vortices and bodies propagate outward as sound waves. Due to their interactions, either constructive or destructive interference may result. When it is destructive, the combined sound intensity can be reduced, sometimes substantially. In addition, an analytical solution to sound generation by the cascade-vonex interaction is given.

  19. Study on an undershot cross-flow water turbine

    NASA Astrophysics Data System (ADS)

    Nishi, Yasuyuki; Inagaki, Terumi; Li, Yanrong; Omiya, Ryota; Fukutomi, Junichiro

    2014-06-01

    This study aims to develop a water turbine suitable for ultra-low heads in open channels, with the end goal being the effective utilization of unutilized hydroelectric energy in agricultural water channels. We performed tests by applying a cross-flow runner to an open channel as an undershot water turbine while attempting to simplify the structure and eliminate the casing. We experimentally investigated the flow fields and performance of water turbines in states where the flow rate was constant for the undershot cross-flow water turbine mentioned above. In addition, we compared existing undershot water turbines with our undershot cross-flow water turbine after attaching a bottom plate to the runner. From the results, we were able to clarify the following. Although the effective head for cross-flow runners with no bottom plate was lower than those found in existing runners equipped with a bottom plate, the power output is greater in the high rotational speed range because of the high turbine efficiency. Also, the runner with no bottom plate differed from runners that had a bottom plate in that no water was being wound up by the blades or retained between the blades, and the former received twice the flow due to the flow-through effect. As a result, the turbine efficiency was greater for runners with no bottom plate in the full rotational speed range compared with that found in runners that had a bottom plate.

  20. 14 CFR 29.675 - Stops.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... stop must be located in the system so that the range of travel of its control is not appreciably...) Stops that are appropriate to the blade design must be provided to limit travel of the blade about its hinge points; and (2) There must be means to keep the blade from hitting the droop stops during any...

  1. 14 CFR 27.675 - Stops.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... stop must be located in the system so that the range of travel of its control is not appreciably...) Stops that are appropriate to the blade design must be provided to limit travel of the blade about its hinge points; and (2) There must be means to keep the blade from hitting the droop stops during any...

  2. Investigation of the Effect of Blade Sweep on Rotor Vibratory Loads

    NASA Technical Reports Server (NTRS)

    Tarzanin, F. J., Jr.; Vlaminck, R. R.

    1983-01-01

    The effect of helicopter rotor blade planform sweep on rotor vibratory hub, blade, and control system loads has been analytically investigated. The importance of sweep angle, sweep initiation radius, flap bending stiffness and torsion bending stiffness is discussed. The mechanism by which sweep influences the vibratory hub loads is investigated.

  3. Wind tunnel study of helical and straight-bladed vertical-axis wind turbine wakes

    NASA Astrophysics Data System (ADS)

    Bagheri, Maryam; Araya, Daniel

    2017-11-01

    It is hypothesized that blade curvature can serve as a passive means to control fluid entrainment and wake recovery in vertical-axis wind turbine (VAWT) arrays. We test this experimentally in a wind tunnel using two different VAWT configurations, one with straight blades and another with helical blades, keeping all other experimental parameters fixed. A small-scale, commercially available VAWT (15W max power) is used as the baseline wind tunnel model in each case. The commercial VAWT blades are replaced with either straight or helical blades that are 3D-printed extrusions of the same airfoil cross-section. Results from smoke flow visualization, three-component wake velocity measurements, and turbine power data are presented. These results give insight into the potential use of VAWTs with curved blades in utility-scale wind farms.

  4. Wind turbine with automatic pitch and yaw control

    DOEpatents

    Cheney, Jr., Marvin Chapin; Spierings, Petrus A. M.

    1978-01-01

    A wind turbine having a flexible central beam member supporting aerodynamic blades at opposite ends thereof and fabricated of uni-directional high tensile strength material bonded together into beam form so that the beam is lightweight, and has high tensile strength to carry the blade centrifugal loads, low shear modulus to permit torsional twisting thereof for turbine speed control purposes, and adequate bending stiffness to permit out-of-plane deflection thereof for turbine yard control purposes. A selectively off-set weighted pendulum member is pivotally connected to the turbine and connected to the beam or blade so as to cause torsional twisting thereof in response to centrifugal loading of the pendulum member for turbine speed control purposes.

  5. Performance Comparison with Different Antenna Properties in Time Reversal Ultra-Wideband Communications for Sensor System Applications

    PubMed Central

    Ding, Shuai

    2017-01-01

    The complexity reduction of receivers in ultrawideband (UWB) communication when time reversal (TR) technique is applied makes it suitable for low-cost and low-power sensor systems. Larger antenna dispersion can generally lead to a less stable phase center and will increase the interference in UWB communications based on pulse radio, whereas a higher antenna gain will result in higher channel gain and further larger channel capacity. To find out the trade-off between antenna gain and dispersion, we performed the channel measurements using different antennas in a dense multipath environment and established the distribution of channel capacities based on the measured channel responses. The results show that the capacity loss caused by antenna dispersion cannot be compensated by antenna gain with line-of-sight transmission to some extent, the effect of phase center on the communication system is negligible, and antennas with smaller time dispersion will have a better energy focusing property and anti-interference performance in TR systems. PMID:29301195

  6. Performance Comparison with Different Antenna Properties in Time Reversal Ultra-Wideband Communications for Sensor System Applications.

    PubMed

    Yang, Yu; Wang, Bing-Zhong; Ding, Shuai

    2017-12-30

    The complexity reduction of receivers in ultrawideband (UWB) communication when time reversal (TR) technique is applied makes it suitable for low-cost and low-power sensor systems. Larger antenna dispersion can generally lead to a less stable phase center and will increase the interference in UWB communications based on pulse radio, whereas a higher antenna gain will result in higher channel gain and further larger channel capacity. To find out the trade-off between antenna gain and dispersion, we performed the channel measurements using different antennas in a dense multipath environment and established the distribution of channel capacities based on the measured channel responses. The results show that the capacity loss caused by antenna dispersion cannot be compensated by antenna gain with line-of-sight transmission to some extent, the effect of phase center on the communication system is negligible, and antennas with smaller time dispersion will have a better energy focusing property and anti-interference performance in TR systems.

  7. Queen's Solar Radio Telescope

    NASA Astrophysics Data System (ADS)

    Gardiner, B. L.; Thomson, D. J.

    2006-12-01

    Starting with the designs of earlier solar radio telescopes, particularly the one at Bell Labs, Murray Hill, we have built a new instrument. The major differences between this telescope and its predecessors are that it has: 1) parallel low and high gain channels for both polarizations; 2) four additional channels for active interference cancellation; and 3) all eight IF strips terminating in 100 MHz, 14--bit analog--to--digital converters with synchronized sampling. The advantages of such a configuration are: a) The parallel low and high gain channels allow a higher dynamic range without saturating than a single channel. b) Estimating bispectra between the channels gives a sensitive test for saturation in the higher gain channel. c) In the usual case, when both channels are in their linear region, one can use them with a noise injection diode to track the amplifier noise figures. d) With the noise diode off, the two channels can be used in a mode similar to remote reference. As the telescope is operating in a small city we anticipate that more than 90% of the measurements will be contaminated by various communications signals and impulsive noise. Thus all the signal processing will build on various robust statistical procedures that have proven effective in other applications. The best mode of operating the four active interference cancelling channels is still under study

  8. Beamforming design with proactive interference cancelation in MISO interference channels

    NASA Astrophysics Data System (ADS)

    Li, Yang; Tian, Yafei; Yang, Chenyang

    2015-12-01

    In this paper, we design coordinated beamforming at base stations (BSs) to facilitate interference cancelation at users in interference networks, where each BS is equipped with multiple antennas and each user is with a single antenna. By assuming that each user can select the best decoding strategy to mitigate the interference, either canceling the interference after decoding when it is strong or treating it as noise when it is weak, we optimize the beamforming vectors that maximize the sum rate for the networks under different interference scenarios and find the solutions of beamforming with closed-form expressions. The inherent design principles are then analyzed, and the performance gain over passive interference cancelation is demonstrated through simulations in heterogeneous cellular networks.

  9. Dynamic response of active twist rotor blades

    NASA Astrophysics Data System (ADS)

    Cesnik, Carlos E. S.; Shin, Sang Joon; Wilbur, Matthew L.

    2001-02-01

    Dynamic characteristics of active twist rotor (ATR) blades are investigated analytically and experimentally in this paper. The ATR system is intended for vibration and potentially for noise reductions in helicopters through individual blade control. An aeroelastic model is developed to identify frequency response characteristics of the ATR blade with integral, generally anisotropic, strain actuators embedded in its composite construction. An ATR prototype blade was designed and manufactured to experimentally study the vibration reduction capabilities of such systems. Several bench and hover tests were conducted and those results are presented and discussed here. Selected results on sensitivity of the ATR system to collective setting (i.e. blade loading), blade rpm (i.e. centrifugal force and blade station velocity), and media density (i.e. altitude) are presented. They indicated that the twist actuation authority of the ATR blade is independent of the collective setting up to approximately 10P, and dependent on rotational speed and altitude near the torsional resonance frequency due to its dependency on the aerodynamic damping. The proposed model captures very well the physics and sensitivities to selected test parameters of the ATR system. The numerical result of the blade torsional loads show an average error of 20% in magnitude and virtually no difference in phase for the blade frequency response. Overall, the active blade model is in very good agreement with the experiments and can be used to analyze and design future active helicopter blade systems.

  10. An Initial Look at Adjacent Band Interference Between Aeronautical Mobile Telemetry and Long-Term Evolution Wireless Service

    DTIC Science & Technology

    2016-07-04

    required analysis, and further testing. 15. SUBJECT TERMS Adjacent Channel Interference, ACI, LTE -A, LTE , PCM/FM, SOQPSK-TG, ARTM CPM, AWS-3, User...Interference, ACI, LTE -A, LTE , PCM/FM, SOQPSK-TG, ARTM CPM, AWS-3, User Equipment, UE, Evolved Node B, eNodeB, Resource Blocks INTRODUCTION “On...these questions make necessary an improved understanding of the interferers that can be obtained only by hands-on measurements . This work will

  11. Energy efficient engine high pressure turbine test hardware detailed design report

    NASA Technical Reports Server (NTRS)

    Halila, E. E.; Lenahan, D. T.; Thomas, T. T.

    1982-01-01

    The high pressure turbine configuration for the Energy Efficient Engine is built around a two-stage design system. Moderate aerodynamic loading for both stages is used to achieve the high level of turbine efficiency. Flowpath components are designed for 18,000 hours of life, while the static and rotating structures are designed for 36,000 hours of engine operation. Both stages of turbine blades and vanes are air-cooled incorporating advanced state of the art in cooling technology. Direct solidification (DS) alloys are used for blades and one stage of vanes, and an oxide dispersion system (ODS) alloy is used for the Stage 1 nozzle airfoils. Ceramic shrouds are used as the material composition for the Stage 1 shroud. An active clearance control (ACC) system is used to control the blade tip to shroud clearances for both stages. Fan air is used to impinge on the shroud casing support rings, thereby controlling the growth rate of the shroud. This procedure allows close clearance control while minimizing blade tip to shroud rubs.

  12. Axial-Flow Turbine Rotor Discharge-Flow Overexpansion and Limit-Loading Condition, Part I: Computational Fluid Dynamics (CFD) Investigation

    NASA Technical Reports Server (NTRS)

    Chen, Shu-Cheng S.

    2017-01-01

    A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.

  13. Two-photon activation of endogenous store-operated calcium channels without optogenetics

    NASA Astrophysics Data System (ADS)

    Cheng, Pan; Tang, Wanyi; He, Hao

    2018-02-01

    Store-operated calcium (SOC) channels, regulated by intracellular Ca2+ store, are the essential pathway of calcium signaling and participate in a wide variety of cellular activities such as gene expression, secretion and immune response1. However, our understanding and regulation of SOC channels are mainly based on pharmacological methods. Considering the unique advantages of optical control, optogenetic control of SOC channels has been developed2. However, the process of genetic engineering to express exogenous light-sensitive protein is complicated, which arouses concerns about ethic difficulties in some research of animal and applications in human. In this report, we demonstrate rapid, robust and reproducible two-photon activation of endogenous SOC channels by femtosecond laser without optogenetics. We present that the short-duration two-photon scanning on subcellular microregion induces slow Ca2+ influx from extracellular medium, which can be eliminated by removing extracellular Ca2+. Block of SOC channels using various pharmacological inhibitors or knockdown of SOC channels by RNA interference reduce the probability of two-photon activated Ca2+ influx. On the contrary, overexpression of SOC channels can increase the probability of Ca2+ influx by two-photon scanning. These results collectively indicate Ca2+ influx through two-photon activated SOC channels. Different from classical pathway of SOC entry activated by Ca2+ store depletion, STIM1, the sensor protein of Ca2+ level in endoplasmic reticulum, does not show any aggregation or migration in this two-photon activated Ca2+ influx, which rules out the possibility of intracellular Ca2+ store depletion. Thereby, we propose this all-optical method of two-photon activation of SOC channels is of great potential to be widely applied in the research of cell calcium signaling and related biological research.

  14. Oscillation of Branching Ratios Between the D(2s)+D(1s) and the D(2p)+D(1s) Channels in Direct Photodissociation of D_{2}.

    PubMed

    Wang, Jie; Meng, Qingnan; Mo, Yuxiang

    2017-08-04

    The direct photodissociation of D_{2} at excitation energies above 14.76 eV occurs via two channels, D(2s)+D(1s) and D(2p)+D(1s). The branching ratios between the two have been measured from the dissociation threshold to 3200 cm^{-1} above it, and it is found that they show cosine oscillations as a function of the fragment wave vector magnitudes. The oscillation is due to an interference effect and can be simulated using the phase difference between the wave functions of the two channels, analogous to Young's double-slit experiment. By fitting the measured branching ratios, we have determined the depths and widths of the effective spherical potential wells related to the two channels, which are in agreement with the effective depths and widths of the ab initio interaction potentials. The results of this Letter illustrate the importance of the relative phase between the fragments in controlling the branching ratios of the photodissociation channels.

  15. Oscillation of Branching Ratios Between the D (2 s )+D (1 s ) and the D (2 p )+D (1 s ) Channels in Direct Photodissociation of D2

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Meng, Qingnan; Mo, Yuxiang

    2017-08-01

    The direct photodissociation of D2 at excitation energies above 14.76 eV occurs via two channels, D (2 s )+D (1 s ) and D (2 p )+D (1 s ) . The branching ratios between the two have been measured from the dissociation threshold to 3200 cm-1 above it, and it is found that they show cosine oscillations as a function of the fragment wave vector magnitudes. The oscillation is due to an interference effect and can be simulated using the phase difference between the wave functions of the two channels, analogous to Young's double-slit experiment. By fitting the measured branching ratios, we have determined the depths and widths of the effective spherical potential wells related to the two channels, which are in agreement with the effective depths and widths of the ab initio interaction potentials. The results of this Letter illustrate the importance of the relative phase between the fragments in controlling the branching ratios of the photodissociation channels.

  16. Complexity Analysis and Algorithms for Optimal Resource Allocation in Wireless Networks

    DTIC Science & Technology

    2012-09-01

    independent orthogonal signaling such as OFDM . The general formulation will exploit the concept of ‘interference alignment’ which is known to provide...substantial rate gain over OFDM signalling for general interference channels. We have successfully analyzed the complexity to characterize the optimal...categories: PaperReceived Gennady Lyubeznik, Zhi-Quan Luo, Meisam Razaviyayn. On the degrees of freedom achievable through interference alignment in a MIMO

  17. 76 FR 30341 - Town of Edgartown; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ...), filed an application for a successive preliminary permit, pursuant to section 4(f) of the Federal Power Act (FPA), proposing to study the feasibility of the Muskeget Channel Tidal Energy Project to be..., and one experimental turbine unit that would be used to test various open- bladed and helical tidal...

  18. On-chip polarimetry for high-throughput screening of nanoliter and smaller sample volumes

    NASA Technical Reports Server (NTRS)

    Bachmann, Brian O. (Inventor); Bornhop, Darryl J. (Inventor); Dotson, Stephen (Inventor)

    2012-01-01

    A polarimetry technique for measuring optical activity that is particularly suited for high throughput screening employs a chip or substrate (22) having one or more microfluidic channels (26) formed therein. A polarized laser beam (14) is directed onto optically active samples that are disposed in the channels. The incident laser beam interacts with the optically active molecules in the sample, which slightly alter the polarization of the laser beam as it passes multiple times through the sample. Interference fringe patterns (28) are generated by the interaction of the laser beam with the sample and the channel walls. A photodetector (34) is positioned to receive the interference fringe patterns and generate an output signal that is input to a computer or other analyzer (38) for analyzing the signal and determining the rotation of plane polarized light by optically active material in the channel from polarization rotation calculations.

  19. Numerical Investigations of Active Flow Control for Low-Pressure Turbine Blades

    DTIC Science & Technology

    2008-03-01

    points were clustered near the wall, in the separated flow region on the suction side of the 7 blade , and in the wake . Table 1 summarizes the block...Perspective view of blade (computational domain was repeated once in spanwise direction), side view of wake , and top down view of wake . Distributions...to the wake region. A second observation is that the wake turbulence appears to be concentrated in "lumps". In analogy to other wake flows, the blade

  20. Design and Modeling of Turbine Airfoils with Active Flow Control in Realistic Engine Conditions

    DTIC Science & Technology

    2008-07-16

    deficit and turbulence parameters in the wake of a passing blade . An additional objective was to determine the proper cylinder diameter and...we see that in terms of velocity deficit only, the 4mm cylinder at x/D=8 approximates very well the blade wake . However, we see that the problem...Results Blade Wake The computational domain consisted of a single blade with periodic conditions imposed at approximately the mid-passage, as seen in

  1. Thermal/structural Tailoring of Engine Blades (T/STAEBL) User's Manual

    NASA Technical Reports Server (NTRS)

    Brown, K. W.; Clevenger, W. B.; Arel, J. D.

    1994-01-01

    The Thermal/Structural Tailoring of Engine Blades (T/STAEBL) system is a family of computer programs executed by a control program. The T/STAEBL system performs design optimizations of cooled, hollow turbine blades and vanes. This manual contains an overview of the system, fundamentals of the data block structure, and detailed descriptions of the inputs required by the optimizer. Additionally, the thermal analysis input requirements are described as well as the inputs required to perform a finite element blade vibrations analysis.

  2. Active control of multi-element rotor blade airfoils

    NASA Technical Reports Server (NTRS)

    Torok, Michael S. (Inventor); Moffitt, Robert C. (Inventor); Bagai, Ashish (Inventor)

    2005-01-01

    A multi-element rotor blade includes an individually controllable main element and fixed aerodynamic surface in an aerodynamically efficient location relative to the main element. The main element is controlled to locate the fixed aerodynamic surface in a position to increase lift and/or reduce drag upon the main element at various azimuthal positions during rotation.

  3. Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Sellappan, V.; Vallejo, A.; Ozen, M.

    2010-11-01

    A multi-disciplinary design-optimization procedure has been introduced and used for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine (HAWT) blades. The turbine-blade cost-effectiveness has been defined using the cost of energy (CoE), i.e., a ratio of the three-blade HAWT rotor development/fabrication cost and the associated annual energy production. To assess the annual energy production as a function of the blade design and operating conditions, an aerodynamics-based computational analysis had to be employed. As far as the turbine blade cost is concerned, it is assessed for a given aerodynamic design by separately computing the blade mass and the associated blade-mass/size-dependent production cost. For each aerodynamic design analyzed, a structural finite element-based and a post-processing life-cycle assessment analyses were employed in order to determine a minimal blade mass which ensures that the functional requirements pertaining to the quasi-static strength of the blade, fatigue-controlled blade durability and blade stiffness are satisfied. To determine the turbine-blade production cost (for the currently prevailing fabrication process, the wet lay-up) available data regarding the industry manufacturing experience were combined with the attendant blade mass, surface area, and the duration of the assumed production run. The work clearly revealed the challenges associated with simultaneously satisfying the strength, durability and stiffness requirements while maintaining a high level of wind-energy capture efficiency and a lower production cost.

  4. GRID3D-v2: An updated version of the GRID2D/3D computer program for generating grid systems in complex-shaped three-dimensional spatial domains

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Shih, T. I-P.; Roelke, R. J.

    1991-01-01

    In order to generate good quality systems for complicated three-dimensional spatial domains, the grid-generation method used must be able to exert rather precise controls over grid-point distributions. Several techniques are presented that enhance control of grid-point distribution for a class of algebraic grid-generation methods known as the two-, four-, and six-boundary methods. These techniques include variable stretching functions from bilinear interpolation, interpolating functions based on tension splines, and normalized K-factors. The techniques developed in this study were incorporated into a new version of GRID3D called GRID3D-v2. The usefulness of GRID3D-v2 was demonstrated by using it to generate a three-dimensional grid system in the coolent passage of a radial turbine blade with serpentine channels and pin fins.

  5. Survival and behavioral effects of exposure to a hydrokinetic turbine on juvenile Atlantic salmon and adult American shad

    USGS Publications Warehouse

    Castro-Santos, Theodore R.; Haro, Alex

    2015-01-01

    This paper describes a series of experiments designed to measure the effect of exposure to a full-scale, vertical axis hydrokinetic turbine on downstream migrating juvenile Atlantic salmon (N=75) and upstream migrating adult American shad (N=208). Controlled studies were performed in a large-scale, open-channel flume, and all individuals approached the turbine under volitional control. No injuries were observed, and there was no measurable increase in mortality associated with turbine passage. Exposure to the turbine elicited behavioral responses from both species, however, with salmon passing primarily over the downrunning blades. Shad movement was impeded by the device, as indicated by fewer attempts of shorter duration and reduced distance of ascent up the flume. More work should be performed in both laboratory and field conditions to determine to what extent these effects are likely to influence free-swimming fish.

  6. Novel casting processes for single-crystal turbine blades of superalloys

    NASA Astrophysics Data System (ADS)

    Ma, Dexin

    2018-03-01

    This paper presents a brief review of the current casting techniques for single-crystal (SC) blades, as well as an analysis of the solidification process in complex turbine blades. A series of novel casting methods based on the Bridgman process were presented to illustrate the development in the production of SC blades from superalloys. The grain continuator and the heat conductor techniques were developed to remove geometry-related grain defects. In these techniques, the heat barrier that hinders lateral SC growth from the blade airfoil into the extremities of the platform is minimized. The parallel heating and cooling system was developed to achieve symmetric thermal conditions for SC solidification in blade clusters, thus considerably decreasing the negative shadow effect and its related defects in the current Bridgman process. The dipping and heaving technique, in which thinshell molds are utilized, was developed to enable the establishment of a high temperature gradient for SC growth and the freckle-free solidification of superalloy castings. Moreover, by applying the targeted cooling and heating technique, a novel concept for the three-dimensional and precise control of SC growth, a proper thermal arrangement may be dynamically established for the microscopic control of SC growth in the critical areas of large industrial gas turbine blades.

  7. Material characterization of active fiber composites for integral twist-actuated rotor blade application

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Viresh K.; Hagood, Nesbitt W.

    2004-10-01

    The primary objective of this work was to perform material characterization of the active fiber composite (AFC) actuator system for the Boeing active material rotor (AMR) blade application. The purpose of the AMR was to demonstrate active vibration control in helicopters through integral twist-actuation of the blade. The AFCs were a new structural actuator system consisting of piezoceramic fibers embedded in an epoxy matrix and sandwiched between interdigitated electrodes to enhance actuation performance. These conformable actuators were integrated directly into the blade spar laminate as active plies within the composite structure to perform structural control. Therefore, extensive electromechanical material characterization was required to evaluate AFCs both as actuators and as structural components of the blade. The characterization tests designed to extract important electromechanical properties under simulated blade operating conditions included nominal actuation tests, stress-strain tests and actuation under tensile load tests. This paper presents the test results as well as the comprehensive testing procedure developed to evaluate the relevant properties of the AFCs for structural application. The material characterization tests provided an invaluable insight into the behavior of the AFCs under various electromechanical conditions. The results from this comprehensive material characterization of the AFC actuator system supported the design and operation of the AMR blades scheduled for wind tunnel tests.

  8. Experimental demonstration of OFDM/OQAM transmission with DFT-based channel estimation for visible laser light communications

    NASA Astrophysics Data System (ADS)

    He, Jing; Shi, Jin; Deng, Rui; Chen, Lin

    2017-08-01

    Recently, visible light communication (VLC) based on light-emitting diodes (LEDs) is considered as a candidate technology for fifth-generation (5G) communications, VLC is free of electromagnetic interference and it can simplify the integration of VLC into heterogeneous wireless networks. Due to the data rates of VLC system limited by the low pumping efficiency, small output power and narrow modulation bandwidth, visible laser light communication (VLLC) system with laser diode (LD) has paid more attention. In addition, orthogonal frequency division multiplexing/offset quadrature amplitude modulation (OFDM/OQAM) is currently attracting attention in optical communications. Due to the non-requirement of cyclic prefix (CP) and time-frequency domain well-localized pulse shapes, it can achieve high spectral efficiency. Moreover, OFDM/OQAM has lower out-of-band power leakage so that it increases the system robustness against inter-carrier interference (ICI) and frequency offset. In this paper, a Discrete Fourier Transform (DFT)-based channel estimation scheme combined with the interference approximation method (IAM) is proposed and experimentally demonstrated for VLLC OFDM/OQAM system. The performance of VLLC OFDM/OQAM system with and without DFT-based channel estimation is investigated. Moreover, the proposed DFT-based channel estimation scheme and the intra-symbol frequency-domain averaging (ISFA)-based method are also compared for the VLLC OFDM/OQAM system. The experimental results show that, the performance of EVM using the DFT-based channel estimation scheme is improved about 3dB compared with the conventional IAM method. In addition, the DFT-based channel estimation scheme can resist the channel noise effectively than that of the ISFA-based method.

  9. Using recurrent neural networks for adaptive communication channel equalization.

    PubMed

    Kechriotis, G; Zervas, E; Manolakos, E S

    1994-01-01

    Nonlinear adaptive filters based on a variety of neural network models have been used successfully for system identification and noise-cancellation in a wide class of applications. An important problem in data communications is that of channel equalization, i.e., the removal of interferences introduced by linear or nonlinear message corrupting mechanisms, so that the originally transmitted symbols can be recovered correctly at the receiver. In this paper we introduce an adaptive recurrent neural network (RNN) based equalizer whose small size and high performance makes it suitable for high-speed channel equalization. We propose RNN based structures for both trained adaptation and blind equalization, and we evaluate their performance via extensive simulations for a variety of signal modulations and communication channel models. It is shown that the RNN equalizers have comparable performance with traditional linear filter based equalizers when the channel interferences are relatively mild, and that they outperform them by several orders of magnitude when either the channel's transfer function has spectral nulls or severe nonlinear distortion is present. In addition, the small-size RNN equalizers, being essentially generalized IIR filters, are shown to outperform multilayer perceptron equalizers of larger computational complexity in linear and nonlinear channel equalization cases.

  10. Equations for Estimating the Strength of TV Signals Scattered by Wind Turbines

    NASA Technical Reports Server (NTRS)

    Spera, David A.; Sengupta, Dipak L.

    1994-01-01

    During the late 1970's and early 1980's, concerns about the potential interference of wind turbine generators with electromagnetic communication signals led to a series of research studies, both in the laboratory and in the field, conducted by the staff of the University of Michigan Radiation Laboratory. These studies were sponsored by organizations such as the U.S. Department of Energy, the Solar Energy Research Institute, and private developers of wind power stations. Research objectives were to identify the mechanisms by which wind turbines might adversely affect communication signals, estimate the severity of these effects for different types of signals (e.g. television, radio, microwave, and navigation), and formulate mathematical models with which to predict the sizes of potential interference zones around wind turbines and wind power plants. This work formed the basis for preliminary standards on assessing electromagnetic interference (EMI) by wind turbines. With the current renewal of interest in wind energy projects, it is appropriate that the many experimental and analytical aspects of this pioneering work be reviewed and correlated. The purpose of this study is to combine test data and theory from previously published and unpublished research reports into a unified and consistent set of equations which are useful for estimating potential levels of television interference from wind turbines. To be comprehensive, these equations will include both horizontal-axis and vertical-axis wind turbines (HAWT's and VAWT's), blade configuration parameters (e.g. number, size, material, twist, and coning), signal frequency and power, and directional characteristics of the receiving antenna. The approach that is followed in this report is as follows. First, some basic equations that describe electromagnetic signals with interference are presented without detailed derivations, since the latter are available in the references. Minor changes in terminology are made for purposes of consistency. Next, the concept of a signal scatter ratio is introduced, which defines the fraction of the signal impinging on a wind turbine that is scattered by its blades onto a nearby receiver. Equations from references are modified for the calculation of experimental scatter ratios (from measured signals containing interference) and idealized scatter ratios (from rotor characteristics and relative locations of the transmitter, the turbine, and the receiver). Experimental and idealized scatter ratios are then calculated and compared for 75 cases from the literature, in which TVI measurements were made around a variety of wind turbines. An empirical equation is then defined for estimating the probability that an actual scatter ratio will differ from an idealized ratio by a given amount. Finally a sample calculation of the size of a potential TV interference zone around a hypothetical wind power station is presented.

  11. An interactive grid generation procedure for axial and radial flow turbomachinery

    NASA Technical Reports Server (NTRS)

    Beach, Timothy A.

    1989-01-01

    A combination algebraic/elliptic technique is presented for the generation of three dimensional grids about turbo-machinery blade rows for both axial and radial flow machinery. The technique is built around use of an advanced engineering workstation to construct several two dimensional grids interactively on predetermined blade-to-blade surfaces. A three dimensional grid is generated by interpolating these surface grids onto an axisymmetric grid. On each blade-to-blade surface, a grid is created using algebraic techniques near the blade to control orthogonality within the boundary layer region and elliptic techniques in the mid-passage to achieve smoothness. The interactive definition of bezier curves as internal boundaries is the key to simple construction. This procedure lends itself well to zonal grid construction, an important example being the tip clearance region. Calculations done to date include a space shuttle main engine turbopump blade, a radial inflow turbine blade, and the first stator of the United Technologies Research Center large scale rotating rig. A finite Navier-Stokes solver was used in each case.

  12. Optimization of blade motion of vertical axis turbine

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Zhang, Liang; Zhang, Zhi-yang; Han, Duan-feng

    2016-04-01

    In this paper, a method is proposed to improve the energy efficiency of the vertical axis turbine. First of all, a single disk multiple stream-tube model is used to calculate individual fitness. Genetic algorithm is adopted to optimize blade pitch motion of vertical axis turbine with the maximum energy efficiency being selected as the optimization objective. Then, a particular data processing method is proposed, fitting the result data into a cosine-like curve. After that, a general formula calculating the blade motion is developed. Finally, CFD simulation is used to validate the blade pitch motion formula. The results show that the turbine's energy efficiency becomes higher after the optimization of blade pitch motion; compared with the fixed pitch turbine, the efficiency of variable-pitch turbine is significantly improved by the active blade pitch control; the energy efficiency declines gradually with the growth of speed ratio; besides, compactness has lager effect on the blade motion while the number of blades has little effect on it.

  13. Special opportunities in helicopter aerodynamics

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.

    1983-01-01

    Aerodynamic research relating to modern helicopters includes the study of three dimensional, unsteady, nonlinear flow fields. A selective review is made of some of the phenomenon that hamper the development of satisfactory engineering prediction techniques, but which provides a rich source of research opportunities: flow separations, compressibility effects, complex vortical wakes, and aerodynamic interference between components. Several examples of work in progress are given, including dynamic stall alleviation, the development of computational methods for transonic flow, rotor-wake predictions, and blade-vortex interactions.

  14. Evaluation of Commonly Used Products for Disinfecting Clipper Blades in Veterinary Practices: A Pilot Study.

    PubMed

    Ley, Benjamin; Silverman, Edward; Peery, Kara; Dominguez, Delfina

    2016-01-01

    Nosocomial infections are a concern of growing interest in veterinary medicine. Clipper blades have been confirmed as fomites for numerous potential pathogens and, as such, may be associated with wound and surgical site infections. The goal of this study was to evaluate the disinfectant capabilities of several commonly used clipper blade cleaning products. Seventy sterile clipper blades were inoculated with strains of Pseudomonas aeruginosa , Escherichia coli , and Staphylococcus aureus . Blades were then subjected to one of seven treatment groups for disinfecting. Quantitative cultures of remaining bacteria were performed. All blades in the control group showed large amounts of bacterial recovery. Culture results showed no recovery in blades soaked in alcohol or chlorhexidine or those sprayed with an ethanol/o-phenylphenol product, while moderate recovery was seen with all other treatments. These results show that persistent contamination of clipper blades can occur with the use of several commonly used disinfectant products. Further research is necessary to evaluate fungicidal capabilities as well as the effect of disinfection on clipper blade maintenance.

  15. Emerging evidence in infection control: effecting change regarding use of disposable laryngoscope blades.

    PubMed

    Machan, Melissa D; Monaghan, W Patrick; McDonough, John; Hogan, Gerard

    2013-04-01

    The purpose of this evidence-based project was to determine the perceptions of anesthesia providers regarding the use of disposable laryngoscope blades. Frequency of use, ease of use, and complications encountered when using the disposable blade were evaluated before and after an in-service program designed to increase the use of disposable blades. Participants completed an anonymous questionnaire about their knowledge and practice regarding disposable laryngoscope blades. Then they received an investigator-developed article to read about the best and most recent practices regarding disposable laryngoscope blades. The same anonymous questionnaire was completed 3 months later. Inventory of the disposable laryngoscope blades was collected before the project and 1 and 3 months later. After the intervention, 25% of anesthesia providers described performance as their reason for not using the disposable laryngoscope blade, which was down from 60% at the project's start. Inventory showed a 23% increase in use of disposable laryngoscope blades after the intervention, which a single-proportion Z test showed was statistically significant (Z = 2.046, P = .041). This evidence-based project shows that a change in practice was evident after dissemination of the best and most recent clinical evidence regarding laryngoscope blades, which should translate to improved patient outcomes.

  16. BVI induced vibration and noise alleviation by active and passive approaches

    NASA Astrophysics Data System (ADS)

    Liu, Li

    This dissertation describes the development of a comprehensive aeroelastic/aeroacoustic simulation capability for the modeling of vibration and noise in rotorcraft induced by blade-vortex interaction (BVI). Subsequently this capability is applied to study vibration and noise reduction, using active and passive control approaches. The active approach employed is the actively controlled partial span trailing edge flaps (ACF), implemented in single and dual, servo and plain flap configurations. The passive approach is based on varying the sweep and anhedral on the tip of the rotor. Two different modern helicopters are chosen as the baseline for the implementation of ACF approach, one resembling a four-bladed MBB BO-105 hingeless rotor and the other similar to a five-bladed MD-900 bearingless rotor. The structural model is based on a finite element approach capable of simulating composite helicopter blades with swept tips, and representing multiple load paths at the blade root which is a characteristic of bearingless rotors. An unsteady compressible aerodynamic model based on a rational function approximation (RFA) approach is combined with a free wake analysis which has been enhanced by improving the wake analysis resolution and modeling a dual vortex structure. These enhancements are important for capturing BVI effects. A method for predicting compressible unsteady blade surface pressure distribution on rotor blades has been developed, which is required by the acoustic analysis. A modified version of helicopter noise code WOPWOP with provisions for blade flexibility has been combined with the aeroelastic analysis to predict the BVI noise. Several variants of the higher harmonic control (HHC) algorithm have been applied for the active noise control, as well as the simultaneous vibration and noise control. Active control of BVI noise is accomplished using feedback from an onboard microphone. The simulation has been extensively validated against experimental data and other comprehensive rotorcraft codes, and overall good correlation is obtained. Subsequently, the effectiveness of the ACF approach for vibration and BVI noise reduction has been explored, using the two different helicopter configurations. Vibration reductions of up to 86% and 60% are shown for the hingeless and bearingless rotor, respectively. Noise reductions of up to 6dB and 3dB are also demonstrated for these two configurations. (Abstract shortened by UMI.)

  17. A prescribed wake rotor inflow and flow field prediction analysis, user's manual and technical approach

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1982-01-01

    A user's manual is provided which includes the technical approach for the Prescribed Wake Rotor Inflow and Flow Field Prediction Analysis. The analysis is used to provide the rotor wake induced velocities at the rotor blades for use in blade airloads and response analyses and to provide induced velocities at arbitrary field points such as at a tail surface. This analysis calculates the distribution of rotor wake induced velocities based on a prescribed wake model. Section operating conditions are prescribed from blade motion and controls determined by a separate blade response analysis. The analysis represents each blade by a segmented lifting line, and the rotor wake by discrete segmented trailing vortex filaments. Blade loading and circulation distributions are calculated based on blade element strip theory including the local induced velocity predicted by the numerical integration of the Biot-Savart Law applied to the vortex wake model.

  18. A 20-channel magnetoencephalography system based on optically pumped magnetometers

    NASA Astrophysics Data System (ADS)

    Borna, Amir; Carter, Tony R.; Goldberg, Josh D.; Colombo, Anthony P.; Jau, Yuan-Yu; Berry, Christopher; McKay, Jim; Stephen, Julia; Weisend, Michael; Schwindt, Peter D. D.

    2017-12-01

    We describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject’s head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID) MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.

  19. Jet spoiler arrangement for wind turbine

    DOEpatents

    Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

    1983-09-15

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

  20. Jet spoiler arrangement for wind turbine

    DOEpatents

    Cyrus, Jack D.; Kadlec, Emil G.; Klimas, Paul C.

    1985-01-01

    An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Top