Sample records for channel flow

  1. Monodisperse microdroplet generation and stopping without coalescence

    DOEpatents

    Beer, Neil Reginald

    2015-04-21

    A system for monodispersed microdroplet generation and trapping including providing a flow channel in a microchip; producing microdroplets in the flow channel, the microdroplets movable in the flow channel; providing carrier fluid in the flow channel using a pump or pressure source; controlling movement of the microdroplets in the flow channel and trapping the microdroplets in a desired location in the flow channel. The system includes a microchip; a flow channel in the microchip; a droplet maker that generates microdroplets, the droplet maker connected to the flow channel; a carrier fluid in the flow channel, the carrier fluid introduced to the flow channel by a source of carrier fluid, the source of carrier fluid including a pump or pressure source; a valve connected to the carrier fluid that controls flow of the carrier fluid and enables trapping of the microdroplets.

  2. Monodisperse microdroplet generation and stopping without coalescence

    DOEpatents

    Beer, Neil Reginald

    2016-02-23

    A system for monodispersed microdroplet generation and trapping including providing a flow channel in a microchip; producing microdroplets in the flow channel, the microdroplets movable in the flow channel; providing carrier fluid in the flow channel using a pump or pressure source; controlling movement of the microdroplets in the flow channel and trapping the microdroplets in a desired location in the flow channel. The system includes a microchip; a flow channel in the microchip; a droplet maker that generates microdroplets, the droplet maker connected to the flow channel; a carrier fluid in the flow channel, the carrier fluid introduced to the flow channel by a source of carrier fluid, the source of carrier fluid including a pump or pressure source; a valve connected to the carrier fluid that controls flow of the carrier fluid and enables trapping of the microdroplets.

  3. Advanced porous electrodes with flow channels for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon

    2017-02-01

    Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.

  4. Isotachophoresis system having larger-diameter channels flowing into channels with reduced diameter and with selectable counter-flow

    DOEpatents

    Mariella, Jr., Raymond P.

    2018-03-06

    An isotachophoresis system for separating a sample containing particles into discrete packets including a flow channel, the flow channel having a large diameter section and a small diameter section; a negative electrode operably connected to the flow channel; a positive electrode operably connected to the flow channel; a leading carrier fluid in the flow channel; a trailing carrier fluid in the flow channel; and a control for separating the particles in the sample into discrete packets using the leading carrier fluid, the trailing carrier fluid, the large diameter section, and the small diameter section.

  5. Catalytic reaction in confined flow channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hassel, Bart A.

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flowmore » channel.« less

  6. Wavy flow cooling concept for turbine airfoils

    DOEpatents

    Liang, George

    2010-08-31

    An airfoil including an outer wall and a cooling cavity formed therein. The cooling cavity includes a leading edge flow channel located adjacent a leading edge of the airfoil and a trailing edge flow channel located adjacent a trailing edge of the airfoil. Each of the leading edge and trailing edge flow channels define respective first and second flow axes located between pressure and suction sides of the airfoil. A plurality of rib members are located within each of the flow channels, spaced along the flow axes, and alternately extending from opposing sides of the flow channels to define undulating flow paths through the flow channels.

  7. Supersonic cavity flows over concave and convex walls

    NASA Astrophysics Data System (ADS)

    Ye, A. Ran; Das, Rajarshi; Setoguchi, Toshiaki; Kim, Heuy Dong

    2016-04-01

    Supersonic cavity flows are characterized by compression and expansion waves, shear layer, and oscillations inside the cavity. For decades, investigations into cavity flows have been conducted, mostly with flows at zero pressure gradient entering the cavity in straight walls. Since cavity flows on curved walls exert centrifugal force, the features of these flows are likely to differ from those of straight wall flows. The aim of the present work is to study the flow physics of a cavity that is cut out on a curved wall. Steady and unsteady numerical simulations were carried out for supersonic flow through curved channels over the cavity with L/H = 1. A straight channel flow was also analyzed which serves as the base model. The velocity gradient along the width of the channel was observed to increase with increasing the channel curvature for both concave and convex channels. The pressure on the cavity floor increases with the increase in channel curvature for concave channels and decreases for convex channels. Moreover, unsteady flow characteristics are more dependent on channel curvature under supersonic free stream conditions.

  8. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, Neil Reginald

    2016-04-12

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carriermore » fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.« less

  9. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, Neil Reginald

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carriermore » fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.« less

  10. Annular fuel and air co-flow premixer

    DOEpatents

    Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David

    2013-10-15

    Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.

  11. Interwoven channels for internal cooling of airfoil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Adam M.

    An apparatus and method for passing fluid flow through at least a portion of a blade of turbomachinery, such as a gas turbine or the like. The fluid flow is directed through a plurality of flow channels which are interwoven with each other. Each flow channel is non-intersecting with any other flow channel and thus does not contact fluid flowing within any other flow channel. The method and apparatus can be used to reduce heat transfer and thus reduce thermal stresses, particularly in the blade.

  12. Role of Unchannelized Flow in Determining Bifurcation Angle in Distributary Channel Networks

    NASA Astrophysics Data System (ADS)

    Coffey, T.

    2016-02-01

    Distributary channel bifurcations on river deltas are important features in both actively prograding river deltas and in lithified deltas within the stratigraphic record. Attributes of distributary channels have long been thought to be defined by flow velocity, grain size and channel aspect ratio where the channel enters the basin. Interestingly, bifurcations in groundwater-fed tributary networks have been shown to grow and bifurcate independent of flow within the exposed channel network. These networks possess a characteristic bifurcation angle of 72°, based on Laplacian flow (water surface concavity equals zero) in the groundwater flow field near tributary channel tips. Based on the tributary channel model, we develop and test the hypothesis that bifurcation angles in distributary channels are likewise dictated by the external flow field, in this case the surface water surrounding the subaqueous portion of distributary channel tips in a deltaic setting. We measured 64 unique distributary bifurcations in an experimental delta, yielding a characteristic angle of 70.2°±2.2° (95% confidence interval), in line with the theoretical prediction for tributary channels. This similarity between bifurcation angles suggests that (A) flow directly outside of the distributary network is Laplacian, (B) the external flow field controls the bifurcation dynamics of distributary channels, and (C) that flow within the channel plays a secondary role in network dynamics.

  13. New design of a cathode flow-field with a sub-channel to improve the polymer electrolyte membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Wang, Yulin; Yue, Like; Wang, Shixue

    2017-03-01

    The cathode flow-field design of polymer electrolyte membrane (PEM) fuel cells determines the distribution of reactant gases and the removal of liquid water. A suitable design can result in perfect water management and thus high cell performance. In this paper, a new design for a cathode flow-field with a sub-channel was proposed and had been experimentally analyzed in a parallel flow-field PEM fuel cell. Three sub-channel inlets were placed along the cathode channel. The main-channel inlet was fed with moist air to humidify the membrane and maintain high proton conductivity, whereas, the sub-channel inlet was fed with dry air to enhance water removal in the flow channel. The experimental results indicated that the sub-channel design can decrease the pressure drop in the flow channel, and the sub-channels inlet positions (SIP, where the sub-channel inlets were placed along the cathode channel) and flow rates (SFR, percentage of air from the sub-channel inlet in the total cathode flow rate) had a considerable impact on water removal and cell performance. A proposed design that combines the SIP and SFR can effectively eliminate water from the fuel cell, increasing the maximum power density by more than 13.2% compared to the conventional design.

  14. Autogenic dynamics of debris-flow fans

    NASA Astrophysics Data System (ADS)

    van den Berg, Wilco; de Haas, Tjalling; Braat, Lisanne; Kleinhans, Maarten

    2015-04-01

    Alluvial fans develop their semi-conical shape by cyclic avulsion of their geomorphologically active sector from a fixed fan apex. These cyclic avulsions have been attributed to both allogenic and autogenic forcings and processes. Autogenic dynamics have been extensively studied on fluvial fans through physical scale experiments, and are governed by cyclic alternations of aggradation by unconfined sheet flow, fanhead incision leading to channelized flow, channel backfilling and avulsion. On debris-flow fans, however, autogenic dynamics have not yet been directly observed. We experimentally created debris-flow fans under constant extrinsic forcings, and show that autogenic dynamics are a fundamental intrinsic process on debris-flow fans. We found that autogenic cycles on debris-flow fans are driven by sequences of backfilling, avulsion and channelization, similar to the cycles on fluvial fans. However, the processes that govern these sequences are unique for debris-flow fans, and differ fundamentally from the processes that govern autogenic dynamics on fluvial fans. We experimentally observed that backfilling commenced after the debris flows reached their maximum possible extent. The next debris flows then progressively became shorter, driven by feedbacks on fan morphology and flow-dynamics. The progressively decreasing debris-flow length caused in-channel sedimentation, which led to increasing channel overflow and wider debris flows. This reduced the impulse of the liquefied flow body to the flow front, which then further reduced flow velocity and runout length, and induced further in-channel sedimentation. This commenced a positive feedback wherein debris flows became increasingly short and wide, until the channel was completely filled and the apex cross-profile was plano-convex. At this point, there was no preferential transport direction by channelization, and the debris flows progressively avulsed towards the steepest, preferential, flow path. Simultaneously, the debris flows started to channelize, forced by increasingly effective concentration of the flow impulse to the flow front, which caused more effective lateral levee formation and an increasingly well-defined channel. This process continued until the debris flows reached their maximum possible extent and the cycle was reverted. Channelization occurred in the absence of erosion, in contrast with fluvial fans. Backfilling and channelization cycles were gradual and symmetric, requiring multiple debris flows to be completed. These results add debris-flow fans to the spectrum of fan-shaped aqueous systems that are affected by autogenic dynamics, now ranging from low-gradient rivers systems to steep-gradient mass-flow fans.

  15. Magnetohydrodynamic (MHD) driven droplet mixer

    DOEpatents

    Lee, Abraham P.; Lemoff, Asuncion V.; Miles, Robin R.

    2004-05-11

    A magnetohydrodynamic fluidic system mixes a first substance and a second substance. A first substrate section includes a first flow channel and a first plurality of pairs of spaced electrodes operatively connected to the first flow channel. A second substrate section includes a second flow channel and a second plurality of pairs of spaced electrodes operatively connected to the second flow channel. A third substrate section includes a third flow channel and a third plurality of pairs of spaced electrodes operatively connected to the third flow channel. A magnetic section and a control section are operatively connected to the spaced electrodes. The first substrate section, the second substrate section, the third substrate section, the first plurality of pairs of spaced electrodes, the second plurality of pairs of spaced electrodes, the third plurality of pairs of spaced electrodes, the magnetic section, and the control section are operated to move the first substance through the first flow channel, the second substance through the second flow channel, and both the first substance and the second substance into the third flow channel where they are mixed.

  16. Ion concentrations and velocity profiles in nanochannel electroosmotic flows

    NASA Astrophysics Data System (ADS)

    Qiao, R.; Aluru, N. R.

    2003-03-01

    Ion distributions and velocity profiles for electroosmotic flow in nanochannels of different widths are studied in this paper using molecular dynamics and continuum theory. For the various channel widths studied in this paper, the ion distribution near the channel wall is strongly influenced by the finite size of the ions and the discreteness of the solvent molecules. The classical Poisson-Boltzmann equation fails to predict the ion distribution near the channel wall as it does not account for the molecular aspects of the ion-wall and ion-solvent interactions. A modified Poisson-Boltzmann equation based on electrochemical potential correction is introduced to account for ion-wall and ion-solvent interactions. The electrochemical potential correction term is extracted from the ion distribution in a smaller channel using molecular dynamics. Using the electrochemical potential correction term extracted from molecular dynamics (MD) simulation of electroosmotic flow in a 2.22 nm channel, the modified Poisson-Boltzmann equation predicts the ion distribution in larger channel widths (e.g., 3.49 and 10.00 nm) with good accuracy. Detailed studies on the velocity profile in electro-osmotic flow indicate that the continuum flow theory can be used to predict bulk fluid flow in channels as small as 2.22 nm provided that the viscosity variation near the channel wall is taken into account. We propose a technique to embed the velocity near the channel wall obtained from MD simulation of electroosmotic flow in a narrow channel (e.g., 2.22 nm wide channel) into simulation of electroosmotic flow in larger channels. Simulation results indicate that such an approach can predict the velocity profile in larger channels (e.g., 3.49 and 10.00 nm) very well. Finally, simulation of electroosmotic flow in a 0.95 nm channel indicates that viscosity cannot be described by a local, linear constitutive relationship that the continuum flow theory is built upon and thus the continuum flow theory is not applicable for electroosmotic flow in such small channels.

  17. Classification and sedimentary characteristics of lacustrine hyperpycnal channels: Triassic outcrops in the south Ordos Basin, central China

    NASA Astrophysics Data System (ADS)

    Xian, Benzhong; Wang, Junhui; Gong, Chenglin; Yin, Yu; Chao, Chuzhi; Liu, Jianping; Zhang, Guodong; Yan, Qi

    2018-06-01

    Subaquatic channels are known as active conduits for the delivery of terrigenous sediments into related marine and lacustrine basins, as well as important targets for hydrocarbon exploration. Compared to submarine channels, lacustrine subaqueous channels created by hyperpycnal flows are understudied. Using well-exposed outcrops collected from three different locations in the southern Ordos Basin, central China, morphologies and architecture of a channelized hyperpycnal system were studied and classified. Six facies associations represent sedimentary processes from strong erosion by bedload dominated hyperpycnal flows, to transitional deposition jointly controlled by bedload and suspended-load dominated hyperpycnal flows, finally to deposition from suspended-load dominated hyperpycnal flows. On the basis of channel morphologies, infilling sediments and sedimentary processes, the documented channels can be classified into four main categories, which are erosional, bedload dominated, suspended-load dominated, and depositional channels. In very proximal and very distal locations, erosional channels and depositional channels serve as two end-members, while in middle areas, bedload-dominated channels and suspended-load dominated channels are transitional types. Erosional channels, as a response to strong erosion from bedload dominated hyperpycnal flows on upper slope, were mainly filled by mud interbedded with thin sand beds. As flow energy decreases, bedload dominated channels develop on middle slopes, which are characterized mainly by under- to balanced sediment infillings with cross-bedded sandstones and/or minor massive sandstones. Compared to bedload dominated channels, suspended-load dominated channels mainly develop in deeper water, and were filled mainly by massive or planar-laminated sandstones. Depositional channels, as a response to suspended-load dominated hyperpycnal flows in deep-water areas, are characterized by thin-medium bed classical turbidites with Bouma sequences and thin- to thick massive sandstones. Such evolution patterns of hyperpycnal channel systems are ascribed to the progressive decrease in flow capacity of hyperpycnal flows, and provide an adequate explanation for the basinward channelization behavior of hyperpycnal systems.

  18. Experimental modeling of gravity underflow in submarine channels

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad Ashraful

    Active and relic meandering channels are common on the seafloor adjacent to continental margins. These channels and their associated submarine fan deposits are products of the density-driven gravity flows known as turbidity currents. Unlike natural rivers, few attempts have been made to explore the process of channel meandering in the submarine environment. This research focuses on resolving the flow field of submarine channels by conducting experiments in a large laboratory basin. Saline and particulate density flows were studied in a straight channel, a single bend sinuous channel with vertical sidewalls and a multiple-bend sinuous channel with sloping sidewalls. Instantaneous velocities in steady developed currents were measured using 3-component acoustic Doppler velocity probes. Excess fractional density was measured at selected locations by collecting water sample using a siphon rake. Turbulent kinetic energy and Reynolds stress components are derived from the instantaneous velocity data of the straight channel experiments. Structure functions for mean velocity, Reynolds stress and turbulent kinetic energy profiles are derived by fitting normalized data. The normalized Reynolds-averaged velocity shows excellent similarity collapse while the Reynolds-stress and the turbulent kinetic energy profiles display reasonable similarity. Vertical profiles of the turbulent kinetic energy display two peaks separated by a zone of low turbulence; the ratio of the maximum to the depth-averaged turbulent kinetic energy is approximately 1.5. Theoretical profile of turbulent kinetic energy is derived. Comparisons of experimentally and theoretically derived turbulent kinetic energy profiles show reasonable agreement except at the position of velocity maximum where the theoretical profile displays a very small value. Velocity profiles derived from the measurements with confined flow in the single bend channel reveal that channel curvature drives two helical flow cells, one stacked upon the other. The lower cell forms near the channel bed surface and has a circulation pattern similar to fluvial channels where a near-bed flow is directed inward. The other circulation cell forms in the upper part of the gravity flow and has a streamwise vorticity opposite to the lower cell. The lower circulation cell can be reasonably approximated by open channel flow theory. The curvature induced mixing is found to shift the position of the maximum streamwise velocity in the upward direction. Experiments conducted in the multiple-bend channel reveals that the channel side slope does not alter the structure of the secondary flow as long as the flow remains confined within the channel. However, if flow spilling occurs at the channel bend, the lateral convection suppresses the upper circulation cell. The lateral slope promotes high superelevation of the dense-light fluid interface at a channel bend and the current almost entirely separates from the inner bank. Compared with the saline flow, the silt-laden flow has larger thickness and thus easily experiences spilling at the bend apex. The overbank flow approximately follows the pre-bend direction of the in-channel flow. Unlike the flow in the channel with vertical sidewalls, the maximum velocity position does not experience an upward shift. This may be attributed to the highly superelevated current interface. The saline flow experiences little reduction in flow velocity while the velocity of the particulate flow drops significantly in the downstream direction primarily due to in-channel sediment deposit.

  19. Role of Unchannelized Flow in Determining Bifurcation Angle in Distributary Channel Networks

    NASA Astrophysics Data System (ADS)

    Coffey, T.

    2016-12-01

    Distributary channel bifurcations on river deltas are important features in both modern systems, where the channels control water, sediment, and nutrient routing, and in ancient deltas, where the channel networks can dictate large-scale stratigraphic heterogeneity. Geometric features of distributary channels, such as channel dimensions and network structure, have long been thought to be defined by factors such as flow velocity, grain size, or channel aspect ratio where the channel enters the basin. We use theory originally developed for tributary networks fed by groundwater seepage to understand the dynamics of distributary channel bifurcations. Interestingly, bifurcations in groundwater-fed tributary networks have been shown to evolve dependent on the diffusive flow patterns around the channel network. These networks possess a characteristic bifurcation angle of 72°, due to Laplacian flow (gradient2h2=0, where h is water surface elevation) in the groundwater flow field near tributary channel tips. We develop and test the hypothesis that bifurcation angles in distributary channel networks are likewise dictated by the external flow field, in this case the shallow surface water surrounding the subaqueous portion of distributary channel bifurcations in a deltaic setting. We measured 130 unique distributary channel bifurcations in a single experimental delta and in 10 natural deltas, yielding a mean angle of 70.35°±2.59° (95% confidence interval), in line with the theoretical prediction. This similarity implies that flow outside of the distributary channel network is also Laplacian, which we use scaling arguments to justify. We conclude that the dynamics of the unchannelized flow control bifurcation formation in distributary networks.

  20. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes.

    PubMed

    Bucs, Szilard S; Linares, Rodrigo Valladares; Marston, Jeremy O; Radu, Andrea I; Vrouwenvelder, Johannes S; Picioreanu, Cristian

    2015-12-15

    Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.074 and 0.163 m·s(-1)) the recorded flow was laminar with only slight unsteadiness in the upper velocity limit. At higher linear flow velocity (0.3 m·s(-1)) the flow was observed to be unsteady and with recirculation zones. Measurements made at different locations in the flow cell exhibited very similar flow patterns within all feed spacer mesh elements, thus revealing the same hydrodynamic conditions along the length of the flow channel. Three-dimensional (3-D) computational fluid dynamics simulations were performed using the same geometries and flow parameters as the experiments, based on steady laminar flow assumption. The numerical results were in good agreement (0.85-0.95 Bray-Curtis similarity) with the measured flow fields at linear velocities of 0.074 and 0.163 m·s(-1), thus supporting the use of model-based studies in the optimization of feed spacer geometries and operational conditions of spiral wound membrane systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Method for non-contact particle manipulation and control of particle spacing along an axis

    DOEpatents

    Goddard, Gregory Russ; Kaduchak, Gregory; Jett, James Hubert; Graves, Steven Wayde

    2013-09-10

    One or more of the embodiments of the present invention provide for a method of non-contact particle manipulation and control of particle spacing along an axis which includes axial and radial acoustic standing wave fields. Particles are suspended in an aqueous solution, and this solution then flows into the cylindrical flow channel. While the solution flows through the flow channel, the outer structure of the flow channel is vibrated at a resonant frequency, causing a radial acoustic standing wave field to form inside the flow channel in the solution. These radial acoustic standing waves focus the particles suspended in the solution to the center axis of the cylindrical flow channel. At the same time, a transducer is used to create an axial acoustic standing wave field in the flow channel parallel to the axis of the flow channel. This drives the particles, which are already being focused to the center axis of the flow channel, to nodes or anti-nodes of the axial standing wave at half-wavelength intervals, depending on whether the particles are more or less dense and more or less compressible than the surrounding fluid.

  2. Mass conservation: 1-D open channel flow equations

    USGS Publications Warehouse

    DeLong, Lewis L.

    1989-01-01

    Unsteady flow simulation in natural rivers is often complicated by meandering channels of compound section. Hydraulic properties and the length of the wetted channel may vary significantly as a meandering river inundates its adjacent floodplain. The one-dimensional, unsteady, open-channel flow equations can be extended to simulate floods in channels of compound section. It will be shown that equations derived from the addition of differential equations individually describing flow in main and overbank channels do not in general conserve mass when overbank and main channels are of different lengths.

  3. Acoustic Imaging of a Turbidity Current Flowing along a Channel

    NASA Astrophysics Data System (ADS)

    Hughes Clarke, J. E.; Hiroji, A.; Cahill, L.; Fedele, J. J.

    2017-12-01

    As part of a 3 month sequence of repetitive surveys and ADCP monitoring, more than 30 turbidity currents have been identified modifying a lobe channel in 130 to 190m of water on the Squamish prodelta. For a 6 day period, daily surveys at low tide tried to capture the change resulting from a single flow. On the 8thof June three flows occurred within a half hour. Along channel multibeam images of the seabed and water column were obtained from a moving vessel immediately before, during and after the passage of the third flow. In this manner the spatial extent of the in-channel and overbank flow could be constrained. By following the flow, the spatial pattern of scattering from the flow upper surface could be examined over a 2 km length of the channel. Along channel bands of high scattering appear related to enhanced release of gas along the channel flanks. Notably, no signature of the underlying across-channel bedform modulations were evident, suggesting that the upper surface of the flow does not feel the influence of the channel floor. Overbank spillage of the flow could be detected by perturbation of a plankton scattering layer just above the seabed. Additionally, evidence of enhanced overbank deposition due to flow stripping on the outer corner of a bend was identified from backscatter changes. The specific seabed alteration due to this flow could be identified and compared with the cumulative change over three months in the channel and adjacent channel-lobe transition zone. As the flow passed under the ADCP, it had a peak velocity of over 2 m/s, a thickness of 4-5m and duration of 35 minutes. Based on the timing of the flow head when in view of the surface vessel, it was decelerating as it exited the mouth of the channel.

  4. Direct simulation Monte Carlo method for gas flows in micro-channels with bends with added curvature

    NASA Astrophysics Data System (ADS)

    Tisovský, Tomáš; Vít, Tomáš

    Gas flows in micro-channels are simulated using an open source Direct Simulation Monte Carlo (DSMC) code dsmcFOAM for general application to rarefied gas flow written within the framework of the open source C++ toolbox called OpenFOAM. Aim of this paper is to investigate the flow in micro-channel with bend with added curvature. Results are compared with flows in channel without added curvature and equivalent straight channel. Effects of micro-channel bend was already thoroughly investigated by White et al. Geometry proposed by White is also used here for refference.

  5. Morphology of the 1984 open-channel lava flow at Krafla volcano, northern Iceland

    NASA Astrophysics Data System (ADS)

    Rossi, Matti J.

    1997-09-01

    An open-channel lava flow of olivine tholeiite basalt, 9 km long and 1-2 km wide, formed in a volcanic eruption that took place in the Krafla volcano, Iceland, on the 4-18 September 1984. The eruption started with emplacement of a pahoehoe sheet which was fed by a 8.5-km-long fissure. After two days of eruption, lava effusion from the fissure ceased but one crater at the northern end of the fissure continued to release lava for another twelve days. That crater supplied an open-channel flow that moved toward the north along the rift valley. The lava was emplaced on a slope of 1°. The final lava flow is composed of five flow facies: (1) the initial pahoehoe sheet; (2) proximal slab pahoehoe and aa; (3) shelly-type overflows from the channel; (4) distal rubbly aa lava; and (5) secondary outbreaks of toothpaste lava and cauliflower aa. The main lava channel within the flow is 6.4 km long. The mean width of this channel is 189 m (103 m S.D.). An initial lava channel that forms in a Bingham plastic substance is fairly constant in width. This channel, however, varies in width especially in the proximal part indicating channel erosion. Large drifted blocks of channel walls are found throughout the flow front area and on the top of overflow levees. This suggests that the channel erosion was mainly mechanical. The lava flow has a mean height of 6 m above its surroundings, measured at the flow margins. However, a study of the pre-flow topography indicates that the lava filled a considerable topographic depression. Combined surface and pre-flow profiles give an average lava-flow thickness of 11 m; the thickness of the initial sheet-flow is estimated as 2 m. The volume of the lava flow calculated from these figures is 0.11 km 3. The mean effusion rate was 91 m 3/s. When lava flow models are used to deduce the rheological properties of this type of lava flow, the following points must be considered: (1) when a lava flow is emplaced along tectonic lineaments, its depth and volume may be significantly larger than what the surface exposure suggests; (2) lava channels may become severely eroded during channel flow even if a lava flow was formed in a relatively short time; (3) the levee dimensions, and hence lava flow dimensions, may be significantly altered by extensive overflows.

  6. Laser heating of aqueous samples on a micro-optical-electro-mechanical system

    DOEpatents

    Beer, Neil Reginald; Kennedy, Ian

    2013-12-17

    A system of heating a sample on a microchip includes the steps of providing a microchannel flow channel in the microchip; positioning the sample within the microchannel flow channel, providing a laser that directs a laser beam onto the sample for heating the sample; providing the microchannel flow channel with a wall section that receives the laser beam and enables the laser beam to pass through wall section of the microchannel flow channel without being appreciably heated by the laser beam; and providing a carrier fluid in the microchannel flow channel that moves the sample in the microchannel flow channel wherein the carrier fluid is not appreciably heated by the laser beam.

  7. Laser heating of aqueous samples on a micro-optical-electro-mechanical system

    DOEpatents

    Beer, Neil Reginald; Kennedy, Ian

    2013-02-05

    A system of heating a sample on a microchip includes the steps of providing a microchannel flow channel in the microchip; positioning the sample within the microchannel flow channel, providing a laser that directs a laser beam onto the sample for heating the sample; providing the microchannel flow channel with a wall section that receives the laser beam and enables the laser beam to pass through wall section of the microchannel flow channel without being appreciably heated by the laser beam; and providing a carrier fluid in the microchannel flow channel that moves the sample in the microchannel flow channel wherein the carrier fluid is not appreciably heated by the laser beam.

  8. Flow patterns and bathymetric signatures on the delta front of a prograding river delta

    NASA Astrophysics Data System (ADS)

    Shaw, J.; Mohrig, D. C.; Wagner, R. W.

    2016-02-01

    The transition of water between laterally confined channels and the unchannelized delta front controls the growth pattern of river deltas, but is difficult to measure on field-scale deltas. We quantify flow patterns, bathymetry and bathymetric evolution for the subaqueous delta front on the Wax Lake Delta (WLD), a rapidly prograding delta in coastal Louisiana. The flow direction field, mapped using streaklines composed of biogenic slicks on the water surface, shows that a significant portion of flow ( 59%) departs subaqueous channels laterally over the subaqueous margins of the channel seaward of the shoreline. Synoptic datasets of bathymetry and flow direction allow spatial changes in flow velocity to be quantified. Most lateral flow divergence and deceleration occurs within 3-8 channel widths outboard of subaqueous channel margins, rather than downstream of channel tips. In interdistributary bays, deposit elevation decreases with a basinward slope of 2.4 x 10-4 with distance from a channel margin along any flow path. Flow patterns and this slope produce constructional features called interdistributary troughs - topographic lows in the center of interdistributary bays. These data show that flow patterns and bathymetry on the delta front are coupled both at the transition from channelized to unchannelized flow and in the depositional regions outside the distributary network.

  9. Micro-channel filling flow considering surface tension effect

    NASA Astrophysics Data System (ADS)

    Kim, Dong Sung; Lee, Kwang-Cheol; Kwon, Tai Hun; Lee, Seung S.

    2002-05-01

    Understanding filling flow into micro-channels is important in designing micro-injection molding, micro-fluidic devices and an MIMIC (micromolding in capillaries) process. In this paper, we investigated, both experimentally and numerically, 'transient filling' flow into micro-channels, which differs from steady-state completely 'filled' flow in micro-channels. An experimental flow visualization system was devised to facilitate observation of flow characteristics in filling into micro-channels. Three sets of micro-channels of various widths of different thicknesses (20, 30, and 40 μm) were fabricated using SU-8 on the silicon substrate to find a geometric effect with regard to pressure gradient, viscous force and, in particular, surface tension. A numerical analysis system has also been developed taking into account the surface tension effect with a contact angle concept. Experimental observations indicate that surface tension significantly affects the filling flow to such an extent that even a flow blockage phenomenon was observed at channels of small width and thickness. A numerical analysis system also confirms that the flow blockage phenomenon could take place due to the flow hindrance effect of surface tension, which is consistent with experimental observation. For proper numerical simulations, two correction factors have also been proposed to correct the conventional hydraulic radius for the filling flow in rectangular cross-sectioned channels.

  10. Helical flow couplets in submarine gravity underflows

    NASA Astrophysics Data System (ADS)

    Imran, Jasim; Ashraful Islam, Mohammad; Huang, Heqing; Kassem, Ahmed; Dickerson, John; Pirmez, Carlos; Parker, Gary

    2007-07-01

    Active and relic meandering channels are common on the seafloor adjacent to continental margins. These channels and their associated submarine fan deposits are products of the density-driven gravity flows known as turbidity currents. The tie between channel curvature and its effects on these gravity flows has been an enigma. This paper records the results of both large-scale laboratory measurements and a numerical simulation that captures the three-dimensional flow field of a gravity underflow at a channel bend. These findings reveal that channel curvature drives two helical flow cells, one stacked upon the other. The lower cell forms near the channel bed surface and has a circulation pattern similar to that observed in fluvial channels, i.e., with a near-bed flow directed inward. The other circulation cell forms in the upper part of the gravity flow and has a streamwise vorticity with the opposite sense of the lower cell.

  11. Fuel cell plates with improved arrangement of process channels for enhanced pressure drop across the plates

    DOEpatents

    Spurrier, Francis R.; Pierce, Bill L.; Wright, Maynard K.

    1986-01-01

    A plate for a fuel cell has an arrangement of ribs defining an improved configuration of process gas channels and slots on a surface of the plate which provide a modified serpentine gas flow pattern across the plate surface. The channels are generally linear and arranged parallel to one another while the spaced slots allow cross channel flow of process gas in a staggered fashion which creates a plurality of generally mini-serpentine flow paths extending transverse to the longitudinal gas flow along the channels. Adjacent pairs of the channels are interconnected to one another in flow communication. Also, a bipolar plate has the aforementioned process gas channel configuration on one surface and another configuration on the opposite surface. In the other configuration, there are not slots and the gas flow channels have a generally serpentine configuration.

  12. Eruption Constraints for a Young Channelized Lava Flow, Marte Vallis, Mars

    NASA Technical Reports Server (NTRS)

    Therkelsen, J. P.; Santiago, S. S.; Grosfils, E. B.; Sakimoto, S. E. H.; Mendelson, C. V.; Bleacher, J. E.

    2001-01-01

    This study constrains flow rates for a specific channelized lava flow in Marte Vallis, Mars. We measured slope-gradient, channel width, and channel depth. Our results are similar to other recent studies which suggests similarities to long, terrestrial basaltic flow. Additional information is contained in the original extended abstract.

  13. The role of varying flow on channel morphology: a flume experiment

    NASA Astrophysics Data System (ADS)

    Hempel, L. A.; Grant, G.; Eaton, B. C.; Hassan, M. A.; Lewis, S.

    2017-12-01

    Numerous studies have explored how alluvial channels develop under different sediment and flow conditions, yet we still know very little about how channels adjust and respond to changing flow conditions. One reason for this oversight is the long-held idea that channels with complex flow regimes are adjusted to a single, channel-forming discharge. But growing evidence shows that channel form reflects time-dependent processes occuring over multiple flows. To better understand how stream channels adjust to a range of flows, and identify the timescales associated with those adjustments, we conducted a series of hydrograph experiments in a freely-adjustable flume that developed a self-formed, meander pattern with pool-riffle morphology. Hydrographs had different shapes, magnitudes, and durations, but the total sediment volume fed under equilibrium conditions was kept constant among experiments. We found that hydrograph shape controlled channel morphology, the rate of channel development, and degree of regularity in the pool-riffle pattern. Hydrographs with slowly rising rates of rise and fall produced channels that were equivalent in size to channels generated from constant flow experiments, and had regularly spaced pool-riffle and meander patterns, while hydrographs with fast rates of rise and fall produced undersized channels with a chaotic bed structure and pool-riffle pattern. The latter suggests that during quickly rising hydrographs, the flow rate increases faster than the channel capacity and planform pattern adjusts. We confirmed these observations by comparing the timescales associated with pool-riffle and planform curvature development, which were identified under simple, constant flow conditions, to the total duration of the hydrograph. Hydrographs with step durations equal to or longer than the channel adjustment time produced channels with a more regular pool-riffle patterns compared to channels with step durations shorter than the adjustment time. This work points to the importance of the hydrograph as a fundamental control on channel adjustment and offers the prospect of better understanding of how changes in the flow regime, either through climate, land use, or dams, translate into morphodynamic changes.

  14. Signal enhancement using a switchable magnetic trap

    DOEpatents

    Beer, Neil Reginald [Pleasanton, CA

    2012-05-29

    A system for analyzing a sample including providing a microchannel flow channel; associating the sample with magnetic nanoparticles or magnetic polystyrene-coated beads; moving the sample with said magnetic nanoparticles or magnetic polystyrene-coated beads in the microchannel flow channel; holding the sample with the magnetic nanoparticles or magnetic polystyrene-coated beads in a magnetic trap in the microchannel flow channel; and analyzing the sample obtaining an enhanced analysis signal. An apparatus for analysis of a sample includes magnetic particles connected to the sample, a microchip, a flow channel in the microchip, a source of carrier fluid connected to the flow channel for moving the sample in the flow channel, an electromagnet trap connected to the flow line for selectively magnetically trapping the sample and the magnetic particles, and an analyzer for analyzing the sample.

  15. The dynamics of a channel-fed lava flow on Pico Partido volcano, Lanzarote

    NASA Astrophysics Data System (ADS)

    Woodcock, Duncan; Harris, Andrew

    2006-09-01

    A short length of channel on Pico Partido volcano, Lanzarote, provides us the opportunity to examine the dynamics of lava flowing in a channel that extends over a sudden break in slope. The 1 2-m-wide, 0.5 2-m-deep channel was built during the 1730 1736 eruptions on Lanzarote and exhibits a sinuous, well-formed channel over a steep (11° slope) 100-m-long proximal section. Over-flow units comprising smooth pahoehoe sheet flow, as well as evidence on the inner channel walls for multiple (at least 11) flow levels, attest to unsteady flow in the channel. In addition, superelevation is apparent at each of the six bends along the proximal channel section. Superelevation results from banking of the lava as it moves around the bend thus causing preferential construction of the outer bank. As a result, the channel profile at each bend is asymmetric with an outer bank that is higher than the inner bank. Analysis of superelevation indicates flow velocities of ~8 m s 1. Our analysis of the superelevation features is based on an inertia-gravity balance, which we show is appropriate, even though the down-channel flow is in laminar flow. We use a viscosity-gravity balance model, together with the velocities calculated from superelevation, to obtain viscosities in the range 25 60 Pa s (assuming that the lava behaved as a Newtonian liquid). Estimated volume fluxes are in the range 7 12 m3 s 1. An apparent down-flow increase in derived volume flux may have resulted from variable supply or bulking up of the flow due to vesiculation. Where the channel moves over a sharp break in slope and onto slopes of ~6°, the channel becomes less well defined and widens considerably. At the break of slope, an elongate ridge extends across the channel. We speculate that this ridge was formed as a result of a reduction in velocity immediately below the break of slope to allow deposition of entrained material or accretion of lava to the channel bed as a result of a change in flow regime or depth.

  16. Hydrograph Shape Controls Channel Morphology and Organization in a Sand-Gravel Flume

    NASA Astrophysics Data System (ADS)

    Hempel, L. A.; Grant, G.; Hassan, M. A.; Eaton, B. C.

    2016-12-01

    A fundamental research question in fluvial geomorphology is to understand what flows shape river channels. Historically, the prevailing view has been that channel dimensions adjust to a so-termed "dominant discharge", which is often approximated as the bankfull flow. But using a single flow to reference the geomorphic effectiveness of an entire flow regime discounts many observations showing that different flows control different channel processes. Some flows entrain fine sediment, some entrain the full size distribution of bed sediment; some destabilize or build bars, some erode the banks, and so forth. To explore the relation between the full flow regime and channel morphology, we conducted a series of flume experiments to examine how hydrographs with different shapes, durations, and magnitudes result in different degrees of channel organization, which we define in terms of the regularity, spacing and architecture of self-formed channel features, such as bed patches, geometry and spacing of bedforms, and channel planform. Our experiments were run in a 12m long adjustable-width flume that developed a self-formed meandering, pool-riffle pattern. We found that hydrograph shape does control channel organization. In particular, channels formed by hydrographs with slower rising limbs and broader peaks were more organized than those formed by flashier hydrographs. To become organized, hydrographs needed to exceed a minimum flow threshold, defined by the intensity of sediment transport; below which the channel lacked bedforms and a regular meander pattern. Above an upper flow threshold, bars became disorganized and the channel planform transitioned towards braiding. Field studies of channels with different flow regimes but located in a similar physiographic setting support our experimental findings. Taken together, this work points to the importance of the hydrograph as a fundamental control on channel morphology, and offers the prospect of better understanding how changing hydrologic regimes, either through climate, land use, or dams, translates into geomorphic changes.

  17. Debris flows as geomorphic agents in the Huachuca Mountains of southeastern Arizona

    USGS Publications Warehouse

    Wohl, E.E.; Pearthree, P.P.

    1991-01-01

    Numerous debris flows occurred in the Huachuca Mountains of southeastern Arizona during the summer rainy season of 1988 in areas that were burned by a forest fire earlier in the summer. Debris flows occurred following a major forest fire in 1977 as well, suggesting a causal link between fires and debris flows. Abundant evidence of older debris flows preserved along channels and in mountain front fans indicates that debris flows have occurred repeteadly during the late Quaternary in this environment. Soil development in sequences of debris-flow deposits indicates that debris flows probably recur over time intervals of several hundred to a thousand years in individual drainage basins in the study area. Surface runoff in the steep drainage basins of the Huachuca Mountains is greatly enhanced following forest fires, as the hillslopes are denuded of their vegetative cover. Water and sediment eroded from the hillslope regolith are rapidly introduced into the upper reaches of tributary channels by widespread rilling and slope wash during rainfall events. This influx of water and sediment destabilizes regolith previously accumulated in the channel, triggering debris flows that scour the channel to bedrock in the upper reaches. Following a debris flow, the scoured, trapezoidally-shaped channel gradually assumes a swale shape and the percentage of exposed bedrock declines, as material is introduced from the slopes. Debris flows do a tremendous amount of work in a very short time, however, and are the major channel-forming events. Where the tributary channels enter larger, trunk channels, the debris flows serve as the main source of very coarse sediment. The local slope and coarse particle distribution of the trunk channel depend on the competence of water flows in the channel to transport the material introduced by debris flows. Where the smaller channels drain directly to the mountain front, debris flows create extensive alluvial fans which dominate the morphology of the basin-range boundary. Time intervals between debris flows in the drainage basins of the Huachuca Mountains are probably controlled by complex interactions among climate, forest fires and slope processes. Fires destroy the protective vegetation that stabilizes the upper catchment slopes and inhibits erosion. However, not every fire that burns a catchment causes debris flows, because sufficient weathered material must accumulate in the upper channel reaches to initiate a large debris flow. If such accumulation has not occurred, the material introduced to a channel following a forest fire will move only a short distance down the channel. Thus, the episodic nature of debris flows probably depends on rates of slope weathering and erosion, which are in turn controlled by climate, both directly and through vegetation and forest fires. ?? 1991.

  18. A simple analytical model of coupled single flow channel over porous electrode in vanadium redox flow battery with serpentine flow channel

    NASA Astrophysics Data System (ADS)

    Ke, Xinyou; Alexander, J. Iwan D.; Prahl, Joseph M.; Savinell, Robert F.

    2015-08-01

    A simple analytical model of a layered system comprised of a single passage of a serpentine flow channel and a parallel underlying porous electrode (or porous layer) is proposed. This analytical model is derived from Navier-Stokes motion in the flow channel and Darcy-Brinkman model in the porous layer. The continuities of flow velocity and normal stress are applied at the interface between the flow channel and the porous layer. The effects of the inlet volumetric flow rate, thickness of the flow channel and thickness of a typical carbon fiber paper porous layer on the volumetric flow rate within this porous layer are studied. The maximum current density based on the electrolyte volumetric flow rate is predicted, and found to be consistent with reported numerical simulation. It is found that, for a mean inlet flow velocity of 33.3 cm s-1, the analytical maximum current density is estimated to be 377 mA cm-2, which compares favorably with experimental result reported by others of ∼400 mA cm-2.

  19. Improving flow distribution in influent channels using computational fluid dynamics.

    PubMed

    Park, No-Suk; Yoon, Sukmin; Jeong, Woochang; Lee, Seungjae

    2016-10-01

    Although the flow distribution in an influent channel where the inflow is split into each treatment process in a wastewater treatment plant greatly affects the efficiency of the process, and a weir is the typical structure for the flow distribution, to the authors' knowledge, there is a paucity of research on the flow distribution in an open channel with a weir. In this study, the influent channel of a real-scale wastewater treatment plant was used, installing a suppressed rectangular weir that has a horizontal crest to cross the full channel width. The flow distribution in the influent channel was analyzed using a validated computational fluid dynamics model to investigate (1) the comparison of single-phase and two-phase simulation, (2) the improved procedure of the prototype channel, and (3) the effect of the inflow rate on flow distribution. The results show that two-phase simulation is more reliable due to the description of the free-surface fluctuations. It should first be considered for improving flow distribution to prevent a short-circuit flow, and the difference in the kinetic energy with the inflow rate makes flow distribution trends different. The authors believe that this case study is helpful for improving flow distribution in an influent channel.

  20. Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel

    NASA Technical Reports Server (NTRS)

    McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli

    2012-01-01

    A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.

  1. A numerical study of the complex flow structure in a compound meandering channel

    NASA Astrophysics Data System (ADS)

    Moncho-Esteve, Ignacio J.; García-Villalba, Manuel; Muto, Yasu; Shiono, Koji; Palau-Salvador, Guillermo

    2018-06-01

    In this study, we report large eddy simulations of turbulent flow in a periodic compound meandering channel for three different depth conditions: one in-bank and two overbank conditions. The flow configuration corresponds to the experiments of Shiono and Muto (1998). The predicted mean streamwise velocities, mean secondary motions, velocity fluctuations, turbulent kinetic energy as well as mean flood flow angle to meandering channel are in good agreement with the experimental measurements. We have analyzed the flow structure as a function of the inundation level, with particular emphasis on the development of the secondary motions due to the interaction between the main channel and the floodplain flow. Bed shear stresses have been also estimated in the simulations. Floodplain flow has a significant impact on the flow structure leading to significantly different bed shear stress patterns within the main meandering channel. The implications of these results for natural compound meandering channels are also discussed.

  2. Pleated metal bipolar assembly

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    2001-01-01

    A thin low-cost bipolar plate for an electrochemical cell is formed from a polymer support plate with first flow channels on a first side of the support plate and second flow channels on a second side of the support plate, where the first flow channels and second flow channels have intersecting locations and have a depth effective to form openings through the support plate at the intersecting locations. A first foil of electrically conductive material is pressed into the first flow channels. A second foil of electrically conductive material pressed into the second flow channels so that electrical contact is made between the first and second foils at the openings through the support plate. A particular application of the bipolar plate is in polymer electrolyte fuel cells.

  3. Passive chip-based droplet sorting

    DOEpatents

    Beer, Neil Reginald; Lee, Abraham P; Hatch, Andrew C; Fisher, Jeffrey S

    2015-03-03

    An apparatus for passive sorting of microdroplets including a main flow channel, a flow stream of microdroplets in the main flow channel wherein the microdroplets have substantially the same diameter and wherein the flow stream of microdroplets includes first microdroplets having a first degree of stiffness and second microdroplets having a second degree of stiffness wherein the second degree of stiffness is different than the first degree of stiffness. A second flow channel is connected to the main flow channel for the second microdroplets having a second degree of stiffness. A separator separates the second microdroplets having a second degree of stiffness from the first microdroplets and directs the second microdroplets having a second degree of stiffness into the second flow channel.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, Neil Reginald; Lee, Abraham P; Hatch, Andrew C

    An apparatus for passive sorting of microdroplets including a main flow channel, a flow stream of microdroplets in the main flow channel wherein the microdroplets have substantially the same diameter and wherein the flow stream of microdroplets includes first microdroplets having a first degree of stiffness and second microdroplets having a second degree of stiffness wherein the second degree of stiffness is different than the first degree of stiffness. A second flow channel is connected to the main flow channel for the second microdroplets having a second degree of stiffness. A separator separates the second microdroplets having a second degreemore » of stiffness from the first microdroplets and directs the second microdroplets having a second degree of stiffness into the second flow channel.« less

  5. Human-induced stream channel abandonment/capture and filling of floodplain channels within the Atchafalaya River Basin, Louisiana

    USGS Publications Warehouse

    Kroes, Daniel E.; Kraemer, Thomas F.

    2013-01-01

    The Atchafalaya River Basin is a distributary system of the Mississippi River containing the largest riparian area in the lower Mississippi River Valley and the largest remaining forested bottomland in North America. Reductions in the area of open water in the Atchafalaya have been occurring over the last 100 years, and many historical waterways are increasingly filled by sediment. This study examines two cases of swamp channels (3/s) that are filling and becoming unnavigable as a result of high sediment loads and slow water velocities. The water velocities in natural bayous are further reduced because of flow capture by channels constructed for access. Bathymetry, flow, suspended sediment, deposited bottom-material, isotopes, and photointerpretation were used to characterize the channel fill. On average, water flowing through these two channels lost 23% of the suspended sediment load in the studied reaches. Along one of the studied reaches, two constructed access channels diverted significant flow out of the primary channel and into the adjacent swamp. Immediately downstream of each of the two access channels, the cross-sectional area of the studied channel was reduced. Isotopic analyses of bottom-material cores indicate that bed filling has been rapid and occurred after detectable levels of Cesium-137 were no longer being deposited. Interpretation of aerial photography indicates that water is bypassing the primary channels in favor of the more hydraulically efficient access channels, resulting in low or no-velocity flow conditions in the primary channel. These swamp channel conditions are typical in the Atchafalaya River Basin where relict large channel dimensions result in flow velocities that are normally too low to carry fine-grained sediment. Constructed channels increase the rate of natural channel avulsion and abandonment as a result of flow capture.

  6. The effect of passive mixing on pressure drop and oxygen mass fraction using opposing channel flow field design in a Proton Exchange Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Singh, Anant Bir

    This study investigates a flow field with opposing channel design. Previous studies on flow field designs have been focused on improving fuel utilization which often leads to increased pressure drop. This increased pressure drop is typical because standard designs employ either a single flow channel to clear blockages or dead end condition to force the flow through the gas diffusion layer. The disadvantage with these designs is the increased resistance to the flow which requires higher pressure, which becomes a parasitic loss that lowers the system efficiency. For this study the focus was to reduce the pressure drop by providing a less resistive path to the flow. To achieve a less resistive path, the inlet channel was split into two opposing channels. These channels are then recombined only to be split again for the next leg. Therefore, the split channel design should reduce the pressure drop which reduces the parasitic load and ultimately contributes to higher system efficiency. In addition the recombining of the streams at each leg should induce mixing. Having opposing channels should also increase cross flow under the lands to reduce mass transfer loses. The cathode side of the fuel cell is especially sensitive to the mass transport losses since air (oxygen mixed with nitrogen) is used for supplying oxygen unlike the anode side which uses pure hydrogen. To test the hypothesis of having benefits from an opposing channel design, both an experimental and analytical approach was taken. For the experiment, a serpentine flow field and opposing channel flow field plates were compared over several flow rates with compressed air. To test the hypothesis of increased mass transfer, the two flow fields were modeled using a CFD software package, COMSOL. It was found that the opposing channel configuration for high flow rate with multiple entry and exit conditions exhibited significant improvement over the single serpentine channel. Pressure drop was ⅓ less than the serpentine channel with similar conditions. Simulations for mass transfer show that recombining of the flow streams generate more uniform current density unlike the serpentine configuration where the current density was concentrated at the entrance of the flow stream. The background section provides a brief overview of the governing equations, the theory of flow field operation and previous bodies of work on flow field design. Recommendations are made for further verification of the design using a real working cell based on the results.

  7. Streamflow and Topographic Characteristics of the Platte River near Grand Island, Nebraska, 1938-2007

    USGS Publications Warehouse

    Woodward, Brenda K.

    2008-01-01

    The central Platte River is a dynamic, braided, sand-bed river located near Grand Island, Nebraska. An understanding of the Platte River channel characteristics, hydrologic flow patterns, and geomorphic conditions is important for the operation and management of water resources by the City of Grand Island. The north channel of the Platte River flows within 1 mile of the municipal well field, and its surface-water flow recharges the underlying aquifer, which serves as a water source for the city. Recharge from the north channel helps minimize the flow of contaminated ground water from the north of the channel towards the well field. In recent years the river channels have experienced no-flow conditions for extended periods during the summer and fall seasons, and it has been observed that no-flow conditions in the north channel often persist after streamflow has returned to the other three channels. This potentially allows more contaminated ground water to move toward the municipal well field each year, and has caused resource managers to ask whether human disturbances or natural geomorphic change have contributed to the increased frequency of no-flow conditions in the north channel. Analyses of aerial photography, channel surveys, Light Detection and Ranging data, discharge measurements, and historical land surveys were used to understand the past and present dynamics of the four channels of the Platte River near Grand Island and to detect changes with time. Results indicate that some minor changes have occurred in the channels. Changes in bed elevation, channel location, and width were minimal when compared using historical information. Changes in discharge distribution among channels indicate that low- and no-flow conditions in the north channel may be attributed to the small changes in channel characteristics or small elevation differences, along with recent reductions in total streamflow within the Platte River near Grand Island, or to factors not measured in this study, such as increased channel roughness from increased vegetation within the channel.

  8. Using 15-minute acoustic data to analyze suspended-sediment dynamics in the Rio Grande in the Big Bend Region

    USGS Publications Warehouse

    Dean, David; Topping, David; Griffiths, Ronald; Sabol, Thomas; Schmidt, John C.; Bennett, Jeffery B.

    2015-01-01

    The Rio Grande in the Big Bend region is subject to rapid geomorphic change consisting of channel narrowing during years of low flow, and channel widening during rare, large, long duration floods. Since the 1940s, there have been large declines in mean and peak stream flow, and the channel has progressively narrowed. Large, channel widening floods are infrequent and have failed to widen the channel to widths measured prior to the onset of channel narrowing in the 1940s. Before the most recent channel-widening flood in September 2008, the Rio Grande in the Big Bend was more than 50 percent narrower than measured in the 1940s. Channel narrowing results in increased flood frequency and flood magnitude due to the loss of channel capacity and flood conveyance (Dean and Schmidt, 2011). Channel narrowing also results in the loss of important aquatic habitats such as backwaters and side-channels, because these habitats accumulate sediment and are converted to floodplains. Environmental managers are attempting to construct an environmental flow program for the purposes of minimizing channel narrowing during low flow years such that channel capacity, flood conveyance, and important aquatic habitats are maintained. Effective mitigation of channel narrowing processes requires an in-depth understanding of the predominant sediment source areas, the quantity of sediment input from those source areas, the parts of the flow regime responsible for the greatest sediment deposition, and the effect of managed flows in ameliorating the sediment loading that occurs within the channel. Here, we analyze data collected with acoustic instrumentation at high temporal resolution to quantify suspended-sediment transport during a variety of flood types. We also investigate the effect of long duration managed flows in promoting sediment export and minimizing channel narrowing.

  9. Modeling two-phase flow in PEM fuel cell channels

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Basu, Suman; Wang, Chao-Yang

    2008-05-01

    This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M2 formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels.

  10. Process For Controlling Flow Rate Of Viscous Materials Including Use Of Nozzle With Changeable Openings

    DOEpatents

    Ellingson, William A.; Forster, George A.

    1999-11-02

    Apparatus and a method for controlling the flow rate of viscous materials through a nozzle includes an apertured main body and an apertured end cap coupled together and having an elongated, linear flow channel extending the length thereof. An end of the main body is disposed within the end cap and includes a plurality of elongated slots concentrically disposed about and aligned with the flow channel. A generally flat cam plate having a center aperture is disposed between the main body and end cap and is rotatable about the flow channel. A plurality of flow control vane assemblies are concentrically disposed about the flow channel and are coupled to the cam plate. Each vane assembly includes a vane element disposed adjacent the end of the flow channel. Rotation of the cam plate in a first direction causes a corresponding rotation of each of the vane elements for positioning the individual vane elements over the aperture in the end cap blocking flow through the flow channel, while rotation in an opposite direction removes the vane elements from the aperture and positions them about the flow channel in a nested configuration in the full open position, with a continuous range of vane element positions available between the full open and closed positions.

  11. Asymptotic methods for internal transonic flows

    NASA Technical Reports Server (NTRS)

    Adamson, T. C., Jr.; Messiter, A. F.

    1989-01-01

    For many internal transonic flows of practical interest, some of the relevant nondimensional parameters typically are small enough that a perturbation scheme can be expected to give a useful level of numerical accuracy. A variety of steady and unsteady transonic channel and cascade flows is studied with the help of systematic perturbation methods which take advantage of this fact. Asymptotic representations are constructed for small changes in channel cross-section area, small flow deflection angles, small differences between the flow velocity and the sound speed, small amplitudes of imposed oscillations, and small reduced frequencies. Inside a channel the flow is nearly one-dimensional except in thin regions immediately downstream of a shock wave, at the channel entrance and exit, and near the channel throat. A study of two-dimensional cascade flow is extended to include a description of three-dimensional compressor-rotor flow which leads to analytical results except in thin edge regions which require numerical solution. For unsteady flow the qualitative nature of the shock-wave motion in a channel depends strongly on the orders of magnitude of the frequency and amplitude of impressed wall oscillations or fluctuations in back pressure. One example of supersonic flow is considered, for a channel with length large compared to its width, including the effect of separation bubbles and the possibility of self-sustained oscillations. The effect of viscosity on a weak shock wave in a channel is discussed.

  12. Measurement and Control of Electroosmotic Flow in Plastic Microchannels

    NASA Astrophysics Data System (ADS)

    Ross, David; Barker, Susan; Waddell, Emanuel; Johnson, Tim; Locascio, Laurie

    2000-11-01

    We have measured electroosmotic flow profiles in microchannels fabricated in a variety of commercially available plastics by imprinting using a silicon template and by UV laser ablation. It is possible to achieve nearly ideal plug flow profiles in straight imprinted channels made entirely of one material. In contrast, electroosmotic flow in imprinted channels constructed from two different materials and in channels fabricated using laser ablation show deviations from ideal plug flow resulting from non-uniformity of the surface charge density on the walls of the channels. We have also explored strategies for controlling electroosmotic flow through modification of the surface charge density. The techniques used to alter surface charge include the deposition of polyelectrolyte multilayers on channel surfaces and the use of combinations of imprinting and laser ablation in the fabrication of the channels. We will discuss the effectiveness of these strategies for controlling flow, sample dispersion, and mixing.

  13. Sources of debris flow material in burned areas

    USGS Publications Warehouse

    Santi, P.M.; deWolfe, V.G.; Higgins, J.D.; Cannon, S.H.; Gartner, J.E.

    2008-01-01

    The vulnerability of recently burned areas to debris flows has been well established. Likewise, it has been shown that many, if not most, post-fire debris flows are initiated by runoff and erosion and grow in size through erosion and scour by the moving debris flow, as opposed to landslide-initiated flows with little growth. To better understand the development and character of these flows, a study has been completed encompassing 46 debris flows in California, Utah, and Colorado, in nine different recently burned areas. For each debris flow, progressive debris production was measured at intervals along the length of the channel, and from these measurements graphs were developed showing cumulative volume of debris as a function of channel length. All 46 debris flows showed significant bulking by scour and erosion, with average yield rates for each channel ranging from 0.3 to 9.9??m3 of debris produced for every meter of channel length, with an overall average value of 2.5??m3/m. Significant increases in yield rate partway down the channel were identified in 87% of the channels, with an average of a three-fold increase in yield rate. Yield rates for short reaches of channels (up to several hundred meters) ranged as high as 22.3??m3/m. Debris was contributed from side channels into the main channels for 54% of the flows, with an average of 23% of the total debris coming from those side channels. Rill erosion was identified for 30% of the flows, with rills contributing between 0.1 and 10.5% of the total debris, with an average of 3%. Debris was deposited as levees in 87% of the flows, with most of the deposition occurring in the lower part of the basin. A median value of 10% of the total debris flow was deposited as levees for these cases, with a range from near zero to nearly 100%. These results show that channel erosion and scour are the dominant sources of debris in burned areas, with yield rates increasing significantly partway down the channel. Side channels are much more important sources of debris than rills. Levees are very common, but the size and effect on the amount of debris that reaches a canyon mouth is highly variable. ?? 2007 Elsevier B.V. All rights reserved.

  14. The Influence of Topography on the Emplacement Dynamics of Martian Lava flows

    NASA Astrophysics Data System (ADS)

    Tremblay, J.; Fitch, E. P.; Fagents, S. A.

    2017-12-01

    Lava flows on the Martian surface exhibit a diverse array of complex morphologies. Previous emplacement models, based on terrestrial flows, do not fully account for these observed complex morphologies. We assert that the topography encountered by the flow can exert substantial control over the thermal, rheological, and morphological evolution of the flow, and that these effects can be better incorporated into flow models to predict Martian flow morphologies. Our development of an updated model can be used to account for these topographical effects and better constrain flow parameters. The model predicts that a slope break or flow meander induces eddy currents within the flow, resulting in the disruption of the flow surface crust. The exposure of the flow core results in accelerated cooling of the flow and a resultant increase in viscosity, leading to slowing of the flow. A constant source lava flux and a stagnated flow channel would then result in observable morphological changes, such as overflowing of channel levees. We have identified five morphological types of Martian flows, representing a range of effusion rates, eruption durations and topographic settings, which are suitable for application of our model. To characterize flow morphology, we used imaging and topographic data sets to collect data on flow dimensions. For eight large (50 to hundreds of km long) channelized flows in the Tharsis region, we used the MOLA 128 ppd DEM and/or individual MOLA shot points to derive flow cross-sectional thickness profiles, from which we calculated the cross-sectional area of the flow margins adjacent to the main channel. We found that the largest flow margin cross sectional areas (excluding the channel) occur in association with a channel bend, typically near the bend apex. Analysis of high-resolution images indicates that these widened flow margins are the result of repeated overflows of the channel levees and emplacement of short flow lobes adjacent to the main flow. In the context of our model, the morphological changes associated with channel bends and slope breaks support our interpretation of lava crust disruption and enhanced flow cooling. We are currently working to obtain data for the additional three flow types and to further apply our lava emplacement model.

  15. Channel geometry change of a first-order stream after a small debris flow in Ashio Mountains of central Japan

    NASA Astrophysics Data System (ADS)

    Hattanji, T.; Wasklewicz, T.

    2006-12-01

    We examined geometry change of a steep first-order channel with a laserscanner before and after a small debris flow. The study site is located in chert area, Ashio Mountains, Japan. On August 12, 2005, a 20-year storm event with maximum 1-hour rainfall of 75.4 mm/h triggered a small landslide at a steep channel head. The sliding material moved as a debris flow along the first-order channel (C3) to the mouth. We successfully measured high-resolution channel topography with the Leica Geosystems High-Definition Surveying Laser Scanner before (April 30) and after the debris-flow event (October 9-11). Width, depth and other related parameters were measured for 30 selected cross sections. Bankfull stage of this first-order channel after the debris-flow event is much higher than two-year flood stage. The magnitude of channel geometry change varies non-linearly in downstream direction. The non-linear variability is attributed to differences in stream bed and bank characteristics. Bedrock-channel reach is less impacted by the debris flow. The largest magnitude changes in the channel geometry parameters occur along colluvially confined channel reaches.

  16. Morphodynamics of submarine channel inception revealed by new experimental approach

    PubMed Central

    de Leeuw, Jan; Eggenhuisen, Joris T.; Cartigny, Matthieu J. B.

    2016-01-01

    Submarine channels are ubiquitous on the seafloor and their inception and evolution is a result of dynamic interaction between turbidity currents and the evolving seafloor. However, the morphodynamic links between channel inception and flow dynamics have not yet been monitored in experiments and only in one instance on the modern seafloor. Previous experimental flows did not show channel inception, because flow conditions were not appropriately scaled to sustain suspended sediment transport. Here we introduce and apply new scaling constraints for similarity between natural and experimental turbidity currents. The scaled currents initiate a leveed channel from an initially featureless slope. Channelization commences with deposition of levees in some slope segments and erosion of a conduit in other segments. Channel relief and flow confinement increase progressively during subsequent flows. This morphodynamic evolution determines the architecture of submarine channel deposits in the stratigraphic record and efficiency of sediment bypass to the basin floor. PMID:26996440

  17. Construction dynamics of a lava channel

    NASA Astrophysics Data System (ADS)

    Harris, Andrew J. L.; Favalli, Massimiliano; Mazzarini, Francesco; Hamilton, Christopher W.

    2009-05-01

    We use a kinematic GPS and laser range finder survey of a 200 m-long section of the Muliwai a Pele lava channel (Mauna Ulu, Kilauea) to examine the construction processes and flow dynamics responsible for the channel-levee structure. The levees comprise three packages. The basal package comprises an 80-150 m wide 'a'a flow in which a ˜2 m deep and ˜11 m wide channel became centred. This is capped by a second package of thin (<45 cm thick) sheets of pahoehoe extending no more than 50 m from the channel. The upper-most package comprises localised 'a'a overflows. The channel itself contains two blockages located 130 m apart and composed of levee chunks veneered with overflow lava. The channel was emplaced over 50 h, spanning 30 May-2 June, 1974, with the flow front arriving at our section (4.4 km from the vent) 8 h after the eruption began. The basal 'a'a flow thickness yields effusion rates of 35 m3 s-1 for the opening phase, with the initial flow advancing across the mapped section at ˜10 m/min. Short-lived overflows of fluid pahoehoe then built the levee cap, increasing the apparent channel depth to 4.8 m. There were at least six pulses at 90-420 m3 s-1, causing overflow of limited extent lasting no more than 5 min. Brim-full flow conditions were thus extremely short-lived. During a dominant period of below-bank flow, flow depth was ˜2 m with an effusion rate of ˜35 m3 s-1, consistent with the mean output rate (obtained from the total flow bulk volume) of 23-54 m3 s-1. During pulses, levee chunks were plucked and floated down channel to form blockages. In a final low effusion rate phase, lava ponded behind the lower blockage to form a syn-channel pond that fed 'a'a overflow. After the end of the eruption the roofed-over pond continued to drain through the lower blockage, causing the roof to founder. Drainage emplaced inflated flows on the channel floor below the lower blockage for a further ˜10 h. The complex processes involved in levee-channel construction of this short-lived case show that care must be taken when using channel dimensions to infer flow dynamics. In our case, the full channel depth is not exposed. Instead the channel floor morphology reflects late stage pond filling and drainage rather than true channel-contained flow. Components of the compound levee relate to different flow regimes operating at different times during the eruption and associated with different effusion rates, flow dynamics and time scales. For example, although high effusion rate, brim-full flow was maintained for a small fraction of the channel lifetime, it emplaced a pile of pahoehoe overflow units that account for 60% of the total levee height. We show how time-varying volume flux is an important parameter in controlling channel construction dynamics. Because the complex history of lava delivery to a channel system is recorded by the final channel morphology, time-varying flow dynamics can be determined from the channel morphology. Developing methods for quantifying detailed flux histories for effusive events from the evidence in outcrop is therefore highly valuable. We here achieve this by using high-resolution spatial data for a channel system at Kilauea. This study not only indicates those physical and dynamic characteristics that are typical for basaltic lava flows on Hawaiian volcanoes, but also a methodology that can be widely applied to effusive basaltic eruptions.

  18. Flow through triple helical microchannel

    NASA Astrophysics Data System (ADS)

    Rajbanshi, Pravat; Ghatak, Animangsu

    2018-02-01

    Flow through helical tubes and channels have been examined in different contexts, for facilitating heat and mass transfer at low Reynolds number flow, for generating plug flow to minimize reactor volume for many reactions. The curvature and torsion of the helices have been shown to engender secondary flow in addition to the primary axial flow, which enhances passive in-plane mixing between different fluid streams. Most of these studies, however, involve a single spiral with circular cross-section, which in essence is symmetric. It is not known, however, how the coupled effect of asymmetry of cross-section and the curvature and torsion of channel would affect the flow profile inside such tubes or channels. In this context, we have presented here the analysis of fluid flow at low Reynolds number inside a novel triple helical channel that consists of three helical flow paths joined along their contour length forming a single channel. We have carried out both microparticle image velocimetry (micro-PIV) and 3D simulation in FLUENT of flow of a Newtonian fluid through such channels. Our analysis shows that whereas in conventional single helices, the secondary flow is characterized by two counter-rotating vortices, in the case of triple helical channels, number of such vortices increases with the helix angle. Such flow profile is expected to enhance possibility of mixing between the liquids, yet diminish the pressure drop.

  19. Insights from depth-averaged numerical simulation of flow at bridge abutments in compound channels.

    DOT National Transportation Integrated Search

    2011-07-01

    Two-dimensional, depth-averaged flow models are used to study the distribution of flow around spill-through abutments situated on floodplains in compound channels and rectangular channels (flow on very wide floodplains may be treated as rectangular c...

  20. A Volcanic Origin for Sinuous and Branching Channels on Mars: Evidence from Hawaiian Analogs

    NASA Technical Reports Server (NTRS)

    Bleacher, Jacob E.; deWet, Andrew; Garry, W. Brent; Zimbelman, James R.

    2012-01-01

    Observations of sinuous and branching channels on planets have long driven a debate about their origin, fluvial or volcanic processes. In some cases planetary conditions rule out fluvial activity (e.g. the Moon, Venus, Mercury). However, the geology of Mars leads to suggestions that liquid water existed on the surface in the past. As a result, some sinuous and branching channels on Mars are cited as evidence of fluvial erosion. Evidence for a fluvial history often focuses on channel morphologies that are unique from a typical lava channel, for instance, a lack of detectable flow margins and levees, islands and terraces. Although these features are typical, they are not necessarily diagnostic of a fluvial system. We conducted field studies in Hawaii to characterize similar features in lava flows to better define which characteristics might be diagnostic of fluvial or volcanic processes. Our martian example is a channel system that originates in the Ascraeus Mons SW rift zone from a fissure. The channel extends for approx.300 km to the SE/E. The proximal channel displays multiple branches, islands, terraces, and has no detectable levees or margins. We conducted field work on the 1859 and 1907 Mauna Loa flows, and the Pohue Bay flow. The 51-km-long 1859 Flow originates from a fissure and is an example of a paired a a and pahoehoe lava flow. We collected DGPS data across a 500 m long island. Here, the channel diverted around a pre-existing obstruction in the channel, building vertical walls up to 9 m in height above the current channel floor. The complicated emplacement history along this channel section, including an initial a a stage partially covered by pahoehoe overflows, resulted in an appearance of terraced channel walls, no levees and diffuse flow margins. The 1907 Mauna Loa flow extends > 20 km from the SW rift zone. The distal flow formed an a a channel. However the proximal flow field comprises a sheet that experienced drainage and sagging of the crust following the eruption. The lateral margins of the proximal sheet, past which all lava flowed to feed the extensive channel, currently display a thickness of < 20 cm. Were this area covered by a dust layer, as is the Tharsis region on Mars, the margins would be difficult to identify. The Pohue Bay flow forms a lava tube. Open roof sections experienced episodes of overflow and spill out. In several places the resultant surface flows appear to have moved as sheet flows that inundated the preexisting meter scale features. Here the flows developed pathways around topographic highs, and in so doing accreted lava onto those features. The results are small islands within the multiple branched channels that display steep, sometimes overhanging walls. None of these features alone proves that the martian channel networks are the result of volcanic processes, but analog studies such as these are the first step towards identifying which morphologies are truly diagnostic of fluvial and volcanic channels.

  1. Development and maintenance of a telescoping debris flow fan in response to human-induced fan surface channelization, Chalk Creek Valley Natural Debris Flow Laboratory, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Wasklewicz, T.; Scheinert, C.

    2016-01-01

    Channel change has been a constant theme throughout William L. Graf's research career. Graf's work has examined channel changes in the context of natural environmental fluctuations, but more often has focused on quantifying channel change in the context of anthropogenic modifications. Here, we consider how channelization of a debris flows along a bajada has perpetuated and sustained the development of 'telescoping' alluvial fan. Two-dimensional debris-flow modeling shows the importance of the deeply entrenched channelized flow in the development of a telescoping alluvial fan. GIS analyses of repeat (five different debris flows), high-resolution (5 cm) digital elevation models (DEMs) generated from repeat terrestrial laser scanning (TLS) data elucidate sediment and topographic dynamics of the new telescoping portion of the alluvial fan (the embryonic fan). Flow constriction from channelization helps to perpetuate debris-flow runout and to maintain the embryonic fan and telescoping nature of the alluvial fan complex. Embryonic fan development, in response to five debris flows, proceeds with a major portion of the flows depositing on the southern portion of the embryonic fan. The third through the fifth debris flows also begin to shift some deposition to the northern portion of the embryonic. The transfer of sediment from a higher portion of the embryonic fan to a lower portion continues currently on the embryonic fan. While channelized flow has been shown to be critical to the maintenance of the telescoping fan, the flow constriction has led to higher than background levels of sediment deposition in Chalk Creek, a tributary of the Arkansas River. A majority of the sediment from each debris flow is incorporated into Chalk Creek as opposed to being stored on the embryonic fan.

  2. Topological transitions in unidirectional flow of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Cummings, Linda; Anderson, Thomas; Mema, Ensela; Kondic, Lou

    2015-11-01

    Recent experiments by Sengupta et al. (Phys. Rev. Lett. 2013) revealed interesting transitions that can occur in flow of nematic liquid crystal under carefully controlled conditions within a long microfluidic channel of rectangular cross-section, with homeotropic anchoring at the walls. At low flow rates the director field of the nematic adopts a configuration that is dominated by the surface anchoring, being nearly parallel to the channel height direction over most of the cross-section; but at high flow rates there is a transition to a flow-dominated state, where the director configuration at the channel centerline is aligned with the flow (perpendicular to the channel height direction). We analyze simple channel-flow solutions to the Leslie-Ericksen model for nematics. We demonstrate that two solutions exist, at all flow rates, but that there is a transition between the elastic free energies of these solutions: the anchoring-dominated solution has the lowest energy at low flow rates, and the flow-dominated solution has lowest energy at high flow rates. NSF DMS 1211713.

  3. Predicting equilibrium states with Reynolds stress closures in channel flow and homogeneous shear flow

    NASA Technical Reports Server (NTRS)

    Abid, R.; Speziale, C. G.

    1993-01-01

    Turbulent channel flow and homogeneous shear flow have served as basic building block flows for the testing and calibration of Reynolds stress models. A direct theoretical connection is made between homogeneous shear flow in equilibrium and the log-layer of fully-developed turbulent channel flow. It is shown that if a second-order closure model is calibrated to yield good equilibrium values for homogeneous shear flow it will also yield good results for the log-layer of channel flow provided that the Rotta coefficient is not too far removed from one. Most of the commonly used second-order closure models introduce an ad hoc wall reflection term in order to mask deficient predictions for the log-layer of channel flow that arise either from an inaccurate calibration of homogeneous shear flow or from the use of a Rotta coefficient that is too large. Illustrative model calculations are presented to demonstrate this point which has important implications for turbulence modeling.

  4. Predicting equilibrium states with Reynolds stress closures in channel flow and homogeneous shear flow

    NASA Technical Reports Server (NTRS)

    Abid, R.; Speziale, C. G.

    1992-01-01

    Turbulent channel flow and homogeneous shear flow have served as basic building block flows for the testing and calibration of Reynolds stress models. A direct theoretical connection is made between homogeneous shear flow in equilibrium and the log-layer of fully-developed turbulent channel flow. It is shown that if a second-order closure model is calibrated to yield good equilibrium values for homogeneous shear flow it will also yield good results for the log-layer of channel flow provided that the Rotta coefficient is not too far removed from one. Most of the commonly used second-order closure models introduce an ad hoc wall reflection term in order to mask deficient predictions for the log-layer of channel flow that arise either from an inaccurate calibration of homogeneous shear flow or from the use of a Rotta coefficient that is too large. Illustrative model calculations are presented to demonstrate this point which has important implications for turbulence modeling.

  5. Visualization investigation on flowing condensation in horizontal small channels with liquid separator

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Jia, Li; Dang, Chao; Peng, Qi

    2018-02-01

    A simultaneous visualization and measurement experiment was carried out to investigate condensation flow patterns and condensing heat transfer characteristics of refrigerant R141b in parallel horizontal multi-channels with liquid-vapor separator. The hydraulic diameter of each channel was 1.5 mm and the channel length was 100 mm. The refrigerant vapor flowing in the small channels was cooled by cooling water. The parallel horizontal multi- channels were covered with a transparent silica glass for visualization of flow patterns. Experiments were performed at different inlet superheat temperatures (ranging from 3°C to 7°C). Mass velocity was in the range of 82.37 kg m-2s-1 to 35.56 kg m-2s-1. It was found that there were three different flow patterns through the multi- channels with the increase of mass velocity. The flow patterns in each channel pass almost tended to be same and all of them were annular flows. The efficiency of the liquid-vapor separator with U-type was related to vapor mass velocity and the pressure in the small channels. It was also found that the heat transfer coefficient increased with the increase of the mass velocity while the cooling water mass flow rate increased. It increased to a top point and then decreased. It increased with the increase of superheat in the low superheat temperature region.

  6. Axial static mixer

    DOEpatents

    Sandrock, H.E.

    1982-05-06

    Static axial mixing apparatus includes a plurality of channels, forming flow paths of different dimensions. The axial mixer includes a flow adjusting device for adjustable selective control of flow resistance of various flow paths in order to provide substantially identical flows through the various channels, thereby reducing nonuniform coating of interior surfaces of the channels. The flow adjusting device may include diaphragm valves, and may further include a pressure regulating system therefor.

  7. Enhanced Microfluidic Electromagnetic Measurements

    NASA Technical Reports Server (NTRS)

    Ricco, Antonio J. (Inventor); Kovacs, Gregory (Inventor); Giovangrandi, Laurent (Inventor)

    2015-01-01

    Techniques for enhanced microfluidic impedance spectroscopy include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. Flow in the channel is laminar. A dielectric constant of a fluid constituting either sheath flow is much less than a dielectric constant of the core fluid. Electrical impedance is measured in the channel between at least a first pair of electrodes. In some embodiments, enhanced optical measurements include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. An optical index of refraction of a fluid constituting either sheath flow is much less than an optical index of refraction of the core fluid. An optical property is measured in the channel.

  8. Review: The state-of-art of sparse channel models and their applicability to performance assessment of radioactive waste repositories in fractured crystalline formations

    NASA Astrophysics Data System (ADS)

    Figueiredo, Bruno; Tsang, Chin-Fu; Niemi, Auli; Lindgren, Georg

    2016-11-01

    Laboratory and field experiments done on fractured rock show that flow and solute transport often occur along flow channels. `Sparse channels' refers to the case where these channels are characterised by flow in long flow paths separated from each other by large spacings relative to the size of flow domain. A literature study is presented that brings together information useful to assess whether a sparse-channel network concept is an appropriate representation of the flow system in tight fractured rock of low transmissivity, such as that around a nuclear waste repository in deep crystalline rocks. A number of observations are made in this review. First, conventional fracture network models may lead to inaccurate results for flow and solute transport in tight fractured rocks. Secondly, a flow dimension of 1, as determined by the analysis of pressure data in well testing, may be indicative of channelised flow, but such interpretation is not unique or definitive. Thirdly, in sparse channels, the percolation may be more influenced by the fracture shape than the fracture size and orientation but further studies are needed. Fourthly, the migration of radionuclides from a waste canister in a repository to the biosphere may be strongly influenced by the type of model used (e.g. discrete fracture network, channel model). Fifthly, the determination of appropriateness of representing an in situ flow system by a sparse-channel network model needs parameters usually neglected in site characterisation, such as the density of channels or fracture intersections.

  9. Method and apparatus for cold gas reinjection in through-flow and reverse-flow wave rotors

    NASA Technical Reports Server (NTRS)

    Nalim, M. Razi (Inventor); Paxson, Daniel E. (Inventor)

    1999-01-01

    A method and apparatus for cold gas reinjection in through-flow and reverse-flow wave rotors having a plurality of channels formed around a periphery thereof. A first port injects a supply of cool air into the channels. A second port allows the supply of cool air to exit the channels and flow to a combustor. A third port injects a supply of hot gas from the combustor into the channels. A fourth port allows the supply of hot gas to exit the channels and flow to a turbine. A diverting port and a reinjection port are connected to the second and third ports, respectively. The diverting port diverts a portion of the cool air exiting through the second port as reinjection air. The diverting port is fluidly connected to the reinjection port which reinjects the reinjection air back into the channels. The reinjection air evacuates the channels of the hot gas resident therein and cools the channel walls, a pair of end walls of the rotor, ducts communicating with the rotor and subsequent downstream components. In a second embodiment, the second port receives all of the cool air exiting the channels and the diverting port diverts a portion of the cool air just prior to the cool air flowing to the combustor.

  10. A Long and Winding Channel in Tharsis

    NASA Image and Video Library

    2016-10-05

    The Tharsis region of Mars is covered in vast lava flows, many with channels. Some channels, however, resemble features that may have been formed by water. In this image, we see a smooth, flat-bottomed channel within the roughly irregular edges of a possible lava flow. This long, winding channel runs for 115 kilometers (70 miles) from its source (shown in ESP_045091_2045), maintaining a nearly consistent width. There is also a streamlined island within the channel, which is 1.25 kilometers (about 3/4 mile) long. One possibility is that a lava flow formed, and later groundwater was released, preferentially flowing through and further eroding the pre-existing lava channel. Or, the original lava flow could have been a very low-viscosity lava. We look at the shape and profile of the channel, and the channel and lava flow edges, to understand the characteristics of the fluids at work. Although there are lava flows and rivers on Earth that we can observe to understand the processes at work, the interplay of the features on Mars may tell a more complicated story. We want to be able to understand the history of volcanic activity in Tharsis, as well as possible interaction with ground water release, to better understand some of the younger landforms on Mars. http://photojournal.jpl.nasa.gov/catalog/PIA21104

  11. Fluid Flow and Mass Transfer in Micro/Nano-Channels

    NASA Astrophysics Data System (ADS)

    Conlisk, A. T.; McFerran, Jennifer; Hansford, Derek; Zheng, Zhi

    2001-11-01

    In this work the fluid flow and mass transfer due to the presence of an electric field in a rectangular channel is examined. We consider a mixture of water or other neutral solvent and a salt compound such as sodium chloride for which the ionic species are entirely dissociated. Results are produced for the case where the channel height is much greater than the electric double layer(EDL)(microchannel) and for the case where the channel height is of the order or somewhat greater than the width of the EDL(nanochannel). For the electroosmotic flow so induced, the velocity field and the potential are similar. The fluid is assumed to behave as a continuum and the Boltzmann distribution for the mole fractions of the ions emerges from the classical dilute mass transfer equation in the limiting case where the EDL thickness is much less than the channel height. Depending on the relative magnitude of the mole fractions at the walls of the channel, both forward and reversed flow may occur. The volume flow rate is observed to vary linearly with channel height for electrically driven flow in contrast to pressure driven flow which varies as height cubed. This means that power requirements for small channels are much greater for pressure driven flow. Supported by DARPA

  12. Designing ecological flows to gravely braided rivers in alpine environments

    NASA Astrophysics Data System (ADS)

    Egozi, R.; Ashmore, P.

    2009-04-01

    Designing ecological flows in gravelly braided streams requires estimating the channel forming discharge in order to maintain the braided reach physical (allocation of flow and bed load) and ecological (maintaining the habitat diversity) functions. At present, compared to single meander streams, there are fewer guiding principles for river practitioners that can be used to manage braided streams. Insight into braiding morphodynamics using braiding intensity indices allows estimation of channel forming discharge. We assess variation in braiding intensity by mapping the total number of channels (BIT) and the number of active (transporting bed load) channels (BIA) at different stages of typical diurnal melt-water hydrographs in a pro-glacial braided river, Sunwapta River, Canada. Results show that both BIA and BIT vary with flow stage but over a limited range of values. Furthermore, maximum BIT occurs below peak discharge. At this stage there is a balance between channel merging from inundation and occupation of new channels as the stage rises. This stage is the channel forming discharge because above this stage the existing braided pattern cannot discharge the volume of water without causing morphological changes (e.g., destruction of bifurcations, channel avulsion). Estimation of the channel forming discharge requires a set of braiding intensity measurements over a range of flow stages. The design of ecological flows must take into consideration flow regime characteristics rather than just the channel forming discharge magnitude.

  13. Reactor pressure vessel nozzle

    DOEpatents

    Challberg, Roy C.; Upton, Hubert A.

    1994-01-01

    A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough.

  14. The creation and influence of bifurcations and confluences in Hawaiian lava flows on conditions of flow emplacement

    NASA Astrophysics Data System (ADS)

    Dietterich, H. R.; Cashman, K. V.

    2011-12-01

    Hawaiian lava channels are characterized by numerous bifurcations and confluences that have important implications for flow behavior. The ubiquity of anastomosing flows, and their detailed observation over time, makes Hawai`i an ideal place to investigate the formation of these features and their effect on simple models of lava flow emplacement. Using a combination of high-resolution LiDAR data from the Kilauea December 1974 and Mauna Loa 1984 flows, orthoimagery of the Mauna Loa 1859 flow, and historical and InSAR mapping of the current eruption of Kilauea (1983-present), we quantify the geometry of distributary, anastomosing, and simple channel networks and compare these to flow advance rates and lengths. We use a pre-eruptive DEM of the Mauna Loa 1984 flow created from aerial photographs to investigate the relationship between underlying topography and channel morphology. In the Mauna Loa 1984 flow, the slope of the pre-eruptive surface correlates with the number of parallel channels. Slopes >4° generate up to thirteen parallel channels in contrast to slopes of <4° that produce fewer than eight parallel channels. In the 1983-1986 lava flows erupted from Pu`u `O`o, average effusion rate correlates with the number of bifurcations, each producing a new parallel channel. Flows with a volume flux <60 m3/s only have one bifurcation at most in the entire flow, while flows with a volume flux >60 m3/s contain up to four bifurcations. These data show that the splitting and merging of individual flows is a product of both the underlying ground surface and eruption rate. Important properties of the pre-eruptive topography include both the slope and the scale of surface roughness. We suggest that a crucial control is the height of the flow front in comparison to the scale of local topography and roughness. Greater slopes may create more active channels because the reduced flow thickness allows interaction with local obstacles of a greater size range. Conversely, higher viscosities could reduce the number of active channels by increasing the flow thickness. The effusion rate also influences the degree of flow branching, possibly by generating overflows and widening the flow. Branched channels can also rejoin at confluences, which occur on the leeward sides of obstacles and where the flow is confined against large-scale features, including fault scarps and older flow margins. We expect the maintenance of parallel channels past an obstacle that splits the flow to be a function of the slope and flux, which drives the flow downhill and governs the formation of levees. Our data reveal that by controlling the effective lava flux, bifurcations slow flow advance and restrict flow length. We postulate that flow branching may therefore restrict most Mauna Loa flow lengths to ~25 km, despite a wide range of effusion rates. In contrast, both confluences and the shut off of an active branch accelerate the flow. The complexity of Hawaiian flows has largely been ignored in predictive models of flow emplacement in Hawaii, but the flow geometries must be incorporated to improve syn-eruptive prediction of lava flow behavior.

  15. A model for simulation of flow in singular and interconnected channels

    USGS Publications Warehouse

    Schaffranek, Raymond W.; Baltzer, R.A.; Goldberg, D.E.

    1981-01-01

    A one-dimensional numerical model is presented for simulating the unsteady flow in singular riverine or estuarine reaches and in networks of reaches composed of interconnected channels. The model is both general and flexible in that it can be used to simulate a wide range of flow conditions for various channel configurations. The channel geometry of the network to be modeled should be sufficiently simple so as to lend itself to characterization in one spatial dimension. The flow must be substantially homogenous in density, and hydrostatic pressure must prevail everywhere in the network channels. The slope of each channel bottom ought to be mild and reasonably constant over its length so that the flow remains subcritical. The model accommodates tributary inflows and diversions and includes the effects of wind shear on the water surface as a forcing function in the flow equations. Water-surface elevations and flow discharges are computed at channel junctions, as well as at specified intermediate locations within the network channels. The one-dimensional branch-network flow model uses a four-point, implicit, finite-difference approximation of the unsteady-flow equations. The flow equations are linearized over a time step, and branch transformations are formulated that describe the relationship between the unknowns at the end points of the channels. The resultant matrix of branch-transformation equations and required boundary-condition equations is solved by Gaussian elimination using maximum pivot strategy. Five example applications of the flow model are illustrated. The applications cover such diverse conditions as a singular upland river reach in which unsteady flow results from hydropower regulations, coastal rivers composed of sequentially connected reaches subject to unsteady tide-driven flow, and a multiply connected network of channels whose flow is principally governed by wind tides and seiches in adjoining lakes. The report includes a listing of the FORTRAN IV computer program and a description of the input data requirements. Model supporting programs for the processing and input of initial and boundary-value data are identified, various model output formats are illustrated, and instructions are given to permit the production of graphical output using the line printer, electromechanical pen plotters, cathode-ray-tube display units, or microfilm recorders.

  16. Laser heating of aqueous samples on a micro-optical-electro-mechanical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, Neil Reginald; Kennedy, Ian

    2013-12-17

    A system of heating a sample on a microchip includes the steps of providing a microchannel flow channel in the microchip; positioning the sample within the microchannel flow channel, providing a laser that directs a laser beam onto the sample for heating the sample; providing the microchannel flow channel with a wall section that receives the laser beam and enables the laser beam to pass through wall section of the microchannel flow channel without being appreciably heated by the laser beam; and providing a carrier fluid in the microchannel flow channel that moves the sample in the microchannel flow channelmore » wherein the carrier fluid is not appreciably heated by the laser beam.« less

  17. Fluid extraction across pumping and permeable walls in the viscous limit

    NASA Astrophysics Data System (ADS)

    Herschlag, G.; Liu, J.-G.; Layton, A. T.

    2016-04-01

    In biological transport mechanisms such as insect respiration and renal filtration, fluid travels along a leaky channel allowing material exchange with systems exterior to the channel. The channels in these systems may undergo peristaltic pumping which is thought to enhance the material exchange. To date, little analytic work has been done to study the effect of pumping on material extraction across the channel walls. In this paper, we examine a fluid extraction model in which fluid flowing through a leaky channel is exchanged with fluid in a reservoir. The channel walls are allowed to contract and expand uniformly, simulating a pumping mechanism. In order to efficiently determine solutions of the model, we derive a formal power series solution for the Stokes equations in a finite channel with uniformly contracting/expanding permeable walls. This flow has been well studied in the case in which the normal velocity at the channel walls is proportional to the wall velocity. In contrast we do not assume flow that is proportional to the wall velocity, but flow that is driven by hydrostatic pressure, and we use Darcy's law to close our system for normal wall velocity. We incorporate our flow solution into a model that tracks the material pressure exterior to the channel. We use this model to examine flux across the channel-reservoir barrier and demonstrate that pumping can either enhance or impede fluid extraction across channel walls. We find that associated with each set of physical flow and pumping parameters, there are optimal reservoir conditions that maximize the amount of material flowing from the channel into the reservoir.

  18. Impact of wall hydrophobicity on condensation flow and heat transfer in silicon microchannels

    NASA Astrophysics Data System (ADS)

    Fang, Chen; Steinbrenner, Julie E.; Wang, Fu-Min; Goodson, Kenneth E.

    2010-04-01

    While microchannel condensation has been the subject of several recent studies, the critical impact of wall hydrophobicity on the microchannel condensation flow has received very little attention. The paper experimentally studies steam condensation in a silicon microchannel 286 µm in hydraulic diameter with three different wall hydrophobicities. It is found that the channel surface wettability has a significant impact on the flow pattern, pressure drop and heat transfer characteristic. Spatial flow pattern transition is observed in both hydrophobic and hydrophilic channels. In the hydrophobic channel, the transition from dropwise/slugwise flow to plug flow is induced by the slug instability. In the hydrophilic channel, the flow transition is characterized by the periodic bubble detachment, a process in which pressure evolution is found important. Local temperature measurement is conducted and heat flux distribution in the microchannel is reconstructed. For the same inlet vapor flux and temperature, the hydrophobic microchannel yields higher heat transfer rate and pressure drop compared to the hydrophilic channel. The difference is attributed to the distinction in flow pattern and heat transfer mechanism dictated by the channel hydrophobicity. This study highlights the importance of the channel hydrophobicity control for the optimization of the microchannel condenser.

  19. Modeling lateral circulation and its influence on the along-channel flow in a branched estuary

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; He, Qing; Shen, Jian

    2018-02-01

    A numerical modeling study of the influence of the lateral flow on the estuarine exchange flow was conducted in the north passage of the Changjiang estuary. The lateral flows show substantial variabilities within a flood-ebb tidal cycle. The strong lateral flow occurring during flood tide is caused primarily by the unique cross-shoal flow that induces a strong northward (looking upstream) barotropic force near the surface and advects saltier water toward the northern part of the channel, resulting in a southward baroclinic force caused by the lateral density gradient. Thus, a two-layer structure of lateral flows is produced during the flood tide. The lateral flows are vigorous near the flood slack and the magnitude can exceed that of the along-channel tidal flow during that period. The strong vertical shear of the lateral flows and the salinity gradient in lateral direction generate lateral tidal straining, which are out of phase with the along-channel tidal straining. Consequently, stratification is enhanced at the early stage of the ebb tide. In contrast, strong along-channel straining is apparent during the late ebb tide. The vertical mixing disrupts the vertical density gradient, thus suppressing stratification. The impact of lateral straining on stratification during spring tide is more pronounced than that of along-channel straining during late flood and early ebb tides. The momentum balance along the estuary suggests that lateral flow can augment the residual exchange flow. The advection of lateral flows brings low-energy water from the shoal to the deep channel during the flood tide, whereas the energetic water is moved to the shoal via lateral advection during the ebb tide. The impact of lateral flow on estuarine circulation of this multiple-channel estuary is different from single-channel estuary. A model simulation by blocking the cross-shoal flow shows that the magnitudes of lateral flows and tidal straining are reduced. Moreover, the reduced lateral tidal straining results in a decrease in vertical stratification from the late flood to early ebb tides during the spring tide. By contrast, the along-channel tidal straining becomes dominant. The model results illustrate the important dynamic linkage between lateral flows and estuarine dynamics in the Changjiang estuary.

  20. Transport of self-propelling bacteria in micro-channel flow.

    PubMed

    Costanzo, A; Di Leonardo, R; Ruocco, G; Angelani, L

    2012-02-15

    Understanding the collective motion of self-propelling organisms in confined geometries, such as that of narrow channels, is of great theoretical and practical importance. By means of numerical simulations we study the motion of model bacteria in 2D channels under different flow conditions: fluid at rest, steady and unsteady flow. We find aggregation of bacteria near channel walls and, in the presence of external flow, also upstream swimming, which turns out to be a very robust result. Detailed analysis of bacterial velocity and orientation fields allows us to quantify the phenomenon by varying cell density, channel width and fluid velocity. The tumbling mechanism turns out to have strong influence on velocity profiles and particle flow, resulting in a net upstream flow in the case of non-tumbling organisms. Finally we demonstrate that upstream flow can be enhanced by a suitable choice of an unsteady flow pattern.

  1. Study of the heat-transfer crisis on heat-release surfaces of annular channels with swirl and transit flows

    NASA Astrophysics Data System (ADS)

    Boltenko, E. A.

    2016-10-01

    The results of the experimental study of the heat-transfer crisis on heat-release surfaces of annular channels with swirl and transit flow are presented. The experiments were carried out using electric heated annular channels with one and (or) two heat-release surfaces. For the organization of transit flow on a convex heat-release surface, four longitudinal ribs were installed uniformly at its perimeter. Swirl flow was realized using a capillary wound tightly (without gaps) on the ribs. The ratio between swirl and transit flows in the annular gap was varied by applying longitudinal ribs of different height. The experiments were carried out using a closed-type circulatory system. The experimental data were obtained in a wide range of regime parameters. Both water heated to the temperature less than the saturation temperature and water-steam mixture were fed at the inlet of the channels. For the measurement of the temperature of the heat-release surfaces, chromel-copel thermocouples were used. It was shown that the presence of swirl flow on a convex heatrelease surface led to a significant decrease in critical heat flows (CHF) compared to a smooth surface. To increase CHF, it was proposed to use the interaction of swirl flows of the heat carrier. The second swirl flow was transit flow, i.e., swirl flow with the step equal to infinity. It was shown that CHF values for a channel with swirl and transit flow in all the studied range of regime parameters was higher than CHF values for both a smooth annular channel and a channel with swirl. The empirical ratios describing the dependence of CHF on convex and concave heat-release surfaces of annular channels with swirl and transit flow on the geometrical characteristics of channels and the regime parameters were obtained. The experiments were carried out at the pressure p = 3.0-16.0 MPa and the mass velocity ρw = 250-3000 kg/(m2s).

  2. Electric fluid pump

    DOEpatents

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun

    2015-09-29

    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  3. Multi-Scale Thermal Heat Tracer Tests for Characterizing Transport Processes and Flow Channelling in Fractured Media: Theory and Field Experiments

    NASA Astrophysics Data System (ADS)

    de La Bernardie, J.; Klepikova, M.; Bour, O.; Le Borgne, T.; Dentz, M.; Guihéneuf, N.; Gerard, M. F.; Lavenant, N.

    2017-12-01

    The characterization of flow and transport in fractured media is particularly challenging because hydraulic conductivity and transport properties are often strongly dependent on the geometric structure of the fracture surfaces. Here we show how thermal tracer tests may be an excellent complement to conservative solute tracer tests to infer fracture geometry and flow channeling. We performed a series of thermal tracer tests at different scales in a crystalline rock aquifer at the experimental site of Ploemeur (H+ observatory network). The first type of thermal tracer tests are push-pull tracer tests at different scales. The temporal and spatial scaling of heat recovery, measured from thermal breakthrough curves, shows a clear signature of flow channeling. In particular, the late time tailing of heat recovery under channeled flow is shown to diverge from the T(t) α t-1,5 behavior expected for the classical parallel plate model and follow the scaling T(t) α 1/t(logt)2 for a simple channel modeled as a tube. Flow channeling is also manifested on the spatial scaling of heat recovery as flow channeling affects the decay of the thermal breakthrough peak amplitude and the increase of the peak time with scale. The second type of thermal tracer tests are flow-through tracer tests where a pulse of hot water was injected in a fracture isolated by a double straddle packer while pumping at the same flow rate in another fracture at a distance of about 10 meters to create a dipole flow field. Comparison with a solute tracer test performed under the same conditions also present a clear signature of flow channeling. We derive analytical expressions for the retardation and decay of the thermal breakthrough peak amplitude for different fracture geometries and show that the observed differences between thermal and solute breakthrough can be explained only by channelized flow. These results suggest that heat transport is much more sensitive to fracture heterogeneity and flow channeling than conservative solute transport. These findings, which bring new insights on the effect of flow channeling on heat transfer in fractured rocks, show how heat recovery in geothermal systems may be controlled by fracture geometry. This highlights the interest of thermal tracer tests as a complement to solute tracers tests to infer fracture aperture and geometry.

  4. Comparisons of the hydraulics of water flows in Martian outflow channels with flows of similar scale on earth

    NASA Technical Reports Server (NTRS)

    Komar, P. D.

    1979-01-01

    The hydraulics of channelized water flows on Mars and the resulting sediment transport rates are calculated, and similar computations are performed for such terrestrial analogs as the Mississippi River and the catastrophic Lake Missoula floods that formed the Channeled Scabland in eastern Washington State. The morphologies of deep-sea channels formed by catastrophic turbidity currents are compared with the Martian channels, many similarities are pointed out, and the hydraulics of the various flows are compared. The results indicate that the velocities, discharges, bottom shear stresses, and sediment-transport capacity of water flows along the Martian channels would be comparable to those of the oceanic turbidity currents and the Lake Missoula floods. It is suggested that the submarine canyons from which turbidity currents originate are the terrestrial counterparts to the chaotic-terrain areas or craters that serve as sources for many of the Martian channels.

  5. Comparison of superhydrophobic drag reduction between turbulent pipe and channel flows

    NASA Astrophysics Data System (ADS)

    Im, Hyung Jae; Lee, Jae Hwa

    2017-09-01

    It has been known over several decades that canonical wall-bounded internal flows of a pipe and channel share flow similarities, in particular, close to the wall due to the negligible curvature effect. In the present study, direct numerical simulations of fully developed turbulent pipe and channel flows are performed to investigate the influence of the superhydrophobic surfaces (SHSs) on the turbulence dynamics and the resultant drag reduction (DR) of the flows under similar conditions. SHSs at the wall are modeled in spanwise-alternating longitudinal regions with a boundary with no-slip and shear-free conditions, and the two parameters of the spanwise periodicity (P/δ) and SHS fraction (GF) within a pitch are considered. It is shown, in agreement with previous investigations in channels, that the turbulent drag for the pipe and channel flows over SHSs is continuously decreased with increases in P/δ and GF. However, the DR rate in the pipe flows is greater than that in the channel flows with an accompanying reduction of the Reynolds stress. The enhanced performance of the DR for the pipe flow is attributed to the increased streamwise slip and weakened Reynolds shear stress contributions. In addition, a mathematical analysis of the spanwise mean vorticity equation suggests that the presence of a strong secondary flow due to the increased spanwise slip of the pipe flows makes a greater negative contribution of advective vorticity transport than the channel flows, resulting in a higher DR value. Finally, an inspection of the origin of the mean secondary flow in turbulent flows over SHSs based on the spatial gradients of the turbulent kinetic energy demonstrates that the secondary flow is both driven and sustained by spatial gradients in the Reynolds stress components, i.e., Prandtl's secondary flow of the second kind.

  6. Regimes of Two-Phase Flow in Short Rectangular Channel

    NASA Astrophysics Data System (ADS)

    Chinnov, Evgeny A.; Guzanov, Vladimir V.; Cheverda, Vyacheslav; Markovich, Dmitry M.; Kabov, Oleg A.

    2009-08-01

    Experimental study of two-phase flow in the short rectangular horizontal channel with height 440 μm has been performed. Characteristics of liquid motion inside the channel have been registered and measured by the Laser Induced Fluorescence technique. New information has allowed determining more precisely the characteristics of churn regime and boundaries between different regimes of two-phase flow. It was shown that formation of some two-phase flow regimes and transitions between them are determined by instability of the flow in the lateral parts of the channel.

  7. Flow Structure and Channel Morphology at a Confluent-Meander Bend

    NASA Astrophysics Data System (ADS)

    Riley, J. D.; Rhoads, B. L.

    2009-12-01

    Flow structure and channel morphology in meander bends have been well documented. Channel curvature subjects flow through a bend to centrifugal acceleration, inducing a counterbalancing pressure-gradient force that initiates secondary circulation. Transverse variations in boundary shear stress and bedload transport parallel cross-stream movement of high velocity flow and determine spatial patterns of erosion along the outer bank and deposition along the inner bank. Laboratory experiments and numerical modeling of confluent-meander bends, a junction planform that develops when a tributary joins a meandering river along the outer bank of a bend, suggest that flow and channel morphology in such bends deviate from typical patterns. The purpose of this study is to examine three-dimensional (3-D) flow structure and channel morphology at a natural confluent-meander bend. Field data were collected in southeastern Illinois where Big Muddy Creek joins the Little Wabash River near a local maximum of curvature along an elongated meander loop. Measurements of 3-D velocity components were obtained with an acoustic Doppler current profiler (ADCP) for two flow events with differing momentum ratios. Channel bathymetry was also resolved from the four-beam depths of the ADCP. Analysis of velocity data reveals a distinct shear layer flanked by dual helical cells within the bend immediately downstream of the confluence. Flow from the tributary confines flow from the main channel along the inner part of the channel cross section, displacing the thalweg inward, limiting the downstream extent of the point bar, protecting the outer bank from erosion and enabling bar-building along this bank. Overall, this pattern of flow and channel morphology is quite different from typical patterns in meander bends, but is consistent with a conceptual model derived from laboratory experiments and numerical modeling.

  8. Flow rate-pressure drop relation for deformable shallow microfluidic channels

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Cognet, Vincent; Shidhore, Tanmay C.; Stone, Howard A.

    2018-04-01

    Laminar flow in devices fabricated from soft materials causes deformation of the passage geometry, which affects the flow rate--pressure drop relation. For a given pressure drop, in channels with narrow rectangular cross-section, the flow rate varies as the cube of the channel height, so deformation can produce significant quantitative effects, including nonlinear dependence on the pressure drop [{Gervais, T., El-Ali, J., G\\"unther, A. \\& Jensen, K.\\ F.}\\ 2006 Flow-induced deformation of shallow microfluidic channels.\\ \\textit{Lab Chip} \\textbf{6}, 500--507]. Gervais et. al. proposed a successful model of the deformation-induced change in the flow rate by heuristically coupling a Hookean elastic response with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbation approach for the flow rate--pressure drop relation in a shallow deformable microchannel using the theory of isotropic quasi-static plate bending and the Stokes equations under a lubrication approximation (specifically, the ratio of the channel's height to its width and of the channel's height to its length are both assumed small). Our result contains no free parameters and confirms Gervais et. al.'s observation that the flow rate is a quartic polynomial of the pressure drop. The derived flow rate--pressure drop relation compares favorably with experimental measurements.

  9. Axially shaped channel and integral flow trippers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.; Johansson, E.B.; Matzner, B.

    1988-06-07

    A fuel assembly is described comprising fuel rods positioned in spaced array by upper and lower tie-plates, an open ended flow channel surrounding the array for conducting coolant upward between a lower support plate having coolant communicated thereto to an upper support grid having a steam/water outlet communicated thereto. The flow channel surrounds the array for conducting coolant about the fuel rods. The open ended channel has a polygon shaped cross section with the channel constituting a closed conduit with flat side sections connected at corners to form the enclosed conduit; means separate from the channel for connecting the uppermore » and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel. The improvement in the flow channel comprises tapered side walls. The tapered side walls extend from an average thick cross section adjacent the lower support plate to an average thin cross section adjacent the upper core grid whereby the channel is reduced in thickness adjacent the upper core grid to correspond with the reduced pressure adjacent the upper core grid.« less

  10. Axially shaped channel and integral flow trippers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L. Jr.; Johansson, E.B.; Matzner, B.

    1992-02-11

    This patent describes a fuel assembly. It comprises: fuel rods positioned in spaced array by upper and lower tie-plates, and open ended flow channel surrounding the array for conducting coolant upward between a lower support plate having coolant communicated thereto to an upper support grid having a steam/water outlet communicated thereto. The flow channel surrounding the array for conducting coolant about the fuel rods; the open ended channel having a polygon shaped cross section with the channel constituting a closed conduit with flat side sections connected at corners to form the enclosed conduit; means separate from the channel for connectingmore » the upper and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel, the improvement in the flow channel comprising tapered side walls, the tapered side walls extending from an average thick cross section adjacent the lower support plate to an average thin cross section adjacent the upper core grid whereby the channel is reduced in thickness adjacent the upper core grid to correspond with the reduced pressure adjacent the upper core grid.« less

  11. Solids-based concentrated solar power receiver

    DOEpatents

    None

    2018-04-10

    A concentrated solar power (CSP) system includes channels arranged to convey a flowing solids medium descending under gravity. The channels form a light-absorbing surface configured to absorb solar flux from a heliostat field. The channels may be independently supported, for example by suspension, and gaps between the channels are sized to accommodate thermal expansion. The light absorbing surface may be sloped so that the inside surfaces of the channels proximate to the light absorbing surface define downward-slanting channel floors, and the flowing solids medium flows along these floors. Baffles may be disposed inside the channels and oriented across the direction of descent of the flowing solids medium. The channels may include wedge-shaped walls forming the light-absorbing surface and defining multiple-reflection light paths for solar flux from the heliostat field incident on the light-absorbing surface.

  12. Hydrodynamics and Connectivity of Channelized Floodplains: Insights from the Meandering East Fork White River, Indiana, USA

    NASA Astrophysics Data System (ADS)

    Czuba, J. A.; David, S. R.; Edmonds, D. A.

    2017-12-01

    High resolution topography reveals that meandering river floodplains in Indiana commonly have networks of channels. These floodplain channel networks are most prevalent in agricultural, low-gradient, wide floodplains. It appears that these networks are formed when floodplain channels connect oxbows to each other and the main river channel. Collectively, the channels in the floodplain create an interconnected network of pathways that convey water beginning at flows less than bankfull, and as stage increases, more of the floodplain becomes dissected by floodplain channels. In this work, we quantify the hydrodynamics and connectivity of the flow on the floodplain and in the main channel of the East Fork White River near Seymour, Indiana, USA. We constructed a two-dimensional numerical model using HECRAS of the river-floodplain system from LiDAR data and from main-channel river bathymetry to elucidate the behaviour of these floodplain channels across a range of flows. Model calibration and verification data included stage from a USGS gage, high-water marks at a high and medium flow, and an aerial photograph of inundation in the floodplain channels. The numerical model simulated flow depth and velocity, which was used to quantify connectivity of the floodplain channels, exchange between the main channel and floodplain channels, and residence time of water on the floodplain. Model simulations suggest that the floodplain channels convey roughly 50% of the total flow at what is typically considered "bankfull" flow. Overall, we present a process-based approach for analyzing complex floodplain-river systems where an individual floodplain-river system can be distilled down to a set of characteristic curves. Notably, we map the East Fork White River system to exchange-residence time space and argue that this characterization forms the basis for thinking about morphologic evolution (e.g., sediment deposition and erosion) and biogeochemistry (e.g., nitrate removal) in floodplain-river systems.

  13. Atlantic water flow through the Faroese Channels

    NASA Astrophysics Data System (ADS)

    Hansen, Bogi; Poulsen, Turið; Margretha Húsgarð Larsen, Karin; Hátún, Hjálmar; Østerhus, Svein; Darelius, Elin; Berx, Barbara; Quadfasel, Detlef; Jochumsen, Kerstin

    2017-11-01

    Through the Faroese Channels - the collective name for a system of channels linking the Faroe-Shetland Channel, Wyville Thomson Basin, and Faroe Bank Channel - there is a deep flow of cold waters from Arctic regions that exit the system as overflow through the Faroe Bank Channel and across the Wyville Thomson Ridge. The upper layers, in contrast, are dominated by warm, saline water masses from the southwest, termed Atlantic water. In spite of intensive research over more than a century, there are still open questions on the passage of these waters through the system with conflicting views in recent literature. Of special note is the suggestion that there is a flow of Atlantic water from the Faroe-Shetland Channel through the Faroe Bank Channel, which circles the Faroes over the slope region in a clockwise direction. Here, we combine the observational evidence from ship-borne hydrography, moored current measurements, surface drifter tracks, and satellite altimetry to address these questions and propose a general scheme for the Atlantic water flow through this channel system. We find no evidence for a continuous flow of Atlantic water from the Faroe-Shetland Channel to the Faroe Bank Channel over the Faroese slope. Rather, the southwestward-flowing water over the Faroese slope of the Faroe-Shetland Channel is totally recirculated within the combined area of the Faroe-Shetland Channel and Wyville Thomson Basin, except possibly for a small release in the form of eddies. This does not exclude a possible westward flow over the southern tip of the Faroe Shelf, but even including that, we estimate that the average volume transport of a Circum-Faroe Current does not exceed 0.5 Sv (1 Sv = 106 m3 s-1). Also, there seems to be a persistent flow of Atlantic water from the western part of the Faroe Bank Channel into the Faroe-Shetland Channel that joins the Slope Current over the Scottish slope. These conclusions will affect potential impacts from offshore activities in the region and they imply that recently published observational estimates of the transport of warm water towards the Arctic obtained by different methods are incompatible.

  14. First results from different investigations on MHD flow in multichannel U-Bends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimann, J.; Barleon, L.; Molokov, S.

    1995-04-01

    In electrically coupled multichannel ducts with a U-bend geometry, MHD effects can result in strongly non-uniform distributions of flow rates Q{sub i} and pressure drops {Delta}p{sub i} in the individual channels. A multichannel U-bend geometry is part of the KfK self-cooled Pb-17Li blanket design for a fusion reactor (radial-toroidal-radial channels). However, inserts are proposed which decouple electrically the radial channels. The multi-channel effects (MCDs) were investigated by (i) Screening test with InGaSn at LAS, Riga, and (ii) more detailed experiments with NaK at KfK, Karlsruhe. Different flow channel geometries and channel numbers between 1 and 5 were used. Hartmann numbersmore » and interaction parameters were varied between O {le} M {le} 2300 and O {le} N {le} 40000. In parallel, a theoretical analysis was performed, based on the method of core flow approximation (CFA) which is valid for M {r_arrow} {infinity} and N {r_arrow} {infinity}. Significant MCEs occur in all ducts with totally electrically coupled channels. For the mode {Delta}p{sub i} = const, the flow rates in the outer channels can become significantly larger than those in the inner channels. For Q{sub i} = const, the highest pressure drop occurs in the middle channel and the lowest in the outer channels. The CFA predicts correctly the ratios of the pressure drops of the single channels but gives lower values than observed experimentally. No marked MCE was found for flow geometry which is similar to the KfK design, i.e., a fairly uniform flow rate and pressure drop distribution was observed for all values of M and N.« less

  15. Modeling flow, sediment transport and morphodynamics in rivers

    USGS Publications Warehouse

    Nelson, Jonathan M.; McDonald, Richard R.; Shimizu, Yasuyuki; Kimura, Ichiro; Nabi, Mohamed; Asahi, Kazutake

    2016-01-01

    Predicting the response of natural or man-made channels to imposed supplies of water and sediment is one of the difficult practical problems commonly addressed by fluvial geomorphologists. This problem typically arises in three situations. In the first situation, geomorphologists are attempting to understand why a channel or class of channels has a certain general form; in a sense, this is the central goal of fluvial geomorphology. In the second situation, geomorphologists are trying to understand and explain how and why a specific channel will evolve or has evolved in response to altered or unusual sediment and water supplies to that channel. For example, this would include explaining the short-term response of a channel to an unusually large flood or predicting the response of a channel to long-term changes in flow or sediment supply due to various human activities such as damming or diversions. Finally, geomorphologists may be called upon to design or assess the design of proposed man-made channels that must carry a certain range of flows and sediment loads in a stable or at least quasi-stable manner. In each of these three situations, the problem is really the same: geomorphologists must understand and predict the interaction of the flow field in the channel, the sediment movement in the channel and the geometry of the channel bed and banks. In general, the flow field, the movement of sediment making up the bed and the morphology of the bed are intricately linked; the flow moves the sediment, the bed is altered by erosion and deposition of sediment and the shape of the bed is critically important for predicting the flow. This complex linkage is precisely what makes understanding channel form and process such a difficult and interesting challenge.

  16. Reactor pressure vessel nozzle

    DOEpatents

    Challberg, R.C.; Upton, H.A.

    1994-10-04

    A nozzle for joining a pool of water to a nuclear reactor pressure vessel includes a tubular body having a proximal end joinable to the pressure vessel and a distal end joinable in flow communication with the pool. The body includes a flow passage therethrough having in serial flow communication a first port at the distal end, a throat spaced axially from the first port, a conical channel extending axially from the throat, and a second port at the proximal end which is joinable in flow communication with the pressure vessel. The inner diameter of the flow passage decreases from the first port to the throat and then increases along the conical channel to the second port. In this way, the conical channel acts as a diverging channel or diffuser in the forward flow direction from the first port to the second port for recovering pressure due to the flow restriction provided by the throat. In the backflow direction from the second port to the first port, the conical channel is a converging channel and with the abrupt increase in flow area from the throat to the first port collectively increase resistance to flow therethrough. 2 figs.

  17. Geomorphic response to flow regulation and channel and floodplain alteration in the gravel-bedded Cedar River, Washington, USA

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.

    2012-01-01

    Decadal- to annual-scale analyses of changes to the fluvial form and processes of the Cedar River in Washington State, USA, reveal the effects of flow regulation, bank stabilization, and log-jam removal on a gravel-bedded river in a temperate climate. During the twentieth century, revetments were built along ~ 60% of the lower Cedar River's length and the 2-year return period flow decreased by 47% following flow regulation beginning in 1914. The formerly wide, anastomosing channel narrowed by over 50% from an average of 47 m in 1936 to 23 m in 1989 and became progressively single threaded. Subsequent high flows and localized revetment removal contributed to an increase in mean channel width to about 34 m by 2011. Channel migration rates between 1936 and 2011 were up to 8 m/year in reaches not confined by revetments or valley walls and less than analysis uncertainty throughout most of the Cedar River's length where bank armoring restricted channel movement. In unconfined reaches where large wood and sediment can be recruited, contemporary high flows, though smaller in magnitude than preregulation high flows, form and maintain geomorphic features such as pools, gravel bars, and side channels. Reaches confined by revetments remain mostly unmodified in the regulated flow regime. While high flows are important for maintaining channel dynamics in the Cedar River, their effectiveness is currently reduced by revetments, limited sediment supply, the lack of large wood available for recruitment to the channel, and decreased magnitude since flow regulation.

  18. Apparatus for diffusion separation

    DOEpatents

    Nierenberg, William A.

    1976-08-10

    1. A diffuser separator apparatus which comprises a plurality of flow channels in a single stage, each of said channels having an inlet port and an outlet port and a constant cross sectional area between said ports, at least a portion of the defining surface of each of said channels being a diffusion separation membrane, and each of said channels having a different cross sectional area, means for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series, a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area.

  19. One-dimensional acoustic standing waves in rectangular channels for flow cytometry.

    PubMed

    Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A; Naivar, Mark A; Lόpez, Gabriel P; Graves, Steven W

    2012-07-01

    Flow cytometry has become a powerful analytical tool for applications ranging from blood diagnostics to high throughput screening of molecular assemblies on microsphere arrays. However, instrument size, expense, throughput, and consumable use limit its use in resource poor areas of the world, as a component in environmental monitoring, and for detection of very rare cell populations. For these reasons, new technologies to improve the size and cost-to-performance ratio of flow cytometry are required. One such technology is the use of acoustic standing waves that efficiently concentrate cells and particles to the center of flow channels for analysis. The simplest form of this method uses one-dimensional acoustic standing waves to focus particles in rectangular channels. We have developed one-dimensional acoustic focusing flow channels that can be fabricated in simple capillary devices or easily microfabricated using photolithography and deep reactive ion etching. Image and video analysis demonstrates that these channels precisely focus single flowing streams of particles and cells for traditional flow cytometry analysis. Additionally, use of standing waves with increasing harmonics and in parallel microfabricated channels is shown to effectively create many parallel focused streams. Furthermore, we present the fabrication of an inexpensive optical platform for flow cytometry in rectangular channels and use of the system to provide precise analysis. The simplicity and low-cost of the acoustic focusing devices developed here promise to be effective for flow cytometers that have reduced size, cost, and consumable use. Finally, the straightforward path to parallel flow streams using one-dimensional multinode acoustic focusing, indicates that simple acoustic focusing in rectangular channels may also have a prominent role in high-throughput flow cytometry. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Perspectives on continuum flow models for force-driven nano-channel liquid flows

    NASA Astrophysics Data System (ADS)

    Beskok, Ali; Ghorbanian, Jafar; Celebi, Alper

    2017-11-01

    A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.

  1. A probabilistic model of debris-flow delivery to stream channels, demonstrated for the Coast Range of Oregon, USA

    Treesearch

    Daniel J. Miller; Kelly M. Burnett

    2008-01-01

    Debris flows are important geomorphic agents in mountainous terrains that shape channel environments and add a dynamic element to sediment supply and channel disturbance. Identification of channels susceptible to debris-flow inputs of sediment and organic debris, and quantification of the likelihood and magnitude of those inputs, are key tasks for characterizing...

  2. Quantifying Channel Maintenance Instream Flows: An Approach for Gravel-Bed Streams in the Western United States

    Treesearch

    Larry J. Schmidt; John P. Potyondy

    2004-01-01

    This paper discusses one approach for quantifying channel maintenance instream flow necessary to achieve the Forest Service Organic Act purpose of securing favorable conditions of water flows. The approach is appropriate for quantifying channel maintenance flows on perennial, unregulated, snowmelt-dominated, gravel-bed streams with alluvial reaches. The approach...

  3. Morphology and emplacement of a long channeled lava flow near Ascraeus Mons Volcano, Mars

    NASA Astrophysics Data System (ADS)

    Garry, W. Brent; Zimbelman, James R.; Gregg, Tracy K. P.

    2007-08-01

    Channeled lava flows, hundreds of kilometers long, are common on the lower flanks of the Tharsis Montes on Mars. Our analysis of a 690-km-long lava flow along the southwest perimeter of Ascraeus Mons shows that it was emplaced on low local slopes (<0.3°), with a deep channel (~20 m), and at high effusion rates (19,000-29,000 m3/s) calculated from the Graetz number. These parameters are similar to conditions needed to yield rapidly emplaced terrestrial flows >100 km in length, but the maximum effusion rates necessary on Earth are essentially the minimum for Martian flows. On the basis of our calculated effusion rates, the eruption duration was 3 to 7 Earth months, assuming a constant effusion rate and continuous eruption. The morphology of the Ascraeus Mons flow shows similarities to terrestrial and simulated channeled flows. Downstream changes in morphology resemble those observed in the 1907 flow, Mauna Loa Volcano, Hawaii and channeled polyethylene glycol (PEG) flows. Braided sections of the channel in the Ascraeus Mons flow contain islands which are hundreds of meters across and resemble features observed in the 1907 and 1984 flows on Mauna Loa Volcano. Crosscutting relationships suggest islands in the proximal section were shaped by thermal and mechanical erosion, whereas islands in the medial section are inferred to be material rafted by surges of lava through the channel. Overall, understanding the morphology of long lava flows on Mars is essential to the interpretation of their emplacement and constraining eruption conditions in the saddle regions of the Tharsis volcanoes.

  4. The effect of channel shape, bed morphology, and shipwrecks on flow velocities in the Upper St. Clair River

    USGS Publications Warehouse

    Czuba, Jonathan A.; Oberg, Kevin; Best, Jim; Parsons, Daniel R.

    2009-01-01

    In the Great Lakes of North America, the St. Clair River is the major outlet of Lake Huron and conveys water to Lake St. Clair which then flows to Lake Erie. One major topic of interest is morphological change in the St. Clair River and its impact on water levels in the Upper Great Lakes and connecting channel flows. A combined multibeam echosounder (MBES) bathymetric survey and acoustic Doppler current profiler (ADCP) flow survey of the outlet of Lake Huron and the Upper St. Clair River was conducted July 21 – 25, 2008. This paper presents how channel morphology and shipwrecks affect the flow in the Upper St. Clair River. The river is most constricted at the Blue Water Bridge near Port Huron, Michigan, with water velocities over 2 ms-1 for a flow of 5,200 m3s-1. Downstream of this constriction, the river flows around a bend and expands creating a large recirculation zone along the left bank due to flow separation. This recirculation zone reduces the effective channel width, and thus increases flow velocities to over 2 ms-1 in this region. The surveys reveal several shipwrecks on the bed of the St. Clair River, which possess distinct wakes in their flow velocity downstream of the wrecks. The constriction and expansion of the channel, combined with forcing of the flow by bed topography, initiates channel-scale secondary flow, creating streamwise vortices that maintain coherence downstream over a distance of several channel widths.

  5. Flow field and dissolved oxygen distributions in the outer channel of the Orbal oxidation ditch by monitor and CFD simulation.

    PubMed

    Guo, Xuesong; Zhou, Xin; Chen, Qiuwen; Liu, Junxin

    2013-04-01

    In the Orbal oxidation ditch, denitrification is primarily accomplished in the outer channel. However, the detailed characteristics of the flow field and dissolved oxygen (DO) distribution in the outer channel are not well understood. Therefore, in this study, the flow velocity and DO concentration in the outer channel of an Orbal oxidation ditch system in a wastewater treatment plant in Beijing (China) were monitored under actual operation conditions. The flow field and DO concentration distributions were analyzed by computed fluid dynamic modeling. In situ monitoring and modeling both showed that the flow velocity was heterogeneous in the outer channel. As a result, the DO was also heterogeneously distributed in the outer channel, with concentration gradients occurring along the flow direction as well as in the cross-section. This heterogeneous DO distribution created many anoxic and aerobic zones, which may have facilitated simultaneous nitrification-denitrification in the channel. These findings may provide supporting information for rational optimization of the performance of the Orbal oxidation ditch.

  6. CFD analyses of coolant channel flowfields

    NASA Technical Reports Server (NTRS)

    Yagley, Jennifer A.; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    The flowfield characteristics in rocket engine coolant channels are analyzed by means of a numerical model. The channels are characterized by large length to diameter ratios, high Reynolds numbers, and asymmetrical heating. At representative flow conditions, the channel length is approximately twice the hydraulic entrance length so that fully developed conditions would be reached for a constant property fluid. For the supercritical hydrogen that is used as the coolant, the strong property variations create significant secondary flows in the cross-plane which have a major influence on the flow and the resulting heat transfer. Comparison of constant and variable property solutions show substantial differences. In addition, the property variations prevent fully developed flow. The density variation accelerates the fluid in the channels increasing the pressure drop without an accompanying increase in heat flux. Analyses of the inlet configuration suggest that side entry from a manifold can affect the development of the velocity profile because of vortices generated as the flow enters the channel. Current work is focused on studying the effects of channel bifurcation on the flow field and the heat transfer characteristics.

  7. Study of gas-water flow in horizontal rectangular channels

    NASA Astrophysics Data System (ADS)

    Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.

    2015-09-01

    The two-phase flow in the narrow short horizontal rectangular channels 1 millimeter in height was studied experimentally. The features of formation of the two-phase flow were studied in detail. It is shown that with an increase in the channel width, the region of the churn and bubble regimes increases, compressing the area of the jet flow. The areas of the annular and stratified flow patterns vary insignificantly.

  8. Flow and form in rehabilitation of large-river ecosystems: an example from the Lower Missouri River

    USGS Publications Warehouse

    Jacobson, R.B.; Galat, D.L.

    2006-01-01

    On large, intensively engineered rivers like the Lower Missouri, the template of the physical habitat is determined by the nearly independent interaction of channel form and flow regime. We evaluated the interaction between flow and form by modeling four combinations of modern and historical channel form and modern and historical flow regimes. The analysis used shallow, slow water (shallow-water habitat, SWH, defined as depths between 0 and 1.5 m, and current velocities between 0 and 0.75 m/s) as an indicator of habitat that has been lost on many intensively engineered rivers and one that is thought to be especially important in rearing of young fishes. Two-dimensional hydrodynamic models for modern and historical channels of the Lower Missouri River at Hermann, Missouri, indicate substantial differences between the two channels in total availability and spatial characteristics of SWH. In the modern channel, SWH is maximized at extremely low flows and in overbank flows, whereas the historical channel had substantially more SWH at all discharges and SWH increased with increasing discharge. The historical channel form produced 3-7 times the SWH area of the modern channel regardless of flow regime. The effect of flow regime is evident in increased within-year SWH variability with the natural flow regime, including significant seasonal peaks of SWH associated with spring flooding. Comparison with other reaches along the Lower Missouri River indicates that a) channel form is the dominant control of the availability of habitat even in reaches where the hydrograph is more intensively altered, and b) rehabilitation projects that move toward the historical condition can be successful in increasing topographic diversity and thereby decreasing sensitivity of the availability of habitat to flow regime. The relative efficacy of managing flow and form in creating SWH is useful information toward achieving socially acceptable rehabilitation of the ecosystem in large river systems.

  9. Thermally conductive porous element-based recuperators

    NASA Technical Reports Server (NTRS)

    Du, Jian Hua (Inventor); Chow, Louis C (Inventor); Lin, Yeong-Ren (Inventor); Wu, Wei (Inventor); Kapat, Jayanta (Inventor); Notardonato, William U. (Inventor)

    2012-01-01

    A heat exchanger includes at least one hot fluid flow channel comprising a first plurality of open cell porous elements having first gaps there between for flowing a hot fluid in a flow direction and at least one cold fluid flow channel comprising a second plurality of open cell porous elements having second gaps therebetween for flowing a cold fluid in a countercurrent flow direction relative to the flow direction. The thermal conductivity of the porous elements is at least 10 W/mK. A separation member is interposed between the hot and cold flow channels for isolating flow paths associated these flow channels. The first and second plurality of porous elements at least partially overlap one another to form a plurality of heat transfer pairs which transfer heat from respective ones of the first porous elements to respective ones of the second porous elements through the separation member.

  10. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels

    PubMed Central

    Lee, Pil Hyong; Hwang, Sang Soon

    2009-01-01

    In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0–100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane. PMID:22291556

  11. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels.

    PubMed

    Lee, Pil Hyong; Hwang, Sang Soon

    2009-01-01

    In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0-100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.

  12. Channel evolution under changing hydrological regimes in anabranching reaches downstream of the Three Gorges Dam

    NASA Astrophysics Data System (ADS)

    Han, Jianqiao; Zhang, Wei; Yuan, Jing; Fan, Yongyang

    2018-03-01

    Elucidating the influence of dams on fluvial processes can benefit river protection and basin management. Based on hydrological and topographical data, we analyzed channel evolution in anabranching reaches under changing hydrological regimes influenced by the Three Gorges Dam. The main conclusions are as follows: 1) the channels of specific anabranching reaches were defined as flood trend channels or low-flow trend channels according to the distribution of their flow characteristics. The anabranching reaches were classified as T1 or T2. The former is characterized by the correspondence between the flood trend and branch channels, and the latter is characterized by the correspondence between the flood trend and main channels; 2) on the basis of the new classification, the discrepant patterns of channel evolution seen in anabranching reaches were unified into a pattern that showed flood trend channels shrinking and low-flow trend channels expanding; 3) flood abatement and the increased duration of moderate flow discharges are the main factors that affect channel adjustments in anabranching reaches after dam construction; and 4) in the next few decades, the pattern of channel evolution will remain the same as that of the Three Gorges Dam operation. That is, the morphology will fully adapt to a flow with a low coefficient of variation. Our results are of interest in the management of the Yangtze River and other rivers influenced by dams.

  13. Dynamic coupling among channel flow, plateau growth, foreland shortening, and the formation of metamorphic core complexes: Application to the Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Rey, P. F.; Teyssier, C.; Whitney, D. L.

    2009-04-01

    Gravitational potential energy stored in an orogenic plateau can be sufficiently strong to deform the surrounding region (foreland), hence contributing to both plateau growth and collapse. Gravity-driven channel flow from the plateau lower crust into the foreland lower crust, or channel extrusion, has been proposed as a main contributor to the eastward growth of the Tibetan plateau, possibly driving the lower crust channel as far as 1000 km beneath the foreland (eg. Royden et al., 2008). On the basis of numerical modeling using temperature-dependent viscosities and densities, we show that four processes impose severe limitations to channel extrusion: (1) cooling of the extruded channel, (2) convective motion in the plateau channel, (3) surface extension of the plateau, and (4) erosion of the plateau edge. Model results show that peak velocities in the extrusion channel drop rapidly (in less than a few My) from ca. 5 cm/year to less than 1 cm/year, owing to the rapid cooling in the channel from 750-850°C to 650-550°C as it travels into the foreland region. Channel flow extrusion is further slowed when convective flow initiates in the plateau channel as a result of only a few percent drop in density. This convection inhibits laminar flow in the channel, reduces the peak horizontal velocity in the channel to a few mm, and even drives a counter flow at the base of the channel, preventing its propagation toward the foreland. If the foreland is actively pulled away from the plateau (extending boundaries), the plateau upper crust undergoes extension and the lower crust moves up efficiently into a metamorphic core complex, which inhibits flow of the channel away from the plateau and even generates a counter flow from the foreland to the metamorphic core complex. If the foreland is fixed, the same phenomenon occurs as long as the foreland upper crust undergoes shortening (likely weakened by high pore fluid pressure), which enhances extension of the plateau and upward flow of the channel. Previous studies (eg. Beaumont et al, 2001) have already emphasized the importance of aggressive erosion of the plateau edge as a process able to remove a section of the plateau upper crust, providing space for the plateau lower crust to flow into. Together, these numerical experiments demonstrate the dynamic link that exists between plateau and foreland through the behavior of a low-viscosity channel. For the cases studied, the length scale of channel extrusion is 100 km in the most favorable conditions, and not 1000 km as previously suggested. Beaumont, C., Jamieson, R.A., Nguyen, M.H. & Lee, B. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414, 738-742 (2001). Royden, L. H., Burchfiel, B.C. & van der Hilst, R.D. The geological evolution of the Tibetan Plateau. Science 321, 1054 - 1058 (2008).

  14. Field Investigation of Flow Structure and Channel Morphology at Confluent-Meander Bends

    NASA Astrophysics Data System (ADS)

    Riley, J. D.; Rhoads, B. L.

    2007-12-01

    The movement of water and sediment through drainage networks is inevitably influenced by the convergence of streams and rivers at channel confluences. These focal components of fluvial systems produce a complex hydrodynamic environment, where rapid changes in flow structure and sediment transport occur to accommodate the merging of separate channel flows. The inherent geometric and hydraulic change at confluences also initiates the development of distinct geomorphic features, reflected in the bedform and shape of the channel. An underlying assumption of previous experimental and theoretical models of confluence dynamics has been that converging streams have straight channels with angular configurations. This generalized conceptualization was necessary to establish confluence planform as symmetrical or asymmetrical and to describe subsequent flow structure and geomorphic features at confluences. However, natural channels, particularly those of meandering rivers, curve and bend. This property and observation of channel curvature at natural junctions have led to the hypothesis that natural stream and river confluences tend to occur on the concave outer bank of meander bends. The resulting confluence planform, referred to as a confluent-meander bend, was observed over a century ago but has received little scientific attention. This paper examines preliminary data on three-dimensional flow structure and channel morphology at two natural confluent-meander bends of varying size and with differing tributary entrance locations. The large river confluence of the Vermilion River and Wabash River in west central Indiana and the comparatively small junction of the Little Wabash River and Big Muddy Creek in southeastern Illinois are the location of study sites for field investigation. Measurements of time-averaged three-dimensional velocity components were obtained at these confluences with an acoustic Doppler current profiler for flow events with differing momentum ratios. Bed and channel morphology were also surveyed with a digital fathometer to document geomorphic change. Preliminary analysis of the velocity data reveals the presence of a well-defined shear layer between the converging flows and secondary circulation in the main channel. The tributary channel appears to oppose high velocity flow directed toward the outer bank by centrifugal acceleration through the meander bend of the main channel, thereby diminishing erosion along the cut bank and possibly stabilizing the meander bend channel. The flow structure and channel morphology of the study sites are compared to consider the effect of spatial scale and geometric characteristics on confluent-meander bend dynamics.

  15. Numerical Model of the Hoosic River Flood-Control Channel, Adams, MA

    DTIC Science & Technology

    2010-02-01

    The model was then used to evaluate the flow conditions associated with the as-built channel configuration. The existing channel conditions were then...end as part of a channel restoration project. The model was to determine if restoration alterations would change water- surface elevations associated ...water-surface elevations associated with the initial design and construction. After as-built flow conditions were established, flow conditions

  16. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Saito, Hidetoshi

    2017-12-01

    When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

  17. Sediment Dynamics Affecting the Threatened Santa Ana Sucker in the Highly-modified Santa Ana River and Inset Channel, Southern California, USA

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Wright, S. A.

    2015-12-01

    In this study, we investigate the sediment dynamics of the low-flow channel of the Santa Ana River that is formed by wastewater discharges and contains some of the last remaining habitat of the Santa Ana Sucker (Catostomus santaanae). The Santa Ana River is a highly-modified river draining the San Bernardino Mountains and Inland Empire metropolitan area east of Los Angeles. Home to over 4 million people, the watershed provides habitat for the federally-threatened Santa Ana Sucker, which presently reside within the mainstem Santa Ana River in a reach supported by year-round constant discharges from water treatment plants. The nearly constant low-flow wastewater discharges and infrequent runoff events create a small, approximately 8 m wide, inset channel within the approximately 300 m wide mainstem channel that is typically dry except for large flood flows. The sediment dynamics within the inset channel are characterized by constantly evolving bed substrate and sediment transport rates, and occasional channel avulsions. The sediment dynamics have large influence on the Sucker, which rely on coarse-substrate (gravel and cobble) for their food production. In WY 2013 through the present, we investigated the sediment dynamics of the inset channel using repeat bathymetric and substrate surveys, bedload sampling, and discharge measurements. We found two distinct phases of the inset channel behavior: 1. 'Reset' flows, where sediment-laden mainstem discharges from upstream runoff events result in sand deposition in the inset channel or avulse the inset channel onto previously dry riverbed; and 2. 'Winnowing' flows, whereby the sand within the inset channel is removed by clear-water low flows from the wastewater treatment plant discharges. Thus, in contrast to many regulated rivers where high flows are required to flush fine sediments from the bed (for example, downstream from dams), in the Santa Ana River the low flows from wastewater treatment plants serve as the flushing flows that gradually remove sand and expose the coarser substrate. In effect, the inset channel is analogous to a flume subject to periodic sediment loading events from upstream (runoff events) with long periods of negligible upstream sediment supply between the events (wastewater discharges).

  18. Debris flows associated with the 2015 Gorkha Earthquake in Nepal

    NASA Astrophysics Data System (ADS)

    Dahlquist, M. P.; West, A. J.; Martinez, J.

    2017-12-01

    Debris flows are a primary driver of erosion and a major geologic hazard in many steep landscapes, particularly near the headwaters of rivers, and are generated in large numbers by extreme events. The 2015 Mw 7.8 Gorkha Earthquake triggered 25,000 coseismic landslides in central Nepal. During the ensuing monsoon, sediment delivered to channels by landslides was mobilized in the heavy rains, and new postseismic landslides were triggered in rock weakened by the shaking. These coseismic and postseismic landslide-generated debris flows form a useful dataset for studying the impact and behavior of debris flows on one of the most active landscapes on Earth. Debris flow-dominated channel reaches are generally understood to have a topographic signature recognizable in slope-area plots and distinct from fluvial channels, but in examining debris flows associated with the Gorkha earthquake we find they frequently extend into reaches with geometry typically associated with fluvial systems. We examine a dataset of these debris flows, considering whether they are generated by coseismic or postseismic landslides, whether they are likely to be driving active incision into bedrock, and whether their channels correspond with those typically associated with debris flows. Preliminary analysis of debris flow channels in Nepal suggests there may be systematic differences in the geometry of channels containing debris flows triggered by coseismic versus postseismic landslides, which potentially holds implications for hazard analyses and the mechanics behind the different debris flow types.

  19. Geometric pumping in autophoretic channels.

    PubMed

    Michelin, Sébastien; Montenegro-Johnson, Thomas D; De Canio, Gabriele; Lobato-Dauzier, Nicolas; Lauga, Eric

    2015-08-07

    Many microfluidic devices use macroscopic pressure differentials to overcome viscous friction and generate flows in microchannels. In this work, we investigate how the chemical and geometric properties of the channel walls can drive a net flow by exploiting the autophoretic slip flows induced along active walls by local concentration gradients of a solute species. We show that chemical patterning of the wall is not required to generate and control a net flux within the channel, rather channel geometry alone is sufficient. Using numerical simulations, we determine how geometric characteristics of the wall influence channel flow rate, and confirm our results analytically in the asymptotic limit of lubrication theory.

  20. Impacts of changing hydrology on permanent gully growth: experimental results

    NASA Astrophysics Data System (ADS)

    Day, Stephanie S.; Gran, Karen B.; Paola, Chris

    2018-06-01

    Permanent gullies grow through head cut propagation in response to overland flow coupled with incision and widening in the channel bottom leading to hillslope failures. Altered hydrology can impact the rate at which permanent gullies grow by changing head cut propagation, channel incision, and channel widening rates. Using a set of small physical experiments, we tested how changing overland flow rates and flow volumes alter the total volume of erosion and resulting gully morphology. Permanent gullies were modeled as both detachment-limited and transport-limited systems, using two different substrates with varying cohesion. In both cases, the erosion rate varied linearly with water discharge, such that the volume of sediment eroded was a function not of flow rate, but of total water volume. This implies that efforts to reduce peak flow rates alone without addressing flow volumes entering gully systems may not reduce erosion. The documented response in these experiments is not typical when compared to larger preexisting channels where higher flow rates result in greater erosion through nonlinear relationships between water discharge and sediment discharge. Permanent gullies do not respond like preexisting channels because channel slope remains a free parameter and can adjust relatively quickly in response to changing flows.

  1. Fuel cell assembly unit for promoting fluid service and electrical conductivity

    DOEpatents

    Jones, Daniel O.

    1999-01-01

    Fluid service and/or electrical conductivity for a fuel cell assembly is promoted. Open-faced flow channel(s) are formed in a flow field plate face, and extend in the flow field plate face between entry and exit fluid manifolds. A resilient gas diffusion layer is located between the flow field plate face and a membrane electrode assembly, fluidly serviced with the open-faced flow channel(s). The resilient gas diffusion layer is restrained against entering the open-faced flow channel(s) under a compressive force applied to the fuel cell assembly. In particular, a first side of a support member abuts the flow field plate face, and a second side of the support member abuts the resilient gas diffusion layer. The support member is formed with a plurality of openings extending between the first and second sides of the support member. In addition, a clamping pressure is maintained for an interface between the resilient gas diffusion layer and a portion of the membrane electrode assembly. Preferably, the support member is spikeless and/or substantially flat. Further, the support member is formed with an electrical path for conducting current between the resilient gas diffusion layer and position(s) on the flow field plate face.

  2. Influence of the elastic deformation of a foam on its mobility in channels of linearly varying width.

    PubMed

    Dollet, Benjamin; Jones, Siân A; Méheust, Yves; Cantat, Isabelle

    2014-08-01

    We study foam flow in an elementary model porous medium consisting of a convergent and a divergent channel positioned side by side and possessing a fixed joint porosity. Configurations of converging or diverging channels are ubiquitous at the pore scale in porous media, as all channels linking pores possess a converging and diverging part. The resulting flow kinematics imposes asymmetric bubble deformations in the two channels, which modulate foam-wall friction and strongly impact the flux distribution. We measure, as well as quantitatively predict, the ratio of the fluxes in the two channels as a function of the channel widths by modeling pressure drops of both viscous and capillary origins. This study reveals the crucial importance of boundary-induced bubble deformation on the mobility of a flowing foam, resulting in particular in flow irreversibility.

  3. Study on Fins' Effect of Boiling Flow in Millimeter Channel Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi

    2005-11-01

    Recently, a lot of researches about compact heat exchangers with mini-channels have been carried out with the hope of obtaining a high-efficiency heat transfer, due to the higher ratio of surface area than existing heat exchangers. However, there are many uncertain phenomena in fields such as boiling flow in mini-channels. Thus, in order to understand the boiling flow in mini-channels to design high-efficiency heat exchangers, this work focused on the visualization measurement of boiling flow in a millimeter channel. A transparent acrylic channel (heat exchanger form), high-speed camera (2000 fps at 1024 x 1024 pixels), and halogen lamp (backup light) were used as the visualization system. The channel's depth is 2 mm, width is 30 mm, and length is 400 mm. In preparation for commercial use, two types of channels were experimented on: a fins type and a normal slit type (without fins). The fins are circular cylindrical obstacles (diameter is 5 mm) to promote heat transfer, set in a triangular array (distance between each center point is 10 mm). Especially in this work, boiling flow and heat transfer promotion in the millimeter channel heat exchanger with fins was evaluated using a high-speed camera.

  4. Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ruan, Hanxia; Wu, Chaoqun; Liu, Shuliang; Chen, Tao

    2016-10-01

    Bipolar plate is one of the many important components of proton exchange membrane fuel cell (PEMFC) stacks as it supplies fuel and oxidant to the membrane-electrode assembly (MEA), removes water, collects produced current and provides mechanical support for the single cells in the stack. The flow field design of a bipolar plate greatly affects the performance of a PEMFC. It must uniformly distribute the reactant gases over the MEA and prevent product water flooding. This paper aims at improving the fuel cell performance by optimizing flow field designs and flow channel configurations. To achieve this, a novel biomimetic flow channel for flow field designs is proposed based on Murray's Law. Computational fluid dynamics based simulations were performed to compare three different designs (parallel, serpentine and biomimetic channel, respectively) in terms of current density distribution, power density distribution, pressure distribution, temperature distribution, and hydrogen mass fraction distribution. It was found that flow field designs with biomimetic flow channel perform better than that with convectional flow channel under the same operating conditions.

  5. Impacts of salt marsh plants on tidal channel initiation and inheritance

    NASA Astrophysics Data System (ADS)

    Schwarz, Christian; Ye, Qinghua; van der Wal, Daphne; Zhang, Liquan; Ysebaert, Tom; Herman, Peter MJ

    2013-04-01

    Tidal channel networks are the most prominent and striking features visible in tidal wetlands. They serve as major pathways for the exchange of water, sediments, nutrients and contaminants between the wetland and the adjacent open water body. Previous studies identified topography guided sheet flows, as the predominate process for tidal channel initiation. Guided through differences in local topography, sheet flows are able to locally exceed bottom shear stress thresholds, initiating scouring and incision of tidal channels, which then further grow through head ward erosion. The fate of these channels after plant colonization is described in literature as being inherited into the salt marsh through vegetation induced bank stabilization (further referred to as vegetation stabilized channel inheritance). In this study we present a combination of flume experiments and modelling simulations elucidating the impact of vegetation on tidal channel initiation. We first studied the impact of plant properties (stiff: Spartina alterniflora versus flexible: Scirpus mariqueter) on local sediment transport utilizing a flume experiment. Then a coupled hydrodynamic morphodynamic plant growth model was set up to simulate plant colonization by these two different species in the pioneer zone at the mudflat - salt marsh transition. Based on the model we investigated the ramifications of interactions between vegetation, sediment and flow on tidal channel initiation. We specifically compared the effect of vegetation properties (such as stiffness, growth velocity and stress tolerance) on emerging channel patterns, hypothesizing that vegetation mediated channel incision (vegetation induced flow routing and differential sedimentation/erosion patterns leading to tidal channel incision) plays an active role in intertidal landscape evolution. We finally extended our model simulation by imposing pre-existing mudflat channels with different maximum depths, to investigate the impact of existing channels on vegetation mediated channel incision. This simulated landscape development was then compared to aerial photographs from the Scheldt estuary (the Netherlands) and the Yangtze estuary (China). Our results suggest a significant impact of plant properties on tidal channel network emergence, specifically in respect to network drainage density and channel width. This emphasizes the repercussions of vegetation mediated channel incision on estuarine landscape development. Further do our results point to the existence of a threshold in pre-existing mudflat channel depth favoring either vegetation stabilized channel inheritance or vegetation mediated channel incision processes. Increasing depth in mudflat channels favors flow routing via these channels, leaving less flow and momentum remaining for the interaction between vegetation, sediment and flow and therefore vegetation mediated channel incision. This threshold will be influenced by field specific parameters such as hydrodynamics (tidal range, waves, and flow), sediments and predominant plant species. Hence our study not only demonstrates to importance of plant properties on landscape development it also shows that vegetation stabilized channel inheritance or vegetation mediated channel incision are two occurring mechanisms depending on ecosystem properties, adding important information for salt marsh management and conservation.

  6. Free surface profiles in river flows: Can standard energy-based gradually-varied flow computations be pursued?

    NASA Astrophysics Data System (ADS)

    Cantero, Francisco; Castro-Orgaz, Oscar; Garcia-Marín, Amanda; Ayuso, José Luis; Dey, Subhasish

    2015-10-01

    Is the energy equation for gradually-varied flow the best approximation for the free surface profile computations in river flows? Determination of flood inundation in rivers and natural waterways is based on the hydraulic computation of flow profiles. This is usually done using energy-based gradually-varied flow models, like HEC-RAS, that adopts a vertical division method for discharge prediction in compound channel sections. However, this discharge prediction method is not so accurate in the context of advancements over the last three decades. This paper firstly presents a study of the impact of discharge prediction on the gradually-varied flow computations by comparing thirteen different methods for compound channels, where both energy and momentum equations are applied. The discharge, velocity distribution coefficients, specific energy, momentum and flow profiles are determined. After the study of gradually-varied flow predictions, a new theory is developed to produce higher-order energy and momentum equations for rapidly-varied flow in compound channels. These generalized equations enable to describe the flow profiles with more generality than the gradually-varied flow computations. As an outcome, results of gradually-varied flow provide realistic conclusions for computations of flow in compound channels, showing that momentum-based models are in general more accurate; whereas the new theory developed for rapidly-varied flow opens a new research direction, so far not investigated in flows through compound channels.

  7. Riparian vegetation controls on channels formed in non-cohesive sediment

    NASA Astrophysics Data System (ADS)

    Gran, K.; Tal, M.; Paola, C.

    2002-05-01

    Riparian vegetation can significantly influence the morphology of a river, affecting channel geometry and flow dynamics. In channels formed in non-cohesive material, vegetation is the main source of bank cohesion and could affect the overall behavior of the river, potentially constraining the flow from a multi-thread channel to a single-thread channel. To examine the effects of riparian vegetation on streams formed in non-cohesive material, we conducted a series of physical experiments at the St. Anthony Falls Laboratory. The first set of experiments examines the effects of varying densities of vegetation on braided stream dynamics. Water discharge, sediment discharge, and grain size were held constant. For each run, we allowed a braided system to develop, then halved the discharge, and seeded the flume with alfalfa (Medicago sativa). After ten to fourteen days of growth, we returned the discharge to its original value and continued the run for 30-36 hours. Our results show that the influence of vegetation on the overall river pattern varied systematically with the spatial density of plant stems. The vegetation reduced the number of active channels and increased bank stability, leading to lower lateral migration rates, narrower and deeper channels, and an increase in channel relief. All these effects increased with vegetation density. Vegetation also influenced flow dynamics, increasing the variance of flow direction in the vegetated runs, and increasing scour depths through strong downwelling where the flow collided with relatively resistant banks. This oblique bank collision provides a new mechanism for producing secondary flows. We found these bank collision driven secondary flows to be more important than the classical curvature-driven mechanism in the vegetated runs. The next set of experiments examines more closely how the channel pattern evolves through time, allowing for both channel migration and successive vegetation growth. In these on-going experiments, vegetation is reseeded following repeat high flow events, simulating the natural process of vegetation encroachment on the floodplain and channel.

  8. Rip currents and alongshore flows in single channels dredged in the surf zone

    NASA Astrophysics Data System (ADS)

    Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh

    2017-05-01

    To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.

  9. Rip currents and alongshore flows in single channels dredged in the surf zone

    USGS Publications Warehouse

    Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh

    2017-01-01

    To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.

  10. Application of Manning's Formula for Estimation of Liquid Metal Levels in Electromagnetic Flow Measurements

    NASA Astrophysics Data System (ADS)

    Stelian, Carmen

    2015-02-01

    Lorentz force velocimetry is a new technique in electromagnetic flow measurements based on exposing an electrical conducting metal to a static magnetic field and measuring the force acting on the magnet system. The calibration procedure of a Lorentz force flowmeter used in industrial open-channel flow measurements is difficult because of the fluctuating liquid level in the channel. In this paper, the application of Manning's formula to estimate the depth of a liquid metal flowing in an open channel is analyzed by using the numerical modeling. Estimations of Manning's n parameter for aluminum show higher values as compared with water flowing in artificial channels. Saint-Venant equations are solved in order to analyze the wave propagation at the free surface of the liquid. Numerical results show a significant damping of waves at the surface of liquid metals as compared with water. Therefore, the Manning formula can be used to correlate the liquid depth and the flow rate in LFF numerical calibration procedure. These results show that the classical formulas, used exclusively to study the water flow in open channels, can be also applied for the liquid metals. The application of Manning's formulas requires experimental measurements of the parameter n, which depends on the channel bed roughness and also on the physical properties of the liquid flowing in channel.

  11. Formative flow in bedrock canyons

    NASA Astrophysics Data System (ADS)

    Venditti, J. G.; Kwoll, E.; Rennie, C. D.; Church, M. A.

    2017-12-01

    In alluvial channels, it is widely accepted that river channel configuration is set by a formative flow that represents a balance between the magnitude and frequency of flood flows. The formative flow is often considered to be one that is just capable of filling a river channel to the top of its banks. Flows much above this formative flow are thought to cause substantial sediment transport and rearrange the channel morphology to accommodate the larger flow. This idea has recently been extended to semi-alluvial channels where it has been shown that even with bedrock exposed, the flows rarely exceed that required to entrain the local sediment cover. What constitutes a formative flow in a bedrock canyon is not clear. By definition, canyons have rock walls and are typically incised vertically, removing the possibility of the walls being overtopped, as can occur in an alluvial channel at high flows. Canyons are laterally constrained, have deep scour pools and often have width to maximum depth ratios approaching 1, an order of magnitude lower than alluvial channels. In many canyons, there are a sequence of irregularly spaced scour pools. The bed may have intermittent or seasonal sediment cover, but during flood flows the sediment bed is entrained leaving a bare bedrock channel. It has been suggested that canyons cut into weak, well-jointed rock may adjust their morphology to the threshold for block plucking because the rock bed is labile during exceptionally large magnitude flows. However, this hypothesis does not apply to canyons cut into massive crystalline rock where abrasion is the dominant erosion process. Here, we argue that bedrock canyon morphology is adjusted to a characteristic flow structure developed in bedrock canyons. We show that the deeply scoured canyon floor is adjusted to a velocity inversion that is present at low flows, but gets stronger at high flows. The effect is to increase boundary shear stresses along the scour pool that forms in constricted bedrock canyons, thereby increasing abrasion rates and the potential for block plucking from massive crystalline rock beds.

  12. Pressure control of a proton beam-irradiated water target through an internal flow channel-induced thermosyphon.

    PubMed

    Hong, Bong Hwan; Jung, In Su

    2017-07-01

    A water target was designed to enhance cooling efficiency using a thermosyphon, which is a system that uses natural convection to induce heat exchange. Two water targets were fabricated: a square target without any flow channel and a target with a flow channel design to induce a thermosyphon mechanism. These two targets had the same internal volume of 8 ml. First, visualization experiments were performed to observe the internal flow by natural convection. Subsequently, an experiment was conducted to compare the cooling performance of both water targets by measuring the temperature and pressure. A 30-MeV proton beam with a beam current of 20 μA was used to irradiate both targets. Consequently, the target with an internal flow channel had a lower mean temperature and a 50% pressure drop compared to the target without a flow channel during proton beam irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Interrogation cradle and insertable containment fixture for detecting birefringent microcrystals in bile

    DOEpatents

    Darrow, Chris; Seger, Tino

    2003-09-30

    A transparent flow channel fluidly communicates a fluid source and a collection reservoir. An interrogating light beam passes through a first polarizer having a first plane of polarization. The flow channel is orthogonal to the light beam. The light beam passes through a fluid sample as it flows through the flow channel, and is then filtered through a second polarizer having a second plane of polarization rotated 90.degree. from the first plane of polarization. An electronic photo-detector is aligned with the light beam, and signals the presence of birefringent microcrystals in the fluid sample by generating voltage pulses. A disposable containment fixture includes the flow channel and the collection reservoir. The fixture is adapted for removable insertion into an interrogation cradle that includes optical and data processing components. The cradle rigidly positions the centerline of the flow channel orthogonal to the light beam.

  14. Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.

    PubMed

    Zhou, Zhanru; Fang, Xiande; Li, Dingkun

    2013-01-01

    The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.

  15. Evaluation of Correlations of Flow Boiling Heat Transfer of R22 in Horizontal Channels

    PubMed Central

    Fang, Xiande; Li, Dingkun

    2013-01-01

    The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels. PMID:23956695

  16. WATER QUALITY CHANGES IN HYPORHEIC FLOW AT THE AQUATIC-TERRESTRIAL INTERFACE OF A LARGER RIVER

    EPA Science Inventory

    Exchange between river water and groundwater in hyporheic flow at the aquatic-terrestrial interface can importantly affect water quality and aquatic habitat in the main channel of large rivers and at off-channel sites that include flowing and stagnant side channels. With tracer ...

  17. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, W.D.

    1999-06-15

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions. 4 figs.

  18. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, William D.

    1999-01-01

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions.

  19. Simulation of electrokinetic flow in microfluidic channels

    NASA Astrophysics Data System (ADS)

    Sabur, Romena; Matin, M.

    2005-08-01

    Electrokinetic phenomena become an increasingly efficient fluid transport mechanism in micro- and nano-fluidic fields. These phenomena have also been applied successfully in microfluidic devices to achieve particle separation, pre-concentration and mixing. Electrokinetic is the flow produced by the action of an electric field on a fluid with a net charge, where the charged ions of fluid are able to drag the whole solution through the channels in the microfluidic device from one analyzing point to the other. We will present the simulation results of electrokinetic transports of fluid in various typical micro-channel geometries such as T-channel, Y-channel, cross channel and straight channel. In practice, high-speed micro-PIV technique is used to measure transient fluidic phenomena in a microfluidic channel. Particle Image Velocimetry (PIV) systems provide two- or three-dimensional velocity maps in flows using whole field techniques based on imaging the light scattered by small particles in the flow illuminated by a laser light sheet. The system generally consists of an epifluorescent microscope, CW laser and a high-speed CMOS of CCD camera. The flow of a liquid, (water for example), containing fluorescent particle is then analyzed in a counter microchannel by the highly accurate PIV method. One can then compare the simulated and experimental microfluidic flow due to electroosmotic effect.

  20. Capillary-Driven Flow in Liquid Filaments Connecting Orthogonal Channels

    NASA Technical Reports Server (NTRS)

    Allen, Jeffrey S.

    2005-01-01

    Capillary phenomena plays an important role in the management of product water in PEM fuel cells because of the length scales associated with the porous layers and the gas flow channels. The distribution of liquid water within the network of gas flow channels can be dramatically altered by capillary flow. We experimentally demonstrate the rapid movement of significant volumes of liquid via capillarity through thin liquid films which connect orthogonal channels. The microfluidic experiments discussed provide a good benchmark against which the proper modeling of capillarity by computational models may be tested. The effect of surface wettability, as expressed through the contact angle, on capillary flow will also be discussed.

  1. Spontaneous pulse generation in a steady channel flow of a colloidal suspension - the role of dissolved gas

    NASA Astrophysics Data System (ADS)

    Shim, Suin; Shardt, Orest; Stone, Howard A.

    2017-11-01

    We introduce a phenomenon that is observed when deionized (DI) water with suspended charged particles flows through a single microfluidic channel. When an aqueous suspension of amine-modified, positively charged polystyrene particles (volume fraction = 0.01) flows steadily through a serpentine polydimethylsiloxane (PDMS) channel, a pulse of particles is generated, which then flows through the channel at a slower speed than the mean flow velocity. We quantify the results and rationalize the observations by considering the diffusiophoresis of charged particles driven by gas leakage through the permeable PDMS walls. A mathematical model will be compared with the experimental observations.

  2. A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.

    PubMed

    Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric

    2012-03-07

    We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.

  3. Determination of the functioning parameters in asymmetrical flow field-flow fractionation with an exponential channel.

    PubMed

    Déjardin, P

    2013-08-30

    The flow conditions in normal mode asymmetric flow field-flow fractionation are determined to approach the high retention limit with the requirement d≪l≪w, where d is the particle diameter, l the characteristic length of the sample exponential distribution and w the channel height. The optimal entrance velocity is determined from the solute characteristics, the channel geometry (exponential to rectangular) and the membrane properties, according to a model providing the velocity fields all over the cell length. In addition, a method is proposed for in situ determination of the channel height. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Hydraulic conditions of flood flows in a Polish Carpathian river subjected to variable human impacts

    NASA Astrophysics Data System (ADS)

    Radecki-Pawlik, Artur; Czech, Wiktoria; Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Ruiz-Villanueva, Virginia

    2016-04-01

    Channel morphology of the Czarny Dunajec River, Polish Carpathians, has been considerably modified as a result of channelization and gravel-mining induced channel incision, and now it varies from a single-thread, incised or regulated channel to an unmanaged, multi-thread channel. We investigated effects of these distinct channel morphologies on the conditions for flood flows in a study of 25 cross-sections from the middle river course where the Czarny Dunajec receives no significant tributaries and flood discharges increase little in the downstream direction. Cross-sectional morphology, channel slope and roughness of particular cross-section parts were used as input data for the hydraulic modelling performed with the 1D steady-flow HEC-RAS model for discharges with recurrence interval from 1.5 to 50 years. The model for each cross-section was calibrated with the water level of a 20-year flood from May 2014, determined shortly after the flood on the basis of high-water marks. Results indicated that incised and channelized river reaches are typified by similar flow widths and cross-sectional flow areas, which are substantially smaller than those in the multi-thread reach. However, because of steeper channel slope in the incised reach than in the channelized reach, the three river reaches differ in unit stream power and bed shear stress, which attain the highest values in the incised reach, intermediate values in the channelized reach, and the lowest ones in the multi-thread reach. These patterns of flow power and hydraulic forces are reflected in significant differences in river competence between the three river reaches. Since the introduction of the channelization scheme 30 years ago, sedimentation has reduced its initial flow conveyance by more than half and elevated water stages at given flood discharges by about 0.5-0.7 m. This partly reflects a progressive growth of natural levees along artificially stabilized channel banks. By contrast, sediments of natural levees deposited along the multi-thread channel and subsequently eroded in the course of lateral channel migration and floodplain reworking; as a result, they do not reduce the conveyance of floodplain flows in this reach. This study was performed within the scope of the Research Project DEC-2013/09/B/ST10/00056 financed by the National Science Centre of Poland.

  5. Drag reduction in a turbulent channel flow using a passivity-based approach

    NASA Astrophysics Data System (ADS)

    Heins, Peter; Jones, Bryn; Sharma, Atul

    2013-11-01

    A new active feedback control strategy for attenuating perturbation energy in a turbulent channel flow is presented. Using a passivity-based approach, a controller synthesis procedure has been devised which is capable of making the linear dynamics of a channel flow as close to passive as is possible given the limitations on sensing and actuation. A controller that is capable of making the linearized flow passive is guaranteed to globally stabilize the true flow. The resulting controller is capable of greatly restricting the amount of turbulent energy that the nonlinearity can feed back into the flow. DNS testing of a controller using wall-sensing of streamwise and spanwise shear stress and actuation via wall transpiration acting upon channel flows with Reτ = 100 - 250 showed significant reductions in skin-friction drag.

  6. Contrasting rainfall generated debris flows from adjacent watersheds at Forest Falls, southern California, USA

    USGS Publications Warehouse

    Morton, D.M.; Alvarez, R.M.; Ruppert, K.R.; Goforth, B.

    2008-01-01

    Debris flows are widespread and common in many steeply sloping areas of southern California. The San Bernardino Mountains community of Forest Falls is probably subject to the most frequently documented debris flows in southern California. Debris flows at Forest Falls are generated during short-duration high-intensity rains that mobilize surface material. Except for debris flows on two consecutive days in November 1965, all the documented historic debris flows have occurred during high-intensity summer rainfall, locally referred to as 'monsoon' or 'cloudburst' rains. Velocities of the moving debris range from about 5??km/h to about 90??km/h. Velocity of a moving flow appears to be essentially a function of the water content of the flow. Low velocity debris flows are characterized by steep snouts that, when stopped, have only small amounts of water draining from the flow. In marked contrast are high-velocity debris flows whose deposits more resemble fluvial deposits. In the Forest Falls area two adjacent drainage basins, Snow Creek and Rattlesnake Creek, have considerably different histories of debris flows. Snow Creek basin, with an area about three times as large as Rattlesnake Creek basin, has a well developed debris flow channel with broad levees. Most of the debris flows in Snow Creek have greater water content and attain higher velocities than those of Rattlesnake Creek. Most debris flows are in relative equilibrium with the geometry of the channel morphology. Exceptionally high-velocity flows, however, overshoot the channel walls at particularly tight channel curves. After overshooting the channel, the flows degrade the adjacent levee surface and remove trees and structures in the immediate path, before spreading out with decreasing velocity. As the velocity decreases the clasts in the debris flows pulverize the up-slope side of the trees and often imbed clasts in them. Debris flows in Rattlesnake Creek are relatively slow moving and commonly stop in the channel. After the channel is blocked, subsequent debris flows cut a new channel upstream from the blockage that results in the deposition of new debris-flow deposits on the lower part of the fan. Shifting the location of debris flows on the Rattlesnake Creek fan tends to prevent trees from becoming mature. Dense growths of conifer seedlings sprout in the spring on the late summer debris flow deposits. This repeated process results in stands of even-aged trees whose age records the age of the debris flows. ?? 2007.

  7. Fine-grained linings of leveed channels facilitate runout of granular flows

    NASA Astrophysics Data System (ADS)

    Kokelaar, B. P.; Graham, R. L.; Gray, J. M. N. T.; Vallance, J. W.

    2014-01-01

    Catastrophic dense granular flows, such as occur in rock avalanches, debris flows and pyroclastic flows, move as fully shearing mixtures that have approximately 60 vol.% solids and tend to segregate to form coarse-grained fronts and leveed channels. Levees restrict spreading of unconfined flows and form as coarse particles that become concentrated in the top of the flow are transported to the front and then advect to the sides in the flow head. Channels from which most material has drained away down slope are commonly lined with fine-grained deposit, widely thought to remain from the tail of the waning flow. We show how segregation in experimental dense flows of carborundum or sand (300-425 μm) mixed with spherical fine ballotini (150-250 μm), on rough slopes of 27-29°, produces fine-grained channel linings that are deposited with the levees, into which they grade laterally. Maximum runout distance is attained with mixtures containing 30-40% sand, just sufficient to segregate and form levees that are adequately robust to restrict the spreading attributable to the low-friction fines. Resin impregnation and serial sectioning of deliberately arrested experimental flows shows how fines-lined levees form from the flow head; the flows create their own stable ‘conduit’ entirely from the front, which in a geophysical context can play an important mechanistic role in facilitating runout. The flow self-organization ensures that low-friction fines at the base of the segregated channel flow shear over fine-grained substrate in the channel, thus reducing frictional energy losses. We propose that in pyroclastic flows and debris flows, which have considerable mobility attributable to pore-fluid pressures, such fine-grained flow-contact zones form similarly and not only reduce frictional energy losses but also reduce flow-substrate permeability so as to enhance pore-fluid pressure retention. Thus the granular flow self-organization that produces fine-grained channel linings can be an important factor in facilitating long runout of catastrophic geophysical flows on the low slopes (few degrees) of depositional fans and aprons around mountains and volcanoes.

  8. Capillary Channel Flow (CCF) EU2-02 on the International Space Station (ISS): An Experimental Investigation of Passive Bubble Separations in an Open Capillary Channel

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M.; Wollman, Andrew P.; Jenson, Ryan M.; Geile, John T.; Tucker, John F.; Wiles, Brentley M.; Trattner, Andy L.; DeVoe, Claire; Sharp, Lauren M.; Canfield, Peter J.; hide

    2015-01-01

    It would be signicantly easier to design fluid systems for spacecraft if the fluid phases behaved similarly to those on earth. In this research an open 15:8 degree wedge-sectioned channel is employed to separate bubbles from a two-phase flow in a microgravity environment. The bubbles appear to rise in the channel and coalesce with the free surface in much the same way as would bubbles in a terrestrial environment, only the combined effects of surface tension, wetting, and conduit geometry replace the role of buoyancy. The host liquid is drawn along the channel by a pump and noncondensible gas bubbles are injected into it near the channel vertex at the channel inlet. Control parameters include bubble volume, bubble frequency, liquid volumetric flow rate, and channel length. The asymmetrically confined bubbles are driven in the cross-flow direction by capillary forces until they at least become inscribed within the section or until they come in contact with the free surface, whereupon they usually coalesce and leave the flow. The merging of bubbles enhances, but does not guarantee, the latter. The experiments are performed aboard the International Space Station as a subset of the Capillary Channel Flow experiments. The flight hardware is commanded remotely and continuously from ground stations during the tests and an extensive array of experiments is conducted identifying numerous bubble flow regimes and regime transitions depending on the ratio and magnitude of the gas and liquid volumetric flow rates. The breadth of the publicly available experiments is conveyed herein primarily by narrative and by regime maps, where transitions are approximated by simple expressions immediately useful for the purposes of design and deeper analysis.

  9. Enhancement and creation of secondary channel habitat: Review of project performance across a range of project types and settings

    NASA Astrophysics Data System (ADS)

    Epstein, J.; Lind, P.

    2017-12-01

    Secondary channels provide critical off-channel habitat for key life stages of aquatic species. In many systems, interruption of natural processes via anthropogenic influences have reduced the quantity of secondary channel habitat and have impaired the processes that help form and maintain them. Creation and enhancement of secondary channels is therefore a key component of stream rehabilitation, particularly in the Pacific Northwest where the focus has been on enhancement of habitat for ESA-listed salmonids. Secondary channel enhancement varies widely in scope, scale, and approach depending on species requirements, hydrology/hydraulics, geomorphologic setting, sediment dynamics, and human constraints. This presentation will review case studies from numerous secondary channel projects constructed over the last 20 years by different entities and in different settings. Lessons learned will be discussed that help to understand project performance and inform future project design. A variety of secondary channel project types will be reviewed, including mainstem flow splits, year-round flow through, seasonally activated, backwater alcove, natural groundwater-fed, and engineered groundwater-fed (i.e. groundwater collection galleries). Projects will be discussed that span a range of project construction intensities, such as full excavation of side channels, select excavation to increase flow, or utilizing mainstem structures to activate channels. Different configurations for connecting to the main channel, and their relative performance, will also be presented. A variety of connection types will be discussed including stabilized channel entrance, free-formed entrance, using bar apex jams to split flows, using `bleeder' jams to limit secondary channel flow, and obstructing the main channel to divert flows into secondary channels. The performance and longevity of projects will be discussed, particularly with respect to the response to sediment mobilizing events. Lessons learned from design, construction, and monitoring will be synthesized to share what worked and what didn't, and what key elements a practitioner should think about as part of enhancement project design.

  10. Process and apparatus for separation of components of a gas stream

    DOEpatents

    Bryan, Charles R.; Torczynski, John R.; Brady, Patrick V.; Gallis, Michail; Brooks, Carlton F.

    2014-06-17

    A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.

  11. Process and apparatus for separation of components of a gas stream

    DOEpatents

    Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F

    2013-09-17

    A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.

  12. Process and apparatus for separation of components of a gas stream

    DOEpatents

    Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F

    2013-11-19

    A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.

  13. Generation of Martian chaos and channels by debris flows

    NASA Technical Reports Server (NTRS)

    Nummedal, D.; Prior, D. B.

    1981-01-01

    A debris flow mechanism is proposed to account for the formation of chaos and the large channels debouching into Crysae Planitia from the adjacent southern uplands of Mars. Based on considerations of the juxtaposition of individual channel environments, the morphological assemblages within each environment and flow dynamics, it is suggested that the debris flows were triggered by the large-scale failure of subsurface sediments, possibly initiated by a seismic event. During the initial, slow-moving phase of the flow, the debris would have formed gently sinuous channels with multiple side-wall slumps, grooves and ridges, and elongate erosional remnants. The flow would have gained mobility as the debris moved downslope, producing travel distances greatly in excess of those characteristic of terrestrial examples, and eroded, streamlined remnants at the distal reaches of the channel. Finally, due to internal and boundary friction, the flow would have been slowed down once it entered the Chryse plains, resulting in a thin debris blanket with no depositional relief.

  14. A phenomenological continuum model for force-driven nano-channel liquid flows

    NASA Astrophysics Data System (ADS)

    Ghorbanian, Jafar; Celebi, Alper T.; Beskok, Ali

    2016-11-01

    A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.

  15. Radial flow nuclear thermal rocket (RFNTR)

    DOEpatents

    Leyse, Carl F.

    1995-11-07

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  16. Radial flow nuclear thermal rocket (RFNTR)

    DOEpatents

    Leyse, Carl F.

    1995-01-01

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  17. Self-Formed Meanders (With Cutoffs) in a Laboratory Flume

    NASA Astrophysics Data System (ADS)

    Braudrick, C. A.; Leverich, G. T.; Sklar, L. S.; Dietrich, W. E.

    2005-12-01

    The development of a mechanistic understanding of channel geometry and morphodynamics has been inhibited by the inability to create self-formed, freely meandering, single thread channels in a laboratory flume. By being able to reliably generate such channels, studies of the influence of sediment supply and flow dynamics as well as bank strength on channel morphology can be experimentally explored. We have found that the key experimental controls are: 1) ratio of bank strength to boundary shear stress exerted on the bank; 2) bedload and suspended load rates; and 3) variable flow discharge. We have been able to create meandering channels in a sand bedded laboratory flume using alfalfa sprouts. The alfalfa sprouts decrease the bank erosion rate so that bank erosion would occur at approximately the same pace as bar growth. The addition of coarse suspended load was necessary to cause deposition on bars to grow to the floodplain height. The sprouts contributed to deposition by creating a rough floodplain surface. Steady discharge failed to produced meandering, apparently due to the lack of suspended load deposition on the bar surface. The channels were created in a 3.6-m wide and 6.1-m long flume with an adjustable slope set at 0.01. We introduced both bedload (sand) and suspended load (crushed silica) into the top of the flume, which has an initial channel with either one or two bends carved into the floodplain. Runs lasted between 1 and 4 hours and occurred once per week. Alfalfa seeds were spread evenly outside the low flow channel following each run and are allowed to grow between runs. With the same material and flow conditions, the channel rapidly braided without the alfalfa sprouts. Braided was also favored under steady flow conditions. Under dynamic flows with banks strengthened by sprouts, the resulting experimental channels had many of the features observed in meandering streams such as oxbow lakes and meander cutoffs. The cutoffs occurred during overbank flows when high flow channels were reoccupied. As the portion of the flow passing through the reoccupied channel increased, an upstream-propagating headcut was initiated. Once the headcut propagated past the upstream junction with the main channel, sediment deposition blocked the upstream end of a secondary channel. The cutoffs became oxbow lakes when rapid bar growth promoted lateral channel migration away from the downstream junction with the cutoff channel. With these results in hand we are completing the construction of a larger flume in which we will set forth experiments on the influence of sediment supply, discharge magnitude and duration, grain size and bank strength on channel geometry.

  18. Modelling the flooding capacity of a Polish Carpathian river: A comparison of constrained and free channel conditions

    NASA Astrophysics Data System (ADS)

    Czech, Wiktoria; Radecki-Pawlik, Artur; Wyżga, Bartłomiej; Hajdukiewicz, Hanna

    2016-11-01

    The gravel-bed Biała River, Polish Carpathians, was heavily affected by channelization and channel incision in the twentieth century. Not only were these impacts detrimental to the ecological state of the river, but they also adversely modified the conditions of floodwater retention and flood wave passage. Therefore, a few years ago an erodible corridor was delimited in two sections of the Biała to enable restoration of the river. In these sections, short, channelized reaches located in the vicinity of bridges alternate with longer, unmanaged channel reaches, which either avoided channelization or in which the channel has widened after the channelization scheme ceased to be maintained. Effects of these alternating channel morphologies on the conditions for flood flows were investigated in a study of 10 pairs of neighbouring river cross sections with constrained and freely developed morphology. Discharges of particular recurrence intervals were determined for each cross section using an empirical formula. The morphology of the cross sections together with data about channel slope and roughness of particular parts of the cross sections were used as input data to the hydraulic modelling performed with the one-dimensional steady-flow HEC-RAS software. The results indicated that freely developed cross sections, usually with multithread morphology, are typified by significantly lower water depth but larger width and cross-sectional flow area at particular discharges than single-thread, channelized cross sections. They also exhibit significantly lower average flow velocity, unit stream power, and bed shear stress. The pattern of differences in the hydraulic parameters of flood flows apparent between the two types of river cross sections varies with the discharges of different frequency, and the contrasts in hydraulic parameters between unmanaged and channelized cross sections are most pronounced at low-frequency, high-magnitude floods. However, because of the deep incision of the river, both cross section types are typified by a similar, low potential for the retention of floodwater in floodplain areas. The study indicated that even though river restoration has only begun here, it already brings beneficial effects for flood risk management, reducing flow energy and shear forces exerted on the bed and banks of the channel in unmanaged river reaches. Only within wide, unmanaged channel reaches can the flows of low-frequency, high-magnitude floods be conveyed with relatively low shear forces exerted on the channel boundary. In contrast, in channelized reaches, flow velocity and shear forces are substantially higher, inevitably causing bank erosion and channel incision.

  19. Fine-grained linings of leveed channels facilitate runout of granular flows

    USGS Publications Warehouse

    Kokelaar, B.P.; Graham, R. L.; Gray, J.M.N.T.; Vallance, James W.

    2014-01-01

    Catastrophic dense granular flows, such as occur in rock avalanches, debris flows and pyroclastic flows, move as fully shearing mixtures that have approximately 60 vol.% solids and tend to segregate to form coarse-grained fronts and leveed channels. Levees restrict spreading of unconfined flows and form as coarse particles that become concentrated in the top of the flow are transported to the front and then advect to the sides in the flow head. Channels from which most material has drained away down slope are commonly lined with fine-grained deposit, widely thought to remain from the tail of the waning flow. We show how segregation in experimental dense flows of carborundum or sand (300–425 μm) mixed with spherical fine ballotini (150–250 μm), on rough slopes of 27–29°, produces fine-grained channel linings that are deposited with the levees, into which they grade laterally. Maximum runout distance is attained with mixtures containing 30–40% sand, just sufficient to segregate and form levees that are adequately robust to restrict the spreading attributable to the low-friction fines. Resin impregnation and serial sectioning of deliberately arrested experimental flows shows how fines-lined levees form from the flow head; the flows create their own stable ‘conduit’ entirely from the front, which in a geophysical context can play an important mechanistic role in facilitating runout. The flow self-organization ensures that low-friction fines at the base of the segregated channel flow shear over fine-grained substrate in the channel, thus reducing frictional energy losses. We propose that in pyroclastic flows and debris flows, which have considerable mobility attributable to pore-fluid pressures, such fine-grained flow-contact zones form similarly and not only reduce frictional energy losses but also reduce flow–substrate permeability so as to enhance pore-fluid pressure retention. Thus the granular flow self-organization that produces fine-grained channel linings can be an important factor in facilitating long runout of catastrophic geophysical flows on the low slopes (few degrees) of depositional fans and aprons around mountains and volcanoes.

  20. Multiple piece turbine blade

    DOEpatents

    Kimmel, Keith D [Jupiter, FL

    2012-05-29

    A turbine rotor blade with a spar and shell construction, the spar including an internal cooling supply channel extending from an inlet end on a root section and ending near the tip end, and a plurality of external cooling channels formed on both side of the spar, where a middle external cooling channel is connected to the internal cooling supply channels through a row of holes located at a middle section of the channels. The spar and the shell are held together by hooks that define serpentine flow passages for the cooling air and include an upper serpentine flow circuit and a lower serpentine flow circuit. the serpentine flow circuits all discharge into a leading edge passage or a trailing edge passage.

  1. Two-phase flow in short horizontal rectangular microchannels with a height of 300 μm

    NASA Astrophysics Data System (ADS)

    Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.

    2015-09-01

    The two-phase flow in a narrow short horizontal channel with a rectangular cross section is studied experimentally. The channel has a width of 10, 20, or 30 mm and a height of 300 μm. The specifics of formation of such two-phase flows are investigated. It is demonstrated that the regions of bubble and churn flow regimes grow and constrain the region of jet flow as the channel gets wider. The boundaries of the regions of annular and stratified flow regimes remain almost unaltered.

  2. Visualization of Secondary Flow Development in High Aspect Ratio Channels with Curvature

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Giuliani, James E.

    1994-01-01

    The results of an experimental project to visually examine the secondary flow structure that develops in curved, high aspect-ratio rectangular channels are presented. The results provide insight into the fluid dynamics within high aspect ratio channels. A water flow test rig constructed out of plexiglass, with an adjustable aspect ratio, was used for these experiments. Results were obtained for a channel geometry with a hydraulic diameter of 10.6 mm (0.417 in.), an aspect ratio of 5.0, and a hydraulic radius to curvature radius ratio of 0.0417. Flow conditions were varied to achieve Reynolds numbers up to 5,100. A new particle imaging velocimetry technique was developed which could resolve velocity information from particles entering and leaving the field of view. Time averaged secondary flow velocity vectors, obtained using this velocimetry technique, are presented for 30 degrees, 60 degrees, and 90 degrees into a 180 degrees bend and at a Reynolds number of 5,100. The secondary flow results suggest the coexistence of both the classical curvature induced vortex pair flow structure and the eddies seen in straight turbulent channel flow.

  3. Coupled prediction of flash flood response and debris flow occurrence: Application on an alpine extreme flood event

    NASA Astrophysics Data System (ADS)

    Destro, Elisa; Amponsah, William; Nikolopoulos, Efthymios I.; Marchi, Lorenzo; Marra, Francesco; Zoccatelli, Davide; Borga, Marco

    2018-03-01

    The concurrence of flash floods and debris flows is of particular concern, because it may amplify the hazard corresponding to the individual generative processes. This paper presents a coupled modelling framework for the predictions of flash flood response and of the occurrence of debris flows initiated by channel bed mobilization. The framework combines a spatially distributed flash flood response model and a debris flow initiation model to define a threshold value for the peak flow which permits identification of channelized debris flow initiation. The threshold is defined over the channel network as a function of the upslope area and of the local channel bed slope, and it is based on assumptions concerning the properties of the channel bed material and of the morphology of the channel network. The model is validated using data from an extreme rainstorm that impacted the 140 km2 Vizze basin in the Eastern Italian Alps on August 4-5, 2012. The results show that the proposed methodology has improved skill in identifying the catchments where debris-flows are triggered, compared to the use of simpler thresholds based on rainfall properties.

  4. Connectivity of Secondary Channels in the Floodplain of a Low-Gradient Midwestern U.S. Agricultural River

    NASA Astrophysics Data System (ADS)

    Czuba, J. A.; David, S. R.; Edmonds, D. A.

    2016-12-01

    Floodplains of low-gradient Midwestern U.S. agricultural rivers are commonly dissected by a network of secondary channels that convey flow only during flood events. These networks of secondary channels have only recently been revealed by high resolution digital elevation models. Secondary channels, as referred to here, span multiple meander wavelengths and appear fundamentally different from chute channels. While secondary channels have been described to some extent in other river systems, our focus here is on those found in Indiana, which are revealed by state-wide LiDAR data acquired in 2011. In this work, we quantify how the network connectivity of the secondary channels in the floodplain develops as a function of flow stage. Secondary channels begin conveying water at stages just below bankfull, become an interconnected web of flow pathways above bankfull stage, and are completely inundated at higher stages. We construct a two-dimensional numerical model of the river/floodplain system from LiDAR data and from main-channel river bathymetry in order to obtain the extent of floodplain inundation at various flows. The inundated area within the secondary channels is then converted into a river/floodplain flow-channel network and quantified using various network metrics. Future work will explore the morphodynamics of this river/floodplain system extended to 100-1,000 year timescales. The goal is to develop a simple model to test hypotheses about how these floodplain channels evolve. Relevant research questions include: do secondary channels serve as preferential avulsion pathways? Or could secondary channels evolve to create a multi-channeled anabranching system? Furthermore, under what hydrologic and sedimentologic conditions would a river/floodplain system evolve to one state or another?

  5. A Gradually Varied Approach to Model Turbidity Currents in Submarine Channels

    NASA Astrophysics Data System (ADS)

    Bolla Pittaluga, M.; Frascati, A.; Falivene, O.

    2018-01-01

    We develop a one-dimensional model to describe the dynamics of turbidity current flowing in submarine channels. We consider the flow as a steady state polydisperse suspension accounting for water detrainment from the clear water-turbid interface, for spatial variations of the channel width and for water and sediment lateral overspill from the channel levees. Moreover, we account for sediment exchange with the bed extending the model to deal with situations where the current meets a nonerodible bed. Results show that when water detrainment is accounted for, the flow thickness becomes approximately constant proceeding downstream. Similarly, in the presence of channel levees, the flow tends to adjust to channel relief through the lateral loss of water and sediment. As more mud is spilled above the levees relative to sand, the flow becomes more sand rich proceeding downstream when lateral overspill is present. Velocity and flow thickness predicted by the model are then validated by showing good agreement with laboratory observations. Finally, the model is applied to the Monterey Canyon bathymetric data matching satisfactorily the December 2002 event field measurements and predicting a runout length consistent with observations.

  6. Heat transfer in a compact heat exchanger containing rectangular channels and using helium gas

    NASA Technical Reports Server (NTRS)

    Olson, D. A.

    1991-01-01

    Development of a National Aerospace Plane (NASP), which will fly at hypersonic speeds, require novel cooling techniques to manage the anticipated high heat fluxes on various components. A compact heat exchanger was constructed consisting of 12 parallel, rectangular channels in a flat piece of commercially pure nickel. The channel specimen was radiatively heated on the top side at heat fluxes of up to 77 W/sq cm, insulated on the back side, and cooled with helium gas flowing in the channels at 3.5 to 7.0 MPa and Reynolds numbers of 1400 to 28,000. The measured friction factor was lower than that of the accepted correlation for fully developed turbulent flow, although the uncertainty was high due to uncertainty in the channel height and a high ratio of dynamic pressure to pressure drop. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in channels. Flow nonuniformity from channel-to-channel was as high as 12 pct above and 19 pct below the mean flow.

  7. Two-dimensional fluid dynamics in a sharply bent channel: Laminar flow, separation bubble, and vortex dynamics

    NASA Astrophysics Data System (ADS)

    Matsumoto, Daichi; Fukudome, Koji; Wada, Hirofumi

    2016-10-01

    Understanding the hydrodynamic properties of fluid flow in a curving pipe and channel is important for controlling the flow behavior in technologies and biomechanics. The nature of the resulting flow in a bent pipe is extremely complicated because of the presence of a cross-stream secondary flow. In an attempt to disentangle this complexity, we investigate the fluid dynamics in a bent channel via the direct numerical simulation of the Navier-Stokes equation in two spatial dimensions. We exploit the absence of secondary flow from our model and systematically investigate the flow structure along the channel as a function of both the bend angle and Reynolds number of the laminar-to-turbulent regime. We numerically suggest a scaling relation between the shape of the separation bubble and the flow conductance, and construct an integrated phase diagram.

  8. Calculations of steady and transient channel flows with a time-accurate L-U factorization scheme

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.

    1991-01-01

    Calculations of steady and unsteady, transonic, turbulent channel flows with a time accurate, lower-upper (L-U) factorization scheme are presented. The L-U factorization scheme is formally second-order accurate in time and space, and it is an extension of the steady state flow solver (RPLUS) used extensively to solve compressible flows. A time discretization method and the implementation of a consistent boundary condition specific to the L-U factorization scheme are also presented. The turbulence is described by the Baldwin-Lomax algebraic turbulence model. The present L-U scheme yields stable numerical results with the use of much smaller artificial dissipations than those used in the previous steady flow solver for steady and unsteady channel flows. The capability to solve time dependent flows is shown by solving very weakly excited and strongly excited, forced oscillatory, channel flows.

  9. The Debye-Huckel Approximation in Electroosmotic Flow in Micro- and Nano-channels

    NASA Astrophysics Data System (ADS)

    Conlisk, A. Terrence

    2002-11-01

    In this work we consider the electroosmotic flow in a rectangular channel. We consider a mixture of water or other neutral solvent and a salt compound such as sodium chloride and other buffers for which the ionic species are entirely dissociated. Results are produced for the case where the channel height is much greater than the electric double layer(EDL)(microchannel) and for the case where the channel height is of the order or slightly greater than the width of the EDL(nanochannel). At small cation, anion concentration differences the Debye-Huckel approximation is appropriate; at larger concentration differences, the Gouy-Chapman picture of the electric double emerges naturally. In the symmetric case for the electroosmotic flow so induced, the velocity field and the potential are similar. We specifically focus in this paper on the limits of the Debye-Huckel approximation for a simplified version of a phosphate buffered saline(PBS) mixture. The fluid is assumed to behave as a continuum and the volume flow rate is observed to vary linearly with channel height for electrically driven flow in contrast to pressure driven flow which varies as height cubed. This means that very large pressure drops are required to drive flows in small channels. However, useful volume flow rates may be obtained at a very low driving voltage.

  10. Coupling of the magnetic field and gas flows inferred from the net circular polarization in a sunspot penumbra

    NASA Astrophysics Data System (ADS)

    Shaltout, Abdelrazek M. K.; Ichimoto, Kiyoshi

    2015-04-01

    We analyze penumbral fine structure using high-resolution spectropolarimetric data obtained by the Solar Optical Telescope on board the Hinode satellite. The spatial correlation between the net circular polarization (NCP) and Evershed flow is investigated in detail. Here we obtain that negative NCP structures are correlated with the Evershed flow channels in the limb-side penumbra, and that negative NCP or depressions of positive NCP are associated with the Evershed flow channels in the disk center-side of the penumbra for a negative-polarity sunspot in NOAA 10923. The positive NCP dominant in the disk center-side penumbra is essentially attributed to interflow channels instead of Evershed flow channels. The stratification of magnetic field and velocity are investigated by using SIR-JUMP inversion with a one-component atmosphere, and the NCP of spectral lines in the limb-side and disk center-side of the penumbra is successfully reproduced. The inversion results show that an increased Evershed flow is associated with a strong magnetic field located in the deep photosphere. Our result does not match with the simple two-component penumbral models in which the penumbra consists of Evershed flow and interflow channels and the global NCP is attributed only to the Evershed flow channels.

  11. Insertable fluid flow passage bridgepiece and method

    DOEpatents

    Jones, Daniel O.

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  12. Thin walled channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, R.L.; Johansson, E.B.

    1988-06-07

    A fuel assembly is described comprising fuel rods positioned in a spaced array by upper and lower tie-plates, an open ended flow channel surrounding the array for conducting coolant upward about the fuel rods, the open ended channel having a polygon shaped cross section with flat side sections connected between the corner sections; means separate from the channel connecting the upper and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel, improvement in the flow channel comprising: four corners having a first thickness; four sides having a second and reduced thickness from themore » corner thickness, the sides welded to the corner sections.« less

  13. An Emergent Bifurcation Angle on River Deltas

    NASA Astrophysics Data System (ADS)

    Shaw, J.; Coffey, T.

    2017-12-01

    Distributary channel bifurcations on river deltas are important features that control water, sediment, and nutrient routing and can dictate large-scale stratigraphic heterogeneity. We use theory originally developed for a special case of tributary networks to understand the dynamics of distributary channel bifurcations. Interestingly, bifurcations in groundwater-fed tributary networks have been shown to evolve dependent on the diffusive flow field outside the network. These networks possess a characteristic bifurcation angle of 72°, due to Laplacian flow in the groundwater flow field near tributary channel tips (gradient2h2=0, where h is water surface elevation). We develop and test the hypothesis that bifurcation angles in distributary channel networks are likewise dictated by the external flow field, in this case the shallow surface water surrounding the subaqueous portion of distributary channel bifurcations in a deltaic setting. We measured 130 unique distributary channel bifurcations in a single experimental delta and in 10 natural deltas, yielding a mean angle of 70.35°±2.59° (95% confidence interval), in line with the theoretical prediction. These data and hydrodynamic scaling arguments convince us that distributary network formation can result simply from the coupling of (Laplacian) extra-channel flow to channels along subaqueous channel networks. The simplicity of this model provides new insight into distributary network formation and its geomorphic and stratigraphic consequences.

  14. Channelized lava flows at the East Pacific Rise crest 9°-10°N: the importance of off-axis lava transport in developing the architecture of young oceanic crust

    USGS Publications Warehouse

    Soule, S.A.; Fornari, D.J.; Perfit, M.R.; Tivey, M.A.; Ridley, W.I.; Schouten, Hans

    2005-01-01

     Submarine lava flows are the building blocks of young oceanic crust. Lava erupted at the ridge axis is transported across the ridge crest in a manner dictated by the rheology of the lava, the characteristics of the eruption, and the topography it encounters. The resulting lava flows can vary dramatically in form and consequently in their impact on the physical characteristics of the seafloor and the architecture of the upper 50–500 m of the oceanic crust. We have mapped and measured numerous submarine channelized lava flows at the East Pacific Rise (EPR) crest 9°–10°N that reflect the high-effusion-rate and high-flow-velocity end-member of lava eruption and transport at mid-ocean ridges. Channel systems composed of identifiable segments 50–1000 m in length extend up to 3 km from the axial summit trough (AST) and have widths of 10–50 m and depths of 2–3 m. Samples collected within the channels are N-MORB with Mg# indicating eruption from the AST. We produce detailed maps of lava surface morphology across the channel surface from mosaics of digital images that show lineated or flat sheets at the channel center bounded by brecciated lava at the channel margins. Modeled velocity profiles across the channel surface allow us to determine flux through the channels from 0.4 to 4.7 × 103m3/s, and modeled shear rates help explain the surface morphology variation. We suggest that channelized lava flows are a primary mechanism by which lava accumulates in the off-axis region (1–3 km) and produces the layer 2A thickening that is observed at fast and superfast spreading ridges. In addition, the rapid, high-volume-flux eruptions necessary to produce channelized flows may act as an indicator of the local magma budget along the EPR. We find that high concentrations of channelized lava flows correlate with local, across-axis ridge morphology indicative of an elevated magma budget. Additionally, in locations where channelized flows are located dominantly to the east or west of the AST, the ridge crest is asymmetric, and layer 2A appears to thicken over a greater distance from the AST toward the side of the ridge crest where the channels are located.

  15. Observations of debris flows at Chalk Cliffs, Colorado, USA: Part 2, changes in surface morphometry from terrestrial laser scanning in the summer of 2009

    USGS Publications Warehouse

    Staley, Dennis M.; Wasklewicz, Thad A.; Coe, Jeffrey A.; Kean, Jason W.; McCoy, Scott W.; Tucker, Greg E.

    2011-01-01

    High resolution topographic data that quantify changes in channel form caused by sequential debris flows in natural channels are rare at the reach scale. Terrestrial laser scanning (TLS) techniques are utilized to capture morphological changes brought about by a high-frequency of debris-flow events at Chalk Cliffs, Colorado. The purpose of this paper is to compare and contrast the topographic response of a natural channel to the documented debris-flow events. TLS survey data allowed for the generation of high-resolution (2-cm) digital terrain models (DTM) of the channel. A robust network of twelve permanent control points permitted repeat scanning sessions that provided multiple DTM to evaluate fine-scale topographic change associated with three debris-flow events. Difference surfaces from the DTM permit the interpretations of spatial variations in channel morphometry and net volume of material deposited and eroded within and between a series of channel reaches. Each channel reach experienced erosion, deposition, and both net volumetric gains and losses were measured. Analysis of potential relationships between erosion and deposition magnitudes yielded no strong correlations with measures of channel-reach morphometry, suggesting that channel reach-specific predictions of potential erosion or deposition locations or rates cannot be adequately derived from statistical analyses of pre-event channel-reach morphometry.

  16. Fluidic Oscillator Array for Synchronized Oscillating Jet Generation

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti (Inventor)

    2017-01-01

    A fluidic oscillator array includes a plurality of fluidic-oscillator main flow channels. Each main flow channel has an inlet and an outlet. Each main flow channel has first and second control ports disposed at opposing sides thereof, and has a first and a second feedback ports disposed at opposing sides thereof. The feedback ports are located downstream of the control ports with respect to a direction of a fluid flow through the main flow channel. The system also includes a first fluid accumulator in fluid communication with each first control port and each first feedback port, and a second fluid accumulator in fluid communication with each second control port and each second feedback port.

  17. Fluidic Oscillator Array for Synchronized Oscillating Jet Generation

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti (Inventor)

    2016-01-01

    A fluidic oscillator array includes a plurality of fluidic-oscillator main flow channels. Each main flow channel has an inlet and an outlet. Each main flow channel has first and second control ports disposed at opposing sides thereof, and has a first and a second feedback ports disposed at opposing sides thereof. The feedback ports are located downstream of the control ports with respect to a direction of a fluid flow through the main flow channel. The system also includes a first fluid accumulator in fluid communication with each first control port and each first feedback port, and a second fluid accumulator in fluid communication with each second control port and each second feedback port.

  18. Twenty Years of "Plug-and-Pond" Meadow Restoration: A Geomorphic Review

    NASA Astrophysics Data System (ADS)

    Natali, J.

    2015-12-01

    Channel incision has degraded the ecological function of wet meadows across montane regions of California. Conservation groups estimate that half of the Sierra Nevada's 333,000 acres of meadow are entrenched in a degraded state that is characterized by a shift from groundwater­fed, herbaceous vegetation to more sparse, drought­tolerant woody vegetation. My poster will present results of field research on a prominent restoration technique in California's montane meadows, the "Plug­and­Pond." Fundamentally, the technique re­channelizes the meadow by blocking flow into incised stream channels. Spoils dug from meadow sediments plug the incised channel, creating ponds as a by­product. One of three approaches to re­channelization ensues: (1) construct a new shallow and sinuous channel, (2) redirect flows into a remnant channel, (3) or allow the channel to define itself over the meadow floodplain. Re­ channelization aims to support overbank flows at 1.5 to 3 year recurrence intervals. Field surveys of ten of the oldest "plug-and-pond" meadow restoration projects in California reveal that channel bed degradation caused by meadow-scale changes to channel slope (i.e. culverts concentrating flows, channel straightening, meadow grazing) may be more conducive to intensive restoration approaches like Plug-and-Pond.

  19. LES Modeling with Experimental Validation of a Compound Channel having Converging Floodplain

    NASA Astrophysics Data System (ADS)

    Mohanta, Abinash; Patra, K. C.

    2018-04-01

    Computational fluid dynamics (CFD) is often used to predict flow structures in developing areas of a flow field for the determination of velocity field, pressure, shear stresses, effect of turbulence and others. A two phase three-dimensional CFD model along with the large eddy simulation (LES) model is used to solve the turbulence equation. This study aims to validate CFD simulations of free surface flow or open channel flow by using volume of fluid method by comparing the data observed in hydraulics laboratory of the National Institute of Technology, Rourkela. The finite volume method with a dynamic sub grid scale was carried out for a constant aspect ratio and convergence condition. The results show that the secondary flow and centrifugal force influence flow pattern and show good agreement with experimental data. Within this paper over-bank flows have been numerically simulated using LES in order to predict accurate open channel flow behavior. The LES results are shown to accurately predict the flow features, specifically the distribution of secondary circulations both for in-bank channels as well as over-bank channels at varying depth and width ratios in symmetrically converging flood plain compound sections.

  20. Microelectromechanical flow control apparatus

    DOEpatents

    Okandan, Murat [NE Albuquerque, NM

    2009-06-02

    A microelectromechanical (MEM) flow control apparatus is disclosed which includes a fluid channel formed on a substrate from a first layer of a nonconducting material (e.g. silicon nitride). A first electrode is provided on the first layer of the nonconducting material outside the flow channel; and a second electrode is located on a second layer of the nonconducting material above the first layer. A voltage applied between the first and second electrodes deforms the fluid channel to increase its cross-sectional size and thereby increase a flow of a fluid through the channel. In certain embodiments of the present invention, the fluid flow can be decreased or stopped by applying a voltage between the first electrode and the substrate. A peristaltic pumping of the fluid through the channel is also possible when the voltage is applied in turn between a plurality of first electrodes and the substrate. A MEM flow control assembly can also be formed by providing one or more MEM flow control devices on a common substrate together with a submicron filter. The MEM flow control assembly can optionally include a plurality of pressure sensors for monitoring fluid pressure and determining flow rates through the assembly.

  1. Optimization of a new flow design for solid oxide cells using computational fluid dynamics modelling

    NASA Astrophysics Data System (ADS)

    Duhn, Jakob Dragsbæk; Jensen, Anker Degn; Wedel, Stig; Wix, Christian

    2016-12-01

    Design of a gas distributor to distribute gas flow into parallel channels for Solid Oxide Cells (SOC) is optimized, with respect to flow distribution, using Computational Fluid Dynamics (CFD) modelling. The CFD model is based on a 3d geometric model and the optimized structural parameters include the width of the channels in the gas distributor and the area in front of the parallel channels. The flow of the optimized design is found to have a flow uniformity index value of 0.978. The effects of deviations from the assumptions used in the modelling (isothermal and non-reacting flow) are evaluated and it is found that a temperature gradient along the parallel channels does not affect the flow uniformity, whereas a temperature difference between the channels does. The impact of the flow distribution on the maximum obtainable conversion during operation is also investigated and the obtainable overall conversion is found to be directly proportional to the flow uniformity. Finally the effect of manufacturing errors is investigated. The design is shown to be robust towards deviations from design dimensions of at least ±0.1 mm which is well within obtainable tolerances.

  2. Circuitous to single thread: post-dam geomorphic transformation of the Colorado River in its delta

    NASA Astrophysics Data System (ADS)

    Mueller, E. R.; Schmidt, J. C.

    2017-12-01

    The Colorado River in its delta has transformed from a maze of secondary and distributary channels to an intermittent or ephemeral stream largely disconnected from formerly active channels and floodplains. Periodic post-dam floods have demonstrated that channel migration and shifting during floods increased the extent and diversity of riparian vegetation, and suggested that restoration of fluvial processes that promote re-activation of these former channels may enhance ecosystem rehabilitation. But restoration efforts in the delta are complicated by the fact that the Colorado River has the largest reservoir size in relation to its mean annual flow of any large river in North America and most of its sediment supply is completely blocked in upstream reservoirs. As a result, small controlled floods intended to inundate formerly active channels and rejuvenate riparian vegetation must consider the new relationship between stream flow and the delta's transformed geomorphology. Post-dam channel change has been dominated by the abandonment of secondary and distributary channels, with 3 to 4 meters of bed incision in the upstream part of the delta that diminishes downstream. Initial bed incision of 2 to 3 meters occurred rapidly following completion of Hoover Dam in 1936, before further upstream water development reduced delta flows to near zero by the mid-1960s. The largest post-dam floods occurred in the 1980s, which resulted in 10s to 100s of meters of lateral migration, channel switching, and the reactivation of secondary channels and floodplains rarely inundated since dam completion. Smaller flow pulses in the 1990s and 2000s further incised the thalweg to its minimum elevation, resulting in a narrow single-thread channel inset within the multi-channel surface active during the 1980s. In 2014, an experimental pulse flow was released to the river channel with a peak discharge approximately 5% of the typical pre-dam flood peak. Topographic change was confined to the main channel where post-dam bed incision resulted in larger depths and flow velocities, although some secondary channels were inundated. Post-dam channel incision, combined with the rapid downstream loss of flow through infiltration, has reduced the area where secondary channels might be formed or re-activated during small controlled floods in the delta.

  3. Pathfinder Landing Site: Alternatives to Catastrophic Floods and An Antarctic Ice-Flow Analog for Outflow Channels on Mars

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1998-01-01

    The Pathfinder spacecraft landed successfully at the mouth of the outflow channels Ares and Tiu Valles, returning a wealth of information about the surrounding landscape. One goal of the mission was to ascertain that catastrophic floods formed the outflow channels, the prevailing hypothesis for their origin. The follow-up reports on the mission proclaim that observations are "consistent" with an origin by catastrophic flood; no alternative mechanisms for channel origin are considered. Thus, the impression is given that the problem of channel origin has been solved. Yet none of the observations are diagnostic of origin by catastrophic floods. Other origins are possible but have been ignored, for instance origin as liquefaction mudflows, debris flows, mass flows, or ice flows. Here I will examine landing site observations that have been used to infer origin by catastrophic flooding and suggest alternative origins. Finally, I will highlight some new observation from Antarctica that make an ice-flow mechanism plausible for the origin of some of the outflow channels.

  4. Engineered channel controls limiting spawning habitat rehabilitation success on regulated gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Brown, Rocko A.; Pasternack, Gregory B.

    2008-05-01

    In efforts to rehabilitate regulated rivers for ecological benefits, the flow regime has been one of the primary focal points of management strategies. However, channel engineering can impact channel geometry such that hydraulic and geomorphic responses to flow reregulation do not yield the sought for benefits. To illustrate and assess the impacts of structural channel controls and flow reregulation on channel processes and fish habitat quality in multiple life stages, a highly detailed digital elevation model was collected and analyzed for a river reach right below a dam using a suite of hydrologic, hydraulic, geomorphic, and ecological methods. Results showed that, despite flow reregulation to produce a scaled-down natural hydrograph, anthropogenic boundary controls have severely altered geomorphic processes associated with geomorphic self-sustainability and instream habitat availability in the case study. Given the similarity of this stream to many others, we concluded that the potential utility of natural flow regime reinstatement in regulated gravel-bed rivers is conditional on concomitant channel rehabilitation.

  5. Comparative evaluation of three heat transfer enhancement strategies in a grooved channel

    NASA Astrophysics Data System (ADS)

    Herman, C.; Kang, E.

    Results of a comparative evaluation of three heat transfer enhancement strategies for forced convection cooling of a parallel plate channel populated with heated blocks, representing electronic components mounted on printed circuit boards, are reported. Heat transfer in the reference geometry, the asymmetrically heated parallel plate channel, is compared with that for the basic grooved channel, and the same geometry enhanced by cylinders and vanes placed above the downstream edge of each heated block. In addition to conventional heat transfer and pressure drop measurements, holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in the self-sustained oscillatory flow. The locations of increased heat transfer within one channel periodicity depend on the enhancement technique applied, and were identified by analyzing the unsteady temperature distributions visualized by holographic interferometry. This approach allowed gaining insight into the mechanisms responsible for heat transfer enhancement. Experiments were conducted at moderate flow velocities in the laminar, transitional and turbulent flow regimes. Reynolds numbers were varied in the range Re=200-6500, corresponding to flow velocities from 0.076 to 2.36m/s. Flow oscillations were first observed between Re=1050 and 1320 for the basic grooved channel, and around Re=350 and 450 for the grooved channels equipped with cylinders and vanes, respectively. At Reynolds numbers above the onset of oscillations and in the transitional flow regime, heat transfer rates in the investigated grooved channels exceeded the performance of the reference geometry, the asymmetrically heated parallel plate channel. Heat transfer in the grooved channels enhanced with cylinders and vanes showed an increase by a factor of 1.2-1.8 and 1.5-3.5, respectively, when compared to data obtained for the basic grooved channel; however, the accompanying pressure drop penalties also increased significantly.

  6. Separation system with a sheath-flow supported electrochemical detector

    DOEpatents

    Mathies, Richard A [Moraga, CA; Emrich, Charles A [Berkeley, CA; Singhal, Pankaj [Pasadena, CA; Ertl, Peter [Styria, AT

    2008-10-21

    An electrochemical detector including side channels associated with a separation channel of a sample component separation apparatus is provided. The side channels of the detector, in one configuration, provide a sheath-flow for an analyte exiting the separation channel which directs the analyte to the electrically developed electrochemical detector.

  7. Personal cooling air filtering device

    DOEpatents

    Klett, James [Knoxville, TN; Conway, Bret [Denver, NC

    2002-08-13

    A temperature modification system for modifying the temperature of fluids includes at least one thermally conductive carbon foam element, the carbon foam element having at least one flow channel for the passage of fluids. At least one temperature modification device is provided, the temperature modification device thermally connected to the carbon foam element and adapted to modify the temperature of the carbon foam to modify the temperature of fluids flowing through the flow channels. Thermoelectric and/or thermoionic elements can preferably be used as the temperature modification device. A method for the reversible temperature modification of fluids includes the steps of providing a temperature modification system including at least one thermally conductive carbon foam element having flow channels and at least one temperature modification device, and flowing a fluid through the flow channels.

  8. Flow behaviour, suspended sediment transport and transmission losses in a small (sub-bank-full) flow event in an Australian desert stream

    NASA Astrophysics Data System (ADS)

    Dunkerley, David; Brown, Kate

    1999-08-01

    The behaviour of a discrete sub-bank-full flow event in a small desert stream in western NSW, Australia, is analysed from direct observation and sediment sampling during the flow event and from later channel surveys. The flow event, the result of an isolated afternoon thunderstorm, had a peak discharge of 9 m3/s at an upstream station. Transmission loss totally consumed the flow over the following 7·6 km. Suspended sediment concentration was highest at the flow front (not the discharge peak) and declined linearly with the log of time since passage of the flow front, regardless of discharge variation. The transmission loss responsible for the waning and eventual cessation of flow occurred at a mean rate of 13.2% per km. This is quite rapid, and is more than twice the corresponding figure for bank-full flows estimated by Dunkerley (1992) on the same stream system. It is proposed that transmission losses in ephemeral streams of the kind studied may be minimized in flows near bank-full stage, and be higher in both sub-bank-full and overbank flows. Factors contributing to enhanced flow loss in the sub-bank-full flow studied included abstractions of flow to pools, scour holes and other low points along the channel, and overflow abstractions into channel filaments that did not rejoin the main flow. On the other hand, losses were curtailed by the shallow depth of banks wetted and by extensive mud drapes that were set down over sand bars and other porous channel materials during the flow. Thus, in contrast with the relatively regular pattern of transmission loss inferred from large floods, losses from low flows exhibit marked spatial variability and depend to a considerable extent on streamwise variations in channel geometry, in addition to the depth and porosity of channel perimeter sediments.

  9. Can transmyocardial CO2 laser channels supply nutritive blood flow into adjacent myocardium?

    NASA Astrophysics Data System (ADS)

    Kohmoto, Takushi; Fisher, Peter E.; DeRosa, Carolyn; Smith, Craig R.; Burkhoff, Daniel

    1996-05-01

    Clinical reports of transmyocardial laser revascularization (TMLR) suggest that this procedure is effective in relieving angina. However, experimental evidence of nutritive blood flow through the TMLR channels is not available. The purpose of this study was to test whether blood could flow through the TMLR channels created with the carbon-dioxide laser.

  10. Complete energetic description of hydrokinetic turbine impact on flow channel dynamics

    NASA Astrophysics Data System (ADS)

    Brasseale, E.; Kawase, M.

    2016-02-01

    Energy budget analysis on tidal channels quantifies and demarcates the impacts of marine renewables on environmental fluid dynamics. Energy budget analysis assumes the change in total kinetic energy within a volume of fluid can be described by the work done by each force acting on the flow. In a numerically simulated channel, the balance between energy change and work done has been validated up to 5% error.The forces doing work on the flow include pressure, turbulent dissipation, and stress from the estuary floor. If hydrokinetic turbines are installed in an estuarine channel to convert tidal energy into usable power, the dynamics of the channel change. Turbines provide additional pressure work against the flow of the channel which will slow the current and lessen turbulent dissipation and bottom stress. These losses may negatively impact estuarine circulation, seafloor scour, and stratification.The environmental effects of turbine deployment have been quantified using a three dimensional, Reynolds-averaged, Navier-Stokes model of an idealized flow channel situated between the ocean and a large estuarine basin. The channel is five kilometers wide, twenty kilometers long and fifty meters deep, and resolved to a grid size of 10 meters by 10 meters by 1 meter. Tidal currents are simulated by an initial difference in sea surface height across the channel of 160 centimeters from the channel entrance to the channel exit. This creates a pressure gradient which drives flow through the channel. Tidal power turbines are represented as disks that force the channel in proportion to the strength of the current. Three tidal turbines twenty meters in diameters have been included in the model to simulate the impacts of a pilot scale test deployment.This study is the first to appreciate the energetic impact of marine renewables in a three dimensional model through the energy equation's constituent terms. This study provides groundwork for understanding and predicting the environmental impacts of marine renewables.

  11. Enhanced water vapour flow in silica microchannels and interdiffusive water vapour flow through anodic aluminium oxide (AAO) membranes

    NASA Astrophysics Data System (ADS)

    Lei, Wenwen; McKenzie, David R.

    2015-12-01

    Enhanced liquid water flows through carbon nanotubes reinvigorated the study of moisture permeation through membranes and micro- and nano-channels. The study of water vapour through micro-and nano-channels has been neglected even though water vapour is as important as liquid water for industry, especially for encapsulation of electronic devices. Here we measure moisture flow rates in silica microchannels and interdiffusive water vapour flows in anodic aluminium oxide (AAO) membrane channels for the first time. We construct theory for the flow rates of the dominant modes of water transport through four previously defined standard configurations and benchmark it against our new measurements. The findings show that measurements of leak behaviour made using other molecules, such as helium, are not reliable. Single phase water vapour flow is overestimated by a helium measurement, while Washburn or capillary flow is underestimated or for all channels when boundary slip applies, to an extent that depends on the slip length for the liquid phase flows.

  12. Computation of Turbulent Recirculating Flow in Channels, and for Impingement Cooling

    NASA Technical Reports Server (NTRS)

    Chang, Byong Hoon

    1992-01-01

    Fully elliptic forms of the transport equations have been solved numerically for two flow configurations. The first is turbulent flow in a channel with transverse rectangular ribs, and the second is impingement cooling of a plane surface. Both flows are relevant to proposed designs for active cooling of hypersonic vehicles using supercritical hydrogen as the coolant. Flow downstream of an abrupt pipe expansion and of a backward-facing step were also solved with various near-wall turbulence models as benchmark problems. A simple form of periodicity boundary condition was used for the channel flow with transverse rectangular ribs. The effects of various parameters on heat transfer in channel flow with transverse ribs and in impingement cooling were investigated using the Yap modified Jones and Launder low Reynolds number k-epsilon turbulence model. For the channel flow, predictions were in adequate agreement with experiment for constant property flow, with the results for friction superior to those for heat transfer. For impingement cooling, the agreement with experiment was generally good, but the results suggest that improved modelling of the dissipation rate of turbulence kinetic energy is required in order to obtain improved heat transfer prediction, especially near the stagnation point. The k-epsilon turbulence model was used to predict the mean flow and heat transfer for constant and variable property flows. The effect of variable properties for channel flow was investigated using the same turbulence model, but comparison with experiment yielded no clear conclusions. Also, the wall function method was modified for use in the variable properties flow with a non-adiabatic surface, and an empirical model is suggested to correctly account for the behavior of the viscous sublayer with heating.

  13. The enigmatic ultra-long run-out of seafloor density driven flows

    NASA Astrophysics Data System (ADS)

    Dorrell, R. M.

    2017-12-01

    Dilute, particulate-laden, density-driven flows - turbidity currents - are a predominant mechanism for transporting sediment from source to sink in deep marine environments. These flows sculpt channels on the seafloor and, as evidenced by a wealth of bathymetric data, can travel for >1000km, forming some of the largest sedimentary landforms on the planet. For turbidity currents to travel such large dsitances, sediment must be self-maintained in suspension, i.e., be in a state of autosuspension. It has been shown that such self-maintained sediment suspensions can only occur whilst inertial forces are greater than gravitational forces, entailing supercritical flow. This conclusion is paradoxical, as inertia dominated flows rapidly entrain fluid, thereby thickening and slowing to become subcritical. However, current theory can only truly be applied to the proximal upper slope regions of seafloor channels where incised flows are fully confined. This contrasts with the distal reaches of long run out turbidity current systems, where the flow is only partially confined through self-channelization. Here it is shown that overspill of partially confined flow has a significant effect on the hydro- and morphodynamics of turbidity current systems. A new model is derived that shows that channel overspill acts to negate the effects of ambient fluid entrainment: a dynamic balance that limits increases in flow depth and maintains supercritical flow throughout the channel. In the new model mass, momentum and energy conservation is modulated by flow overspill onto channel banks, necessarily requiring description of the vertical structure of the flow. Analysis of continuously stratified steady state flow dynamics shows that the integration of overspill and stratification is necessary to enable maintained autosuspension and thus predict the ultra-long run-out of turbidity currents.

  14. Large eddy simulations of time-dependent and buoyancy-driven channel flows

    NASA Technical Reports Server (NTRS)

    Cabot, William H.

    1993-01-01

    The primary goal of this work has been to assess the performance of the dynamic SGS model in the large eddy simulation (LES) of channel flows in a variety of situations, viz., in temporal development of channel flow turned by a transverse pressure gradient and especially in buoyancy-driven turbulent flows such as Rayleigh-Benard and internally heated channel convection. For buoyancy-driven flows, there are additional buoyant terms that are possible in the base models, and one objective has been to determine if the dynamic SGS model results are sensitive to such terms. The ultimate goal is to determine the minimal base model needed in the dynamic SGS model to provide accurate results in flows with more complicated physical features. In addition, a program of direct numerical simulation (DNS) of fully compressible channel convection has been undertaken to determine stratification and compressibility effects. These simulations are intended to provide a comparative base for performing the LES of compressible (or highly stratified, pseudo-compressible) convection at high Reynolds number in the future.

  15. Yield Hardening of Electrorheological Fluids in Channel Flow

    NASA Astrophysics Data System (ADS)

    Helal, Ahmed; Qian, Bian; McKinley, Gareth H.; Hosoi, A. E.

    2016-06-01

    Electrorheological fluids offer potential for developing rapidly actuated hydraulic devices where shear forces or pressure-driven flow are present. In this study, the Bingham yield stress of electrorheological fluids with different particle volume fractions is investigated experimentally in wall-driven and pressure-driven flow modes using measurements in a parallel-plate rheometer and a microfluidic channel, respectively. A modified Krieger-Dougherty model can be used to describe the effects of the particle volume fraction on the yield stress and is in good agreement with the viscometric data. However, significant yield hardening in pressure-driven channel flow is observed and attributed to an increase and eventual saturation of the particle volume fraction in the channel. A phenomenological physical model linking the densification and consequent microstructure to the ratio of the particle aggregation time scale compared to the convective time scale is presented and used to predict the enhancement in yield stress in channel flow, enabling us to reconcile discrepancies in the literature between wall-driven and pressure-driven flows.

  16. Influence of vortical flow structures on the glottal jet location in the supraglottal region.

    PubMed

    Kniesburges, Stefan; Hesselmann, Christina; Becker, Stefan; Schlücker, Eberhard; Döllinger, Michael

    2013-09-01

    Within the fully coupled multiphysics phonation process, the fluid flow plays an important role for sound production. This study addresses phenomena in the flow downstream of synthetic self-oscillating vocal folds. An experimental setup consisting of devices for producing and conditioning the flow including the main test channel was applied. The supraglottal channel was designed to prevent an acoustic coupling to the vocal folds. Hence, the oscillations were aerodynamically driven. The cross-section of the supraglottal channel was systematically varied by increasing the distance between the lateral channel walls. The vocal folds consisted of silicone rubber of homogenous material distribution generating self-sustained oscillations. The airflow was visualized in the immediate supraglottal region using a laser-sheet technique and a digital high-speed camera. Furthermore, the flow was studied by measuring the static pressure distributions on both lateral supraglottal channel walls. The results clearly showed different flow characteristics depending on the supraglottal configuration. In all cases with supraglottal channel, the jet was located asymmetrical and bent in medial-lateral direction. Furthermore, the side to which the jet was deflected changed in between the consecutive cycles showing a bifurcational behavior. Previously, this phenomenon was explained by the Coanda effect. However, the present data suggest that the deflection of the jet was mainly caused by large air vortices in the supraglottal channel produced by the flow field of previous oscillations. In contrast, for the case without supraglottal channel, the air jet was found totally symmetrical stabilized by the constant pressure in the ambient region. The emitted sound signal showed additional subharmonic tonal peaks for the asymmetric flow cases, which are characteristics for diplophonia. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  17. Flow of quasi-two dimensional water in graphene channels

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Wu, Xihui; Yang, Fengchang; Qiao, Rui

    2018-02-01

    When liquids confined in slit channels approach a monolayer, they become two-dimensional (2D) fluids. Using molecular dynamics simulations, we study the flow of quasi-2D water confined in slit channels featuring pristine graphene walls and graphene walls with hydroxyl groups. We focus on to what extent the flow of quasi-2D water can be described using classical hydrodynamics and what are the effective transport properties of the water and the channel. First, the in-plane shearing of quasi-2D water confined between pristine graphene can be described using the classical hydrodynamic equation, and the viscosity of the water is ˜50% higher than that of the bulk water in the channel studied here. Second, the flow of quasi-2D water around a single hydroxyl group is perturbed at a position of tens of cluster radius from its center, as expected for low Reynolds number flows. Even though water is not pinned at the edge of the hydroxyl group, the hydroxyl group screens the flow greatly, with a single, isolated hydroxyl group rendering drag similar to ˜90 nm2 pristine graphene walls. Finally, the flow of quasi-2D water through graphene channels featuring randomly distributed hydroxyl groups resembles the fluid flow through porous media. The effective friction factor of the channel increases linearly with the hydroxyl groups' area density up to 0.5 nm-2 but increases nonlinearly at higher densities. The effective friction factor of the channel can be fitted to a modified Carman equation at least up to a hydroxyl area density of 2.0 nm-2. These findings help understand the liquid transport in 2D material-based nanochannels for applications including desalination.

  18. Influence of hillslope-channel coupling on two mountain headwater streams, Swiss National Park, Switzerland

    NASA Astrophysics Data System (ADS)

    Schoch, Anna; Hoffmann, Thomas; Dikau, Richard

    2014-05-01

    Sediment fluxes in mountain headwater streams are strongly conditioned by sediment supply from hillslopes and thus hillslope-channel coupling, defined as linkages connecting slopes and channels through sediment transport processes. Sediment supply from hillslopes can have major influences on channel characteristics. The main goal of my research is to achieve a better understanding of these influences on mountain headwater streams in two study areas. This is conducted through the investigation of "channel-reach morphology" according to MONTGOMERY AND BUFFINGTON (1997), morphometric and sedimentological characteristics of the channels and analysis of the slope-channel coupling system. The study was conducted in two valleys in the Swiss National Park, i.e. Val dal Botsch (VdB) and Val Mueschauns (VMu). In both headwaters slopes and channel are coupled effectively due to the small spatial vicinity and frequent debris flow processes connecting the two system components. Both catchments were glaciated in the Pleistocene but show contrasting glacial imprints today. While VdB has a V-shaped morphometry that is dominated by unconsolidated sediments (mainly talus and moraine material), VMu is U-shaped in the upper valley segments and the surface is mainly covered with bedrock. Several methods for data collection and analyses were used: (1) Channel-reach morphology classification, (2) DEM-based analysis of long profiles, ksn-values, slope-area plots and measurement of cross sections in the field, (3) investigation of sedimentological characteristics with pebble counts as well as (4) mapping of recent linkages between slopes and channel and determination of connectivity (effectivity of coupling) using a heuristic approach. The results show that sediment input into both headwater streams is dominated by debris flows. The debris flow catchments, as parts of the slope system, have the highest connectivity to the channels. Channel changes are greatest where debris flows cause massive sediment input. Channel changes include an increase in sediment size and density of boulders, a decline in grain roundness and particle sorting as well as slope steepening and alterations of cross sections due to channel incision into the deposited debris flow material. Channel-reach morphology can be modified as well, e.g. from step pool to cascade. The intensity of the influence on channels varies among the investigated debris flows. A comparison of the larger debris flows reveals that debris flows with catchments dominated by bedrock and large areal extend (absolute and relative to main channel drainage area) have the strongest influence on channels. These results suggest that the variable influence on the channel is linked to differences in the Pleistocene glacial imprint of the two study areas. Geomorphic heritage plays a crucial role in recent alpine systems. Reference: MONTGOMERY, D. R. AND J. M. BUFFINGTON (1997): Channel-reach morphology in mountain drainage basins. Geol. Soc. Am. Bull. 109 (5), 596-611.

  19. Fractionating power and outlet stream polydispersity in asymmetrical flow field-flow fractionation. Part II: programmed operation.

    PubMed

    Williams, P Stephen

    2017-01-01

    Asymmetrical flow field-flow fractionation (As-FlFFF) is a widely used technique for analyzing polydisperse nanoparticle and macromolecular samples. The programmed decay of cross flow rate is often employed. The interdependence of the cross flow rate through the membrane and the fluid flow along the channel length complicates the prediction of elution time and fractionating power. The theory for their calculation is presented. It is also confirmed for examples of exponential decay of cross flow rate with constant channel outlet flow rate that the residual sample polydispersity at the channel outlet is quite well approximated by the reciprocal of four times the fractionating power. Residual polydispersity is of importance when online MALS or DLS detection are used to extract quantitative information on particle size or molecular weight. The theory presented here provides a firm basis for the optimization of programmed flow conditions in As-FlFFF. Graphical abstract Channel outlet polydispersity remains significant following fractionation by As-FlFFF under conditions of programmed decay of cross flow rate.

  20. Flow and sediment dynamics in the vegetated secondary channels of an anabranching river: The Loire River (France)

    NASA Astrophysics Data System (ADS)

    Rodrigues, Stéphane; Bréhéret, Jean-Gabriel; Macaire, Jean-Jacques; Moatar, Florentina; Nistoran, Dana; Jugé, Philippe

    2006-04-01

    This study investigates the hydrological and sedimentological mechanisms occurring in the vegetated secondary channels of an anabranching river affected by incision: the Loire River (France). During and after flood events that occurred between 2000 and 2003, observations and measurements were performed on a vegetated secondary channel located in the study site of Bréhémont (790 km downstream the source). Morphological changes and sediment dynamics were analysed using low elevation airborne photographs, topographic and bathymetric surveys, and scour chains. The hydraulic behaviour of the channel was also analysed by measurements performed on flow velocity and direction during different flood stages. In order to quantify the influence of woody vegetation on flow resistance, the roughness of bands of trees was determined from measurements performed on the field. The impact of the disruption of armour layers on bedload pulses, the variation of sedimentary processes during a single flood event and the fixation of bedforms by vegetation are all identified as key processes influencing the behaviour of the study channel. Topographic surveys demonstrate that sediment dynamics is substantial in the upstream part of the channel and that sediment budgets are different according to the temporal scale considered. Moreover, an asymmetrical behaviour of the secondary channel is demonstrated: reduced quantities of sediment deposited and preserved in the vegetated zones contrast with material by-passing observed in the third order channels. Flow velocity and direction measurements indicate that these parameters vary according to the water level and to the morphological units of the channel (pools, riffles, vegetated areas). During low flows, scouring and export of particles from the secondary channel are a consequence of reduced sediment supply from the main channel of the Loire River. For these water levels, sedimentation occurs in pools where velocity and turbulence decrease whereas third order channels are subjected to erosion. During high discharges, large quantities of sediment available in the main channel feed the temporary stores formed by riffles and bars in the secondary channel. The vegetated area located in the downstream part of the secondary channel deflects current trickles at low discharges and decreases flow velocity during high water levels. The sedimentary accretion observed in this area exerts a feedback on flow and sedimentary processes.

  1. Maja Valles, Mars: A Multi-Source Fluvio-Volcanic Outflow Channel System

    NASA Astrophysics Data System (ADS)

    Keske, A.; Christensen, P. R.

    2017-12-01

    The resemblance of martian outflow channels to the channeled scablands of the Pacific Northwest has led to general consensus that they were eroded by large-scale flooding. However, the observation that many of these channels are coated in lava issuing from the same source as the water source has motivated the alternative hypothesis that the channels were carved by fluid, turbulent lava. Maja Valles is a circum-Chryse outflow channel whose origin was placed in the late Hesperian by Baker and Kochel (1979), with more recent studies of crater density variations suggesting that its formation history involved multiple resurfacing events (Chapman et al., 2003). In this study, we have found that while Maja Valles indeed host a suite of standard fluvial landforms, its northern portion is thinly coated with lava that has buried much of the older channel landforms and overprinted them with effusive flow features, such as polygons and bathtub rings. Adjacent to crater pedestals and streamlined islands are patches of dark, relatively pristine material pooled in local topographic lows that we have interpreted as ponds of lava remaining from one or more fluid lava flows that flooded the channel system and subsequently drained, leaving marks of the local lava high stand. Despite the presence of fluvial landforms throughout the valles, lava flow features exist in the northern reaches of the system alone, 500-1200 km from the channels' source. The flows can instead be traced to a collection of vents in Lunae Plaum, west of the valles. In previously studied fluvio-volcanic outflow systems, such as Athabasca Valles, the sources of the volcanic activity and fluvial activity have been indistinguishable. In contrast, Maja Valles features numerous fluvio-volcanic landforms bearing similarity to those identified in other channel systems, yet the source of its lava flows is distinct from the source of its channels. Furthermore, in the absence of any channels between the source of the lava flows and their intersection with the channels of Maja Valles, it is clear that the lava flows did not achieve the turbulence necessary to thermomechanically erode large channels, despite indications that they were very fluid. These findings weaken arguments that lava erosion has played a major role in the formation of martian outflow channels in general.

  2. The hydraulic geometry of narrow and deep channels; evidence for flow optimisation and controlled peatland growth

    NASA Astrophysics Data System (ADS)

    Nanson, Rachel A.; Nanson, Gerald C.; Huang, He Qing

    2010-04-01

    At-a-station and bankfull hydraulic geometry analyses of peatland channels at Barrington Tops, New South Wales, Australia, reveal adjustments in self-forming channels in the absence of sediment load. Using Rhodes ternary diagram, comparisons are made with hydraulic geometry data from self-forming channels carrying bedload in alluvial settings elsewhere. Despite constraints on channel depths caused at some locations by the restricted thickness of peat, most stations have cohesive, near-vertical, well-vegetated banks, and width/depth (w/d) ratios of ∼ 2 that are optimal for sediment-free flow. Because banks are strong, resist erosion and can stand nearly vertical, and depth is sometimes constrained, adjustments to discharge are accommodated largely by changes in velocity. These findings are consistent with the model of maximum flow efficiency and the overarching least action principle in open channels. The bankfull depth of freely adjusting laterally active channels in clastic alluvium is well known to be related to the thickness of floodplain alluvium and a similar condition appears to apply to these swamps that grow in situ and are formed almost entirely of organic matter. The thickness of peat in these swamps rarely exceeds that required to form a bankfull channel of optimum w/d ratio for the transport of sediment-free water. Swamp vegetation is highly dependent on proximity to the water table. To maintain a swamp-channel and associated floodplain system, the channels must flow with sufficient water much of the time; they not only offer an efficient morphology for flow but do so in a way that enables bankfull conditions to occur many times a year. They also prevent the swamp from growing above a level linked to the depth of the channel. Once the channel attains the most efficient cross section, further growth of the swamp vertically is restricted by enhanced flow velocities and limited flow depths. This means that the volume of peat in such swamps is determined by the hydraulic efficiency of their channels. The development and maintenance of the hydraulic geometry of these swamp channels is biogeomorphic and biohydraulic in nature and yet accords to the same optimising principles that govern the formation of self-adjusting channels and floodplains in clastic alluvium.

  3. Flow rate limitation in open wedge channel under microgravity

    NASA Astrophysics Data System (ADS)

    Wei, YueXing; Chen, XiaoQian; Huang, YiYong

    2013-08-01

    A study of flow rate limitation in an open wedge channel is reported in this paper. Under microgravity condition, the flow is controlled by the convection and the viscosity in the channel as well as the curvature of the liquid free surface. A maximum flow rate is achieved when the curvature cannot balance the pressure difference leading to a collapse of the free surface. A 1-dimensional theoretical model is used to predict the critical flow rate and calculate the shape of the free surface. Computational Fluid Dynamics tool is also used to simulate the phenomenon. Results show that the 1-dimensional model overestimates the critical flow rate because extra pressure loss is not included in the governing equation. Good agreement is found in 3-dimensional simulation results. Parametric study with different wedge angles and channel lengths show that the critical flow rate increases with increasing the cross section area; and decreases with increasing the channel length. The work in this paper can help understand the surface collapsing without gravity and for the design in propellant management devices in satellite tanks.

  4. Hydrodynamic bifurcation in electro-osmotically driven periodic flows

    NASA Astrophysics Data System (ADS)

    Morozov, Alexander; Marenduzzo, Davide; Larson, Ronald G.

    2018-06-01

    In this paper, we report an inertial instability that occurs in electro-osmotically driven channel flows. We assume that the charge motion under the influence of an externally applied electric field is confined to a small vicinity of the channel walls that, effectively, drives a bulk flow through a prescribed slip velocity at the boundaries. Here, we study spatially periodic wall velocity modulations in a two-dimensional straight channel numerically. At low slip velocities, the bulk flow consists of a set of vortices along each wall that are left-right symmetric, while at sufficiently high slip velocities, this flow loses its stability through a supercritical bifurcation. Surprisingly, the flow state that bifurcates from a left-right symmetric base flow has a rather strong mean component along the channel, which is similar to pressure-driven velocity profiles. The instability sets in at rather small Reynolds numbers of about 20-30, and we discuss its potential applications in microfluidic devices.

  5. Debris flow monitoring in the Acquabona watershed on the Dolomites (Italian Alps)

    USGS Publications Warehouse

    Berti, M.; Genevois, R.; LaHusen, R.; Simoni, A.; Tecca, P.R.

    2000-01-01

    In 1997 a field monitoring system was installed in Acquabona Creek in the Dolomites (Eastern Italian Alps) to observe the hydrologic conditions for debris flow occurrence and some dynamic properties of debris flow. The monitoring system consists of three remote stations: an upper one located at the head of a deeply-incised channel and two others located downstream. The system is equipped with sensors for measuring rainfall, pore pressures in the mobile channel bottom, ground vibrations, debris flow depth, total normal stress and fluid pore-pressure at the base of the flow. Two video cameras record events at the upper channel station and one video is installed at the lowermost station. During summer 1998, three debris flows (volumes from less than 1000 m3 up to 9000 m3) occurred at Acquabona. The following results were obtained from a preliminary analysis of the data: 1) All of the flows were triggered by rainfalls of less than 1 hour duration, with peak rainfall intensities ranging from 4.8 to 14.7 mm / 10 minute. 2) Debris flows initiated in several reaches of the channel, including the head of the talus slope. 3) The initial surges of the mature flows had a higher solid concentration and a lower velocity (up to 4 m/s) than succeeding, more dilute surges (more than 7 m/s). 4) Total normal stress and pore fluid pressures measured at the base of the flow (mean depth about 1.1 m) were similar (about 15 kPa), indicating a completely liquefied flow. 5) Peak flows entrained debris at a rate of about 6 m3/m of channel length and channel bed scouring was proportional to the local slope gradient and was still evident in the lower channel where the slope was 7??. ?? 2000 Elsevier Science Ltd. All rights reserved.

  6. Influence of dendrite network defects on channel segregate growth

    NASA Technical Reports Server (NTRS)

    Simpson, M.; Yerebakan, M.; Flemings, M. C.

    1985-01-01

    The solidifying ingot interdendritic flow analysis in which channel segregates are assumed to be produced by interdendritic fluid flow dissolving channels in the primary dendrite network is presently refined by examining the flow through a dendrite network possessing a small defect. Attention is given to the section of the mushy zone in a solidifying casting. Since defects such as that presently treated are unavoidable in a real casting, a more reliable indication may be furnished of the occurrence of channel segregates.

  7. Bend losses in rectangular culverts.

    DOT National Transportation Integrated Search

    2008-09-01

    This study investigated bend losses for open channel flow in rectangular channels or culverts. Laboratory experiments were performed for sub-critical flow in rectangular channels with abrupt bends. Bend angles of approximately 30, 45, 60, 75 and 90 d...

  8. DNA Molecules in Microfluidic Oscillatory Flow

    PubMed Central

    Chen, Y.-L.; Graham, M.D.; de Pablo, J.J.; Jo, K.; Schwartz, D.C.

    2008-01-01

    The conformation and dynamics of a single DNA molecule undergoing oscillatory pressure-driven flow in microfluidic channels is studied using Brownian dynamics simulations, accounting for hydrodynamic interactions between segments in the bulk and between the chain and the walls. Oscillatory flow provides a scenario under which the polymers may remain in the channel for an indefinite amount of time as they are stretched and migrate away from the channel walls. We show that by controlling the chain length, flow rate and oscillatory flow frequency, we are able to manipulate the chain extension and the chain migration from the channel walls. The chain stretch and the chain depletion layer thickness near the wall are found to increase as the Weissenberg number increases and as the oscillatory frequency decreases. PMID:19057656

  9. An analysis of induced pressure fields in electroosmotic flows through microchannels.

    PubMed

    Zhang, Yonghao; Gu, Xiao-Jun; Barber, Robert W; Emerson, David R

    2004-07-15

    Induced pressure gradients are found to cause band-broadening effects which are important to the performance of microfluidic devices, such as capillary electrophoresis and capillary chromatography. An improved understanding of the underlying mechanisms causing an induced pressure gradient in electroosmotic flows is presented. The analysis shows that the induced pressure distribution is the key to understanding the experimentally observed phenomena of leakage flows. A novel way of determining the static pressures at the inlet and outlet of microchannels is also presented that takes account of the pressure losses due to flow contraction and expansion. These commonly neglected pressure losses at the channel entrance and outlet are shown to be important in accurately describing the flow. The important parameters that define the effect of induced pressure on the flows are discussed, which may facilitate the design of improved microfluidic devices. The present model clearly identifies the mechanism behind the experimentally observed leakage flows, which is further confirmed by numerical simulations. Not only can the leakage flow occur from the electric-field-free side channel to the main channel, but also the fluid in the main channel can be attracted into the side channel by the induced pressure gradient. Copyright 2004 Elsevier Inc.

  10. Thermal Drawdown-Induced Flow Channeling in Fractured Geothermal Reservoirs

    DOE PAGES

    Fu, Pengcheng; Hao, Yue; Walsh, Stuart D. C.; ...

    2015-06-30

    In this paper, we investigate the flow-channeling phenomenon caused by thermal drawdown in fractured geothermal reservoirs. A discrete fracture network-based, fully coupled thermal–hydrological–mechanical simulator is used to study the interactions between fluid flow, temperature change, and the associated rock deformation. The responses of a number of randomly generated 2D fracture networks that represent a variety of reservoir characteristics are simulated with various injection-production well distances. We find that flow channeling, namely flow concentration in cooled zones, is the inevitable fate of all the scenarios evaluated. We also identify a secondary geomechanical mechanism caused by the anisotropy in thermal stress thatmore » counteracts the primary mechanism of flow channeling. This new mechanism tends, to some extent, to result in a more diffuse flow distribution, although it is generally not strong enough to completely reverse flow channeling. We find that fracture intensity substantially affects the overall hydraulic impedance of the reservoir but increasing fracture intensity generally does not improve heat production performance. Finally, increasing the injection-production well separation appears to be an effective means to prolong the production life of a reservoir.« less

  11. Depth encoded three-beam swept source Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Wartak, Andreas; Haindl, Richard; Trasischker, Wolfgang; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K.

    2016-03-01

    A novel approach for investigation of human retinal and choroidal blood flow by the means of multi-channel swept source Doppler optical coherence tomography (SS-D-OCT) system is being developed. We present preliminary in vitro measurement results for quantification of the 3D velocity vector of scatterers in a flow phantom. The absolute flow velocity of moving scatterers can be obtained without prior knowledge of flow orientation. In contrast to previous spectral domain (SD-) D-OCT investigations, that already proved the three-channel D-OCT approach to be suitable for in vivo retinal blood flow evaluation, this current work aims for a similar functional approach by means of a differing technique. To the best of our knowledge, this is the first three-channel D-OCT setup featuring a wavelength tunable laser source. Furthermore, we present a modification of our setup allowing a reduction of the former three active illumination channels to one active illumination channel and two passive channels, which only probe the illuminated sample. This joint aperture (JA) approach provides the advantage of not having to divide beam power among three beams to meet corresponding laser safety limits. The in vitro measurement results regarding the flow phantom show good agreement between theoretically calculated and experimentally obtained flow velocity values.

  12. Fuel cell plates with skewed process channels for uniform distribution of stack compression load

    DOEpatents

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1989-01-01

    An electrochemical fuel cell includes an anode electrode, a cathode electrode, an electrolyte matrix sandwiched between electrodes, and a pair of plates above and below the electrodes. The plate above the electrodes has a lower surface with a first group of process gas flow channels formed thereon and the plate below the electrodes has an upper surface with a second group of process gas flow channels formed thereon. The channels of each group extend generally parallel to one another. The improvement comprises the process gas flow channels on the lower surface of the plate above the anode electrode and the process gas flow channels on the upper surface of the plate below the cathode electrode being skewed in opposite directions such that contact areas of the surfaces of the plates through the electrodes are formed in crisscross arrangements. Also, the plates have at least one groove in areas of the surfaces thereof where the channels are absent for holding process gas and increasing electrochemical activity of the fuel cell. The groove in each plate surface intersects with the process channels therein. Also, the opposite surfaces of a bipolar plate for a fuel cell contain first and second arrangements of process gas flow channels in the respective surfaces which are skewed the same amount in opposite directions relative to the longitudinal centerline of the plate.

  13. Emplacement and erosive effects of the south Kasei Valles lava on Mars

    USGS Publications Warehouse

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2014-01-01

    Although it has generally been accepted that the Martian outflow channels were carved by floods of water, observations of large channels on Venus and Mercury demonstrate that lava flows can cause substantial erosion. Recent observations of large lava flows within outflow channels on Mars have revived discussion of the hypothesis that the Martian channels are also produced by lava. An excellent example is found in south Kasei Valles (SKV), where the most recent major event was emplacement of a large lava flow. Calculations using high-resolution Digital Terrain Models (DTMs) demonstrate that this flow was locally turbulent, similar to a previously described flood lava flow in Athabasca Valles. The modeled peak local flux of approximately 106 m3 s−1 was approximately an order of magnitude lower than that in Athabasca, which may be due to distance from the vent. Fluxes close to 107 m3 s−1 are estimated in some reaches but these values are probably records of local surges caused by a dam-breach event within the flow. The SKV lava was locally erosive and likely caused significant (kilometer-scale) headwall retreat at several cataracts with tens to hundreds of meters of relief. However, in other places the net effect of the flow was unambiguously aggradational, and these are more representative of most of the flow. The larger outflow channels have lengths of thousands of kilometers and incision of a kilometer or more. Therefore, lava flows comparable to the SKV flow did not carve the major Martian outflow channels, although the SKV flow was among the largest and highest-flux lava flows known in the Solar System.

  14. Effects of stream discharge, alluvial depth and bar amplitude on hyporheic flow in pool-riffle channels

    Treesearch

    Daniele Tonina; John M. Buffington

    2011-01-01

    Hyporheic flow results from the interaction between streamflow and channel morphology and is an important component of stream ecosystems because it enhances water and solute exchange between the river and its bed. Hyporheic flow in pool-riffle channels is particularly complex because of three-dimensional topography that spans a range of partially to fully submerged...

  15. Couple stress fluid flow in a rotating channel with peristalsis

    NASA Astrophysics Data System (ADS)

    Abd elmaboud, Y.; Abdelsalam, Sara I.; Mekheimer, Kh. S.

    2018-04-01

    This article describes a new model for obtaining closed-form semi-analytical solutions of peristaltic flow induced by sinusoidal wave trains propagating with constant speed on the walls of a two-dimensional rotating infinite channel. The channel rotates with a constant angular speed about the z - axis and is filled with couple stress fluid. The governing equations of the channel deformation and the flow rate inside the channel are derived using the lubrication theory approach. The resulting equations are solved, using the homotopy perturbation method (HPM), for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The effect of various values of physical parameters, such as, Taylor's number and couple stress parameter, together with some interesting features of peristaltic flow are discussed through graphs. The trapping phenomenon is investigated for different values of parameters under consideration. It is shown that Taylor's number and the couple stress parameter have an increasing effect on the longitudinal velocity distribution till half of the channel, on the flow rate due to secondary velocity, and on the number of closed streamlines circulating the bolus.

  16. Connectivity variations in time and space: role of events, structures and morphology in ephemeral channels

    NASA Astrophysics Data System (ADS)

    Hooke, Janet

    2017-04-01

    Flow and sediment processes in ephemeral channels are highly dynamic and spatially variable. The connectivity characteristics in a range of events are examined for several semi-arid catchments in Southeast Spain. Rainfall thresholds for runoff generation on slopes and for flow generation in channels have been identified at various scales. In many events, flow is not continuous down the channel system due partly to localised rainfall and to transmission losses but also to structural and morphological conditions. One extreme flow event with high sediment supply produced very high flow and sediment connectivity throughout the system. Results of spatial analysis of variation in hydraulics and sediment processes are presented and the effects are analysed. Amounts and locations of sediment storage were identified from repeat surveys. The overall contribution of such an event to morphological and sedimentological changes in the channel and longer-term landscape evolution is assessed. Land use and management are demonstrated to have a profound influence on the sediment delivery and connectivity functioning. The implications for land, channel and flood management in such an environment, together with the impacts of longer-term variations in flow regime due to land use and climate change, are considered.

  17. Functional relationships between vegetation, channel morphology, and flow efficiency in an alluvial (anabranching) river

    NASA Astrophysics Data System (ADS)

    Jansen, John D.; Nanson, Gerald C.

    2010-12-01

    Water and sediment flux interactions are examined in Magela Creek, an alluvial (anabranching) sand bed river in the northern Australian tropics. Dense riparian vegetation stabilizes the channels and floodplains thereby preventing erosional instability at flow depths up to 6.2 times bankfull and discharges up to 15 times bankfull. Narrow anabranching channels characterize >92% of the alluvial reach and transport bed load more efficiently than short reaches of wide single-channels, yet overall 29 ± 12% of the bed load is sequestered and the average vertical accretion rate is 0.41 ± 0.17 mm yr-1 along the 12 km study reach. The most effective discharge for transporting sediment (40-45 m3 s-1) is consistent at all 5 stations (10 channels) examined and is equivalent to the channel-forming discharge. It has an average recurrence interval of 1.01 years, occurs for an exceptionally long portion (13-15%) of the annual flow duration, and averages a remarkable 2.1 times bankfull. The high flow efficiency (i.e., bed load transport rate to stream power ratio) of the anabranches is facilitated by low width/depth channels with banks reinforced by vegetation. Colonnades of bank top trees confine high-velocity flows overbed (i.e., over the channel bed) at stages well above bankfull. At even larger overbank flows, momentum exchange between the channels and forested floodplains restrains overbed velocities, in some cases causing them to decline, thereby limiting erosion. Magela Creek exhibits a complicated set of planform, cross-sectional and vegetative adjustments that boost overbed velocities and enhance bed load yield in multiple channels while restraining velocities and erosion at the largest discharges.

  18. Design of an interface to allow microfluidic electrophoresis chips to drink from the fire hose of the external environment.

    PubMed

    Attiya, S; Jemere, A B; Tang, T; Fitzpatrick, G; Seiler, K; Chiem, N; Harrison, D J

    2001-01-01

    An interface design is presented that facilitates automated sample introduction into an electrokinetic microchip, without perturbing the liquids within the microfluidic device. The design utilizes an interface flow channel with a volume flow resistance that is 0.54-4.1 x 10(6) times lower than the volume flow resistance of the electrokinetic fluid manifold used for mixing, reaction, separation, and analysis. A channel, 300 microm deep, 1 mm wide and 15-20 mm long, was etched in glass substrates to create the sample introduction channel (SIC) for a manifold of electrokinetic flow channels in the range of 10-13 microm depth and 36-275 microm width. Volume flow rates of up to 1 mL/min were pumped through the SIC without perturbing the solutions within the electrokinetic channel manifold. Calculations support this observation, suggesting a leakage flow to electroosmotic flow ratio of 0.1:1% in the electrokinetic channels, arising from 66-700 microL/min pressure-driven flow rates in the SIC. Peak heights for capillary electrophoresis separations in the electrokinetic flow manifold showed no dependence on whether the SIC pump was on or off. On-chip mixing, reaction and separation of anti-ovalbumin and ovalbumin could be performed with good quantitative results, independent of the SIC pump operation. Reproducibility of injection performance, estimated from peak height variations, ranged from 1.5-4%, depending upon the device design and the sample composition.

  19. The 3D pore structure and fluid dynamics simulation of macroporous monoliths: High permeability due to alternating channel width.

    PubMed

    Jungreuthmayer, Christian; Steppert, Petra; Sekot, Gerhard; Zankel, Armin; Reingruber, Herbert; Zanghellini, Jürgen; Jungbauer, Alois

    2015-12-18

    Polymethacrylate-based monoliths have excellent flow properties. Flow in the wide channel interconnected with narrow channels is theoretically assumed to account for favorable permeability. Monoliths were cut into 898 slices in 50nm distances and visualized by serial block face scanning electron microscopy (SBEM). A 3D structure was reconstructed and used for the calculation of flow profiles within the monolith and for calculation of pressure drop and permeability by computational fluid dynamics (CFD). The calculated and measured permeabilities showed good agreement. Small channels clearly flowed into wide and wide into small channels in a repetitive manner which supported the hypothesis describing the favorable flow properties of these materials. This alternating property is also reflected in the streamline velocity which fluctuated. These findings were corroborated by artificial monoliths which were composed of regular (interconnected) cells where narrow cells followed wide cells. In the real monolith and the artificial monoliths with interconnected flow channels similar velocity fluctuations could be observed. A two phase flow simulation showed a lateral velocity component, which may contribute to the transport of molecules to the monolith wall. Our study showed that the interconnection of small and wide pores is responsible for the excellent pressure flow properties. This study is also a guide for further design of continuous porous materials to achieve good flow properties. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Wind Effects on Flow Patterns and Net Fluxes in Density-Driven High-Latitude Channel Flow

    NASA Astrophysics Data System (ADS)

    Huntley, Helga S.; Ryan, Patricia

    2018-01-01

    A semianalytic two-dimensional model is used to analyze the interplay between the different forces acting on density-driven flow in high-latitude channels. In particular, the balance between wind stress, viscous forces, baroclinicity, and sea surface slope adjustments under specified flux conditions is examined. Weak winds are found not to change flow patterns appreciably, with minimal (<7%) adjustments to horizontal velocity maxima. In low-viscosity regimes, strong winds change the flow significantly, especially at the surface, by either strengthening the dual-jet pattern, established without wind, by a factor of 2-3 or initiating return flow at the surface. A nonzero flux does not result in the addition of a uniform velocity throughout the channel cross section, but modifies both along-channel and cross-channel velocities to become more symmetric, dominated by a down-channel jet centered in the domain and counter-clockwise lateral flow. We also consider formulations of the model that allow adjustments of the net flux in response to the wind. Flow patterns change, beyond uniform intensification or weakening, only for strong winds and high Ekman number. Comparisons of the model results to observational data collected in Nares Strait in the Canadian Archipelago in the summer of 2007 show rough agreement, but the model misses the upstream surface jet on the east side of the strait and propagates bathymetric effects too strongly in the vertical for this moderately high eddy viscosity. Nonetheless, the broad strokes of the observed high-latitude flow are reproduced.

  1. Study of the flow mixing in a novel ARID raceway for algae production

    DOE PAGES

    Xu, Ben; Li, Peiwen; Waller, P.

    2014-07-31

    A novel flow field for algae raceways has been proposed, which is fundamentally different from traditional paddlewheel-driven raceways. To reduce freezing and heat loss in the raceway during cold time, the water is drained to a deep storage canal. The ground bed of the new raceway has a low slope so that water, lifted by propeller pump, can flow down in laterally-laid serpentine channels, relying on gravitational force. The flow rate of water is controlled so that it can overflow the lateral channel walls and mix with the main flow in the next lower channel, which thus creates a bettermore » mixing. In order to optimize the design parameters of the new flow field, methods including flow visualization, local point velocity measurement, and CFD analysis were employed to investigate the flow mixing features. Different combinations of channel geometries and water velocities were evaluated. An optimized flow field design and details of flow mixing are presented. The study offers an innovative design for large scale algae growth raceways which is of significance to the algae and biofuel industry.« less

  2. Study of the flow mixing in a novel ARID raceway for algae production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ben; Li, Peiwen; Waller, P.

    A novel flow field for algae raceways has been proposed, which is fundamentally different from traditional paddlewheel-driven raceways. To reduce freezing and heat loss in the raceway during cold time, the water is drained to a deep storage canal. The ground bed of the new raceway has a low slope so that water, lifted by propeller pump, can flow down in laterally-laid serpentine channels, relying on gravitational force. The flow rate of water is controlled so that it can overflow the lateral channel walls and mix with the main flow in the next lower channel, which thus creates a bettermore » mixing. In order to optimize the design parameters of the new flow field, methods including flow visualization, local point velocity measurement, and CFD analysis were employed to investigate the flow mixing features. Different combinations of channel geometries and water velocities were evaluated. An optimized flow field design and details of flow mixing are presented. The study offers an innovative design for large scale algae growth raceways which is of significance to the algae and biofuel industry.« less

  3. Computational open-channel hydraulics for movable-bed problems

    USGS Publications Warehouse

    Lai, Chintu; ,

    1990-01-01

    As a major branch of computational hydraulics, notable advances have been made in numerical modeling of unsteady open-channel flow since the beginning of the computer age. According to the broader definition and scope of 'computational hydraulics,' the basic concepts and technology of modeling unsteady open-channel flow have been systematically studied previously. As a natural extension, computational open-channel hydraulics for movable-bed problems are addressed in this paper. The introduction of the multimode method of characteristics (MMOC) has made the modeling of this class of unsteady flows both practical and effective. New modeling techniques are developed, thereby shedding light on several aspects of computational hydraulics. Some special features of movable-bed channel-flow simulation are discussed here in the same order as given by the author in the fixed-bed case.

  4. 3D Flow in the Venom Channel of a Spitting Cobra: Do the Ridges in the Fangs Act as Fluid Guide Vanes?

    PubMed Central

    Triep, Michael; Hess, David; Chaves, Humberto; Brücker, Christoph; Balmert, Alexander; Westhoff, Guido; Bleckmann, Horst

    2013-01-01

    The spitting cobra Naja pallida can eject its venom towards an offender from a distance of up to two meters. The aim of this study was to understand the mechanisms responsible for the relatively large distance covered by the venom jet although the venom channel is only of micro-scale. Therefore, we analysed factors that influence secondary flow and pressure drop in the venom channel, which include the physical-chemical properties of venom liquid and the morphology of the venom channel. The cobra venom showed shear-reducing properties and the venom channel had paired ridges that span from the last third of the channel to its distal end, terminating laterally and in close proximity to the discharge orifice. To analyze the functional significance of these ridges we generated a numerical and an experimental model of the venom channel. Computational fluid dynamics (CFD) and Particle-Image Velocimetry (PIV) revealed that the paired interior ridges shape the flow structure upstream of the sharp 90° bend at the distal end. The occurrence of secondary flow structures resembling Dean-type vortical structures in the venom channel can be observed, which induce additional pressure loss. Comparing a venom channel featuring ridges with an identical channel featuring no ridges, one can observe a reduction of pressure loss of about 30%. Therefore it is concluded that the function of the ridges is similar to guide vanes used by engineers to reduce pressure loss in curved flow channels. PMID:23671569

  5. Flow resistance dynamics in step‐pool stream channels: 1. Large woody debris and controls on total resistance

    USGS Publications Warehouse

    Wilcox, Andrew C.; Wohl, Ellen E.

    2006-01-01

    Flow resistance dynamics in step‐pool channels were investigated through physical modeling using a laboratory flume. Variables contributing to flow resistance in step‐pool channels were manipulated in order to measure the effects of various large woody debris (LWD) configurations, steps, grains, discharge, and slope on total flow resistance. This entailed nearly 400 flume runs, organized into a series of factorial experiments. Factorial analyses of variance indicated significant two‐way and three‐way interaction effects between steps, grains, and LWD, illustrating the complexity of flow resistance in these channels. Interactions between steps and LWD resulted in substantially greater flow resistance for steps with LWD than for steps lacking LWD. LWD position contributed to these interactions, whereby LWD pieces located near the lip of steps, analogous to step‐forming debris in natural channels, increased the effective height of steps and created substantially higher flow resistance than pieces located farther upstream on step treads. Step geometry and LWD density and orientation also had highly significant effects on flow resistance. Flow resistance dynamics and the resistance effect of bed roughness configurations were strongly discharge‐dependent; discharge had both highly significant main effects on resistance and highly significant interactions with all other variables.

  6. A DNS Investigation of Non-Newtonian Turbulent Open Channel Flow

    NASA Astrophysics Data System (ADS)

    Guang, Raymond; Rudman, Murray; Chryss, Andrew; Slatter, Paul; Bhattacharya, Sati

    2010-06-01

    The flow of non-Newtonian fluids in open channels has great significance in many industrial settings from water treatment to mine waste disposal. The turbulent behaviour during transportation of these materials is of interest for many reasons, one of which is keeping settleable particles in suspension. The mechanism governing particle transport in turbulent flow has been studied in the past, but is not well understood. A better understanding of the mechanism operating in the turbulent flow of non-Newtonian suspensions in open channel would lead to improved design of many of the systems used in the mining and mineral processing industries. The objective of this paper is to introduce our work on the Direct Numerical Simulation of turbulent flow of non-Newtonian fluids in an open channel. The numerical method is based on spectral element/Fourier formulation. The flow simulation of a Herschel-Bulkley fluid agrees qualitatively with experimental results. The simulation results over-predict the flow velocity by approximately 15% for the cases considered, although the source of the discrepancy is difficult to ascertain. The effect of variation in yield stress and assumed flow depth are investigated and used to assess the sensitivity of the flow to these physical parameters. This methodology is seen to be useful in designing and optimising the transport of slurries in open channels.

  7. Processes and rates of sediment and wood accumulation in headwater streams of the Oregon Coast Range, USA

    USGS Publications Warehouse

    May, Christine L.; Gresswell, Robert E.

    2003-01-01

    Channels that have been scoured to bedrock by debris flows provide unique opportunities to calculate the rate of sediment and wood accumulation in low-order streams, to understand the temporal succession of channel morphology following disturbance, and to make inferences about processes associated with input and transport of sediment. Dendrochronology was used to estimate the time since the previous debris flow and the time since the last stand-replacement fire in unlogged basins in the central Coast Range of Oregon. Debris flow activity increased 42 per cent above the background rate in the decades immediately following the last wildfire. Changes in wood and sediment storage were quantified for 13 streams that ranged from 4 to 144 years since the previous debris flow. The volume of wood and sediment in the channel, and the length of channel with exposed bedrock, were strongly correlated with the time since the previous debris flow. Wood increased the storage capacity of the channel and trapped the majority of the sediment in these steep headwater streams. In the absence of wood, channels that have been scoured to bedrock by a debris flow may lack the capacity to store sediment and could persist in a bedrock state for an extended period of time. With an adequate supply of wood, low-order channels have the potential of storing large volumes of sediment in the interval between debris flows and can function as one of the dominant storage reservoirs for sediment in mountainous terrain.

  8. Information Flow in Interaction Networks II: Channels, Path Lengths, and Potentials

    PubMed Central

    Stojmirović, Aleksandar

    2012-01-01

    Abstract In our previous publication, a framework for information flow in interaction networks based on random walks with damping was formulated with two fundamental modes: emitting and absorbing. While many other network analysis methods based on random walks or equivalent notions have been developed before and after our earlier work, one can show that they can all be mapped to one of the two modes. In addition to these two fundamental modes, a major strength of our earlier formalism was its accommodation of context-specific directed information flow that yielded plausible and meaningful biological interpretation of protein functions and pathways. However, the directed flow from origins to destinations was induced via a potential function that was heuristic. Here, with a theoretically sound approach called the channel mode, we extend our earlier work for directed information flow. This is achieved by constructing a potential function facilitating a purely probabilistic interpretation of the channel mode. For each network node, the channel mode combines the solutions of emitting and absorbing modes in the same context, producing what we call a channel tensor. The entries of the channel tensor at each node can be interpreted as the amount of flow passing through that node from an origin to a destination. Similarly to our earlier model, the channel mode encompasses damping as a free parameter that controls the locality of information flow. Through examples involving the yeast pheromone response pathway, we illustrate the versatility and stability of our new framework. PMID:22409812

  9. Flow resistance in open channels with fixed movable bed

    USGS Publications Warehouse

    Simoes, Francisco J.

    2010-01-01

    In spite of an increasingly large body of research by many investigators, accurate quantitative prediction of open channel flow resistance remains a challenge. In general, the relations between the elements influencing resistance (turbulence, boundary roughness, and channel shape features, such as discrete obstacles, bars, channel curvature, recirculation areas, secondary circulation, etc.) and mean flow variables are complex and poorly understood. This has resulted in numerous approaches to compute friction using many and diverse variables and equally diverse prescriptions for their use. In this paper, a new resistance law for surface (grain) resistance, the resistance due to the flow viscous effects on the channel boundary roughness elements, is presented for the cases of flow in the transition (5 < Re* <70) and fully rough (Re* ≥ 70) turbulent flow regimes, where Re* is the Reynolds number based on shear velocity and sediment particle mean diameter. It is shown that the new law is sensitive to bed movement without requiring previous knowledge of sediment transport conditions. Comparisons between computation and measurements, as well as comparisons with other well-known existing roughness predictors, are presented to demonstrate its accuracy and range of application. It is shown that the method accurately predicts total friction losses in channels and natural rivers with plane beds, regardless of sediment transport conditions. This work is useful to hydraulic engineers involved with the derivation of depth-discharge relations in open channel flow and with the estimation of sediment transport rates for the case of bedload transport.

  10. The effect of channel height on bubble nucleation in superhydrophobic microchannels due to subcritical heating

    NASA Astrophysics Data System (ADS)

    Cowley, Adam; Maynes, Daniel; Crockett, Julie; Iverson, Brian

    2017-11-01

    This work experimentally investigates the effects of heating on laminar flow in high aspect ratio superhydrophobic (SH) microchannels. When water that is saturated with dissolved air is used, the unwetted cavities of the SH surfaces act as nucleation sites and air effervesces out of solution onto the surfaces. The microchannels consist of a rib/cavity structured SH surface, that is heated, and a glass surface that is utilized for flow visualization. Two channel heights of nominally 183 and 366 μm are considered. The friction factor-Reynolds product (fRe) is obtained via pressure drop and volumetric flow rate measurements and the temperature profile along the channel is obtained via thermocouples embedded in an aluminum block below the SH surface. Five surface types/configurations are investigated: smooth hydrophilic, smooth hydrophobic, SH with ribs perpendicular to the flow, SH with ribs parallel to the flow, and SH with both ribs parallel to the flow and sparse ribs perpendicular to the flow. Depending on the surface type/configuration, large bubbles can form and adversely affect fRe and lead to higher temperatures along the channel. Once bubbles grow large enough, they are expelled from the channel. The channel size greatly effects the residence time of the bubbles and consequently fRe and the channel temperature. This research was supported by the National Science Foundation (NSF) (Grant No. CBET-1235881) and the Utah NASA Space Grant Consortium (NASA Grant NNX15A124H).

  11. Energy efficient window and skylight assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, W.C. Jr.

    1986-03-25

    A totally self-contained apparatus is described for use as a window or skylight assembly, and adapted for simultaneously controlling the amount of both sunlight and air admitted into a building. The apparatus consists of: a head member and a sill member; a first sheet of material through which sunlight can pass, the first sheet of material forming a major portion of the exterior surface of the apparatus and being mounted between the head and sill members; a second sheet of material through which sunlight can pass, the second sheet of material being spaced from the first sheet of material themore » second sheet of material forming a major portion of the interior surface of the window apparatus and being mounted between the head and sill members; first and second window jams positioned between the first and second sheets of material and extending from the head member to the sill member so as to form an essentially enclosed air flow channel; means, positioned in the air flow channel, for regulating the amount of sunlight passing through the apparatus; and ventilation means for directing air through the air flow channel, and comprising a motor-driven fan mounted within the air flow channel at one end thereof so as to circulate air through the air flow channel together with a plurality of apertures disposed in the head and sill members for placing the air flow channel in communication with the interior and exterior of the building and means for selectively opening and closing the apertures whereby air may selectively flow from one of (a) the outside to the inside of the building, (b) from the inside to the outside of the building, (c) from the inside of the building through the air flow channel and back to the inside of the building and (d) from the outside of the building through the air flow channel and back to the outside of the building.« less

  12. Wall Driven Cavity Approach to Slug Flow Modeling In a Micro channel

    NASA Astrophysics Data System (ADS)

    Sahu, Avinash; Kulkarni, Shekhar; Pushpavanam, Subramaniam; Pushpavanam Research League Team, Prof.

    2014-03-01

    Slug flow is a commonly observed stable regime and occurs at relatively low flow rates of the fluids. Wettability of channel decides continuous and discrete phases. In these types of biphasic flows, the fluid - fluid interface acts as a barrier that prohibits species movement across the interface. The flow inside a slug is qualitatively similar to the well known shallow cavity flow. In shallow cavities the flow mimics the ``fully developed'' internal circulation in slug flows. Another approach to slug flow modeling can be in a moving reference frame. Here the wall boundary moves in the direction opposite to that of the flow, hence induces circulations within the phases which is analogous to the well known Lid Driven Cavity. The two parallel walls are moved in the opposite directions which generate circulation patterns, equivalent to the ones regularly observed in slug flow in micro channels. A fourth order stream function equation is solved using finite difference approach. The flow field obtained using the two approaches will be used to analyze the effect on mass transfer and chemical reactions in the micro channel. The internal circulations and the performance of these systems will be validated experimentally.

  13. Wildfire-induced initiation of debris flows in a steep bedrock landscape, San Gabriel Mountains, California

    NASA Astrophysics Data System (ADS)

    Ulizio, T. P.; Palucis, M. C.; Fuller, B. M.; Lamb, M. P.

    2017-12-01

    Steep, rocky landscapes often produce large sediment yields and increased debris flow activity following wildfire. There are two main hypotheses for debris flow initiation in burned regions during rain storms: (1) debris flows initiate from failure of the soil mantle on hillslopes where fire has destroyed root systems resulting in loss of soil strength, and (2) debris flows initiate in river channels that have been loaded by dry ravel following incineration of vegetation dams on hillslopes. To evaluate these hypotheses, we monitored a steep first-order catchment that burned in the 2016 Fish Canyon fire within the front range of the San Gabriel Mountains, CA. Following each post-fire storm, we measured the hillslope and channel topography using UAV imaging and structure-from-motion, and monitored activity during storm events with field cameras. Following the fire, but prior to the first storm event, most of the hillslopes were stripped to bedrock and 0.5 m of dry ravel had accumulated along the length of the channel. By using measurements of sediment storage behind vegetation in a nearby unburned catchment, but with a similar burn history, we found that much of the loose sediment in the channel can be attributed to dry ravel following incineration of vegetation dams. Throughout the rainy season, the catchment produced a series of debris flows that evacuated the accumulated dry ravel in the channel, exposed bedrock in the channel, and built a debris flow fan across a terrace that abuts the downstream end of the channel. Although later storms were larger, most sediment transport occurred during the first few storms, indicating that sediment supply can limit debris flow activity, and that larger storms do not necessarily produce larger debris flows. Our measurements of the volume of the newly formed debris flow fan approximately matches the volume of evacuated ravel from the channel, and we did not observe landslide scars on hillslopes. Together, these observations and mass-balance constraints support the model by which limited hillslope soil in steep rocky landscapes is destabilized as dry ravel following wildfire, leading to infilling of channels with relatively fine and loose sediment that subsequently fails, producing debris flows during rain storms.

  14. Method and apparatus for controlling cross contamination of microfluid channels

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E [Alameda, CA; Paul, Phillip H [Livermore, CA; Arnold, Don W [Livermore, CA

    2006-02-07

    A method for controlling fluid flow at junctions in microchannel systems. Control of fluid flow is accomplished generally by providing increased resistance to electric-field and pressure-driven flow in the form of regions of reduced effective cross-sectional area within the microchannels and proximate a channel junction. By controlling these flows in the region of a microchannel junction it is possible to eliminate sample dispersion and cross contamination and inject well-defined volumes of fluid from one channel to another.

  15. Calibration of optical coherence tomography angiography with a microfluidic chip

    NASA Astrophysics Data System (ADS)

    Su, Johnny P.; Chandwani, Rahul; Gao, Simon S.; Pechauer, Alex D.; Zhang, Miao; Wang, Jie; Jia, Yali; Huang, David; Liu, Gangjun

    2016-08-01

    A microfluidic chip with microchannels ranging from 8 to 96 μm was used to mimic blood vessels down to the capillary level. Blood flow within the microfluidic channels was analyzed with split-spectrum amplitude-decorrelation angiography (SSADA)-based optical coherence tomography (OCT) angiography. It was found that the SSADA decorrelation value was related to both blood flow speed and channel width. SSADA could differentiate nonflowing blood inside the microfluidic channels from static paper. The SSADA decorrelation value was approximately linear with blood flow velocity up to a threshold Vsat of 5.83±1.33 mm/s (mean±standard deviation over the range of channel widths). Beyond this threshold, it approached a saturation value Dsat. Dsat was higher for wider channels, and approached a maximum value Dsm as the channel width became much larger than the beam focal spot diameter. These results indicate that decorrelation values (flow signal) in capillary networks would be proportional to both flow velocity and vessel caliber but would be capped at a saturation value in larger blood vessels. These findings are useful for interpretation and quantification of clinical OCT angiography results.

  16. Quantifying habitat benefits of channel reconfigurations on a highly regulated river system, Lower Missouri River, USA

    USGS Publications Warehouse

    Erwin, Susannah O.; Jacobson, Robert B.; Elliott, Caroline M.

    2017-01-01

    We present a quantitative analysis of habitat availability in a highly regulated lowland river, comparing a restored reach with two reference reaches: an un-restored, channelized reach, and a least-altered reach. We evaluate the effects of channel modifications in terms of distributions of depth and velocity as well as distributions and availability of habitats thought to be supportive of an endangered fish, the pallid sturgeon (Scaphirhynchus albus). It has been hypothesized that hydraulic conditions that support food production and foraging may limit growth and survival of juvenile pallid sturgeon. To evaluate conditions that support these habitats, we constructed two-dimensional hydrodynamic models for the three study reaches, two located in the Lower Missouri River (channelized and restored reaches) and one in the Yellowstone River (least-altered reach). Comparability among the reaches was improved by scaling by bankfull discharge and bankfull channel area. The analysis shows that construction of side-channel chutes and increased floodplain connectivity increase the availability of foraging habitat, resulting in a system that is more similar to the reference reach on the Yellowstone River. The availability of food-producing habitat is low in all reaches at flows less than bankfull, but the two reaches in the Lower Missouri River – channelized and restored – display a threshold-like response as flows overtop channel banks, reflecting the persistent effects of channelization on hydraulics in the main channel. These high lateral gradients result in punctuated ecological events corresponding to flows in excess of bankfull discharge. This threshold effect in the restored reach remains distinct from that of the least-altered reference reach, where hydraulic changes are less abrupt and overbank flows more gradually inundate the adjacent floodplain. The habitat curves observed in the reference reach on the Yellowstone River may not be attainable within the channelized system on the Missouri River, but the documented hydraulic patterns can be used to inform ongoing channel modifications. Although scaling to bankfull dimensions and discharges provides a basis for comparing the three reaches, implementation of the reference reach concept was complicated by differences in flow-frequency distributions among sites. In particular, habitat availability in the least-altered Yellowstone River reach is affected by increased frequency of low-flow events (less than 0.5 times bankfull flow) and moderately high-flow events (greater than 1.5 times bankfull flow) compared to downstream reaches on the Lower Missouri River.

  17. Screening effects in flow through rough channels.

    PubMed

    Andrade, J S; Araújo, A D; Filoche, M; Sapoval, B

    2007-05-11

    A surprising similarity is found between the distribution of hydrodynamic stress on the wall of an irregular channel and the distribution of flux from a purely Laplacian field on the same geometry. This finding is a direct outcome of numerical simulations of the Navier-Stokes equations for flow at low Reynolds numbers in two-dimensional channels with rough walls presenting either deterministic or random self-similar geometries. For high Reynolds numbers, the distribution of wall stresses on deterministic and random fractal rough channels becomes substantially dependent on the microscopic details of the walls geometry. Finally, the effects on the flow behavior of the channel symmetry and aspect ratio are also investigated.

  18. Influential factors on debris flow events and hillslope-channel connectivity in Alpine regions: case studies from two Alpine regions in Styria, Austria

    NASA Astrophysics Data System (ADS)

    Traper, Sandra; Pöppl, Ronald; Rascher, Eric; Sass, Oliver

    2016-04-01

    In recent times different types of natural disasters like debris flow events have attracted increasing attention worldwide, since they can cause great damage and loss of infrastructure or even lives is not unusual when it comes to such an event. The engagement with debris flows is especially important in mountainous areas like Austria, since Alpine regions have proved to be particularly prone to the often harmful consequences of such events because of increasing settlement of previously uninhabited regions. Due to those frequently damaging effects of debris flows, research on this kind of natural disaster often focuses on mitigation and recovery measures after an event and on how to restore the initial situation. However, a view on the situation of an area, where severe debris flows recently occurred and are well documented, before the actual event can aid in discovering important preparatory factors that contribute to initiating debris flows and hillslope-channel connectivity in the first place. Valuable insights into the functioning and preconditions of debris flows and their potential connectivity to the main channel can be gained. The study focuses on two geologically different areas in the Austrian Alps, which are both prone to debris flows and have experienced rather severe events recently. Based on data from debris flow events in two regions in Styria (Austria), the Kleinsölk and the Johnsbach valleys, the aim of the study is to identify factors which influence the development of debris flows and the potential of such debris flows to reach the main channel potentially clogging up the river (hillslope-channel connectivity). The degree of hillslope-channel coupling was verified in extensive TLS and ALS surveys, resulting in DEMs of different resolution and spatial extension. Those factors are obtained, analyzed and evaluated with DEM-based GIS- and statistical analyses. These include factors that are attributed to catchment topography, such as slope angle, curvature, size, shape as well as topographic channel parameters. Together with factors of land cover/use and lithology those features provide the independent variables for further statistical analyses. With the help of several logistic regressions the likelihoods of influencing topographical and lithological factors and factors of land cover/use leading to debris flow events and those for debris flows to reach the main channel (hillslope-channel connectivity) are computed. First results will be presented at the EGU General Assembly 2016.

  19. Stream channel responses to streamflow diversion on small streams of the Snake River drainage, Idaho

    Treesearch

    Carolyn C. Bohn; John G. King

    2000-01-01

    The effects on channels of small, low-head seasonal water diversions in the Snake River drainage were investigated. Channels below small diversions were compared to the channels immediately above the same diversions to determine if differences in flow conveyance, substrate sediment size distribution, or streamside vegetation density were present. Estimates of flow...

  20. Physical context for theoretical approaches to sediment transport magnitude-frequency analysis in alluvial channels

    NASA Astrophysics Data System (ADS)

    Sholtes, Joel; Werbylo, Kevin; Bledsoe, Brian

    2014-10-01

    Theoretical approaches to magnitude-frequency analysis (MFA) of sediment transport in channels couple continuous flow probability density functions (PDFs) with power law flow-sediment transport relations (rating curves) to produce closed-form equations relating MFA metrics such as the effective discharge, Qeff, and fraction of sediment transported by discharges greater than Qeff, f+, to statistical moments of the flow PDF and rating curve parameters. These approaches have proven useful in understanding the theoretical drivers behind the magnitude and frequency of sediment transport. However, some of their basic assumptions and findings may not apply to natural rivers and streams with more complex flow-sediment transport relationships or management and design scenarios, which have finite time horizons. We use simple numerical experiments to test the validity of theoretical MFA approaches in predicting the magnitude and frequency of sediment transport. Median values of Qeff and f+ generated from repeated, synthetic, finite flow series diverge from those produced with theoretical approaches using the same underlying flow PDF. The closed-form relation for f+ is a monotonically increasing function of flow variance. However, using finite flow series, we find that f+ increases with flow variance to a threshold that increases with flow record length. By introducing a sediment entrainment threshold, we present a physical mechanism for the observed diverging relationship between Qeff and flow variance in fine and coarse-bed channels. Our work shows that through complex and threshold-driven relationships sediment transport mode, channel morphology, flow variance, and flow record length all interact to influence estimates of what flow frequencies are most responsible for transporting sediment in alluvial channels.

  1. A weakly nonlinear theory for wave-vortex interactions in curved channel flow

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Erlebacher, Gordon; Zang, Thomas A.

    1992-01-01

    A weakly nonlinear theory is developed to study the interaction of Tollmien-Schlichting (TS) waves and Dean vortices in curved channel flow. The predictions obtained from the theory agree well with results obtained from direct numerical simulations of curved channel flow, especially for low amplitude disturbances. Some discrepancies in the results of a previous theory with direct numerical simulations are resolved.

  2. Capillary flow enhancement in rectangular polymer microchannels with a deformable wall.

    PubMed

    Anoop, R; Sen, A K

    2015-07-01

    We report the capillary flow enhancement in rectangular polymer microchannels, when one of the channel walls is a deformable polymer membrane. We provide detailed insight into the physics of elastocapillary interaction between the capillary flow and elastic membrane, which leads to significant improvements in capillary flow performance. As liquid flows by capillary action in such channels, the deformable wall deflects inwards due to the Young-Laplace pressure drop across the liquid meniscus. This, in turn, decreases the radius of curvature of the meniscus and increases the driving capillary pressure. A theoretical model is proposed to predict the resultant increase in filling speed and rise height, respectively, in deformable horizontal and vertical microchannels having large aspect ratios. A non-dimensional parameter J, which represents the ratio of the capillary force to the mechanical restoring force, is identified to quantify the elastocapillary effects in terms of the improvement in filling speed (for J>0.238) and the condition for channel collapse (J>1). The theoretical predictions show good agreement with experimental data obtained using deformable rectangular poly(dimethylsiloxane) microchannels. Both model predictions and experimental data show that over 15% improvement in the Washburn coefficient in horizontal channels, and over 30% improvement in capillary rise height in vertical channels, are possible prior to channel collapse. The proposed technique of using deformable membranes as channel walls is a viable method for capillary flow enhancement in microfluidic devices.

  3. Thin-channel electrospray emitter

    DOEpatents

    Van Berkel, Gary J.

    2004-08-31

    An electrospray device includes a high voltage electrode chamber. The high voltage electrode chamber includes an inlet for receiving a fluid to be ionized and for directing the fluid into the chamber and at least one electrode having an exposed surface within the chamber. A flow channel directs fluid over a surface of the electrode and out of the chamber. The length of the flow channel over the electrode is greater than the height of the flow channel over the electrode, thereby producing enhanced mass transport to the working electrode resulting in improved electrolysis efficiency. An outlet is provided for transmitting the fluid out from the electrode chamber. A method of creating charged droplets includes flowing a fluid over an electrode where the length over the electrode is greater than the height of the fluid flowing over the electrode.

  4. Effect of ceramic membrane channel geometry and uniform transmembrane pressure on limiting flux and serum protein removal during skim milk microfiltration.

    PubMed

    Adams, Michael C; Hurt, Emily E; Barbano, David M

    2015-11-01

    Our objectives were to determine the effects of a ceramic microfiltration (MF) membrane's retentate flow channel geometry (round or diamond-shaped) and uniform transmembrane pressure (UTP) on limiting flux (LF) and serum protein (SP) removal during skim milk MF at a temperature of 50°C, a retentate protein concentration of 8.5%, and an average cross-flow velocity of 7 m·s(-1). Performance of membranes with round and diamond flow channels was compared in UTP mode. Performance of the membrane with round flow channels was compared with and without UTP. Using UTP with round flow channel MF membranes increased the LF by 5% when compared with not using UTP, but SP removal was not affected by the use of UTP. Using membranes with round channels instead of diamond-shaped channels in UTP mode increased the LF by 24%. This increase was associated with a 25% increase in Reynolds number and can be explained by lower shear at the vertices of the diamond-shaped channel's surface. The SP removal factor of the diamond channel system was higher than the SP removal factor of the round channel system below the LF. However, the diamond channel system passed more casein into the MF permeate than the round channel system. Because only one batch of each membrane was tested in our study, it was not possible to determine if the differences in protein rejection between channel geometries were due to the membrane design or random manufacturing variation. Despite the lower LF of the diamond channel system, the 47% increase in membrane module surface area of the diamond channel system produced a modular permeate removal rate that was at least 19% higher than the round channel system. Consequently, using diamond channel membranes instead of round channel membranes could reduce some of the costs associated with ceramic MF of skim milk if fewer membrane modules could be used to attain the required membrane area. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Effect of Levee and Channel Structures on Long Lava Flow Emplacement: Martian Examples from THEMIS and MOLA Data

    NASA Technical Reports Server (NTRS)

    Peitersen, M. N.; Zimbelman, J. R.; Christensen, P. R.; Bare, C.

    2003-01-01

    Long lava flows (discrete flow units with lengths exceeding 50 km) are easily identified features found on many planetary surfaces. An ongoing investigation is being conducted into the origin of these flows. Here, we limit our attention to long lava flows which show evidence of channel-like structures.

  6. Laser beam micro-milling of nickel alloy: dimensional variations and RSM optimization of laser parameters

    NASA Astrophysics Data System (ADS)

    Ahmed, Naveed; Alahmari, Abdulrahman M.; Darwish, Saied; Naveed, Madiha

    2016-12-01

    Micro-channels are considered as the integral part of several engineering devices such as micro-channel heat exchangers, micro-coolers, micro-pulsating heat pipes and micro-channels used in gas turbine blades for aerospace applications. In such applications, a fluid flow is required to pass through certain micro-passages such as micro-grooves and micro-channels. The fluid flow characteristics (flow rate, turbulence, pressure drop and fluid dynamics) are mainly established based on the size and accuracy of micro-passages. Variations (oversizing and undersizing) in micro-passage's geometry directly affect the fluid flow characteristics. In this study, the micro-channels of several sizes are fabricated in well-known aerospace nickel alloy (Inconel 718) through laser beam micro-milling. The variations in geometrical characteristics of different-sized micro-channels are studied under the influences of different parameters of Nd:YAG laser. In order to have a minimum variation in the machined geometries of each size of micro-channel, the multi-objective optimization of laser parameters has been carried out utilizing the response surface methodology approach. The objective was set to achieve the targeted top widths and depths of micro-channels with minimum degree of taperness associated with the micro-channel's sidewalls. The optimized sets of laser parameters proposed for each size of micro-channel can be used to fabricate the micro-channels in Inconel 718 with minimum amount of geometrical variations.

  7. Hydrodynamic characteristics of viscous fluid flow in screw channels formed by two ribs

    NASA Astrophysics Data System (ADS)

    Kadyirov, A. I.; Abaydullin, B. R.; Vachagina, E. K.

    2018-03-01

    The mathematical model of laminar viscous flows in screw channels, formed by two ribs, is developed using the helical coordinates. The numerical results of the flow with helical symmetry are presented.

  8. Fluid flow plate for decreased density of fuel cell assembly

    DOEpatents

    Vitale, Nicholas G.

    1999-01-01

    A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.

  9. Seismic signals of snow-slurry lahars in motion: 25 September 2007, Mt Ruapehu, New Zealand

    NASA Astrophysics Data System (ADS)

    Cole, S. E.; Cronin, S. J.; Sherburn, S.; Manville, V.

    2009-05-01

    Detection of ground shaking forms the basis of many lahar-warning systems. Seismic records of two lahar types at Ruapehu, New Zealand, in 2007 are used to examine their nature and internal dynamics. Upstream detection of a flow depends upon flow type and coupling with the ground. 3-D characteristics of seismic signals can be used to distinguish the dominant rheology and gross physical composition. Water-rich hyperconcentrated flows are turbulent; common inter-particle and particle-substrate collisions engender higher energy in cross-channel vibrations relative to channel-parallel. Plug-like snow-slurry lahars show greater energy in channel-parallel signals, due to lateral deposition insulating channel margins, and low turbulence. Direct comparison of flow size must account for flow rheology; a water-rich lahar will generate signals of greater amplitude than a similar-sized snow-slurry flow.

  10. Three-dimensional analysis of flow-chemical interaction within a single square channel of a lean NO x trap catalyst.

    PubMed

    Fornarelli, Francesco; Dadduzio, Ruggiero; Torresi, Marco; Camporeale, Sergio Mario; Fortunato, Bernardo

    2018-02-01

    A fully 3D unsteady Computational Fluid Dynamics (CFD) approach coupled with heterogeneous reaction chemistry is presented in order to study the behavior of a single square channel as part of a Lean [Formula: see text] Traps. The reliability of the numerical tool has been validated against literature data considering only active BaO site. Even though the input/output performance of such catalyst has been well known, here the spatial distribution within a single channel is investigated in details. The square channel geometry influences the flow field and the catalyst performance being the flow velocity distribution on the cross section non homogeneous. The mutual interaction between the flow and the active catalyst walls influences the spatial distribution of the volumetric species. Low velocity regions near the square corners and transversal secondary flows are shown in several cross-sections along the streamwise direction at different instants. The results shed light on the three-dimensional characteristic of both the flow field and species distribution within a single square channel of the catalyst with respect to 0-1D approaches.

  11. Electro-osmotic flow in a rotating rectangular microchannel

    PubMed Central

    Ng, Chiu-On; Qi, Cheng

    2015-01-01

    An analytical model is presented for low-Rossby-number electro-osmotic flow in a rectangular channel rotating about an axis perpendicular to its own. The flow is driven under the combined action of Coriolis, pressure, viscous and electric forces. Analytical solutions in the form of eigenfunction expansions are developed for the problem, which is controlled by the rotation parameter (or the inverse Ekman number), the Debye parameter, the aspect ratio of the channel and the distribution of zeta potentials on the channel walls. Under the conditions of fast rotation and a thin electric double layer (EDL), an Ekman–EDL develops on the horizontal walls. This is essentially an Ekman layer subjected to electrokinetic effects. The flow structure of this boundary layer as a function of the Ekman layer thickness normalized by the Debye length is investigated in detail in this study. It is also shown that the channel rotation may have qualitatively different effects on the flow rate, depending on the channel width and the zeta potential distributions. Axial and secondary flows are examined in detail to reveal how the development of a geostrophic core may lead to a rise or fall of the mean flow. PMID:26345088

  12. Jetting of a shear banding fluid in rectangular ducts

    PubMed Central

    Salipante, Paul F.; Little, Charles A. E.; Hudson, Steven D.

    2017-01-01

    Non-Newtonian fluids are susceptible to flow instabilities such as shear banding, in which the fluid may exhibit a markedly discontinuous viscosity at a critical stress. Here we report the characteristics and causes of a jetting flow instability of shear banding wormlike micelle solutions in microfluidic channels with rectangular cross sections over an intermediate volumetric flow regime. Particle-tracking methods are used to measure the three-dimensional flow field in channels of differing aspect ratios, sizes, and wall materials. When jetting occurs, it is self-contained within a portion of the channel where the flow velocity is greater than the surroundings. We observe that the instability forms in channels with aspect ratio greater than 5, and that the location of the high-velocity jet appears to be sensitive to stress localizations. Jetting is not observed in a lower concentration solution without shear banding. Simulations using the Johnson-Segalman viscoelastic model show a qualitatively similar behavior to the experimental observations and indicate that compressive normal stresses in the cross-stream directions support the development of the jetting flow. Our results show that nonuniform flow of shear thinning fluids can develop across the wide dimension in rectangular microfluidic channels, with implications for microfluidic rheometry. PMID:28691108

  13. Flow over a membrane-covered, fluid-filled cavity.

    PubMed

    Thomson, Scott L; Mongeau, Luc; Frankel, Steven H

    2007-01-01

    The flow-induced response of a membrane covering a fluid-filled cavity located in a section of a rigid-walled channel was explored using finite element analysis. The membrane was initially aligned with the channel wall and separated the channel fluid from the cavity fluid. As fluid flowed over the membrane-covered cavity, a streamwise-dependent transmural pressure gradient caused membrane deformation. This model has application to synthetic models of the vocal fold cover layer used in voice production research. In this paper, the model is introduced and responses of the channel flow, the membrane, and the cavity flow are summarized for a range of flow and membrane parameters. It is shown that for high values of cavity fluid viscosity, the intracavity pressure and the beam deflection both reached steady values. For combinations of low cavity viscosity and sufficiently large upstream pressures, large-amplitude membrane vibrations resulted. Asymmetric conditions were introduced by creating cavities on opposing sides of the channel and assigning different stiffness values to the two membranes. The asymmetry resulted in reduction in or cessation of vibration amplitude, depending on the degree of asymmetry, and in significant skewing of the downstream flow field.

  14. Streamline curvature in supersonic shear layers

    NASA Technical Reports Server (NTRS)

    Kibens, V.

    1992-01-01

    Results of an experimental investigation in which a curved shear layer was generated between supersonic flow from a rectangular converging/diverging nozzle and the freestream in a series of open channels with varying radii of curvature are reported. The shear layers exhibit unsteady large-scale activity at supersonic pressure ratios, indicating increased mixing efficiency. This effect contrasts with supersonic flow in a straight channel, for which no large-scale vortical structure development occurs. Curvature must exceed a minimum level before it begins to affect the dynamics of the supersonic shear layer appreciably. The curved channel flows are compared with reference flows consisting of a free jet, a straight channel, and wall jets without sidewalls on a flat and a curved plate.

  15. Liquid Jet Cavitation via Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Ashurst, W. T.

    1997-11-01

    A two-dimensional molecular dynamics simulation of a liquid jet is used to investigate cavitation in a diesel-like fuel injector. A channel with a length four times its width has been examined at various system sizes (widths of 20 to 160 σ, where σ is the zero energy location in the Lennard-Jones potential). The wall boundary condition is Maxwell's diffuse reflection, similar to the work by Sun & Ebner (Phys. Rev A 46, 4813, 1992). Currently, the jet exhausts into a vacuum, but a second, low density gas will be incorporated to represent the compressed air in a diesel chamber. Four different flow rates are examined. With ρ U equal to √mɛ/σ^2 (the largest flow rate) the static pressure decreases by a factor of twenty between the channel entrance and exit. The largest flow rate has a parabolic velocity profile with almost constant density across the channel. The smallest flow rate has the same velocity profile but the density exhibits a large variation, with the minimum value in the channel center. Thus, the product ρ U is nearly constant across the channel at this flow rate. The discharge coefficient CD has a small variation with flow rate, but the velocity coefficient CV varies with the amount of two-phase fluid within the channel. The ratio of CV to CD varies from 1.3 (largest flow rate) to 2.0 (the smallest flow rate, which is one-eighth of the largest).

  16. Generic theory for channel sinuosity.

    PubMed

    Lazarus, Eli D; Constantine, José Antonio

    2013-05-21

    Sinuous patterns traced by fluid flows are a ubiquitous feature of physical landscapes on Earth, Mars, the volcanic floodplains of the Moon and Venus, and other planetary bodies. Typically discussed as a consequence of migration processes in meandering rivers, sinuosity is also expressed in channel types that show little or no indication of meandering. Sinuosity is sometimes described as "inherited" from a preexisting morphology, which still does not explain where the inherited sinuosity came from. For a phenomenon so universal as sinuosity, existing models of channelized flows do not explain the occurrence of sinuosity in the full variety of settings in which it manifests, or how sinuosity may originate. Here we present a generic theory for sinuous flow patterns in landscapes. Using observations from nature and a numerical model of flow routing, we propose that flow resistance (representing landscape roughness attributable to topography or vegetation density) relative to surface slope exerts a fundamental control on channel sinuosity that is effectively independent of internal flow dynamics. Resistance-dominated surfaces produce channels with higher sinuosity than those of slope-dominated surfaces because increased resistance impedes downslope flow. Not limited to rivers, the hypothesis we explore pertains to sinuosity as a geomorphic pattern. The explanation we propose is inclusive enough to account for a wide variety of sinuous channel types in nature, and can serve as an analytical tool for determining the sinuosity a landscape might support.

  17. Nanoscale Capillary Flows in Alumina: Testing the Limits of Classical Theory.

    PubMed

    Lei, Wenwen; McKenzie, David R

    2016-07-21

    Anodic aluminum oxide (AAO) membranes have well-formed cylindrical channels, as small as 10 nm in diameter, in a close packed hexagonal array. The channels in AAO membranes simulate very small leaks that may be present for example in an aluminum oxide device encapsulation. The 10 nm alumina channel is the smallest that has been studied to date for its moisture flow properties and provides a stringent test of classical capillary theory. We measure the rate at which moisture penetrates channels with diameters in the range of 10 to 120 nm with moist air present at 1 atm on one side and dry air at the same total pressure on the other. We extend classical theory for water leak rates at high humidities by allowing for variable meniscus curvature at the entrance and show that the extended theory explains why the flow increases greatly when capillary filling occurs and enables the contact angle to be determined. At low humidities our measurements for air-filled channels agree well with theory for the interdiffusive flow of water vapor in air. The flow rate of water-filled channels is one order of magnitude less than expected from classical capillary filling theory and is coincidentally equal to the helium flow rate, validating the use of helium leak testing for evaluating moisture flows in aluminum oxide leaks.

  18. Hydrogeomorphic linkages of sediment transport in headwater streams, Maybeso Experimental Forest, southeast Alaska

    NASA Astrophysics Data System (ADS)

    Gomi, Takashi; Sidle, Roy C.; Swanston, Douglas N.

    2004-03-01

    Hydrogemorphic linkages related to sediment transport in headwater streams following basin wide clear-cut logging on Prince of Wales Island, southeast Alaska, were investigated. Landslides and debris flows transported sediment and woody debris in headwater tributaries in 1961, 1979, and 1993. Widespread landsliding in 1961 and 1993 was triggered by rainstorms with recurrence intervals (24 h precipitation) of 7.0 years and 4.2 years respectively. Occurrence, distribution, and downstream effects of these mass movements were controlled by landform characteristics such as channel gradient and valley configuration. Landslides and channelized debris flows created exposed bedrock reaches, log jams, fans, and abandoned channels. The terminus of the deposits did not enter main channels because debris flows spread and thinned on the unconfined bottom of the U-shaped glaciated valley. Chronic sediment input to channels included surface erosion of exposed till (rain splash, sheet erosion, and freeze-thaw action) and bank failures. Bedload sediment transport in a channel impacted by 1993 landslides and debris flows was two to ten times greater and relatively finer compared with bedload transport in a young alder riparian channel that had last experienced a landslide and debris flow in 1961. Sediment transport and storage were influenced by regeneration of riparian vegetation, storage behind recruited woody debris, development of a streambed armour layer, and the decoupling of hillslopes and channels. Both spatial and temporal variations of sediment movement and riparian condition are important factors in understanding material transport within headwaters and through channel networks.

  19. Intrinsic particle-induced lateral transport in microchannels

    PubMed Central

    Amini, Hamed; Sollier, Elodie; Weaver, Westbrook M.; Di Carlo, Dino

    2012-01-01

    In microfluidic systems at low Reynolds number, the flow field around a particle is assumed to maintain fore-aft symmetry, with fluid diverted by the presence of a particle, returning to its original streamline downstream. This current model considers particles as passive components of the system. However, we demonstrate that at finite Reynolds number, when inertia is taken into consideration, particles are not passive elements in the flow but significantly disturb and modify it. In response to the flow field, particles translate downstream while rotating. The combined effect of the flow of fluid around particles, particle rotation, channel confinement (i.e., particle dimensions approaching those of the channel), and finite fluid inertia creates a net recirculating flow perpendicular to the primary flow direction within straight channels that resembles the well-known Dean flow in curved channels. Significantly, the particle generating this flow remains laterally fixed as it translates downstream and only the fluid is laterally transferred. Therefore, as the particles remain inertially focused, operations can be performed around the particles in a way that is compatible with downstream assays such as flow cytometry. We apply this particle-induced transfer to perform fluid switching and mixing around rigid microparticles as well as deformable cells. This transport phenomenon, requiring only a simple channel geometry with no external forces to operate, offers a practical approach for fluid transfer at high flow rates with a wide range of applications, including sample preparation, flow reaction, and heat transfer. PMID:22761309

  20. A three-dimensional dynamical model for channeled lava flow with nonlinear rheology

    NASA Astrophysics Data System (ADS)

    Filippucci, Marilena; Tallarico, Andrea; Dragoni, Michele

    2010-05-01

    Recent laboratory studies on the rheology of lava samples from different volcanic areas have highlighted that the apparent viscosity depends on a power of the strain rate. Several authors agree in attributing this dependence to the crystal content of the sample and to temperature. Starting from these results, in this paper we studied the effect of a power law rheology on a gravity-driven lava flow. The equation of motion is nonlinear in the diffusion term, and an analytical solution does not seem to be possible. The finite-volume method has been applied to solve numerically the equation governing the fully developed laminar flow of a power law non-Newtonian fluid in an inclined rectangular channel. The convergence, the stability, and the order of approximation were tested for the Newtonian rheology case, comparing the numerical solution with the available analytical solution. Results indicate that the assumption on the rheology, whether linear or nonlinear, strongly affects the velocity and/or the thickness of the lava channel both for channels with fixed geometry and for channels with constant flow rate. Results on channels with fixed geometry are confirmed by some simulations for real lava channels. Finally, the study of the Reynolds number indicates that gravity-driven lava channel flows are always in laminar regime, except for strongly nonlinear pseudoplastic fluids with low fluid consistency and at high slopes.

  1. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.; Smith, Alvin

    1990-01-01

    The use of flow boiling for thermal energy transport is intended to provide an alternative for accommodating higher heat fluxes in commercial space systems. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls, spiral fins, or both spiral fins and a twisted tape; (2) examine the effects of channel diameter and subcooling; and (3) develop an improved reduction analysis and/or suggest possible heat transfer correlation of the present data. Freon-11 is the working fluid. Two-dimensional (circumferential and axial) wall temperature distributions were measured for coolant channels with the above noted internal geometries. The flow regimes which are being studied are: (1) single phase; (2) subcooled flow boiling; and (3) stratified flow boiling. The inside diameter of all test sections is near 1.0 cm. Cicumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a mass velocity of 210 kg/sq m s, an exit pressure of 0.19 MPa (absolute), and an inlet subcooling of 20.8 C. Overall (averaged over the entire channel) heat transfer coefficients were compared for the above channel geometries. This comparison showed that the channel with large pitch spiral fins had higher heat transfer coefficients at all power levels.

  2. Application of the Shiono and Knight Method in asymmetric compound channels with different side slopes of the internal wall

    NASA Astrophysics Data System (ADS)

    Alawadi, Wisam; Al-Rekabi, Wisam S.; Al-Aboodi, Ali H.

    2018-03-01

    The Shiono and Knight Method (SKM) is widely used to predict the lateral distribution of depth-averaged velocity and boundary shear stress for flows in compound channels. Three calibrating coefficients need to be estimated for applying the SKM, namely eddy viscosity coefficient ( λ), friction factor ( f) and secondary flow coefficient ( k). There are several tested methods which can satisfactorily be used to estimate λ, f. However, the calibration of secondary flow coefficients k to account for secondary flow effects correctly is still problematic. In this paper, the calibration of secondary flow coefficients is established by employing two approaches to estimate correct values of k for simulating asymmetric compound channel with different side slopes of the internal wall. The first approach is based on Abril and Knight (2004) who suggest fixed values for main channel and floodplain regions. In the second approach, the equations developed by Devi and Khatua (2017) that relate the variation of the secondary flow coefficients with the relative depth ( β) and width ratio ( α) are used. The results indicate that the calibration method developed by Devi and Khatua (2017) is a better choice for calibrating the secondary flow coefficients than using the first approach which assumes a fixed value of k for different flow depths. The results also indicate that the boundary condition based on the shear force continuity can successfully be used for simulating rectangular compound channels, while the continuity of depth-averaged velocity and its gradient is accepted boundary condition in simulations of trapezoidal compound channels. However, the SKM performance for predicting the boundary shear stress over the shear layer region may not be improved by only imposing the suitable calibrated values of secondary flow coefficients. This is because difficulties of modelling the complex interaction that develops between the flows in the main channel and on the floodplain in this region.

  3. The relationship between dynamic and average flow rates of the coolant in the channels of complex shape

    NASA Astrophysics Data System (ADS)

    Fedoseev, V. N.; Pisarevsky, M. I.; Balberkina, Y. N.

    2018-01-01

    This paper presents interconnection of dynamic and average flow rates of the coolant in a channel of complex geometry that is a basis for a generalization model of experimental data on heat transfer in various porous structures. Formulas for calculation of heat transfer of fuel rods in transversal fluid flow are acquired with the use of the abovementioned model. It is shown that the model describes a marginal case of separated flows in twisting channels where coolant constantly changes its flow direction and mixes in the communicating channels with large intensity. Dynamic speed is suggested to be identified by power for pumping. The coefficient of proportionality in general case depends on the geometry of the channel and the Reynolds number (Re). A calculation formula of the coefficient of proportionality for the narrow line rod packages is provided. The paper presents a comparison of experimental data and calculated values, which shows usability of the suggested models and calculation formulas.

  4. Basic hydraulic principles of open-channel flow

    USGS Publications Warehouse

    Jobson, Harvey E.; Froehlich, David C.

    1988-01-01

    The three basic principles of open-channel-flow analysis--the conservation of mass, energy, and momentum--are derived, explained, and applied to solve problems of open-channel flow. These principles are introduced at a level that can be comprehended by a person with an understanding of the principles of physics and mechanics equivalent to that presented in the first college level course of the subject. The reader is assumed to have a working knowledge of algebra and plane geometry as well as some knowledge of calculus. Once the principles have been derived, a number of example applications are presented that illustrate the computation of flow through culverts and bridges, and over structures, such as dams and weirs. Because resistance to flow is a major obstacle to the successful application of the energy principle to open-channel flow, procedures are outlined for the rational selection of flow resistance coefficients. The principle of specific energy is shown to be useful in the prediction of water-surface profiles both in the qualitative and quantitative sense. (USGS)

  5. A study of methods to estimate debris flow velocity

    USGS Publications Warehouse

    Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.

    2008-01-01

    Debris flow velocities are commonly back-calculated from superelevation events which require subjective estimates of radii of curvature of bends in the debris flow channel or predicted using flow equations that require the selection of appropriate rheological models and material property inputs. This research investigated difficulties associated with the use of these conventional velocity estimation methods. Radii of curvature estimates were found to vary with the extent of the channel investigated and with the scale of the media used, and back-calculated velocities varied among different investigated locations along a channel. Distinct populations of Bingham properties were found to exist between those measured by laboratory tests and those back-calculated from field data; thus, laboratory-obtained values would not be representative of field-scale debris flow behavior. To avoid these difficulties with conventional methods, a new preliminary velocity estimation method is presented that statistically relates flow velocity to the channel slope and the flow depth. This method presents ranges of reasonable velocity predictions based on 30 previously measured velocities. ?? 2008 Springer-Verlag.

  6. Fabrication of microfluidic architectures for optimal flow rate and concentration measurement for lab on chip application

    NASA Astrophysics Data System (ADS)

    Adam, Tijjani; Hashim, U.

    2017-03-01

    Optimum flow in micro channel for sensing purpose is challenging. In this study, The optimizations of the fluid sample flows are made through the design and characterization of the novel microfluidics' architectures to achieve the optimal flow rate in the micro channels. The biocompatibility of the Polydimetylsiloxane (Sylgard 184 silicon elastomer) polymer used to fabricate the device offers avenue for the device to be implemented as the universal fluidic delivery system for bio-molecules sensing in various bio-medical applications. The study uses the following methodological approaches, designing a novel microfluidics' architectures by integrating the devices on a single 4 inches silicon substrate, fabricating the designed microfluidic devices using low-cost solution soft lithography technique, characterizing and validating the flow throughput of urine samples in the micro channels by generating pressure gradients through the devices' inlets. The characterization on the urine samples flow in the micro channels have witnessed the constant flow throughout the devices.

  7. An alternative method for calibration of flow field flow fractionation channels for hydrodynamic radius determination: The nanoemulsion method (featuring multi angle light scattering).

    PubMed

    Bolinsson, Hans; Lu, Yi; Hall, Stephen; Nilsson, Lars; Håkansson, Andreas

    2018-01-19

    This study suggests a novel method for determination of the channel height in asymmetrical flow field-flow fractionation (AF4), which can be used for calibration of the channel for hydrodynamic radius determinations. The novel method uses an oil-in-water nanoemulsion together with multi angle light scattering (MALS) and elution theory to determine channel height from an AF4 experiment. The method is validated using two orthogonal methods; first, by using standard particle elution experiments and, secondly, by imaging an assembled and carrier liquid filled channel by x-ray computed tomography (XCT). It is concluded that the channel height can be determined with approximately the same accuracy as with the traditional channel height determination technique. However, the nanoemulsion method can be used under more challenging conditions than standard particles, as the nanoemulsion remains stable in a wider pH range than the previously used standard particles. Moreover, the novel method is also more cost effective. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Geomorphic impacts of flash flooding in a forested headwater basin

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan D.

    2002-12-01

    Geomorphic impacts of a July 2001 flood in the Hungry Mother basin near Marion, Virginia, were examined to shed light on the relationships between channel characteristics and the frequency of channel-modifying discharges. Creeks in the study area have been observed for many years, with no significant channel changes since at least 1985. The 2001 flood had a recurrence interval of >200 years, and caused the only channel change, bank erosion, and transport of coarse channel material observed in recent decades. The paucity of fines in channels before or after the flood, and the absence of sub-sand sized material in the flood deposits, indicates that normal, frequent, well-below-bankfull flows are sufficient to transport the (apparently limited) supply of fines. The large particles transported during the 2001 flood after years of inactivity indicate that relatively rare floods are necessary to mobilize this material. This suggests the notion of a bimodal 'dominant' discharge. On the one hand frequent flows considerably below bankfull levels are sufficient to maintain the channel and prevent significant accumulation of fine sediments and organic matter. On the other hand, rare floods are necessary to transport the coarser bed material and erode channel banks. In the Hungry Mother area, bed material has no relationship to normal flows, or to flows with recurrence intervals on the order of 1-3 years. Bankfull discharge is apparently not related to either the maintenance or channel-changing dominant discharges. These results suggest that the use of channel dimensions and/or bed material as surrogate indicators of hydrologic regimes can be quite complicated, and that in some streams bankfull flow has no particular significance in terms of sediment transport and channel modifications.

  9. Systematic characterization of degas-driven flow for poly(dimethylsiloxane) microfluidic devices

    DOE PAGES

    Liang, David Y.; Tentori, Augusto M.; Dimov, Ivan K.; ...

    2011-01-01

    Degas-driven flow is a novel phenomenon used to propel fluids in poly(dimethylsiloxane) (PDMS)-based microfluidic devices without requiring any external power. This method takes advantage of the inherently high porosity and air solubility of PDMS by removing air molecules from the bulk PDMS before initiating the flow. The dynamics of degas-driven flow are dependent on the channel and device geometries and are highly sensitive to temporal parameters. These dependencies have not been fully characterized, hindering broad use of degas-driven flow as a microfluidic pumping mechanism. Here, we characterize, for the first time, the effect of various parameters on the dynamics ofmore » degas-driven flow, including channel geometry, PDMS thickness, PDMS exposure area, vacuum degassing time, and idle time at atmospheric pressure before loading. We investigate the effect of these parameters on flow velocity as well as channel fill time for the degas-driven flow process. Using our devices, we achieved reproducible flow with a standard deviation of less than 8% for flow velocity, as well as maximum flow rates of up to 3 nL/s and mean flow rates of approximately 1-1.5 nL/s. Parameters such as channel surface area and PDMS chip exposure area were found to have negligible impact on degas-driven flow dynamics, whereas channel cross-sectional area, degas time, PDMS thickness, and idle time were found to have a larger impact. In addition, we develop a physical model that can predict mean flow velocities within 6% of experimental values and can be used as a tool for future design of PDMS-based microfluidic devices that utilize degas-driven flow.« less

  10. Nonlinear elastic instability in channel flows at low Reynolds numbers.

    PubMed

    Pan, L; Morozov, A; Wagner, C; Arratia, P E

    2013-04-26

    It is presently believed that flows of viscoelastic polymer solutions in geometries such as a straight pipe or channel are linearly stable. Here we present experimental evidence that such flows can be nonlinearly unstable and can exhibit a subcritical bifurcation. Velocimetry measurements are performed in a long, straight microchannel; flow disturbances are introduced at the entrance of the channel system by placing a variable number of obstacles. Above a critical flow rate and a critical size of the perturbation, a sudden onset of large velocity fluctuations indicates the presence of a nonlinear subcritical instability. Together with the previous observations of hydrodynamic instabilities in curved geometries, our results suggest that any flow of polymer solutions becomes unstable at sufficiently high flow rates.

  11. The Transport of Salt and Water across Isolated Rat Ileum

    PubMed Central

    Clarkson, T. W.

    1967-01-01

    The flows of sodium, potassium, and chloride under electrical and chemical gradients and of salt and water in the presence of osmotic pressure gradients are described by phenomenological equations based on the thermodynamics of irreversible processes. The aim was to give the simplest possible description, that is to postulate the least number of active transport processes and the least number of separate pathways across the intestine. On this basis, the results were consistent with the following picture of the intestine: Two channels exist across this tissue, one allowing only passive transport of ions and the other only active. In the passive channel, the predominant resistance to ion flow is friction with the water in the channel. The electroosmotic flow indicates that the passive channel is lined with negative fixed charged groups having a surface charge density of 3000 esu cm-2. The values of the ion-water frictional coefficients, and the relationship between ionic concentrations and flows indicate that the passive channel is extracellular. The active channel behaves as two membranes in series, the first membrane being semipermeable but allowing active transport of sodium, and the second membrane being similar to the passive channel. Friction with the ions in the second "membrane" is the predominant resistance to water flow. PMID:11526854

  12. Flow model for open-channel reach or network

    USGS Publications Warehouse

    Schaffranek, R.W.

    1987-01-01

    Formulation of a one-dimensional model for simulating unsteady flow in a single open-channel reach or in a network of interconnected channels is presented. The model is both general and flexible in that it can be used to simulate a wide range of flow conditions for various channel configurations. It is based on a four-point (box), implicit, finite-difference approximation of the governing nonlinear flow equations with user-definable weighting coefficients to permit varying the solution scheme from box-centered to fully forward. Unique transformation equations are formulated that permit correlation of the unknowns at the extremities of the channels, thereby reducing coefficient matrix and execution time requirements. Discharges and water-surface elevations computed at intermediate locations within a channel are determined following solution of the transformation equations. The matrix of transformation and boundary-condition equations is solved by Gauss elimination using maximum pivot strategy. Two diverse applications of the model are presented to illustrate its broad utility. (USGS)

  13. A novel microfluidic valve controlledby induced charge electro-osmotic flow

    NASA Astrophysics Data System (ADS)

    Wang, Chengfa; Song, Yongxin; Pan, Xinxiang; Li, Dongqing

    2016-07-01

    In this paper, a novel microfluidic valve by utilizing induced charge electro-osmotic flow (ICEOF) is proposed and analyzed. The key part of the microfluidic valve is a Y-shaped microchannel. A small metal plate is placed at each corner of the junction of the Y-shaped microchannel. When a DC electrical field is applied through the channels, electro-osmotic flows occur in the channels, and two vortices will be formed near each of the metal plates due to the ICEOF. The two vortices behave like virtual ‘blocking columns’ to restrain and direct the flow in the Y-channel. In this paper, effects of the length of the metal plates, the applied voltages, the width of the microchannel, the zeta potential of the non-metal microchannel wall, and the orientation of the branch channels on the flow switching between two outlet channels are numerically investigated. The results show that the flow switching between the two outlet channels can be flexibly achieved by adjusting the applied DC voltages. The critical switching voltage (CSV), under which one outlet channel is closed, decreases with the increase in the metal plate length and the orientation angle of the outlet channels. The CSV, however, increases with the increase in the inlet voltage, the width of the microchannel, and the absolute value of the zeta potential of the non-metal microchannel wall. Compared with other types of micro-valves, the proposed micro-valve is simple in structure without any moving parts. Only a DC power source is needed for its actuation, thus it can operate automatically by controlling the applied voltages.

  14. Large woody debris and flow resistance in step-pool channels, Cascade Range, Washington

    USGS Publications Warehouse

    Curran, Janet H.; Wohl, Ellen E.

    2003-01-01

    Total flow resistance, measured as Darcy-Weisbach f, in 20 step-pool channels with large woody debris (LWD) in Washington, ranged from 5 to 380 during summer low flows. Step risers in the study streams consist of either (1) large and relatively immobile woody debris, bedrock, or roots that form fixed, or “forced,” steps, or (2) smaller and relatively mobile wood or clasts, or a mixture of both, arranged across the channel by the stream. Flow resistance in step-pool channels may be partitioned into grain, form, and spill resistance. Grain resistance is calculated as a function of particle size, and form resistance is calculated as large woody debris drag. Combined, grain and form resistance account for less than 10% of the total flow resistance. We initially assumed that the substantial remaining portion is spill resistance attributable to steps. However, measured step characteristics could not explain between-reach variations in flow resistance. This suggests that other factors may be significant; the coefficient of variation of the hydraulic radius explained 43% of the variation in friction factors between streams, for example. Large woody debris generates form resistance on step treads and spill resistance at step risers. Because the form resistance of step-pool channels is relatively minor compared to spill resistance and because wood in steps accentuates spill resistance by increasing step height, we suggest that wood in step risers influences channel hydraulics more than wood elsewhere in the channel. Hence, the distribution and function, not just abundance, of large woody debris is critical in steep, step-pool channels.

  15. Of Magic Carpets, Rolling Snowballs, and Sleeping Dragons: an Energetics-based Classification for Hillslope/channel Interactions

    NASA Astrophysics Data System (ADS)

    Grant, G.; Cashman, K.; O'Connor, J.

    2007-12-01

    Interactions between hillslopes and channels can include a diverse range of geophysical processes, including debris flows, landslides, water floods, and volcanic flows. Each has its own characteristic time-energy trajectory. In some cases the energy of an event increases as it propagates through a landscape, primarily through the addition of mass and momentum; examples of these"rolling snowball" include the initiation and runout phases of volcanic lahars, avalanches, and debris flows. In other cases, loss of both mass and momentum from a moving body or fluid causes the energy of an event to dissipate with distance, similar to the unwinding of a rug; examples of these "magic carpets" include the depositional phases of lahars, pyroclastic flows, lava flows, and debris flows. Both snowballs and carpets leave distinctive imprints or tracks on the landscape that reflect the resultant mass flux from hill slope to channel. The efficiency of this mass transfer depends on the width and slope of the receiving channel and the rheological properties of the transported material. At one extreme, the channel easily accommodates mass flux from the slope, sometimes accompanied by fractionation into constituent phases. At the other extreme, mass from the hill slope can inundate and block the channel; these "sleeping dragons" modulate subsequent mass transfer down channel by changing the channel profile and bed properties. They also have the potential to "wake up" suddenly as mass failure and/or outbreak floods. Hazard prediction requires that the time-energy trajectory of each type of event be assessed; here we suggest some first order controls.

  16. Creating fast flow channels in paper fluidic devices to control timing of sequential reactions.

    PubMed

    Jahanshahi-Anbuhi, Sana; Chavan, Puneet; Sicard, Clémence; Leung, Vincent; Hossain, S M Zakir; Pelton, Robert; Brennan, John D; Filipe, Carlos D M

    2012-12-07

    This paper reports the development of a method to control the flow rate of fluids within paper-based microfluidic analytical devices. We demonstrate that by simply sandwiching paper channels between two flexible films, it is possible to accelerate the flow of water through paper by over 10-fold. The dynamics of this process are such that the height of the liquid is dependent on time to the power of 1/3. This dependence was validated using three different flexible films (with markedly different contact angles) and three different fluids (water and two silicon oils with different viscosities). These covered channels provide a low-cost method for controlling the flow rate of fluid in paper channels, and can be added following printing of reagents to control fluid flow in selected fluidic channels. Using this method, we redesigned a previously published bidirectional lateral flow pesticide sensor to allow more rapid detection of pesticides while eliminating the need to run the assay in two stages. The sensor is fabricated with sol-gel entrapped reagents (indoxyl acetate in a substrate zone and acetylcholinesterase, AChE, in a sensing zone) present in an uncovered "slow" flow channel, with a second, covered "fast" channel used to transport pesticide samples to the sensing region through a simple paper-flap valve. In this manner, pesticides reach the sensing region first to allow preincubation, followed by delivery of the substrate to generate a colorimetric signal. This format results in a uni-directional device that detects the presence of pesticides two times faster than the original bidirectional sensors.

  17. Mean annual runoff and peak flow estimates based on channel geometry of streams in southeastern Montana

    USGS Publications Warehouse

    Omang, R.J.; Parrett, Charles; Hull, J.A.

    1983-01-01

    Equations using channel-geometry measurements were developed for estimating mean runoff and peak flows of ungaged streams in southeastern Montana. Two separate sets of esitmating equations were developed for determining mean annual runoff: one for perennial streams and one for ephemeral and intermittent streams. Data from 29 gaged sites on perennial streams and 21 gaged sites on ephemeral and intermittent streams were used in these analyses. Data from 78 gaged sites were used in the peak-flow analyses. Southeastern Montana was divided into three regions and separate multiple-regression equations for each region were developed that relate channel dimensions to peak discharge having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Channel-geometery relations were developed using measurements of the active-channel width and bankfull width. Active-channel width and bankfull width were the most significant channel features for estimating mean annual runoff for al types of streams. Use of this method requires that onsite measurements be made of channel width. The standard error of estimate for predicting mean annual runoff ranged from about 38 to 79 percent. The standard error of estimate relating active-channel width or bankfull width to peak flow ranged from about 37 to 115 percent. (USGS)

  18. Analysis of the Electrohydrodynamic Flow in a Symmetric System of Electrodes by the Method of Dynamic Current-Voltage Characteristics

    NASA Astrophysics Data System (ADS)

    Stishkov, Yu. K.; Zakir'yanova, R. E.

    2018-04-01

    We have solved the problem of injection-type through electrohydrodynamic (EHD) flow in a closed channel. We have considered a model of a liquid with four types of ions. It is shown that a through EHD flow without internal vortices in the electrode gap is formed for the ratio 2 : 1 of the initial injection current from the electrodes in the channel. The structure of the flow in different parts of the channel and the integral characteristics of the flow have been analyzed. It is shown that for a quadratic function of injection at the electrodes, the current-voltage characteristic of the flow is also quadratic.

  19. Particle image velocimetry study of pulsatile flow in bi-leaflet mechanical heart valves with image compensation method.

    PubMed

    Shi, Yubing; Yeo, Tony Joon Hock; Zhao, Yong; Hwang, Ned H C

    2006-12-01

    Particle Image Velocimetry (PIV) is an important technique in studying blood flow in heart valves. Previous PIV studies of flow around prosthetic heart valves had different research concentrations, and thus never provided the physical flow field pictures in a complete heart cycle, which compromised their pertinence for a better understanding of the valvular mechanism. In this study, a digital PIV (DPIV) investigation was carried out with improved accuracy, to analyse the pulsatile flow field around the bi-leaflet mechanical heart valve (MHV) in a complete heart cycle. For this purpose a pulsatile flow test rig was constructed to provide the necessary in vitro test environment, and the flow field around a St. Jude size 29 bi-leaflet MHV and a similar MHV model were studied under a simulated physiological pressure waveform with flow rate of 5.2 l/min and pulse rate at 72 beats/min. A phase-locking method was applied to gate the dynamic process of valve leaflet motions. A special image-processing program was applied to eliminate optical distortion caused by the difference in refractive indexes between the blood analogue fluid and the test section. Results clearly showed that, due to the presence of the two leaflets, the valvular flow conduit was partitioned into three flow channels. In the opening process, flow in the two side channels was first to develop under the presence of the forward pressure gradient. The flow in the central channel was developed much later at about the mid-stage of the opening process. Forward flows in all three channels were observed at the late stage of the opening process. At the early closing process, a backward flow developed first in the central channel. Under the influence of the reverse pressure gradient, the flow in the central channel first appeared to be disturbed, which was then transformed into backward flow. The backward flow in the central channel was found to be the main driving factor for the leaflet rotation in the valve closing process. After the valve was fully closed, local flow activities in the proximity of the valve region persisted for a certain time before slowly dying out. In both the valve opening and closing processes, maximum velocity always appeared near the leaflet trailing edges. The flow field features revealed in the present paper improved our understanding of valve motion mechanism under physiological conditions, and this knowledge is very helpful in designing the new generation of MHVs.

  20. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    DOEpatents

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  1. A simple method for the evaluation of microfluidic architecture using flow quantitation via a multiplexed fluidic resistance measurement.

    PubMed

    Leslie, Daniel C; Melnikoff, Brett A; Marchiarullo, Daniel J; Cash, Devin R; Ferrance, Jerome P; Landers, James P

    2010-08-07

    Quality control of microdevices adds significant costs, in time and money, to any fabrication process. A simple, rapid quantitative method for the post-fabrication characterization of microchannel architecture using the measurement of flow with volumes relevant to microfluidics is presented. By measuring the mass of a dye solution passed through the device, it circumvents traditional gravimetric and interface-tracking methods that suffer from variable evaporation rates and the increased error associated with smaller volumes. The multiplexed fluidic resistance (MFR) measurement method measures flow via stable visible-wavelength dyes, a standard spectrophotometer and common laboratory glassware. Individual dyes are used as molecular markers of flow for individual channels, and in channel architectures where multiple channels terminate at a common reservoir, spectral deconvolution reveals the individual flow contributions. On-chip, this method was found to maintain accurate flow measurement at lower flow rates than the gravimetric approach. Multiple dyes are shown to allow for independent measurement of multiple flows on the same device simultaneously. We demonstrate that this technique is applicable for measuring the fluidic resistance, which is dependent on channel dimensions, in four fluidically connected channels simultaneously, ultimately determining that one chip was partially collapsed and, therefore, unusable for its intended purpose. This method is thus shown to be widely useful in troubleshooting microfluidic flow characteristics.

  2. CFD analyses of coolant channel flowfields

    NASA Technical Reports Server (NTRS)

    Yagley, J. A.; Feng, J.; Merkle, Charles L.

    1993-01-01

    The flowfield characteristics in a rocket engine coolant channels are analyzed by means of a numerical model. The channels are characterized by large length to diameter ratios, high Reynolds numbers, and asymmetrical heating. At representative flow conditions, the channel length is approximately twice the hydraulic entrance length so fully developed conditions are reached. The supercritical hydrogen coolant introduces strong property variations that have a major influence on the developing flow and the resulting heat transfer. Comparisons of constant and variable property solutions show substantial differences. The density variation accelerates the fluid in the channels increasing the pressure drop without an accompanying increase in heat flux. Analyses of the inlet configuration suggest that side entry from a manifold can affect the development of the velocity profile because of vortices generated as the flow enters the channel.

  3. A note on flow reversal in a wavy channel filled with anisotropic porous material

    NASA Astrophysics Data System (ADS)

    Karmakar, Timir; Raja Sekhar, G. P.

    2017-07-01

    Viscous flow through a symmetric wavy channel filled with anisotropic porous material is investigated analytically. Flow inside the porous bed is assumed to be governed by the anisotropic Brinkman equation. It is assumed that the ratio of the channel width to the wavelength is small (i.e. δ2≪1). The problem is solved up to O(δ2) assuming that δ2λ2≪1, where λ is the anisotropic ratio. The key purpose of this paper is to study the effect of anisotropic permeability on flow near the crests of the wavy channel which causes flow reversal. We present a detailed analysis of the flow reversal at the crests. The ratio of the permeabilities (anisotropic ratio) is responsible for the flow separation near the crests of the wall where viscous forces are effective. For a flow configuration (say, low amplitude parameter) in which there is no separation if the porous media is isotropic, introducing anisotropy causes flow separation. On the other hand, interestingly, flow separation occurs even in the case of isotropic porous medium if the amplitude parameter a is large.

  4. Mitigation of hazards from future lahars from Mount Merapi in the Krasak River channel near Yogyakarta, central Java

    USGS Publications Warehouse

    Ege, John R.; ,

    1983-01-01

    Procedures for reducing hazards from future lahars and debris flows in the Krasak River channel near Yogyakarta, Central Java, Indonesia, include (1) determining the history of the location, size, and effects of previous lahars and debris flows, and (2) decreasing flow velocities. The first may be accomplished by geologic field mapping along with acquiring information by interviewing local residents, and the second by increasing the cross sectional area of the river channel and constructing barriers in the flow path.

  5. TRPV4 channels: physiological and pathological role in cardiovascular system.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2015-11-01

    TRPV4 channels are non-selective cation channels permeable to Ca(2+), Na(+), and Mg(2+) ions. Recently, TRPV4 channels have received considerable attention as these channels are widely expressed in the cardiovascular system including endothelial cells, cardiac fibroblasts, vascular smooth muscles, and peri-vascular nerves. Therefore, these channels possibly play a pivotal role in the maintenance of cardiovascular homeostasis. TRPV4 channels critically regulate flow-induced arteriogenesis, TGF-β1-induced differentiation of cardiac fibroblasts into myofibroblasts, and heart failure-induced pulmonary edema. These channels also mediate hypoxia-induced increase in proliferation and migration of pulmonary artery smooth muscle cells and progression of pulmonary hypertension. These channels also maintain flow-induced vasodilation and preserve vascular function by directly activating Ca(2+)-dependent KCa channels. Furthermore, these may also induce vasodilation and maintain blood pressure indirectly by evoking the release of NO, CGRP, and substance P. The present review discusses the evidences and the potential mechanisms implicated in diverse responses including arteriogenesis, cardiac remodeling, congestive heart failure-induced pulmonary edema, pulmonary hypertension, flow-induced dilation, regulation of blood pressure, and hypoxic preconditioning.

  6. Near wall cooling for a highly tapered turbine blade

    DOEpatents

    Liang, George [Palm City, FL

    2011-03-08

    A turbine blade having a pressure sidewall and a suction sidewall connected at chordally spaced leading and trailing edges to define a cooling cavity. Pressure and suction side inner walls extend radially within the cooling cavity and define pressure and suction side near wall chambers. A plurality of mid-chord channels extend radially from a radially intermediate location on the blade to a tip passage at the blade tip for connecting the pressure side and suction side near wall chambers in fluid communication with the tip passage. In addition, radially extending leading edge and trailing edge flow channels are located adjacent to the leading and trailing edges, respectively, and cooling fluid flows in a triple-pass serpentine path as it flows through the leading edge flow channel, the near wall chambers and the trailing edge flow channel.

  7. Numerical study of mixed convection heat transfer enhancement in a channel with active flow modulation

    NASA Astrophysics Data System (ADS)

    Billah, Md. Mamun; Khan, Md Imran; Rahman, Mohammed Mizanur; Alam, Muntasir; Saha, Sumon; Hasan, Mohammad Nasim

    2017-06-01

    A numerical study of steady two dimensional mixed convention heat transfer phenomena in a rectangular channel with active flow modulation is carried out in this investigation. The flow in the channel is modulated via a rotating cylinder placed at the center of the channel. In this study the top wall of the channel is subjected to an isothermal low temperature while a discrete isoflux heater is positioned on the lower wall. The fluid flow under investigation is assumed to have a Prandtl number of 0.71 while the Reynolds No. and the Grashof No. are varied in wide range for four different situations such as: i) plain channel with no cylinder, ii) channel with stationary cylinder, iii) channel with clockwise rotating cylinder and iv) channel with counter clockwise rotating cylinder. The results obtained in this study are presented in terms of the distribution of streamlines, isotherms in the channel while the heat transfer process from the heat source is evaluated in terms of the local Nusselt number, average Nusselt number. The outcomes of this study also indicate that the results are strongly dependent on the type of configuration and direction of rotation of the cylinder and that the average Nusselt number value rises with an increase in Reynolds and Grashof numbers but the correlation between these parameters at higher values of Reynolds and Grashof numbers becomes weak.

  8. Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel

    NASA Technical Reports Server (NTRS)

    Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.

    2004-01-01

    The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.

  9. Transient electroosmotic flow induced by AC electric field in micro-channel with patchwise surface heterogeneities.

    PubMed

    Luo, Win-Jet

    2006-03-15

    This paper investigates two-dimensional, time-dependent electroosmotic flow driven by an AC electric field via patchwise surface heterogeneities distributed along the micro-channel walls. The time-dependent flow fields through the micro-channel are simulated for various patchwise heterogeneous surface patterns using the backwards-Euler time stepping numerical method. Different heterogeneous surface patterns are found to create significantly different electrokinetic transport phenomena. The transient behavior characteristics of the generated electroosmotic flow are then discussed in terms of the influence of the patchwise surface heterogeneities, the direction of the applied AC electric field, and the velocity of the bulk flow. It is shown that the presence of oppositely charged surface heterogeneities on the micro-channel walls results in the formation of localized flow circulations within the bulk flow. These circulation regions grow and decay periodically in phase with the applied periodic AC electric field intensity. The location and rotational direction of the induced circulations are determined by the directions of the bulk flow velocity and the applied electric field.

  10. Estimation of Rheological Properties of Viscous Debris Flow Using a Belt Conveyor

    NASA Astrophysics Data System (ADS)

    Hübl, J.; Steinwendtner, H.

    2000-09-01

    Rheological parameters of viscous debris flows are influenced by a great amount of factors and are therefore extremely difficult to estimate. Because of this uncertainties a belt conveyor (conveyor channel) was constructed to measure flow behaviour and rheological properties of natural debris flow material. The upward movement of the smooth rubberised belt between fixed lateral plastic walls causes a stationary wave relative to these bends. This special experimental design enables to study behaviour of viscous ebris flow material with maximum grain diameters up to 20 mm within several minutes and to hold measuring equipment very simple. The conveyor channel was calibrated first with Xanthan, a natural polysaccharide used as thickener in food technology, whose rheological properties are similar to viscous debris flow material. In a second step natural debris flow material was investigated. Velocities and rheological parameters were measured with varying solid concentration and slope of the channel. In cases where concentration of coarse particles exceed around 15% by volume the conveyor channel obtains an alternative to expensive commercial viscometers for determination of rheological parameters of viscous debris flows.

  11. Effects of flow dynamics on the aquatic-terrestrial transition zone (ATTZ) of lower Missouri river sandbars with implications for selected biota

    USGS Publications Warehouse

    Tracy-Smith, Emily; Galat, David L.; Jacobson, Robert B.

    2012-01-01

    Sandbars are an important aquatic terrestrial transition zone (ATTZ) in the active channel of rivers that provide a variety of habitat conditions for riverine biota. Channelization and flow regulation in many large rivers have diminished sandbar habitats and their rehabilitation is a priority. We developed sandbar-specific models of discharge-area relationships to determine how changes in flow regime affect the area of different habitat types within the submerged sandbar ATTZ (depth) and exposed sandbar ATTZ (elevation) for a representative sample of Lower Missouri River sandbars. We defined six different structural habitat types within the sandbar ATTZ based on depth or exposed elevation ranges that are important to different biota during at least part of their annual cycle for either survival or reproduction. Scenarios included the modelled natural flow regime, current managed flow regime and two environmental flow options, all modelled within the contemporary river active channel. Thirteen point and wing-dike sandbars were evaluated under four different flow scenarios to explore the effects of flow regime on seasonal habitat availability for foraging of migratory shorebirds and wading birds, nesting of softshell turtles and nursery of riverine fishes. Managed flows provided more foraging habitat for shorebirds and wading birds and more nursery habitat for riverine fishes within the channelized reach sandbar ATTZ than the natural flow regime or modelled environmental flows. Reduced summer flows occurring under natural and environmental flow alternatives increased exposed sandbar nesting habitat for softshell turtle hatchling emergence. Results reveal how management of channelized and flow regulated large rivers could benefit from a modelling framework that couples hydrologic and geomorphic characteristics to predict habitat conditions for a variety of biota.

  12. Stability analysis for capillary channel flow: 1d and 3d computations

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.

    The subject of the presentation are numerical studies on capillary channel flow, based on results of the sounding rocket TEXUS experiments. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behavior, a dimensionless one-dimensional model and a corresponding three-dimensional model were developed. The one-dimensional model is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The experimental and evaluated contour data show good agreement for a sequence of transient flow rate perturbations. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show, that temporarily Speed Index values exceeding One may be achieved for a perfectly stable supercritical dynamic flow. As a supercritical criterion for the dynamic free surface stability we define a Dynamic Index considering the local capillary pressure and the convective pressure, which is a function of the local velocity. The Dynamic Index is below One for stable flow while D = 1 indicates surface collapse. This studies lead to a stability diagram, which defines the limits of flow dynamics and the maximum unsteady flow rate.

  13. Critical capillary channel flow

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.

    The main subject are numerical studies on capillary channel flow, based on results of the sounding rocket experiments TEXUS 41/42. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behaviour, a dimensionless transient model was developed. It is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The pressure is related to the curvature of the free liquid surface by the dimensionless Gauss-Laplace equation with two principal radii. The experimental and evaluated contour data shows good agreement for a sequence of transient flow rate perturbations. The surface oscillation frequencies and amplitudes can be predicted with quite high accuracy. The dynamic of the pump is defined by the increase of the flow rate in a time period. To study the unsteady system behavior in the "worst case", we use a perturbations related to the natural frequency of the oscillating liquid. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value Sca = 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show, that temporarily Speed Index values exceeding One may be achieved for a perfectly stable supercritical dynamic flow. As a supercritical criterion for the dynamic free surface stability we define a Dynamic Index D considering the local capillary pressure and the convective pressure, which is a function of the local velocity. The Dynamic Index is below One for stable flow while D = 1 indicates surface collapse. This studies result in a stability diagram, which defines the limits of flow dynamics and the maximum unsteady flow rate. It may serve as a road map for open capillary channel flow control.

  14. 6. VIEW OF DAM 83, SHOWING OUTLET CHANNEL FLOWING INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF DAM 83, SHOWING OUTLET CHANNEL FLOWING INTO POND A WITH DIVERSION GATES LONG EAST (LEFT) SIDE OF OUTLET CHANNEL, LOOKING SOUTH FROM DOWNSTREAM FACE OF THE DAM - Upper Souris National Wildlife Refuge, Dam 83, Souris River Basin, Foxholm, Surrey (England), ND

  15. The Deformation of Polydimethylsiloxane (PDMS) Microfluidic Channels Filled with Embedded Circular Obstacles under Certain Circumstances.

    PubMed

    Roh, Changhyun; Lee, Jaewoong; Kang, Chankyu

    2016-06-18

    Experimental investigations were conducted to determine the influence of polydimethylsiloxane (PDMS) microfluidic channels containing aligned circular obstacles (with diameters of 172 µm and 132 µm) on the flow velocity and pressure drop under steady-state flow conditions. A significant PDMS bulging was observed when the fluid flow initially contacted the obstacles, but this phenomenon decreased in the 1 mm length of the microfluidic channels when the flow reached a steady-state. This implies that a microfluidic device operating with steady-state flows does not provide fully reliable information, even though less PDMS bulging is observed compared to quasi steady-state flow. Numerical analysis of PDMS bulging using ANSYS Workbench showed a relatively good agreement with the measured data. To verify the influence of PDMS bulging on the pressure drop and flow velocity, theoretical analyses were performed and the results were compared with the experimental results. The measured flow velocity and pressure drop data relatively matched well with the classical prediction under certain circumstances. However, discrepancies were generated and became worse as the microfluidic devices were operated under the following conditions: (1) restricted geometry of the microfluidic channels (i.e., shallow channel height, large diameter of obstacles and a short microchannel length); (2) operation in quasi-steady state flow; (3) increasing flow rates; and (4) decreasing amount of curing agent in the PDMS mixture. Therefore, in order to obtain reliable data a microfluidic device must be operated under appropriate conditions.

  16. Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Keshock, Edward G.; Lin, Chin S.

    1996-01-01

    A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.

  17. Quantifying sources of fine sediment supplied to post-fire debris flows using fallout radionuclide tracers

    NASA Astrophysics Data System (ADS)

    Smith, Hugh G.; Sheridan, Gary J.; Nyman, Petter; Child, David P.; Lane, Patrick N. J.; Hotchkis, Michael A. C.; Jacobsen, Geraldine E.

    2012-02-01

    Fine sediment supply has been identified as an important factor contributing to the initiation of runoff-generated debris flows after fire. However, despite the significance of fines for post-fire debris flow generation, no investigations have sought to quantify sources of this material in debris flow affected catchments. In this study, we employ fallout radionuclides ( 137Cs, 210Pb ex and 239,240Pu) as tracers to measure proportional contributions of fine sediment (< 10 μm) from hillslope surface and channel bank sources to levee and terminal fan deposits formed by post-fire debris flows in two forest catchments in southeastern Australia. While 137Cs and 210Pb ex have been widely used in sediment tracing studies, application of Pu as a tracer represents a recent development and was limited to only one catchment. The ranges in estimated proportional hillslope surface contributions of fine sediment to individual debris flow deposits in each catchment were 22-69% and 32-74%. The greater susceptibility of 210Pb ex to apparent reductions in the ash content of channel deposits relative to hillslope sources resulted in its exclusion from the final analysis. No systematic change in the proportional source contributions to debris flow deposits was observed with distance downstream from channel initiation points. Instead, spatial variability in source contributions was largely influenced by the pattern of debris flow surges forming the deposits. Linking the tracing analysis with interpretation of depositional evidence allowed reconstruction of temporal sequences in sediment source contributions to debris flow surges. Hillslope source inputs dominated most elevated channel deposits such as marginal levees that were formed under peak flow conditions. This indicated the importance of hillslope runoff and fine sediment supply for debris flow generation in both catchments. In contrast, material stored within channels that was deposited during subsequent surges was predominantly channel-derived. The results demonstrate that fallout radionuclide tracers may provide unique information on changing source contributions of fine sediment during debris flow events.

  18. Rapid and efficient mixing in a slip-driven three-dimensional flow in a rectangular channel

    NASA Astrophysics Data System (ADS)

    Pacheco, J. Rafael; Ping Chen, Kang; Hayes, Mark A.

    2006-08-01

    A method for generating mixing in an electroosmotic flow of an electrolytic solution in a three-dimensional channel is proposed. When the width-to-height aspect ratio of the channel cross-section is large, mixing of a blob of a solute in a slip-driven three-dimensional flow in a rectangular channel can be used to model and assess the effectiveness of this method. It is demonstrated through numerical simulations that under certain operating conditions, rapid and efficient mixing can be achieved. Future investigation will include the solution of the exact equations and experimentation.

  19. The effect of basal channels on oceanic ice-shelf melting

    NASA Astrophysics Data System (ADS)

    Millgate, Thomas; Holland, Paul R.; Jenkins, Adrian; Johnson, Helen L.

    2013-12-01

    The presence of ice-shelf basal channels has been noted in a number of Antarctic and Greenland ice shelves, but their impact on basal melting is not fully understood. Here we use the Massachusetts Institute of Technology general circulation model to investigate the effect of ice-shelf basal channels on oceanic melt rate for an idealized ice shelf resembling the floating tongue of Petermann Glacier in Greenland. The introduction of basal channels prevents the formation of a single geostrophically balanced boundary current; instead the flow is diverted up the right-hand (Coriolis-favored) side of each channel, with a return flow in the opposite direction on the left-hand side. As the prescribed number of basal channels is increased the mean basal melt rate decreases, in agreement with previous studies. For a small number of relatively wide channels the subice flow is found to be a largely geostrophic horizontal circulation. The reduction in melt rate is then caused by an increase in the relative contribution of weakly melting channel crests and keels. For a larger number of relatively narrow channels, the subice flow changes to a vertical overturning circulation. This change in circulation results in a weaker sensitivity of melt rates to channel size. The transition between the two regimes is governed by the Rossby radius of deformation. Our results explain why basal channels play an important role in regulating basal melting, increasing the stability of ice shelves.

  20. Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs

    NASA Astrophysics Data System (ADS)

    Davies, J.; Maynes, D.; Webb, B. W.; Woolford, B.

    2006-08-01

    One approach recently proposed for reducing the frictional resistance to liquid flow in microchannels is the patterning of microribs and cavities on the channel walls. When treated with a hydrophobic coating, the liquid flowing in the microchannel wets only the surfaces of the ribs, and does not penetrate the cavities, provided the pressure is not too high. The net result is a reduction in the surface contact area between channel walls and the flowing liquid. For microribs and cavities that are aligned normal to the channel axis (principal flow direction), these micropatterns form a repeating, periodic structure. This paper presents results of a study exploring the momentum transport in a parallel-plate microchannel with such microengineered walls. The investigation explored the entire laminar flow Reynolds number range and characterized the influence of the vapor cavity depth on the overall flow field. The liquid-vapor interface (meniscus) in the cavity regions is treated as flat in the numerical analysis and two conditions are explored with regard to the cavity region: (1) The liquid flow at the liquid-vapor interface is treated as shear-free (vanishing viscosity in the vapor region), and (2) the liquid flow in the microchannel core and the vapor flow within the cavity are coupled by matching the velocity and shear stress at the interface. Regions of slip and no-slip behavior exist and the velocity field shows distinct variations from classical laminar flow in a parallel-plate channel. The local streamwise velocity profiles, interfacial velocity distributions, and maximum interfacial velocities are presented for a number of scenarios and provide a sound understanding of the local flow physics. The predictions and accompanying measurements reveal that significant reductions in the frictional pressure drop (enhancement in effective fluid slip at the channel walls) can be achieved relative to the classical smooth-channel Stokes flow. Reductions in the friction factor and enhancements in the fluid slip are greater as the cavity-to-rib length ratio is increased (increasing shear-free fraction) and as the channel hydraulic diameter is decreased. The results also show that the slip length and average friction factor-Reynolds number product exhibit a flow Reynolds dependence. Furthermore, the predictions reveal the global impact of the vapor cavity depth on the overall frictional resistance.

  1. Effects of geometric modulation and surface potential heterogeneity on electrokinetic flow and solute transport in a microchannel

    NASA Astrophysics Data System (ADS)

    Bera, Subrata; Bhattacharyya, S.

    2017-12-01

    A numerical investigation is performed on the electroosmotic flow (EOF) in a surface-modulated microchannel to induce enhanced solute mixing. The channel wall is modulated by placing surface-mounted obstacles of trigonometric shape along which the surface potential is considered to be different from the surface potential of the homogeneous part of the wall. The characteristics of the electrokinetic flow are governed by the Laplace equation for the distribution of external electric potential; the Poisson equation for the distribution of induced electric potential; the Nernst-Planck equations for the distribution of ions; and the Navier-Stokes equations for fluid flow simultaneously. These nonlinear coupled set of governing equations are solved numerically by a control volume method over the staggered system. The influence of the geometric modulation of the surface, surface potential heterogeneity and the bulk ionic concentration on the EOF is analyzed. Vortical flow develops near a surface modulation, and it becomes stronger when the surface potential of the modulated region is in opposite sign to the surface potential of the homogeneous part of the channel walls. Vortical flow also depends on the Debye length when the Debye length is in the order of the channel height. Pressure drop along the channel length is higher for a ribbed wall channel compared to the grooved wall case. The pressure drop decreases with the increase in the amplitude for a grooved channel, but increases for a ribbed channel. The mixing index is quantified through the standard deviation of the solute distribution. Our results show that mixing index is higher for the ribbed channel compared to the grooved channel with heterogeneous surface potential. The increase in potential heterogeneity in the modulated region also increases the mixing index in both grooved and ribbed channels. However, the mixing performance, which is the ratio of the mixing index to pressure drop, reduces with the rise in the surface potential heterogeneity.

  2. Effects of geometric modulation and surface potential heterogeneity on electrokinetic flow and solute transport in a microchannel

    NASA Astrophysics Data System (ADS)

    Bera, Subrata; Bhattacharyya, S.

    2018-04-01

    A numerical investigation is performed on the electroosmotic flow (EOF) in a surface-modulated microchannel to induce enhanced solute mixing. The channel wall is modulated by placing surface-mounted obstacles of trigonometric shape along which the surface potential is considered to be different from the surface potential of the homogeneous part of the wall. The characteristics of the electrokinetic flow are governed by the Laplace equation for the distribution of external electric potential; the Poisson equation for the distribution of induced electric potential; the Nernst-Planck equations for the distribution of ions; and the Navier-Stokes equations for fluid flow simultaneously. These nonlinear coupled set of governing equations are solved numerically by a control volume method over the staggered system. The influence of the geometric modulation of the surface, surface potential heterogeneity and the bulk ionic concentration on the EOF is analyzed. Vortical flow develops near a surface modulation, and it becomes stronger when the surface potential of the modulated region is in opposite sign to the surface potential of the homogeneous part of the channel walls. Vortical flow also depends on the Debye length when the Debye length is in the order of the channel height. Pressure drop along the channel length is higher for a ribbed wall channel compared to the grooved wall case. The pressure drop decreases with the increase in the amplitude for a grooved channel, but increases for a ribbed channel. The mixing index is quantified through the standard deviation of the solute distribution. Our results show that mixing index is higher for the ribbed channel compared to the grooved channel with heterogeneous surface potential. The increase in potential heterogeneity in the modulated region also increases the mixing index in both grooved and ribbed channels. However, the mixing performance, which is the ratio of the mixing index to pressure drop, reduces with the rise in the surface potential heterogeneity.

  3. Laboratory Modelling of the Effect of Bend Orientation on the Morphological Development of Alluvial Channels

    NASA Astrophysics Data System (ADS)

    Good, R. G. R.; Sullivan, C.; Binns, A. D.

    2017-12-01

    Bend orientation, or skewness, in natural streams is often caused by riparian vegetation or underlying geology that lead to a meandering stream following a non-sinuous path. The bend orientation affects how the fluid momentum interacts with the bed and banks, which can alter the location and shape of bedforms as well as the channel planform geometry. An experimental study in a laboratory sand flume with movable bed and banks (5.6 m long, 1.9 m wide; D50 = 0.7 mm; B = 0.2m; 3 wavelengths) was carried out to quantify the effect of bend orientation on bedform development and planform changes. While previous research in the literature has found that channels with an upstream bend orientation had a less developed secondary flow than a downstream orientation, few studies on the morphological development of streams having varying bend orientation have been conducted. In total, three runs were carried out using channels with upstream, downstream, and no skewness. The runs progressed in a series of time-steps to monitor the morphological evolution of the streams with time. Sediment transport rates were quantified at the outlet, flow was measured using an ultrasonic flow meter at the inlet, flow depths were measured at the apex of the bends, and channel morphology was measured at each time step using Structure-from-Motion photogrammetry with Agisoft Photoscan. Bend orientation was found to influence the position of the point bar development as well as the locations of maximum and minimum channel migration. Relative to the bend apex, point bars tended to be positioned in the same direction as the channel skewness. Channel width showed the greatest variation with the upstream orientation, with the channel narrowing before the apex where the channel flows in the up-valley direction, and widening downstream of the apex. These results show that the channel orientation influences the morphological development of the channel bed and banks. The effect of velocity structure and turbulence regime on the morphological development in the three bend orientations was analysed by comparing morphological and flow data at each time step. Results from this research will benefit the design of future engineered channels, as certain channel orientations may be preferable for managing erosion and sediment transport within a watershed.

  4. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface.

  5. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface. Copyright 2009 by the American Geophysical Union.

  6. Preliminary hydraulic analysis and implications for restoration of Noyes Slough, Fairbanks, Alaska

    USGS Publications Warehouse

    Burrows, Robert L.; Langley, Dustin E.; Evetts, David M.

    2000-01-01

    The present-day channels of the Chena River and Noyes Slough in downtown Fairbanks, Alaska, were formed as sloughs of the Tanana River, and part of the flow of the Tanana River occupied these waterways. Flow in these channels was reduced after the completion of Moose Creek Dike in 1945, and flow in the Chena River was affected by regulation from the Chena River Lakes Flood Control Project, which was completed in 1980. In 1981, flow in the Chena River was regulated for the first time by Moose Creek Dam, located about 20 miles upstream from Fairbanks. Constructed as part of the Chena River Lakes Flood Control Project, the dam was designed to reduce maximum flows to 12,000 cubic feet per second in downtown Fairbanks. Cross-section measurements made near the entrance to Noyes Slough show that the channel bed of the Chena River has been downcutting, thereby reducing the magnitude and duration of flow in the slough. Consequently the slough slowly is drying up. The slough provides habitat for wildlife such as ducks, beaver, and muskrat and is a fishery for anadromous and other resident species. Beavers have built 10 dams in the slough. Declining flow in the slough may endanger the remaining habitat. Residents of the community wish to restore flow in Noyes Slough to create a clean, flowing waterway during normal summer flows. The desire is to enhance the slough as a fishery and habitat for other wildlife and for recreational boating. During this study, existing and new data were compiled to determine past and present hydraulic interaction between the Chena River and Noyes Slough. The U.S. Army Corps of Engineers Hydrologic Engineering Center River Analysis System (HECRAS) computer program was used to construct a model to use in evaluating alternatives for increasing flow in the slough. Under present conditions, the Chena must flow at about 2,400 cubic feet per second or more for flow to enter Noyes Slough. In an average year, water flows in Noyes Slough for 106 days during the open-water season, and maximum flow is about 1,050 cubic feet per second. The model was used to test a single method of increasing flow in Noyes Slough. A modified channel 40 feet wide and about 2 feet deeper within the existing slough channel was simulated by changing the cross-section geometry in the HECRAS model. The resulting model showed that flow in such a modified slough channel would begin at a flow of about 830 cubic feet per second in the Chena River and would increase to a maximum flow of about 1,440 cubic feet per second. In an average year, flow would continue for 158 days during the open-water season. Theoretically, enlarging the slough channel by lowering its bed could increase flow, but other solutions are possible. Possible obstacles to excavating the channel, such as bridges and utility crossings, and the destruction of desirable features such as beaver dams were not considered in the study. Further engineering and economic analyses would be needed to assess the cost of excavation and future maintenance of the modified channel. A computer-modeling program such as HECRAS may provide a means for testing other solutions.

  7. Cooling and crystallization of lava in open channels, and the transition of Pāhoehoe Lava to 'A'ā

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine V.; Thornber, Carl; Kauahikaua, James P.

    Samples collected from a lava channel active at Kīlauea Volcano during May 1997 are used to constrain rates of lava cooling and crystallization during early stages of flow. Lava erupted at near-liquidus temperatures ( 1150 °C) cooled and crystallized rapidly in upper parts of the channel. Glass geothermometry indicates cooling by 12-14 °C over the first 2km of transport. At flow velocities of 1-2m/s, this translates to cooling rates of 22-50 °C/h. Cooling rates this high can be explained by radiative cooling of a well-stirred flow, consistent with observations of non-steady flow in proximal regions of the channel. Crystallization of plagioclase and pyroxene microlites occurred in response to cooling, with crystallization rates of 20-50% per hour. Crystallization proceeded primarily by nucleation of new crystals, and nucleation rates of 104/cm3s are similar to those measured in the 1984 open channel flow from Mauna Loa Volcano. There is no evidence for the large nucleation delays commonly assumed for plagioclase crystallization in basaltic melts, possibly a reflection of enhanced nucleation due to stirring of the flow. The transition of the flow surface morphology from pāhoehoe to 'a'ā occurred at a distance of 1.9km from the vent. At this point, the flow was thermally stratified, with an interior temperature of 1137 °C and crystallinity of 15%, and a flow surface temperature of 1100 °C and crystallinity of 45%. 'A'ā formation initiated along channel margins, where crust was continuously disrupted, and involved tearing and clotting of the flow surface. Both observations suggest that the transition involved crossing of a rheological threshold. We suggest this threshold to be the development of a lava yield strength sufficient to prevent viscous flow of lava at the channel margin. We use this concept to propose that 'a'ā formation in open channels requires both sufficiently high strain rates for continued disruption of surface crusts and sufficient groundmass crystallinity to generate a yield strength equivalent to the imposed stress. In Hawai'i, where lava is typically microlite poor on eruption, these combined requirements help to explain two common observations on 'a'ā formation: (a) 'a'ā flow fields are generated when effusion rates are high (thus promoting crustal disruption); and (b) under most eruption conditions, lava issues from the vent as pāhoehoe and changes to 'a'ā only after flowing some distance, thus permitting sufficient crystallization.

  8. Flow in a centrifugal fan impeller at off-design conditions

    NASA Astrophysics Data System (ADS)

    Wright, T.; Tzou, K. T. S.; Madhavan, S.

    1984-06-01

    A fully three-dimensional finite element analysis of inviscid, incompressible blade channel flow is the basis of the present study of both predicted and measured surface velocity and pressure distributions in the internal flow channels of a centrifugal fan impeller, for volume flow rates of 80-125 percent the design flow rate. The experimental results made extensive use of blade and sidewall surface pressure taps installed in a scale model of an airfoil-bladed centrifugal fan impeller. The results obtained illustrate the ability of both flow analyses to predict the dominant features of the impeller flow field, including peak blade surface velocities and adverse gradients at flows far from the design point. Insight is also gained into the limiting channel diffusion values for typical centrifugal cascade performance, together with the influence of viscous effects, as seen in deviations from ideal flow predictions.

  9. Comparative Study of Convective Heat Transfer Performance of Steam and Air Flow in Rib Roughened Channels

    NASA Astrophysics Data System (ADS)

    Ma, Chao; Ji, Yongbin; Ge, Bing; Zang, Shusheng; Chen, Hua

    2018-04-01

    A comparative experimental study of heat transfer characteristics of steam and air flow in rectangular channels roughened with parallel ribs was conducted by using an infrared camera. Effects of Reynolds numbers and rib angles on the steam and air convective heat transfer have been obtained and compared with each other for the Reynolds number from about 4,000 to 15,000. For all the ribbed channels the rib pitch to height ratio (p/e) is 10, and the rib height to the channel hydraulic diameter ratio is 0.078, while the rib angles are varied from 90° to 45°. Based on experimental results, it can be found that, even though the heat transfer distributions of steam and air flow in the ribbed channels are similar to each other, the steam flow can obtain higher convective heat transfer enhancement capability, and the heat transfer enhancement of both the steam and air becomes greater with the rib angle deceasing from 90° to 45°. At Reynolds number of about 12,000, the area-averaged Nusselt numbers of the steam flow is about 13.9%, 14.2%, 19.9% and 23.9% higher than those of the air flow for the rib angles of 90°, 75°, 60° and 45° respectively. With the experimental results the correlations for Nusselt number in terms of Reynolds number and rib angle for the steam and air flow in the ribbed channels were developed respectively.

  10. Use of Pressure Sensitive Paint for Diagnostics in Turbomachinery Flows With Shocks

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan; Bencic, Timothy J.

    2001-01-01

    The technology of pressure sensitive paint (PSP) is well established in external aerodynamics. In internal flows in narrow channels and in turbomachinery cascades, however, there are still unresolved problems. In particular, the internal flows with complex shock structures inside highly curved channels present a challenge. It is not always easy and straightforward to distinguish between true signals and "ghost" images due to multiple internal reflections in narrow channels. To address some of the problems, investigations were first carried out in a narrow supersonic channel of Mach number 2.5. A single wedge or a combination of two wedges were used to generate a complex shock wave structure in the flow. The experience gained in a small supersonic channel was used for surface pressure measurements on the stator vane of a supersonic throughflow fan. The experimental results for several fan operating conditions are shown in a concise form, including performance map points, midspan static tap pressure distributions, and vane suction side pressure fields. Finally, the PSP technique was used in the NASA transonic flutter cascade to compliment flow visualization data and to acquire backwall pressure fields to assess the cascade flow periodicity. A summary of shortcomings of the pressure sensitive paint technology for internal flow application and lessons learned are presented in the conclusion of the paper.

  11. Use of pressure-sensitive paint for diagnostics in turbomachinery flows with shocks

    NASA Astrophysics Data System (ADS)

    Lepicovsky, J.; Bencic, T. J.

    2002-07-01

    The technology of pressure-sensitive paint (PSP) is well established in external aerodynamics. In internal flows in narrow channels and in turbomachinery cascades, however, there are still unresolved problems. In particular, the internal flows with complex shock structures inside highly curved channels present a challenge. It is not always easy and straightforward to distinguish between true signals and 'ghost' images due to multiple internal reflections in narrow channels. To address some of the problems, investigations were first carried out in a narrow supersonic channel of Mach number 2.5. A single wedge or a combination of two wedges was used to generate a complex shock wave structure in the flow. The experience gained in a small supersonic channel was used for surface pressure measurements on the stator vane of a supersonic throughflow fan. The experimental results for several fan operating conditions are shown in a concise form, including performance map test points, midspan static tap pressure distributions, and vane suction side pressure fields. Finally, the PSP technique was used in the NASA transonic flutter cascade to compliment flow visualization data and to acquire backwall pressure fields to assess the cascade flow periodicity. Lessons learned from this investigation and shortcomings of the PSP technology for internal flow application are presented in the conclusion of the paper.

  12. Unsteady Heat Transfer in Channel Flow using Small-Scale Vorticity Concentrations Effected by a Vibrating Reed

    NASA Astrophysics Data System (ADS)

    Hidalgo, Pablo; Glezer, Ari

    2011-11-01

    Heat transfer enhancement by small-scale vorticity concentrations that are induced within the core flow of a mm-scale heated channel are investigated experimentally. These small-scale motions are engendered by the cross stream vibrations of a streamwise cantilevered reed that spans most of the channel's width. The interactions between the reed the core flow over a range of flow rates lead to the formation, shedding, and advection of time-periodic vorticity concentrations that interact with the wall boundary layers, and increase cross stream mixing of the core flow. Heating of the channel walls is controlled using microfabricated serpentine resistive heaters embedded with streamwise arrays of temperature sensors. It is shown that the actuation disrupts the thermal boundary layers and result in significant enhancement of the local and global heat transfer along the channel compared to the baseline flow in the absence of the reed. The effect of the reed on the cross flow is measured using high resolution particle image velocimetry (PIV), and the reed motion is characterized using a laser-based position sensor. The blockage induced by the presence of the reed and its cross stream motion is characterized using detailed streamwise pressure distributions. Supported by DARPA and UTRC.

  13. Single Channel Testing for Characterization of the Direct Gas Cooled Reactor and the SAFE-100 Heat Exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bragg-Sitton, S.M.; Propulsion Research Center, NASA Marshall Space Flight Center, Huntsville, AL 35812; Kapernick, R.

    2004-02-04

    Experiments have been designed to characterize the coolant gas flow in two space reactor concepts that are currently under investigation by NASA Marshall Space Flight Center and Los Alamos National Laboratory: the direct-drive gas-cooled reactor (DDG) and the SAFE-100 heatpipe-cooled reactor (HPR). For the DDG concept, initial tests have been completed to measure pressure drop versus flow rate for a prototypic core flow channel, with gas exiting to atmospheric pressure conditions. The experimental results of the completed DDG tests presented in this paper validate the predicted results to within a reasonable margin of error. These tests have resulted in amore » re-design of the flow annulus to reduce the pressure drop. Subsequent tests will be conducted with the re-designed flow channel and with the outlet pressure held at 150 psi (1 MPa). Design of a similar test for a nominal flow channel in the HPR heat exchanger (HPR-HX) has been completed and hardware is currently being assembled for testing this channel at 150 psi. When completed, these test programs will provide the data necessary to validate calculated flow performance for these reactor concepts (pressure drop and film temperature rise)« less

  14. Flow through a very porous obstacle in a shallow channel.

    PubMed

    Creed, M J; Draper, S; Nishino, T; Borthwick, A G L

    2017-04-01

    A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence.

  15. Numerical Simulation of 3-D Supersonic Viscous Flow in an Experimental MHD Channel

    NASA Technical Reports Server (NTRS)

    Kato, Hiromasa; Tannehill, John C.; Gupta, Sumeet; Mehta, Unmeel B.

    2004-01-01

    The 3-D supersonic viscous flow in an experimental MHD channel has been numerically simulated. The experimental MHD channel is currently in operation at NASA Ames Research Center. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed using a new 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime. The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very e5uent manner. To account for upstream (elliptic) effects, the flowfield can be computed using multiple streamwise sweeps with an iterated PNS algorithm. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the flow. The computed results are in good agreement with the available experimental data.

  16. What controls channel form in steep mountain streams?

    NASA Astrophysics Data System (ADS)

    Palucis, M. C.; Lamb, M. P.

    2017-07-01

    Steep mountain streams have channel morphologies that transition from alternate bar to step-pool to cascade with increasing bed slope, which affect stream habitat, flow resistance, and sediment transport. Experimental and theoretical studies suggest that alternate bars form under large channel width-to-depth ratios, step-pools form in near supercritical flow or when channel width is narrow compared to bed grain size, and cascade morphology is related to debris flows. However, the connection between these process variables and bed slope—the apparent dominant variable for natural stream types—is unclear. Combining field data and theory, we find that certain bed slopes have unique channel morphologies because the process variables covary systematically with bed slope. Multiple stable states are predicted for other ranges in bed slope, suggesting that a competition of underlying processes leads to the emergence of the most stable channel form.

  17. Incision of the Jezero Crater Outflow Channel by Fluvial Sediment Transport

    NASA Astrophysics Data System (ADS)

    Holo, S.; Kite, E. S.

    2017-12-01

    Jezero crater, the top candidate landing site for the Mars 2020 rover, once possessed a lake that over-spilled and eroded a large outflow channel into the Eastern rim. The Western deltaic sediments that would be the primary science target of the rover record a history of lake level, which is modulated by the inflow and outflow channels. While formative discharges for the Western delta exist ( 500 m3/s), little work has been done to see if these flows are the same responsible for outflow channel incision. Other models of the Jezero outflow channel incision assume that a single rapid flood (incision timescales of weeks), with unknown initial hydraulic head and no discharge into the lake (e.g. from the inflow channels or the subsurface), incised an open channel with discharge modulated by flow over a weir. We present an alternate model where, due to an instability at the threshold of sediment motion, the incision of the outflow channel occurs in concert with lake filling. In particular, we assume a simplified lake-channel-valley system geometry and that the channel is hydraulically connected to the filling/draining crater lake. Bed load sediment transport and water discharge through the channel are quantified using the Meyer-Peter and Mueller relation and Manning's law respectively. Mass is conserved for both water and sediment as the lake level rises/falls and the channel incises. This model does not resolve backwater effects or concavity in the alluvial system, but it does capture the non-linear feedbacks between lake draining, erosion rate, channel flow rate, and slope relaxation. We identify controls on incision of the outflow channel and estimate the time scale of outflow channel formation through a simple dynamical model. We find that the observed 300m of channel erosion can be reproduced in decades to centuries of progressive bed load as the delta forming flows fill the lake. This corresponds to time scales on the order of or smaller than the time scale required for the delta forming flows to fill the crater. Comparison with the outflow channel dimensions from other craters on Mars provides the potential to both test our hypothesis of contemporaneous lake filling/channel incision and also constrain the hydrologic sources responsible for filling crater lakes.

  18. Thermal Modeling of Permafrost Melt by Overlying Lava Flows with Applications to Flow-associated Outflow Channel Volumes in the Cerberus Plains, Mars

    NASA Technical Reports Server (NTRS)

    Chase, Z. A. J.; Sakimoto, S. E. H.

    2003-01-01

    The Cerberus region of Mars has numerous geologically recent fluvial and volcanic features superimposed spatially, with some of them using the same flow channels and apparent vent structures. Lava-water interaction landforms such as psuedocraters suggest some interaction of emplacing lava flows with underlying ground ice or water. This study investigates a related interaction type a region where the emplaced lava might have melted underlying ice in the regolith, as there are small outflow channel networks emerging from the flank flows of a lava shield over a portion of the Eastern Cerberus Rupes. Specifically, we use high-resolution Mars Orbiter Laser Altimeter (MOLA) topography to constrain channel and flow dimensions, and thus estimate the thermal pulse from the emplaced lava into the substrate and the resulting melting durations and refreezing intervals. These preliminary thermal models indicate that the observed flows could easily create thermal pulse(s) sufficient to melt enough ground ice to fill the observed fluvial small outflow channels. Depending on flow eruption timing and hydraulic recharge times, this system could easily have produced multiple thermal pulses and fluvial releases. This specific case suggests that regional small water releases from similar cases may be more common than suspected, and that there is a possibility for future fluvial releases if ground ices are currently present and future volcanic eruptions in this young region are possible.

  19. Deciphering Depositional Signals in the Bed-Scale Stratigraphic Record of Submarine Channels

    NASA Astrophysics Data System (ADS)

    Sylvester, Z.; Covault, J. A.

    2017-12-01

    Submarine channels are important conduits of sediment transfer from rivers and shallow-marine settings into the deep sea. As such, the stratigraphic record of submarine-channel systems can store signals of past climate- and other environmental changes in their upstream sediment-source areas. This record is highly fragmented as channels are primarily locations of sediment bypass; channelized turbidity currents are likely to leave a more complete record in areas away from and above the thalweg. However, the link between the thick-bedded axial channel deposits that record a small number of flows and the much larger number of thin-bedded turbidites forming terrace- and levee deposits is poorly understood. We have developed a relatively simple two-dimensional model that, given a number of input flow parameters (mean velocity, grain size, duration of deposition, flow thickness), predicts the thickness and composition of the turbidite that is left behind in the channel and in the overbank areas. The model is based on a Rouse-type suspended sediment concentration profile and the Garcia-Parker entrainment function. In the vertical direction, turbidites tend to rapidly become thinner and finer-grained with height above thalweg, due to decreasing concentration. High near-thalweg concentrations result in thick axial beds. However, an increase in flow velocity can result in high entrainment and no deposition at the bottom of the channel, yet a thin layer of sand and mud is still deposited higher up on the channel bank. If channel thalwegs are largely in a bypass condition, relatively minor velocity fluctuations result in a few occasionally preserved thick beds in the axis, and numerous thin turbidites - and a more complete record - on the channel banks. We use near-seafloor data from the Niger Delta slope and an optimization algorithm to show how our model can be used to invert for likely flow parameters and match the bed thickness and grain size of 100 turbidites observed in a core taken from a slope channel terrace.

  20. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, C.M.; Deeds, W.E.

    1999-07-13

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.

  1. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  2. Channels and valleys on Mars

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1983-01-01

    Tentative conclusions about the origins of channels and valleys on Mars based on the consensus of investigators who have studied the problem are presented. The morphology of outflow channels is described in detail, and the morphology, distribution, and genesis of Martian valleys are addressed. Secondary modification of channels and valleys by mass-wasting phenomena, eolian processes, cratering, and mantling by lava flows is discussed. The physics of the flows needed to account for the immense volumes of Martian outflow channels is considered in detail, including the possible influence of debris flows and mudflows, glaciers, and ice sheets. It is concluded that Mars once probably possessed an atmosphere with higher temperatures and pressures than at present which played an essential role in an active hydrological cycle.

  3. Flow field induced particle accumulation inside droplets in rectangular channels.

    PubMed

    Hein, Michael; Moskopp, Michael; Seemann, Ralf

    2015-07-07

    Particle concentration is a basic operation needed to perform washing steps or to improve subsequent analysis in many (bio)-chemical assays. In this article we present field free, hydrodynamic accumulation of particles and cells in droplets flowing within rectangular micro-channels. Depending on droplet velocity, particles either accumulate at the rear of the droplet or are dispersed over the entire droplet cross-section. We show that the observed particle accumulation behavior can be understood by a coupling of particle sedimentation to the internal flow field of the droplet. The changing accumulation patterns are explained by a qualitative change of the internal flow field. The topological change of the internal flow field, however, is explained by the evolution of the droplet shape with increasing droplet velocity altering the friction with the channel walls. In addition, we demonstrate that accumulated particles can be concentrated, removing excess dispersed phase by splitting the droplet at a simple channel junction.

  4. Tests of peak flow scaling in simulated self-similar river networks

    USGS Publications Warehouse

    Menabde, M.; Veitzer, S.; Gupta, V.; Sivapalan, M.

    2001-01-01

    The effect of linear flow routing incorporating attenuation and network topology on peak flow scaling exponent is investigated for an instantaneously applied uniform runoff on simulated deterministic and random self-similar channel networks. The flow routing is modelled by a linear mass conservation equation for a discrete set of channel links connected in parallel and series, and having the same topology as the channel network. A quasi-analytical solution for the unit hydrograph is obtained in terms of recursion relations. The analysis of this solution shows that the peak flow has an asymptotically scaling dependence on the drainage area for deterministic Mandelbrot-Vicsek (MV) and Peano networks, as well as for a subclass of random self-similar channel networks. However, the scaling exponent is shown to be different from that predicted by the scaling properties of the maxima of the width functions. ?? 2001 Elsevier Science Ltd. All rights reserved.

  5. Effects of inlet flow field conditions on the performance of centrifugal compressor diffusers: Part 2 -- Straight-channel diffuser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deniz, S.; Greitzer, E.M.; Cumpsty, N.A.

    2000-01-01

    This is Part 2 of an examination of the influence of inlet flow conditions on the performance and operating range of centrifugal compressor vaned diffusers. The paper describes tests of a straight-channel type diffuser, sometimes called a wedge-vane diffuser, and compares the results with those from the discrete-passage diffusers described in Part 1. Effects of diffuser inlet Mach number, flow angle, blockage, and axial flow nonuniformity on diffuser pressure recovery and operating range are addressed. The straight-channel diffuser investigated has 30 vanes and was designed for the same aerodynamic duty as the discrete-passage diffuser described in Part 1. The rangesmore » of the overall pressure recovery coefficients were 0.50--0.78 for the straight-channel diffuser and 0.50--0.70 for the discrete-passage diffuser, except when the diffuser was choked. In other words, the maximum pressure recovery of the straight-channel diffuser was found to be roughly 10% higher than that of the discrete-passage diffuser investigated. The two types of diffuser showed similar behavior regarding the dependence of pressure recovery on diffuser inlet flow angle and the insensitivity of the performance to inlet flow field axial distortion and Mach number. The operating range of the straight-channel diffuser, as for the discrete-passage diffusers, was limited by the onset of rotating stall at a fixed momentum-averaged flow angle into the diffuser, which was for the straight-channel diffuser, {alpha}{sub crit} = 70 {+-} 0.5 deg. The background, nomenclature, and description of the facility and method are all given in Part 1.« less

  6. Evolution of Channels Draining Mount St. Helens: Linking Non-Linear and Rapid, Threshold Responses

    NASA Astrophysics Data System (ADS)

    Simon, A.

    2010-12-01

    The catastrophic eruption of Mount St. Helens buried the valley of the North Fork Toutle River (NFT) to a depth of up to 140 m. Initial integration of a new drainage network took place episodically by the “filling and spilling” (from precipitation and seepage) of depressions formed during emplacement of the debris avalanche deposit. Channel incision to depths of 20-30 m occurred in the debris avalanche and extensive pyroclastic flow deposits, and headward migration of the channel network followed, with complete integration taking place within 2.5 years. Downstream reaches were converted from gravel-cobble streams with step-pool sequences to smoothed, infilled channels dominated by sand-sized materials. Subsequent channel evolution was dominated by channel widening with the ratio of changes in channel width to changes in channel depth ranging from about 60 to 100. Widening resulted in significant adjustment of hydraulic variables that control sediment-transport rates. For a given discharge over time, flow depths were reduced, relative roughness increased and flow velocity and boundary shear stress decreased non-linearly. These changes, in combination with coarsening of the channel bed with time resulted in systematically reduced rates of degradation (in upstream reaches), aggradation (in downstream reaches) and sediment-transport rates through much of the 1990s. Vertical adjustments were, therefore, easy to characterize with non-linear decay functions with bed-elevation attenuating with time. An empirical model of bed-level response was then created by plotting the total dimensionless change in elevation against river kilometer for both initial and secondary vertical adjustments. High magnitude events generated from the generated from upper part of the mountain, however, can cause rapid (threshold) morphologic changes. For example, a rain-on-snow event in November 2006 caused up to 9 m of incision along a 6.5 km reach of Loowit Creek and the upper NFT. The event triggered a debris flow which cutoff tributary channels to Glacier Creek and redirected Step and Loowit Creeks thereby forcing enhanced flow volumes through the main channel. Very coarse, armored bed materials were mobilized allowing for deep incision into the substrate. Incision continues today at slower rates but it is again the lateral shifting and widening of the channels that is dominant. Low and moderate flows undercut the toe of 30 m-high pyroclastic flow deposits causing significant erosion. As the channel continues to widen incision will attenuate non-linearly. Channels such as the multiple Step Creek channels will coalesce as narrow ridges erode by undercutting and mass failure much as reaches of lower Loowit Creek did in the late 1980’s. The resulting enlarged and over-widened sections will then again (as in downstream reaches) have lowered transporting power.

  7. High throughput analysis of samples in flowing liquid

    DOEpatents

    Ambrose, W. Patrick; Grace, W. Kevin; Goodwin, Peter M.; Jett, James H.; Orden, Alan Van; Keller, Richard A.

    2001-01-01

    Apparatus and method enable imaging multiple fluorescent sample particles in a single flow channel. A flow channel defines a flow direction for samples in a flow stream and has a viewing plane perpendicular to the flow direction. A laser beam is formed as a ribbon having a width effective to cover the viewing plane. Imaging optics are arranged to view the viewing plane to form an image of the fluorescent sample particles in the flow stream, and a camera records the image formed by the imaging optics.

  8. Analysis of flow reversal test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L.Y.; Tichler, P.R.

    A series of tests has been conducted to measure the dryout power associated with a flow transient whereby the coolant in a heated channel undergoes a change in flow direction. An analysis of the test was made with the aid of a system code, RELAP5. A dryout criterion was developed in terms of a time-averaged void fraction calculated by RELAP5 for the heated channel. The dryout criterion was also compared with several CHF correlations developed for the channel geometry.

  9. Entrance-length dendritic plate heat exchangers

    DOE PAGES

    Bejan, A.; Alalaimi, M.; Sabau, A. S.; ...

    2017-07-17

    We explore the idea that the highest heat transfer rate between two fluids in a given volume is achieved when plate channel lengths are given by the thermal entrance length, i.e., when the thermal boundary layers meet at the exit of each channel. The overall design can be thought of an elemental construct of a dendritic heat exchanger, which consists of two tree-shaped streams arranged in cross flow. Every channel is as long as the thermal entrance length of the developing flow that resides in that channel. The results indicate that the overall design will change with the total volumemore » and total number of channels. We found that the lengths of the surfaces swept in cross flow would have to decrease sizably as number of channels increases, while exhibiting mild decreases as total volume increases. The aspect ratio of each surface swept by fluid in cross flow should be approximately square, independent of total number of channels and volume. We also found that the minimum pumping power decreases sensibly as the total number of channels and the volume increase. FurtherThe maximized heat transfer rate per unit volume increases sharply as the total volume decreases, in agreement with the natural evolution toward miniaturization in technology.« less

  10. Entrance-length dendritic plate heat exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bejan, A.; Alalaimi, M.; Sabau, A. S.

    We explore the idea that the highest heat transfer rate between two fluids in a given volume is achieved when plate channel lengths are given by the thermal entrance length, i.e., when the thermal boundary layers meet at the exit of each channel. The overall design can be thought of an elemental construct of a dendritic heat exchanger, which consists of two tree-shaped streams arranged in cross flow. Every channel is as long as the thermal entrance length of the developing flow that resides in that channel. The results indicate that the overall design will change with the total volumemore » and total number of channels. We found that the lengths of the surfaces swept in cross flow would have to decrease sizably as number of channels increases, while exhibiting mild decreases as total volume increases. The aspect ratio of each surface swept by fluid in cross flow should be approximately square, independent of total number of channels and volume. We also found that the minimum pumping power decreases sensibly as the total number of channels and the volume increase. FurtherThe maximized heat transfer rate per unit volume increases sharply as the total volume decreases, in agreement with the natural evolution toward miniaturization in technology.« less

  11. A nonlinear model of flow in meandering submarine and subaerial channels

    NASA Astrophysics Data System (ADS)

    Imran, Jasim; Parker, Gary; Pirmez, Carlos

    1999-12-01

    A generalized model of flow in meandering subaqueous and subaerial channels is developed. The conservation equations of mass and momentum are depth/layer integrated, normalized, and represented as deviations from a straight base state. This allows the determination of integrable forms which can be solved at both linear and nonlinear levels. The effects of various flow and geometric parameters on the flow dynamics are studied. Although the model is not limited to any specific planform, this study focuses on sine-generated curves. In analysing the flow patterns, the turbidity current of the subaqueous case is simplified to a conservative density flow with water entrainment from above neglected. The subaqueous model thus formally corresponds to a subcritical or only mildly supercritical mud-rich turbidity current. By extension, however the analysis can be applied to a depositional or erosional current carrying sand that is changing only slowly in the streamwise direction. By bringing the subaqueous and subaerial cases into a common form, flow behaviour in the two environments can be compared under similar geometric and boundary conditions. A major difference between the two cases is the degree of superelevation of channel flow around bends, which is modest in the subaerial case but substantial in the subaqueous case. Another difference concerns Coriolis effects: some of the largest subaqueous meandering systems are so large that Coriolis effects can become important. The model is applied to meander bends on the youngest channel in the mid-fan region of the Amazon Fan and a mildly sinuous bend of the North-West Atlantic Mid-Ocean Channel. In the absence of specific data on the turbid flows that created the channel, the model can be used to make inferences about the flow, and in particular the range of values of flow velocity and sediment concentration that would allow the growth and downfan migration of meander bends.

  12. Investigation of reversed flow channel events by the ICI-3 sounding rocket

    NASA Astrophysics Data System (ADS)

    Moen, J. I.; Dabakk, Y.; Oksavik, K.; Bekkeng, T.; Bekkeng, J. K.; Lorentzen, D. A.; Baddeley, L. J.; Abe, T.; Saito, Y.; Ogawa, Y.; Robert, P.; Yoeman, T.

    2012-12-01

    Transient flow channel events are a key characteristic of solar wind - magnetosphere coupling to the cusp ionosphere. One class of flow channels, Reversed Flow Events (RFE),was first discovered by the EISCAT Svalbard Radar and later also documented by the SuperDARN radar system. An RFE is typically a 100-200 km wide longitudinally elongated flow channel near the cusp inflow region, inside which the flow direction is opposite to the large scale ionospheric background convection. These events are hence associated with strong flow shears, and this category of flow events has been attributed to Birkeland current arcs. There are two possible explanations for their existence: (1) the RFE channel may be a region where two MI current loops, forced by independent voltage generators, couple through a poorly conducting ionosphere and (2) the reversed flow channel may be the ionospheric footprint of an inverted V-type coupling region. Electron beams of <1 keV will not give rise to significant conductivity gradients, and the form of a discontinuity in the magnetospheric electric field will be conserved when mapped down to the ionosphere, although reduced in amplitude.On 3 December, 2011 the Investigation of Cusp Irregularities 3 (ICI-3) sounding rocket was successfully launched from Ny-Ålesund, Svalbard to intersect an RFE event. The payload was equipped with Langmuir probes, AC and DC electric field and magnetic field experiments, and a low energy electron spectrometer (10 eV-10 keV). The auroral activity and flow context during the flight was provided by ground based optics, the EISCAT Svalbard Radar and the SuperDARN HF radars. In this talk we will present the ICI-3 test of the two physical explanations given above for the RFE phenomenon, and we will provide a quantitative measure of the Kelvin-Helmholtz instability growth rate associated with the flow shears.

  13. Soft Sensing of Non-Newtonian Fluid Flow in Open Venturi Channel Using an Array of Ultrasonic Level Sensors—AI Models and Their Validations

    PubMed Central

    Viumdal, Håkon; Mylvaganam, Saba

    2017-01-01

    In oil and gas and geothermal installations, open channels followed by sieves for removal of drill cuttings, are used to monitor the quality and quantity of the drilling fluids. Drilling fluid flow rate is difficult to measure due to the varying flow conditions (e.g., wavy, turbulent and irregular) and the presence of drilling cuttings and gas bubbles. Inclusion of a Venturi section in the open channel and an array of ultrasonic level sensors above it at locations in the vicinity of and above the Venturi constriction gives the varying levels of the drilling fluid in the channel. The time series of the levels from this array of ultrasonic level sensors are used to estimate the drilling fluid flow rate, which is compared with Coriolis meter measurements. Fuzzy logic, neural networks and support vector regression algorithms applied to the data from temporal and spatial ultrasonic level measurements of the drilling fluid in the open channel give estimates of its flow rate with sufficient reliability, repeatability and uncertainty, providing a novel soft sensing of an important process variable. Simulations, cross-validations and experimental results show that feedforward neural networks with the Bayesian regularization learning algorithm provide the best flow rate estimates. Finally, the benefits of using this soft sensing technique combined with Venturi constriction in open channels are discussed. PMID:29072595

  14. Variability of hydrologic regimes and morphology in constructed open-ditch channels

    USGS Publications Warehouse

    Strock, J.S.; Magner, J.A.; Richardson, W.B.; Sadowsky, M.J.; Sands, G.R.; Venterea, R.T.; ,

    2004-01-01

    Open-ditch ecosystems are potential transporters of considerable loads of nutrients, sediment, pathogens and pesticides from direct inflow from agricultural land to small streams and larger rivers. Our objective was to compare hydrology and channel morphology between two experimental open-ditch channels. An open-ditch research facility incorporating a paired design was constructed during 2002 near Lamberton, MN. A200-m reach of existing drainage channel was converted into a system of four parallel channels. The facility was equipped with water level control devices and instrumentation for flow monitoring and water sample collection on upstream and downstream ends of the system. Hydrographs from simulated flow during year one indicated that paired open-ditch channels responded similarly to changes in inflow. Variability in hydrologic response between open-ditches was attributed to differences in open-ditch channel bottom elevation and vegetation density. No chemical, biological, or atmospheric measurements were made during 2003. Potential future benefits of this research include improved biological diversity and integrity of open-ditch ecosystems, reduce flood peaks and increased flow during critical low-flow periods, improved and more efficient nitrogen retention within the open-ditch ecosystem, and decreased maintenance cost associated with reduced frequency of open-ditch maintenance.

  15. Basal channels on ice shelves

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.

    2013-09-01

    Recent surveys of floating ice shelves associated with Pine Island Glacier (Antarctica) and Petermann Glacier (Greenland) indicate that there are channels incised upward into their bottoms that may serve as the conduits of meltwater outflow from the sub-ice-shelf cavity. The formation of the channels, their evolution over time, and their impact on ice-shelf flow are investigated using a fully-coupled ice-shelf/sub-ice-shelf ocean model. The model simulations suggest that channels may form spontaneously in response to meltwater plume flow initiated at the grounding line if there are relatively high melt rates and if there is transverse to ice-flow variability in ice-shelf thickness. Typical channels formed in the simulations have a width of about 1-3 km and a vertical relief of about 100-200 m. Melt rates and sea-water transport in the channels are significantly higher than on the smooth flat ice bottom between the channels. The melt channels develop through melting, deformation, and advection with ice-shelf flow. Simulations suggest that both steady state and cyclic state solutions are possible depending on conditions along the lateral ice-shelf boundaries. This peculiar dynamics of the system has strong implications on the interpretation of observations. The richness of channel morphology and evolution seen in this study suggests that further observations and theoretical analysis are imperative for understanding ice-shelf behavior in warm oceanic conditions.

  16. Three-dimensional numerical simulation of water droplet emerging from a gas diffusion layer surface in micro-channels

    NASA Astrophysics Data System (ADS)

    Ding, Y.; Bi, H. T.; Wilkinson, D. P.

    The dynamic formation of water droplets emerging from a gas diffusion layer (GDL) surface in micro-channels was simulated using the volume of fluid (VOF) method. The influence of GDL surface microstructure was investigated by changing the pore diameter and the number of pore openings on the GDL surface. Simulation results show that the microstructure of the GDL surface has a significant impact on the two-phase flow patterns in gas flow channels. For a non-uniform GDL surface, three stages were identified, namely emergence and merging on the GDL surface, accumulation on the channel sidewalls and detachment from the top wall. It was also found that if the pore size is small enough, the flow pattern in the channel does not change with further reduction in the pore diameter. However, the two-phase flow patterns change significantly with the wettability of the GDL surface and sidewalls, but remain the same when the liquid flow rate is reduced by two orders of magnitude from the reference case.

  17. Hall effects on MHD flow of heat generating/absorbing fluid through porous medium in a rotating parallel plate channel

    NASA Astrophysics Data System (ADS)

    Swarnalathamma, B. V.; Krishna, M. Veera

    2017-07-01

    We studied heat transfer on MHD convective flow of viscous electrically conducting heat generating/absorbing fluid through porous medium in a rotating channel under uniform transverse magnetic field normal to the channel and taking Hall current. The flow is governed by the Brinkman's model. The diagnostic solutions for the velocity and temperature are obtained by perturbation technique and computationally discussed with respect to flow parameters through the graphs. The skin friction and Nusselt number are also evaluated and computationally discussed with reference to pertinent parameters in detail.

  18. Piecewise uniform conduction-like flow channels and method therefor

    DOEpatents

    Cummings, Eric B [Livermore, CA; Fiechtner, Gregory J [Livermore, CA

    2006-02-28

    A low-dispersion methodology for designing microfabricated conduction channels for on-chip electrokinetic-based systems is presented. The technique relies on trigonometric relations that apply for ideal electrokinetic flows, allowing faceted channels to be designed on chips using common drafting software and a hand calculator. Flows are rotated and stretched along the abrupt interface between adjacent regions with differing permeability. Regions bounded by interfaces form flow "prisms" that can be combined with other designed prisms to obtain a wide range of turning angles and expansion ratios while minimizing dispersion. Designs are demonstrated using two-dimensional numerical solutions of the Laplace equation.

  19. An Experimental Study of Vortex Flow Formation and Dynamics in Confined Microcavities

    NASA Astrophysics Data System (ADS)

    Khojah, Reem; di Carlo, Dino

    2017-11-01

    New engineering solutions for bioparticle separation invites revisiting classic fluid dynamics problems. Previous studies investigated cavity vortical flow that occurs in 2D with the formation of a material flux boundary or separatrix between the main flow and cavity flow. We demonstrate the concept of separatrix breakdown, in which the cavity flow becomes connected to the main flow, occurs as the cavity is confined in 3D, and is implicated in particle capture and rapid mass exchange in cavities. Understanding the convective flux between the channel and a side cavity provides insight into size-dependent particle capture and release from the cavity flow. The process of vortex formation and separatrix breakdown between the main channel to the side cavity is Reynolds number dependent and can be described by dissecting the flow streamlines from the main channel that enter and spiral out of the cavity. Laminar streamlines from incremented initial locations in the main flow are observed inside the cavity under different flow conditions. Experimentally, we provide the Reynolds number threshold to generate certain flow geometry. We found the optimal flow conditions that enable rapid convective transfer through the cavity flow and exposure and interaction between soluble factors with captured cells. By tuning which fraction of the main flow has solute, we can create a dynamic gate between the cavity and channel flow that potentially serves as a time-dependent fluid exchange approach for objects within the cavity.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkholder, Michael B.; Litster, Shawn, E-mail: litster@andrew.cmu.edu

    In this study, we analyze the stability of two-phase flow regimes and their transitions using chaotic and fractal statistics, and we report new measurements of dynamic two-phase pressure drop hysteresis that is related to flow regime stability and channel water content. Two-phase flow dynamics are relevant to a variety of real-world systems, and quantifying transient two-phase flow phenomena is important for efficient design. We recorded two-phase (air and water) pressure drops and flow images in a microchannel under both steady and transient conditions. Using Lyapunov exponents and Hurst exponents to characterize the steady-state pressure fluctuations, we develop a new, measurablemore » regime identification criteria based on the dynamic stability of the two-phase pressure signal. We also applied a new experimental technique by continuously cycling the air flow rate to study dynamic hysteresis in two-phase pressure drops, which is separate from steady-state hysteresis and can be used to understand two-phase flow development time scales. Using recorded images of the two-phase flow, we show that the capacitive dynamic hysteresis is related to channel water content and flow regime stability. The mixed-wettability microchannel and in-channel water introduction used in this study simulate a polymer electrolyte fuel cell cathode air flow channel.« less

  1. Pressure driven laminar flow of a power-law fluid in a T-channel

    NASA Astrophysics Data System (ADS)

    Dyakova, O. A.; Frolov, O. Yu

    2017-10-01

    Planar flow of a non-Newtonian fluid in a T-channel is investigated. The viscosity is determined by the Ostwald-de Waele power law. Motion of the fluid is caused by pressure drop given in boundary sections of the T-channel. On the solid walls, the no slip boundary condition is used. The problem is numerically solved with using a finite difference method based on the SIMPLE procedure. As a result of this study, characteristic flow regimes have been found. Influence of main parameters on the flow pattern has been demonstrated. Criteria dependences describing basic characteristics of the flow under conditions of the present work have been shown.

  2. Optimal feedback control of turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Bewley, Thomas; Choi, Haecheon; Temam, Roger; Moin, Parviz

    1993-01-01

    Feedback control equations were developed and tested for computing wall normal control velocities to control turbulent flow in a channel with the objective of reducing drag. The technique used is the minimization of a 'cost functional' which is constructed to represent some balance of the drag integrated over the wall and the net control effort. A distribution of wall velocities is found which minimizes this cost functional some time shortly in the future based on current observations of the flow near the wall. Preliminary direct numerical simulations of the scheme applied to turbulent channel flow indicates it provides approximately 17 percent drag reduction. The mechanism apparent when the scheme is applied to a simplified flow situation is also discussed.

  3. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  4. Turbulent shear layers in confining channels

    NASA Astrophysics Data System (ADS)

    Benham, Graham P.; Castrejon-Pita, Alfonso A.; Hewitt, Ian J.; Please, Colin P.; Style, Rob W.; Bird, Paul A. D.

    2018-06-01

    We present a simple model for the development of shear layers between parallel flows in confining channels. Such flows are important across a wide range of topics from diffusers, nozzles and ducts to urban air flow and geophysical fluid dynamics. The model approximates the flow in the shear layer as a linear profile separating uniform-velocity streams. Both the channel geometry and wall drag affect the development of the flow. The model shows good agreement with both particle image velocimetry experiments and computational turbulence modelling. The simplicity and low computational cost of the model allows it to be used for benchmark predictions and design purposes, which we demonstrate by investigating optimal pressure recovery in diffusers with non-uniform inflow.

  5. Houston-Galveston Navigation Channels, Texas Project. Navigation Channel Sedimentation Study, Phase 2

    DTIC Science & Technology

    2008-07-01

    volume of the system is 64 L. The propeller pump is 2.6 m upstream from the bed sediment sample tray . Flows in the VOST are up to 1.54 m/s, generating...159 High Flow Water Year...160 Low Flow Water Year

  6. Network Structure as a Modulator of Disturbance Impacts in Streams

    NASA Astrophysics Data System (ADS)

    Warner, S.; Tullos, D. D.

    2017-12-01

    This study examines how river network structure affects the propagation of geomorphic and anthropogenic disturbances through streams. Geomorphic processes such as debris flows can alter channel morphology and modify habitat for aquatic biota. Anthropogenic disturbances such as road construction can interact with the geomorphology and hydrology of forested watersheds to change sediment and water inputs to streams. It was hypothesized that the network structure of streams within forested watersheds would influence the location and magnitude of the impacts of debris flows and road construction on sediment size and channel width. Longitudinal surveys were conducted every 50 meters for 11 kilometers of third-to-fifth order streams in the H.J. Andrews Experimental Forest in the Western Cascade Range of Oregon. Particle counts and channel geometry measurements were collected to characterize the geomorphic impacts of road crossings and debris flows as disturbances. Sediment size distributions and width measurements were plotted against the distance of survey locations through the network to identify variations in longitudinal trends of channel characteristics. Thresholds for the background variation in sediment size and channel width, based on the standard deviations of sample points, were developed for sampled stream segments characterized by location as well as geomorphic and land use history. Survey locations were classified as "disturbed" when they deviated beyond the reference thresholds in expected sediment sizes and channel widths, as well as flow-connected proximity to debris flows and road crossings. River network structure was quantified by drainage density and centrality of nodes upstream of survey locations. Drainage density and node centrality were compared between survey locations with similar channel characteristic classifications. Cluster analysis was used to assess the significance of survey location, proximity of survey location to debris flows and road crossings, drainage density and node centrality in predicting sediment size and channel width classifications for locations within the watershed. Results contribute to the understanding of susceptibility and responses of streams supporting critical habitat for aquatic species to debris flows and forest road disturbances.

  7. Numerical Modeling of Surface and Volumetric Cooling using Optimal T- and Y-shaped Flow Channels

    NASA Astrophysics Data System (ADS)

    Kosaraju, Srinivas

    2017-11-01

    The layout of T- and V-shaped flow channel networks on a surface can be optimized for minimum pressure drop and pumping power. The results of the optimization are in the form of geometric parameters such as length and diameter ratios of the stem and branch sections. While these flow channels are optimized for minimum pressure drop, they can also be used for surface and volumetric cooling applications such as heat exchangers, air conditioning and electronics cooling. In this paper, an effort has been made to study the heat transfer characteristics of multiple T- and Y-shaped flow channel configurations using numerical simulations. All configurations are subjected to same input parameters and heat generation constraints. Comparisons are made with similar results published in literature.

  8. Large Eddy Simulation in a Channel with Exit Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Cziesla, T.; Braun, H.; Biswas, G.; Mitra, N. K.

    1996-01-01

    The influence of the exit boundary conditions (vanishing first derivative of the velocity components and constant pressure) on the large eddy simulation of the fully developed turbulent channel flow has been investigated for equidistant and stretched grids at the channel exit. Results show that the chosen exit boundary conditions introduce some small disturbance which is mostly damped by the grid stretching. The difference between the fully developed turbulent channel flow obtained with LES with periodicity condition and the inlet and exit and the LES with fully developed flow at the inlet and the exit boundary condition is less than 10% for equidistant grids and less than 5% for the case grid stretching. The chosen boundary condition is of interest because it may be used in complex flows with backflow at exit.

  9. Channel Extension in Deep-Water Distributive Systems

    NASA Astrophysics Data System (ADS)

    Hoyal, D. C.; Sheets, B. A.

    2007-12-01

    The cyclic nature of channel and lobe formation in submarine fans is the result of the unstable and ephemeral nature of newly formed distributary channels. Avulsion cycles are initiated as unconfined sheet flow immediately following avulsion followed by stages of channel incision and extension, deposition of channel mouth deposits, and often channel backfilling. In contrast with those in alluvial and deltaic environments, avulsion cycles in submarine fans are relatively poorly understood due to the difficulty of observing deep ocean processes, either over short timescales needed to measure the hydrodynamics of active turbidity currents, or over longer timescales needed for the morphodynamic evolution of individual distributary channels and avulsion events. Here we report the results of over 80 experiments in a 5m x 3m x1m deep tank using saline (NaCl) density flows carrying low-density plastic sediment (SG 1.5) flowing down an inclined ramp. These experiments were designed to investigate trends observed in earlier self-organized experimental submarine fans with well-developed avulsion cycles, in which distributive lobes were observed to form on relatively high slopes. In particular, we were interested in investigating the relationship between channel extension length (distance from the inlet to the point where the flow becomes de-channelized, transitioning into a mouth-bar/lobe) and slope. The results of the experiments are clear but counter-intuitive. Channels appear to extend in discrete segments and channel extension length is inversely related to slope over a wide range of slopes (5-17 degrees). In addition, channel extension seems largely independent of inlet flow density (salt concentration) over the experimental range (10-24 g/cc). Measurements of densimetric Froude number (Fr') indicate Fr' increases downstream to near critical conditions at the channel lobe transition. Our preliminary interpretation is that distributary channels become unstable due to acceleration to Fr'-critical conditions and the formation of a depositional hydraulic jump, which perturbs sediment transport and ends channel extension. Similar morphodynamic length scale controls are observed in shallow water fan-delta experiments (e.g., SAFL DB-03) and in 2-D depositional cyclic steps. The experiments seem to explain two interesting observations from the earlier self-organized fan experiments and from real submarine fans. Firstly, the observation of 'perched' fills at the steep entrances to salt withdrawal minibasins (e.g., in the Gulf of Mexico) suggesting higher sedimentation rates (or inefficient sediment transport) on higher slopes (initially higher than at the slope break downstream). Secondly, strong progradation as the fan evolves and slope decreases in 'perched' fans suggests increasing flow efficiency on lower slopes, at least over a certain window of parameter space. Apparently deep water systems have a tendency to self-regulate even when flows differ significantly in initial density. The observed modulation to Fr'-critical flow appears to be an important control on length scales in deep- water distributive channel systems, potentially explaining strong deepwater progradation or 'delta-like' patterns that have remained paradoxical. Near critical conditions have been inferred from observations of many active submarine fans but the extent to which these results from conservative density currents apply to non-conservative and potentially 'ignitive' turbidity currents is the subject of ongoing investigation.

  10. Preferential flow and pesticide transport in a clay-rich till: Field, laboratory, and modeling analysis

    NASA Astrophysics Data System (ADS)

    JøRgensen, Peter R.; Hoffmann, Martin; Kistrup, Jens P.; Bryde, Claus; Bossi, Rossana; Villholth, Karen G.

    2002-11-01

    This study investigates vertical flow and pesticide transport along fractures in water saturated unoxidized clayey till. From two experimental fields, each 40 m2, 96% and 98%, respectively, of total vertical flow was conducted along fractures in the till, while the remaining 2-4% of flow occurred in the clay matrix at very slow flow rate. An applied dye tracer was observed only along 10-26% of the total fracture length measured on the horizontal surface of the experimental fields. In vertical sections the dyed fracture portions constituted root channels, which penetrated the till vertically along the fractures into the local aquifer at 5 m depth. No dye tracer was observed in the fractures without root channels or in the unfractured clay matrix, suggesting that root growth along the fracture surfaces was the principal agent of fracture aperture enhancement. Using hydraulic fracture aperture values determined from large undisturbed column (LUC) collected from one of the experimental fields, it was estimated that 94% of flow in the fractures was conducted along the fracture root channels, while only 6% of flow was conducted along the fracture sections without root channels. For natural vertical hydraulic gradients (0.8-2.3 at the site), flow rates of 0.8-2 km/d were determined for a fracture root channel, while fracture sections without root channels revealed flow rates of 9-22 m/d. Corresponding flow rates in the unfractured matrix were 7-19 mm/yr. For infiltrated bromide (nonreactive tracer) and mobile pesticides mecoprop (MCPP) and metsulfuron, very rapid migration (0.28-0.5 m/d) and high relative breakthrough concentrations (30-60%) into the aquifer were observed to occur along the fracture root channels using a constant hydraulic gradient of 1. Only traces were measured from infiltration of the strongly sorbed pesticide prochloraz. The concentrations of the bromide and pesticides in the monitoring wells were modeled with a discrete fracture matrix diffusion (DFDM) model coupled with a single porosity model (SP) for the till and aquifer, respectively. Using effective fracture spacings and mean fracture apertures for the fracture channel sections as modeling input parameters for the till, the concentrations observed in the wells of the aquifer could be reasonably approximated.

  11. Microfluidic circuit designs for performing fluidic manipulations that reduce the number of pumping sources and fluid reservoirs

    DOEpatents

    Jacobson, Stephen C [Knoxville, TN; Ramsey, J Michael [Knoxville, TN

    2001-01-01

    A microfabricated device and method for proportioning and mixing biological or chemical materials by pressure- or vacuum-driven flow is disclosed. The microfabricated device mixes a plurality of materials in volumetric proportions controlled by the flow resistances of tributary reagent channels through which the materials are transported. The microchip includes two or more tributary reagent channels combining at one or more junctions to form one or more mixing channels. By varying the geometries of the channels (length, cross section, etc.), a plurality of reagent materials can be mixed at a junction such that the proportions of the reagent materials in the mixing channel depend on a ratio of the channel geometries and material properties. Such an approach facilitates flow division on the microchip without relying on techniques external to the microchip. Microchannel designs that provide the necessary flow division to accomplish valving operations using a minimum of pressure or vacuum sources are also described. In addition, microchannel designs that accomplish fluidic operation utilizing a minimal number of fluidic reservoirs are disclosed.

  12. Gas-liquid two-phase flow behaviors and performance characteristics of proton exchange membrane fuel cells in a short-term microgravity environment

    NASA Astrophysics Data System (ADS)

    Guo, Hang; Liu, Xuan; Zhao, Jian Fu; Ye, Fang; Ma, Chong Fang

    2017-06-01

    In this work, proton exchange membrane fuel cells (PEMFCs) with transparent windows are designed to study the gas-liquid two-phase flow behaviors inside flow channels and the performance of a PEMFC with vertical channels and a PEMFC with horizontal channels in a normal gravity environment and a 3.6 s short-term microgravity environment. Experiments are conducted under high external circuit load and low external circuit load at low temperature where is 35 °C. The results of the present experimental work demonstrate that the performance and the gas-liquid two-phase flow behaviors of the PEMFC with vertical channels exhibits obvious changes when the PEMFCs enter the 3.6 s short-term microgravity environment from the normal gravity environment. Meanwhile, the performance of the PEMFC with vertical channels increases after the PEMFC enters the 3.6 s short-term microgravity environment under high external circuit load, while under low external circuit load, the PEMFC with horizontal channels exhibits better performance in both the normal gravity environment and the 3.6 s short-term microgravity environment.

  13. Flow structures and sandbar dynamics in a canyon river during a controlled flood, Colorado River, Arizona

    USGS Publications Warehouse

    Wright, S.A.; Kaplinski, M.

    2011-01-01

    In canyon rivers, debris fan constrictions create rapids and downstream pools characterized by secondary flow structures that are closely linked to channel morphology. In this paper we describe detailed measurements of the three-dimensional flow structure and sandbar dynamics of two pools along the Colorado River in the Grand Canyon during a controlled flood release from Glen Canyon Dam. Results indicate that the pools are characterized by large lateral recirculation zones (eddies) resulting from flow separation downstream from the channel constrictions, as well as helical flow structures in the main channel and eddy. The lateral recirculation zones are low-velocity areas conducive to fine sediment deposition, particularly in the vicinity of the separation and reattachment points and are thus the dominant flow structures controlling sandbar dynamics. The helical flow structures also affect morphology but appear secondary in importance to the lateral eddies. During the controlled flood, sandbars in the separation and reattachment zones at both sites tended to build gradually during the rising limb and peak flow. Deposition in shallow water on the sandbars was accompanied by erosion in deeper water along the sandbar slope at the interface with the main channel. Erosion occurred via rapid mass failures as well as by gradual boundary shear stress driven processes. The flow structures and morphologic links at our study sites are similar to those identified in other river environments, in particular sharply curved meanders and channel confluences where the coexistence of lateral recirculation and helical flows has been documented. Copyright 2011 by the American Geophysical Union.

  14. Respones of sandhill crane (Grus canadensis) riverine roosting habitat to changes in stage and sandbar morphology

    USGS Publications Warehouse

    Kinzel, P.J.; Nelson, J.M.; Heckman, A.K.

    2009-01-01

    Over the past century, flow regulation and vegetation encroachment have reduced active channel widths along the central Platte River, Nebraska. During the last two decades, an annual program of in-channel vegetation management has been implemented to stabilize or expand active channel widths. Vegetation management practices are intended to enhance riverine habitats which include nocturnal roosting habitat for sandhill cranes. Evaluating the success of other management treatments such as streamflow modification requires an understanding of how flow shapes the sandbars in the river and how sandbar morphology interacts with flow to create crane habitat. These linkages were investigated along a 1-km managed river reach by comparing the spatial pattern of riverine roosts and emergent sandbars identified with aerial infrared imagery to variables computed with a two-dimensional hydraulic model. Nocturnal observations made multiple years showed that the area and patterns of riverine roosts and emergent sandbars and the densities of cranes within roosts changed with stage. Despite sandbar vegetation management, low flows were concentrated into incised channels rather than spread out over broad sandbars. The flow model was used to compute hydraulic variables for identical streamflows through two sandbar morphologies; one following a period of relatively high flow and the other following the low-flow period. Compared with the simulation using the morphology from the antecedent high flow, the simulation using the morphology from the antecedent low flow produced a smaller quantity of available wetted area. These remote-sensing observations and hydraulic simulations illustrate the importance of considering flow history when designing streamflows to manage in-channel habitat for cranes.

  15. Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)

    2015-01-01

    An eddy-current-minimizing flow plug has an outer radial wall with open flow channels formed between the plug's inlet and outlet. The plug has a central region coupled to the inner surface of the outer radial wall. Each open flow channel includes (i) a first portion originating at the inlet and converging to a location in the plug where convergence is contributed to by changes in thickness of the outer radial wall and divergence of the central region, and (ii) a second portion originating in the plug and diverging to the outlet where divergence is contributed to by changes in thickness of the outer radial wall and convergence of the central region. For at least a portion of the open flow channels, a central axis passing through the first and second portions is non-parallel with respect to the given direction of the flow.

  16. Determination of channel change for selected streams, Maricopa County, Arizona

    USGS Publications Warehouse

    Capesius, Joseph P.; Lehman, Ted W.

    2002-01-01

    In Maricopa County, Arizona, 10 sites on seven streams were studied to determine the lateral and vertical change of the channel. Channel change was studied over time scales ranging from individual floods to decades using cross-section surveys, discharge measurements, changes in the point of zero flow, and repeat photography. All of the channels showed some change in cross-section area or hydraulic radius over the time scales studied, but the direction and mag-nitude of change varied considerably from one flow, or series of flows, to another. The documentation of cross-section geometry for streams in Maricopa County for long-term monitoring was begun in this study.

  17. Corium shield

    DOEpatents

    McDonald, Douglas B.; Buchholz, Carol E.

    1994-01-01

    A shield for restricting molten corium from flowing into a water sump disposed in a floor of a containment vessel includes upper and lower walls which extend vertically upwardly and downwardly from the floor for laterally bounding the sump. The upper wall includes a plurality of laterally spaced apart flow channels extending horizontally therethrough, with each channel having a bottom disposed coextensively with the floor for channeling water therefrom into the sump. Each channel has a height and a length predeterminedly selected for allowing heat from the molten corium to dissipate through the upper and lower walls as it flows therethrough for solidifying the molten corium therein to prevent accumulation thereof in the sump.

  18. Analysis of Dynamic Geometric Configuration of the Aortic Channel from the Perspective of Tornado-Like Flow Organization of Blood Flow.

    PubMed

    Zhorzholiani, Sh T; Mironov, A A; Talygin, E A; Tsyganokov, Yu M; Agafonov, A M; Kiknadze, G I; Gorodkov, A Yu; Bokeriya, L A

    2018-03-01

    Analysis of the data of morphometry of aortic casts, aortography at different pressures, and multispiral computer tomography of the aorta with contrast and normal pulse pressure showed that geometric configuration of the flow channel of the aorta during the whole cardiac cycle corresponded to the conditions of self-organization of tornado-like quasipotential flow described by exact solutions of the Navier-Stokes equation and continuity of viscous fluid typical for this type of fluid flows. Increasing pressure in the aorta leads to a decrease in the degree of approximation of the channel geometry to the ratio of exact solution and increases the risk of distortions in the structure of the flow. A mechanism of evolution of tornado-like flow in the aorta was proposed.

  19. Numerical investigation of turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Moin, P.; Kim, J.

    1981-01-01

    Fully developed turbulent channel flow was simulated numerically at Reynolds number 13800, based on centerline velocity and channel halt width. The large-scale flow field was obtained by directly integrating the filtered, three dimensional, time dependent, Navier-Stokes equations. The small-scale field motions were simulated through an eddy viscosity model. The calculations were carried out on the ILLIAC IV computer with up to 516,096 grid points. The computed flow field was used to study the statistical properties of the flow as well as its time dependent features. The agreement of the computed mean velocity profile, turbulence statistics, and detailed flow structures with experimental data is good. The resolvable portion of the statistical correlations appearing in the Reynolds stress equations are calculated. Particular attention is given to the examination of the flow structure in the vicinity of the wall.

  20. Transport Of Passive Scalars In A Turbulent Channel Flow

    NASA Technical Reports Server (NTRS)

    Kim, John; Moin, Parviz

    1990-01-01

    Computer simulation of transport of passive scalars in turbulent channel flow described in report. Shows flow structures and statistical properties. As used here, "passive scalars" means scalar quantities like fluctuations in temperature or concentrations of contaminants that do not disturb flow appreciably. Examples include transport of heat in heat exchangers, gas turbines, and nuclear reactors and dispersal of pollution in atmosphere.

  1. Debris flows through different forest age classes in the central Oregon Coast Range

    Treesearch

    C. L. May

    2002-01-01

    Abstract - Debris flows in the Pacific Northwest can play a major role in routing sediment and wood stored on hillslopes and in first- through third-order channels and delivering it to higher-order channels. Field surveys following a large regional storm event investigated 53 debris flows in the central Oregon Coast Range to determine relationships among debris flow...

  2. Sediment and Vegetation Controls on Delta Channel Networks

    NASA Astrophysics Data System (ADS)

    Lauzon, R.; Murray, A. B.; Piliouras, A.; Kim, W.

    2016-12-01

    Numerous factors control the patterns of distributary channels formed on a delta, including water and sediment discharge, grain size, sea level rise rates, and vegetation type. In turn, these channel networks influence the shape and evolution of a delta, including what types of plant and animal life - such as humans - it can support. Previous fluvial modeling and flume experiments, outside of the delta context, have addressed how interactions between sediment and vegetation, through their influence on lateral transport of sediment, determine what type of channel networks develops. Similar interactions likely also shape delta flow patterns. Vegetation introduces cohesion, tending to reduce channel migration rates and strengthen existing channel banks, reinforcing existing channels and resulting in localized, relatively stable flow patterns. On the other hand, sediment transport processes can result in lateral migration and frequent switching of active channels, resulting in flow resembling that of a braided stream. While previous studies of deltas have indirectly explored the effects of vegetation through the introduction of cohesive sediment, we directly incorporate key effects of vegetation on flow and sediment transport into the delta-building model DeltaRCM to explore how these effects influence delta channel network formation. Model development is informed by laboratory flume experiments at UT Austin. Here we present initial results of experiments exploring the effects of sea level rise rate, sediment grain size, vegetation type, and vegetation growth rate on delta channel network morphology. These results support the hypothesis that the ability for lateral transport of sediment to occur plays a key role in determining the evolution of delta channel networks and delta morphology.

  3. Three-dimensional investigations of the threading regime in a microfluidic flow-focusing channel

    NASA Astrophysics Data System (ADS)

    Gowda, Krishne; Brouzet, Christophe; Lefranc, Thibault; Soderberg, L. Daniel; Lundell, Fredrik

    2017-11-01

    We study the flow dynamics of the threading regime in a microfluidic flow-focusing channel through 3D numerical simulations and experiments. Making strong filaments from cellulose nano-fibrils (CNF) could potentially steer to new high-performance bio-based composites competing with conventional glass fibre composites. CNF filaments can be obtained through hydrodynamic alignment of dispersed CNF by using the concept of flow-focusing. The aligned structure is locked by diffusion of ions resulting in a dispersion-gel transition. Flow-focusing typically refers to a microfluidic channel system where the core fluid is focused by the two sheath fluids, thereby creating an extensional flow at the intersection. In this study, threading regime corresponds to an extensional flow field generated by the water sheath fluid stretching the dispersed CNF core fluid and leading to formation of long threads. The experimental measurements are performed using optical coherence tomography (OCT) and 3D numerical simulations with OpenFOAM. The prime focus is laid on the 3D characteristics of thread formation such as wetting length of core fluid, shape, aspect ratio of the thread and velocity flow-field in the microfluidic channel.

  4. Interactions Between Channel Topography and Hydrokinetic Turbines: Sediment Transport, Turbine Performance, and Wake Characteristics

    NASA Astrophysics Data System (ADS)

    Hill, Craig Steven

    Accelerating marine hydrokinetic (MHK) renewable energy development towards commercial viability requires investigating interactions between the engineered environment and its surrounding physical and biological environments. Complex and energetic hydrodynamic and morphodynamic environments desired for such energy conversion installations present difficulties for designing efficient yet robust sustainable devices, while permitting agency uncertainties regarding MHK device environmental interactions result in lengthy and costly processes prior to installing and demonstrating emerging technologies. A research program at St. Anthony Falls Laboratory (SAFL), University of Minnesota, utilized multi-scale physical experiments to study the interactions between axial-flow hydrokinetic turbines, turbulent open channel flow, sediment transport, turbulent turbine wakes, and complex hydro-morphodynamic processes in channels. Model axial-flow current-driven three-bladed turbines (rotor diameters, dT = 0.15m and 0.5m) were installed in open channel flumes with both erodible and non-erodible substrates. Device-induced local scour was monitored over several hydraulic conditions and material sizes. Synchronous velocity, bed elevation and turbine performance measurements provide an indication into the effect channel topography has on device performance. Complimentary experiments were performed in a realistic meandering outdoor research channel with active sediment transport to investigate device interactions with bedform migration and secondary turbulent flow patterns in asymmetric channel environments. The suite of experiments undertaken during this research program at SAFL in multiple channels with stationary and mobile substrates under a variety of turbine configurations provides an in-depth investigation into how axial-flow hydrokinetic devices respond to turbulent channel flow and topographic complexity, and how they impact local and far-field sediment transport characteristics. Results provide the foundation for investigating advanced turbine control strategies for optimal power production in non-stationary environments, while also providing a robust data-set for computational model validation for further investigating the interactions between energy conversion devices and the physical environment.

  5. Dielectrophoretic concentration of particles under electrokinetic flow

    DOEpatents

    Miles, Robin R.; Bettencourt, Kerry A.; Fuller, Christopher K.

    2004-09-07

    The use of dielectrophoresis to collect particles under the conditions of electrokinetically-driven flow. Dielectrophortic concentration of particles under electrokinetic flow is accomplished by interdigitated electrodes patterned on an inner surface of a microfluid channel, a DC voltage is applied across the ends to the channel, and an AC voltage is applied across the electrodes, and particles swept down the channel electrokinetically are trapped within the field established by the electrodes. The particles can be released when the voltage to the electrodes is released.

  6. Component having cooling channel with hourglass cross section

    DOEpatents

    Campbell, Christian X; Lee, Ching-Pang

    2015-04-28

    A cooling channel (36, 36B, 63-66) cools inner surfaces (48, 50) of exterior walls (41, 43) of a component (20, 60). Interior side surfaces (52, 54) of the channel converge to a waist (W2), forming an hourglass shaped transverse profile (46). The inner surfaces (48, 50) may have fins (44) aligned with the coolant flow (22). The fins may have a transverse profile (56A, 56B) highest at mid-width of the inner surfaces (48, 50). Turbulators (92) may be provided on the side surfaces (52, 54) of the channel, and may urge the coolant flow toward the inner surfaces (48, 50). Each turbulator (92) may have a peak (97) that defines the waist of the cooling channel. Each turbulator may have a convex upstream side (93). These elements increase coolant flow in the corners (C) of the channel to more uniformly and efficiently cool the exterior walls (41, 43).

  7. Local dynamic subgrid-scale models in channel flow

    NASA Technical Reports Server (NTRS)

    Cabot, William H.

    1994-01-01

    The dynamic subgrid-scale (SGS) model has given good results in the large-eddy simulation (LES) of homogeneous isotropic or shear flow, and in the LES of channel flow, using averaging in two or three homogeneous directions (the DA model). In order to simulate flows in general, complex geometries (with few or no homogeneous directions), the dynamic SGS model needs to be applied at a local level in a numerically stable way. Channel flow, which is inhomogeneous and wall-bounded flow in only one direction, provides a good initial test for local SGS models. Tests of the dynamic localization model were performed previously in channel flow using a pseudospectral code and good results were obtained. Numerical instability due to persistently negative eddy viscosity was avoided by either constraining the eddy viscosity to be positive or by limiting the time that eddy viscosities could remain negative by co-evolving the SGS kinetic energy (the DLk model). The DLk model, however, was too expensive to run in the pseudospectral code due to a large near-wall term in the auxiliary SGS kinetic energy (k) equation. One objective was then to implement the DLk model in a second-order central finite difference channel code, in which the auxiliary k equation could be integrated implicitly in time at great reduction in cost, and to assess its performance in comparison with the plane-averaged dynamic model or with no model at all, and with direct numerical simulation (DNS) and/or experimental data. Other local dynamic SGS models have been proposed recently, e.g., constrained dynamic models with random backscatter, and with eddy viscosity terms that are averaged in time over material path lines rather than in space. Another objective was to incorporate and test these models in channel flow.

  8. Channel Patterns as the Result of Self-Organization Within the Flow-Sediment-Vegetation System

    NASA Astrophysics Data System (ADS)

    Tal, M.; Paola, C.

    2003-12-01

    The familiar patterns of braided and meandering rivers can be thought of as the result of self-organization within a "three-phase" system comprising fluid, sediment, and vegetation. Interactions between these three components are also largely responsible for the organization of river systems into separate and distinguishable channels and floodplains. Key elements of the self organization include the space and time characteristics of seed dispersal and plant growth as well as the statistics of occupation, abandonment, and reworking of the bed by the flow. Seeds are transported and dispersed readily by wind and water and opportunistically colonize areas of the channel that are abandoned or exposed at low flows. Vegetation increases bank stability through root reinforcement of the sediment and increases the threshold shear stress needed for erosion. In addition, vegetation offers resistance to the flow by increasing the drag and reducing the velocity, thus decreasing the stream power available for erosion and transport. Vegetation that is not removed while young will become stronger and increasingly resistant to erosion and removal by the flow. Thus a key organizing parameter in the flow-sediment-vegetation system is the time scale for establishment of the vegetation relative to a characteristic channel or bed mobility time. Experiments at the St. Anthony Falls Laboratory demonstrate how repeated cycling of vegetation seeding and water discharge changes an unvegetated braided channel morphology: the flow is gradually corralled into a single sinuous channel that largely tracks the thread of maximum velocity in the original braided network. The experiments are carried out in a large unconsolidated sand bed flume in which alfalfa sprouts are used to simulate riparian vegetation and offer the only form of cohesion in the system. An initial braided pattern is allowed to evolve freely in conjunction with alternating high and low discharges and repeated seedings. As the vegetation density and age increase with time, smaller and weaker channels are choked off leaving a single relatively narrow channel with a sinuous thalweg. This channel develops its own internal bar forms with smaller length scales than the original braid bars.

  9. An important erosion process on steep burnt hillslopes

    NASA Astrophysics Data System (ADS)

    Langhans, Christoph; Nyman, Petter; Noske, Philip; Lane, Patrick; Sheridan, Gary

    2016-04-01

    Steep forested hillslopes often display a high degree of armouring where diffusive erosion processes preferentially remove the fine fraction of the surface soil. High infiltration capacities, hydraulic resistance to overland flow and physical anchoring by cover plants and litter mean that even the most extreme rainfall events usually do not erode the armouring substantially. We argue that fire (wild or planned) is essential to the mobilization and transport of the armouring by increasing the rates of overland flow and decreasing trapping opportunities. We present evidence of the types of erosion that lead to the stripping of the surface armouring using post-event surveys and high-rate overland flow experiments. The type of erosion depends on the relative abundance of non-cohesive surface material to overland flow, but we found that a particular type of transport dominates that has no representation in current erosion models: On steep slopes overland flow can lead to incipient motion of individual stones that transfer their momentum to other stones leading to a rapid mobilization of the whole non-cohesive, armoured surface layer. Once in motion, the layer quickly separates out into a granular flow front and liquefied body, akin to debris flows in channels. Depending on the size of the event, these hillslope debris flows (HDF) either get trapped or enter into the channel, stripping the hillslope of most armouring on their way. They provide channels with the material and shear stress needed to erode into the channel bed, increasing the risk of channel debris flows. We present a simple physical model of HDF initiation, movement, and possible re-mobilization on hillslopes that was derived from debris flow theory. Understanding this process, its frequency, and magnitude are important for assessing the role of fire in landscape evolution and risk to humans through debris flow impacts.

  10. Observations of ebb flows on tidal flats: Evidence of dewatering?

    NASA Astrophysics Data System (ADS)

    Rinehimer, J. P.; Thomson, J. M.; Chickadel, C.

    2010-12-01

    Incised channels are a common morphological feature of tidal flats. When the flats are inundated, flows are generally forced by the tidally varying sea surface height. During low tide, however, these channels continue to drain throughout flat exposure even without an upstream source of water. While the role of porewater is generally overlooked due to the low permeability of marine muds, it remains the only potential source of flows through the channels during low tide. In situ and remotely sensed observations (Figure 1) at an incised channel on a tidal flat in Willapa Bay from Spring 2010 indicate that dewatering of the flats may be driving these low tide flows. High resolution Aquadopp ADCP velocity profiles are combined with observations from tower-based infrared (IR) video to produce a complete time series of surface velocity measurements throughout low tide. The IR video observations provide a measurement of surface currents even when the channel depth is below the blanking distance of the ADCP (10 cm). As the depth within the channel drops from 50 cm to 10 cm surface velocities increase from 10 cm/s to 60 cm/s even as the tide level drops below the channel flanks and the flats are dry. As the drainage continues, the temperature of the flow rises throughout low tide, mirroring temperatures within the sediment bed on the tidal flat. Drainage salinity falls despite the lack of any freshwater input to the flat indicating that less saline porewater may be the source. The likely source of the drainage water is from the channel flanks where time-lapse video shows slumping and compaction of channel sediments. Velocity profiles, in situ temperatures, and IR observations also are consistent with the presence of fluid muds and a hyperpycnal, density driven outflow at the channel mouth highlighting a possible pathway for sediment delivery from the flats to the main distributary channels of the bay. Figure 1: Time series of tidal flat channel velocities and temperatures. Top: (soild) Water depth within the channel and (dashed) tidal flat elevation. Center: Channel surface velocities as measured by an (black) ADCP and (red) a Fourier technique using infrared video. Bottom: Temperatures of (blue) near bed water downstream of the incised channel, (black) channel outflow, and (red) tidal flat sediment at 10 cm depth within the bed.

  11. The significance of sediment transport in arroyo development

    USGS Publications Warehouse

    Meyer, David F.

    1989-01-01

    Arroyo widening dominates postincisional arroyo development, and the manner of widening is dependent on the grain size of bed material transported by the channel. When bed material is predominantly gravel, subaqueous bars that alternate from one side of the channel to the other form during high flows in initially narrow, often straight, arroyos. These alternate bars grow and become coarse-grained point bars. Moderate and low flows cannot rework these coarse bars, and the channel meanders around them. Arroyo walls opposite the bars are undercut and eroded. With progressive arroyo widening by erosion of cut banks, high-flow channel width increases, and depth decreases, reducing channel competence. Gravel is deposited in midchannel bars, point bars are reworked, and the channel becomes braided. As braiding becomes dominant, both arroyo walls are eroded. This conceptual model of coarse-grained arroyo development is based on observations of arroyo development through time using physical models and interpretation of the channel and arroyo morphology and sedimentology during a short period along the San Simon, San Pedro, and Santa Cruz Rivers in southeast Arizona. When bed material is predominantly sand, the channel pattern within initial arroyos is typically braided, and both arroyo walls are actively eroded. Alternate bars may form within single-thread, high-flow channels, but they are reworked during recessional flows, and the .low-flow channel is again braided. With progressive arroyo widening, fine sand, silt, and clay carried in suspension are deposited across a flood plain within the wide arroyo, causing the channel to meander. This fine-grained arroyo development model is based on observations of arroyo development through time using physical models and interpretation of the channel and arroyo morphology and sedimentology during a short period along the Rio Puerco, New Mexico. Experimental investigations using physical models in which incised channels were monitored through time indicate that the rate of arroyo widening is dependent on the amount of bedload transported through a reach. This is documented by the relations between the rate of arroyo erosion and the observed sediment transport, the channel slope, the channel width and the channel width-to-depth ratio. When a small amount of bed material is being transported, arroyos do not widen whether they are narrow (arroyo width-to-depth ratios between 1.5 and 3.1), intermediate (between 2.5 and 4.8), or wide (greater than 4.9). Arroyo widening resumes when a larger supply of bed material is introduced. Arroyo widening decreases through time because with progressive increases of arroyo width, the frequency with which unstable channels within the arroyo impinge upon arroyo walls decreases. Arroyos become wider in a downstream direction in response to the cumulative effect of upstream sediment production.

  12. Passive injection control for microfluidic systems

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2004-12-21

    Apparatus for eliminating siphoning, "dead" regions, and fluid concentration gradients in microscale analytical devices. In its most basic embodiment, the present invention affords passive injection control for both electric field-driven and pressure-driven systems by providing additional fluid flow channels or auxiliary channels disposed on either side of a sample separation column. The auxiliary channels are sized such that volumetric fluid flow rate through these channels, while sufficient to move the sample away from the sample injection region in a timely fashion, is less than that through the sample separation channel or chromatograph.

  13. The origin of channels and associated deposits in the Elysium region of Mars

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric H.; Hoppin, Richard A.

    1987-01-01

    Photogeological studies of the Elysium volcanic province of Mars show that its sinuous channels are part of a large deposit which probably was emplaced as a series of huge volcanic debris flows or lahars. The suggestion is based on evidence that the lahars were : (1) gravity-driven mass flow deposits (lobate outlines, steep snouts, smooth medial channels and rough lateral deposits--the deposits narrow and widen in accord with topography, and they extend downslope); (2) wet (channeled surfaces, drainage features); and (3) associated with volcanism (the deposits and channels extend from a system of fractures which fed lava flows). It is conceivable that heat associated with magmatism melted ground ice below the Elysium volcanoes, formed a muddy slurry which issued out of regional fractures and spread over the adjoining plain.

  14. The effect of neutrally buoyant finite-size particles on channel flows in the laminar-turbulent transition regime

    NASA Astrophysics Data System (ADS)

    Loisel, Vincent; Abbas, Micheline; Masbernat, Olivier; Climent, Eric

    2013-12-01

    The presence of finite-size particles in a channel flow close to the laminar-turbulent transition is simulated with the Force Coupling Method which allows two-way coupling with the flow dynamics. Spherical particles with channel height-to-particle diameter ratio of 16 are initially randomly seeded in a fluctuating flow above the critical Reynolds number corresponding to single phase flow relaminarization. When steady-state is reached, the particle volume fraction is homogeneously distributed in the channel cross-section (ϕ ≅ 5%) except in the near-wall region where it is larger due to inertia-driven migration. Turbulence statistics (intensity of velocity fluctuations, small-scale vortical structures, wall shear stress) calculated in the fully coupled two-phase flow simulations are compared to single-phase flow data in the transition regime. It is observed that particles increase the transverse r.m.s. flow velocity fluctuations and they break down the flow coherent structures into smaller, more numerous and sustained eddies, preventing the flow to relaminarize at the single-phase critical Reynolds number. When the Reynolds number is further decreased and the suspension flow becomes laminar, the wall friction coefficient recovers the evolution of the laminar single-phase law provided that the suspension viscosity is used in the Reynolds number definition. The residual velocity fluctuations in the suspension correspond to a regime of particulate shear-induced agitation.

  15. flowVS: channel-specific variance stabilization in flow cytometry.

    PubMed

    Azad, Ariful; Rajwa, Bartek; Pothen, Alex

    2016-07-28

    Comparing phenotypes of heterogeneous cell populations from multiple biological conditions is at the heart of scientific discovery based on flow cytometry (FC). When the biological signal is measured by the average expression of a biomarker, standard statistical methods require that variance be approximately stabilized in populations to be compared. Since the mean and variance of a cell population are often correlated in fluorescence-based FC measurements, a preprocessing step is needed to stabilize the within-population variances. We present a variance-stabilization algorithm, called flowVS, that removes the mean-variance correlations from cell populations identified in each fluorescence channel. flowVS transforms each channel from all samples of a data set by the inverse hyperbolic sine (asinh) transformation. For each channel, the parameters of the transformation are optimally selected by Bartlett's likelihood-ratio test so that the populations attain homogeneous variances. The optimum parameters are then used to transform the corresponding channels in every sample. flowVS is therefore an explicit variance-stabilization method that stabilizes within-population variances in each channel by evaluating the homoskedasticity of clusters with a likelihood-ratio test. With two publicly available datasets, we show that flowVS removes the mean-variance dependence from raw FC data and makes the within-population variance relatively homogeneous. We demonstrate that alternative transformation techniques such as flowTrans, flowScape, logicle, and FCSTrans might not stabilize variance. Besides flow cytometry, flowVS can also be applied to stabilize variance in microarray data. With a publicly available data set we demonstrate that flowVS performs as well as the VSN software, a state-of-the-art approach developed for microarrays. The homogeneity of variance in cell populations across FC samples is desirable when extracting features uniformly and comparing cell populations with different levels of marker expressions. The newly developed flowVS algorithm solves the variance-stabilization problem in FC and microarrays by optimally transforming data with the help of Bartlett's likelihood-ratio test. On two publicly available FC datasets, flowVS stabilizes within-population variances more evenly than the available transformation and normalization techniques. flowVS-based variance stabilization can help in performing comparison and alignment of phenotypically identical cell populations across different samples. flowVS and the datasets used in this paper are publicly available in Bioconductor.

  16. The Topographic Design of River Channels for Form-Process Linkages.

    PubMed

    Brown, Rocko A; Pasternack, Gregory B; Lin, Tin

    2016-04-01

    Scientists and engineers design river topography for a wide variety of uses, such as experimentation, site remediation, dam mitigation, flood management, and river restoration. A recent advancement has been the notion of topographical design to yield specific fluvial mechanisms in conjunction with natural or environmental flow releases. For example, the flow convergence routing mechanism, whereby shear stress and spatially convergent flow migrate or jump from the topographic high (riffle) to the low point (pool) from low to high discharge, is thought to be a key process able to maintain undular relief in gravel bedded rivers. This paper develops an approach to creating riffle-pool topography with a form-process linkage to the flow convergence routing mechanism using an adjustable, quasi equilibrium synthetic channel model. The link from form to process is made through conceptualizing form-process relationships for riffle-pool couplets into geomorphic covariance structures (GCSs) that are then quantitatively embedded in a synthetic channel model. Herein, GCSs were used to parameterize a geometric model to create five straight, synthetic river channels with varying combinations of bed and width undulations. Shear stress and flow direction predictions from 2D hydrodynamic modeling were used to determine if scenarios recreated aspects of the flow convergence routing mechanism. Results show that the creation of riffle-pool couplets that experience flow convergence in straight channels requires GCSs with covarying bed and width undulations in their topography as supported in the literature. This shows that GCSs are a useful way to translate conceptualizations of form-process linkages into quantitative models of channel form.

  17. Flow topology of rare back flow events and critical points in turbulent channels and toroidal pipes

    NASA Astrophysics Data System (ADS)

    Chin, C.; Vinuesa, R.; Örlü, R.; Cardesa, J. I.; Noorani, A.; Schlatter, P.; Chong, M. S.

    2018-04-01

    A study of the back flow events and critical points in the flow through a toroidal pipe at friction Reynolds number Re τ ≈ 650 is performed and compared with the results in a turbulent channel flow at Re τ ≈ 934. The statistics and topological properties of the back flow events are analysed and discussed. Conditionally-averaged flow fields in the vicinity of the back flow event are obtained, and the results for the torus show a similar streamwise wall-shear stress topology which varies considerably for the spanwise wall-shear stress when compared to the channel flow. The comparison between the toroidal pipe and channel flows also shows fewer back flow events and critical points in the torus. This cannot be solely attributed to differences in Reynolds number, but is a clear effect of the secondary flow present in the toroidal pipe. A possible mechanism is the effect of the secondary flow present in the torus, which convects momentum from the inner to the outer bend through the core of the pipe, and back from the outer to the inner bend through the pipe walls. In the region around the critical points, the skin-friction streamlines and vorticity lines exhibit similar flow characteristics with a node and saddle pair for both flows. These results indicate that back flow events and critical points are genuine features of wall-bounded turbulence, and are not artifacts of specific boundary or inflow conditions in simulations and/or measurement uncertainties in experiments.

  18. Groundwater exchanges near a channelized versus unmodified stream mouth discharging to a subalpine lake

    USGS Publications Warehouse

    Constantz, James; Naranjo, Ramon C.; Niswonger, Richard G.; Allander, Kip K.; Neilson, B.; Rosenberry, Donald O.; Smith, David W.; Rosecrans, C.; Stonestrom, David A.

    2016-01-01

    The terminus of a stream flowing into a larger river, pond, lake, or reservoir is referred to as the stream-mouth reach or simply the stream mouth. The terminus is often characterized by rapidly changing thermal and hydraulic conditions that result in abrupt shifts in surface water/groundwater (sw/gw) exchange patterns, creating the potential for unique biogeochemical processes and ecosystems. Worldwide shoreline development is changing stream-lake interfaces through channelization of stream mouths, i.e., channel straightening and bank stabilization to prevent natural meandering at the shoreline. In the central Sierra Nevada (USA), Lake Tahoe's shoreline has an abundance of both “unmodified” (i.e., not engineered though potentially impacted by broader watershed engineering) and channelized stream mouths. Two representative stream mouths along the lake's north shore, one channelized and one unmodified, were selected to compare and contrast water and heat exchanges. Hydraulic and thermal properties were monitored during separate campaigns in September 2012 and 2013 and sw/gw exchanges were estimated within the stream mouth-shoreline continuum. Heat-flow and water-flow patterns indicated clear differences in the channelized versus the unmodified stream mouth. For the channelized stream mouth, relatively modulated, cool-temperature, low-velocity longitudinal streambed flows discharged offshore beneath warmer buoyant lakeshore water. In contrast, a seasonal barrier bar formed across the unmodified stream mouth, creating higher-velocity subsurface flow paths and higher diurnal temperature variations relative to shoreline water. As a consequence, channelization altered sw/gw exchanges potentially altering biogeochemical processing and ecological systems in and near the stream mouth.

  19. Contribution of voltage-dependent K+ channels to metabolic control of coronary blood flow

    PubMed Central

    Berwick, Zachary C.; Dick, Gregory M.; Moberly, Steven P.; Kohr, Meredith C.; Sturek, Michael; Tune, Johnathan D.

    2011-01-01

    The purpose of this investigation was to test the hypothesis that KV channels contribute to metabolic control of coronary blood flow and that decreases in KV channel function and/or expression significantly attenuate myocardial oxygen supply-demand balance in the metabolic syndrome (MetS). Experiments were conducted in conscious, chronically instrumented Ossabaw swine fed either a normal maintenance diet or an excess calorie atherogenic diet that produces the clinical phenotype of early MetS. Data were obtained under resting conditions and during graded treadmill exercise before and after inhibition of KV channels with 4-aminopyridine (4-AP, 0.3 mg/kg, i.v.). In lean-control swine, 4-AP reduced coronary blood flow ~15% at rest and ~20% during exercise. Inhibition of KV channels also increased aortic pressure (P < 0.01) while reducing coronary venous Po2 (P < 0.01) at a given level of myocardial oxygen consumption (MVo2). Administration of 4-AP had no effect on coronary blood flow, aortic pressure, or coronary venous Po2 in swine with MetS. The lack of response to 4-AP in MetS swine was associated with a ~20% reduction in coronary KV current (P < 0.01) and decreased expression of KV1.5 channels in coronary arteries (P < 0.01). Together, these data demonstrate that KV channels play an important role in balancing myocardial oxygen delivery with metabolism at rest and during exercise-induced increases in MVo2. Our findings also indicate that decreases in KV channel current and expression contribute to impaired control of coronary blood flow in the MetS. PMID:21771599

  20. Mixing and segregation of microspheres in microchannel flows of mono- and bidispersed suspensions

    NASA Astrophysics Data System (ADS)

    Gao, C.; Xu, B.; Gilchrist, J. F.

    2009-03-01

    We investigate the mixing and segregation of mono- and bidispersed microsphere suspensions in microchannel flows. These flows are common in biological microelectromechanical systems (BioMEMS) applications handling blood or suspensions of DNA. Suspension transport in pressure driven flows is significantly hindered by shear-induced migration, where particles migrate away from the walls and are focused in the center due to multibody hydrodynamic interactions. The microchannels used in this study have geometries that induce chaotic advection in Newtonian fluids. Our results show that mixing in straight, herringbone and staggered herringbone channels depends strongly on volume fraction. Due to this complex interplay of advection and shear-induced migration, a staggered herringbone channel that typically results in chaotic mixing is not always effective for dispersing particles. The maximum degree of segregation is observed in a straight channel once the maximum packing fraction is reached at channel center. We modify a one-dimensional suspension balance model [R. Miller and J. Morris, J. Non-Newtonian Fluid Mech. 135, 149 (2006)] to describe the behavior at the center of the straight channel. The degree of mixing is then calculated as a function of bulk volume fraction, predicting the volume fraction that results in the maximum degree of segregation. In bidispersed suspension flow, it is shown that mixing of the larger species is enhanced in straight and staggered herringbone channels while segregation is enhanced at moderate volume fractions in herringbone channels. This suggests mixing and separations can be tailored by adjusting both the suspension properties and the channel geometry.

  1. Darcy Flow in a Wavy Channel Filled with a Porous Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, Donald D; Ogretim, Egemen; Bromhal, Grant S

    2013-05-17

    Flow in channels bounded by wavy or corrugated walls is of interest in both technological and geological contexts. This paper presents an analytical solution for the steady Darcy flow of an incompressible fluid through a homogeneous, isotropic porous medium filling a channel bounded by symmetric wavy walls. This packed channel may represent an idealized packed fracture, a situation which is of interest as a potential pathway for the leakage of carbon dioxide from a geological sequestration site. The channel walls change from parallel planes, to small amplitude sine waves, to large amplitude nonsinusoidal waves as certain parameters are increased. Themore » direction of gravity is arbitrary. A plot of piezometric head against distance in the direction of mean flow changes from a straight line for parallel planes to a series of steeply sloping sections in the reaches of small aperture alternating with nearly constant sections in the large aperture bulges. Expressions are given for the stream function, specific discharge, piezometric head, and pressure.« less

  2. Novel silicon microchannels device for use in red blood cell deformability studies

    NASA Astrophysics Data System (ADS)

    Zheng, Xiao-Lin; Liao, Yan-Jian; Zhang, Wen-Xian

    2001-10-01

    Currently, a number of techniques are used to access cell deformability. We study a novel silicon microchannels device for use in red blood cell deformability. The channels are produced in silicon substrate using microengineering technology. The microgrooves formed in the surface of a single-crystal silicon substrate. They were converted to channels by tightly covering them with an optical flat glass plate. An array of flow channels (number 950 in parallel) have typical dimensions of 5 micrometers width X 5.5 Xm depth, and 30 micrometers length. There the RBC's are forced to pass through channels. Thus, the microchannels are used to simulate human blood capillaries. It provides a specific measurement of individual cell in terms of both flow velocity profile and an index of cell volume while the cell flow through the channels. It dominates the complex cellular flow behavior, such as, the viscosity of whole blood is a nonlinear function of shear rate, index of filtration, etc.

  3. Electroosmotically Driven Liquid Flows in Complex Micro-Geometries

    NASA Astrophysics Data System (ADS)

    Dutta, Prashanta; Warburton, Timothy C.; Beskok, Ali

    1999-11-01

    Electroosmotically driven flows in micro-channels are analyzed analytically and numerically by using a high-order h/p type spectral element simulation suite, Nektar. The high-resolution characteristic of the spectral element method enables us to resolve the sharp electric double layers with successive p-type mesh refinements. For electric double layers that are much smaller than the channel height, the Helmholtz Smoluchowski velocity is used to develop semi-analytical relations for the velocity and the pressure distributions in micro channels. Analytical relations for wall shear stress and pressure distributions are also obtained. These relations show amplification of the normal and shear stresses on the micro-channel walls. Finally, flow through a step-channel is analyzed to document the interaction of the electroosmotic forces with the adverse pressure gradients. Depending on the direction and the magnitude of the electroosmotic force, enhancement or elimination of the separation bubble is observed. These findings can be used to develop innovative strategies for flow control with no moving components and for promotion of mixing in micro-scale geometries.

  4. A pressure-gradient mechanism for vortex shedding in constricted channels

    PubMed Central

    Boghosian, M. E.; Cassel, K. W.

    2013-01-01

    Numerical simulations of the unsteady, two-dimensional, incompressible Navier–Stokes equations are performed for a Newtonian fluid in a channel having a symmetric constriction modeled by a two-parameter Gaussian distribution on both channel walls. The Reynolds number based on inlet half-channel height and mean inlet velocity ranges from 1 to 3000. Constriction ratios based on the half-channel height of 0.25, 0.5, and 0.75 are considered. The results show that both the Reynolds number and constriction geometry have a significant effect on the behavior of the post-constriction flow field. The Navier–Stokes solutions are observed to experience a number of bifurcations: steady attached flow, steady separated flow (symmetric and asymmetric), and unsteady vortex shedding downstream of the constriction depending on the Reynolds number and constriction ratio. A sequence of events is described showing how a sustained spatially growing flow instability, reminiscent of a convective instability, leads to the vortex shedding phenomenon via a proposed streamwise pressure-gradient mechanism. PMID:24399860

  5. Complex Wall Boundary Conditions for Modeling Combustion in Catalytic Channels

    NASA Astrophysics Data System (ADS)

    Zhu, Huayang; Jackson, Gregory

    2000-11-01

    Monolith catalytic reactors for exothermic oxidation are being used in automobile exhaust clean-up and ultra-low emissions combustion systems. The reactors present a unique coupling between mass, heat, and momentum transport in a channel flow configuration. The use of porous catalytic coatings along the channel wall presents a complex boundary condition when modeled with the two-dimensional channel flow. This current work presents a 2-D transient model for predicting the performance of catalytic combustion systems for methane oxidation on Pd catalysts. The model solves the 2-D compressible transport equations for momentum, species, and energy, which are solved with a porous washcoat model for the wall boundary conditions. A time-splitting algorithm is used to separate the stiff chemical reactions from the convective/diffusive equations for the channel flow. A detailed surface chemistry mechanism is incorporated for the catalytic wall model and is used to predict transient ignition and steady-state conversion of CH4-air flows in the catalytic reactor.

  6. Erosion by catastrophic floods on Mars and Earth

    USGS Publications Warehouse

    Baker, V.R.; Milton, D.J.

    1974-01-01

    The large Martian channels, especially Kasei, Ares, Tiu, Simud, and Mangala Valles, show morphologic features strikingly similar to those of the Channeled Scabland of eastern Washington, produced by the catastrophic breakout floods of Pleistocene Lake Missoula. Features in the overall pattern include the great size, regional anastomosis, and low sinuosity of the channels. Erosional features are streamlined hills, longitudinal grooves, inner channel cataracts, scour upstream of flow obstacles, and perhaps marginal cataracts and butte and basin topography. Depositional features are bar complexes in expanding reaches and perhaps pendant bars and alcove bars. Scabland erosion takes place in exceedingly deep, swift floodwater acting on closely jointed bedrock as a hydrodynamic consequence of secondary flow phenomena, including various forms of macroturbulent votices and flow separations. If the analogy to the Channeled Scabland is correct, floods involving water discharges of millions of cubic meters per second and peak flow velocities of tens of meters per second, but perhaps lasting no more than a few days, have occurred on Mars. ?? 1974.

  7. Field scale test of multi-dimensional flow and morphodynamic simulations used for restoration design analysis

    USGS Publications Warehouse

    McDonald, Richard R.; Nelson, Jonathan M.; Fosness, Ryan L.; Nelson, Peter O.; Constantinescu, George; Garcia, Marcelo H.; Hanes, Dan

    2016-01-01

    Two- and three-dimensional morphodynamic simulations are becoming common in studies of channel form and process. The performance of these simulations are often validated against measurements from laboratory studies. Collecting channel change information in natural settings for model validation is difficult because it can be expensive and under most channel forming flows the resulting channel change is generally small. Several channel restoration projects designed in part to armor large meanders with several large spurs constructed of wooden piles on the Kootenai River, ID, have resulted in rapid bed elevation change following construction. Monitoring of these restoration projects includes post- restoration (as-built) Digital Elevation Models (DEMs) as well as additional channel surveys following high channel forming flows post-construction. The resulting sequence of measured bathymetry provides excellent validation data for morphodynamic simulations at the reach scale of a real river. In this paper we test the performance a quasi-three-dimensional morphodynamic simulation against the measured elevation change. The resulting simulations predict the pattern of channel change reasonably well but many of the details such as the maximum scour are under predicted.

  8. The transverse dynamics of flow in a tidal channel within a greater strait

    NASA Astrophysics Data System (ADS)

    Khosravi, Maziar; Siadatmousavi, Seyed Mostafa; Vennell, Ross; Chegini, Vahid

    2018-02-01

    Vessel-mounted ADCP measurements were conducted to describe the transverse structure of flow between the two headland tips in Khuran Channel, south of Iran (26° 45' N), where the highest tidal velocities in spring tides were 1.8 m/s. Current profiles were obtained using a 614.4 kHz TRDI WorkHorse Broadband ADCP over nine repetitions of three cross-channel transects during one semidiurnal tidal cycle. The 2.2-km-long transects ran north/south across the channel. A least-square fit to semidiurnal, quarter-diurnal, and sixth diurnal harmonics was used to separate the tidal signals from the observed flow. Spatial gradients showed that the greatest lateral shears and convergences were found over the northern channel and near the northern headland tip due to very sharp bathymetric changes in this area. Contrary to the historical assumption, the across-channel momentum balance in the Khuran Channel was ageostrophic. The current study represents one of the few examples reported where the lateral friction influences the across-channel momentum balance.

  9. A Self-Replication Model for Long Channelized Lava Flows on the Mars Plains

    NASA Technical Reports Server (NTRS)

    Baloga, S. M.; Glaze, L. S.

    2008-01-01

    A model is presented for channelized lava flows emplaced by a self-replicating, levee-building process over long distances on the plains of Mars. Such flows may exhibit morphologic evidence of stagnation, overspills, and upstream breakouts. However, these processes do not inhibit the formation and persistence of a prominent central channel that can often be traced for more than 100 km. The two central assumptions of the self-replication model are (1) the flow advances at the average upstream velocity of the molten core and (2) the fraction of the lava that travels faster than the average upstream velocity forms stationary margins in the advancing distal zone to preserve the self-replication process. For an exemplary 300 km long flow north of Pavonis Mons, the model indicates that 8 m of crust must have formed during emplacement, as determined from the channel and levee dimensions. When combined with independent thermal dynamic estimates for the crustal growth rate, relatively narrow constraints are obtained for the flow rate (2250 m3 s 1), emplacement duration (600 d), and the lava viscosity of the molten interior (106 Pa s). Minor, transient overspills and breakouts increase the emplacement time by only a factor of 2. The primary difference between the prodigious channelized Martian flows and their smaller terrestrial counterparts is that high volumetric flow rates must have persisted for many hundreds of days on Mars, in contrast to a few hours or days on Earth.

  10. Experimental Study on Flow Boiling of Deionized Water in a Horizontal Long Small Channel

    NASA Astrophysics Data System (ADS)

    Huang, Qian; Jia, Li; Dang, Chao; Yang, Lixin

    2018-04-01

    In this paper, an experimental investigation on the flow boiling heat transfer in a horizontal long mini-channel was carried out. The mini-channel was with 2 mm wide and 1 mm deep and 900 mm long. The material of the mini-channel was stainless. The working fluid was deionized water. The experiments were conducted with the conditions of inlet pressure in the range of 0.2 0.5 MPa, mass flux in the range of 196.57-548.96 kg/m2s, and the outlet vapor quality in the range of 0.2 to 1. The heat flux was in the range of 292.86 kW/m2 to 788.48 kW/m2, respectively. The influences of mass flux and heat flux were studied. At a certain mass flow rate, the local heat transfer coefficient increased with the increase of the heat flux. If dry-out occurred in the mini-channel, the heat transfer coefficient decreased. At the same heat flux, the local heat transfer coefficient would depend on the mass flux. It would increase with the mass flux in a certain range, and then decrease if the mass flux was beyond this range. Experimental data were compared with the results of previous studies. Flow visualization and measurements were conducted to identify flow regime transitions. Results showed that there were eight different kinds of flow patterns occurring during the flow boiling. It was found that flow pattern had a significant effect on heat transfer.

  11. The role of vegetation in the formation of anabranching channels in an ephemeral river, Northern plains, arid central Australia

    NASA Astrophysics Data System (ADS)

    Tooth, Stephen; Nanson, Gerald C.

    2000-10-01

    As the distribution and abundance of vegetation in drylands is often controlled by the greater availability of water along river channels, riparian vegetation has the potential to influence significantly dryland river form, process and behaviour. This paper demonstrates how a small indigenous shrub, the inland teatree (Melaleuca glomerata), influences the formation and maintenance of anabranching channels in a reach of the ephemeral Marshall River, Northern Plains, arid central Australia. Here, the Marshall is characterized by ridge-form anabranching, where water and sediment are routed through subparallel, multiple channels of variable size which occur within a typically straight channel-train. Channels are separated by channel-train ridges - narrow, flow-aligned, vegetated features - or by wider islands. By providing a substantial element of boundary roughness, dense stands of teatrees growing on channel beds or atop the ridges and islands influence flow velocities, flow depths and sediment transport, resulting in flow diversion, bank and floodplain erosion, and especially sediment deposition. Ridges and islands represent a continuum of forms, and their formation and development can be divided into a three-stage sequence involving teatree growth and alluvial sedimentation.1Teatrees colonize a flat, sandy channel bed, initiating the formation of ridges by lee-side accretion. Individual ridges grow laterally, vertically and longitudinally and maintain a geometrically similar streamlined (lemniscate) form that presents minimum drag.2Individual ridges grow in size, and interact with neighbouring ridges, causing the lemniscate forms to become distorted. Ridges in the lee of other ridges tend to be protected from the erosive effects of floods and survive, whereas individual teatrees or small ridges exposed to flow concentrated between larger ridges, tend to be removed.3

  12. Burnout and distribution of liquid between the flow core and wall films in narrow slot channels

    NASA Astrophysics Data System (ADS)

    Boltenko, E. A.; Shpakovskii, A. A.

    2010-03-01

    Previous works on studying distribution of liquid between the flow core and wall films in narrow slot channels are briefly reviewed. Interrelation between mass transfer processes and burnout is shown. A procedure for calculating burnout on convex and concave heat-transfer surfaces in narrow slot channels is presented.

  13. Flow Cell Design for Effective Biosensing

    PubMed Central

    Pike, Douglas J.; Kapur, Nikil; Millner, Paul A.; Stewart, Douglas I.

    2013-01-01

    The efficiency of three different biosensor flow cells is reported. All three flow cells featured a central channel that expands in the vicinity of the sensing element to provide the same diameter active region, but the rate of channel expansion and contraction varied between the designs. For each cell the rate at which the analyte concentration in the sensor chamber responds to a change in the influent analyte concentration was determined numerically using a finite element model and experimentally using a flow-fluorescence technique. Reduced flow cell efficiency with increasing flow rates was observed for all three designs and was related to the increased importance of diffusion relative to advection, with efficiency being limited by the development of regions of recirculating flow (eddies). However, the onset of eddy development occurred at higher flow rates for the design with the most gradual channel expansion, producing a considerably more efficient flow cell across the range of flow rates considered in this study. It is recommended that biosensor flow cells be designed to minimize the tendency towards, and be operated under conditions that prevent the development of flow recirculation. PMID:23344373

  14. Direct simulation of heat transfer in a turbulent swept flow over a wire in a channel

    NASA Astrophysics Data System (ADS)

    Ranjan, Reetesh; Pantano, Carlos; Fischer, Paul; Siegel, Andrew

    2009-11-01

    We present results from direct numerical simulations of heat transfer (considered as a passive scalar) in a turbulent swept flow across a thin, cylindrical wire in a channel. This model mimics the flow through the wire-wrapped fuel pins typical of fast neutron reactor designs. Mean flow develops both along the wire and across the wire, leading to the formation of a turbulent cross-flow regime in the channel. This leads to improvement in heat transfer properties of the channel surface due to enhancement in mixing. The friction Reynolds number in the axial direction is approximately 305. Cross-flow friction Reynolds numbers ranging from 0 to 115 are examined. Two passive scalars at Prandtl number of 1.0 and 0.01 respectively, are simulated in this study. Constant flux boundary conditions are used along the walls of the channel and adiabatic conditions are used along the surface of the wire. The numerical method uses spectral elements in the plane perpendicular to the wire axis and Fourier decomposition in the direction of the axis of the wire. The simulations use up to 107 million collocation points and were performed at the Argonne Leadership BG/P supercomputer. The passive scalar field statistics are investigated, including mean scalar field, turbulence statistics and instantaneous surface scalar distribution.

  15. Flow through a very porous obstacle in a shallow channel

    PubMed Central

    Draper, S.; Nishino, T.; Borthwick, A. G. L.

    2017-01-01

    A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence. PMID:28484321

  16. Engineering quadrupole magnetic flow sorting for the isolation of pancreatic islets

    NASA Astrophysics Data System (ADS)

    Kennedy, David J.; Todd, Paul; Logan, Sam; Becker, Matthew; Papas, Klearchos K.; Moore, Lee R.

    2007-04-01

    Quadrupole magnetic flow sorting (QMS) is being adapted from the separation of suspensions of single cells (<15 μm) to the isolation of pancreatic islets (150-350 μm) for transplant. To achieve this goal, the critical QMS components have been modeled and engineered to optimize the separation process. A flow channel has been designed, manufactured, and tested. The quadrupole magnet assembly has been designed and verified by finite element analysis. Pumps have been selected and verified by test. Test data generated from the pumps and flow channel demonstrate that the fabricated channel and peristaltic pumps fulfill the requirements of successful QMS separation.

  17. One-equation near-wall turbulence modeling with the aid of direct simulation data

    NASA Technical Reports Server (NTRS)

    Rodi, W.; Mansour, N. N.; Michelassi, V.

    1993-01-01

    The length scales appearing in the relations for the eddy viscosity and dissipation rate in one-equation models were evaluated from direct numerical (DNS) simulation data for developed channel and boundary-layer flow at two Reynolds numbers each. To prepare the ground for the evaluation, the distribution of the most relevant mean-flow and turbulence quantities is presented and discussed, also with respect to Reynolds-number influence and to differences between channel and boundary-layer flow. An alternative model is tested as near wall component of a two-layer model by application to developed-channel, boundary-layer and backward-facing-step flows.

  18. Turbulent structure in low-concentration drag-reducing channel flows

    NASA Technical Reports Server (NTRS)

    Luchik, T. S.; Tiederman, W. G.

    1988-01-01

    A two-component laser-Doppler velocimeter was used to obtain simultaneous measurements of the velocity components parallel and normal to the wall in two fully developed well-mixed low-concentration drag-reducing channel flows and one turbulent channel flow. For the drag-reducing flows, the average time between bursts was found to increase. Although the basic structure of the fundamental momentum transport event is shown to be the same in these drag-reducing flows, the lower-threshold Reynolds-stress-producing motions were found to be damped, while the higher-threshold motions were not. It is suggested that some strong turbulent motions are needed to maintain extended polymer molecules, which produce a solution with properties that can damp lower threshold turbulence and thereby reduce viscous drag.

  19. Nonlinear pressure-flow relationships for passive microfluidic valves.

    PubMed

    Seker, Erkin; Leslie, Daniel C; Haj-Hariri, Hossein; Landers, James P; Utz, Marcel; Begley, Matthew R

    2009-09-21

    An analytical solution is presented for the nonlinear pressure-flow relationship of deformable passive valves, which are formed by bonding a deformable film over etched channels separated by a weir. A fluidic pathway connecting the channels is opened when the upstream pressure creates a tunnel along a predefined narrow strip where the film is not bonded to the weir. When the width of the strip is comparable to the inlet channel width, the predicted closed-form pressure-flow rate relationship is in excellent agreement with experiments, which determine pressures by measuring film deflections for prescribed flow rates. The validated closed-form models involve no fitting parameters, and provide the foundation to design passive diodes with specific nonlinear pressure-flow characteristics.

  20. Sedimentary processes of the lower Monterey Fan channel and channel-mouth lobe

    USGS Publications Warehouse

    Klaucke, I.; Masson, D.G.; Kenyon, Neil H.; Gardner, J.V.

    2004-01-01

    The distribution of deposits, sediment transport pathways and processes on the lower Monterey Fan channel and channel-mouth lobe (CML) are studied through the integration of GLORIA and TOBI sidescan sonar data with 7-kHz subbottom profiler records and sediment cores for ground-truthing. The lower Monterey channel is characterised by an up to 30-m-deep channel with poorly developed levees and alternating muddy and silty muddy overbank deposits. The channel is discontinuous, disappearing where gradients are less than about 1:350. Ground-truthing of the large CML shows that the entire CML is characterised by widespread deposits of generally fine sand, with coarser sand at the base of turbidites. Sand is particularly concentrated in finger-like areas of low-backscatter intensity and is interpreted as the result of non-turbulent sediment-gravity flows depositing metres thick massive, fine sand. TOBI sidescan sonar data reveal recent erosional features in the form of scours, secondary channels, large flow slides, and trains of blocks at the distal end of the CML. Erosion is probably related to increasing gradient as the CML approaches Murray Fracture zone and to differential loading of sandy submarine fan deposits onto pelagic clays. Reworking of older flow slides by sediment transport processes on the lobe produces trains of blocks that are several metres in diameter and aligned parallel to the flow direction. ?? 2004 Elsevier B.V. All rights reserved.

  1. A new scripting library for modeling flow and transport in fractured rock with channel networks

    NASA Astrophysics Data System (ADS)

    Dessirier, Benoît; Tsang, Chin-Fu; Niemi, Auli

    2018-02-01

    Deep crystalline bedrock formations are targeted to host spent nuclear fuel owing to their overall low permeability. They are however highly heterogeneous and only a few preferential paths pertaining to a small set of dominant rock fractures usually carry most of the flow or mass fluxes, a behavior known as channeling that needs to be accounted for in the performance assessment of repositories. Channel network models have been developed and used to investigate the effect of channeling. They are usually simpler than discrete fracture networks based on rock fracture mappings and rely on idealized full or sparsely populated lattices of channels. This study reexamines the fundamental parameter structure required to describe a channel network in terms of groundwater flow and solute transport, leading to an extended description suitable for unstructured arbitrary networks of channels. An implementation of this formalism in a Python scripting library is presented and released along with this article. A new algebraic multigrid preconditioner delivers a significant speedup in the flow solution step compared to previous channel network codes. 3D visualization is readily available for verification and interpretation of the results by exporting the results to an open and free dedicated software. The new code is applied to three example cases to verify its results on full uncorrelated lattices of channels, sparsely populated percolation lattices and to exemplify the use of unstructured networks to accommodate knowledge on local rock fractures.

  2. Analysis of the 2006 block-and-ash flow deposits of Merapi Volcano, Java, Indonesia, using high-spatial resolution IKONOS images and complementary ground based observations

    NASA Astrophysics Data System (ADS)

    Thouret, Jean-Claude; Gupta, Avijit; Liew, Soo Chin; Lube, Gert; Cronin, Shane J.; Surono, Dr

    2010-05-01

    On 16 June 2006 an overpass of IKONOS coincided with the emplacement of an active block-and-ash flow fed by a lava dome collapse event at Merapi Volcano (Java, Indonesia). This was the first satellite image recorded for a moving pyroclastic flow. The very high-spatial resolution data displayed the extent and impact of the pyroclastic deposits emplaced during and prior to, the day of image acquisition. This allowed a number of features associated with high-hazard block-and-ash flows emplaced in narrow, deep gorges to be mapped, interpreted and understood. The block-and-ash flow and surge deposits recognized in the Ikonos images include: (1) several channel-confined flow lobes and tongues in the box-shaped valley; (2) thin ash-cloud surge deposit and knocked-down trees in constricted areas on both slopes of the gorge; (3) fan-like over bank deposits on the Gendol-Tlogo interfluves from which flows were re-routed in the Tlogo secondary valley; (4) massive over bank lobes on the right bank from which flows devastated the village of Kaliadem 0.5 km from the main channel, a small part of this flow being re-channeled in the Opak secondary valley. The high-resolution IKONOS images also helped us to identify geomorphic obstacles that enabled flows to ramp and spill out from the sinuous channel, a process called flow avulsion. Importantly, the avulsion redirected flows to unexpected areas away from the main channel. In the case of Merapi we see that the presence of valley fill by previous deposits, bends and man-made dams influence the otherwise valley-guided course of the flows. Sadly, Sabo dams (built to ameliorate the effect of high sediment load streams) can actually cause block-and-ash flows to jump out of their containing channel and advance into sensitive areas. Very-high-spatial resolution satellite images are very useful for mapping and interpreting the distribution of freshly erupted volcanic deposits. IKONOS-type images with 1-m resolution provide opportunities to study and map the meter-scale detail of volcanic deposits. When such high-spatial-resolution satellite remote sensing data are combined with in situ field work, geomorphic analyses can be applied that allow us to more fully understand the dynamics and hazards of eruptions. In the case given here, IKONOS imagery allowed two qualitative hazard assessments for block-and-ash flow activity in drainages around Merapi. Firstly, the interpretation of IKONOS images provides insights in factors that control the propagation of secondary flows as the avulsion of the main flows is driven by longitudinal change in channel capacity due to increased sinuosity in the valley and decreased containment space. Secondly, the sinuosity and obstacles (including Sabo dams) may create over bank flows over adjacent low relief, allowing them to reach unexpectedly vulnerable areas distant from an active dome and away from the volcanically active valleys. Hazard assessment should therefore consider the geometry of secondary channels outside the principal valleys.

  3. Determination of Flow Resistance Coefficient for Vegetation in Open Channel: Laboratory study

    NASA Astrophysics Data System (ADS)

    Aliza Ahmad, Noor; Ali, ZarinaMd; Arish, Nur Aini Mohd; Munirah Mat Daud, Azra; Fatin Amirah Alias, Nur

    2018-04-01

    This study focused on determination of flow resistances coefficient for grass in an open channel. Laboratory works were conducted to examine the effects of varying of roughness elements on the flume to determine flow resistance coefficient and also to determine the optimum flow resistance with five different flow rate, Q. Laboratory study with two type of vegetation which are Cow Grass and Pearl Grass were implementing to the bed of a flume. The roughness coefficient, n value is determine using Manning’s equation while Soil Conservation Services (SCS) method was used to determine the surface resistance. From the experiment, the flow resistance coefficient for Cow Grass in range 0.0008 - 0.0039 while Pearl Grass value for the flow resistance coefficient are in between 0.0013 - 0.0054. As a conclusion the vegetation roughness value in open channel are depends on density, distribution type of vegetation used and physical characteristic of the vegetation itself

  4. μPIV measurements of two-phase flows of an operated direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Burgmann, Sebastian; Blank, Mirja; Panchenko, Olha; Wartmann, Jens

    2013-05-01

    In direct methanol fuel cells (DMFCs), two-phase flows appear in the channels of the anode side (CO2 bubbles in a liquid water-methanol environment) as well as of the cathode side (water droplets or films in an ambient air flow). CO2 bubbles or water droplets may almost completely fill the cross-section of a channel. The instantaneous effect of the formation of two-phase flows on the cell performance has not been investigated in detail, yet. In the current project, the micro particle image velocimetry (μPIV) technique is used to elucidate the corresponding flow phenomena on the anode as well as on the cathode side of a DMFC and to correlate those phenomena with the performance of the cell. A single-channel DMFC with optical access at the anode and the cathode side is constructed and assembled that allows for μPIV measurements at both sides as well as a detailed time-resolved cell voltage recording. The appearance and evolution of CO2 bubbles on the anode side is qualitatively and quantitatively investigated. The results clearly indicate that the cell power increases when the free cross-section area of the channel is decreased by huge bubbles. Methanol is forced into the porous gas diffusion layer (GDL) between the channels and the membrane is oxidized to CO2, and hence, the fuel consumption is increased and the cell performance rises. Eventually, a bubble forms a moving slug that effectively cleans the channel from CO2 bubbles on its way downstream. The blockage effect is eliminated; the methanol flow is not forced into the GDL anymore. The remaining amount of methanol in the GDL is oxidized. The cell power decreases until enough CO2 is produced to eventually form bubbles again and the process starts again. On the other hand under the investigated conditions, water on the cathode side only forms liquid films on the channels walls rather than channel-filling droplets. Instantaneous changes of the cell power due to liquid water formation could not be observed. The timescales of the two-phase flow on the cathode side are significantly larger than on the anode side. However, the μPIV measurements at the cathode side demonstrate the ability of feeding gas flows in microchannels with liquid tracer particles and the ability to measure in two-phase flows in such a configuration.

  5. An analysis of steady/unsteady electroosmotic flows through charged cylindrical nano-channels

    NASA Astrophysics Data System (ADS)

    Nayak, A. K.

    2013-11-01

    The steady/unsteady electroosmotic flow in an infinitely extended cylindrical channel with diameters ranging from 10 to 100 nm has been investigated. A mixture of (NaCl + H2O) is considered for the numerical calculation of the mass, potential, velocity, and mixing efficiency. Results are obtained for the channel diameters are small, equal, or greater than the electric double layer (EDL) both for steady and unsteady cases. In the present discussion, a symmetrical distribution of mole fractions is considered at the wall interface. Hence, the velocity and potential are symmetrical in nature toward the centerline of the channel, and also identical in nature at maximum and minimum time levels (i.e., at π/2 and 3 π/2 for a periodic function) in the transient case. In case of steady flows, the velocity and potential satisfy the chemical equilibrium condition at the centerline. It is observed that the electric double layer reaches a local equilibrium in the presence of electroosmosis when the channel length is long compared to the characteristic hydraulic diameter and the flow is essentially one-dimensional, which depends only on channel diameter. Comparisons of NP (Nernst Plank) model with PB (Poisson-Boltzmann) model are achieved out for different published results at larger channel diameters.

  6. Stream channels: The link between forests and fishes

    Treesearch

    Kathleen Sullivan; Thomas E. Lisle; C. Andrew Dolloff; Gordon E. Grant; Leslie M. Reid

    1987-01-01

    Abstract - The hydraulic characteristics of flow through channels are an important component of fish habitat. Salmonids have evolved in stream systems in which water velocity and flow depth vary spatially within the watershed and temporally on a daily, seasonal, and annual basis. Flow requirements vary during different phases of the freshwater life cycle of salmonids...

  7. 3D Numerical Simulation of Turbulent Buoyant Flow and Heat Transport in a Curved Open Channel

    USDA-ARS?s Scientific Manuscript database

    A three-dimensional buoyancy-extended version of kappa-epsilon turbulence model was developed for simulating the turbulent flow and heat transport in a curved open channel. The density- induced buoyant force was included in the model, and the influence of temperature stratification on flow field was...

  8. Doppler spectra of airborne ultrasound forward scattered by the rough surface of open channel turbulent water flows.

    PubMed

    Dolcetti, Giulio; Krynkin, Anton

    2017-11-01

    Experimental data are presented on the Doppler spectra of airborne ultrasound forward scattered by the rough dynamic surface of an open channel turbulent flow. The data are numerically interpreted based on a Kirchhoff approximation for a stationary random water surface roughness. The results show a clear link between the Doppler spectra and the characteristic spatial and temporal scales of the water surface. The decay of the Doppler spectra is proportional to the velocity of the flow near the surface. At higher Doppler frequencies the measurements show a less steep decrease of the Doppler spectra with the frequency compared to the numerical simulations. A semi-empirical equation for the spectrum of the surface elevation in open channel turbulent flows over a rough bed is provided. The results of this study suggest that the dynamic surface of open channel turbulent flows can be characterized remotely based on the Doppler spectra of forward scattered airborne ultrasound. The method does not require any equipment to be submerged in the flow and works remotely with a very high signal to noise ratio.

  9. In situ and online monitoring of hydrodynamic flow profiles in microfluidic channels based upon microelectrochemistry: concept, theory, and validation.

    PubMed

    Amatore, Christian; Oleinick, Alexander; Klymenko, Oleksiy V; Svir, Irina

    2005-08-12

    Herein, we propose a method for reconstructing any plausible macroscopic hydrodynamic flow profile occurring locally within a rectangular microfluidic channel. The method is based on experimental currents measured at single or double microband electrodes embedded in one channel wall. A perfectly adequate quasiconformal mapping of spatial coordinates introduced in our previous work [Electrochem. Commun. 2004, 6, 1123] and an exponentially expanding time grid, initially proposed [J. Electroanal. Chem. 2003, 557, 75] in conjunction with the solution of the corresponding variational problem approached by the Ritz method are used for the numerical reconstruction of flow profiles. Herein, the concept of the method is presented and developed theoretically and its validity is tested on the basis of the use of pseudoexperimental currents emulated by simulation of the diffusion-convection problem in a channel flow cell, to which a random Gaussian current noise is added. The flow profiles reconstructed by our method compare successfully with those introduced a priori into the simulations, even when these include significant distortions compared with either classical Poiseuille or electro-osmotic flows.

  10. Velocity and void distribution in a counter-current two-phase flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabriel, S.; Schulenberg, T.; Laurien, E.

    2012-07-01

    Different flow regimes were investigated in a horizontal channel. Simulating a hot leg injection in case of a loss of coolant accident or flow conditions in reflux condenser mode, the hydraulic jump and partially reversed flow were identified as major constraints for a high amount of entrained water. Trying to simulate the reflux condenser mode, the test section now includes an inclined section connected to a horizontal channel. The channel is 90 mm high and 110 mm wide. Tests were carried out for water and air at ambient pressure and temperature. High speed video-metry was applied to obtain velocities frommore » flow pattern maps of the rising and falling fluid. In the horizontal part of the channel with partially reversed flow the fluid velocities were measured by planar particle image velocimetry. To obtain reliable results for the gaseous phase, this analysis was extended by endoscope measurements. Additionally, a new method based on the optical refraction at the interface between air and water in a back-light was used to obtain time-averaged void fraction. (authors)« less

  11. Simulation and experimental validation of droplet dynamics in microchannels of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Ashrafi, Moosa; Shams, Mehrzad; Bozorgnezhad, Ali; Ahmadi, Goodarz

    2016-12-01

    In this study, dynamics of droplets in the channels of proton exchange membrane fuel cells with straight and serpentine flow-fields was investigated. Tapered and filleted channels were suggested for the straight and serpentine flow-fields respectively in order to improve water removal in channels. Surface tension and wall adhesion forces were applied by using the volume of fluid method. The hydrophilic walls and hydrophobic gas diffusion layer were considered. The mechanism of droplets movement with different diameters was studied by using the Weber and capillary numbers in simple and tapered straight channels. It was illustrated that the flooding was reduced in tapered channel due to increase of water removal rate, and available reaction sites improved subsequently. In addition, film flow was formed in the tapered channel more than the simple channel, so pressure fluctuation was decreased in the tapered channel. Moreover, the water coverage ratio of hydrophilic tapered surface was more than the simple channel, which enhanced water removal from the channel. The filleted serpentine channel was introduced to improve water removal from the simple serpentine channel. It was shown by observation of the unsteady and time-averaged two-phase pressure drop that in the filleted serpentine channels, the two-phase pressure drop was far less than the simple serpentine channel, and also the accumulation of water droplets in the elbows was less leading to lower pressure fluctuation. The numerical simulation results were validated by experiments.

  12. Temporal Large-Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Pruett, C. D.; Thomas, B. C.

    2004-01-01

    In 1999, Stolz and Adams unveiled a subgrid-scale model for LES based upon approximately inverting (defiltering) the spatial grid-filter operator and termed .the approximate deconvolution model (ADM). Subsequently, the utility and accuracy of the ADM were demonstrated in a posteriori analyses of flows as diverse as incompressible plane-channel flow and supersonic compression-ramp flow. In a prelude to the current paper, a parameterized temporal ADM (TADM) was developed and demonstrated in both a priori and a posteriori analyses for forced, viscous Burger's flow. The development of a time-filtered variant of the ADM was motivated-primarily by the desire for a unifying theoretical and computational context to encompass direct numerical simulation (DNS), large-eddy simulation (LES), and Reynolds averaged Navier-Stokes simulation (RANS). The resultant methodology was termed temporal LES (TLES). To permit exploration of the parameter space, however, previous analyses of the TADM were restricted to Burger's flow, and it has remained to demonstrate the TADM and TLES methodology for three-dimensional flow. For several reasons, plane-channel flow presents an ideal test case for the TADM. Among these reasons, channel flow is anisotropic, yet it lends itself to highly efficient and accurate spectral numerical methods. Moreover, channel-flow has been investigated extensively by DNS, and a highly accurate data base of Moser et.al. exists. In the present paper, we develop a fully anisotropic TADM model and demonstrate its utility in simulating incompressible plane-channel flow at nominal values of Re(sub tau) = 180 and Re(sub tau) = 590 by the TLES method. The TADM model is shown to perform nearly as well as the ADM at equivalent resolution, thereby establishing TLES as a viable alternative to LES. Moreover, as the current model is suboptimal is some respects, there is considerable room to improve TLES.

  13. Specifics of heat and mass transfer in spherical dimples under the effect of external factors

    NASA Astrophysics Data System (ADS)

    Shchukin, A. V.; Il'inkov, A. V.; Takmovtsev, V. V.; Khabibullin, I. I.

    2017-06-01

    The specifics are examined of heat transfer enhancement with spherical dimples under the effect of factors important for practice and characteristic of cooling systems of gas-turbine engines and power units. This experimental investigation deals with the effect of the following factors on the flow in a channel with hemispherical dimples: continuous air swirl in an annulus with dimples on its concave wall, dimples on the convex or concave wall of a curved rectangular channel, imposition of regular velocity fluctuations on the external flow in a straight rectangular channel, and adverse or favorable pressure gradient along the flow direction. The flow is turbulent. Reynolds numbers based on the channel hydraulic diameter are on the order of 104. Results of the investigation of a model of a two-cavity diffuser dimple proposed by the authors are presented. It has been found that results for channels with spherical dimples and for smooth channels differ not only quantitatively but also qualitatively. Thus, if the effect of centrifugal mass forces on convex and concave surfaces with hemispherical dimples and in a smooth channel is almost the same (quantitative and qualitative indicators are identical), the pressure gradient in the flow direction brings about the drastically opposite results. At the same time, the quantitative contribution to a change in heat transfer in hemispherical dimples is different and depends on the impact type. The results are discussed with the use of physical models created on the basis of the results of flow visualization studies and data on the turbulence intensity, pressure coefficient, etc. Results of the investigations suggest that application of spherical dimples under nonstandard conditions requires the calculated heat transfer to be corrected to account for one or another effect.

  14. Computational Analysis of Enhanced Magnetic Bioseparation in Microfluidic Systems with Flow-Invasive Magnetic Elements

    PubMed Central

    Khashan, S. A.; Alazzam, A.; Furlani, E. P.

    2014-01-01

    A microfluidic design is proposed for realizing greatly enhanced separation of magnetically-labeled bioparticles using integrated soft-magnetic elements. The elements are fixed and intersect the carrier fluid (flow-invasive) with their length transverse to the flow. They are magnetized using a bias field to produce a particle capture force. Multiple stair-step elements are used to provide efficient capture throughout the entire flow channel. This is in contrast to conventional systems wherein the elements are integrated into the walls of the channel, which restricts efficient capture to limited regions of the channel due to the short range nature of the magnetic force. This severely limits the channel size and hence throughput. Flow-invasive elements overcome this limitation and enable microfluidic bioseparation systems with superior scalability. This enhanced functionality is quantified for the first time using a computational model that accounts for the dominant mechanisms of particle transport including fully-coupled particle-fluid momentum transfer. PMID:24931437

  15. Positional dependence of particles in microfludic impedance cytometry.

    PubMed

    Spencer, Daniel; Morgan, Hywel

    2011-04-07

    Single cell impedance cytometry is a label-free electrical analysis method that requires minimal sample preparation and has been used to count and discriminate cells on the basis of their impedance properties. This paper shows experimental and numerically simulated impedance signals for test particles (6 μm diameter polystyrene) flowing through a microfluidic channel. The variation of impedance signal with particle position is mapped using numerical simulation and these results match closely with experimental data. We demonstrate that for a nominal 40 μm × 40 μm channel, the impedance signal is independent of position over the majority of the channel area, but shows large experimentally verifiable variation at extreme positions. The parabolic flow profile in the channel ensures that most of the sample flows through the area of uniform signal. At high flow rates inertial focusing is observed; the particles flow in equal numbers through two equilibrium positions reducing the coefficient of variance (CV) in the impedance signals to negligible values.

  16. Identification of flow structures in fully developed canonical and wavy channels by means of modal decomposition techniques

    NASA Astrophysics Data System (ADS)

    Ghebali, Sacha; Garicano-Mena, Jesús; Ferrer, Esteban; Valero, Eusebio

    2018-04-01

    A Dynamic Mode Decomposition (DMD) of Direct Numerical Simulations (DNS) of fully developed channel flows is undertaken in order to study the main differences in flow features between a plane-channel flow and a passively “controlled” flow wherein the mean friction was reduced relative to the baseline by modifying the geometry in order to generate a streamwise-periodic spanwise pressure gradient, as is the case for an oblique wavy wall. The present analysis reports POD and DMD modes for the plane channel, jointly with the application of a sparsity-promoting method, as well as a reconstruction of the Reynolds shear stress with the dynamic modes. Additionally, a dynamic link between the streamwise velocity fluctuations and the friction on the wall is sought by means of a composite approach both in the plane and wavy cases. One of the DMD modes associated with the wavy-wall friction exhibits a meandering motion which was hardly identifiable on the instantaneous friction fluctuations.

  17. Foam relaxation in fractures and narrow channels

    NASA Astrophysics Data System (ADS)

    Lai, Ching-Yao; Rallabandi, Bhargav; Perazzo, Antonio; Stone, Howard A.

    2017-11-01

    Various applications, from foam manufacturing to hydraulic fracturing with foams, involve pressure-driven flow of foams in narrow channels. We report a combined experimental and theoretical study of this problem accounting for the compressible nature of the foam. In particular, in our experiments the foam is initially compressed in one channel and then upon flow into a second channel the compressed foam relaxes as it moves. A plug flow is observed in the tube and the pressure at the entrance of the tube is higher than the exit. We measure the volume collected at the exit of the tube, V, as a function of injection flow rate, tube length and diameter. Two scaling behaviors for V as a function of time are observed depending on whether foam compression is important or not. Our work may relate to foam fracturing, which saves water usage in hydraulic fracturing, more efficient enhanced oil recovery via foam injection, and various materials manufacturing processes involving pressure-driven flow foams.

  18. Effect of flow and active mixing on bacterial growth in a colon-like geometry

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    The large intestine harbors bacteria from hundreds of species, with bacterial densities reaching up to 1012 cells per gram. Many different factors influence bacterial growth dynamics and thus bacterial density and microbiota composition. One dominant force is flow which can in principle lead to a washout of bacteria from the proximal colon. Active mixing by Contractions of the colonic wall together with bacterial growth might counteract such flow-forces and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate Contractions. We investigate growth along the channel under a steady nutrient inflow. In the limits of no or very frequent Contractions, the device behaves like a plug-flow reactor and a chemostat respectively. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term.

  19. Determination of discharge during pulsating flow

    USGS Publications Warehouse

    Thompson, T.H.

    1968-01-01

    Pulsating flow in an open channel is a manifestation of unstable-flow conditions in which a series of translatory waves of perceptible magnitude develops and moves rapidly downstream. Pulsating flow is a matter of concern in the design and operation of steep-gradient channels. If it should occur at high stages in a channel designed for stable flow, the capacity of the channel may be inadequate at a discharge that is much smaller than that for which the channel was designed. If the overriding translatory wave carries an appreciable part of the total flow, conventional stream-gaging procedures cannot be used to determine the discharge; neither the conventional instrumentation nor conventional methodology is adequate. A method of determining the discharge during pulsating flow was tested in the Santa Anita Wash flood control channel in Arcadia, Calif., April 16, 1965. Observations of the dimensions and velocities of translatory waves were made during a period of controlled reservoir releases of about 100, 200, and 300 cfs (cubic feet per second). The method of computing discharge was based on (1) computation of the discharge in the overriding waves and (2) computation of the discharge in the shallow-depth, or overrun, part of the flow. Satisfactory results were obtained by this method. However, the procedure used-separating the flow into two components and then treating the shallow-depth component as though it were steady--has no theoretical basis. It is simply an expedient for use until laboratory investigation can provide a satisfactory analytical solution to the problem of computing discharge during pulsating flow. Sixteen months prior to the test in Santa Anita Wash, a robot camera had been designed .and programmed to obtain the data needed to compute discharge by the method described above. The photographic equipment had been installed in Haines Creek flood control channel in Los Angeles, Calif., but it had not been completely tested because of the infrequency of flow in that channel. Because the Santa Anita Wash tests afforded excellent data for analysis, further development of the photographic ,technique at Haines Creek was discontinued. Three methods for obtaining the data needed to compute discharge during pulsating flow are proposed. In two of the methods--the photographic method and the depth-recorder method--the dimensions and velocities of translatory waves are recorded, and discharge is then computed by the procedure developed in this report. The third method?the constant-rate-dye-dilution method--yields the discharge more directly. The discharge is computed from the dye-injection rate and the ratio of the concentration of dye in the injected solution to the concentration of dye in the water sampled at a site downstream. The three methods should be developed and tested in ,the Santa Anita Wash flood control channel under controlled conditions similar to those in the test of April 1965.

  20. Hydrography change detection: the usefulness of surface channels derived From LiDAR DEMs for updating mapped hydrography

    USGS Publications Warehouse

    Poppenga, Sandra K.; Gesch, Dean B.; Worstell, Bruce B.

    2013-01-01

    The 1:24,000-scale high-resolution National Hydrography Dataset (NHD) mapped hydrography flow lines require regular updating because land surface conditions that affect surface channel drainage change over time. Historically, NHD flow lines were created by digitizing surface water information from aerial photography and paper maps. Using these same methods to update nationwide NHD flow lines is costly and inefficient; furthermore, these methods result in hydrography that lacks the horizontal and vertical accuracy needed for fully integrated datasets useful for mapping and scientific investigations. Effective methods for improving mapped hydrography employ change detection analysis of surface channels derived from light detection and ranging (LiDAR) digital elevation models (DEMs) and NHD flow lines. In this article, we describe the usefulness of surface channels derived from LiDAR DEMs for hydrography change detection to derive spatially accurate and time-relevant mapped hydrography. The methods employ analyses of horizontal and vertical differences between LiDAR-derived surface channels and NHD flow lines to define candidate locations of hydrography change. These methods alleviate the need to analyze and update the nationwide NHD for time relevant hydrography, and provide an avenue for updating the dataset where change has occurred.

  1. Microparticle tracking velocimetry as a tool for microfluidic flow measurements

    NASA Astrophysics Data System (ADS)

    Salipante, Paul; Hudson, Steven D.; Schmidt, James W.; Wright, John D.

    2017-07-01

    The accurate measurement of flows in microfluidic channels is important for commercial and research applications. We compare the accuracy of flow measurement techniques over a wide range flows. Flow measurements made using holographic microparticle tracking velocimetry (µPTV) and a gravimetric flow standard over the range of 0.5-100 nL/s agree within 0.25%, well within the uncertainty of the two flow systems. Two commercial thermal flow sensors were used as the intermediaries (transfer standards) between the two flow measurement systems. The gravimetric flow standard was used to calibrate the thermal flow sensors by measuring the rate of change of the mass of liquid in a beaker on a micro-balance as it fills. The holographic µPTV flow measurements were made in a rectangular channel and the flow was seeded with 1 µm diameter polystyrene spheres. The volumetric flow was calculated using the Hagen-Pouiseille solution for a rectangular channel. The uncertainty of both flow measurement systems is given. For the gravimetric standard, relative uncertainty increased for decreasing flows due to surface tension forces between the pipette carrying the flow and the free surface of the liquid in the beaker. The uncertainty of the holographic µPTV measurements did not vary significantly over the measured flow range, and thus comparatively are especially useful at low flow velocities.

  2. Channel flow and trichloroethylene treatment in a partly iron-filled fracture: experimental and model results.

    PubMed

    Cai, Zuansi; Merly, Corrine; Thomson, Neil R; Wilson, Ryan D; Lerner, David N

    2007-08-15

    Technical developments have now made it possible to emplace granular zero-valent iron (Fe(0)) in fractured media to create a Fe(0) fracture reactive barrier (Fe(0) FRB) for the treatment of contaminated groundwater. To evaluate this concept, we conducted a laboratory experiment in which trichloroethylene (TCE) contaminated water was flushed through a single uniform fracture created between two sandstone blocks. This fracture was partly filled with what was intended to be a uniform thickness of iron. Partial treatment of TCE by iron demonstrated that the concept of a Fe(0) FRB is practical, but was less than anticipated for an iron layer of uniform thickness. When the experiment was disassembled, evidence of discrete channelised flow was noted and attributed to imperfect placement of the iron. To evaluate the effect of the channel flow, an explicit Channel Model was developed that simplifies this complex flow regime into a conceptualised set of uniform and parallel channels. The mathematical representation of this conceptualisation directly accounts for (i) flow channels and immobile fluid arising from the non-uniform iron placement, (ii) mass transfer from the open fracture to iron and immobile fluid regions, and (iii) degradation in the iron regions. A favourable comparison between laboratory data and the results from the developed mathematical model suggests that the model is capable of representing TCE degradation in fractures with non-uniform iron placement. In order to apply this Channel Model concept to a Fe(0) FRB system, a simplified, or implicit, Lumped Channel Model was developed where the physical and chemical processes in the iron layer and immobile fluid regions are captured by a first-order lumped rate parameter. The performance of this Lumped Channel Model was compared to laboratory data, and benchmarked against the Channel Model. The advantages of the Lumped Channel Model are that the degradation of TCE in the system is represented by a first-order parameter that can be used directly in readily available numerical simulators.

  3. Channel flow and trichloroethylene treatment in a partly iron-filled fracture: Experimental and model results

    NASA Astrophysics Data System (ADS)

    Cai, Zuansi; Merly, Corrine; Thomson, Neil R.; Wilson, Ryan D.; Lerner, David N.

    2007-08-01

    Technical developments have now made it possible to emplace granular zero-valent iron (Fe 0) in fractured media to create a Fe 0 fracture reactive barrier (Fe 0 FRB) for the treatment of contaminated groundwater. To evaluate this concept, we conducted a laboratory experiment in which trichloroethylene (TCE) contaminated water was flushed through a single uniform fracture created between two sandstone blocks. This fracture was partly filled with what was intended to be a uniform thickness of iron. Partial treatment of TCE by iron demonstrated that the concept of a Fe 0 FRB is practical, but was less than anticipated for an iron layer of uniform thickness. When the experiment was disassembled, evidence of discrete channelised flow was noted and attributed to imperfect placement of the iron. To evaluate the effect of the channel flow, an explicit Channel Model was developed that simplifies this complex flow regime into a conceptualised set of uniform and parallel channels. The mathematical representation of this conceptualisation directly accounts for (i) flow channels and immobile fluid arising from the non-uniform iron placement, (ii) mass transfer from the open fracture to iron and immobile fluid regions, and (iii) degradation in the iron regions. A favourable comparison between laboratory data and the results from the developed mathematical model suggests that the model is capable of representing TCE degradation in fractures with non-uniform iron placement. In order to apply this Channel Model concept to a Fe 0 FRB system, a simplified, or implicit, Lumped Channel Model was developed where the physical and chemical processes in the iron layer and immobile fluid regions are captured by a first-order lumped rate parameter. The performance of this Lumped Channel Model was compared to laboratory data, and benchmarked against the Channel Model. The advantages of the Lumped Channel Model are that the degradation of TCE in the system is represented by a first-order parameter that can be used directly in readily available numerical simulators.

  4. Building a delta: Interactions between water, sediment, and vegetation in an experimental system

    NASA Astrophysics Data System (ADS)

    Piliouras, A.; Kim, W.; Carlson, B.

    2013-12-01

    Vegetation is an important part of morphodynamics in river deltas, but it has not been thoroughly investigated in physical delta models. We conducted a set of experiments in the Sediment Transport and Earth-surface Processes (STEP) Basin at the University of Texas at Austin to examine the effects of vegetation on delta growth and dynamics. One experiment was conducted without vegetation (Run 1), and four (Runs 2-5) were conducted using alfalfa (Medicago sativa) as a proxy for riparian vegetation, one of which included cycles between flood and normal flow discharges (Run 5). Results indicate that vegetation increased sediment trapping on the delta topset, increasing delta slope and decreasing progradation rate as compared to the unvegetated experiment. Vegetation also caused a lack of channelization when the topset reached 20% plant cover, after which progradational delta lobes were no longer evident. Discharge fluctuations in Run 5, however, led to more topset reworking, resulting in lower vegetation density (< 20%) and the persistence of highly incisional channels. Experiments run only at flood stage resulted in consistently net depositional deltas with very little channel incision, regardless of the amount of vegetation. The addition of water and sediment discharge fluctuations in Run 5, however, created a cyclic pattern between periods of topset aggradation and periods of channel incision that were net erosional. We conclude that there is a two-way interaction between the vegetation and the channels through discharge fluctuations that aid in delta growth. (1) During floods, vegetation acts an efficient sediment trapper on the floodplain to aid in topset aggradation and maintain channel relief. During normal flow, vegetation also stabilizes channel banks, allowing channels to focus their flow and erode sediment from the bed. (2) During floods, channels transport sediment to the shoreline to create new deposits that can be colonized by vegetation and deliver sediment to the topset to increase vegetation elevation. During normal flow, channels rework the delta topset and remove seeds from occupied flow paths.

  5. Effects of channel constriction on upstream steering of flow around Locke Island, Columbia River, Washington

    NASA Astrophysics Data System (ADS)

    Loy, G. E.; Furbish, D. J.; Covey, A.

    2010-12-01

    Landsliding of the White Bluffs along the Columbia River in Washington State has constricted the width of the river on one side of Locke Island, a two-kilometer long island positioned in the middle of the channel. Associated changes in flow are thought to be causing relatively rapid erosion of Locke Island on the constricted side. This island is of cultural significance to Native American tribes of south-central Washington, so there are social as well as scientific reasons to understand how the alteration of stream channel processes resulting from the landsliding might be influencing observed erosion rates. Simple hydrodynamic calculations suggest that the constriction on one side of the island creates an upstream backwater effect. As a consequence a cross-stream pressure gradient upstream of the island results in steering of flow around the island into the unobstructed thread. This diversion of water decreases the discharge through the constriction. Therefore, flow velocities within the constriction are not necessarily expected to be higher than those in the unobstructed thread, contrary to initial reports suggesting that higher velocities within the constriction are the main cause of erosion. We set up streamtable experiments with lapse rate imaging to illustrate the backwater effects of the channel constriction and the associated cross-stream steering of flow around a model island. Our experiments are scaled by channel roughness and slope rather than geometrically, as the main focus is to understand the mechanical behavior of flow in this type of island-landslide system. In addition, we studied the stream velocities and flow steering as well as the magnitude of the backwater effect in both the constricted and unobstructed channels using tracer particles in the time-lapse images. These experimental data are compared with calculated upstream backwater distances determined from the known water-surface slope, flow depth, total discharge, and bed roughness. Furthermore, this experimental work will inform subsequent numerical modeling of flow and field-based measurements at Locke Island.

  6. Nature and characteristics of the flows that carved the Simud and Tiu outflow channels, Mars

    USGS Publications Warehouse

    Rodriguez, J.A.P.; Tanaka, K.L.; Miyamoto, H.; Sasaki, S.

    2006-01-01

    Geomorphic and topographic relations of higher and lower levels of dissection within the Simud and Tiu Valles outflow channels on Mars reveal new insights into their formational histories. We find that the water floods that carved the higher channel floors were primarily sourced from Hydaspis Chaos. The floods apparently branched into distributaries downstream that promoted rapid freezing and sublimation of water and limited discharge into the lowlands. In contrast, we suggest that the lower outflow channels were carved by debris flows from Hydraotes Chaos. Surges within individual debris flows possessed variable volatile contents and led to the deposition of smooth deposits marked by low relief longitudinal ridges. Lower outflow channel discharges resulted in widespread deposition within the Simud/Tiu Valles as well as within the northern plains of Mars. Copyright 2006 by the American Geophysical Union.

  7. Controlling the position of a stabilized detonation wave in a supersonic gas mixture flow in a plane channel

    NASA Astrophysics Data System (ADS)

    Levin, V. A.; Zhuravskaya, T. A.

    2017-03-01

    Stabilization of a detonation wave in a stoichiometric hydrogen-air mixture flowing at a supersonic velocity into a plane symmetric channel with constriction has been studied in the framework of a detailed kinetic mechanism of the chemical interaction. Conditions ensuring the formation of a thrust-producing f low with a stabilized detonation wave in the channel are determined. The inf luence of the inf low Mach number, dustiness of the combustible gas mixture supplied to the channel, and output cross-section size on the position of a stabilized detonation wave in the f low has been analyzed with a view to increasing the efficiency of detonation combustion of the gas mixture. It is established that thrust-producing flow with a stabilized detonation wave can be formed in the channel without any energy consumption.

  8. 15. VIEW SHOWING WATER FLOWING THROUGH THE ORIGINAL DIVERSION GATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW SHOWING WATER FLOWING THROUGH THE ORIGINAL DIVERSION GATE FROM THE OUTLET CHANNEL INTO THE BY-PASS CHANNEL LEADING TO THE ORIGINAL SOURIS RIVER CHANNEL (Note: this gate has since been replaced with concrete diversion gates, see HAER Photograph No ND-3-A-7) - Upper Souris National Wildlife Refuge, Dam 83, Souris River Basin, Foxholm, Surrey (England), ND

  9. Fluvial channels on Titan: Initial Cassini RADAR observations

    USGS Publications Warehouse

    Lorenz, R.D.; Lopes, R.M.; Paganelli, F.; Lunine, J.I.; Kirk, R.L.; Mitchell, K.L.; Soderblom, L.A.; Stofan, E.R.; Ori, G.; Myers, M.; Miyamoto, H.; Radebaugh, J.; Stiles, B.; Wall, S.D.; Wood, C.A.

    2008-01-01

    Cassini radar images show a variety of fluvial channels on Titan's surface, often several hundreds of kilometers in length. Some (predominantly at low- and mid-latitude) are radar-bright and braided, resembling desert washes where fines have been removed by energetic surface liquid flow, presumably from methane rainstorms. Others (predominantly at high latitudes) are radar-dark and meandering and drain into or connect polar lakes, suggesting slower-moving flow depositing fine-grained sediments. A third type, seen predominantly at mid- and high latitudes, have radar brightness patterns indicating topographic incision, with valley widths of up to 3 km across and depth of several hundred meters. These observations show that fluvial activity occurs at least occasionally at all latitudes, not only at the Huygens landing site, and can produce channels much larger in scale than those observed there. The areas in which channels are prominent so far amount to about 1% of Titan's surface, of which only a fraction is actually occupied by channels. The corresponding global sediment volume inferred is not enough to account for the extensive sand seas. Channels observed so far have a consistent large-scale flow pattern, tending to flow polewards and eastwards. ?? 2008.

  10. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells.

    PubMed

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-03-02

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer.

  11. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Qinglei; Shen, Shuiyun; Yan, Xiaohui; Zhu, Fengjuan; Cheng, Xiaojing; Zhang, Junliang

    2017-03-01

    The flow field configuration plays an important role on the performance of proton exchange membrane fuel cells (PEMFCs). For instance, channel/rib width and total channel cross-sectional area determine the under-rib convection and pressure drop respectively, both of which directly influence the water removal, in turn affecting the oxygen supply and cathodic oxygen reduction reaction. In this study, effects of under-rib convection and pressure drop on cell performance are investigated experimentally and numerically by adjusting the channel/rib width and channel cross-sectional area of flow fields. The results show that the performance differences with various flow field configurations mainly derive from the oxygen transport resistance which is determined by the water accumulation degree, and the cell performance would benefit from the narrower channels and smaller cross sections. It reveals that at low current densities when water starts to accumulate in GDL at under-rib regions, the under-rib convection plays a more important role in water removal than pressure drop does; in contrast, at high current densities when water starts to accumulate in channels, the pressure drop dominates the water removal to facilitate the oxygen transport to the catalyst layer.

  12. Appliance of Inertial Gas-Dynamic Separation of Gas-Dispersion Flows in the Curvilinear Convergent-Divergent Channels for Compressor Equipment Reliability Improvement

    NASA Astrophysics Data System (ADS)

    Liaposhchenko, O. O.; Sklabinskyi, V. I.; Zavialov, V. L.; Pavlenko, I. V.; Nastenko, O. V.; Demianenko, M. M.

    2017-08-01

    The new methods of vibration and inertial gas-dynamic separation of gas-condensate and dusty flows and the corresponding separation devices are proposed in order to avoid emergencies and premature wear of parts and components of the compressor equipment. The formation of the gas flow and disperse particles in the curvilinear convergent-divergent channels are investigated. The optimizing hydrodynamic profiling of a geometrical configuration of curvilinear separation channels with rigid and flexible walls of baffles is carried out.

  13. Comparison of theory and direct numerical simulations of drag reduction by rodlike polymers in turbulent channel flows.

    PubMed

    Benzi, Roberto; Ching, Emily S C; De Angelis, Elisabetta; Procaccia, Itamar

    2008-04-01

    Numerical simulations of turbulent channel flows, with or without additives, are limited in the extent of the Reynolds number (Re) and Deborah number (De). The comparison of such simulations to theories of drag reduction, which are usually derived for asymptotically high Re and De, calls for some care. In this paper we present a study of drag reduction by rodlike polymers in a turbulent channel flow using direct numerical simulation and illustrate how these numerical results should be related to the recently developed theory.

  14. Shape diagram of vesicles in Poiseuille flow.

    PubMed

    Coupier, Gwennou; Farutin, Alexander; Minetti, Christophe; Podgorski, Thomas; Misbah, Chaouqi

    2012-04-27

    Soft bodies flowing in a channel often exhibit parachutelike shapes usually attributed to an increase of hydrodynamic constraint (viscous stress and/or confinement). We show that the presence of a fluid membrane leads to the reverse phenomenon and build a phase diagram of shapes-which are classified as bullet, croissant, and parachute-in channels of varying aspect ratio. Unexpectedly, shapes are relatively wider in the narrowest direction of the channel. We highlight the role of flow patterns on the membrane in this response to the asymmetry of stress distribution.

  15. Obtaining of Analytical Relations for Hydraulic Parameters of Channels With Two Phase Flow Using Open CFD Toolbox

    NASA Astrophysics Data System (ADS)

    Varseev, E.

    2017-11-01

    The present work is dedicated to verification of numerical model in standard solver of open-source CFD code OpenFOAM for two-phase flow simulation and to determination of so-called “baseline” model parameters. Investigation of heterogeneous coolant flow parameters, which leads to abnormal friction increase of channel in two-phase adiabatic “water-gas” flows with low void fractions, presented.

  16. The Dynamics of Coarse Sediment Transfer in an Upland Bedrock River

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Hardy, R. J.; Ferguson, R. I.; Cray, A.

    2010-12-01

    Bedrock channels in UK environments have received relatively little attention despite their importance within upland river systems and their influence on controlling the conveyance of sediment downstream. This poster describes the transfer of coarse sediment through Trout Beck, an upland bedrock reach in the North Pennines, UK. The transport of coarse sediment has been quantified through field monitoring of sediment characteristics, repeat magnetic tracer surveys and in-situ bed load impact sensors. This was carried out in conjunction with surveys of channel morphology (using terrestrial laser scanning and repeat dGPS measurements) and continuous flow monitoring. The interaction between mobile sediment and channel morphology is partly conditioned by the extent of alluvial sediment cover. Sediment storage is patchy with partially alluvial and alluvial sections of the channel, interspersed with bedrock reaches containing very little sediment except in hydraulically sheltered sites. There are notable differences in sediment dynamics between these different sections of the river channel which have a considerable influence on conveyance of sediment through the reach. In bedrock sections the low resistance to flow and stable channel boundaries result in little sediment storage and during periods when flow is competent there is downstream conveyance of the full grain-size distribution of sediment. Detailed morphological survey has provided the necessary boundary conditions, along with the flow data, to apply a one-dimensional hydraulic model (HEC-RAS) of the bedrock study reach. The modelling results have quantified the hydraulic regime of the channel. Using local shear stress as a proxy for sediment transport, sediment transport potential for the dominant grain-size distribution of the reach (16-256 mm) has been assessed for different locations in the channel. There are significant differences in the critical threshold of shear stress for sediment transport down the reach. Sediment which is transported through the bedrock reach will be deposited and stored, in the partially alluvial and alluvial sections of the channel. As the flow magnitude increases above the critical entrainment threshold, sediment transport potential increases throughout the whole channel until hydraulic conditions in the whole reach have the potential to transport sediment. Hence, sediment storage in the channel fluctuates through time depending on the frequency of ‘channel clearing’ floods; however, the overall pattern (template) of sedimentation is predictable based on local hydraulics. By combining the field and modelling approaches an improved understanding of the flow thresholds and spatial variations in sediment transport, in an upland bedrock channel, has been achieved.

  17. GREAT II (Upper Mississippi River. Guttenberg, Iowa to Saverton, Missouri). Side Channel Work Group Appendix

    DTIC Science & Technology

    1980-12-01

    is current during normal river stage. The graduations in this category are wide- spread, ranging frcm fast flowing watercourses with high banks to...channel category on the other. They may be former side channels that have been cut off, or that have only intermittent flows in them. They may be...navigation project certainly is a contributor by providing a deep channel and an abundance of beaches. Karaki and Van Hoften noted that small, fast

  18. Flow and heat transfer in a curved channel

    NASA Technical Reports Server (NTRS)

    Brinich, P. F.; Graham, R. W.

    1977-01-01

    Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.

  19. Mechanics of flow and sediment transport in delta distributary channels

    USGS Publications Warehouse

    Nelson, Jonathan M.; Kinzel, Paul J.; Duc Toan, Duong; Shimizu, Yasuyuki; McDonald, Richard R.

    2011-01-01

    boundary conditions. Over time, the pattern of erosion and deposition in the distributary channels gives rise to variations in the amount of water and sediment routed into them. In the simplest case, this results in channel switching on deltas, but in a more general sense these dynamics produce a rich suite of interesting morphologic change contributing both to the evolution of the channel distributary network and the overall evolution of the delta. As part of a study to develop a better understanding of these processes, we conducted a field study measuring the detailed morphology of the Hong-Luoc junction on the Red River downstream of Hanoi, Vietnam. This junction was selected for such a study because it has a 1,000-year history, modern observations suggest that it is currently switching (changing the proportion of sediment and streamflow provided to each of the distributary channels), and hydrologic configuration of the junction allows for the study of two bifurcations and one confluence in a single junction complex. In this paper, our morphologic observations are used in computational flow models to show how flow and sediment transport changes as a function of total discharge upstream of the junction. This is a key component of understanding how the junction attains stability over a range of flows or how imbalances in the distribution of flow and sediment transport lead to destabilization of the channel bifurcation.

  20. Morphologic and thermophysical characteristics of lava flows southwest of Arsia Mons, Mars

    NASA Astrophysics Data System (ADS)

    Crown, David A.; Ramsey, Michael S.

    2017-08-01

    The morphologic and thermophysical characteristics of part of the extensive lava flow fields southwest of Arsia Mons (22.5-27.5°S, 120-130°W) have been examined using a combination of orbital VNIR and TIR datasets. THEMIS images provide context for the regional geology and record diurnal temperature variability that is diverse and unusual for flow surfaces in such close proximity. CTX images were used to distinguish dominant flow types and assess local age relationships between individual lava flows. CTX and HiRISE images provide detailed information on flow surface textures and document aeolian effects as they reveal fine-grained deposits in many low-lying areas of the flow surfaces as well as small patches of transverse aeolian ridges. Although this region is generally dust-covered and has a lower overall thermal inertia, the THEMIS data indicate subtle spectral variations within the population of lava flows studied. These variations could be due to compositional differences among the flows or related to mixing of flow and aeolian materials. Specific results regarding flow morphology include: a) Two main lava flow types (bright, rugged and dark, smooth as observed in CTX images) dominate the southwest Arsia Mons/NE Daedalia Planum region; b) the bright, rugged flows have knobby, ridged, and/or platy surface textures, commonly have medial channel/levee systems, and may have broad distal lobes; c) the dark, smooth flows extend from distributary systems that consist of combinations of lava channels, lava tubes, and/or sinuous ridges and plateaus; and d) steep-sided, terraced margins, digitate breakout lobes, and smooth-surfaced plateaus along lava channel/tube systems are interpreted as signatures of flow inflation within the dark, smooth flow type. These flows exhibit smoother upper surfaces, are thinner, and have more numerous, smaller lobes, which, along with their the channel-/tube-fed nature, indicate a lower viscosity lava than for the bright, rugged flows. Flow patterns and local interfingering and overlapping relationships are delineated in CTX images and allow reconstruction of the complex flow field surfaces. Darker channel-/tube-fed flows are generally younger than adjacent thicker, bright, rugged flows; however, the diversity and complexity of temporal relationships observed, along with the thermophysical variability, suggests that lava sources with different eruptive styles and magnitudes and/or lavas that experienced different local emplacement conditions were active contemporaneously.

  1. Flood disturbance and regrowth of vegetation in ephemeral channels: conditions and interactions

    NASA Astrophysics Data System (ADS)

    Hooke, J.

    2012-04-01

    Flood flows disturb vegetation growing in ephemeral channels but more information is needed on the thresholds for damage and removal and on the regrowth processes and timescales after floods. Once vegetation is re-established then it has feedback effects on processes and may raise thresholds. Several sites in SE Spain have been monitored for the effects of flows and for the growth and responses of plants over a period of >15 years. Two major floods and many minor flows have occurred. Measurements on quadrats and in different zones of the valley floor have allowed quantification of the thresholds for damage of different species of plant. Position of the plants in the channel also has a marked influence on effect of flows; velocities and flow forces for different parts have been calculated. The threshold for removal or mortality of certain plants in these Mediterranean valleys is very high. Types and species of plants regrowing in different zones have been identified and rates of growth measured. The relationship to climatic and weather conditions between channel flows is analysed. Growth rates between floods are closely related to moisture availability, mainly influenced by inter-annual variability of rainfall but also varying with location in the channel. One site in which hydrological regime was altered by human actions has shown marked change in vegetation cover and in channel response. Feedback effects reduce erosion and increase sedimentation and these effects have been measured directly and by calculation of roughness and resistance effects. The results demonstrate the different degrees of adaptation of plants to disturbance, natural vegetation such as phreatophytes showing high resilience but crop trees such as olives and almonds on floodplains being vulnerable to high flows.

  2. Debris-flow runout predictions based on the average channel slope (ACS)

    USGS Publications Warehouse

    Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.

    2008-01-01

    Prediction of the runout distance of a debris flow is an important element in the delineation of potentially hazardous areas on alluvial fans and for the siting of mitigation structures. Existing runout estimation methods rely on input parameters that are often difficult to estimate, including volume, velocity, and frictional factors. In order to provide a simple method for preliminary estimates of debris-flow runout distances, we developed a model that provides runout predictions based on the average channel slope (ACS model) for non-volcanic debris flows that emanate from confined channels and deposit on well-defined alluvial fans. This model was developed from 20 debris-flow events in the western United States and British Columbia. Based on a runout estimation method developed for snow avalanches, this model predicts debris-flow runout as an angle of reach from a fixed point in the drainage channel to the end of the runout zone. The best fixed point was found to be the mid-point elevation of the drainage channel, measured from the apex of the alluvial fan to the top of the drainage basin. Predicted runout lengths were more consistent than those obtained from existing angle-of-reach estimation methods. Results of the model compared well with those of laboratory flume tests performed using the same range of channel slopes. The robustness of this model was tested by applying it to three debris-flow events not used in its development: predicted runout ranged from 82 to 131% of the actual runout for these three events. Prediction interval multipliers were also developed so that the user may calculate predicted runout within specified confidence limits. ?? 2008 Elsevier B.V. All rights reserved.

  3. Temporal and spatial scales of geomorphic adjustments to reduced competency following flow regulation in bedload-dominated systems

    NASA Astrophysics Data System (ADS)

    Curtis, Katherine E.; Renshaw, Carl E.; Magilligan, Francis J.; Dade, William B.

    2010-05-01

    Because of the combined effects of reduced sediment transport capacity and competency following flow regulation, morphological changes are expected to occur in channels downstream from dams and, specifically, at tributary junctions where local inputs of water and sediment occur. Using a combination of historical aerial photographs, mainstem- and tributary-channel pebble counts, and HEC-RAS flow modeling for two watersheds in south-central VT, one unregulated and the other regulated since 1961, we document the time series of post-regulation channel narrowing and associated bar growth due to the influx of tributary sediment. Channel adjustments at regulated tributary junctions have been significant in ca. 50 years following impoundment, with channels downstream of the confluences narrowing over 15% after an initial ca. 20-year lag before the onset of accelerated narrowing. Moreover, flow modeling suggests that downstream of regulated confluences, the modern median grain size ( d50) along the channel bed is immobile. No significant channel narrowing has occurred either above or below unregulated tributary junctions or on the mainstem upstream of regulated confluences. However, greater channel sediment fining is observed upstream of regulated confluences than above unregulated confluences. Thus, the primary mode of mainstem channel adjustment differs up- and downstream of regulated tributaries. These confluence effects have occurred where the tributary drainage area is only 0.2 times that of the mainstem, well below the threshold ratio of 0.6 required for significant geomorphic effects at unregulated confluences, highlighting the geomorphic scale shift of dams. Lastly, we evaluate the downstream length required for a river to recover from the impacts of impoundment and demonstrate that even distal locations are impacted by flow regulation. Unlike the impacts of flow regulation in the western US where channel incision and bar erosion predominate following impoundment, we find that in situations where bed incision is minimal and where sediment loads are low but bed caliber high, bar growth and channel narrowing are significant adjustments at tributary junctions following impoundment. Therefore, at our sites the effects of dams on reduced competency may be more profound than on reduced sediment transport capacity, highlighting the importance of geologic and geomorphic settings in understanding fluvial responses to impoundment.

  4. Single water channels of aquaporin-1 do not obey the Kedem-Katchalsky equations.

    PubMed

    Curry, M R; Shachar-Hill, B; Hill, A E

    2001-05-15

    The Kedem-Katchalsky (KK) equations are often used to obtain information about the osmotic properties and conductance of channels to water. Using human red cell membranes, in which the osmotic flow is dominated by Aquaporin-1, we show here that compared to NaCl the reflexion coefficient of the channel for methylurea, when corrected for solute volume exchange and for the water permeability of the lipid membrane, is 0.54. The channels are impermeable to these two solutes which would seem to rule out flow interaction and require a reflexion coefficient close to 1.0 for both. Thus, two solutes can give very different osmotic flow rates through a semi-permeable pore, a result at variance with both classical theory and the KK formulation. The use of KK equations to analyze osmotic volume changes, which results in a single hybrid reflexion coefficient for each solute, may explain the discrepancy in the literature between such results and those where the equations have not been employed. Osmotic reflexion coefficients substantially different from 1.0 cannot be ascribed to the participation of other 'hidden' parallel aqueous channels consistently with known properties of the membrane. Furthermore, we show that this difference cannot be due to second-order effects, such as a solute-specific interaction with water in only part of the channel, because the osmosis is linear with driving force down to zero solute concentration, a finding which also rules out the involvement of unstirred-layer effects. Reflexion coefficients smaller than 1.0 do not necessitate water-solute flow interaction in permeable aqueous channels; rather, the osmotic behaviour of impermeable molecular-sized pores can be explained by differences in the fundamental nature of water flow in regions either accessible or inaccessible to solute, created by a varying cross-section of the channel.

  5. The need for complementary hydraulic analysis in post-restoration monitoring of river restoration projects

    NASA Astrophysics Data System (ADS)

    Endreny, T. A.; Soulman, M. M.

    2011-03-01

    River restoration design methods are incrementally improved by studying and learning from monitoring data in previous projects. In this paper, we report post-restoration monitoring data for a Natural Channel Design (NCD) restoration project along 1600 m (10 channel wavelengths) of the Batavia Kill in the Catskill Mountains, NY, implemented in 2001 and 2002. The NCD project used a reference-reach to determine channel form, empirical relations between the project site and reference site bankfull dimensions to size channel geometry, and hydraulic and sediment computations to test channel capacity and sediment stability. In addition 12 cross-vanes and 48 j-hook vanes used in NCD for river training were installed to protect against bank erosion and maintain scour pools for fish habitat. Changes in pool depths were monitored with surveys from 2002-2004, and then after the channel-altering April 2005 flood. Aggradation in pools was attributed to cross-vane arms not concentrating flow in the center of the channel, which subsequently caused flow splitting and 4 partial point bar avulsions during the 2005 flood. Hydrodynamic simulation at the 18 m3s-1 bankfull flow suggested avulsions occurred where vanes allowed erosive bank scour to initiate the avulsion cut, and once the flow was split, the diminished in-channel flow caused more aggradation in the pools. In this project post-restoration monitoring had detected aggradation and considered it a problem. The lesson for the larger river restoration community is monitoring protocol should include complementary hydraulic and sediment analysis to comprehend potential consequences and develop preventative maintenance. River restoration and monitoring teams should be trained in robust hydraulic and sediment analytical methods that help them extend project restoration goals.

  6. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.

    PubMed

    Pandiyan, Vimal Prabhu; John, Renu

    2016-01-20

    We propose a versatile 3D phase-imaging microscope platform for real-time imaging of optomicrofluidic devices based on the principle of digital holographic microscopy (DHM). Lab-on-chip microfluidic devices fabricated on transparent polydimethylsiloxane (PDMS) and glass substrates have attained wide popularity in biological sensing applications. However, monitoring, visualization, and characterization of microfluidic devices, microfluidic flows, and the biochemical kinetics happening in these devices is difficult due to the lack of proper techniques for real-time imaging and analysis. The traditional bright-field microscopic techniques fail in imaging applications, as the microfluidic channels and the fluids carrying biological samples are transparent and not visible in bright light. Phase-based microscopy techniques that can image the phase of the microfluidic channel and changes in refractive indices due to the fluids and biological samples present in the channel are ideal for imaging the fluid flow dynamics in a microfluidic channel at high resolutions. This paper demonstrates three-dimensional imaging of a microfluidic device with nanometric depth precisions and high SNR. We demonstrate imaging of microelectrodes of nanometric thickness patterned on glass substrate and the microfluidic channel. Three-dimensional imaging of a transparent PDMS optomicrofluidic channel, fluid flow, and live yeast cell flow in this channel has been demonstrated using DHM. We also quantify the average velocity of fluid flow through the channel. In comparison to any conventional bright-field microscope, the 3D depth information in the images illustrated in this work carry much information about the biological system under observation. The results demonstrated in this paper prove the high potential of DHM in imaging optofluidic devices; detection of pathogens, cells, and bioanalytes on lab-on-chip devices; and in studying microfluidic dynamics in real time based on phase changes.

  7. Gas block mechanism for water removal in fuel cells

    DOEpatents

    Issacci, Farrokh; Rehg, Timothy J.

    2004-02-03

    The present invention is directed to apparatus and method for cathode-side disposal of water in an electrochemical fuel cell. There is a cathode plate. Within a surface of the plate is a flow field comprised of interdigitated channels. During operation of the fuel cell, cathode gas flows by convection through a gas diffusion layer above the flow field. Positioned at points adjacent to the flow field are one or more porous gas block mediums that have pores sized such that water is sipped off to the outside of the flow field by capillary flow and cathode gas is blocked from flowing through the medium. On the other surface of the plate is a channel in fluid communication with each porous gas block mediums. The method for water disposal in a fuel cell comprises installing the cathode plate assemblies at the cathode sides of the stack of fuel cells and manifolding the single water channel of each of the cathode plate assemblies to the coolant flow that feeds coolant plates in the stack.

  8. PARTICLE IMAGE VELOCIMETRY MEASUREMENTS IN A REPRESENTATIVE GAS-COOLED PRISMATIC REACTOR CORE MODEL: FLOW IN THE COOLANT CHANNELS AND INTERSTITIAL BYPASS GAPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas E. Conder; Richard Skifton; Ralph Budwig

    Core bypass flow is one of the key issues with the prismatic Gas Turbine-Modular Helium Reactor, and it refers to the coolant that navigates through the interstitial, non-cooling passages between the graphite fuel blocks instead of traveling through the designated coolant channels. To determine the bypass flow, a double scale representative model was manufactured and installed in the Matched Index-of-Refraction flow facility; after which, stereo Particle Image Velocimetry (PIV) was employed to measure the flow field within. PIV images were analyzed to produce vector maps, and flow rates were calculated by numerically integrating over the velocity field. It was foundmore » that the bypass flow varied between 6.9-15.8% for channel Reynolds numbers of 1,746 and 4,618. The results were compared to computational fluid dynamic (CFD) pre-test simulations. When compared to these pretest calculations, the CFD analysis appeared to under predict the flow through the gap.« less

  9. Resistance formulas in hydraulics-based models for routing debris flows

    USGS Publications Warehouse

    Chen, Cheng-lung; Ling, Chi-Hai

    1997-01-01

    The one-dimensional, cross-section-averaged flow equations formulated for routing debris flows down a narrow valley are identical to those for clear-water flow, except for the differences in the values of the flow parameters, such as the momentum (or energy) correction factor, resistance coefficient, and friction slope. Though these flow parameters for debris flow in channels with cross-sections of arbitrary geometric shape can only be determined empirically, the theoretical values of such parameters for debris flow in wide channels exist. This paper aims to derive the theoretical resistance coefficient and friction slope for debris flow in wide channels using a rheological model for highly-concentrated, rapidly-sheared granular flows, such as the generalized viscoplastic fluid (GVF) model. Formulating such resistance coefficient or friction slope is equivalent to developing a generally applicable resistance formula for routing debris flows. Inclusion of a nonuniform term in the expression of the resistance formula proves useful in removing the customary assumption that the spatially varied resistance at any section is equal to what would take place with the same rate of flow passing the same section under conditions of uniformity. This in effect implies an improvement in the accuracy of unsteady debris-flow computation.

  10. Controlling flows in microchannels with patterned surface charge and topography.

    PubMed

    Stroock, Abraham D; Whitesides, George M

    2003-08-01

    This Account reviews two procedures for controlling the flow of fluids in microchannels. The first procedure involves patterning the density of charge on the inner surfaces of a channel. These patterns generate recirculating electroosmotic flows in the presence of a steady electric field. The second procedure involves patterning topography on an inner surface of a channel. These patterns generate recirculation in the cross-section of steady, pressure-driven flows. This Account summarizes applications of these flow to mixing and to controlling dispersion (band broadening).

  11. A novel microfluidic flow focusing method

    PubMed Central

    Jiang, Hai; Weng, Xuan; Li, Dongqing

    2014-01-01

    A new microfluidic method that allows hydrodynamic focusing in a microchannel with two sheath flows is demonstrated. The microchannel network consists of a T-shaped main channel and two T-shaped branch channels. The flows of the sample stream and the sheath streams in the microchannel are generated by electroosmotic flow-induced pressure gradients. In comparison with other flow focusing methods, this novel method does not expose the sample to electrical field, and does not need any external pumps, tubing, and valves. PMID:25538810

  12. Coolant mass flow equalizer for nuclear fuel

    DOEpatents

    Betten, Paul R.

    1978-01-01

    The coolant mass flow distribution in a liquid metal cooled reactor is enhanced by restricting flow in sub-channels defined in part by the peripheral fuel elements of a fuel assembly. This flow restriction, which results in more coolant flow in interior sub-channels, is achieved through the use of a corrugated liner positioned between the bundle of fuel elements and the inner wall of the fuel assembly coolant duct. The corrugated liner is expandable to accommodate irradiation induced growth of fuel assembly components.

  13. Early stages of transition in viscosity-stratified channel flow

    NASA Astrophysics Data System (ADS)

    Govindarajan, Rama; Jose, Sharath; Brandt, Luca

    2013-11-01

    In parallel shear flows, it is well known that transition to turbulence usually occurs through a subcritical process. In this work we consider a flow through a channel across which there is a linear temperature variation. The temperature gradient leads to a viscosity variation across the channel. A large body of work has been done in the linear regime for this problem, and it has been seen that viscosity stratification can lead to considerable changes in stability and transient growth characteristics. Moreover contradictory effects of introducing a non uniform viscosity in the system have been reported. We conduct a linear stability analysis and direct numerical simulations (DNS) for this system. We show that the optimal initial structures in the viscosity-stratified case, unlike in unstratified flow, do not span the width of the channel, but are focussed near one wall. The nonlinear consequences of the localisation of the structures will be discussed.

  14. Fully nonlinear Goertler vortices in constricted channel flows and their effect on the onset of separation

    NASA Technical Reports Server (NTRS)

    Denier, James P.; Hall, Philip

    1992-01-01

    The development of fully nonlinear Goertler vortices in high Reynolds number flow in a symmetrically constricted channel is investigated. Attention is restricted to the case of 'strongly' constricted channels considered by Smith and Daniels (1981) for which the scaled constriction height is asymptotically large. Such flows are known to develop a Goldstein singularity and subsequently become separated at some downstream station past the point of maximum channel constriction. It is shown that these flows can support fully nonlinear Goertler vortices, of the form elucidated by Hall and Lakin (1988), for constrictions which have an appreciable region of local concave curvature upstream of the position at which separation occurs. The effect on the onset of separation due to the nonlinear Goertler modes is discussed. A brief discussion of other possible nonlinear states which may also have a dramatic effect in delaying (or promoting) separation is given.

  15. Axially Tapered And Bilayer Microchannels For Evaporative Cooling Devices

    DOEpatents

    Nilson, Robert; Griffiths, Stewart

    2005-10-04

    The invention consists of an evaporative cooling device comprising one or more microchannels whose cross section is axially reduced to control the maximum capillary pressure differential between liquid and vapor phases. In one embodiment, the evaporation channels have a rectangular cross section that is reduced in width along a flow path. In another embodiment, channels of fixed width are patterned with an array of microfabricated post-like features such that the feature size and spacing are gradually reduced along the flow path. Other embodiments incorporate bilayer channels consisting of an upper cover plate having a pattern of slots or holes of axially decreasing size and a lower fluid flow layer having channel widths substantially greater than the characteristic microscale dimensions of the patterned cover plate. The small dimensions of the cover plate holes afford large capillary pressure differentials while the larger dimensions of the lower region reduce viscous flow resistance.

  16. Channeling at the base of the lithosphere during the lateral flow of plume material beneath flow line hot spots

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.

    2008-08-01

    Chains of volcanic edifices lie along flow lines between plume-fed hot spots and the thin lithosphere at ridge axes. Discovery and Euterpe/Musicians Seamounts are two examples. An attractive hypothesis is that buoyant plume material flows along the base of the lithosphere perpendicular to isochrons. The plume material may conceivably flow in a broad front or flow within channels convectively eroded into the base to the lithosphere. A necessary but not sufficient condition for convective channeling is that the expected stagnant-lid heat flow for the maximum temperature of the plume material is comparable to the half-space surface heat flow of the oceanic lithosphere. Two-dimensional and three-dimensional numerical calculations confirm this inference. A second criterion for significant convective erosion is that it needs to occur before the plume material thins by lateral spreading. Scaling relationships indicate spreading and convection are closely related. Mathematically, the Nusselt number (ratio of convective to conductive heat flow in the plume material) scales with the flux (volume per time per length of flow front) of the plume material. A blob of unconfined plume material thus spreads before the lithosphere thins much and evolves to a slowly spreading and slowly convecting warm region in equilibrium with conduction into the base of the overlying lithosphere. Three-dimensional calculations illustrate this long-lasting (and hence observable) state of plume material away from its plume source. A different flow domain occurs around a stationary hot plume that continuously supplies hot material. The plume convectively erodes the overlying lithosphere, trapping the plume material near its orifice. The region of lithosphere underlain by plume material grows toward the ridge axis and laterally by convective thinning of the lithosphere at its edges. The hottest plume material channels along flow lines. Geologically, the regions of lithosphere underlain by either warm or hot plume material are likely to extend laterally away from the volcanic edifices whether or not channeling occurs.

  17. Quantifying sources of fine sediment supplied to post-fire debris flows using fallout radionuclide tracers

    NASA Astrophysics Data System (ADS)

    Smith, Hugh; Sheridan, Gary; Nyman, Petter; Child, David; Lane, Patrick; Hotchkis, Michael

    2013-04-01

    The supply of fine sediment and ash has been identified as an important factor contributing to the initiation of runoff-generated debris flows after fire. However, despite the significance of fines for post-fire debris flow generation, no investigations have sought to quantify sources of this material in debris flow affected catchments. In this study, we employ fallout radionuclides (Cs-137, excess Pb-210 and Pu-239,240) as tracers to measure proportional contributions of fine sediment (<10 μm) from hillslope surface and channel bank sources to levee and terminal fan deposits formed by post-fire debris flows in two forest catchments in southeastern Australia. While Cs-137 and excess Pb-210 have been widely used in sediment tracing studies, application of Pu as a tracer represents a recent development and was limited to only one catchment. The estimated range in hillslope surface contributions of fine sediment to individual debris flow deposits in each catchment was 22-69% and 32-74%, respectively. No systematic change in the source contributions to debris flow deposits was observed with distance downstream from channel initiation points. Instead, spatial variability in source contributions was largely influenced by the pattern of debris flow surges forming the deposits. Linking the sediment tracing with interpretation of depositional evidence allowed reconstruction of temporal sequences in sediment source contributions to debris flow surges. Hillslope source inputs dominated most elevated channel deposits such as marginal levees that were formed under peak flow conditions. This indicated the importance of hillslope runoff and sediment supply for debris flow generation in both catchments. In contrast, material stored within channels that was deposited during subsequent surges was predominantly channel-derived. The results demonstrate that fallout radionuclide tracers may provide unique information on the changing source contributions of fine sediment during debris flow events.

  18. Fuel cell stack with passive air supply

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2006-01-17

    A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.

  19. Flow tests of a single fuel element coolant channel for a compact fast reactor for space power

    NASA Technical Reports Server (NTRS)

    Springborn, R. H.

    1971-01-01

    Water flow tests were conducted on a single-fuel-element cooling channel for a nuclear concept to be used for space power. The tests established a method for measuring coolant flow rate which is applicable to water flow testing of a complete mockup of the reference reactor. The inlet plenum-to-outlet plenum pressure drop, which approximates the overall core pressure drop, was measured and correlated with flow rate. This information can be used for reactor coolant flow and heat transfer calculations. An analytical study of the flow characteristics was also conducted.

  20. Fluidic Oscillator Having Decoupled Frequency and Amplitude Control

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti (Inventor)

    2017-01-01

    A fluidic oscillator having independent frequency and amplitude control includes a fluidic-oscillator main flow channel having a main flow inlet, a main flow outlet, and first and second control ports disposed at opposing sides thereof. A fluidic-oscillator controller has an inlet and outlet. A volume defined by the main flow channel is greater than the volume defined by the controller. A flow diverter coupled to the outlet of the controller defines a first fluid flow path from the controller's outlet to the first control port and defines a second fluid flow path from the controller's outlet to the second control port.

  1. Fluidic Oscillator Having Decoupled Frequency and Amplitude Control

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti (Inventor)

    2016-01-01

    A fluidic oscillator having independent frequency and amplitude control includes a fluidic-oscillator main flow channel having a main flow inlet, a main flow outlet, and first and second control ports disposed at opposing sides thereof. A fluidic-oscillator controller has an inlet and outlet. A volume defined by the main flow channel is greater than the volume defined by the controller. A flow diverter coupled to the outlet of the controller defines a first fluid flow path from the controller's outlet to the first control port and defines a second fluid flow path from the controller's outlet to the second control port.

  2. Geomorphic controls on hyporheic exchange flow in mountain streams.

    Treesearch

    T. Kasahara; S.M. Wondzell

    2003-01-01

    Hyporheic exchange flows were simulated using MODFLOW and MODPATH to estimate relative effects of channel morphologic features on the extent of the hyporheic zone, on hyporheic exchange flow, and on the residence time of stream water in the hyporheic zone. Four stream reaches were compared in order to examine the influence of stream size and channel constraint. Within...

  3. Self-actuated nuclear reactor shutdown system using induction pump to facilitate sensing of core coolant temperature

    DOEpatents

    Sievers, Robert K.; Cooper, Martin H.; Tupper, Robert B.

    1987-01-01

    A self-actuated shutdown system incorporated into a reactivity control assembly in a nuclear reactor includes pumping means for creating an auxiliary downward flow of a portion of the heated coolant exiting from the fuel assemblies disposed adjacent to the control assembly. The shutdown system includes a hollow tubular member which extends through the outlet of the control assembly top nozzle so as to define an outer annular flow channel through the top nozzle outlet separate from an inner flow channel for primary coolant flow through the control assembly. Also, a latching mechanism is disposed in an inner duct of the control assembly and is operable for holding absorber bundles in a raised position in the control assembly and for releasing them to drop them into the core of the reactor for shutdown purposes. The latching mechanism has an inner flow passage extending between and in flow communication with the absorber bundles and the inner flow channel of the top nozzle for accommodating primary coolant flow upwardly through the control assembly. Also, an outer flow passage separate from the inner flow passage extends through the latching mechanism between and in flow communication with the inner duct and the outer flow channel of the top nozzle for accommodating inflow of a portion of the heated coolant from the adjacent fuel assemblies. The latching mechanism contains a magnetic material sensitive to temperature and operable to cause mating or latching together of the components of the latching mechanism when the temperature sensed is below a known temperature and unmating or unlatching thereof when the temperature sensed is above a given temperature. The temperature sensitive magnetic material is positioned in communication with the heated coolant flow through the outer flow passage for directly sensing the temperature thereof. Finally, the pumping means includes a jet induction pump nozzle and diffuser disposed adjacent the bottom nozzle of the control assembly and in flow communication with the inlet thereof. The pump nozzle is operable to create an upward driving flow of primary coolant through the pump diffuser and then to the absorber bundles. The upward driving flow of primary coolant, in turn, creates a suction head within the outer flow channel of the top nozzle and thereby an auxiliary downward flow of the heated coolant portion exiting from the upper end of the adjacent fuel assemblies through the outer flow channel to the pump nozzle via the outer flow passage of the latching mechanism and an annular space between the outer and inner spaced ducts of the control assembly housing. The temperature of the heated coolant exiting from the adjacent fuel assemblies can thereby be sensed directly by the temperature sensitive magnetic material in the latching mechanism.

  4. Role of large-scale motions to turbulent inertia in turbulent pipe and channel flows

    NASA Astrophysics Data System (ADS)

    Hwang, Jinyul; Lee, Jin; Sung, Hyung Jin

    2015-11-01

    The role of large-scale motions (LSMs) to the turbulent inertia (TI) term (the wall-normal gradient of the Reynolds shear stress) is examined in turbulent pipe and channel flows at Reτ ~ 930 . The TI term in the mean momentum equation represents the net force of inertia exerted by the Reynolds shear stress. Although the turbulence statistics characterizing the internal turbulent flows are similar close to the wall, the TI term differs in the logarithmic region due to the different characteristics of LSMs (λx > 3 δ) . The contribution of the LSMs to the TI term and the Reynolds shear stress in the channel flow is larger than that in the pipe flow. The LSMs in the logarithmic region act like a mean momentum source (where TI >0) even the TI profile is negative above the peak of the Reynolds shear stress. The momentum sources carried by the LSMs are related to the low-speed regions elongated in the downstream, revealing that momentum source-like motions occur in the upstream position of the low-speed structure. The streamwise extent of this structure is relatively long in the channel flow, whereas the high-speed regions on the both sides of the low-speed region in the channel flow are shorter and weaker than those in the pipe flow. This work was supported by the Creative Research Initiatives (No. 2015-001828) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.

  5. Fluid-cooled heat sink with improved fin areas and efficiencies for use in cooling various devices

    DOEpatents

    Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth; Narumanchi, Sreekant

    2015-04-21

    The disclosure provides a fluid-cooled heat sink having a heat transfer base and a plurality of heat transfer fins in thermal communication with the heat transfer base, where the heat transfer base and the heat transfer fins form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop of the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.

  6. Numerical model for learning concepts of streamflow simulation

    USGS Publications Warehouse

    DeLong, L.L.; ,

    1993-01-01

    Numerical models are useful for demonstrating principles of open-channel flow. Such models can allow experimentation with cause-and-effect relations, testing concepts of physics and numerical techniques. Four PT is a numerical model written primarily as a teaching supplement for a course in one-dimensional stream-flow modeling. Four PT options particularly useful in training include selection of governing equations, boundary-value perturbation, and user-programmable constraint equations. The model can simulate non-trivial concepts such as flow in complex interconnected channel networks, meandering channels with variable effective flow lengths, hydraulic structures defined by unique three-parameter relations, and density-driven flow.The model is coded in FORTRAN 77, and data encapsulation is used extensively to simplify maintenance and modification and to enhance the use of Four PT modules by other programs and programmers.

  7. Heat Transfer Enhancement in High Performance Heat Sink Channels by Autonomous, Aero-Elastic Reed Fluttering

    NASA Astrophysics Data System (ADS)

    Jha, Sourabh; Crittenden, Thomas; Glezer, Ari

    2016-11-01

    Heat transport within high aspect ratio, rectangular mm-scale channels that model segments of a high-performance, air-cooled heat sink is enhanced by the formation of unsteady small-scale vortical motions induced by autonomous, aeroelastic fluttering of cantilevered planar thin-film reeds. The flow mechanisms and scaling of the interactions between the reed and the channel flow are explored to overcome the limits of forced convection heat transport from air-side heat exchangers. High-resolution PIV measurements in a testbed model show that undulations of the reed's surface lead to formation and advection of vorticity concentrations, and to alternate shedding of spanwise CW and CCW vortices. These vortices scale with the reed motion amplitude, and ultimately result in motions of decreasing scales and enhanced dissipation that are reminiscent of a turbulent flow. The vorticity shedding lead to strong enhancement in heat transfer that increases with the Reynolds number of the base flow (e.g., the channel's thermal coefficient of performance is enhanced by 2.4-fold and 9-fold for base flow Re = 4,000 and 17,400, respectively, with corresponding decreases of 50 and 77% in the required channel flow rates). This is demonstrated in heat sinks for improving the thermal performance of low-Re thermoelectric power plant air-cooled condensers, where the global air-side pressure losses can be significantly reduced by lowering the required air volume flow rate at a given heat flux and surface temperature. AFOSR and NSF-EPRI.

  8. Ensemble modeling of stochastic unsteady open-channel flow in terms of its time-space evolutionary probability distribution - Part 2: numerical application

    NASA Astrophysics Data System (ADS)

    Dib, Alain; Kavvas, M. Levent

    2018-03-01

    The characteristic form of the Saint-Venant equations is solved in a stochastic setting by using a newly proposed Fokker-Planck Equation (FPE) methodology. This methodology computes the ensemble behavior and variability of the unsteady flow in open channels by directly solving for the flow variables' time-space evolutionary probability distribution. The new methodology is tested on a stochastic unsteady open-channel flow problem, with an uncertainty arising from the channel's roughness coefficient. The computed statistical descriptions of the flow variables are compared to the results obtained through Monte Carlo (MC) simulations in order to evaluate the performance of the FPE methodology. The comparisons show that the proposed methodology can adequately predict the results of the considered stochastic flow problem, including the ensemble averages, variances, and probability density functions in time and space. Unlike the large number of simulations performed by the MC approach, only one simulation is required by the FPE methodology. Moreover, the total computational time of the FPE methodology is smaller than that of the MC approach, which could prove to be a particularly crucial advantage in systems with a large number of uncertain parameters. As such, the results obtained in this study indicate that the proposed FPE methodology is a powerful and time-efficient approach for predicting the ensemble average and variance behavior, in both space and time, for an open-channel flow process under an uncertain roughness coefficient.

  9. Development of flow in a square mini-channel: Effect of flow oscillation

    NASA Astrophysics Data System (ADS)

    Lobo, Oswald Jason; Chatterjee, Dhiman

    2018-04-01

    In this research paper, we present a numerical prediction of steady and fully oscillatory flows in a square mini-channel connected between two plenums. Flow separation occurs at the contraction of the plenum into the channel which causes an asymmetry in the development of flow in the entrance region. The entrance length and recirculation length are found, for both steady and fully oscillatory flows. It is shown that the maximum entrance length decreases with an increase in the oscillating frequency while the maximum recirculation length and recirculation area increase with an increase in oscillating frequency. The phase of a velocity signal is shown to be a strong function of its location. The phase difference between the velocities with respect to the different points along the centerline and those at the middle of the channel show a significant dependence on the driving frequency. There is a significant variation in the phase angles of the velocity signals computed between a point near the wall and that at the centerline. This phase difference decreases along the channel length and does not change beyond the entrance length. This feature can then be used to determine the maximum entrance length, which is otherwise problematic to ascertain in the case of fully oscillatory flows. The entrance length, thus obtained, is compared with that obtained from the velocity profile consideration and shows good similarity. The phase difference between pressure and velocity is also brought out in this work.

  10. Geomorphic change in the Limitrophe reach of the Colorado River in response to the 2014 delta pulse flow, United States and Mexico

    USGS Publications Warehouse

    Mueller, Erich R.; Schmidt, John C.; Topping, David; Grams, Paul E.

    2015-01-01

    A pulse of water was released from Morelos Dam into the dry streambed of the Colorado River in its former delta on March 23, 2014. Although small in relation to delta floods of a century ago, this was the first flow to reach the sea in nearly two decades. The pulse flow was significant in that it resulted from an international agreement, Minute 319, which allowed Colorado River water to be used for environmental restoration. Here we present a historical perspective of channel change and the results of geomorphic and sediment transport monitoring during the pulse flow between Yuma, Arizona and San Luis Rio Colorado, Sonora. This reach is known as the Limitrophe, because the river channel is the legal border between the United States and Mexico. Peak discharge of the pulse flow was 120 m3/s at Morelos Dam, but decreased to 71 m3/s at the southern border because of infiltration losses to the dry streambed. In contrast, flood flows in the 1980s and 1990s peaked above 600 m3/s at the southern border, and high flows above 200 m3/s were common. The sustained high flows in the 1980s caused widening and reworking of the river channel downstream through the delta. In the Limitrophe, flooding in 1993 from the Gila River basin dissected the 1980s flood surfaces, and smaller floods in the late 1990s incised the modern “active” channel within these higher surfaces. Field observations show that most geomorphic change during the pulse flow was confined to this pre-pulse, active channel. Relatively little bank erosion was evident, particularly in upstream reaches where vegetation is most dense, but new sandbars formed in areas of flow expansion. Farther downstream, localized bed scour and deposition ranged from 10s of centimeters to more than a meter, and fluvial dunes aggraded the bed in several locations. Measurable suspended-sediment transport occurred throughout the Limitrophe. Sediment concentrations peaked during the rising limb, and suspended sand concentrations suggest deposition in the lower 7 km of the Limitrophe as the channel gradient decreases by an order of magnitude. The pulse flow was small compared to historic floods, and flood magnitudes greater than the 2014 pulse flow are therefore necessary to significantly rework stable geomorphic surfaces or induce channel widening.

  11. The strong nonlinear interaction of Tollmien-Schlichting waves and Taylor-Goertler vortices in curved channel flow

    NASA Technical Reports Server (NTRS)

    Bennett, J.; Hall, P.; Smith, F. T.

    1988-01-01

    Viscous fluid flows with curved streamlines can support both centrifugal and viscous traveling wave instabilities. Here the interaction of these instabilities in the context of the fully developed flow in a curved channel is discussed. The viscous (Tollmein-Schlichting) instability is described asymptotically at high Reynolds numbers and it is found that it can induce a Taylor-Goertler flow even at extremely small amplitudes. In this interaction, the Tollmein-Schlichting wave can drive a vortex state with wavelength either comparable with the channel width or the wavelength of lower branch viscous modes. The nonlinear equations which describe these interactions are solved for nonlinear equilibrium states.

  12. Measurements of bed load transport on Pacific Creek, Buffalo Fork and The Snake River in Grand Teton National Park, Wyoming

    USGS Publications Warehouse

    Erwin, Susannah O.; Schmidt, J.C.

    2006-01-01

    Dams disrupt the flow of both of water and sediment through a watershed. Channel morphology is a function of discharge and sediment load, and perturbations caused by dams often alter channel form, causing significant geomorphic and, potentially, ecological changes (e.g. Petts and Gurnell, 2005). At the first order, dams often produce a flow regime that is profoundly altered in the timing, magnitude, and frequency of flows (Magilligan and Nislow, 2005). Yet, the nature of channel adjustments will be specific to both the physical setting, size of the river, dam characteristics, and nature and severity of the flow regulation (Church 1995; Knighton, 1998).

  13. Rarefied gas flows through a curved channel: Application of a diffusion-type equation

    NASA Astrophysics Data System (ADS)

    Aoki, Kazuo; Takata, Shigeru; Tatsumi, Eri; Yoshida, Hiroaki

    2010-11-01

    Rarefied gas flows through a curved two-dimensional channel, caused by a pressure or a temperature gradient, are investigated numerically by using a macroscopic equation of convection-diffusion type. The equation, which was derived systematically from the Bhatnagar-Gross-Krook model of the Boltzmann equation and diffuse-reflection boundary condition in a previous paper [K. Aoki et al., "A diffusion model for rarefied flows in curved channels," Multiscale Model. Simul. 6, 1281 (2008)], is valid irrespective of the degree of gas rarefaction when the channel width is much shorter than the scale of variations of physical quantities and curvature along the channel. Attention is also paid to a variant of the Knudsen compressor that can produce a pressure raise by the effect of the change of channel curvature and periodic temperature distributions without any help of moving parts. In the process of analysis, the macroscopic equation is (partially) extended to the case of the ellipsoidal-statistical model of the Boltzmann equation.

  14. Integrated current collector and catalyst support

    DOEpatents

    Bregoli, Lawrence J.

    1985-10-22

    An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.

  15. Integrated current collector and catalyst support

    DOEpatents

    Bregoli, L.J.

    1984-10-17

    An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.

  16. Volcanic flows versus water- and ice-related outburst deposits in eastern Hellas: A comparison

    NASA Astrophysics Data System (ADS)

    Voelker, M.; Hauber, E.; Stephan, K.; Jaumann, R.

    2018-06-01

    Hellas Planitia is one of the major topographic sinks on Mars for the deposition of any kind of sediments. We report on our observations of sheet deposits in the eastern part of the basin that are apparently related to the Dao Vallis outflow channel. The deposits have lobate flow fronts and a thickness of a few decameters. Despite their generally smooth surface, some distinctive textures and patterns can be identified, such as longitudinal lineations, distributive channels, and polygons. We compared these deposits to other sheet deposits on Mars and tested three hypotheses of their origin: volcanic flows as well as water- and ice-related mass wastings. Despite some similarities to volcanic sheet flows on Mars, we found several morphological characteristics that are not known for sheet lava flows; for example conically arranged lineations and channel systems very similar to fluvial incisions. We also reject an ice-related formation similar to terrestrial rock-ice avalanches, as there is no sufficient relief energy to explain their extent and location. A water-related origin appears most consistent with our observations, and we favor an emplacement by fluvially-driven mass wasting processes, e.g., debris flows. Assuming a water-related origin, we calculated the amount of water that would be required to deposit such large sedimentary bodies for different flow types. Our calculations show a large range of possible water volumes, from 64 to 2,042 km³, depending on the specific flow mechanism. The close link to Dao Vallis makes these deposits a unique place to study the deposition of outflow channel sediments, as the deposits of other outflow channels on Mars, such as those around Chryse Planitia, are mostly buried by younger sediments and volcanic flows.

  17. Effect of settling particles on the stability of a particle-laden flow in a vertical plane channel

    NASA Astrophysics Data System (ADS)

    Boronin, S. A.; Osiptsov, A. N.

    2018-03-01

    The stability of a viscous particle-laden flow in a vertical plane channel in the presence of the gravity force is studied. The flow is described using a two-fluid "dusty-gas" model with negligibly small volume fraction of fines and two-way coupling of the phases. Two different profiles of the particle number density in the main flow are considered: homogeneous and non-homogeneous in the form of two layers symmetric about the channel axis. The novel element of the linear-stability problem formulation is a particle velocity slip in the main flow caused by the gravity-induced settling of the dispersed phase. The eigenvalue problem for a linearized system of governing equations is solved using the orthonormalization and QZ algorithms. For a uniform particle number density distribution, it is found that there exists a domain in the plane of Froude and Stokes numbers, in which the two-phase flow in a vertical channel is stable for an arbitrary Reynolds number. This stability domain corresponds to relatively small-inertia particles and large velocity-slip in the main flow. In contrast to the flow with a uniform particle number density distribution, the stratified dusty-gas flow in a vertical channel is unstable over a wide range of governing parameters. The instability at small Reynolds numbers is determined by the gravitational mode characterized by small wavenumbers (long-wave instability), while at larger Reynolds numbers the instability is dominated by the shear mode with the time-amplification factor larger than that of the gravitational mode. The results of the study can be used for optimization of a large number of technological processes, including those in riser reactors, pneumatic conveying in pipeline systems, hydraulic fracturing, and well cementing.

  18. Channel geometric scales effect on performance and optimization for serpentine proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Youcef, Kerkoub; Ahmed, Benzaoui; Ziari, Yasmina; Fadila, Haddad

    2017-02-01

    A three dimensional computational fluid dynamics model is proposed in this paper to investigate the effect of flow field design and dimensions of bipolar plates on performance of serpentine proton exchange membrane fuel cell (PEMFC). A complete fuel cell of 25 cm2 with 25 channels have been used. The aim of the work is to investigate the effect of flow channels and ribs scales on overall performance of PEM fuel cell. Therefore, geometric aspect ratio parameter defined as (width of flow channel/width of rib) is used. Influences of the ribs and openings current collector scales have been studied and analyzed in order to find the optimum ratio between them to enhance the production of courant density of PEM fuel cell. Six kind of serpentine designs have been used in this paper included different aspect ratio varying from 0.25 to 2.33 while the active surface area and number of channels are keeping constant. Aspect ratio 0.25 corresponding of (0.4 mm channel width/ 1.6mm ribs width), and Aspect ratio2.33 corresponding of (0.6 mm channel width/ 1.4mm ribs width. The results show that the best flow field designs (giving the maximum density of current) are which there dimensions of channels width is minimal and ribs width is maximal (Γ≈0.25). Also decreasing width of channels enhance the pressure drop inside the PEM fuel cell, this causes an increase of gazes velocity and enhance convection process, therefore more power generation.

  19. The Graded Alluvial River: Variable Flow and the Dominant Discharge

    NASA Astrophysics Data System (ADS)

    Blom, A.; Arkesteijn, L.; Viparelli, E.

    2016-12-01

    We derive analytical formulations for the graded or equilibrium longitudinal profile of a mixed-sediment alluvial river under variable flow. The formulations are applicable to reaches upstream from the backwater zone. The model is based on the conservation equations for the mass of two distinct sediment modes, sand and gravel, at the bed surface to account for the effects of grain size selective transport and abrasion of gravel particles. The effects of a variable flow rate are included by (a) treating the flow as a continuously changing yet steady water discharge (i.e. here termed an alternating steady discharge) and (b) assuming the time scale of changes in channel slope and bed surface texture to be much larger than the one of changes in flow rate. The equations are simplified realizing that at equilibrium the river profile finds itself in a dynamic steady state with oscillations around constant mean values of channel slope and bed surface texture. A generalized sediment transport relation representing the stochastic nature of sediment transport allows for explicit or analytical solutions to the streamwise decrease of both the channel slope and the bed surface mean grain size under variable flow for reaches unaffected by backwater effects. This modelling approach also provides a definition of a channel-forming or dominant water discharge, i.e., that steady water discharge that is equivalent in its effect on the equilibrium channel slope to the full hydrograph.

  20. Hydrodynamic model of temperature change in open ionic channels.

    PubMed Central

    Chen, D P; Eisenberg, R S; Jerome, J W; Shu, C W

    1995-01-01

    Most theories of open ionic channels ignore heat generated by current flow, but that heat is known to be significant when analogous currents flow in semiconductors, so a generalization of the Poisson-Nernst-Planck theory of channels, called the hydrodynamic model, is needed. The hydrodynamic theory is a combination of the Poisson and Euler field equations of electrostatics and fluid dynamics, conservation laws that describe diffusive and convective flow of mass, heat, and charge (i.e., current), and their coupling. That is to say, it is a kinetic theory of solute and solvent flow, allowing heat and current flow as well, taking into account density changes, temperature changes, and electrical potential gradients. We integrate the equations with an essentially nonoscillatory shock-capturing numerical scheme previously shown to be stable and accurate. Our calculations show that 1) a significant amount of electrical energy is exchanged with the permeating ions; 2) the local temperature of the ions rises some tens of degrees, and this temperature rise significantly alters for ionic flux in a channel 25 A long, such as gramicidin-A; and 3) a critical parameter, called the saturation velocity, determines whether ionic motion is overdamped (Poisson-Nernst-Planck theory), is an intermediate regime (called the adiabatic approximation in semiconductor theory), or is altogether unrestricted (requiring the full hydrodynamic model). It seems that significant temperature changes are likely to accompany current flow in the open ionic channel. PMID:8599638

  1. A comparison of the thermal and hydraulic performances between miniature pin fin heat sink and microchannel heat sink with zigzag flow channel together with using nanofluids

    NASA Astrophysics Data System (ADS)

    Duangthongsuk, Weerapun; Wongwises, Somchai

    2018-05-01

    In this study, a comparison of the convective heat transfer, pressure drop, and performance index characteristics of heat sinks with a miniature circular pin-fin inline arrangement (MCFHS) and a zigzag flow channel with single cross-cut structures (CCZ-HS) is presented. SiO2-water nanofluids with different particle concentrations are used as the coolant. The effects of the heat sink type, particle concentration and fluid flow rate on the thermal and hydraulic performances are evaluated. The testing conditions are performed at the wall heat fluxes of 10 to 60 kW/m2 and at a mass flow rate ranging from 0.18 to 0.6 kg/s. The dimension of heat sinks is equally designed at 28 × 33 mm. The heat transfer area of MCFHS and of CCZ-HS is 1430 and 1238 mm2, respectively. Similarly, the hydraulic diameter of the flow channel of MCFHS and of CCZ-HS is 1.2 and 1.0 mm, respectively. The measured data indicate that the cooling performances of CCZ-HS are about 24-55% greater than that of MCFHS. The effects of the channel diameter and single cross-cut of the flow channel are more dominant than the effects of the fin structure and heat transfer area.

  2. Dendrogeomorphic evidence of debris flow frequency and magnitude at Mount Shasta, California

    USGS Publications Warehouse

    Hupp, C.R.

    1984-01-01

    Debris-flow deposits and woody vegetation adjacent to and growing within the channels of Whitney, Bolam, Mud, Ash, and Panthe creeks provide a 300-year record of debris-flow frequency at Mount Shasta Dendrochronologic (tree-ring) dating methods for the debris flows proved consistent with available documented records of debris flows Nine debris flows not reported in the historic record were documented and dated dendrochronologically. The oldest tree-ring date for a mudflow was about 1670 Combined geomorphic and botanical evidence shows that debris flows are a common occurrence at Mount Shasta Debris flows traveling at least 2 km have occurred at the rate of about 8 3 per century Smaller debris flows occur substantially more frequently and usually do not proceed as far downslope as larger debris flows. Cyclic scouring and filling by debris flows, in and adjacent to the stream channels, is suggested by dendrogeomorphic evidence and appears to be related to their magnitude and frequency Debris flows, small and large, may be the major surficial geomorphic agent in the vicinity of mount Shasta, sculpturing the channels and developing large alluvial fans ?? 1984 Springer-Verlag New York Inc.

  3. Estimating changes in riparian and channel features along the Trinity River downstream of Lewiston Dam, California, 1980 to 2011

    USGS Publications Warehouse

    Curtis, Jennifer A.

    2015-01-01

    Dam construction, flow diversion, and legacy landuse effects reduced the transport capacity, sediment supply, channel complexity and floodplain-connectivity along the Trinity River, CA below Lewiston Dam. This study documents the geomorphic evolution of the Trinity River Restoration Program’s intensively managed 65-km long restoration reach from 1980 to 2011. The nature and extent of riparian and channel changes were assessed using a series of geomorphic feature maps constructed from ortho-rectified photography acquired at low flow conditions in 1980, 1997, 2001, 2006, 2009, and 2011. Since 1980 there has been a general conversion of riparian to channel features and expansion of the active channel area. The primary mechanism for expansion of the active channel was bank erosion from 1980 to 1997 and channel widening was well distributed longitudinally throughout the study reach. Subsequent net bar accretion from 1997 to 2001, followed by slightly higher net bar scour from 2001 to 2006, occurred primarily in the central and lower reaches of the study area. In comparison, post-2006 bank and bar changes were spatially-limited to reaches with sufficient local transport capacity or sediment supply supported by gravel augmentation, mechanical channel rehabilitation, and tributary contributions to flow and sediment supply. A series of tributary floods in 1997, 1998 and 2006 were the primary factors leading to documented increases in channel complexity and floodplain connectivity. During the post-2006 period managed flow releases, in the absence of large magnitude tributary flooding, combined with gravel augmentation and mechanical restoration caused localized increases in sediment supply and transport capacity leading to smaller but measurable increases in channel complexity and floodplain connectivity primarily in the upper river below Lewiston Dam.

  4. Stratigraphic, sedimentologic, and dendrogeomorphic analyses of rapid floodplain formation along the Rio Grande in Big Bend National Park, Texas

    USGS Publications Warehouse

    Dean, D.J.; Scott, M.L.; Shafroth, P.B.; Schmidt, J.C.

    2011-01-01

    The channel of the lower Rio Grande in the Big Bend region rapidly narrows during years of low mean and peak flow. We conducted stratigraphic, sedimentologic, and dendrogeomorphic analyses within two long floodplain trenches to precisely reconstruct the timing and processes of recent floodplain formation. We show that the channel of the Rio Grande narrowed through the oblique and vertical accretion of inset floodplains following channel-widening floods in 1978 and 1990-1991. Vertical accretion occurred at high rates, ranging from 16 to 35 cm/yr. Dendrogeomorphic analyses show that the onset of channel narrowing occurred during low-flow years when channel bars obliquely and vertically accreted fine sediment. This initial stage of accretion occurred by both bedload and suspended-load deposition within the active channel. Vegetation became established on top of these fine-grained deposits during years of low peak flow and stabilized these developing surfaces. Subsequent deposition by moderate floods (between 1.5 and 7 yr recurrence intervals) caused additional accretion at rapid rates. Suspended-sediment deposition was dominant in the upper deposits, resulting in the formation of natural levees at the channel margins and the deposition of horizontally bedded, fining-upward deposits in the floodplain trough. Overall, channel narrowing and floodplain formation occurred through an evolution from active-channel to floodplain depositional processes. High-resolution dendrogeomorphic analyses provide the ability to specifically correlate the flow record to the onset of narrowing, the establishment of riparian vegetation, the formation of natural levees, and ultimately, the conversion of portions of the active channel to floodplains. ?? 2011 Geological Society of America.

  5. Dynamic stability analysis for capillary channel flow: One-dimensional and three-dimensional computations and the equivalent steady state technique

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Dreyer, Michael E.

    2010-01-01

    Spacecraft technology provides a series of applications for capillary channel flow. It can serve as a reliable means for positioning and transport of liquids under low gravity conditions. Basically, capillary channels provide liquid paths with one or more free surfaces. A problem may be flow instabilities leading to a collapse of the liquid surfaces. A result is undesired gas ingestion and a two phase flow which can in consequence cause several technical problems. The presented capillary channel consists of parallel plates with two free liquid surfaces. The flow rate is established by a pump at the channel outlet, creating a lower pressure within the channel. Owing to the pressure difference between the liquid phase and the ambient gas phase the free surfaces bend inwards and remain stable as long as they are able to resist the steady and unsteady pressure effects. For the numerical prediction of the flow stability two very different models are used. The one-dimensional unsteady model is mainly based on the Bernoulli equation, the continuity equation, and the Gauss-Laplace equation. For three-dimensional evaluations an open source computational fluid dynamics (CFD) tool is applied. For verifications the numerical results are compared with quasisteady and unsteady data of a sounding rocket experiment. Contrary to previous experiments this one results in a significantly longer observation sequence. Furthermore, the critical point of the steady flow instability could be approached by a quasisteady technique. As in previous experiments the comparison to the numerical model evaluation shows a very good agreement for the movement of the liquid surfaces and for the predicted flow instability. The theoretical prediction of the flow instability is related to the speed index, based on characteristic velocities of the capillary channel flow. Stable flow regimes are defined by stability criteria for steady and unsteady flow. The one-dimensional computation of the speed index is based on the technique of the equivalent steady system, which is published for the first time in the present paper. This approach assumes that for every unsteady state an equivalent steady state with a special boundary condition can be formulated. The equivalent steady state technique enables a reformulation of the equation system and an efficient and reliable speed index computation. Furthermore, the existence of the numerical singularity at the critical point of the steady flow instability, postulated in previous publication, is demonstrated in detail. The numerical singularity is related to the stability criterion for steady flow and represents the numerical consequence of the liquid surface collapse. The evaluation and generation of the pressure diagram is demonstrated in detail with a series of numerical dynamic flow studies. The stability diagram, based on one-dimensional computation, gives a detailed overview of the stable and instable flow regimes. This prediction is in good agreement with the experimentally observed critical flow conditions and results of three-dimensional CFD computations.

  6. Stability limits of unsteady open capillary channel flow

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Haake, Dennis; Rosendahl, Uwe; Klatte, J.?Rg; Dreyer, Michael E.

    This paper is concerned with steady and unsteady flow rate limitations in open capillary channels under low-gravity conditions. Capillary channels are widely used in Space technology for liquid transportation and positioning, e.g. in fuel tanks and life support systems. The channel observed in this work consists of two parallel plates bounded by free liquid surfaces along the open sides. The capillary forces of the free surfaces prevent leaking of the liquid and gas ingestion into the flow.In the case of steady stable flow the capillary pressure balances the differential pressure between the liquid and the surrounding constant-pressure gas phase. Increasing the flow rate in small steps causes a decrease of the liquid pressure. A maximum steady flow rate is achieved when the flow rate exceeds a certain limit leading to a collapse of the free surfaces due to the choking effect. In the case of unsteady flow additional dynamic effects take place due to flow rate transition and liquid acceleration. The maximum flow rate is smaller than in the case of steady flow. On the other hand, the choking effect does not necessarily cause surface collapse and stable temporarily choked flow is possible under certain circumstances.To determine the limiting volumetric flow rate and stable flow dynamic properties, a new stability theory for both steady and unsteady flow is introduced. Subcritical and supercritical (choked) flow regimes are defined. Stability criteria are formulated for each flow type. The steady (subcritical) criterion corresponds to the speed index defined by the limiting longitudinal small-amplitude wave speed, similar to the Mach number. The unsteady (supercritical) criterion for choked flow is defined by a new characteristic number, the dynamic index. It is based on pressure balances and reaches unity at the stability limit.The unsteady model based on the Bernoulli equation and the mass balance equation is solved numerically for perfectly wetting incompressible liquids. The unsteady model and the stability theory are verified by comparison to results of a sounding rocket experiment (TEXUS 41) on capillary channel flows launched in December 2005 from ESRANGE in north Sweden. For a clear overview of subcritical, supercritical, and unstable flow, parametric studies and stability diagrams are shown and compared to experimental observations.

  7. Bedload transport rates in a step-pool channel at near-bankfull flows

    Treesearch

    Daniel A. Marion

    2001-01-01

    This paper examines unit bedload transport rates (BTRs) at near-bankfull flows within a small step-pool channel in the Ouachita Mountains of central Arkansas. For this study, five runoff events with peak discharges between 0.25 and 1.34 cms (1.0- to 1.6-yr recurrence intervals) were produced in a natural channel using a streamflow simulation system. BTRs range from...

  8. Experimental Investigations of Two-Phase Cooling in Microgap Channel

    DTIC Science & Technology

    2011-04-25

    several classification of micro to macro channel. In general, a microchannel is a channel for which the heat transfer characteristics deviate from...examined the heat transfer and fluid flow characteristics of two-phase flow in microchannels with hydraulic diameters of 150 - 450 micrometers for...inherent with two-phase microchannel heat sinks. Bar- Cohen and Rahim [5] performed a detailed analysis of microchannel /microgap heat transfer data

  9. Development of a high-performance boiling heat exchanger by improved liquid supply to narrow channels.

    PubMed

    Ohta, Haruhiko; Ohno, Toshiyuki; Hioki, Fumiaki; Shinmoto, Yasuhisa

    2004-11-01

    A two-phase flow loop is a promising method for application to thermal management systems for large-scale space platforms handling large amounts of energy. Boiling heat transfer reduces the size and weight of cold plates. The transportation of latent heat reduces the mass flow rate of working fluid and pump power. To develop compact heat exchangers for the removal of waste heat from electronic devices with high heat generation density, experiments on a method to increase the critical heat flux for a narrow heated channel between parallel heated and unheated plates were conducted. Fine grooves are machined on the heating surface in a transverse direction to the flow and liquid is supplied underneath flattened bubbles by the capillary pressure difference from auxiliary liquid channels separated by porous metal plates from the main heated channel. The critical heat flux values for the present heated channel structure are more than twice those for a flat surface at gap sizes 2 mm and 0.7 mm. The validity of the present structure with auxiliary liquid channels is confirmed by experiments in which the liquid supply to the grooves is interrupted. The increment in the critical heat flux compared to those for a flat surface takes a maximum value at a certain flow rate of liquid supply to the heated channel. The increment is expected to become larger when the length of the heated channel is increased and/or the gravity level is reduced.

  10. Application of the multi-dimensional surface water modeling system at Bridge 339, Copper River Highway, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.; Conaway, Jeffrey S.

    2009-01-01

    The Copper River Basin, the sixth largest watershed in Alaska, drains an area of 24,200 square miles. This large, glacier-fed river flows across a wide alluvial fan before it enters the Gulf of Alaska. Bridges along the Copper River Highway, which traverses the alluvial fan, have been impacted by channel migration. Due to a major channel change in 2001, Bridge 339 at Mile 36 of the highway has undergone excessive scour, resulting in damage to its abutments and approaches. During the snow- and ice-melt runoff season, which typically extends from mid-May to September, the design discharge for the bridge often is exceeded. The approach channel shifts continuously, and during our study it has shifted back and forth from the left bank to a course along the right bank nearly parallel to the road.Maintenance at Bridge 339 has been costly and will continue to be so if no action is taken. Possible solutions to the scour and erosion problem include (1) constructing a guide bank to redirect flow, (2) dredging approximately 1,000 feet of channel above the bridge to align flow perpendicular to the bridge, and (3) extending the bridge. The USGS Multi-Dimensional Surface Water Modeling System (MD_SWMS) was used to assess these possible solutions. The major limitation of modeling these scenarios was the inability to predict ongoing channel migration. We used a hybrid dataset of surveyed and synthetic bathymetry in the approach channel, which provided the best approximation of this dynamic system. Under existing conditions and at the highest measured discharge and stage of 32,500 ft3/s and 51.08 ft, respectively, the velocities and shear stresses simulated by MD_SWMS indicate scour and erosion will continue. Construction of a 250-foot-long guide bank would not improve conditions because it is not long enough. Dredging a channel upstream of Bridge 339 would help align the flow perpendicular to Bridge 339, but because of the mobility of the channel bed, the dredged channel would likely fill in during high flows. Extending Bridge 339 would accommodate higher discharges and re-align flow to the bridge.

  11. Influence of flow regime and channel morphology on larval drift and dispersion in a large regulated river

    NASA Astrophysics Data System (ADS)

    Erwin, S.; Jacobson, R. B.

    2013-12-01

    Larval drift is a critical phase of ontogenetic development for many species of lotic fishes. Downstream advection and dispersion of passively drifting larvae or eggs is controlled by the complex interaction of flow regime, channel planform, local channel morphology, and the resulting hydraulic gradients. In many regulated rivers, channel engineering and perturbations to the flow regime may disrupt natural drift processes and impact successful recruitment of native fishes. Here we explore the influence of flow regime and channel morphology on the downstream transport, dispersion, and retention of Pallid Sturgeon larvae, an endangered species endemic to the Mississippi River basin and the focus of significant conservation effort on the Missouri River. The transition from drifting free embryo to exogenously feeding larvae has been identified as a potential life stage bottleneck for the Pallid Sturgeon. Previous studies have indicated that river regulation and fragmentation may contribute to mortality of larval Pallid Sturgeon by reducing the extent of free-flowing river required by free embryos to complete the transition to exogenous feeding. Additionally, channelization may have increased the rate at which larvae are advected downstream out of the Missouri River basin. We describe the complex interactions and influence of morphologic and hydraulic factors on larval drift using an extensive library of hydroacoustic data collected along more than 1300 km of the Lower Missouri River. We use a one-dimensional advection-dispersion model to estimate total drift distance and employ the longitudinal dispersion coefficient as a measure to quantify the tendency towards dispersion or retention of passively drifting larvae in geomorphically distinct segments of river. We use a two-dimensional hydrodynamic model to evaluate the sensitivity of drift and dispersion to in-channel navigation structures and flood hydrology. Based on insights gained from the analysis of field data and modeling outputs, we interpret the effects of different styles of channel morphology on larval dispersion and consider the implications of flow regime modifications or channel re-engineering on the distribution and retention of free embryos within the Lower Missouri River.

  12. Breast Cancer Tissue Bioreactor for Direct Interrogation and Observation of Response to Antitumor Therapies

    DTIC Science & Technology

    2012-07-01

    regulate microfluidic flow rates within the TTB, including flow channel height variation and incorporation of valves (see Figure 2 and Supplemental...cartridge. As an alternative to individual channel TURN valve -adjusted flow regulators, we investigated use of pre-fabricated microfluidic flow resistance...Small Parts, Inc. and B) Microfluidic manifolds with built-in TURN valves . Supplemental Figure S3. Simplified 2D and 3D diffusional model

  13. Viscous near-wall flow in a wake of circular cylinder at moderate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Okhotnikov, D. I.; Molochnikov, V. M.; Mazo, A. B.; Malyukov, A. V.; Goltsman, A. E.; Saushin, I. I.

    2017-11-01

    Here we present the results of experimental investigation of a cross flow around a circular cylinder mounted near the wall of a channel with rectangular cross section. The experiments were carried out in the range of Reynolds numbers corresponding to the transition to turbulence in a wake of the cylinder. Flow visualization and SIV-measurements of instantaneous velocity fields were carried out. Evolution of the flow pattern behind the cylinder and formation of the regular vortex structures were analyzed. It is shown that in the case of flow around the cylinder, there is no spiral motion of fluid from the side walls of the channel towards its symmetry plane, typical of the flow around a spanwise rib located on the channel wall. The laminar-turbulent transition in the wake of the cylinder is caused by the shear layer instability.

  14. An extended algebraic variational multiscale-multigrid-multifractal method (XAVM4) for large-eddy simulation of turbulent two-phase flow

    NASA Astrophysics Data System (ADS)

    Rasthofer, U.; Wall, W. A.; Gravemeier, V.

    2018-04-01

    A novel and comprehensive computational method, referred to as the eXtended Algebraic Variational Multiscale-Multigrid-Multifractal Method (XAVM4), is proposed for large-eddy simulation of the particularly challenging problem of turbulent two-phase flow. The XAVM4 involves multifractal subgrid-scale modeling as well as a Nitsche-type extended finite element method as an approach for two-phase flow. The application of an advanced structural subgrid-scale modeling approach in conjunction with a sharp representation of the discontinuities at the interface between two bulk fluids promise high-fidelity large-eddy simulation of turbulent two-phase flow. The high potential of the XAVM4 is demonstrated for large-eddy simulation of turbulent two-phase bubbly channel flow, that is, turbulent channel flow carrying a single large bubble of the size of the channel half-width in this particular application.

  15. Application of double-layered skin phantoms for optical flow imaging during laser tattoo treatments

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-il; Song, Woosub; Kim, Hyejin; Kang, Hyun Wook

    2016-05-01

    The feasible application of double-layered skin phantoms was evaluated to identify artificial blood flow with a Doppler optical coherence tomography (DOCT) system for laser tattoo treatments. Polydimethylsiloxane (PDMS) was used to fabricate the artificial phantoms with flow channels embedded. A double-integrating sphere system with an inverse adding-doubling method quantified both the absorption and the reduced scattering coefficients for epidermis and dermis phantoms. Both OCT and caliper measurements confirmed the double-layered phantom structure (epidermis = 136 ± 17 µm vs. dermis = 3.0 ± 0.1 mm). The DOCT method demonstrated that high flow rates were associated with high image contrast, visualizing the position and the shape of the flow channel. Application of the channel-embedded skin phantoms in conjunction with DOCT can be a reliable technique to assess dynamic variations in the blood flow during and after laser tattoo treatments.

  16. Modeling and Simulation of A Microchannel Cooling System for Vitrification of Cells and Tissues.

    PubMed

    Wang, Y; Zhou, X M; Jiang, C J; Yu, Y T

    The microchannel heat exchange system has several advantages and can be used to enhance heat transfer for vitrification. To evaluate the microchannel cooling method and to analyze the effects of key parameters such as channel structure, flow rate and sample size. A computational flow dynamics model is applied to study the two-phase flow in microchannels and its related heat transfer process. The fluid-solid coupling problem is solved with a whole field solution method (i.e., flow profile in channels and temperature distribution in the system being simulated simultaneously). Simulation indicates that a cooling rate >10 4 C/min is easily achievable using the microchannel method with the high flow rate for a board range of sample sizes. Channel size and material used have significant impact on cooling performance. Computational flow dynamics is useful for optimizing the design and operation of the microchannel system.

  17. Phase transition and flow-rate behavior of merging granular flows.

    PubMed

    Hu, Mao-Bin; Liu, Qi-Yi; Jiang, Rui; Hou, Meiying; Wu, Qing-Song

    2015-02-01

    Merging of granular flows is ubiquitous in industrial, mining, and geological processes. However, its behavior remains poorly understood. This paper studies the phase transition and flow-rate behavior of two granular flows merging into one channel. When the main channel is wider than the side channel, the system shows a remarkable two-sudden-drops phenomenon in the outflow rate when gradually increasing the main inflow. When gradually decreasing the main inflow, the system shows obvious hysteresis phenomenon. We study the flow-rate-drop phenomenon by measuring the area fraction and the mean velocity at the merging point. The phase diagram of the system is also presented to understand the occurrence of the phenomenon. We find that the dilute-to-dense transition occurs when the area fraction of particles at the joint point exceeds a critical value ϕ(c)=0.65±0.03.

  18. Evolution Of Quaternary Stream Fan Deposits At The Confluences Of Turung Khola And Bembung Khola Of Middle Teesta Basin In Sikkim-Darjeeling Himalaya,India: A Tectonic - Climate Response

    NASA Astrophysics Data System (ADS)

    Lukram, I. M.

    2007-12-01

    Tributary fan deposits are well preserved on either side of the Teesta river in the non-glaciated middle part of the Himalayan valley lying in a tectonic region bounded by the MCT and MBT. The lithofacies characteristics and assemblage patterns of these deposits bear testimony to the effects of tectonic and climatic activities on the sedimentation process in the basin. Two tributary streams, with small catchments namely Turung Khola and Bembung Khola are important in this context. Three major fan lobes (F2, F1, and F0) are preserved at Turung Khola. In contrast, two fan lobes (F1,F0) are preserved at the confluence of the Bembung Khola. Terraces, floodplains, channel bars, chute bars are associated geomorphic features in this part of the Teesta basin. Landslides cover an area of 7% and 15% in the catchment of Turung Khola and Bembung Khola, respectively. Dense forest covers 24% and 12%; open forest covers 30% and 29 %; and scrubby vegetation covers 39% and 49% of the Turung Khola and Bembung Khola, respectively. The landslides mainly occur along the margins of the dense forest where they are active in every rainy season. Tributary longitudinal profiles and Hack profiles indicate a relationship between the knick points and high SL-Index values, where fault /thrust intersections are present. Active landslides and scarps are close to the major fault/thrust planes. Sediment characteristics of these fan deposits suggest that four types of depositional flows viz. debris flows, hyperconcentrated flows, sheet flows and channel flows laid down these sequences. The channel flow deposits are dominant (32%-54 %) in the fan sequence of the Turung Khola followed by sheet flow deposits (28.5%), hyperconcentrated flow deposits (26%) and debris flow deposits (12%), respectively. Hyperconcentrated flow deposits are dominant (44%) in the F1 sequence, whereas the active channel fanlobe is dominant (80%) in the channel flow deposits. The rest of the active channel sequence is composed of sheet flow deposits (20%). On the other hand, the major part (52%) of the F1 fanlobe of Bembung Khola is built up of debris flow deposits and F0 fanlobe is composed of channel flow deposits and flood sediment. From the above analysis, an evolutionary model of the deposition and incision at the tributary stream fan confluence is proposed. The insetting of the younger fan lobes into older fan lobe surfaces is an evidence of tectonic uplift in the region. The landform and their depositional pattern are a responds to link tectonic- climatic process systems; some depositional lithofacies assemblages are responses to climatic events.

  19. Evidence of erosional self-channelization of pyroclastic density currents revealed by ground-penetrating radar imaging at Mount St. Helens, Washington (USA)

    NASA Astrophysics Data System (ADS)

    Gase, Andrew C.; Brand, Brittany D.; Bradford, John H.

    2017-03-01

    The causes and effects of erosion are among the least understood aspects of pyroclastic density current (PDC) dynamics. Evidence is especially limited for erosional self-channelization, a process whereby PDCs erode a channel that confines the body of the eroding flow or subsequent flows. We use ground-penetrating radar imaging to trace a large PDC scour and fill from outcrop to its point of inception and discover a second, larger PDC scour and fill. The scours are among the largest PDC erosional features on record, at >200 m wide and at least 500 m long; estimated eroded volumes are on the order of 106 m3. The scours are morphologically similar to incipient channels carved by turbidity currents. Erosion may be promoted by a moderate slope (5-15°), substrate pore pressure retention, and pulses of increased flow energy. These findings are the first direct evidence of erosional self-channelization by PDCs, a phenomenon that may increase flow velocity and runout distance through confinement and substrate erosion.

  20. Countercurrent flow limited (CCFL) heat flux in the high flux isotope reactor (HFIR) fuel element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggles, A.E.

    1990-10-12

    The countercurrent flow (CCF) performance in the fuel element region of the HFIR is examined experimentally and theoretically. The fuel element consists of two concentric annuli filled with aluminum clad fuel plates of 1.27 mm thickness separated by 1.27 mm flow channels. The plates are curved as they go radially outward to accomplish constant flow channel width and constant metal-to-coolant ratio. A full-scale HFIR fuel element mock-up is studied in an adiabatic air-water CCF experiment. A review of CCF models for narrow channels is presented along with the treatment of CCFs in system of parallel channels. The experimental results aremore » related to the existing models and a mechanistic model for the annular'' CCF in a narrow channel is developed that captures the data trends well. The results of the experiment are used to calculate the CCFL heat flux of the HFIR fuel assembly. It was determined that the HFIR fuel assembly can reject 0.62 Mw of thermal power in the CCFL situation. 31 refs., 17 figs.« less

Top