Extending the impulse response in order to reduce errors due to impulse noise and signal fading
NASA Technical Reports Server (NTRS)
Webb, Joseph A.; Rolls, Andrew J.; Sirisena, H. R.
1988-01-01
A finite impulse response (FIR) digital smearing filter was designed to produce maximum intersymbol interference and maximum extension of the impulse response of the signal in a noiseless binary channel. A matched FIR desmearing filter at the receiver then reduced the intersymbol interference to zero. Signal fades were simulated by means of 100 percent signal blockage in the channel. Smearing and desmearing filters of length 256, 512, and 1024 were used for these simulations. Results indicate that impulse response extension by means of bit smearing appears to be a useful technique for correcting errors due to impulse noise or signal fading in a binary channel.
Impulse Response Measurements Over Space-Earth Paths Using the GPS Coarse/Acquisition Codes
NASA Technical Reports Server (NTRS)
Lemmon, J. J.; Papazian, P. B.
1995-01-01
The impulse responses of radio transmission channels over space-earth paths were measured using the course/acquisition code signals from the Global Positioning System of satellites. The data acquisition system and signal processing techniques used to develop the impulse responses are described. Examples of impulse response measurements are presented. The results indicate that this measurement approach enables detection of multipath signals that are 20 dB or more below the power of the direct arrival. Channel characteristics that could be investigated with additional measurements and analyses are discussed.
Systolic Signal Processor/High Frequency Direction Finding
1990-10-01
MUSIC ) algorithm and the finite impulse response (FIR) filter onto the testbed hardware was supported by joint sponsorship of the block and major bid...computational throughput. The systolic implementations of a four-channel finite impulse response (FIR) filter and multiple signal classification ( MUSIC ... MUSIC ) algorithm was mated to a bank of finite impulse response (FIR) filters and a four-channel data acquisition subsystem. A complete description
Effects of channel tap spacing on delay-lock tracking
NASA Astrophysics Data System (ADS)
Dana, Roger A.; Milner, Brian R.; Bogusch, Robert L.
1995-12-01
High fidelity simulations of communication links operating through frequency selective fading channels require both accurate channel models and faithful reproduction of the received signal. In modern radio receivers, processing beyond the analog-to-digital converter (A/D) is done digitally, so a high fidelity simulation is actually an emulation of this digital signal processing. The 'simulation' occurs in constructing the output of the A/D. One approach to constructing the A/D output is to convolve the channel impulse response function with the combined impulse response of the transmitted modulation and the A/D. For both link simulations and hardware channel simulators, the channel impulse response function is then generated with a finite number of samples per chip, and the convolution is implemented in a tapped delay line. In this paper we discuss the effects of the channel model tap spacing on the performance of delay locked loops (DLLs) in both direct sequence and frequency hopped spread spectrum systems. A frequency selective fading channel is considered, and the channel impulse response function is constructed with an integer number of taps per modulation symbol or chip. The tracking loop time delay is computed theoretically for this tapped delay line channel model and is compared to the results of high fidelity simulations of actual DLLs. A surprising result is obtained. The performance of the DLL depends strongly on the number of taps per chip. As this number increases the DLL delay approaches the theoretical limit.
ACIRF user's guide: Theory and examples
NASA Astrophysics Data System (ADS)
Dana, Roger A.
1989-12-01
Design and evaluation of radio frequency systems that must operate through ionospheric disturbances resulting from high altitude nuclear detonations requires an accurate channel model. This model must include the effects of high gain antennas that may be used to receive the signals. Such a model can then be used to construct realizations of the received signal for use in digital simulations of trans-ionospheric links or for use in hardware channel simulators. The FORTRAN channel model ACIRF (Antenna Channel Impulse Response Function) generates random realizations of the impulse response function at the outputs of multiple antennas. This user's guide describes the FORTRAN program ACIRF (version 2.0) that generates realizations of channel impulse response functions at the outputs of multiple antennas with arbitrary beamwidths, pointing angles, and relatives positions. This channel model is valid under strong scattering conditions when Rayleigh fading statistics apply. Both frozen-in and turbulent models for the temporal fluctuations are included in this version of ACIRF. The theory of the channel model is described and several examples are given.
Channel Modelling and Performance of Non-Line-of-Sight Ultraviolet Scattering Communications
2012-01-01
Avalanche photodiode (APD) detectors are also rapidly being developed [6, 7]. These device advances have inspired recent research in LED-based short...response and path loss results for outdoor NLOS UV communication channels in Section 3. The impulse response modelling describes UV pulse broadening via...Both the impulse response and path loss are critical to communication system design and performance assessment. Although pulse broadening creates inter
Modeling, Real-Time Estimation, and Identification of UWB Indoor Wireless Channels
Olama, Mohammed M.; Djouadi, Seddik M.; Li, Yanyan; ...
2013-01-01
Stochastic differential equations (SDEs) are used to model ultrawideband (UWB) indoor wireless channels. We show that the impulse responses for time-varying indoor wireless channels can be approximated in a mean-square sense as close as desired by impulse responses that can be realized by SDEs. The state variables represent the inphase and quadrature components of the UWB channel. The expected maximization and extended Kalman filter are employed to recursively identify and estimate the channel parameters and states, respectively, from online received signal strength measured data. Both resolvable and nonresolvable multipath received signals are considered and represented as small-scaled Nakagami fading. Themore » proposed models together with the estimation algorithm are tested using UWB indoor measurement data demonstrating the method’s viability and the results are presented.« less
Blind channel estimation and deconvolution in colored noise using higher-order cumulants
NASA Astrophysics Data System (ADS)
Tugnait, Jitendra K.; Gummadavelli, Uma
1994-10-01
Existing approaches to blind channel estimation and deconvolution (equalization) focus exclusively on channel or inverse-channel impulse response estimation. It is well-known that the quality of the deconvolved output depends crucially upon the noise statistics also. Typically it is assumed that the noise is white and the signal-to-noise ratio is known. In this paper we remove these restrictions. Both the channel impulse response and the noise model are estimated from the higher-order (fourth, e.g.) cumulant function and the (second-order) correlation function of the received data via a least-squares cumulant/correlation matching criterion. It is assumed that the noise higher-order cumulant function vanishes (e.g., Gaussian noise, as is the case for digital communications). Consistency of the proposed approach is established under certain mild sufficient conditions. The approach is illustrated via simulation examples involving blind equalization of digital communications signals.
NASA Technical Reports Server (NTRS)
Houts, R. C.; Burlage, D. W.
1972-01-01
A time domain technique is developed to design finite-duration impulse response digital filters using linear programming. Two related applications of this technique in data transmission systems are considered. The first is the design of pulse shaping digital filters to generate or detect signaling waveforms transmitted over bandlimited channels that are assumed to have ideal low pass or bandpass characteristics. The second is the design of digital filters to be used as preset equalizers in cascade with channels that have known impulse response characteristics. Example designs are presented which illustrate that excellent waveforms can be generated with frequency-sampling filters and the ease with which digital transversal filters can be designed for preset equalization.
Window-Based Channel Impulse Response Prediction for Time-Varying Ultra-Wideband Channels.
Al-Samman, A M; Azmi, M H; Rahman, T A; Khan, I; Hindia, M N; Fattouh, A
2016-01-01
This work proposes channel impulse response (CIR) prediction for time-varying ultra-wideband (UWB) channels by exploiting the fast movement of channel taps within delay bins. Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to approximate the high temporal resolutions of UWB channels. A recursive least square (RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the future WB-CIR tap of window wk, three RLS filter coefficients are computed from the observed WB-CIRs of the left wk-1, the current wk and the right wk+1 windows. The filter coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate our proposed prediction method, UWB CIRs are collected through measurement campaigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Under similar computational complexity, our proposed method provides an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS scenarios compared with a conventional method.
Window-Based Channel Impulse Response Prediction for Time-Varying Ultra-Wideband Channels
Al-Samman, A. M.; Azmi, M. H.; Rahman, T. A.; Khan, I.; Hindia, M. N.; Fattouh, A.
2016-01-01
This work proposes channel impulse response (CIR) prediction for time-varying ultra-wideband (UWB) channels by exploiting the fast movement of channel taps within delay bins. Considering the sparsity of UWB channels, we introduce a window-based CIR (WB-CIR) to approximate the high temporal resolutions of UWB channels. A recursive least square (RLS) algorithm is adopted to predict the time evolution of the WB-CIR. For predicting the future WB-CIR tap of window wk, three RLS filter coefficients are computed from the observed WB-CIRs of the left wk−1, the current wk and the right wk+1 windows. The filter coefficient with the lowest RLS error is used to predict the future WB-CIR tap. To evaluate our proposed prediction method, UWB CIRs are collected through measurement campaigns in outdoor environments considering line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Under similar computational complexity, our proposed method provides an improvement in prediction errors of approximately 80% for LOS and 63% for NLOS scenarios compared with a conventional method. PMID:27992445
Hyaluronan modulates TRPV1 channel opening, reducing peripheral nociceptor activity and pain
Caires, Rebeca; Luis, Enoch; Taberner, Francisco J.; Fernandez-Ballester, Gregorio; Ferrer-Montiel, Antonio; Balazs, Endre A.; Gomis, Ana; Belmonte, Carlos; de la Peña, Elvira
2015-01-01
Hyaluronan (HA) is present in the extracellular matrix of all body tissues, including synovial fluid in joints, in which it behaves as a filter that buffers transmission of mechanical forces to nociceptor nerve endings thereby reducing pain. Using recombinant systems, mouse-cultured dorsal root ganglia (DRG) neurons and in vivo experiments, we found that HA also modulates polymodal transient receptor potential vanilloid subtype 1 (TRPV1) channels. HA diminishes heat, pH and capsaicin (CAP) responses, thus reducing the opening probability of the channel by stabilizing its closed state. Accordingly, in DRG neurons, HA decreases TRPV1-mediated impulse firing and channel sensitization by bradykinin. Moreover, subcutaneous HA injection in mice reduces heat and capsaicin nocifensive responses, whereas the intra-articular injection of HA in rats decreases capsaicin joint nociceptor fibres discharge. Collectively, these results indicate that extracellular HA reduces the excitability of the ubiquitous TRPV1 channel, thereby lowering impulse activity in the peripheral nociceptor endings underlying pain. PMID:26311398
Towards sparse characterisation of on-body ultra-wideband wireless channels.
Yang, Xiaodong; Ren, Aifeng; Zhang, Zhiya; Ur Rehman, Masood; Abbasi, Qammer Hussain; Alomainy, Akram
2015-06-01
With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling devices.
Towards sparse characterisation of on-body ultra-wideband wireless channels
Ren, Aifeng; Zhang, Zhiya; Ur Rehman, Masood; Abbasi, Qammer Hussain; Alomainy, Akram
2015-01-01
With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling devices. PMID:26609409
NASA Astrophysics Data System (ADS)
Long, Jeffrey K.
1989-09-01
This theses developed computer models of two types of amplitude comparison monopulse processors using the Block Oriented System Simulation (BOSS) software package and to determine the response to these models to impulsive input signals. This study was an effort to determine the susceptibility of monopulse tracking radars to impulsing jamming signals. Two types of amplitude comparison monopulse receivers were modeled, one using logarithmic amplifiers and the other using automatic gain control for signal normalization. Simulations of both types of systems were run under various conditions of gain or frequency imbalance between the two receiver channels. The resulting errors from the imbalanced simulations were compared to the outputs of similar, baseline simulations which had no electrical imbalances. The accuracy of both types of processors was directly affected by gain or frequency imbalances in their receiver channels. In most cases, it was possible to generate both positive and negative angular errors, dependent upon the type and degree of mismatch between the channels. The system most susceptible to induced errors was a frequency imbalanced processor which used AGC circuitry. Any errors introduced will be a function of the degree of mismatch between the channels and therefore would be difficult to exploit reliably.
Multi-channel spatialization systems for audio signals
NASA Technical Reports Server (NTRS)
Begault, Durand R. (Inventor)
1993-01-01
Synthetic head related transfer functions (HRTF's) for imposing reprogrammable spatial cues to a plurality of audio input signals included, for example, in multiple narrow-band audio communications signals received simultaneously are generated and stored in interchangeable programmable read only memories (PROM's) which store both head related transfer function impulse response data and source positional information for a plurality of desired virtual source locations. The analog inputs of the audio signals are filtered and converted to digital signals from which synthetic head related transfer functions are generated in the form of linear phase finite impulse response filters. The outputs of the impulse response filters are subsequently reconverted to analog signals, filtered, mixed, and fed to a pair of headphones.
Multi-channel spatialization system for audio signals
NASA Technical Reports Server (NTRS)
Begault, Durand R. (Inventor)
1995-01-01
Synthetic head related transfer functions (HRTF's) for imposing reprogramable spatial cues to a plurality of audio input signals included, for example, in multiple narrow-band audio communications signals received simultaneously are generated and stored in interchangeable programmable read only memories (PROM's) which store both head related transfer function impulse response data and source positional information for a plurality of desired virtual source locations. The analog inputs of the audio signals are filtered and converted to digital signals from which synthetic head related transfer functions are generated in the form of linear phase finite impulse response filters. The outputs of the impulse response filters are subsequently reconverted to analog signals, filtered, mixed and fed to a pair of headphones.
NASA Technical Reports Server (NTRS)
Mantus, M.; Pardo, H.
1973-01-01
Computer programming, data processing, and a correlation study that employed data collected in the first phase test were used to demonstrate that standard test procedures and equipment could be used to collect a significant number of transfer functions from tests of the Lunar Module test article LTA-11. The testing consisted of suspending the vehicle from the apex fittings of the outrigger trusses through a set of air springs to simulate the free-free state. Impulsive loadings were delivered, one at a time, at each of the landing gear's attachment points, in three mutually perpendicular directions; thus a total of 36 impulses were applied to the vehicle. Time histories of each pulse were recorded on magnetic tape along with 40 channels of strain gage response and 28 channels of accelerometer response. Since an automated data processing system was not available, oscillograph playbacks were made of all 2400 time histories as a check on the validity of the data taken. In addition, one channel of instrumentation was processed to determine its response to a set of forcing functions from a prior LTA-11 drop test. This prediction was compared with drop test results as a first measure of accuracy.
Shift-variant linear system modeling for multispectral scanners
NASA Astrophysics Data System (ADS)
Amini, Abolfazl M.; Ioup, George E.; Ioup, Juliette W.
1995-07-01
Multispectral scanner data are affected both by the spatial impulse response of the sensor and the spectral response of each channel. To achieve a realistic representation for the output data for a given scene spectral input, both of these effects must be incorporated into a forward model. Each channel can have a different spatial response and each has its characteristic spectral response. A forward model is built which includes the shift invariant spatial broadening of the input for the channels and the shift variant spectral response across channels. The model is applied to the calibrated airborne multispectral scanner as well as the airborne terrestrial applications sensor developed at NASA Stennis Space Center.
Low-Timing-Jitter Near-Infrared Single-Photon-Sensitive 16-Channel Intensified-Photodiode Detector
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Lu, Wei; Yang, Guangning; Sun, Xiaoli; Sykora, Derek; Jurkovic, Mike; Aebi, Verle; Costello, Ken; Burns, Richard
2011-01-01
We developed a 16-channel InGaAsP photocathode intensified-photodiode (IPD) detector with 78 ps (1-sigma) timing-jitter, less than 500 ps FWHM impulse response, greater than 15% quantum efficiency at 1064 nm wavelength with 131 kcps dark counts at 15 C.
NASA Astrophysics Data System (ADS)
Xiong, Jia-ming; Li, Lee; Dai, Hong-yu; Wu, Hai-bo; Peng, Ming-yang; Lin, Fu-chang
2018-03-01
During the formation of a high current impulse discharge arc, objects near the discharge arc will be strongly impacted. In this paper, a high power, high current gas switch is used as the site of the impulse discharge arc. The explosion wave theory and the arc channel energy balance equation are introduced to analyze the development of the shock wave overpressure driven by the high current impulse discharge arc, and the demarcation point of the arc channel is given, from which the energy of the arc channel is no longer converted into shock waves. Through the analysis and calculation, it is found that the magnitude of the shock wave overpressure caused by impulse discharge arc expansion is closely related to the arc current rising rate. The arc shock wave overpressure will undergo a slow decay process and then decay rapidly. The study of this paper will perform the function of deepening the understanding of the physical nature of the impulse arc discharge, which can be used to explain the damage effect of the high current impulse discharge arc.
De Col, Roberto; Messlinger, Karl; Carr, Richard W
2008-02-15
Axonal conduction velocity varies according to the level of preceding impulse activity. In unmyelinated axons this typically results in a slowing of conduction velocity and a parallel increase in threshold. It is currently held that Na(+)-K(+)-ATPase-dependent axonal hyperpolarization is responsible for this slowing but this has long been equivocal. We therefore examined conduction velocity changes during repetitive activation of single unmyelinated axons innervating the rat cranial meninges. In direct contradiction to the currently accepted postulate, Na(+)-K(+)-ATPase blockade actually enhanced activity-induced conduction velocity slowing, while the degree of velocity slowing was curtailed in the presence of lidocaine (10-300 microm) and carbamazepine (30-500 microm) but not tetrodotoxin (TTX, 10-80 nm). This suggests that a change in the number of available sodium channels is the most prominent factor responsible for activity-induced changes in conduction velocity in unmyelinated axons. At moderate stimulus frequencies, axonal conduction velocity is determined by an interaction between residual sodium channel inactivation following each impulse and the retrieval of channels from inactivation by a concomitant Na(+)-K(+)-ATPase-mediated hyperpolarization. Since the process is primarily dependent upon sodium channel availability, tracking conduction velocity provides a means of accessing relative changes in the excitability of nociceptive neurons.
NASA Astrophysics Data System (ADS)
Shams Esfand Abadi, Mohammad; AbbasZadeh Arani, Seyed Ali Asghar
2011-12-01
This paper extends the recently introduced variable step-size (VSS) approach to the family of adaptive filter algorithms. This method uses prior knowledge of the channel impulse response statistic. Accordingly, optimal step-size vector is obtained by minimizing the mean-square deviation (MSD). The presented algorithms are the VSS affine projection algorithm (VSS-APA), the VSS selective partial update NLMS (VSS-SPU-NLMS), the VSS-SPU-APA, and the VSS selective regressor APA (VSS-SR-APA). In VSS-SPU adaptive algorithms the filter coefficients are partially updated which reduce the computational complexity. In VSS-SR-APA, the optimal selection of input regressors is performed during the adaptation. The presented algorithms have good convergence speed, low steady state mean square error (MSE), and low computational complexity features. We demonstrate the good performance of the proposed algorithms through several simulations in system identification scenario.
Whittle's "Channel One": Effects on Impulsive Preadolescents' Desire for Advertised Products.
ERIC Educational Resources Information Center
Tozzo-Lyles, Teresa A.; Walsh-Childers, Kim
A field experiment tested effects of "Channel One" commercials on impulsive preadolescent students' purchasing preferences, such as product liking and likelihood of buying regularly advertised products. A total of 67 sixth-grade middle school students participated in the field experiment. Students who viewed "Channel One' daily were…
De Col, Roberto; Messlinger, Karl; Carr, Richard W
2008-01-01
Axonal conduction velocity varies according to the level of preceding impulse activity. In unmyelinated axons this typically results in a slowing of conduction velocity and a parallel increase in threshold. It is currently held that Na+–K+-ATPase-dependent axonal hyperpolarization is responsible for this slowing but this has long been equivocal. We therefore examined conduction velocity changes during repetitive activation of single unmyelinated axons innervating the rat cranial meninges. In direct contradiction to the currently accepted postulate, Na+–K+-ATPase blockade actually enhanced activity-induced conduction velocity slowing, while the degree of velocity slowing was curtailed in the presence of lidocaine (10–300 μm) and carbamazepine (30–500 μm) but not tetrodotoxin (TTX, 10–80 nm). This suggests that a change in the number of available sodium channels is the most prominent factor responsible for activity-induced changes in conduction velocity in unmyelinated axons. At moderate stimulus frequencies, axonal conduction velocity is determined by an interaction between residual sodium channel inactivation following each impulse and the retrieval of channels from inactivation by a concomitant Na+–K+-ATPase-mediated hyperpolarization. Since the process is primarily dependent upon sodium channel availability, tracking conduction velocity provides a means of accessing relative changes in the excitability of nociceptive neurons. PMID:18096592
Adaptive Detection and ISI Mitigation for Mobile Molecular Communication.
Chang, Ge; Lin, Lin; Yan, Hao
2018-03-01
Current studies on modulation and detection schemes in molecular communication mainly focus on the scenarios with static transmitters and receivers. However, mobile molecular communication is needed in many envisioned applications, such as target tracking and drug delivery. Until now, investigations about mobile molecular communication have been limited. In this paper, a static transmitter and a mobile bacterium-based receiver performing random walk are considered. In this mobile scenario, the channel impulse response changes due to the dynamic change of the distance between the transmitter and the receiver. Detection schemes based on fixed distance fail in signal detection in such a scenario. Furthermore, the intersymbol interference (ISI) effect becomes more complex due to the dynamic character of the signal which makes the estimation and mitigation of the ISI even more difficult. In this paper, an adaptive ISI mitigation method and two adaptive detection schemes are proposed for this mobile scenario. In the proposed scheme, adaptive ISI mitigation, estimation of dynamic distance, and the corresponding impulse response reconstruction are performed in each symbol interval. Based on the dynamic channel impulse response in each interval, two adaptive detection schemes, concentration-based adaptive threshold detection and peak-time-based adaptive detection, are proposed for signal detection. Simulations demonstrate that the ISI effect is significantly reduced and the adaptive detection schemes are reliable and robust for mobile molecular communication.
Perception of differences in naturalistic dynamic scenes, and a V1-based model.
To, Michelle P S; Gilchrist, Iain D; Tolhurst, David J
2015-01-16
We investigate whether a computational model of V1 can predict how observers rate perceptual differences between paired movie clips of natural scenes. Observers viewed 198 pairs of movies clips, rating how different the two clips appeared to them on a magnitude scale. Sixty-six of the movie pairs were naturalistic and those remaining were low-pass or high-pass spatially filtered versions of those originals. We examined three ways of comparing a movie pair. The Spatial Model compared corresponding frames between each movie pairwise, combining those differences using Minkowski summation. The Temporal Model compared successive frames within each movie, summed those differences for each movie, and then compared the overall differences between the paired movies. The Ordered-Temporal Model combined elements from both models, and yielded the single strongest predictions of observers' ratings. We modeled naturalistic sustained and transient impulse functions and compared frames directly with no temporal filtering. Overall, modeling naturalistic temporal filtering improved the models' performance; in particular, the predictions of the ratings for low-pass spatially filtered movies were much improved by employing a transient impulse function. The correlations between model predictions and observers' ratings rose from 0.507 without temporal filtering to 0.759 (p = 0.01%) when realistic impulses were included. The sustained impulse function and the Spatial Model carried more weight in ratings for normal and high-pass movies, whereas the transient impulse function with the Ordered-Temporal Model was most important for spatially low-pass movies. This is consistent with models in which high spatial frequency channels with sustained responses primarily code for spatial details in movies, while low spatial frequency channels with transient responses code for dynamic events. © 2015 ARVO.
IMPULSE Highlights for recent experiments at the Advanced Photon Source (2/9-2/18 2014)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Brian J.
2014-03-18
This report is a presentation, with slides noting, Over 40 experiments were completed during this run using X-ray imaging on the IMPULSE system at Sector 32 IDB; Summary of new experiments: Idealized sphere compaction – Capture progression of dynamic densification through an idealized system on 0.500 mm borosilicate glass spheres (Slide 1); Detonator and EBW Imaging Experiments on IMPULSE – First time HE was intentionally detonated at APS (Slide 2); Spall and high strain rate crack nucleation/propagation in PMMA – PCI data is providing new and unique insights for model validation (Slide 3); Fiber composite for armor applications was studiedmore » under ballistic impact of Dyneema (Collaboration with Army Research Laboratory) (Slide 4). Summary of on-going experiments; Crack propagation in vitreous carbon – observed crack motion and caustic; Jet formation experiments on large grain cerium to examine phase dependent strength; Ballistic impact of Comp-B and TNT to examine thermo-mechanical response in-situ with various penetrator geometries to vary shear concentration. Other efforts: IMPULSE system moved and installed in Sector 35 (DCS). This includes the 4-frame X-ray detection system, 4- channel PDV, and other gun diagnostics; New remotely operated mobile IMPULSE structure in fabrication – to be delivered to APS in April; 4 Mini-VISAR Systems and 4-channel PDV installed in DCS instrumentation room with all associated diagnostics.« less
Evaluating the Mechanism of Oil Price Shocks and Fiscal Policy Responses in the Malaysian Economy
NASA Astrophysics Data System (ADS)
Bekhet, Hussain A.; Yusoff, Nora Yusma Mohamed
2013-06-01
The paper aims to explore the symmetric impact of oil price shock on economy, to understand its mechanism channel and how fiscal policy response towards it. The Generalized Impulse Response Function and Variance Decomposition under the VAR methodology were employed. The empirical findings suggest that symmetric oil price shock has a positive and direct impact on oil revenue and government expenditure. However, the real GDP is vulnerable in a short-term but not in the long term period. These results would confirm that fiscal policy is the main mechanism channel that mitigates the adverse effects oil price shocks to the economy.
Semiblind channel estimation for MIMO-OFDM systems
NASA Astrophysics Data System (ADS)
Chen, Yi-Sheng; Song, Jyu-Han
2012-12-01
This article proposes a semiblind channel estimation method for multiple-input multiple-output orthogonal frequency-division multiplexing systems based on circular precoding. Relying on the precoding scheme at the transmitters, the autocorrelation matrix of the received data induces a structure relating the outer product of the channel frequency response matrix and precoding coefficients. This structure makes it possible to extract information about channel product matrices, which can be used to form a Hermitian matrix whose positive eigenvalues and corresponding eigenvectors yield the channel impulse response matrix. This article also tests the resistance of the precoding design to finite-sample estimation errors, and explores the effects of the precoding scheme on channel equalization by performing pairwise error probability analysis. The proposed method is immune to channel zero locations, and is reasonably robust to channel order overestimation. The proposed method is applicable to the scenarios in which the number of transmitters exceeds that of the receivers. Simulation results demonstrate the performance of the proposed method and compare it with some existing methods.
Tsujii, Noa; Mikawa, Wakako; Tsujimoto, Emi; Adachi, Toru; Niwa, Atsushi; Ono, Hisae; Shirakawa, Osamu
2017-01-01
Previous neuroimaging studies have revealed frontal and temporal functional abnormalities in patients with major depressive disorder (MDD) and a history of suicidal behavior. However, it is unknown whether multi-channel near-infrared spectroscopy (NIRS) signal changes among individuals with MDD are associated with a history of suicide attempts and a diathesis for suicidal behavior (impulsivity, hopelessness, and aggression). Therefore, we aimed to explore frontotemporal hemodynamic responses in depressed patients with a history of suicide attempts using 52-channel NIRS. We recruited 30 patients with MDD and a history of suicidal behavior (suicide attempters; SAs), 38 patient controls without suicidal behavior (non-attempters; NAs), and 40 healthy controls (HCs) matched by age, gender ratio, and estimated IQ. Regional hemodynamic responses during a verbal fluency task (VFT) were monitored using NIRS. Our results showed that severities of depression, impulsivity, aggression, and hopelessness were similar between SAs and NAs. Both patient groups had significantly reduced activation compared with HCs in the bilateral frontotemporal regions. Post hoc analyses revealed that SAs exhibited a smaller hemodynamic response in the left precentral gyrus than NAs and HCs. Furthermore, the reduced response in the left inferior frontal gyrus was negatively correlated with impulsivity level and hemodynamic responses in the right middle frontal gyrus were negatively associated with hopelessness and aggression in SAs but not in NAs and HCs. Our findings suggest that MDD patients with a history of suicide attempts demonstrate patterns of VFT-induced NIRS signal changes different from those demonstrated by individuals without a history of suicidal behaviors, even in cases where clinical symptoms are similar. NIRS has a relatively high time resolution, which may help visually differentiate SAs from NAs.
NASA Astrophysics Data System (ADS)
Tarasenkov, M. V.; Belov, V. V.; Poznakharev, E. S.
2017-11-01
Impulse response of non-line-of-sight atmospheric communication channels at wavelengths of 0.3, 0.5, and 0.9 μm are compared for the case in which the optical axes of the receiver and laser radiation lie in the plane perpendicular to the Earth's surface. The most efficient communication channel depending on the base distance is determined. For a wavelength of 0.5 μm and a concrete variant of the transceiving part of the communication system, the limiting communication range and the limiting repetition frequency of pulses that can be transmitted through the communication channel are estimated.
Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications
NASA Astrophysics Data System (ADS)
Qian, Xuewen; Deng, Honggui; He, Hailang
2017-10-01
Due to wide modulation bandwidth in optical communication, multipath channels may be non-sparse and deteriorate communication performance heavily. Traditional compressive sensing-based channel estimation algorithm cannot be employed in this kind of situation. In this paper, we propose a practical parametric channel estimation algorithm for orthogonal frequency division multiplexing (OFDM)-based visual light communication (VLC) systems based on modified zero correlation code (ZCC) pair that has the impulse-like correlation property. Simulation results show that the proposed algorithm achieves better performances than existing least squares (LS)-based algorithm in both bit error ratio (BER) and frequency response estimation.
Counting-loss correction for X-ray spectroscopy using unit impulse pulse shaping.
Hong, Xu; Zhou, Jianbin; Ni, Shijun; Ma, Yingjie; Yao, Jianfeng; Zhou, Wei; Liu, Yi; Wang, Min
2018-03-01
High-precision measurement of X-ray spectra is affected by the statistical fluctuation of the X-ray beam under low-counting-rate conditions. It is also limited by counting loss resulting from the dead-time of the system and pile-up pulse effects, especially in a high-counting-rate environment. In this paper a detection system based on a FAST-SDD detector and a new kind of unit impulse pulse-shaping method is presented, for counting-loss correction in X-ray spectroscopy. The unit impulse pulse-shaping method is evolved by inverse deviation of the pulse from a reset-type preamplifier and a C-R shaper. It is applied to obtain the true incoming rate of the system based on a general fast-slow channel processing model. The pulses in the fast channel are shaped to unit impulse pulse shape which possesses small width and no undershoot. The counting rate in the fast channel is corrected by evaluating the dead-time of the fast channel before it is used to correct the counting loss in the slow channel.
Out-of-band and adjacent-channel interference reduction by analog nonlinear filters
NASA Astrophysics Data System (ADS)
Nikitin, Alexei V.; Davidchack, Ruslan L.; Smith, Jeffrey E.
2015-12-01
In a perfect world, we would have `brick wall' filters, no-distortion amplifiers and mixers, and well-coordinated spectrum operations. The real world, however, is prone to various types of unintentional and intentional interference of technogenic (man-made) origin that can disrupt critical communication systems. In this paper, we introduce a methodology for mitigating technogenic interference in communication channels by analog nonlinear filters, with an emphasis on the mitigation of out-of-band and adjacent-channel interference. Interference induced in a communications receiver by external transmitters can be viewed as wide-band non-Gaussian noise affecting a narrower-band signal of interest. This noise may contain a strong component within the receiver passband, which may dominate over the thermal noise. While the total wide-band interference seen by the receiver may or may not be impulsive, we demonstrate that the interfering component due to power emitted by the transmitter into the receiver channel is likely to appear impulsive under a wide range of conditions. We give an example of mechanisms of impulsive interference in digital communication systems resulting from the nonsmooth nature of any physically realizable modulation scheme for transmission of a digital (discontinuous) message. We show that impulsive interference can be effectively mitigated by nonlinear differential limiters (NDLs). An NDL can be configured to behave linearly when the input signal does not contain outliers. When outliers are encountered, the nonlinear response of the NDL limits the magnitude of the respective outliers in the output signal. The signal quality is improved in excess of that achievable by the respective linear filter, increasing the capacity of a communications channel. The behavior of an NDL, and its degree of nonlinearity, is controlled by a single parameter in a manner that enables significantly better overall suppression of the noise-containing impulsive components compared to the respective linear filter. Adaptive configurations of NDLs are similarly controlled by a single parameter and are suitable for improving quality of nonstationary signals under time-varying noise conditions. NDLs are designed to be fully compatible with existing linear devices and systems and to be used as an enhancement, or as a low-cost alternative, to the state-of-art interference mitigation methods.
Multichannel myopic deconvolution in underwater acoustic channels via low-rank recovery
Tian, Ning; Byun, Sung-Hoon; Sabra, Karim; Romberg, Justin
2017-01-01
This paper presents a technique for solving the multichannel blind deconvolution problem. The authors observe the convolution of a single (unknown) source with K different (unknown) channel responses; from these channel outputs, the authors want to estimate both the source and the channel responses. The authors show how this classical signal processing problem can be viewed as solving a system of bilinear equations, and in turn can be recast as recovering a rank-1 matrix from a set of linear observations. Results of prior studies in the area of low-rank matrix recovery have identified effective convex relaxations for problems of this type and efficient, scalable heuristic solvers that enable these techniques to work with thousands of unknown variables. The authors show how a priori information about the channels can be used to build a linear model for the channels, which in turn makes solving these systems of equations well-posed. This study demonstrates the robustness of this methodology to measurement noises and parametrization errors of the channel impulse responses with several stylized and shallow water acoustic channel simulations. The performance of this methodology is also verified experimentally using shipping noise recorded on short bottom-mounted vertical line arrays. PMID:28599565
Wideband propagation measurements at 30.3 GHz through a pecan orchard in Texas
NASA Astrophysics Data System (ADS)
Papazian, Peter B.; Jones, David L.; Espeland, Richard H.
1992-09-01
Wideband propagation measurements were made in a pecan orchard in Texas during April and August of 1990 to examine the propagation characteristics of millimeter-wave signals through vegetation. Measurements were made on tree obstructed paths with and without leaves. The study presents narrowband attenuation data at 9.6 and 28.8 GHz as well as wideband impulse response measurements at 30.3 GHz. The wideband probe (Violette et al., 1983), provides amplitude and delay of reflected and scattered signals and bit-error rate. This is accomplished using a 500 MBit/sec pseudo-random code to BPSK modulate a 28.8 GHz carrier. The channel impulse response is then extracted by cross correlating the received pseudo-random sequence with a locally generated replica.
Datte, P S; Eckart, M; Moore, A S; Thompson, W; Vergel de Dios, G
2016-11-01
Neutron-induced visible scintillation in neutron time of flight (NToF) diagnostics at the National Ignition Facility (NIF) is measured with 40 mm single stage micro-channel plate photomultipliers and a 40 mm vacuum photodiode, outside the neutron line of sight. In NIF experiments with 14 MeV neutron yields above Y > 10 × 10 15 these tubes are configured to deliver of order 1 nC of charge in the nominally 5 ns NToF into a 50 Ω load. We have examined a number of 40 mm tubes manufactured by Photek Ltd. of St. Leonards on Sea, UK, to determine possible changes in the instrument impulse response as a function of signal charge delivered in 1 ns. Precision NToF measurements at approximately 20 m require that we characterize changes in the impulse response moments to <40 ps for the first central moment and ∼2% rms for the square root of the second central moment with ∼500 ps value. Detailed results are presented for three different diode configurations.
Channel Model Optimization with Reflection Residual Component for Indoor MIMO-VLC System
NASA Astrophysics Data System (ADS)
Chen, Yong; Li, Tengfei; Liu, Huanlin; Li, Yichao
2017-12-01
A fast channel modeling method is studied to solve the problem of reflection channel gain for multiple input multiple output-visible light communications (MIMO-VLC) in the paper. For reducing the computational complexity when associating with the reflection times, no more than 3 reflections are taken into consideration in VLC. We think that higher order reflection link consists of corresponding many times line of sight link and firstly present reflection residual component to characterize higher reflection (more than 2 reflections). We perform computer simulation results for point-to-point channel impulse response, receiving optical power and receiving signal to noise ratio. Based on theoretical analysis and simulation results, the proposed method can effectively reduce the computational complexity of higher order reflection in channel modeling.
Josso, Nicolas F; Ioana, Cornel; Mars, Jérôme I; Gervaise, Cédric
2010-12-01
Acoustic channel properties in a shallow water environment with moving source and receiver are difficult to investigate. In fact, when the source-receiver relative position changes, the underwater environment causes multipath and Doppler scale changes on the transmitted signal over low-to-medium frequencies (300 Hz-20 kHz). This is the result of a combination of multiple paths propagation, source and receiver motions, as well as sea surface motion or water column fast changes. This paper investigates underwater acoustic channel properties in a shallow water (up to 150 m depth) and moving source-receiver conditions using extracted time-scale features of the propagation channel model for low-to-medium frequencies. An average impulse response of one transmission is estimated using the physical characteristics of propagation and the wideband ambiguity plane. Since a different Doppler scale should be considered for each propagating signal, a time-warping filtering method is proposed to estimate the channel time delay and Doppler scale attributes for each propagating path. The proposed method enables the estimation of motion-compensated impulse responses, where different Doppler scaling factors are considered for the different time delays. It was validated for channel profiles using real data from the BASE'07 experiment conducted by the North Atlantic Treaty Organization Undersea Research Center in the shallow water environment of the Malta Plateau, South Sicily. This paper provides a contribution to many field applications including passive ocean tomography with unknown natural sources position and movement. Another example is active ocean tomography where sources motion enables to rapidly cover one operational area for rapid environmental assessment and hydrophones may be drifting in order to avoid additional flow noise.
NASA Astrophysics Data System (ADS)
Sahu, Sanjay Kumar; Shanmugam, Palanisamy
2018-02-01
Scattering by water molecules and particulate matters determines the path and distance of photon propagation in underwater medium. Consequently, photon angle of scattering (given by scattering phase function) requires to be considered in addition to the extinction coefficient of the aquatic medium governed by the absorption and scattering coefficients in channel characterization for an underwater wireless optical communication (UWOC) system. This study focuses on analyzing the received signal power and impulse response of UWOC channel based on Monte-Carlo simulations for different water types, link distances, link geometries and transceiver parameters. A newly developed scattering phase function (referred to as SS phase function), which represents the real water types more accurately like the Petzold phase function, is considered for quantification of the channel characteristics along with the effects of absorption and scattering coefficients. A comparison between the results simulated using various phase function models and the experimental measurements of Petzold revealed that the SS phase function model predicts values closely matching with the actual values of the Petzold's phase function, which further establishes the importance of using a correct scattering phase function model while estimating the channel capacity of UWOC system in terms of the received power and channel impulse response. Results further demonstrate a great advantage of considering the nonzero probability of receiving scattered photons in estimating channel capacity rather than considering the reception of only ballistic photons as in Beer's Law, which severely underestimates the received power and affects the range of communication especially in the scattering water column. The received power computed based on the Monte-Carlo method by considering the receiver aperture sizes and field of views in different water types are further analyzed and discussed. These results are essential for evaluating the underwater link budget and constructing different system and design parameters for an UWOC system.
NASA Astrophysics Data System (ADS)
Jiang, Peng; Ma, Lina; Hu, Zhengliang; Hu, Yongming
2016-07-01
The inline time division multiplexing (TDM) fiber Fabry-Pérot (FFP) sensor array based on fiber Bragg gratings (FBGs) is attractive for many applications. But the intrinsic multi-reflection (MR) induced crosstalk limits applications especially those needing high resolution. In this paper we proposed an expandable method for MR-induced crosstalk reduction. The method is based on complexing-exponent synthesis using the phase-generated carrier (PGC) scheme and the special common character of the impulse responses. The method could promote demodulation stability simultaneously with the reduction of MR-induced crosstalk. A polarization-maintaining 3-TDM experimental system with an FBG reflectivity of about 5 % was set up to validate the method. The experimental results showed that crosstalk reduction of 13 dB and 15 dB was achieved for sensor 2 and sensor 3 respectively when a signal was applied to the first sensor and crosstalk reduction of 8 dB was achieved for sensor 3 when a signal was applied to sensor 2. The demodulation stability of the applied signal was promoted as well. The standard deviations of the amplitude distributions of the demodulated signals were reduced from 0.0046 to 0.0021 for sensor 2 and from 0.0114 to 0.0044 for sensor 3. Because of the convenience of the linear operation of the complexing-exponent and according to the common character of the impulse response we found, the method can be effectively extended to the array with more TDM channels if the impulse response of the inline FFP sensor array with more TDM channels is derived. It offers potential to develop a low-crosstalk inline FFP sensor array using the PGC interrogation technique with relatively high reflectivity FBGs which can guarantee enough light power received by the photo-detector.
A minimax technique for time-domain design of preset digital equalizers using linear programming
NASA Technical Reports Server (NTRS)
Vaughn, G. L.; Houts, R. C.
1975-01-01
A linear programming technique is presented for the design of a preset finite-impulse response (FIR) digital filter to equalize the intersymbol interference (ISI) present in a baseband channel with known impulse response. A minimax technique is used which minimizes the maximum absolute error between the actual received waveform and a specified raised-cosine waveform. Transversal and frequency-sampling FIR digital filters are compared as to the accuracy of the approximation, the resultant ISI and the transmitted energy required. The transversal designs typically have slightly better waveform accuracy for a given distortion; however, the frequency-sampling equalizer uses fewer multipliers and requires less transmitted energy. A restricted transversal design is shown to use the least number of multipliers at the cost of a significant increase in energy and loss of waveform accuracy at the receiver.
Climatic and land-use driven change of runoff throughout Sweden
NASA Astrophysics Data System (ADS)
Worman, A. L. E.; Riml, J.; Lindstrom, G.
2015-12-01
Changes in runoff can be caused by climatic variations, land-use changes and water regulation. In this paper we propose a separation of the power spectral response of runoff in watersheds in terms of the product of the power spectra of precipitation and the impulse response function for the watershed. This allows a formal separation of the spectral response in climatic factors - the precipitation - from those of land-use change and regulation - the impulse response function. The latter function characterizes the surface water-groundwater interaction, stream network topology and open channel hydraulics. Based on daily data of digitalized hydro-climatological data from 1961, we constructed synthetic, but calibrated data of runoff from 1001 watersheds in Sweden. From spectral analysis of the data we found periodic fluctuations occurring on time scales of about a decade and a bi-annual peak. These multi-annual fluctuations could be statistically linked through the coherence spectra to climatic indices like the NAO, PDO, geostrophic wind velocity and sun spot numbers on common periods of 3,6 and 7,6 years. Such long-term fluctuations in runoff are not significantly affected by the land-use or regulation other than indirectly through impact on local hydro-climate. Based on a spectral separation of precipitation and impulse response function of the watersheds, we found that the intra-annual variation in runoff was primarily affected by the land-use change in 79 unregulated catchments with up to century-long time series of measured daily discharge. There is a statistically significant increasing slope of the catchments impulse response function for 63 of the 79 catchments and this suggest a significant hydrological effect of land-use practice in agriculture, urbanisation and forestry.
Nanoflare vs Footpoint Heating : Observational Signatures
NASA Technical Reports Server (NTRS)
Winebarger, Amy; Alexander, Caroline; Lionello, Roberto; Linker, Jon; Mikic, Zoran; Downs, Cooper
2015-01-01
Time lag analysis shows very long time lags between all channel pairs. Impulsive heating cannot address these long time lags. 3D Simulations of footpoint heating shows a similar pattern of time lags (magnitude and distribution) to observations. Time lags and relative peak intensities may be able to differentiate between TNE and impulsive heating solutions. Adding a high temperature channel (like XRT Be-thin) may improve diagnostics.
Fatahi, Zahra; Reisi, Zahra; Rainer, Gregor; Haghparast, Abbas; Khani, Abbas
2018-05-01
Despite evidence from psychiatry and psychology clinics pointing to altered cognition and decision making following the consumption of cannabis, the effects of cannabis derivatives are still under dispute and the mechanisms of cannabinoid effects on cognition are not known. In this study, we used effort-based and delay-based decision tasks and showed that ACEA, a potent cannabinoid agonist induced apathetic and impulsive patterns of choice in rats in a dose-dependent manner when locally injected into the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), respectively. Pre-treatment with AM251, a selective cannabinoid type 1 (CB1) receptor antagonist, reversed ACEA-induced impulsive and apathetic patterns of choice in doses higher than a minimally effective dose. Unlike CB1 receptor antagonist, pretreatment with capsazepine, a transient receptor potential vanilloid type 1 (TRPV1) channel antagonist, was effective only at an intermediary dose. Furthermore, capsazepine per se induced impulsivity and apathy at a high dose suggesting a basal tonic activation of TRPV1 channels that exist in the ACC and OFC to support cost-benefit decision making and to help avoid apathetic and impulsive patterns of decision making. Taken together, unlike previous reports supporting opposing roles for the CB1 receptors and TRPV1 channels in anxiety and panic behavior, our findings demonstrate a different sort of interaction between endocannabinoid and endovanilloid systems and suggest that both systems contribute to the cognitive disrupting effects of cannabinoids. Given prevalent occurrence of apathy and particularly impulsivity in psychiatric disorders, these results have significant implications for pharmacotherapy research targeting these receptors. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nikitin, Alexei V.; Epard, Marc; Lancaster, John B.; Lutes, Robert L.; Shumaker, Eric A.
2012-12-01
A strong digital communication transmitter in close physical proximity to a receiver of a weak signal can noticeably interfere with the latter even when the respective channels are tens or hundreds of megahertz apart. When time domain observations are made in the signal chain of the receiver between the first mixer and the baseband, this interference is likely to appear impulsive. The impulsive nature of this interference provides an opportunity to reduce its power by nonlinear filtering, improving the quality of the receiver channel. This article describes the mitigation, by a particular nonlinear filter, of the impulsive out-of-band (OOB) interference induced in High Speed Downlink Packet Access (HSDPA) by WiFi transmissions, protocols which coexist in many 3G smartphones and mobile hotspots. Our measurements show a decrease in the maximum error-free bit rate of a 1.95 GHz HSDPA receiver caused by the impulsive interference from an OOB 2.4 GHz WiFi transmission, sometimes down to a small fraction of the rate observed in the absence of the interference. We apply a nonlinear SPART filter to recover a noticeable portion of the lost rate and maintain an error-free connection under much higher levels of the WiFi interference than a receiver that does not contain such a filter. These measurements support our wider investigation of OOB interference resulting from digital modulation, which appears impulsive in a receiver, and its mitigation by nonlinear filters.
Reale, Riccardo; English, Niall J; Garate, José-Antonio; Marracino, Paolo; Liberti, Micaela; Apollonio, Francesca
2013-11-28
Water self-diffusion and the dipolar response of the selectivity filter within human aquaporin 4 have been studied using molecular dynamics (MD) simulations in the absence and presence of pulses of external static and alternating electric fields. The pulses were approximately 50 and 100 ns in duration and 0.0065 V/Å in (r.m.s.) intensity and were either static or else 2.45 or 100 GHz in frequency and applied both along and perpendicular to the channels. In addition, the relaxation of the aquaporin, water self-diffusion and gating dynamics following cessation of the impulses was studied. In previous work it was determined that switches in the dihedral angle of the selectivity filter led to boosting of water permeation events within the channels, in the presence of identical external static and alternating electric fields, although applied continuously. Here the application of field impulses (and subsequently, upon removal) has shown that it is the dipolar orientation of the histidine-201 residue in the selectivity filter which governs the dihedral angle, and hence influences water self-diffusion; this constitutes an appropriate order parameter. The dipolar response of this residue to the applied field leads to the adoption of four distinct states, which we modelled as time-homogeneous Markov jump processes, and may be distinguished in the potential of mean force (PMF) as a function of the dipolar orientation of histidine-201. The observations of enhanced "dipolar flipping" of H201 serve to explain increased levels of water self-diffusion within aquaporin channels during, and immediately following, field impulses, although the level of statistical certainty here is lower. Given the appreciable size of the energy barriers evident in PMFs computed directly from deterministic MD (whether in the absence or presence of external fields), metadynamics calculations were undertaken to explore the free-energy landscape of histidine-201 orientation with greater accuracy and precision. These indicate that electric fields do alter the free-energy profile of the H201 side-chain orientation, wherein a perturbation of the symmetric bimodal state evident in the zero-field case is observed. These effects are dependent on the field intensities.
Line-of-Sight Data Link Test Set
1976-06-01
spheric layer model for layer refraction or a surface reflectivity model for ground reflection paths. Measurement of the channel impulse response...the model is exercised over a path consisting of only a constant direct component. The test would consist of measuring the modem demodulator bit...direct and a fading direct component. The test typically would consist of measuring the bit error-rate over a range of average signal-to-noise
Fast downscaled inverses for images compressed with M-channel lapped transforms.
de Queiroz, R L; Eschbach, R
1997-01-01
Compressed images may be decompressed and displayed or printed using different devices at different resolutions. Full decompression and rescaling in space domain is a very expensive method. We studied downscaled inverses where the image is decompressed partially, and a reduced inverse transform is used to recover the image. In this fashion, fewer transform coefficients are used and the synthesis process is simplified. We studied the design of fast inverses, for a given forward transform. General solutions are presented for M-channel finite impulse response (FIR) filterbanks, of which block and lapped transforms are a subset. Designs of faster inverses are presented for popular block and lapped transforms.
A history of gap junction structure: hexagonal arrays to atomic resolution.
Grosely, Rosslyn; Sorgen, Paul L
2013-02-01
Gap junctions are specialized membrane structures that provide an intercellular pathway for the propagation and/or amplification of signaling cascades responsible for impulse propagation, cell growth, and development. Prior to the identification of the proteins that comprise gap junctions, elucidation of channel structure began with initial observations of a hexagonal nexus connecting apposed cellular membranes. Concomitant with technological advancements spanning over 50 years, atomic resolution structures are now available detailing channel architecture and the cytoplasmic domains that have helped to define mechanisms governing the regulation of gap junctions. Highlighted in this review are the seminal structural studies that have led to our current understanding of gap junction biology.
Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses
Ikeda, Ryo; Cha, Myeounghoon; Ling, Jennifer; Jia, Zhanfeng; Coyle, Dennis; Gu, Jianguo G.
2014-01-01
SUMMARY Sensory systems for detecting tactile stimuli have evolved from touch-sensing nerves in invertebrates to complicated tactile end-organs in mammals. Merkel discs are tactile end-organs consisting of Merkel cells and Aβ-afferent nerve endings, and are localized in fingertips, whisker hair follicles and other touch-sensitive spots. Merkel discs transduce touch into slowly adapting impulses to enable tactile discrimination, but their transduction and encoding mechanisms remain unknown. Using rat whisker hair follicles, we show that Merkel cells rather than Aβ-afferent nerve endings are primary sites of tactile transduction, and identify the Piezo2 ion channel as the Merkel cell mechanical transducer. Piezo2 transduces tactile stimuli into Ca2+-action potentials in Merkel cells, which drive Aβ-afferent nerve endings to fire slowly adapting impulses. We further demonstrate that Piezo2 and Ca2+-action potentials in Merkel cells are required for behavioral tactile responses. Our findings provide insights into how tactile end-organs function and have clinical implications for tactile dysfunctions. PMID:24746027
CAN LARGE TIME DELAYS OBSERVED IN LIGHT CURVES OF CORONAL LOOPS BE EXPLAINED IN IMPULSIVE HEATING?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lionello, Roberto; Linker, Jon A.; Mikić, Zoran
The light curves of solar coronal loops often peak first in channels associated with higher temperatures and then in those associated with lower temperatures. The delay times between the different narrowband EUV channels have been measured for many individual loops and recently for every pixel of an active region observation. The time delays between channels for an active region exhibit a wide range of values. The maximum time delay in each channel pair can be quite large, i.e., >5000 s. These large time delays make-up 3%–26% (depending on the channel pair) of the pixels where a trustworthy, positive time delaymore » is measured. It has been suggested that these time delays can be explained by simple impulsive heating, i.e., a short burst of energy that heats the plasma to a high temperature, after which the plasma is allowed to cool through radiation and conduction back to its original state. In this paper, we investigate whether the largest observed time delays can be explained by this hypothesis by simulating a series of coronal loops with different heating rates, loop lengths, abundances, and geometries to determine the range of expected time delays between a set of four EUV channels. We find that impulsive heating cannot address the largest time delays observed in two of the channel pairs and that the majority of the large time delays can only be explained by long, expanding loops with photospheric abundances. Additional observations may rule out these simulations as an explanation for the long time delays. We suggest that either the time delays found in this manner may not be representative of real loop evolution, or that the impulsive heating and cooling scenario may be too simple to explain the observations, and other potential heating scenarios must be explored.« less
NASA Astrophysics Data System (ADS)
Zhao, Xiangen; He, Junjia; Luo, Bing; Jia, Lei; Yang, Yongchao; Xiao, Pei
2017-12-01
The relaxation process of the discharge channel near the anode in a long air gap was observed using a Schlieren system with a temporal resolution of 5 µs and a spatial resolution of 70 µm. The dynamic characteristics of the decay process in the vicinity of the anode are obtained. The discharge channel evolves just as a growing mushroom in nature during the relaxation phase. Two physical quantities, angle θ and velocity v, are defined to describe the process in this paper. The average value of the angle and velocity under lightning impulses are 71.7° and 3.3 m s-1 respectively, while 7.7 m s-1 under switching impulses. A simplified model was established to simulate the formation of mushroom-shaped channel. The simulation and experimental results show that the formation and development of the mushroom-shaped channel are due to two factors. One is the convection of the high temperature and high pressure air near the anode produced by the first corona discharge; the other is the ionic migration. These two factors result in the phenomena that the cooling process in the vicinity of the anode is much more efficient than further into the gap, whereas the thermal conductivity of the anode may have little contribution to that.
Mathematic models for a ray tracing method and its applications in wireless optical communications.
Zhang, Minglun; Zhang, Yangan; Yuan, Xueguang; Zhang, Jinnan
2010-08-16
This paper presents a new ray tracing method, which contains a whole set of mathematic models, and its validity is verified by simulations. In addition, both theoretical analysis and simulation results show that the computational complexity of the method is much lower than that of previous ones. Therefore, the method can be used to rapidly calculate the impulse response of wireless optical channels for complicated systems.
Time Domain and Frequency Domain Deterministic Channel Modeling for Tunnel/Mining Environments.
Zhou, Chenming; Jacksha, Ronald; Yan, Lincan; Reyes, Miguel; Kovalchik, Peter
2017-01-01
Understanding wireless channels in complex mining environments is critical for designing optimized wireless systems operated in these environments. In this paper, we propose two physics-based, deterministic ultra-wideband (UWB) channel models for characterizing wireless channels in mining/tunnel environments - one in the time domain and the other in the frequency domain. For the time domain model, a general Channel Impulse Response (CIR) is derived and the result is expressed in the classic UWB tapped delay line model. The derived time domain channel model takes into account major propagation controlling factors including tunnel or entry dimensions, frequency, polarization, electrical properties of the four tunnel walls, and transmitter and receiver locations. For the frequency domain model, a complex channel transfer function is derived analytically. Based on the proposed physics-based deterministic channel models, channel parameters such as delay spread, multipath component number, and angular spread are analyzed. It is found that, despite the presence of heavy multipath, both channel delay spread and angular spread for tunnel environments are relatively smaller compared to that of typical indoor environments. The results and findings in this paper have application in the design and deployment of wireless systems in underground mining environments.
Time Domain and Frequency Domain Deterministic Channel Modeling for Tunnel/Mining Environments
Zhou, Chenming; Jacksha, Ronald; Yan, Lincan; Reyes, Miguel; Kovalchik, Peter
2018-01-01
Understanding wireless channels in complex mining environments is critical for designing optimized wireless systems operated in these environments. In this paper, we propose two physics-based, deterministic ultra-wideband (UWB) channel models for characterizing wireless channels in mining/tunnel environments — one in the time domain and the other in the frequency domain. For the time domain model, a general Channel Impulse Response (CIR) is derived and the result is expressed in the classic UWB tapped delay line model. The derived time domain channel model takes into account major propagation controlling factors including tunnel or entry dimensions, frequency, polarization, electrical properties of the four tunnel walls, and transmitter and receiver locations. For the frequency domain model, a complex channel transfer function is derived analytically. Based on the proposed physics-based deterministic channel models, channel parameters such as delay spread, multipath component number, and angular spread are analyzed. It is found that, despite the presence of heavy multipath, both channel delay spread and angular spread for tunnel environments are relatively smaller compared to that of typical indoor environments. The results and findings in this paper have application in the design and deployment of wireless systems in underground mining environments.† PMID:29457801
NASA Astrophysics Data System (ADS)
Zeng, Ziyi; Yang, Aiying; Guo, Peng; Feng, Lihui
2018-01-01
Time-domain CD equalization using finite impulse response (FIR) filter is now a common approach for coherent optical fiber communication systems. The complex weights of FIR taps are calculated from a truncated impulse response of the CD transfer function, and the modulus of the complex weights is constant. In our work, we take the limited bandwidth of a single channel signal into account and propose weighted FIRs to improve the performance of CD equalization. The key in weighted FIR filters is the selection and optimization of weighted functions. In order to present the performance of different types of weighted FIR filters, a square-root raised cosine FIR (SRRC-FIR) and a Gaussian FIR (GS-FIR) are investigated. The optimization of square-root raised cosine FIR and Gaussian FIR are made in term of the bit rate error (BER) of QPSK and 16QAM coherent detection signal. The results demonstrate that the optimized parameters of the weighted filters are independent of the modulation format, symbol rate and the length of transmission fiber. With the optimized weighted FIRs, the BER of CD equalization signal is decreased significantly. Although this paper has investigated two types of weighted FIR filters, i.e. SRRC-FIR filter and GS-FIR filter, the principle of weighted FIR can also be extended to other symmetric functions super Gaussian function, hyperbolic secant function and etc.
NASA Astrophysics Data System (ADS)
Yunxiao, ZHANG; Yuanxiang, ZHOU; Ling, ZHANG; Zhen, LIN; Jie, LIU; Zhongliu, ZHOU
2018-05-01
In this paper, work was conducted to reveal electrical tree behaviors (initiation and propagation) of silicone rubber (SIR) under an impulse voltage with high temperature. Impulse frequencies ranging from 10 Hz to 1 kHz were applied and the temperature was controlled between 30 °C and 90 °C. Experimental results show that tree initiation voltage decreases with increasing pulse frequency, and the descending amplitude is different in different frequency bands. As the pulse frequency increases, more frequent partial discharges occur in the channel, increasing the tree growth rate and the final shape intensity. As for temperature, the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher. Based on differential scanning calorimetry results, we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage. However, the tree growth rate decreases with increasing temperature. Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis. Different tree growth models considering tree channel characteristics are proposed. It is believed that increasing the conductivity in the tree channel restrains the partial discharge, holding back the tree growth at high temperature.
Egalisation adaptative et non invasive de la reponse temps-frequence d'une petite salle
NASA Astrophysics Data System (ADS)
Martin, Tristan
In this research, we are interested in sound, environment wherein it propagates, the interaction between the sound wave and a transmission channel, and the changes induced by the components of an audio chain. The specific context studied is that of listening to music on loudspeakers. For the environment in which sound wave propagates, like for any transmission channel, there are mathematical functions used to characterize the changes induced by a channel on the signal therethrough. An electric signal serves as a input for a system, in this case consisting of an amplifier, a loudspeaker, and the room where the listening takes place, which according to its characteristics, returns as an output at the listening position, an altered sound wave. Frequency response, impulse response, transfer function, the mathematics used are no different from those used commonly for the characterization of a transmission channel or the expression of the outputs of a linear system to its inputs. Naturally, there is a purpose to this modeling exercise: getting the frequency response of the amplifier/loundspeaker/room chain makes possible its equalization. It is common in many contexts of listening to find a filter inserted into the audio chain between the source (Eg CD player) and the amplifier/loudspeaker that converts the electrical signal to an acoustic signal propagated in the room. This filter, called "equalizer" is intended to compensate the frequency effect of the components of the audio chain and the room on the sound signal that will be transmitted. Properties for designing this filter are derived from those of the audio chain. Although analytically rigorous, physical approach, focusing on physical modeling of the loudspeaker and the propagation equation of the acoustic wave is ill-suited to rooms with complex geometry and changing over time. The second approach, experimental modeling, and therefore that addressed in this work, ignores physical properties. The system audio chain is rather seen as a "black box" including inputs and outputs. The problem studied is the characterization of an electro-acoustic system as having a single input signal transmitted through a speaker in a room, and a single output signal picked up by a microphone at the listening position. The originality of this work lies not only in the technique developed to arrive at this characterization, but especially in the constraints imposed in order to get there. The majority of technics documented to this date involve using excitation signals dedicated the measure; signals with favorable characteristics to simplify the calculation of the impulse response of the audio chain. Known signals are played through a loudspeaker and the room's response to excitation is captured with a microphone at the listening position. The measurement exercise itself poses problem, especially when there is an audience in the room. Also, the response of the room may change between the time of the measurement and time of listening. If the room is reconfigured for example, a curtain is pulled or the stage moved. In the case of a theater, the speaker used may vary depending on the context. A survey of work in which solutions to this problem are suggested was made. The main objective is to develop an innovative method to capture the impulse response of an audio chain without the knowledge of the audience. To do this, no signal dedicated to the measurement should be used. The developed method allows the capture of the electro-acoustic impulse response exploiting only the music signals when it comes to a concert hall or using a movie sound track when a movie is a movie theater. As a result, an algorithm for modeling dynamicly and continuously the response of a room. A finite impulse response filter acting as a digital equalizer must be designed and also able to dynamically adapt the behavior of the room, even when it varies over time. A multi spectral resolution method is used to build, for diffrent frequency bands, the filter response arising from the inversion of the room/speaker frequency response. The resulting dynamically adapting filter has properties similar to those of the human ear, a significant spectral-resolution in lower frequencies, and high time-resolution at high frequencies. The response corrected by the filter system tends approaching to a pure pulse. Techniques explored in the context of this research led to the publication of a scientific article in a peer reviewed journal and one conference paper in which similar methods were used for mining engineering applications. (Abstract shortened by UMI.).
Removal of impulse noise clusters from color images with local order statistics
NASA Astrophysics Data System (ADS)
Ruchay, Alexey; Kober, Vitaly
2017-09-01
This paper proposes a novel algorithm for restoring images corrupted with clusters of impulse noise. The noise clusters often occur when the probability of impulse noise is very high. The proposed noise removal algorithm consists of detection of bulky impulse noise in three color channels with local order statistics followed by removal of the detected clusters by means of vector median filtering. With the help of computer simulation we show that the proposed algorithm is able to effectively remove clustered impulse noise. The performance of the proposed algorithm is compared in terms of image restoration metrics with that of common successful algorithms.
Understanding Coronal Heating through Time-Series Analysis and Nanoflare Modeling
NASA Astrophysics Data System (ADS)
Romich, Kristine; Viall, Nicholeen
2018-01-01
Periodic intensity fluctuations in coronal loops, a signature of temperature evolution, have been observed using the Atmospheric Imaging Assembly (AIA) aboard NASA’s Solar Dynamics Observatory (SDO) spacecraft. We examine the proposal that nanoflares, or impulsive bursts of energy release in the solar atmosphere, are responsible for the intensity fluctuations as well as the megakelvin-scale temperatures observed in the corona. Drawing on the work of Cargill (2014) and Bradshaw & Viall (2016), we develop a computer model of the energy released by a sequence of nanoflare events in a single magnetic flux tube. We then use EBTEL (Enthalpy-Based Thermal Evolution of Loops), a hydrodynamic model of plasma response to energy input, to simulate intensity as a function of time across the coronal AIA channels. We test the EBTEL output for periodicities using a spectral code based on Mann and Lees’ (1996) multitaper method and present preliminary results here. Our ultimate goal is to establish whether quasi-continuous or impulsive energy bursts better approximate the original SDO data.
NASA Astrophysics Data System (ADS)
Nikitin, Pavel Viktorovich
2002-01-01
A typical HVAC duct system is a network of interconnected hollow metal pipes which can serve as waveguides and carry electromagnetic waves. This work presents an analysis of this system as a radio frequency communication channel. Two main parts of the analysis include channel modelling and antenna design. The propagation modelling approach used here is based on the waveguide mode theory and employs the transfer matrix method to describe propagation through various cascaded HVAC elements. This allows one to model the channel response in the frequency domain. Impulse response characteristics of the ducts are also analyzed in this work. The approximate transfer matrices of cylindrical straight sections, bends, and tapers are derived analytically. The transforming properties of cylindrical T-junctions are analyzed experimentally. Antenna designs in waveguides and free-space are different. In waveguides, mode excitation characteristics are important as well as the impedance match. The criteria for antenna design in waveguides are presented here. Antennas analyzed in this work are monopole antennas, dipole antennas, and antenna arrays. The developed model can predict both channel response and antenna characteristics for a given geometry and dimensions of the duct system and the antennas. The model is computationally efficient and can potentially be applied to duct systems of multiple story buildings. The accuracy of the model has been validated with extensive experimental measurements on real HVAC ducts.
Reduced-rank technique for joint channel estimation in TD-SCDMA systems
NASA Astrophysics Data System (ADS)
Kamil Marzook, Ali; Ismail, Alyani; Mohd Ali, Borhanuddin; Sali, Adawati; Khatun, Sabira
2013-02-01
In time division-synchronous code division multiple access systems, increasing the system capacity by exploiting the inserting of the largest number of users in one time slot (TS) requires adding more estimation processes to estimate the joint channel matrix for the whole system. The increase in the number of channel parameters due the increase in the number of users in one TS directly affects the precision of the estimator's performance. This article presents a novel channel estimation with low complexity, which relies on reducing the rank order of the total channel matrix H. The proposed method exploits the rank deficiency of H to reduce the number of parameters that characterise this matrix. The adopted reduced-rank technique is based on truncated singular value decomposition algorithm. The algorithms for reduced-rank joint channel estimation (JCE) are derived and compared against traditional full-rank JCEs: least squares (LS) or Steiner and enhanced (LS or MMSE) algorithms. Simulation results of the normalised mean square error showed the superiority of reduced-rank estimators. In addition, the channel impulse responses founded by reduced-rank estimator for all active users offers considerable performance improvement over the conventional estimator along the channel window length.
Hofer, Jan; Busch, Holger; Bond, Michael Harris; Campos, Domingo; Li, Ming; Law, Ruby
2010-08-01
Research has shown that an individual's implicit power motive relates to 2 types of behavioral clusters: either prosocial, socially appropriate behaviors or profligate, impulsive behaviors. The present study examined the relationship between individuals' implicit power motives and their tendency to engage in sexual activities without strong emotional ties (i.e., sociosexuality). For men, but not for women, this relationship was hypothesized to be moderated by an implicit disposition for responsibility. Whereas most research has been limited to Euro-American contexts, the present study examined the relationship between power motive, disposition for responsibility, and sociosexuality among participants recruited in Cameroon, China, Costa Rica, and Germany. Explicit Big Five measures of personality were controlled for. For women, only a main effect of responsibility on sociosexuality was found across cultural groups; for men, the association between power motivation and sociosexuality was moderated by responsibility, independent of cultural group. Traits of agreeableness and conscientiousness were systematically related to lower levels of sociosexuality. Effects for both implicit and explicit measures of personality suggest universality in the processes associated with more enactments of sociosexuality, confirming in part the hypothesized role of responsibility in channeling the realization of the power motive into less impulsive activities. (PsycINFO Database Record (c) 2010 APA, all rights reserved).
Electronic device increases threshold sensitivity and removes noise from FM communications receiver
NASA Technical Reports Server (NTRS)
Conrad, W. M.; Loch, F. J.
1971-01-01
Threshold extension device connected between demodulator output and filter output minimizes clicking noise. Device consists of click-eliminating signal transfer channel with follow-and-hold circuit and detector for sensing click impulses. Final output consists of signal plus low level noise without high amplitude impulses.
Recursive Inversion By Finite-Impulse-Response Filters
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1991-01-01
Recursive approximation gives least-squares best fit to exact response. Algorithm yields finite-impulse-response approximation of unknown single-input/single-output, causal, time-invariant, linear, real system, response of which is sequence of impulses. Applicable to such system-inversion problems as suppression of echoes and identification of target from its scatter response to incident impulse.
Causal impulse response for circular sources in viscous media
Kelly, James F.; McGough, Robert J.
2008-01-01
The causal impulse response of the velocity potential for the Stokes wave equation is derived for calculations of transient velocity potential fields generated by circular pistons in viscous media. The causal Green’s function is numerically verified using the material impulse response function approach. The causal, lossy impulse response for a baffled circular piston is then calculated within the near field and the far field regions using expressions previously derived for the fast near field method. Transient velocity potential fields in viscous media are computed with the causal, lossy impulse response and compared to results obtained with the lossless impulse response. The numerical error in the computed velocity potential field is quantitatively analyzed for a range of viscous relaxation times and piston radii. Results show that the largest errors are generated in locations near the piston face and for large relaxation times, and errors are relatively small otherwise. Unlike previous frequency-domain methods that require numerical inverse Fourier transforms for the evaluation of the lossy impulse response, the present approach calculates the lossy impulse response directly in the time domain. The results indicate that this causal impulse response is ideal for time-domain calculations that simultaneously account for diffraction and quadratic frequency-dependent attenuation in viscous media. PMID:18397018
Joint polarization tracking and channel equalization based on radius-directed linear Kalman filter
NASA Astrophysics Data System (ADS)
Zhang, Qun; Yang, Yanfu; Zhong, Kangping; Liu, Jie; Wu, Xiong; Yao, Yong
2018-01-01
We propose a joint polarization tracking and channel equalization scheme based on radius-directed linear Kalman filter (RD-LKF) by introducing the butterfly finite-impulse-response (FIR) filter in our previously proposed RD-LKF method. Along with the fast polarization tracking, it can also simultaneously compensate the inter-symbol interference (ISI) effects including residual chromatic dispersion and polarization mode dispersion. Compared with the conventional radius-directed equalizer (RDE) algorithm, it is demonstrated experimentally that three times faster convergence speed, one order of magnitude better tracking capability, and better BER performance is obtained in polarization division multiplexing 16 quadrature amplitude modulation system. Besides, the influences of the algorithm parameters on the convergence and the tracking performance are investigated by numerical simulation.
Codeless GPS Applications to Multi-Path: CGAMP
NASA Technical Reports Server (NTRS)
Macdoran, P. F.; Miller, R. B.; Jenkins, D.; Lemmon, J.; Gold, K.; Schreiner, W.; Snyder, G.
1990-01-01
Cordless Global Positioning System (GPS) Applications to Multi-Path (CGAMP) is meeting the challenge of exploiting the L-band signals from the Global Positioning System (GPS) satellites for the measurement of the impulse response of radio transmission channels over space-Earth paths. This approach was originally suggested by E. K. Smith and has been pursued by J. Lemmon, without an affordable implementation being identifiable. In addition to the high cost of a suitable P code correlating GPS receiver, there is also the major impediment of the often announced Department of Defense policy of selective availability/anti-spoof (SA/AS) that clouds reliable access to the wideband (20 MHz) P channel of the GPS signals without cryptographic access. A technique proposed by MacDoran utilizes codeless methods for exploiting the P channel signals implemented by the use of a pair of antennas and cross correlation signal detection.
NASA Technical Reports Server (NTRS)
Jahn, Axel; Buonomo, Sergio; Sforza, Mario; Lutz, Erich
1995-01-01
The results of an airborne measurement campaign aimed at the characterization of the mobile satellite link are presented in this paper. The experimental tests were carried out at 1.8 GHz. The objective of the campaign was to obtain results applicable to all proposed satellite constellations: LEO, HEO, and GEO. Therefore, the measurements were performed for elevation angles from 10 deg...80 deg using a light aircraft. A set of different environments and operational scenarios have been investigated, typically for hand-held and car-mounted applications. We present a survey of wide- and narrowband results for a wide range of elevation angles and environments. For the wideband characterization, the power delay profiles of the channel impulse response are presented and discussed. Figures for the delay spread versus elevation and for the carrier-to-multipath ratio versus time are also given. The narrowband behaviour of the channel is described by power series.
Yu, Ke; Wang, Yue; Shen, Kaiquan; Li, Xiaoping
2013-01-01
The common spatial pattern analysis (CSP), a frequently utilized feature extraction method in brain-computer-interface applications, is believed to be time-invariant and sensitive to noises, mainly due to an inherent shortcoming of purely relying on spatial filtering. Therefore, temporal/spectral filtering which can be very effective to counteract the unfavorable influence of noises is usually used as a supplement. This work integrates the CSP spatial filters with complex channel-specific finite impulse response (FIR) filters in a natural and intuitive manner. Each hybrid spatial-FIR filter is of high-order, data-driven and is unique to its corresponding channel. They are derived by introducing multiple time delays and regularization into conventional CSP. The general framework of the method follows that of CSP but performs better, as proven in single-trial classification tasks like event-related potential detection and motor imagery.
Sabra, Karim G; Winkel, Eric S; Bourgoyne, Dwayne A; Elbing, Brian R; Ceccio, Steve L; Perlin, Marc; Dowling, David R
2007-04-01
It has been demonstrated theoretically and experimentally that an estimate of the impulse response (or Green's function) between two receivers can be obtained from the cross correlation of diffuse wave fields at these two receivers in various environments and frequency ranges: ultrasonics, civil engineering, underwater acoustics, and seismology. This result provides a means for structural monitoring using ambient structure-borne noise only, without the use of active sources. This paper presents experimental results obtained from flow-induced random vibration data recorded by pairs of accelerometers mounted within a flat plate or hydrofoil in the test section of the U.S. Navy's William B. Morgan Large Cavitation Channel. The experiments were conducted at high Reynolds number (Re > 50 million) with the primary excitation source being turbulent boundary layer pressure fluctuations on the upper and lower surfaces of the plate or foil. Identical deterministic time signatures emerge from the noise cross-correlation function computed via robust and simple processing of noise measured on different days by a pair of passive sensors. These time signatures are used to determine and/or monitor the structural response of the test models from a few hundred to a few thousand Hertz.
An Impulse Based Substructuring approach for impact analysis and load case simulations
NASA Astrophysics Data System (ADS)
Rixen, Daniel J.; van der Valk, Paul L. C.
2013-12-01
In the present paper we outline the basic theory of assembling substructures for which the dynamics are described as Impulse Response Functions. The assembly procedure computes the time response of a system by evaluating per substructure the convolution product between the Impulse Response Functions and the applied forces, including the interface forces that are computed to satisfy the interface compatibility. We call this approach the Impulse Based Substructuring method since it transposes to the time domain the Frequency Based Substructuring approach. In the Impulse Based Substructuring technique the Impulse Response Functions of the substructures can be gathered either from experimental tests using a hammer impact or from time-integration of numerical submodels. In this paper the implementation of the method is outlined for the case when the impulse responses of the substructures are computed numerically. A simple bar example is shown in order to illustrate the concept. The Impulse Based Substructuring allows fast evaluation of impact response of a structure when the impulse response of its components is known. It can thus be used to efficiently optimize designs of consumer products by including impact behavior at the early stage of the design, but also for performing substructured simulations of complex structures such as offshore wind turbines.
Preisig, James C
2005-07-01
Equations are derived for analyzing the performance of channel estimate based equalizers. The performance is characterized in terms of the mean squared soft decision error (sigma2(s)) of each equalizer. This error is decomposed into two components. These are the minimum achievable error (sigma2(0)) and the excess error (sigma2(e)). The former is the soft decision error that would be realized by the equalizer if the filter coefficient calculation were based upon perfect knowledge of the channel impulse response and statistics of the interfering noise field. The latter is the additional soft decision error that is realized due to errors in the estimates of these channel parameters. These expressions accurately predict the equalizer errors observed in the processing of experimental data by a channel estimate based decision feedback equalizer (DFE) and a passive time-reversal equalizer. Further expressions are presented that allow equalizer performance to be predicted given the scattering function of the acoustic channel. The analysis using these expressions yields insights into the features of surface scattering that most significantly impact equalizer performance in shallow water environments and motivates the implementation of a DFE that is robust with respect to channel estimation errors.
Multichannel Spectrometer of Time Distribution
NASA Astrophysics Data System (ADS)
Akindinova, E. V.; Babenko, A. G.; Vakhtel, V. M.; Evseev, N. A.; Rabotkin, V. A.; Kharitonova, D. D.
2015-06-01
For research and control of characteristics of radiation fluxes, radioactive sources in particular, for example, in paper [1], a spectrometer and methods of data measurement and processing based on the multichannel counter of time intervals of accident events appearance (impulses of particle detector) MC-2A (SPC "ASPECT") were created. The spectrometer has four independent channels of registration of time intervals of impulses appearance and correspondent amplitude and spectrometric channels for control along the energy spectra of the operation stationarity of paths of each of the channels from the detector to the amplifier. The registration of alpha-radiation is carried out by the semiconductor detectors with energy resolution of 16-30 keV. Using a spectrometer there have been taken measurements of oscillations of alpha-radiation 239-Pu flux intensity with a subsequent autocorrelative statistical analysis of the time series of readings.
NASA Astrophysics Data System (ADS)
Abashkin, V. V.; Belikov, M. B.; Gorshkov, O. A.; Lovtsov, A. S.; Khrapach, I. N.
2011-10-01
Results of 500-hour life tests of the 900-watt Hall-thruster laboratory model with the specific impulse of 2000 s are presented. The thruster discharge channel walls were manufactured from 60% BN + 40% SiO2 and >90% BN hot-pressed ceramics. The predicted total lifetime was ˜3000 h for both wall materials in spite of greater erosion resistance of pure BN in comparison with BN-SiO2 mixture. To clarify the accompanying phenomena, the following diagnostics were carried out. The surface microstructure and composition insulators were investigated by means of electron microscopy and X-ray fluorescence analysis and nearwall plasma parameters were measured with flat Langmuir probes. The obtained distributions of plasma parameters were compared with the results of stationary one-dimensional (1D) hydrodynamic modeling of discharge channel.
Norepinephrine and impulsivity: Effects of acute yohimbine
Swann, Alan C.; Lijffijt, Marijn; Lane, Scott D.; Cox, Blake; Steinberg, Joel L.; Moeller, F. Gerard
2013-01-01
Rationale Rapid-response impulsivity, characterized by inability to withhold response to a stimulus until it is adequately appraised, is associated with risky behavior and may be increased in a state-dependent manner by norepinephrine. Objective We assessed effects of yohimbine, which increases norepinephrine release by blocking alpha-2 noradrenergic receptors, on plasma catecholamine metabolites, blood pressure, subjective symptoms, and laboratory-measured rapid-response impulsivity. Methods Subjects were twenty-three healthy controls recruited from the community, with normal physical examination and ECG, and negative history for hypertension, cardiovascular illness, and Axis I or II disorder. Blood pressure, pulse, and behavioral measures were obtained before and periodically after 0.4 mg/kg oral yohimbine or placebo in a randomized, counterbalanced design. Metabolites of norepinephrine (3-methoxy-4-hydroxyphenylglycol, MHPG; vanillylmandelic acid, VMA) and dopamine (homovanillic acid, HVA) were measured by high pressure liquid chromatography with electrochemical detection. Rapid-response impulsivity was measured by commission errors and reaction times on the Immediate Memory Task (IMT), a continuous performance test designed to measure impulsivity and attention. Results Yohimbine increased plasma MHPG and VMA but not HVA. Yohimbine increased systolic and diastolic blood pressure and pulse rate. On the IMT, yohimbine increased impulsive errors and impulsive response bias and accelerated reaction times. Yohimbine-associated increase in plasma MHPG correlated with increased impulsive response rates. Time courses varied; effects on blood pressure generally preceded those on metabolites and test performance. Conclusions These effects are consistent with increased rapid-response impulsivity after pharmacological noradrenergic stimulation in healthy controls. Labile noradrenergic responses, or increased sensitivity to norepinephrine, may increase risk for impulsive behavior. PMID:23559222
Do lightning positive leaders really "step"?
NASA Astrophysics Data System (ADS)
Petersen, D.
2015-12-01
It has been known for some time that positive leaders exhibit impulsive charge motion and optical emissions as they extend. However, laboratory and field observations have not produced any evidence of a process analogous to the space leader mechanism of negative leader extension. Instead, observations have suggested that the positive leader tip undergoes a continuous to intermittent series of corona streamer bursts, each burst resulting in a small forward extension of the positive leader channel. Traditionally, it has been held that lightning positive leaders extend in a continuous or quasi-continuous fashion. Lately, however, many have become concerned that this position is incongruous with observations of impulsive activity during lightning positive leader extension. It is increasingly suggested that this impulsive activity is evidence that positive leaders also undergo "stepping". There are two issues that must be addressed. The first issue concerns whether or not the physical processes underlying impulsive extension in negative and positive leaders are distinct. We argue that these processes are in fact physically distinct, and offer new high-speed video evidence to support this position. The second issue regards the proper use of the term "step" as an identifier for the impulsive forward extension of a leader. Traditional use of this term has been applied only to negative leaders, due primarily to their stronger impulsive charge motions and photographic evidence of clearly discontinuous forward progression of the luminous channel. Recently, due to the increasing understanding of the distinct "space leader" process of negative leader extension, the term "step" has increasingly come to be associated with the space leader process itself. Should this emerging association, "step" = space leader attachment, be canonized? If not, then it seems reasonable to use the term "step" to describe impulsive positive leader extension. If, however, we do wish to associate the term "step" with space leader attachment, a process unique to negative leaders, should we devise a term for those process(es) that underly impulsive positive leader extension?
Low-thrust Isp sensitivity study
NASA Technical Reports Server (NTRS)
Schoenman, L.
1982-01-01
A comparison of the cooling requirements and attainable specific impulse performance of engines in the 445 to 4448N thrust class utilizing LOX/RP-1, LOX/Hydrogen and LOX/Methane propellants is presented. The unique design requirements for the regenerative cooling of low-thrust engines operating at high pressures (up to 6894 kPa) were explored analytically by comparing single cooling with the fuel and the oxidizer, and dual cooling with both the fuel and the oxidizer. The effects of coolant channel geometry, chamber length, and contraction ratio on the ability to provide proper cooling were evaluated, as was the resulting specific impulse. The results show that larger contraction ratios and smaller channels are highly desirable for certain propellant combinations.
NASA Astrophysics Data System (ADS)
Schrijver, C. J.; Aia Science Team
2010-12-01
The revolutionary advance in observational capabilities offered by SDO's AIA offers new views of solar flares and eruptions. The high cadence and spatial resolution, the full-Sun coverage, and the variety of thermal responses of the AIA channels from thousands to millions of degrees enable the study the source regions of solar explosions, as well as the responses of the solar corona from their immediate vicinity to regions over a solar radius away. These observations emphasize the importance of magnetic connectivity and topology, the frequent occurrence of fast wave-like perturbations, and the contrasts between impulsive compact X-ray-bright flares and long-duration EUV-bright phenomena.
NASA Technical Reports Server (NTRS)
Klimchuk, James A.; Bradshaw, Stephen J.
2011-01-01
Most plasma diagnostics assume the emitting material is in a state of ionization equilibrium. For example, the AIA temperature response functions have been derived on this basis. The assumption is reasonable whenever the plasma is evolving slowly or is very dense, but these are not the conditions that apply during impulsive heating events. It is now widely believed that many coronal loops are bundles of unresolved strands that are heated quasi-randomly by nanoflares. Full blown flares are thought to have similar sub-structure. We have studied the importance of nonequilibrium effects in these circumstances by modeling nanoflare-heated loops and simulating their observation by AIA and the EIS spectrometer on Hinode. We find that the intensities of hot emission lines can be highly suppressed and that the net emission from the loop tends to be dominated by strands that have entered a slow cooling phase, well after the impulsive energy release has ended. The hottest strands are relatively invisible, both because they are tenuous and because they cool rapidly by thermal conduction. Thus, AIA channels that are normally thought of as being sensitive to hot plasma, such 131 and 94, are in fact frequently not able to detect the hot plasma that is present. The magnitude of the effect is case dependent. Great care must be exercised when using the standard temperature response functions in situations where nonequilibrium ionization is likely to be important.
The use of the Wigner Distribution to analyze structural impulse responses
NASA Technical Reports Server (NTRS)
Wahl, T. J.; Bolton, J. S.
1990-01-01
In this paper it is argued that the time-frequency analysis of structural impulse responses may be used to reveal the wave types carrying significant energy through a structure. Since each wave type is characterized by its own dispersion relation, each wave type may be associated with particular features appearing in the time-frequency domain representation of an impulse response. Here the Wigner Distribution is introduced as a means for obtaining appropriate time-frequency representations of impulse responses. Practical aspects of the calculation of the Wigner Distribution are discussed and examples of its application to the analysis of structural impulse responses are given. These examples will show that the Wigner Distribution may be conveniently used to distinguish between the contributions of various waves types to a total structural response.
Liu, Shoubing; Lu, Wenke; Zhu, Changchun
2017-11-01
The goal of this research is to study two-port network of wavelet transform processor (WTP) using surface acoustic wave (SAW) devices and its application. The motive was prompted by the inconvenience of the long research and design cycle and the huge research funding involved with traditional method in this field, which were caused by the lack of the simulation and emulation method of WTP using SAW devices. For this reason, we introduce the two-port network analysis tool, which has been widely used in the design and analysis of SAW devices with uniform interdigital transducers (IDTs). Because the admittance parameters calculation formula of the two-port network can only be used for the SAW devices with uniform IDTs, this analysis tool cannot be directly applied into the design and analysis of the processor using SAW devices, whose input interdigital transducer (IDT) is apodized weighting. Therefore, in this paper, we propose the channel segmentation method, which can convert the WTP using SAW devices into parallel channels, and also provide with the calculation formula of the number of channels, the number of finger pairs and the static capacitance of an interdigital period in each parallel channel firstly. From the parameters given above, we can calculate the admittance parameters of the two port network for each channel, so that we can obtain the admittance parameter of the two-port network of the WTP using SAW devices on the basis of the simplification rule of parallel two-port network. Through this analysis tool, not only can we get the impulse response function of the WTP using SAW devices but we can also get the matching circuit of it. Large numbers of studies show that the parameters of the two-port network obtained by this paper are consistent with those measured by network analyzer E5061A, and the impulse response function obtained by the two-port network analysis tool is also consistent with that measured by network analyzer E5061A, which can meet the accuracy requirements of the analysis of the WTP using SAW devices. Therefore the two-port network analysis tool discussed in this paper has comparatively higher theoretical and practical value. Copyright © 2017 Elsevier B.V. All rights reserved.
Influence of impulsiveness on emotional modulation of response inhibition: An ERP study.
Messerotti Benvenuti, Simone; Sarlo, Michela; Buodo, Giulia; Mento, Giovanni; Palomba, Daniela
2015-10-01
To examine how impulsiveness influences the emotional modulation of behavioral and neural correlates of response inhibition. Twenty-nine healthy individuals scoring high (HI, N=16) or low (LI, N=13) on motor impulsiveness performed an emotional Go/Nogo task, including the presentation of pleasant, neutral and unpleasant pictures. Behavioral [reaction times (RTs), accuracy to Go and Nogo trials] and neural (Nogo-N2 and Nogo-P3) correlates of response inhibition were compared between HI and LI groups. Larger Nogo-P3 was found for emotional than neutral stimuli in HI relative to LI group. Faster RTs to Go stimuli and lower accuracy to Nogo stimuli were correlated with larger Nogo-P3 in HI, but not LI, group. No significant interactions between emotion content and impulsiveness for Nogo-N2 and behavioral measures were noted. Impulsiveness influences the emotional modulation of response inhibition by potentiating the response tendencies evoked by the emotional stimuli. Accordingly, high impulsive individuals may need an increased and/or more effortful response inhibition in order to counteract the prepotent tendency to respond elicited by the combination of high trait impulsiveness and high emotional arousal. The present study suggests the importance to examine how pathological impulsiveness may interact with emotional arousal in modulating response inhibition. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Deriving a dosage-response relationship for community response to high-energy impulsive noise
NASA Technical Reports Server (NTRS)
Fidell, Sanford; Pearsons, Karl S.
1994-01-01
The inability to systematically predict community response to exposure to sonic booms (and other high energy impulsive sounds) is a major impediment to credible analyses of the environmental effects of supersonic flight operations. Efforts to assess community response to high energy impulsive sounds are limited in at least two important ways. First, a paucity of appropriate empirical data makes it difficult to infer a dosage-response relationship by means similar to those used in the case of general transportation noise. Second, it is unclear how well the 'equal energy hypothesis' (the notion that duration, number, and level of individual events are directly interchangeable determinants of annoyance) applies to some forms of impulsive noise exposure. Some of the issues currently under consideration by a CHABA working group addressing these problems are discussed. These include means for applying information gained in controlled exposure studies about different rates of growth of annoyance with impulsive and non-impulsive sound exposure levels, and strategies for developing a dosage-response relationship in a data-poor area.
Chargé, Pascal; Bazzi, Oussama; Ding, Yuehua
2018-01-01
A parametric scheme for spatially correlated sparse multiple-input multiple-output (MIMO) channel path delay estimation in scattering environments is presented in this paper. In MIMO outdoor communication scenarios, channel impulse responses (CIRs) of different transmit–receive antenna pairs are often supposed to be sparse due to a few significant scatterers, and share a common sparse pattern, such that path delays are assumed to be equal for every transmit–receive antenna pair. In some existing works, an exact common support condition is exploited, where the path delays are considered equal for every transmit–receive antenna pair, meanwhile ignoring the influence of scattering. A more realistic channel model is proposed in this paper, where due to scatterers in the environment, the received signals are modeled as clusters of multi-rays around a nominal or mean time delay at different antenna elements, resulting in a non-strictly exact common support phenomenon. A method for estimating the channel mean path delays is then derived based on the subspace approach, and the tracking of the effective dimension of the signal subspace that changes due to the wireless environment. The proposed method shows an improved channel mean path delays estimation performance in comparison with the conventional estimation methods. PMID:29734797
Mohydeen, Ali; Chargé, Pascal; Wang, Yide; Bazzi, Oussama; Ding, Yuehua
2018-05-06
A parametric scheme for spatially correlated sparse multiple-input multiple-output (MIMO) channel path delay estimation in scattering environments is presented in this paper. In MIMO outdoor communication scenarios, channel impulse responses (CIRs) of different transmit⁻receive antenna pairs are often supposed to be sparse due to a few significant scatterers, and share a common sparse pattern, such that path delays are assumed to be equal for every transmit⁻receive antenna pair. In some existing works, an exact common support condition is exploited, where the path delays are considered equal for every transmit⁻receive antenna pair, meanwhile ignoring the influence of scattering. A more realistic channel model is proposed in this paper, where due to scatterers in the environment, the received signals are modeled as clusters of multi-rays around a nominal or mean time delay at different antenna elements, resulting in a non-strictly exact common support phenomenon. A method for estimating the channel mean path delays is then derived based on the subspace approach, and the tracking of the effective dimension of the signal subspace that changes due to the wireless environment. The proposed method shows an improved channel mean path delays estimation performance in comparison with the conventional estimation methods.
High resolution time of arrival estimation for a cooperative sensor system
NASA Astrophysics Data System (ADS)
Morhart, C.; Biebl, E. M.
2010-09-01
Distance resolution of cooperative sensors is limited by the signal bandwidth. For the transmission mainly lower frequency bands are used which are more narrowband than classical radar frequencies. To compensate this resolution problem the combination of a pseudo-noise coded pulse compression system with superresolution time of arrival estimation is proposed. Coded pulsecompression allows secure and fast distance measurement in multi-user scenarios which can easily be adapted for data transmission purposes (Morhart and Biebl, 2009). Due to the lack of available signal bandwidth the measurement accuracy degrades especially in multipath scenarios. Superresolution time of arrival algorithms can improve this behaviour by estimating the channel impulse response out of a band-limited channel view. For the given test system the implementation of a MUSIC algorithm permitted a two times better distance resolution as the standard pulse compression.
Ultra-Wideband Impulse Radio for Tactical Ad-Hoc Military Communications
2010-09-02
Synchronization, Channel Estimation, and Detection for DS - CDMA Impulse-Radio Systems,” IEEE Transactions on Wireless Communications, vol. 4, no. 6, pp...desired user. Complex matrix operations required by other techniques found in the CDMA literature are not required in our suppression process...domain while a frequency-domain procedure for synchronization is studied in [52]. 5 In the CDMA literature, near-far resistant synchronization is studied
Identification of Experimental Unsteady Aerodynamic Impulse Responses
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Piatak, David J.; Scott, Robert C.
2003-01-01
The identification of experimental unsteady aerodynamic impulse responses using the Oscillating Turntable (OTT) at NASA Langley's Transonic Dynamics Tunnel (TDT) is described. Results are presented for two configurations: a Rigid Semispan Model (RSM) and a rectangular wing with a supercritical airfoil section. Both models were used to acquire unsteady pressure data due to pitching oscillations on the OTT. A deconvolution scheme involving a step input in pitch and the resultant step response in pressure, for several pressure transducers, is used to identify the pressure impulse responses. The identified impulse responses are then used to predict the pressure response due to pitching oscillations at several frequencies. Comparisons with the experimental data are presented.
Marracino, Paolo; Liberti, Micaela; Trapani, Erika; Burnham, Christian J.; Avena, Massimiliano; Garate, José-Antonio; Apollonio, Francesca; English, Niall J.
2016-01-01
Human aquaporin 4 has been studied using molecular dynamics (MD) simulations in the absence and presence of pulses of external static electric fields. The pulses were 10 ns in duration and 0.012–0.065 V/Å in intensity acting along both directions perpendicular to the pores. Water permeability and the dipolar response of all residues of interest (including the selectivity filter) within the pores have been studied. Results showed decreased levels of water osmotic permeability within aquaporin channels during orthogonally-oriented field impulses, although care must be taken with regard to statistical certainty. This can be explained observing enhanced “dipolar flipping” of certain key residues, especially serine 211, histidine 201, arginine 216, histidine 95 and cysteine 178. These residues are placed at the extracellular end of the pore (serine 211, histidine 201, and arginine 216) and at the cytoplasm end (histidine 95 and cysteine 178), with the key role in gating mechanism, hence influencing water permeability. PMID:27428954
Herbort, Maike C; Soch, Joram; Wüstenberg, Torsten; Krauel, Kerstin; Pujara, Maia; Koenigs, Michael; Gallinat, Jürgen; Walter, Henrik; Roepke, Stefan; Schott, Björn H
2016-01-01
Patients with borderline personality disorder (BPD) frequently exhibit impulsive behavior, and self-reported impulsivity is typically higher in BPD patients when compared to healthy controls. Previous functional neuroimaging studies have suggested a link between impulsivity, the ventral striatal response to reward anticipation, and prediction errors. Here we investigated the striatal neural response to monetary gain and loss anticipation and their relationship with impulsivity in 21 female BPD patients and 23 age-matched female healthy controls using functional magnetic resonance imaging (fMRI). Participants performed a delayed monetary incentive task in which three categories of objects predicted a potential gain, loss, or neutral outcome. Impulsivity was assessed using the Barratt Impulsiveness Scale (BIS-11). Compared to healthy controls, BPD patients exhibited significantly reduced fMRI responses of the ventral striatum/nucleus accumbens (VS/NAcc) to both reward-predicting and loss-predicting cues. BIS-11 scores showed a significant positive correlation with the VS/NAcc reward anticipation responses in healthy controls, and this correlation, while also nominally positive, failed to reach significance in BPD patients. BPD patients, on the other hand, exhibited a significantly negative correlation between ventral striatal loss anticipation responses and BIS-11 scores, whereas this correlation was significantly positive in healthy controls. Our results suggest that patients with BPD show attenuated anticipation responses in the VS/NAcc and, furthermore, that higher impulsivity in BPD patients might be related to impaired prediction of aversive outcomes.
Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels
Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; De Maria, Michela; Manocchio, Laura; Medoro, Alessandro; Taglialatela, Maurizio
2015-01-01
Voltage-gated ion channels (VGICs) are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGICs in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na+, Ca2+ and K+ voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided into two main regions: the Pore Module (PM) and the Voltage-Sensing Module (VSM). The PM (helices S5 and S6 and intervening linker) is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1–S4), undergoes the first conformational changes in response to membrane voltage variations. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters and to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins selectively target the VSM. PMID:26236192
Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels.
Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; De Maria, Michela; Manocchio, Laura; Medoro, Alessandro; Taglialatela, Maurizio
2015-01-01
Voltage-gated ion channels (VGICs) are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGICs in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na(+), Ca(2+) and K(+) voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided into two main regions: the Pore Module (PM) and the Voltage-Sensing Module (VSM). The PM (helices S5 and S6 and intervening linker) is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1-S4), undergoes the first conformational changes in response to membrane voltage variations. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters and to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins selectively target the VSM.
Vanyukov, Polina M.; Szanto, Katalin; Siegle, Greg J.; Hallquist, Michael N.; Reynolds, Charles F.; Aizenstein, Howard J.; Dombrovski, Alexandre Y.
2015-01-01
Objectives Abnormal responses to social stimuli are seen in people vulnerable to suicidal behavior, indicating possible disruptions in the neural circuitry mediating the interpretation of socio-emotional cues. These disruptions have not been empirically related to psychological and cognitive pathways to suicide. In the present study of older suicide attempters, we examined neural responses to emotional faces and their relationship to impulsivity, one of the components of the suicidal diathesis. Methods Using functional magnetic resonance imaging, we recorded neuro-hemodynamic responses to angry faces in a carefully-characterized sample of 18 depressed elderly with history of suicide attempts, 13 depressed non-suicidal patients, and 18 healthy individuals, all aged 60+. Impulsivity was assessed with the Social Problem Solving Inventory Impulsivity/Carelessness Style subscale and Barratt Impulsiveness Scale. The Suicide Intent Scale planning subscale was used to describe the degree of planning associated with the most lethal attempt. Results Depression and history of attempted suicide were not associated with neural responses to angry faces, failing to replicate earlier studies. Higher impulsivity, however, predicted exaggerated responses to angry faces in fronto-opercular and dorsomedial prefrontal cortex (pcorr < .05). Poorly planned suicide attempts also predicted increased fronto-opercular responses. Results were robust to effects of medication exposure, comorbid anxiety and addiction, severity of depression, burden of physical illness, and possible brain injury from suicide attempts. Conclusions Impulsive traits and history of unplanned suicide attempts partly explain the heterogeneity in neural responses to angry faces in depressed elderly. Displays of social emotion command excessive cortical processing in impulsive suicide attempters. PMID:25529800
Cheema, Marvi K; MacQueen, Glenda M; Hassel, Stefanie
2015-01-01
Impulsivity and risk-taking behaviours are reported in bipolar disorder (BD). We examined whether financial management skills are related to impulsivity in patients with BD. We assessed financial management skills using the Executive Personal Finance Scale (EPFS), impulsivity using the Barratt Impulsiveness Scale (BIS) and response inhibition using an emotional go/no-go task in bipolar individuals (N = 21) and healthy controls (HC; N = 23). Patients had fewer financial management skills and higher levels of impulsivity than HC. In patients and controls, increased impulsivity was associated with poorer personal financial management. Patients and HC performed equally on the emotional go/no-go task. Higher BIS scores were associated with faster reaction times in HC. In patients, however, higher BIS scores were associated with slower reaction times, possibly indicating compensatory cognitive strategies to counter increased impulsivity. Patients with BD may have reduced abilities to manage personal finances, when compared against healthy participants. Difficulty with personal finance management may arise in part as a result of increased levels of impulsivity. Patients may learn to compensate for increased impulsivity by modulating response times in our experimental situations although whether such compensatory strategies generalize to real-world situations is unknown.
Walderhaug, Espen; Herman, Aryeh Isaac; Magnusson, Andres; Morgan, Michael John; Landrø, Nils Inge
2010-04-12
Reduced serotonergic neurotransmission is implicated in impulsive behavior. We studied the triallelic system of the serotonin transporter gene linked polymorphic region (5-HTTLPR) and acute manipulation of serotonin together to further delineate the mechanisms by which serotonergic neurotransmission affects impulsivity. Fifty-two healthy participants (38 men and 14 women) underwent acute tryptophan depletion (ATD) or placebo in a randomized, double-blind, parallel group experiment. Impulsive response style was measured on two versions of the Continuous Performance Task (CPT), and calculated using signal detection theory. We observed a dose-dependent effect for the short (S') allele of the 5-HTTLPR on impulsive response style. Individuals who had the S'/S' genotype were more impulsive than individuals with the L/S' genotype. Participants with the L/S' genotype were more impulsive than those with the L/L genotype. ATD increased impulsivity in men, and decreased impulsivity in women. These data demonstrate for the first time that reduced serotonergic tone as a result of either 5-HTTLPR genotype, or experimental ATD, are both independently and additively, associated with elevated impulsive response style in Caucasian men. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Genetic association of impulsivity in young adults: a multivariate study
Khadka, S; Narayanan, B; Meda, S A; Gelernter, J; Han, S; Sawyer, B; Aslanzadeh, F; Stevens, M C; Hawkins, K A; Anticevic, A; Potenza, M N; Pearlson, G D
2014-01-01
Impulsivity is a heritable, multifaceted construct with clinically relevant links to multiple psychopathologies. We assessed impulsivity in young adult (N~2100) participants in a longitudinal study, using self-report questionnaires and computer-based behavioral tasks. Analysis was restricted to the subset (N=426) who underwent genotyping. Multivariate association between impulsivity measures and single-nucleotide polymorphism data was implemented using parallel independent component analysis (Para-ICA). Pathways associated with multiple genes in components that correlated significantly with impulsivity phenotypes were then identified using a pathway enrichment analysis. Para-ICA revealed two significantly correlated genotype–phenotype component pairs. One impulsivity component included the reward responsiveness subscale and behavioral inhibition scale of the Behavioral-Inhibition System/Behavioral-Activation System scale, and the second impulsivity component included the non-planning subscale of the Barratt Impulsiveness Scale and the Experiential Discounting Task. Pathway analysis identified processes related to neurogenesis, nervous system signal generation/amplification, neurotransmission and immune response. We identified various genes and gene regulatory pathways associated with empirically derived impulsivity components. Our study suggests that gene networks implicated previously in brain development, neurotransmission and immune response are related to impulsive tendencies and behaviors. PMID:25268255
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorham, P.W.; /Hawaii U.; Allison, P.
We report initial results of the Antarctic Impulsive Transient Antenna (ANITA) 2006-2007 Long Duration Balloon flight, which searched for evidence of the flux of cosmogenic neutrinos. ANITA flew for 35 days looking for radio impulses that might be due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. In our initial high-threshold robust analysis, no neutrino candidates are seen, with no physics background. In a non-signal horizontal-polarization channel, we do detect 6 events consistent with radio impulses from extensive air showers, which helps to validate the effectiveness of our method. Upper limits derived from our analysismore » now begin to eliminate the highest cosmogenic neutrino models.« less
Schippers, M C; Schetters, D; De Vries, T J; Pattij, T
2016-07-01
High levels of impulsivity have been associated with psychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD) and substance abuse. In addition, acute stress is known to exacerbate many psychiatric symptoms in impulse control disorders. The purpose of the current study was to investigate the acute effects of the pharmacological stressor yohimbine on response inhibition and impulsive choice. A group of male rats (n = 12) was trained in the delayed reward task (DRT) to assess impulsive choice. A separate group (n = 10) was trained in the stop-signal task (SST) to measure response inhibition. Upon stable responding, the effects of yohimbine (0, 1.25, 2.5, and 5 mg/kg i.p.) were tested in a Latin square design. Acute yohimbine significantly increased the preference for the large and delayed reinforcer in the DRT, indicating a decrease in impulsive choice. On the contrary, the effect size of 1.25 mg/kg yohimbine on stop-signal reaction times correlated negatively with baseline performance, suggesting a baseline-dependent effect on response inhibition as measured in the SST. The current data suggest that the effects of the pharmacological stressor yohimbine on impulse control strongly depend on the type of impulsive behavior. Pharmacological stress decreased impulsive decision making, an observation that is in line with previously published rodent studies. By contrast, the lowest dose of yohimbine revealed a baseline-dependent effect on response inhibition. As such, the effects of yohimbine are largely comparable to the effects of psychostimulants on impulsivity and may support the notion of cross sensitization of stress and psychostimulants.
Using crosscorrelation techniques to determine the impulse response of linear systems
NASA Technical Reports Server (NTRS)
Dallabetta, Michael J.; Li, Harry W.; Demuth, Howard B.
1993-01-01
A crosscorrelation method of measuring the impulse response of linear systems is presented. The technique, implementation, and limitations of this method are discussed. A simple system is designed and built using discrete components and the impulse response of a linear circuit is measured. Theoretical and software simulation results are presented.
2009-05-15
an orienting re- sponse followed by a defense response at 64 dBA ( impulse ). The 80 dB ERDC/CERL TR-09-14 25 impulses produced by the small firearm...literature, shorter response latencies are generally attributed to a greater degree of arousal. With impulsive sounds repeated in rapid succession...ERDC–CERL, SERDP-funded project focusing on evaluating responses to military noise. The research team’s decision was based on time burden
Hege, M A; Stingl, K T; Kullmann, S; Schag, K; Giel, K E; Zipfel, S; Preissl, H
2015-02-01
A subgroup of overweight and obese people is characterized by binge eating disorder (BED). Increased impulsivity has been suggested to cause binge eating and subsequent weight gain. In the current study, neuronal correlates of increased impulsivity in binge eating disorder during behavioral response inhibition were investigated. Magnetic brain activity and behavioral responses of 37 overweight and obese individuals with and without diagnosed BED were recorded while performing a food-related visual go-nogo task. Trait impulsivity was assessed with the Barratt Impulsiveness Scale (BIS-11). Specifically, increased attentional impulsiveness (a subscale of the BIS-11) in BED was related to decreased response inhibition performance and hypoactivity in the prefrontal control network, which was activated when response inhibition was required. Furthermore, participants with BED showed a trend for a food-specific inhibition performance decline. This was possibly related to the absence of a food-specific activity increase in the prefrontal control network in BED, as observed in the control group. In addition, an increase in activity related to the actual button press during prepotent responses and alterations in visual processing were observed. Our results suggest an attentional impulsiveness-related attenuation in response inhibition performance in individuals with BED. This might have been related to increased reward responsiveness and limited resources to activate the prefrontal control network involved in response inhibition. Our results substantiate the importance of neuronal markers for investigating prevention and treatment of obesity, especially in specific subgroups at risk such as BED.
Evolution of rapid nerve conduction.
Castelfranco, Ann M; Hartline, Daniel K
2016-06-15
Rapid conduction of nerve impulses is a priority for organisms needing to react quickly to events in their environment. While myelin may be viewed as the crowning innovation bringing about rapid conduction, the evolution of rapid communication mechanisms, including those refined and enhanced in the evolution of myelin, has much deeper roots. In this review, a sequence is traced starting with diffusional communication, followed by transport-facilitated communication, the rise of electrical signaling modalities, the invention of voltage-gated channels and "all-or-none" impulses, the emergence of elongate nerve axons specialized for communication and their fine-tuning to enhance impulse conduction speeds. Finally within the evolution of myelin itself, several innovations have arisen and have been interactively refined for speed enhancement, including the addition and sealing of layers, their limitation by space availability, and the optimization of key parameters: channel density, lengths of exposed nodes and lengths of internodes. We finish by suggesting several design principles that appear to govern the evolution of rapid conduction. This article is part of a Special Issue entitled SI: Myelin Evolution. Copyright © 2016. Published by Elsevier B.V.
Dopaminergic Therapy Increases Go Timeouts in the Go/No-Go Task in Patients with Parkinson’s Disease
Yang, Xue Q.; Lauzon, Brian; Seergobin, Ken N.; MacDonald, Penny A.
2018-01-01
Parkinson’s disease (PD) is characterized by resting tremor, rigidity and bradykinesia. Dopaminergic medications such as L-dopa treat these motor symptoms, but can have complex effects on cognition. Impulse control is an essential cognitive function. Impulsivity is multifaceted in nature. Motor impulsivity involves the inability to withhold pre-potent, automatic, erroneous responses. In contrast, cognitive impulsivity refers to improper risk-reward assessment guiding behavior. Informed by our previous research, we anticipated that dopaminergic therapy would decrease motor impulsivity though it is well known to enhance cognitive impulsivity. We employed the Go/No-go paradigm to assess motor impulsivity in PD. Patients with PD were tested using a Go/No-go task on and off their normal dopaminergic medication. Participants completed cognitive, mood, and physiological measures. PD patients on medication had a significantly higher proportion of Go trial Timeouts (i.e., trials in which Go responses were not completed prior to a deadline of 750 ms) compared to off medication (p = 0.01). No significant ON-OFF differences were found for Go trial or No-go trial response times (RTs), or for number of No-go errors. We interpret that dopaminergic therapy induces a more conservative response set, reflected in Go trial Timeouts in PD patients. In this way, dopaminergic therapy decreased motor impulsivity in PD patients. This is in contrast to the widely recognized effects of dopaminergic therapy on cognitive impulsivity leading in some patients to impulse control disorders. Understanding the nuanced effects of dopaminergic treatment in PD on cognitive functions such as impulse control will clarify therapeutic decisions. PMID:29354045
1991-11-01
Tilted Rough Disc," Donald J. Schertler and Nicholas George "Image Deblurring for Multiple-Point Impulse Responses," Bryan J. Stossel and Nicholas George...Rough Disc Donald J. Schertler Nicholas George Image Deblurring for Multiple-Point Impulse Bryan J. Stossel Responses Nicholas George z 0 zw V) w LU 0...number of impulses present in the degradation. IMAGE DEBLURRING FOR MULTIPLE-POINT IMPULSE RESPONSESt Bryan J. Stossel Nicholas George Institute of Optics
Milstein, Michelle L; Musa, Hassan; Balbuena, Daniela Ponce; Anumonwo, Justus M B; Auerbach, David S; Furspan, Philip B; Hou, Luqia; Hu, Bin; Schumacher, Sarah M; Vaidyanathan, Ravi; Martens, Jeffrey R; Jalife, José
2012-07-31
The cardiac electrical impulse depends on an orchestrated interplay of transmembrane ionic currents in myocardial cells. Two critical ionic current mechanisms are the inwardly rectifying potassium current (I(K1)), which is important for maintenance of the cell resting membrane potential, and the sodium current (I(Na)), which provides a rapid depolarizing current during the upstroke of the action potential. By controlling the resting membrane potential, I(K1) modifies sodium channel availability and therefore, cell excitability, action potential duration, and velocity of impulse propagation. Additionally, I(K1)-I(Na) interactions are key determinants of electrical rotor frequency responsible for abnormal, often lethal, cardiac reentrant activity. Here, we have used a multidisciplinary approach based on molecular and biochemical techniques, acute gene transfer or silencing, and electrophysiology to show that I(K1)-I(Na) interactions involve a reciprocal modulation of expression of their respective channel proteins (Kir2.1 and Na(V)1.5) within a macromolecular complex. Thus, an increase in functional expression of one channel reciprocally modulates the other to enhance cardiac excitability. The modulation is model-independent; it is demonstrable in myocytes isolated from mouse and rat hearts and with transgenic and adenoviral-mediated overexpression/silencing. We also show that the post synaptic density, discs large, and zonula occludens-1 (PDZ) domain protein SAP97 is a component of this macromolecular complex. We show that the interplay between Na(v)1.5 and Kir2.1 has electrophysiological consequences on the myocardium and that SAP97 may affect the integrity of this complex or the nature of Na(v)1.5-Kir2.1 interactions. The reciprocal modulation between Na(v)1.5 and Kir2.1 and the respective ionic currents should be important in the ability of the heart to undergo self-sustaining cardiac rhythm disturbances.
Vanyukov, Polina M; Szanto, Katalin; Siegle, Greg J; Hallquist, Michael N; Reynolds, Charles F; Aizenstein, Howard J; Dombrovski, Alexandre Y
2015-08-01
Abnormal responses to social stimuli are seen in people vulnerable to suicidal behavior, indicating possible disruptions in the neural circuitry mediating the interpretation of socioemotional cues. These disruptions have not been empirically related to psychological and cognitive pathways to suicide. In the present study of older suicide attempters, we examined neural responses to emotional faces and their relationship to impulsivity, one of the components of the suicidal diathesis. Using functional magnetic resonance imaging, we recorded neurohemodynamic responses to angry faces in a carefully characterized sample of 18 depressed elderly with history of suicide attempts, 13 depressed nonsuicidal patients, and 18 healthy individuals, all aged 60+. Impulsivity was assessed with the Social Problem Solving Inventory Impulsivity/Carelessness Style subscale and Barratt Impulsiveness Scale. The Suicide Intent Scale planning subscale was used to describe the degree of planning associated with the most lethal attempt. Depression and history of attempted suicide were not associated with neural responses to angry faces, failing to replicate earlier studies. Higher impulsivity, however, predicted exaggerated responses to angry faces in fronto-opercular and dorsomedial prefrontal cortex (pcorr <0.05). Poorly planned suicide attempts also predicted increased fronto-opercular responses. Results were robust to effects of medication exposure, comorbid anxiety and addiction, severity of depression, burden of physical illness, and possible brain injury from suicide attempts. Impulsive traits and history of unplanned suicide attempts partly explain the heterogeneity in neural responses to angry faces in depressed elderly. Displays of social emotion command excessive cortical processing in impulsive suicide attempters. Copyright © 2015 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, H.; Cheng, J.
2017-12-01
A method to Synthesis natural electric and magnetic Time series is proposed whereby the time series of local site are derived using an Impulse Response and a reference (STIR). The method is based on the assumption that the external source of magnetic fields are uniform, and the electric and magnetic fields acquired at the surface satisfy a time-independent linear relation in frequency domain.According to the convolution theorem, we can synthesize natural electric and magnetic time series using the impulse responses of inter-station transfer functions with a reference. Applying this method, two impulse responses need to be estimated: the quasi-MT impulse response tensor and the horizontal magnetic impulse response tensor. These impulse response tensors relate the local horizontal electric and magnetic components with the horizontal magnetic components at a reference site, respectively. Some clean segments of times series are selected to estimate impulse responses by using least-square (LS) method. STIR is similar with STIN (Wang, 2017), but STIR does not need to estimate the inter-station transfer functions, and the synthesized data are more accurate in high frequency, where STIN fails when the inter-station transfer functions are contaminated severely. A test with good quality of MT data shows that synthetic time-series are similar to natural electric and magnetic time series. For contaminated AMT example, when this method is used to remove noise present at the local site, the scatter of MT sounding curves are clear reduced, and the data quality are improved. *This work is funded by National Key R&D Program of China(2017YFC0804105),National Natural Science Foundation of China (41604064, 51574250), State Key Laboratory of Coal Resources and Safe Mining ,China University of Mining & Technology,(SKLCRSM16DC09)
Tomie, A; Aguado, A S; Pohorecky, L A; Benjamin, D
1998-10-01
Autoshaping conditioned responses (CRs) are reflexive and targeted motor responses expressed as a result of experience with reward. To evaluate the hypothesis that autoshaping may be a form of impulsive responding, within-subjects correlations between performance on autoshaping and impulsivity tasks were assessed in 15 Long-Evans hooded rats. Autoshaping procedures [insertion of retractable lever conditioned stimulus (CS) followed by the response-independent delivery of food (US)] were followed by testing for impulsive-like responding in a two-choice lever-press operant delay-of-reward procedure (immediate small food reward versus delayed large food reward). Delay-of-reward functions revealed two distinct subject populations. Subjects in the Sensitive group (n=7) were more impulsive-like, increasing immediate reward choices at longer delays for large reward, while those in the Insensitive group (n=8) responded predominantly on only one lever. During the prior autoshaping phase, the Sensitive group had performed more autoshaping CRs, and correlations revealed that impulsive subjects acquired the autoshaping CR in fewer trials. In the Sensitive group, acute injections of ethanol (0, 0.25, 0.50, 1.00, 1.50 g/kg) given immediately before delay-of-reward sessions yielded an inverted U-shaped dose-response curve with increased impulsivity induced by the 0.25, 0.50, and 1.00 g/kg doses of ethanol, while choice strategy of the Insensitive group was not influenced by ethanol dose. Ethanol induced impulsive-like responding only in rats that were flexible in their response strategy (Sensitive group), and this group also performed more autoshaping CRs. Data support the hypothesis that autoshaping and impulsivity are linked.
NASA Technical Reports Server (NTRS)
Stanitz, John D; Sheldrake, Leonard J
1953-01-01
A technique is developed for the application of a channel design method to the design of high-solidity cascades with prescribed velocity distributions as a function of arc length along the blade-element profile. The technique is applied to both incompressible and subsonic compressible, nonviscous, irrotational fluid motion. For compressible flow, the ratio of specific heats is assumed equal to -1.0. An impulse cascade with 90 degree turning was designed for incompressible flow and was tested at the design angle of attack over a range of downstream Mach number from 0.2 to coke flow. To achieve good efficiency, the cascade was designed for prescribed velocities and maximum blade loading according to limitations imposed by considerations of boundary-layer separation.
Nederkoorn, C; Guerrieri, R; Havermans, R C; Roefs, A; Jansen, A
2009-08-01
It has been shown repeatedly that impulsivity, obesity and food intake are related; obese people are more impulsive than lean people and impulsive people eat more than less impulsive people. The relation between impulsivity and food intake might be state dependent; hunger motivates food seeking behaviour and food consumption, especially of high caloric food. Difficulties to overrule automatic behavioural tendencies might make impulsive people more susceptible to the effects of hunger on food selection. Therefore, they are expected to increase their intake more than low impulsive people when feeling hungry. STUDY 1: Fifty-seven female participants were randomly assigned to a hunger or sated condition. Response inhibition (a measure of impulsivity) and food intake were measured. Results show that impulsive participants ate significantly more, but only when feeling hungry. STUDY 2: Ninety-four undergraduate students participated. Hunger, response inhibition and the purchase of food in a virtual supermarket were measured. The same interaction was found: impulsive participants bought most calories, especially from snack food, but only when feeling hungry. Hunger and impulsivity interact in their influence on consumption. These data suggest that reducing hunger during calorie restricting diets is important for successful weight loss, particularly for the impulsive dieters.
Modeling and parameter identification of impulse response matrix of mechanical systems
NASA Astrophysics Data System (ADS)
Bordatchev, Evgueni V.
1998-12-01
A method for studying the problem of modeling, identification and analysis of mechanical system dynamic characteristic in view of the impulse response matrix for the purpose of adaptive control is developed here. Two types of the impulse response matrices are considered: (i) on displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement and (ii) on acceleration, which also describes the space-coupled relationship between the vectors of the force and measured acceleration. The idea of identification consists of: (a) the practical obtaining of the impulse response matrix on acceleration by 'impact-response' technique; (b) the modeling and parameter estimation of the each impulse response function on acceleration through the fundamental representation of the impulse response function on displacement as a sum of the damped sine curves applying linear and non-linear least square methods; (c) simulating the impulse provides the additional possibility to calculate masses, damper and spring constants. The damped natural frequencies are used as a priori information and are found through the standard FFT analysis. The problem of double numerical integration is avoided by taking two derivations of the fundamental dynamic model of a mechanical system as linear combination of the mass-damper-spring subsystems. The identified impulse response matrix on displacement represents the dynamic properties of the mechanical system. From the engineering point of view, this matrix can be also understood as a 'dynamic passport' of the mechanical system and can be used for dynamic certification and analysis of the dynamic quality. In addition, the suggested approach mathematically reproduces amplitude-frequency response matrix in a low-frequency band and on zero frequency. This allows the possibility of determining the matrix of the static stiffness due to dynamic testing over the time of 10- 15 minutes. As a practical example, the dynamic properties in view of the impulse and frequency response matrices of the lathe spindle are obtained, identified and investigated. The developed approach for modeling and parameter identification appears promising for a wide range o industrial applications; for example, rotary systems.
Hatfield, Julie; Williamson, Ann; Kehoe, E James; Prabhakharan, Prasannah
2017-06-01
The risky driving of young drivers may owe in part to youthful motivations (such as experience-seeking, authority rebellion, desire for peer approval) combined with incompletely developed impulse control. Although self-reported impulsiveness has been positively associated with self-reports of risky driving, results based on objective measures of response inhibition (e.g., Go/No-go tasks) have been inconclusive. The present study examined interrelationships between measures of response inhibition, self-report impulsiveness scales, and responses to events during a simulated drive that were designed to detect impulsive, unsafe behaviours (e.g., turning across on-coming traffic). Participants were 72 first-year Psychology students. More speeding and "Unsafe" responding to critical events during simulated driving were associated with poorer impulse control as assessed by commission errors during a Go/No-Go task. These results consolidate evidence for a relationship between impulse control and risky driving amongst young drivers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ward, B Douglas; Mazaheri, Yousef
2006-12-15
The blood oxygenation level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments in response to input stimuli is temporally delayed and distorted due to the blurring effect of the voxel hemodynamic impulse response function (IRF). Knowledge of the IRF, obtained during the same experiment, or as the result of a separate experiment, can be used to dynamically obtain an estimate of the input stimulus function. Reconstruction of the input stimulus function allows the fMRI experiment to be evaluated as a communication system. The input stimulus function may be considered as a "message" which is being transmitted over a noisy "channel", where the "channel" is characterized by the voxel IRF. Following reconstruction of the input stimulus function, the received message is compared with the transmitted message on a voxel-by-voxel basis to determine the transmission error rate. Reconstruction of the input stimulus function provides insight into actual brain activity during task activation with less temporal blurring, and may be considered as a first step toward estimation of the true neuronal input function.
NASA Astrophysics Data System (ADS)
Xiang, HU; Ping, DUAN; Jilei, SONG; Wenqing, LI; Long, CHEN; Xingyu, BIAN
2018-02-01
There exists strong interaction between the plasma and channel wall in the Hall thruster, which greatly affects the discharge performance of the thruster. In this paper, a two-dimensional physical model is established based on the actual size of an Aton P70 Hall thruster discharge channel. The particle-in-cell simulation method is applied to study the influences of segmented low emissive graphite electrode biased with anode voltage on the discharge characteristics of the Hall thruster channel. The influences of segmented electrode placed at the ionization region on electric potential, ion number density, electron temperature, ionization rate, discharge current and specific impulse are discussed. The results show that, when segmented electrode is placed at the ionization region, the axial length of the acceleration region is shortened, the equipotential lines tend to be vertical with wall at the acceleration region, thus radial velocity of ions is reduced along with the wall corrosion. The axial position of the maximal electron temperature moves towards the exit with the expansion of ionization region. Furthermore, the electron-wall collision frequency and ionization rate also increase, the discharge current decreases and the specific impulse of the Hall thruster is slightly enhanced.
Papachristou, Harilaos; Nederkoorn, Chantal; Havermans, Remco; van der Horst, Martje; Jansen, Anita
2012-01-01
A robust finding in the alcohol literature is that heavy and alcohol-dependent drinkers show stronger reactions to alcohol-related cues than light drinkers. However, there are individual differences in the degree of cue-elicited craving. Personality factors appear to be involved in cue reactivity and impulsivity is a possible candidate. The aim of the present study was to examine the role of different aspects of impulsivity in heavy drinking and alcohol cue reactivity in social drinkers. Participants were heavy (n = 13) and light (n = 29) social drinkers who were exposed to neutral and alcohol-related stimuli during a single laboratory session. Trait impulsivity, response inhibition, and sensitivity to reward were assessed with the Barratt Impulsiveness Scale (BIS-11), the Stop Signal Task, and the Card-Arranging Reward Responsivity Objective Test, respectively. Heavy drinkers scored higher on trait impulsivity (BIS-11) than light drinkers. In addition, heavy drinkers reported elevated levels of craving for alcohol, but both in light and heavy drinkers, craving increased equally after exposure to alcohol cues. Impulsivity appeared to moderate this relation: heavy drinkers with ineffective response inhibition showed more craving to alcohol cues, compared to heavy drinkers with adequate response inhibition. In light drinkers, response inhibition did not influence craving to alcohol cues. Different aspects of impulsivity are involved in heavy drinking and perhaps motivate alcohol consumption in a variety of ways. Having a deficient response inhibition appears to be a risk factor for heavy drinkers because it is associated with increased craving to alcohol cues.
Impulsivity modulates performance under response uncertainty in a reaching task.
Tzagarakis, C; Pellizzer, G; Rogers, R D
2013-03-01
We sought to explore the interaction of the impulsivity trait with response uncertainty. To this end, we used a reaching task (Pellizzer and Hedges in Exp Brain Res 150:276-289, 2003) where a motor response direction was cued at different levels of uncertainty (1 cue, i.e., no uncertainty, 2 cues or 3 cues). Data from 95 healthy adults (54 F, 41 M) were analysed. Impulsivity was measured using the Barratt Impulsiveness Scale version 11 (BIS-11). Behavioral variables recorded were reaction time (RT), errors of commission (referred to as 'early errors') and errors of precision. Data analysis employed generalised linear mixed models and generalised additive mixed models. For the early errors, there was an interaction of impulsivity with uncertainty and gender, with increased errors for high impulsivity in the one-cue condition for women and the three-cue condition for men. There was no effect of impulsivity on precision errors or RT. However, the analysis of the effect of RT and impulsivity on precision errors showed a different pattern for high versus low impulsives in the high uncertainty (3 cue) condition. In addition, there was a significant early error speed-accuracy trade-off for women, primarily in low uncertainty and a 'reverse' speed-accuracy trade-off for men in high uncertainty. These results extend those of past studies of impulsivity which help define it as a behavioural trait that modulates speed versus accuracy response styles depending on environmental constraints and highlight once more the importance of gender in the interplay of personality and behaviour.
Derrick, Jaye L.; Houston, Rebecca J.; Quigley, Brian M.; Testa, Maria; Kubiak, Audrey; Levitt, Ash; Homish, Gregory G.; Leonard, Kenneth E.
2016-01-01
Impulsivity is negatively associated with relationship satisfaction, but whether relationship functioning is harmed or helped when both partners are high in impulsivity is unclear. The influence of impulsivity might be exacerbated (the Volatility Hypothesis) or reversed (the Compatibility Hypothesis). Alternatively, discrepancies in impulsivity might be particularly problematic (the Incompatibility Hypothesis). Behavioral and self-report measures of impulsivity were collected from a community sample of couples. Mixed effect polynomial regressions with response surface analysis provide evidence in favor of both the Compatibility Hypothesis and the Incompatibility Hypothesis, but not the Volatility Hypothesis. Mediation analyses suggest results for satisfaction are driven by perceptions of the partner's negative behavior and responsiveness. Implications for the study of both impulsivity and relationship functioning are discussed. PMID:26949275
Subjective field study of response to impulsive helicopter noise
NASA Technical Reports Server (NTRS)
Powell, C. A.
1981-01-01
Subjects, located outdoors and indoors, judged the noisiness and other subjective noise characteristics of flyovers of two helicopters and a propeller driven airplane as part of a study of the effects of impulsiveness on the subjective response to helicopter noise. In the first experiment, the impulsive characteristics of one helicopter was controlled by varying the main rotor speed while maintaining a constant airspeed in level flight. The second experiment which utilized only the helicopters, included descent and level flight operations. The more impulsive helicopter was consistently judged less noisy than the less impulsive helicopter at equal effective perceived noise levels (EPNL). The ability of EPNL to predict noisiness was not improved by the addition of either of two proposed impulse corrections. A subjective measure of impulsiveness, however, which was not significantly related to the proposed impulse corrections, was found to improve the predictive ability of EPNL.
Zhao, Anbang; Zeng, Caigao; Hui, Juan; Ma, Lin; Bi, Xuejie
2017-01-01
This paper proposes a composite channel virtual time reversal mirror (CCVTRM) for vertical sensor array (VSA) processing and applies it to long-range underwater acoustic (UWA) communication in shallow water. Because of weak signal-to-noise ratio (SNR), it is unable to accurately estimate the channel impulse response of each sensor of the VSA, thus the traditional passive time reversal mirror (PTRM) cannot perform well in long-range UWA communication in shallow water. However, CCVTRM only needs to estimate the composite channel of the VSA to accomplish time reversal mirror (TRM), which can effectively mitigate the inter-symbol interference (ISI) and reduce the bit error rate (BER). In addition, the calculation of CCVTRM is simpler than traditional PTRM. An UWA communication experiment using a VSA of 12 sensors was conducted in the South China Sea. The experiment achieves a very low BER communication at communication rate of 66.7 bit/s over an 80 km range. The results of the sea trial demonstrate that CCVTRM is feasible and can be applied to long-range UWA communication in shallow water. PMID:28653976
Impaired Decisional Impulsivity in Pathological Videogamers
Irvine, Michael A.; Worbe, Yulia; Bolton, Sorcha; Harrison, Neil A.; Bullmore, Edward T.; Voon, Valerie
2013-01-01
Background Pathological gaming is an emerging and poorly understood problem. Impulsivity is commonly impaired in disorders of behavioural and substance addiction, hence we sought to systematically investigate the different subtypes of decisional and motor impulsivity in a well-defined pathological gaming cohort. Methods Fifty-two pathological gaming subjects and age-, gender- and IQ-matched healthy volunteers were tested on decisional impulsivity (Information Sampling Task testing reflection impulsivity and delay discounting questionnaire testing impulsive choice), and motor impulsivity (Stop Signal Task testing motor response inhibition, and the premature responding task). We used stringent diagnostic criteria highlighting functional impairment. Results In the Information Sampling Task, pathological gaming participants sampled less evidence prior to making a decision and scored fewer points compared with healthy volunteers. Gaming severity was also negatively correlated with evidence gathered and positively correlated with sampling error and points acquired. In the delay discounting task, pathological gamers made more impulsive choices, preferring smaller immediate over larger delayed rewards. Pathological gamers made more premature responses related to comorbid nicotine use. Greater number of hours played also correlated with a Motivational Index. Greater frequency of role playing games was associated with impaired motor response inhibition and strategy games with faster Go reaction time. Conclusions We show that pathological gaming is associated with impaired decisional impulsivity with negative consequences in task performance. Decisional impulsivity may be a potential target in therapeutic management. PMID:24146789
Impulsivity Moderates Subjective Responses to Alcohol in Alcohol-Dependent Individuals.
Westman, Jonathan G; Bujarski, Spencer; Ray, Lara A
2017-03-09
Studies of social drinkers indicate that subjective response (SR) to alcohol and impulsivity are risk factors for the development of alcohol use disorder which may be related. It is unclear, however, whether there are significant relationships between SR and impulsivity among individuals with alcohol dependence. Using data from an intravenous (IV) alcohol challenge study, the present study is the first to explore the relationship between impulsivity and SR during alcohol administration among alcohol-dependent individuals. Non-treatment-seeking, alcohol-dependent individuals (N = 42) completed the Delay Discounting Task to measure impulsivity and then completed two counterbalanced, placebo-controlled IV alcohol administration sessions, which included assessments of SR at breath alcohol concentration (BrAC) levels of 0.00, 0.02, 0.04 and 0.06 g/dl. Analyses revealed that more impulsive participants experienced higher subjective stimulation and positive mood in response to rising BrACs as compared to less impulsive individuals. More impulsive participants also experienced increased sedation over time regardless of condition (i.e. alcohol vs. saline). These findings suggest that among alcohol-dependent individuals, impulsivity is positively associated with the hedonic effects of alcohol as compared to placebo. High impulsivity may characterize a subset of alcohol-dependent individuals who drink to experience the rewarding effects of alcohol. © The Author 2016. Medical Council on Alcohol and Oxford University Press. All rights reserved.
Dopamine Gene Profiling to Predict Impulse Control and Effects of Dopamine Agonist Ropinirole.
MacDonald, Hayley J; Stinear, Cathy M; Ren, April; Coxon, James P; Kao, Justin; Macdonald, Lorraine; Snow, Barry; Cramer, Steven C; Byblow, Winston D
2016-07-01
Dopamine agonists can impair inhibitory control and cause impulse control disorders for those with Parkinson disease (PD), although mechanistically this is not well understood. In this study, we hypothesized that the extent of such drug effects on impulse control is related to specific dopamine gene polymorphisms. This double-blind, placebo-controlled study aimed to examine the effect of single doses of 0.5 and 1.0 mg of the dopamine agonist ropinirole on impulse control in healthy adults of typical age for PD onset. Impulse control was measured by stop signal RT on a response inhibition task and by an index of impulsive decision-making on the Balloon Analogue Risk Task. A dopamine genetic risk score quantified basal dopamine neurotransmission from the influence of five genes: catechol-O-methyltransferase, dopamine transporter, and those encoding receptors D1, D2, and D3. With placebo, impulse control was better for the high versus low genetic risk score groups. Ropinirole modulated impulse control in a manner dependent on genetic risk score. For the lower score group, both doses improved response inhibition (decreased stop signal RT) whereas the lower dose reduced impulsiveness in decision-making. Conversely, the higher score group showed a trend for worsened response inhibition on the lower dose whereas both doses increased impulsiveness in decision-making. The implications of the present findings are that genotyping can be used to predict impulse control and whether it will improve or worsen with the administration of dopamine agonists.
Effects of smoking abstinence on impulsive behavior among smokers high and low in ADHD-like symptoms
Hawk, Larry W.
2011-01-01
Rationale Impulsivity, a multifaceted construct that includes inhibitory control and heightened preference for immediate reward, is central to models of drug use and abuse. Within a self-medication framework, abstinence from smoking may lead to an increase in impulsive behavior and the likelihood of relapse, particularly among persons with disorders (e.g., attention-deficit/hyperactivity disorder, ADHD) and personality traits (e.g., impulsivity) linked to impulsive behavior. Objectives This study aimed to examine the effects of smoking abstinence on multiple measures of impulsivity among a non-clinical sample of adult smokers selected for high and low levels of ADHD symptoms. Methods In a within-subjects design, participants selected for high or low levels of self-reported ADHD symptoms (N=56) completed sessions following overnight abstinence and when smoking as usual (order counterbalanced). Measures of impulsive behavior included response inhibition (i.e., stop signal task), interference control (i.e., attentional modification of prepulse inhibition (PPI) of startle), and impulsive choice (i.e., hypothetical delay discounting). Results As hypothesized, abstinence decreased response inhibition and PPI. Although ADHD symptoms moderated abstinence effects on impulsive choice and response inhibition, the pattern was opposite to our predictions: the low-ADHD group responded more impulsively when abstinent, whereas the high-ADHD group was relatively unaffected by abstinence. Conclusions These findings highlight the importance of utilizing multiple laboratory measures to examine a multifactorial construct such as impulsive behavior and raise questions about how best to assess symptoms of ADHD and impulsivity among non-abstinent smokers. PMID:21559802
Khurana, Atika; Romer, Daniel; Betancourt, Laura M.; Brodsky, Nancy L.; Giannetta, Joan M.; Hurt, Hallam
2015-01-01
This study examined the prospective influence of adolescent working memory (WM) on changes in impulsivity and sexual risk taking and assessed whether this relation could be explained by confounding effects of parental influences. Data from 360 community adolescents (Mage=13.5±0.95years; 52% female; 56% non-Hispanic White; low-mid SES; recruited from Philadelphia area in 2004–2005) were analyzed using structural equation modeling to predict changes in impulsivity and sexual risk taking over a two-year follow-up, using baseline assessments of WM, parental monitoring, parental involvement, and socioeconomic status. Stronger WM predicted reduced involvement in sexual risk taking at follow-up, effects channeled through changes in impulsivity dimensions of ‘acting without thinking’ and ‘inability to delay gratification’. Parental variables had a protective influence on adolescent impulsivity and risk involvement, but the effects of WM operated independently of parental influences. PMID:26081926
Hichri, Echrak; Abriel, Hugues; Kucera, Jan P
2018-02-15
It has been proposed that ephaptic conduction, relying on interactions between the sodium (Na + ) current and the extracellular potential in intercalated discs, might contribute to cardiac conduction when gap junctional coupling is reduced, but this mechanism is still controversial. In intercalated discs, Na + channels form clusters near gap junction plaques, but the functional significance of these clusters has never been evaluated. In HEK cells expressing cardiac Na + channels, we show that restricting the extracellular space modulates the Na + current, as predicted by corresponding simulations accounting for ephaptic effects. In a high-resolution model of the intercalated disc, clusters of Na + channels that face each other across the intercellular cleft facilitate ephaptic impulse transmission when gap junctional coupling is reduced. Thus, our simulations reveal a functional role for the clustering of Na + channels in intercalated discs, and suggest that rearrangement of these clusters in disease may influence cardiac conduction. It has been proposed that ephaptic interactions in intercalated discs, mediated by extracellular potentials, contribute to cardiac impulse propagation when gap junctional coupling is reduced. However, experiments demonstrating ephaptic effects on the cardiac Na + current (I Na ) are scarce. Furthermore, Na + channels form clusters around gap junction plaques, but the electrophysiological significance of these clusters has never been investigated. In patch clamp experiments with HEK cells stably expressing human Na v 1.5 channels, we examined how restricting the extracellular space modulates I Na elicited by an activation protocol. In parallel, we developed a high-resolution computer model of the intercalated disc to investigate how the distribution of Na + channels influences ephaptic interactions. Approaching the HEK cells to a non-conducting obstacle always increased peak I Na at step potentials near the threshold of I Na activation and decreased peak I Na at step potentials far above threshold (7 cells, P = 0.0156, Wilcoxon signed rank test). These effects were consistent with corresponding control simulations with a uniform Na + channel distribution. In the intercalated disc computer model, redistributing the Na + channels into a central cluster of the disc potentiated ephaptic effects. Moreover, ephaptic impulse transmission from one cell to another was facilitated by clusters of Na + channels facing each other across the intercellular cleft when gap junctional coupling was reduced. In conclusion, our proof-of-principle experiments demonstrate that confining the extracellular space modulates cardiac I Na , and our simulations reveal the functional role of the aggregation of Na + channels in the perinexus. These findings highlight novel concepts in the physiology of cardiac excitation. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Phase-Locked Optical Generation of mmW/THz Signals
2009-11-01
22 6.2. TIA (Trans-Impedance Amplifier ...24 6.3. Variable gain Amplifier ...loop architectures. Generate models including detector impulse response, feedback amplifier impulse response and laser current tuning response
NASA Astrophysics Data System (ADS)
Chou, Y. C.
2018-04-01
The asymmetry in the two-layered ring structure of helicases and the random thermal fluctuations of the helicase and DNA molecules are considered as the bases for the generation of the force required for translocation of the ring-shaped helicase on DNA. The helicase comprises a channel at its center with two unequal ends, through which strands of DNA can pass. The random collisions between the portion of the DNA strand in the central channel and the wall of the channel generate an impulsive force toward the small end. This impulsive force is the starting point for the helicase to translocate along the DNA with the small end in front. Such a physical mechanism may serve as a complementary for the chemomechanical mechanism of the translocation of helicase on DNA. When the helicase arrives at the junction of ssDNA and dsDNA (a fork), the collision between the helicase and the closest base pair may produce a sufficient impulsive force to break the weak hydrogen bond of the base pair. Thus, the helicase may advance and repeat the process of unwinding the dsDNA strand. This mechanism was tested in a macroscopic simulation system where the helicase was simulated using a truncated-cone structure and DNA was simulated with bead chains. Many features of translocation and unwinding such as translocation on ssDNA and dsDNA, unwinding of dsDNA, rewinding, strand switching, and Holliday junction resolution were reproduced.
NASA Astrophysics Data System (ADS)
Gaydecki, Patrick; Fernandes, Bosco
2003-11-01
A fast digital signal processing (DSP) system is described that can perform real-time emulation of a wide variety of linear audio-bandwidth systems and networks, such as reverberant spaces, musical instrument bodies and very high order filter networks. The hardware design is based upon a Motorola DSP56309 operating at 110 million multiplication-accumulations per second and a dual-channel 24 bit codec with a maximum sampling frequency of 192 kHz. High level software has been developed to express complex vector frequency responses as both infinite impulse response (IIR) and finite impulse response (FIR) coefficients, in a form suitable for real-time convolution by the firmware installed in the DSP system memory. An algorithm has also been devised to express IIR filters as equivalent FIR structures, thereby obviating the potential instabilities associated with recursive equations and negating the traditional deficiencies of FIR filters respecting equivalent analogue designs. The speed and dynamic range of the system is such that, when sampling at 48 kHz, the frequency response can be specified to a spectral precision of 22 Hz when sampling at 10 kHz, this resolution increases to 0.9 Hz. Moreover, it is also possible to control the phase of any frequency band with a theoretical precision of 10-5 degrees in all cases. The system has been applied in the study of analogue filter networks, real-time Hilbert transformation, phase-shift systems and musical instrument body emulation, where it is providing valuable new insights into the understanding of psychoacoustic mechanisms.
Dela Peña, Ike; Dela Peña, Irene Joy; de la Peña, June Bryan; Kim, Hee Jin; Shin, Chan Young; Han, Doug Hyun; Kim, Bung-Nyun; Ryu, Jong Hoon; Cheong, Jae Hoon
2017-09-01
Impulsivity, the predisposition to act prematurely without foresight, is associated with a number of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). Identifying genetic underpinnings of impulsive behavior may help decipher the complex etiology and neurobiological factors of disorders marked by impulsivity. To identify potential genetic factors of impulsivity, we examined common differentially expressed genes (DEGs) in the prefrontal cortex (PFC) of adolescent SHR/NCrl and Wistar rats, which showed marked decrease in preference for the large but delayed reward, compared with WKY/NCrl rats, in the delay discounting task. Of these DEGs, we examined drug-responsive transcripts whose mRNA levels were altered following treatment (in SHR/NCrl and Wistar rats) with drugs that alleviate impulsivity, namely, the ADHD medications methylphenidate and atomoxetine. Prefrontal cortical genetic overlaps between SHR/NCrl and Wistar rats in comparison with WKY/NCrl included genes associated with transcription (e.g., Btg2, Fos, Nr4a2), synaptic plasticity (e.g., Arc, Homer2), and neuron apoptosis (Grik2, Nmnat1). Treatment with methylphenidate and/or atomoxetine increased choice of the large, delayed reward in SHR/NCrl and Wistar rats and changed, in varying degrees, mRNA levels of Nr4a2, Btg2, and Homer2, genes with previously described roles in neuropsychiatric disorders characterized by impulsivity. While further studies are required, we dissected potential genetic factors that may influence impulsivity by identifying genetic overlaps in the PFC of "impulsive" SHR/NCrl and Wistar rats. Notably, these are also drug-responsive transcripts which may be studied further as biomarkers to predict response to ADHD drugs, and as potential targets for the development of treatments to improve impulsivity.
NASA Technical Reports Server (NTRS)
Grody, N. C.
1973-01-01
Linear and nonlinear responses of a magnetoplasma resulting from inhomogeneity in the background plasma density are studied. The plasma response to an impulse electric field was measured and the results are compared with the theory of an inhomogeneous cold plasma. Impulse responses were recorded for the different plasma densities, static magnetic fields, and neutral pressures and generally appeared as modulated, damped oscillations. The frequency spectra of the waveforms consisted of two separated resonance peaks. For weak excitation, the results correlate with the linear theory of a cold, inhomogeneous, cylindrical magnetoplasma. The damping mechanism is identified with that of phase mixing due to inhomogeneity in plasma density. With increasing excitation voltage, the nonlinear impulse responses display stronger damping and a small increase in the frequency of oscillation.
Sanabria, Federico; Killeen, Peter R
2008-01-01
Background The inability to inhibit reinforced responses is a defining feature of ADHD associated with impulsivity. The Spontaneously Hypertensive Rat (SHR) has been extolled as an animal model of ADHD, but there is no clear experimental evidence of inhibition deficits in SHR. Attempts to demonstrate these deficits may have suffered from methodological and analytical limitations. Methods We provide a rationale for using two complementary response-withholding tasks to doubly dissociate impulsivity from motivational and motor processes. In the lever-holding task (LHT), continual lever depression was required for a minimum interval. Under a differential reinforcement of low rates schedule (DRL), a minimum interval was required between lever presses. Both tasks were studied using SHR and two normotensive control strains, Wistar-Kyoto (WKY) and Long Evans (LE), over an overlapping range of intervals (1 – 5 s for LHT and 5 – 60 s for DRL). Lever-holding and DRL performance was characterized as the output of a mixture of two processes, timing and iterative random responding; we call this account of response inhibition the Temporal Regulation (TR) model. In the context of TR, impulsivity was defined as a bias toward premature termination of the timed intervals. Results The TR model provided an accurate description of LHT and DRL performance. On the basis of TR parameter estimates, SHRs were more impulsive than LE rats across tasks and target times. WKY rats produced substantially shorter timed responses in the lever-holding task than in DRL, suggesting a motivational or motor deficit. The precision of timing by SHR, as measured by the variance of their timed intervals, was excellent, flouting expectations from ADHD research. Conclusion This research validates the TR model of response inhibition and supports SHR as an animal model of ADHD-related impulsivity. It indicates, however, that SHR's impulse-control deficit is not caused by imprecise timing. The use of ad hoc impulsivity metrics and of WKY as control strain for SHR impulsivity are called into question. PMID:18261220
Spatio-Temporal Dynamics of Impulse Responses to Figure Motion in Optic Flow Neurons
Lee, Yu-Jen; Jönsson, H. Olof; Nordström, Karin
2015-01-01
White noise techniques have been used widely to investigate sensory systems in both vertebrates and invertebrates. White noise stimuli are powerful in their ability to rapidly generate data that help the experimenter decipher the spatio-temporal dynamics of neural and behavioral responses. One type of white noise stimuli, maximal length shift register sequences (m-sequences), have recently become particularly popular for extracting response kernels in insect motion vision. We here use such m-sequences to extract the impulse responses to figure motion in hoverfly lobula plate tangential cells (LPTCs). Figure motion is behaviorally important and many visually guided animals orient towards salient features in the surround. We show that LPTCs respond robustly to figure motion in the receptive field. The impulse response is scaled down in amplitude when the figure size is reduced, but its time course remains unaltered. However, a low contrast stimulus generates a slower response with a significantly longer time-to-peak and half-width. Impulse responses in females have a slower time-to-peak than males, but are otherwise similar. Finally we show that the shapes of the impulse response to a figure and a widefield stimulus are very similar, suggesting that the figure response could be coded by the same input as the widefield response. PMID:25955416
Mahoney, Megan K; Silveira, Mason M; Olmstead, Mary C
2013-12-01
Impulsive action is mediated through several neurochemical systems, although it is not clear which role each of these plays in the inability to withhold inappropriate responses. Manipulations of the opioid system alter impulsive action in rodents, although the effects are not consistent across tasks. Previously, we speculated that these discrepancies reflect differences in the cognitive mechanisms that control responding in each task. We investigated whether the effect of morphine, a mu opioid receptor (MOR) agonist, on impulsive action depends on the ability of the subjects to time the interval during which they must inhibit a response. Male Long-Evans rats were trained in a response inhibition (RI) task to withhold responding for sucrose during a 4- or 60-s delay; impulsive action was assessed as increased responding during the delay. The rats were tested following an injection of morphine (0, 1, 3, 6 mg/kg). In a subsequent experiment, the effects of morphine (6 mg/kg) plus the MOR antagonist naloxone (0, 0.3, 1, 3 mg/kg) were investigated. Morphine increased impulsive action, but had different effects in the two conditions: the drug increased the proportion of premature responses as the 4-s interval progressed and produced a general increase in responding across the 60-s interval. Naloxone blocked all morphine-induced effects. The finding that morphine increases impulsive action in a fixed-delay RI task contrasts with our previous evidence which shows no effect in the same task with a variable delay. Thus, MORs disrupt impulsive action only when rats can predict the delay to respond.
Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank
NASA Astrophysics Data System (ADS)
Sengupta, Arindam; Madanayake, Arjuna; Gómez-García, Roberto; Engeberg, Erik D.
2014-05-01
Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is achieved without use of polyphase signal processing or time-interleaved ADC methods. That is, all digital processors operate at the same Fclk clock frequency without phasing, while wideband operation is achieved by sub-sampling of narrower sub-bands at the the RF channelizer outputs.
Effects of Acoustic Impulses on the Middle Ear
2015-10-01
and civilian law enforcement weapon systems, civilian recreational hunting and shooting, and industrial high-level impulsive noises (impacts and...PERSON USAMRMC a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE Unclassified 19b. TELEPHONE NUMBER (include area code) Standard Form...impulsive noises (impacts and impulses). Keywords: Noise exposure; hearing loss, noise -induced; impulsive noise ; reflex; conditioned response
2009-04-16
the transmitted waveform, then spectral mask, notch line of Arbitrary Notch Filter , the designed waveforms and multipath impulse response represented...400 Frequence (MHz) Figure 5.4: Spectral mask, notch line of Arbitrary Notch Filter , the designed waveforms and multipath impulse response...600 Frequence (MHz) Figure 5.7: Spectral mask, notch line of Arbitrary Notch Filter , the designed waveforms and multipath impulse response
Swann, Alan C; Dougherty, Donald M; Pazzaglia, Peggy J; Pham, Mary; Steinberg, Joel L; Moeller, F Gerard
2005-09-01
Impulsivity is a prominent and measurable characteristic of bipolar disorder that can contribute to risk for suicidal behavior. The purpose of this study was to investigate the relationship between impulsivity and severity of past suicidal behavior, a potential predictor of eventual suicide, in patients with bipolar disorder. In bipolar disorder subjects with either a definite history of attempted suicide or no such history, impulsivity was assessed with both a questionnaire (Barratt Impulsiveness Scale) and behavioral laboratory performance measures (immediate memory/delayed memory tasks). Diagnosis was determined with the Structured Clinical Interview for DSM-IV. Interviews of patients and review of records were used to determine the number of past suicide attempts and the medical severity of the most severe attempt. Subjects with a history of suicide attempts had more impulsive errors on the immediate memory task and had shorter response latencies, especially for impulsive responses. Impulsivity was highest in subjects with the most medically severe suicide attempts. Effects were not accounted for by presence of depression or mania at the time of testing. Barratt Impulsiveness Scale scores were numerically, but not significantly, higher in subjects with suicide attempts. A history of alcohol abuse was associated with greater probability of a suicide attempt. Multivariate analysis showed that ethanol abuse history and clinical state at the time of testing did not have a significant effect after impulsivity was taken into account. These results suggest that a history of severe suicidal behavior in patients with bipolar disorder is associated with impulsivity, manifested as a tendency toward rapid, unplanned responses.
Thermal impulse response and the temperature preference of Escherichia coli
NASA Astrophysics Data System (ADS)
Ryu, William
2010-03-01
From a broad perspective, exposure to environmental temperature changes is a universal condition of living organisms. Escherichia coli is a powerful model system to study how a biochemical network measures and processes thermal information to produce adaptive changes in behavior. E. coli performs thermotaxis, directing its movements to a preferred temperature in spatial thermal gradients. How does the system perform thermotaxis? Where biologically is this analog value of thermal preference stored? Previous studies using populations of cells have shown that E.coli accumulate in spatial thermal gradients, but these experiments did not cleanly separate thermal responses from chemotactic responses. Here we have isolated the thermal behavior by studying the thermal impulse response of single, tethered cells. The motor output of cells was measured in response to small, impulsive increases in temperature, delivered by an infrared laser, over a range of ambient temperature (23 to 43 degrees C). The thermal impulse response at temperatures < 31 degrees C is similar to the chemotactic impulse response: both follow a similar time course, share the same directionality, and show biphasic characteristics. At temperatures > 31 degrees C, some cells show an inverted response, switching from warm- to cold-seeking behavior. The fraction of inverted responses increases nonlinearly with temperature, switching steeply at the preferred temperature of 37 degrees C.
Nakamura, K; Kurasawa, M; Shirane, M
2000-04-17
The study aimed to ascertain the involvement of central AMPA receptors in impulsive behaviors of aged rats and to examine the effects of aniracetam. Premature response in the two-lever choice reaction task was assessed as an index of impulsivity. Intracerebroventricular injection of 2, 3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX), an AMPA receptor antagonist, dose-dependently (10.1-1009 ng/rat) increased only premature response without altering responding speed and choice accuracy 30 min after the injection. Aniracetam (30 mg/kg p.o.), a positive allosteric modulator of AMPA receptors, or AMPA (55.9 ng/rat, co-injected with NBQX) completely restored the NBQX-induced increase in impulsivity. These results indicate that AMPA receptors are tonically involved in the regulation of impulsivity.
Rich, P. Dylan; Nevado-Holgado, Alejo J.; Fernando, Anushka B. P.; Van Dijck, Gert; Holzhammer, Tobias; Paul, Oliver; Ruther, Patrick; Paulsen, Ole; Robbins, Trevor W.; Dalley, Jeffrey W.
2014-01-01
Actions expressed prematurely without regard for their consequences are considered impulsive. Such behaviour is governed by a network of brain regions including the prefrontal cortex (PFC) and nucleus accumbens (NAcb) and is prevalent in disorders including attention deficit hyperactivity disorder (ADHD) and drug addiction. However, little is known of the relationship between neural activity in these regions and specific forms of impulsive behaviour. In the present study we investigated local field potential (LFP) oscillations in distinct sub-regions of the PFC and NAcb on a 5-choice serial reaction time task (5-CSRTT), which measures sustained, spatially-divided visual attention and action restraint. The main findings show that power in gamma frequency (50–60 Hz) LFP oscillations transiently increases in the PFC and NAcb during both the anticipation of a cue signalling the spatial location of a nose-poke response and again following correct responses. Gamma oscillations were coupled to low-frequency delta oscillations in both regions; this coupling strengthened specifically when an error response was made. Theta (7–9 Hz) LFP power in the PFC and NAcb increased during the waiting period and was also related to response outcome. Additionally, both gamma and theta power were significantly affected by upcoming premature responses as rats waited for the visual cue to respond. In a subgroup of rats showing persistently high levels of impulsivity we found that impulsivity was associated with increased error signals following a nose-poke response, as well as reduced signals of previous trial outcome during the waiting period. Collectively, these in-vivo neurophysiological findings further implicate the PFC and NAcb in anticipatory impulsive responses and provide evidence that abnormalities in the encoding of rewarding outcomes may underlie trait-like impulsive behaviour. PMID:25333512
Weafer, Jessica; Dzemidzic, Mario; Eiler, William; Oberlin, Brandon G.; Wang, Yang; Kareken, David A.
2015-01-01
Trait impulsivity and poor inhibitory control are well-established risk factors for alcohol misuse, yet little is known about the associated neurobiological endophenotypes. Here we examined correlations among brain physiology and self-reported trait impulsive behavior, impaired control over drinking, and a behavioral measure of response inhibition. A sample of healthy drinkers (n=117) completed a pulsed arterial spin labeling (PASL) scan to quantify resting regional cerebral blood flow (rCBF), and measures of self-reported impulsivity (Eysenck I7 Impulsivity scale) and impaired control over drinking. A subset of subjects (n=40) performed a stop signal task during blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging to assess brain regions involved in response inhibition. Eysenck I7 scores were inversely related to blood flow in the right precentral gyrus. Significant BOLD activation during response inhibition occurred in an overlapping right frontal motor/premotor region. Moreover, impaired control over drinking was associated with reduced BOLD response in the same region. These findings suggest that impulsive personality and impaired control over drinking are associated with brain physiology in areas implicated in response inhibition. This is consistent with the idea that difficulty controlling behavior is due in part to impairment in motor restraint systems. PMID:26065376
NASA Astrophysics Data System (ADS)
Wang, Xi; Yang, Bintang; Yu, Hu; Gao, Yulong
2017-04-01
The impulse excitation of mechanism causes transient vibration. In order to achieve adaptive transient vibration control, a method which can exactly model the response need to be proposed. This paper presents an analytical model to obtain the response of the primary system attached with dynamic vibration absorber (DVA) under impulse excitation. The impulse excitation which can be divided into single-impulse excitation and multi-impulse excitation is simplified as sinusoidal wave to establish the analytical model. To decouple the differential governing equations, a transform matrix is applied to convert the response from the physical coordinate to model coordinate. Therefore, the analytical response in the physical coordinate can be obtained by inverse transformation. The numerical Runge-Kutta method and experimental tests have demonstrated the effectiveness of the analytical model proposed. The wavelet of the response indicates that the transient vibration consists of components with multiple frequencies, and it shows that the modeling results coincide with the experiments. The optimizing simulations based on genetic algorithm and experimental tests demonstrate that the transient vibration of the primary system can be decreased by changing the stiffness of the DVA. The results presented in this paper are the foundations for us to develop the adaptive transient vibration absorber in the future.
Ocean Variability Effects on Underwater Acoustic Communications
2007-09-30
sea surface was rougher. To recover the transmitted symbols which have been passed through the time-varying multi-path acoustic channels, a new ...B is about 6 dB higher than that during enviromental case A. Due to the large aperture and deployment range of the MPL array, the channel impulse...environmental fluctuations and the performance of coherent underwater acoustic communications presents new insights into the operational effectiveness of
Venables, Noah C.; Patrick, Christopher J.; Hall, Jason R.; Bernat, Edward M.
2011-01-01
Impulsive-aggressive individuals exhibit deficits in amplitude of the P3 brain potential response, however, it remains unclear how separable dispositional traits account for this association. The current study sought to clarify the basis of this association by examining contributions of trait impulsiveness and stress reactivity to the observed relationship between dispositional aggression and amplitude of the P3 brain potential response in a visual novelty-oddball procedure. A significant negative association was found between aggressiveness and amplitude of P3 response to both target and novel stimuli over frontal-central scalp sites. Impulsivity showed a parallel inverse relationship with P3 amplitude, attributable to its overlap with dispositional aggression. In contrast, stress reactivity did not exhibit a zero-order association with P3 amplitude, but modestly predicted P3 in a positive direction after accounting for its overlap with aggression. Results are discussed in terms of their implications for individual difference variables and brain processes underlying impulsive-aggressive behavior. PMID:21262318
Soshi, Takahiro; Ando, Kumiko; Noda, Takamasa; Nakazawa, Kanako; Tsumura, Hideki; Okada, Takayuki
2014-01-01
Post-error slowing (PES) is an error recovery strategy that contributes to action control, and occurs after errors in order to prevent future behavioral flaws. Error recovery often malfunctions in clinical populations, but the relationship between behavioral traits and recovery from error is unclear in healthy populations. The present study investigated the relationship between impulsivity and error recovery by simulating a speeded response situation using a Go/No-go paradigm that forced the participants to constantly make accelerated responses prior to stimuli disappearance (stimulus duration: 250 ms). Neural correlates of post-error processing were examined using event-related potentials (ERPs). Impulsivity traits were measured with self-report questionnaires (BIS-11, BIS/BAS). Behavioral results demonstrated that the commission error for No-go trials was 15%, but PES did not take place immediately. Delayed PES was negatively correlated with error rates and impulsivity traits, showing that response slowing was associated with reduced error rates and changed with impulsivity. Response-locked error ERPs were clearly observed for the error trials. Contrary to previous studies, error ERPs were not significantly related to PES. Stimulus-locked N2 was negatively correlated with PES and positively correlated with impulsivity traits at the second post-error Go trial: larger N2 activity was associated with greater PES and less impulsivity. In summary, under constant speeded conditions, error monitoring was dissociated from post-error action control, and PES did not occur quickly. Furthermore, PES and its neural correlate (N2) were modulated by impulsivity traits. These findings suggest that there may be clinical and practical efficacy of maintaining cognitive control of actions during error recovery under common daily environments that frequently evoke impulsive behaviors.
Soshi, Takahiro; Ando, Kumiko; Noda, Takamasa; Nakazawa, Kanako; Tsumura, Hideki; Okada, Takayuki
2015-01-01
Post-error slowing (PES) is an error recovery strategy that contributes to action control, and occurs after errors in order to prevent future behavioral flaws. Error recovery often malfunctions in clinical populations, but the relationship between behavioral traits and recovery from error is unclear in healthy populations. The present study investigated the relationship between impulsivity and error recovery by simulating a speeded response situation using a Go/No-go paradigm that forced the participants to constantly make accelerated responses prior to stimuli disappearance (stimulus duration: 250 ms). Neural correlates of post-error processing were examined using event-related potentials (ERPs). Impulsivity traits were measured with self-report questionnaires (BIS-11, BIS/BAS). Behavioral results demonstrated that the commission error for No-go trials was 15%, but PES did not take place immediately. Delayed PES was negatively correlated with error rates and impulsivity traits, showing that response slowing was associated with reduced error rates and changed with impulsivity. Response-locked error ERPs were clearly observed for the error trials. Contrary to previous studies, error ERPs were not significantly related to PES. Stimulus-locked N2 was negatively correlated with PES and positively correlated with impulsivity traits at the second post-error Go trial: larger N2 activity was associated with greater PES and less impulsivity. In summary, under constant speeded conditions, error monitoring was dissociated from post-error action control, and PES did not occur quickly. Furthermore, PES and its neural correlate (N2) were modulated by impulsivity traits. These findings suggest that there may be clinical and practical efficacy of maintaining cognitive control of actions during error recovery under common daily environments that frequently evoke impulsive behaviors. PMID:25674058
NASA Astrophysics Data System (ADS)
Wang, Wei; Raulefs, Ronald; Jost, Thomas
2017-12-01
The design of a maritime communication system requires the understanding of the wireless propagation channel above the sea. For broadband communication systems, a carrier frequency in the C-band is of interest because of allocatable spectrum. Therefore, the German Aerospace Center performed a long-distance channel measurement campaign at 5.2 GHz on the North sea to investigate large and small-scale fading characteristics. The results show that our measurement data conforms with the ITU-R and the Bullington's path loss model to predict the power loss caused by diffraction over the Earth's surface. Further, the first tap of the channel impulse response experiences Rician fading due to superposition of a strong line-of-sight (LoS) path and multipath components originating from the sea surface and ship body. We found that the fading of the second tap follows a Rician distribution, but with a much smaller K-factor compared to the first tap. The K-factor showed a dependence on the distance between the transmitter and receiver. Particularly, the K-factor of the first tap decreases significantly when the distance between the transmitter and receiver is larger than the clearance distance of the first Fresnel zone. Therefore, we propose a distance-dependent K-factor model for the first and the second tap.
Response Inhibition Impairments Predict Alcohol-Induced Sedation
Shannon, Erin E.; Staniforth, Elizabeth R.; McNamara, Juliette; Bernosky-Smith, Kimberly A.; Liguori, Anthony
2011-01-01
Aims: The aim of this study was to probe the relationship between the subjective effects of alcohol and impulsive behavior in social drinkers. Methods: Fifty social drinkers performed a response-inhibition task before consuming alcohol. A 0.8-g/kg dose of alcohol was administered in a binge-like fashion (0.2 g/kg every 30 min) to the participants over a 2-h time period. Participants then completed questionnaires measuring stimulation, sedation and mood following consumption of alcohol. Linear regression analyses were performed by examining the relationship between performance on the response inhibition impulsivity task and subjective responses to alcohol (i.e. stimulation, sedation and arousal). Results: There was a significant positive relationship found between impulsive responding and self-reported sedation following alcohol consumption. Additionally, there was a significant negative relationship between behavioral impulsivity and self-reported stimulation and arousal following alcohol consumption. Conclusion: These results suggest that higher levels of impulsivity are associated with experiencing greater sedating than stimulating effects of alcohol. Individuals with high levels of impulsivity may be less sensitive to the stimulating effects of a specified dose of alcohol, which could lead to these individuals consuming more alcohol to experience the stimulating effects of alcohol. PMID:21127353
Patros, Connor H G; Alderson, R Matt; Kasper, Lisa J; Tarle, Stephanie J; Lea, Sarah E; Hudec, Kristen L
2016-02-01
Impulsive behavior is a core DSM-5 diagnostic feature of attention-deficit/hyperactivity disorder (ADHD) that is associated with several pejorative outcomes. Impulsivity is multidimensional, consisting of two sub-constructs: rapid-response impulsivity and reward-delay impulsivity (i.e., choice-impulsivity). While previous research has extensively examined the presence and implications of rapid-response impulsivity in children with ADHD, reviews of choice-impulsive behavior have been both sparse and relatively circumscribed. This review used meta-analytic methods to comprehensively examine between-group differences in choice-impulsivity among children and adolescents with and without ADHD. Twenty-eight tasks (from 26 studies), consisting of 4320 total children (ADHD=2360, TD=1,960), provided sufficient information to compute an overall between-group effect size for choice-impulsivity performance. Results revealed a medium-magnitude between-group effect size (g=.47), suggesting that children and adolescents with ADHD exhibited moderately increased impulsive decision-making compared to TD children and adolescents. Further, relative to the TD group, children and adolescents with ADHD exhibited similar patterns of impulsive decision-making across delay discounting and delay of gratification tasks. However, the use of single-informant diagnostic procedures relative to multiple informants yielded larger between-group effects, and a similar pattern was observed across samples that excluded females relative to samples that included females. Copyright © 2015 Elsevier Ltd. All rights reserved.
HAMILTON, KRISTEN R.; ANSELL, EMILY B.; REYNOLDS, BRADY; POTENZA, MARC N.; SINHA, RAJITA
2013-01-01
Stress and impulsivity contribute to alcohol use, and stress may also act via impulsivity to increase drinking behavior. Impulsivity represents a multi-faceted construct and self-report and behavioral assessments may effectively capture distinct clinically relevant factors. The present research investigated whether aspects of impulsivity mediate the effect of stress on alcohol use. A community-based sample of 192 men and women was assessed on measures of cumulative stress, alcohol use, self-reported impulsivity, and behavioral choice and response impulsivity. Data were analyzed using regression and bootstrapping techniques to estimate indirect effects of stress on drinking via impulsivity. Cumulative adversity exhibited both direct effects and indirect effects (via self-reported impulsivity) on drinking behavior. Additional models examining specific types of stress indicated direct and indirect effects of trauma and recent life events, and indirect effects of major life events and chronic stressors on drinking behavior. Overall, cumulative stress was associated with increased drinking behavior, and this effect was partially mediated by self-reported impulsivity. Self-reported impulsivity also mediated the effects of different types of stress on drinking behavior. These findings highlight the value of mediation models to examine the pathways through which different types of stress increase drinking behavior. Treatment and prevention strategies should focus on enhancing stress management and self-control. PMID:22376044
Hamilton, Kristen R; Ansell, Emily B; Reynolds, Brady; Potenza, Marc N; Sinha, Rajita
2013-01-01
Stress and impulsivity contribute to alcohol use, and stress may also act via impulsivity to increase drinking behavior. Impulsivity represents a multi-faceted construct and self-report and behavioral assessments may effectively capture distinct clinically relevant factors. The present research investigated whether aspects of impulsivity mediate the effect of stress on alcohol use. A community-based sample of 192 men and women was assessed on measures of cumulative stress, alcohol use, self-reported impulsivity, and behavioral choice and response impulsivity. Data were analyzed using regression and bootstrapping techniques to estimate indirect effects of stress on drinking via impulsivity. Cumulative adversity exhibited both direct effects and indirect effects (via self-reported impulsivity) on drinking behavior. Additional models examining specific types of stress indicated direct and indirect effects of trauma and recent life events, and indirect effects of major life events and chronic stressors on drinking behavior. Overall, cumulative stress was associated with increased drinking behavior, and this effect was partially mediated by self-reported impulsivity. Self-reported impulsivity also mediated the effects of different types of stress on drinking behavior. These findings highlight the value of mediation models to examine the pathways through which different types of stress increase drinking behavior. Treatment and prevention strategies should focus on enhancing stress management and self-control.
Impulsivity and Stress Response in Pathological Gamblers During the Trier Social Stress Test.
Maniaci, G; Goudriaan, A E; Cannizzaro, C; van Holst, R J
2018-03-01
Gambling has been associated with increased sympathetic nervous system output and stimulation of the hypothalamic-pituitary-adrenal axis. However it is unclear how these systems are affected in pathological gambling. This study aimed to investigate the effect of the Trier Social Stress Test (TSST) on cortisol and on cardiac interbeat intervals in relation to impulsivity, in a sample of male pathological gamblers compared to healthy controls. In addition, we investigated the correlation between the TSST, duration of the disorder and impulsivity. A total of 35 pathological gamblers and 30 healthy controls, ranging from 19 to 58 years old and all male, participated in this study. Stress response was measured during and after the TSST by salivary cortisol and cardiac interbeat intervals; impulsivity was assessed with the Barratt Impulsiveness Scale (BIS-11). Exposure to the TSST produced a significant increase in salivary cortisol and interbeat intervals in both groups, without differences between groups. We found a negative correlation between baseline cortisol and duration of pathological gambling indicating that the longer the duration of the disorder the lower the baseline cortisol levels. Additionally, we found a main effect of impulsivity across groups on interbeat interval during the TSST, indicating an association between impulsivity and the intensity of the neurovegetative stress response during the TSST. Involvement of the hypothalamic-pituitary-adrenal axis in pathological gambling was confirmed together with evidence of a correlation between length of the disorder and diminished baseline cortisol levels. Impulsivity emerged as a personality trait expressed by pathological gamblers; however the neurovegetative response to the TSST, although associated with impulsivity, appeared to be independent of the presence of pathological gambling.
Johnson, Sheri L; Tharp, Jordan A; Peckham, Andrew D; Carver, Charles S; Haase, Claudia M
2017-09-01
A growing empirical literature indicates that emotion-related impulsivity (compared to impulsivity that is unrelated to emotion) is particularly relevant for understanding a broad range of psychopathologies. Recent work, however, has differentiated two forms of emotion-related impulsivity: A factor termed Pervasive Influence of Feelings captures tendencies for emotions (mostly negative emotions) to quickly shape thoughts, and a factor termed Feelings Trigger Action captures tendencies for positive and negative emotions to quickly and reflexively shape behaviour and speech. This study used path modelling to consider links from emotion-related and non-emotion-related impulsivity to a broad range of psychopathologies. Undergraduates completed self-report measures of impulsivity, depression, anxiety, aggression, and substance use symptoms. A path model (N = 261) indicated specificity of these forms of impulsivity. Pervasive Influence of Feelings was related to anxiety and depression, whereas Feelings Trigger Action and non-emotion-related impulsivity were related to aggression and substance use. The findings of this study suggest that emotion-relevant impulsivity could be a potentially important treatment target for a set of psychopathologies. Recent work has differentiated two forms of emotion-related impulsivity. This study tests a multivariate path model linking emotion-related and non-emotion-related impulsivity with multiple forms of psychopathology. Impulsive thoughts in response to negative emotions were related to anxiety and depression. Impulsive actions in response to emotions were related to aggression and substance use, as did non-emotion-related impulsivity. The study was limited by the reliance on self-report measures of impulsivity and psychopathology. There is a need for longitudinal work on how these forms of impulsivity predict the onset and course of psychopathology. © 2017 The British Psychological Society.
Overweight in adolescent, psychiatric inpatients: A problem of general or food-specific impulsivity?
Deux, Natalie; Schlarb, Angelika A; Martin, Franziska; Holtmann, Martin; Hebebrand, Johannes; Legenbauer, Tanja
2017-05-01
Adolescent psychiatric patients are vulnerable to weight problems and show an overrepresentation of overweight compared to the healthy population. One potential factor that can contribute to the etiology of overweight is higher impulsivity. As of yet, it is unclear whether it is a general impulse control deficit or weight-related aspects such as lower impulse control in response to food that have an impact on body weight. As this may have therapeutic implications, the current study investigated differences between overweight and non-overweight adolescent psychiatric inpatients (N = 98; aged 12-20) in relation to trait impulsivity and behavioral inhibition performance. The Barratt Impulsiveness Scale and two go/no-go paradigms with neutral and food-related stimulus materials were applied. Results indicated no significant differences concerning trait impulsivity, but revealed that overweight inpatients had significantly more difficulties in inhibition performance (i.e. they reacted more impulsively) in response to both food and neutral stimuli compared to non-overweight inpatients. Furthermore, no specific inhibition deficit for high-caloric vs. low-caloric food cues emerged in overweight inpatients, whereas non-overweight participants showed significantly lower inhibition skills in response to high-caloric than low-caloric food stimuli. The results highlight a rather general, non-food-specific reduced inhibition performance in an overweight adolescent psychiatric population. Further research is necessary to enhance the understanding of the role of impulsivity in terms of body weight status in this high-risk group of adolescent inpatients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Breathing pulses in the damped-soliton model for nerves
NASA Astrophysics Data System (ADS)
Fongang Achu, G.; Moukam Kakmeni, F. M.; Dikande, A. M.
2018-01-01
Unlike the Hodgkin-Huxley picture in which the nerve impulse results from ion exchanges across the cell membrane through ion-gate channels, in the so-called soliton model the impulse is seen as an electromechanical process related to thermodynamical phenomena accompanying the generation of the action potential. In this work, account is taken of the effects of damping on the nerve impulse propagation, within the framework of the soliton model. Applying the reductive perturbation expansion on the resulting KdV-Burgers equation, a damped nonlinear Schrödinger equation is derived and shown to admit breathing-type solitary wave solutions. Under specific constraints, these breathing pulse solitons become self-trapped structures in which the damping is balanced by nonlinearity such that the pulse amplitude remains unchanged even in the presence of damping.
Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa
2015-01-01
In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20-28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20-30%.
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Boyang, Jia; Sun, Hezhi; Wei, Liqiu; Peng, Wuji; Li, Peng; Yu, Daren
2018-02-01
Discharge characteristics of a non-wall-loss Hall thruster were studied under different channel lengths using a design based on pushing a magnetic field through a double permanent magnet ring. The effect of different magnetic field intensities and channel lengths on ionization, efficiency, and plume divergence angle were studied. The experimental results show that propellant utilization is improved for optimal matching between the magnetic field and channel length. While matching the magnetic field and channel length, the ionization position of the neutral gas changes. The ion flow is effectively controlled, allowing the thrust force, specific impulse, and efficiency to be improved. Our study shows that the channel length is an important design parameter to consider for improving the performance of non-wall-loss Hall thrusters.
Ridderinkhof, K. Richard; Elias, William J.; Frysinger, Robert C.; Bashore, Theodore R.; Downs, Kara E.; van Wouwe, Nelleke C.; van den Wildenberg, Wery P. M.
2010-01-01
Past studies show beneficial as well as detrimental effects of subthalamic nucleus deep-brain stimulation on impulsive behaviour. We address this paradox by investigating individuals with Parkinson’s disease treated with subthalamic nucleus stimulation (n = 17) and healthy controls without Parkinson’s disease (n = 17) on performance in a Simon task. In this reaction time task, conflict between premature response impulses and goal-directed action selection is manipulated. We applied distributional analytic methods to separate the strength of the initial response impulse from the proficiency of inhibitory control engaged subsequently to suppress the impulse. Patients with Parkinson’s disease were tested when stimulation was either turned on or off. Mean conflict interference effects did not differ between controls and patients, or within patients when stimulation was on versus off. In contrast, distributional analyses revealed two dissociable effects of subthalamic nucleus stimulation. Fast response errors indicated that stimulation increased impulsive, premature responding in high conflict situations. Later in the reaction process, however, stimulation improved the proficiency with which inhibitory control was engaged to suppress these impulses selectively, thereby facilitating selection of the correct action. This temporal dissociation supports a conceptual framework for resolving past paradoxical findings and further highlights that dynamic aspects of impulse and inhibitory control underlying goal-directed behaviour rely in part on neural circuitry inclusive of the subthalamic nucleus. PMID:20861152
Application of bifurcation analysis for determining the mechanism of coding of nociceptive signals
NASA Astrophysics Data System (ADS)
Dik, O. E.; Shelykh, T. N.; Plakhova, V. B.; Nozdrachev, A. D.; Podzorova, S. A.; Krylov, B. V.
2015-10-01
The patch clamp method is used for studying the characteristics of slow sodium channels responsible for coding of nociceptive signals. Quantitative estimates of rate constants of transitions of "normal" and pharmacologically modified activation gating mechanisms of these channels are obtained. A mathematical model of the type of Hogdkin-Huxley nociceptive neuron membrane is constructed. Cometic acid, which is a drug substance of a new nonopioid analgesic, is used as a pharmacological agent. The application of bifurcation analysis makes it possible to outline the boundaries of the region in which a periodic impulse activity is generated. This boundary separates the set of values of the model parameter for which periodic pulsation is observed from the values for which such pulsations are absent or damped. The results show that the finest effect of modulation of physical characteristic of a part of a protein molecule and its effective charge suppresses the excitability of the nociceptive neuron membrane and, hence, leads to rapid reduction of pain.
Zhao, Haiquan; Zhang, Jiashu
2009-04-01
This paper proposes a novel computational efficient adaptive nonlinear equalizer based on combination of finite impulse response (FIR) filter and functional link artificial neural network (CFFLANN) to compensate linear and nonlinear distortions in nonlinear communication channel. This convex nonlinear combination results in improving the speed while retaining the lower steady-state error. In addition, since the CFFLANN needs not the hidden layers, which exist in conventional neural-network-based equalizers, it exhibits a simpler structure than the traditional neural networks (NNs) and can require less computational burden during the training mode. Moreover, appropriate adaptation algorithm for the proposed equalizer is derived by the modified least mean square (MLMS). Results obtained from the simulations clearly show that the proposed equalizer using the MLMS algorithm can availably eliminate various intensity linear and nonlinear distortions, and be provided with better anti-jamming performance. Furthermore, comparisons of the mean squared error (MSE), the bit error rate (BER), and the effect of eigenvalue ratio (EVR) of input correlation matrix are presented.
Response inhibition and impulsive decision-making in sexual offenders against children.
Turner, Daniel; Laier, Christian; Brand, Matthias; Bockshammer, Tamara; Welsch, Robin; Rettenberger, Martin
2018-05-31
Current theories view impulsivity as an important factor in the explanation of sexual offending. While impulsivity itself is a multidimensional construct, response inhibition and impulsive decision-making are frequently discussed subcomponents. Impulsivity in sexual offenders could be triggered by sexual cues with high emotional significance. The present study compared response inhibition abilities and the degree of impulsive decision-making between 63 child sexual abusers and 63 nonoffending controls. A Go/No-Go task was used to assess response inhibition, while the Iowa Gambling Task (IGT) and the Game of Dice Task (GDT) were used for the assessment of decision-making. In contrast to previous studies, modified versions of the Go/No-Go task and the IGT were used, including pictures of the Not Real People-Set depicting nude adults and children. Child sexual abusers showed more deficits in response inhibition in the Go/No-Go task. Furthermore, decision-making was especially impaired by the presence of child images in child sexual abusers with more intense pedophilic sexual interests. In contrast, in the nonoffending controls the presence of preferred sexual cues (pictures of women) improved decision-making performance. No differences in overall GDT performance were found between the groups; however, child sexual abusers chose the riskiest option more frequently than nonoffending controls. In line with theoretical assumptions about the processes underlying sexual offending, child sexual abusers show more deficits in neuropsychological functioning, which may be related to more impulsive behaviors. These impairments could be triggered by the presence of sexually relevant cues. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Suicidality in Bipolar Disorder: The Role of Emotion-Triggered Impulsivity
Johnson, Sheri L.; Carver, Charles S.; Tharp, Jordan A.
2018-01-01
A growing body of research suggests that impulsive responses to emotion more robustly predict suicidality than do other forms of impulsivity. This issue has not yet been examined within bipolar disorder, however. Participants diagnosed with bipolar I disorder (n = 133) and control participants (n = 110) diagnosed with no mood or psychotic disorder completed self-report measures of emotion-triggered impulsivity (Negative and Positive Urgency Scales) and interviews concerning lifetime suicidality. Analyses examined the effects of emotion-triggered impulsivity alone and in combination with gender, age of onset, depression severity, comorbid anxiety, comorbid substance use, and medication. A history of suicide ideation and attempts, as well as self-harm, were significantly more common in the bipolar disorder group compared with the control group. Impulsive responses to positive emotions related to suicide ideation, attempts, and self-harm within the bipolar group. Findings extend research on the importance of emotion-triggered impulsivity to a broad range of key outcomes within bipolar disorder. The discussion focuses on limitations and potential clinical implications. PMID:27406282
Experimental Investigations on Two Potential Sound Diffuseness Measures in Enclosures
NASA Astrophysics Data System (ADS)
Bai, Xin
This study investigates two different approaches to measure sound field diffuseness in enclosures from monophonic room impulse responses. One approach quantifies sound field diffuseness in enclosures by calculating the kurtosis of the pressure samples of room impulse responses. Kurtosis is a statistical measure that is known to describe the peakedness or tailedness of the distribution of a set of data. High kurtosis indicates low diffuseness of the sound field of interest. The other one relies on multifractal detrended fluctuation analysis which is a way to evaluate the statistical self-affinity of a signal to measure diffuseness. To test these two approaches, room impulse responses are obtained under varied room-acoustic diffuseness configurations, achieved by using varied degrees of diffusely reflecting interior surfaces. This paper will analyze experimentally measured monophonic room impulse responses, and discuss results from these two approaches.
Barratt Impulsivity and Neural Regulation of Physiological Arousal
Zhang, Sheng; Hu, Sien; Hu, Jianping; Wu, Po-Lun; Chao, Herta H.; Li, Chiang-shan R.
2015-01-01
Background Theories of personality have posited an increased arousal response to external stimulation in impulsive individuals. However, there is a dearth of studies addressing the neural basis of this association. Methods We recorded skin conductance in 26 individuals who were assessed with Barratt Impulsivity Scale (BIS-11) and performed a stop signal task during functional magnetic resonance imaging. Imaging data were processed and modeled with Statistical Parametric Mapping. We used linear regressions to examine correlations between impulsivity and skin conductance response (SCR) to salient events, identify the neural substrates of arousal regulation, and examine the relationship between the regulatory mechanism and impulsivity. Results Across subjects, higher impulsivity is associated with greater SCR to stop trials. Activity of the ventromedial prefrontal cortex (vmPFC) negatively correlated to and Granger caused skin conductance time course. Furthermore, higher impulsivity is associated with a lesser strength of Granger causality of vmPFC activity on skin conductance, consistent with diminished control of physiological arousal to external stimulation. When men (n = 14) and women (n = 12) were examined separately, however, there was evidence suggesting association between impulsivity and vmPFC regulation of arousal only in women. Conclusions Together, these findings confirmed the link between Barratt impulsivity and heightened arousal to salient stimuli in both genders and suggested the neural bases of altered regulation of arousal in impulsive women. More research is needed to explore the neural processes of arousal regulation in impulsive individuals and in clinical conditions that implicate poor impulse control. PMID:26079873
Barratt Impulsivity and Neural Regulation of Physiological Arousal.
Zhang, Sheng; Hu, Sien; Hu, Jianping; Wu, Po-Lun; Chao, Herta H; Li, Chiang-shan R
2015-01-01
Theories of personality have posited an increased arousal response to external stimulation in impulsive individuals. However, there is a dearth of studies addressing the neural basis of this association. We recorded skin conductance in 26 individuals who were assessed with Barratt Impulsivity Scale (BIS-11) and performed a stop signal task during functional magnetic resonance imaging. Imaging data were processed and modeled with Statistical Parametric Mapping. We used linear regressions to examine correlations between impulsivity and skin conductance response (SCR) to salient events, identify the neural substrates of arousal regulation, and examine the relationship between the regulatory mechanism and impulsivity. Across subjects, higher impulsivity is associated with greater SCR to stop trials. Activity of the ventromedial prefrontal cortex (vmPFC) negatively correlated to and Granger caused skin conductance time course. Furthermore, higher impulsivity is associated with a lesser strength of Granger causality of vmPFC activity on skin conductance, consistent with diminished control of physiological arousal to external stimulation. When men (n = 14) and women (n = 12) were examined separately, however, there was evidence suggesting association between impulsivity and vmPFC regulation of arousal only in women. Together, these findings confirmed the link between Barratt impulsivity and heightened arousal to salient stimuli in both genders and suggested the neural bases of altered regulation of arousal in impulsive women. More research is needed to explore the neural processes of arousal regulation in impulsive individuals and in clinical conditions that implicate poor impulse control.
Matiño-Soler, Eusebi; Esteller-More, Eduard; Martin-Sanchez, Juan-Carlos; Martinez-Sanchez, Jose-M; Perez-Fernandez, Nicolas
2015-03-01
To analyze vestibulo-ocular responses using the video head impulse test in the yaw axis. Prospective. Tertiary and university hospital. Two hundred twelve healthy subjects with no history of vestibular or neurologic impairment. Video head impulse test in the lateral semicircular canal plane. Vestibulo-ocular reflex (VOR) gain and appearance of refixation saccades (RSs) considering sex, age, and head impulse velocity and direction. Mean gain was 1.06 ± 0.07, and there were no differences between sexes. For all the impulses (n = 9,654; 4,947 rightward and 4,707 leftward), VOR gain decreased as head impulse velocity increased. When gain was evaluated by age and head velocity, it was steady until age 70 years for higher-velocity impulses and until age 90 years for lower-velocity head impulses. RSs were detected in 52 subjects, occurring after impulses to both sides of the head in 22 of these subjects. The number of subjects with RSs was significantly higher after age 71 years, and velocity was correlated, not with age, but with head impulse velocity. VOR gain was stable until age 90 years and thereafter dropped. However, this decrease occurred progressively in younger subjects as head impulse velocity increased, with VOR gain for faster head impulses decreasing significantly in subjects older than 70 years. This finding, in addition to the appearance of RSs, can be explained by the effect of aging on the deterioration of the vestibular system in the semicircular canals.
Jepsen, J R M; Rydkjaer, J; Fagerlund, B; Pagsberg, A K; Jespersen, R Av F; Glenthøj, B Y; Oranje, B
2018-03-01
Schizophrenia and attention-deficit/hyperactivity disorder (ADHD) are developmental disorders with shared clinical characteristics such as cognitive impairments and impulsivity. Impulsivity is a core feature of ADHD and an important factor in aggression, violence, and substance use in schizophrenia. Based on the hypothesis that schizophrenia and ADHD represent a continuum of neurodevelopmental impairments, the aim was to identify overlapping and disease specific forms of impulsivity. Adolescents between 12 and 17 years of age were assessed with the Schedule for Affective Disorders and Schizophrenia for School-aged Children - Present and Lifetime Version. Subjects with early-onset, first-episode schizophrenia spectrum disorders (EOS) (N = 29) or ADHD (N = 29) and healthy controls (N = 45) were compared on two performance measures (Information Sampling Task, Stop Signal Task) and a subjective personality trait measure of impulsivity (Barratt Impulsiveness Scale, Version 11 (BIS-11)). Significantly increased reflection impulsivity was observed in ADHD but not in the EOS group. No significant response inhibition deficits (stop signal reaction time) were found in the two clinical groups. The ADHD and the EOS group showed significantly increased motor, attentional, and non-planning subtraits of impulsivity. Impaired pre-decisional information gathering appeared to be specific for ADHD while the information gathering was not significantly reduced in subjects with EOS. Neither the ADHD nor EOS group showed impaired response inhibition but shared increased personality subtraits of attentional, non-planning, and motor impulsivity although the latter was significantly more pronounced in ADHD. These increased subtraits of impulsivity may reflect diagnostic non-specific neurodevelopmental impairments in ADHD and EOS in adolescence.
The video head impulse test during post-rotatory nystagmus: physiology and clinical implications.
Mantokoudis, Georgios; Tehrani, Ali S Saber; Xie, Li; Eibenberger, Karin; Eibenberger, Bernhard; Roberts, Dale; Newman-Toker, David E; Zee, David S
2016-01-01
The aim of this study was to test the effects of a sustained nystagmus on the head impulse response of the vestibulo-ocular reflex (VOR) in healthy subjects. VOR gain (slow-phase eye velocity/head velocity) was measured using video head impulse test goggles. Acting as a surrogate for a spontaneous nystagmus (SN), a post-rotatory nystagmus (PRN) was elicited after a sustained, constant-velocity rotation, and then head impulses were applied. 'Raw' VOR gain, uncorrected for PRN, in healthy subjects in response to head impulses with peak velocities in the range of 150°/s-250°/s was significantly increased (as reflected in an increase in the slope of the gain versus head velocity relationship) after inducing PRN with slow phases of nystagmus of high intensity (>30°/s) in the same but not in the opposite direction as the slow-phase response induced by the head impulses. The values of VOR gain themselves, however, remained in the normal range with slow-phase velocities of PRN < 30°/s. Finally, quick phases of PRN were suppressed during the first 20-160 ms of a head impulse; the time frame of suppression depended on the direction of PRN but not on the duration of the head impulse. Our results in normal subjects suggest that VOR gains measured using head impulses may have to be corrected for any superimposed SN when the slow-phase velocity of nystagmus is relatively high and the peak velocity of the head movements is relatively low. The suppression of quick phases during head impulses may help to improve steady fixation during rapid head movements.
Optimization and Comparison of Different Digital Mammographic Tomosynthesis Reconstruction Methods
2007-04-01
physical measurements of impulse response analysis, modulation transfer function (MTF) and noise power spectrum (NPS). (Months 5- 12). 1.2.1. Simulate...added: projection images with simulated impulse and the 1/r2 shading difference. Other system blur and noise issues were not addressed in this paper...spectrum (NPS), Noise -equivalent quanta (NEQ), impulse response, Back Projection (BP) 1. INTRODUCTION Digital breast tomosynthesis is a new
Venables, Noah C; Patrick, Christopher J; Hall, Jason R; Bernat, Edward M
2011-03-01
Impulsive-aggressive individuals exhibit deficits in amplitude of the P3 brain potential response, however, it remains unclear how separable dispositional traits account for this association. The current study sought to clarify the basis of this association by examining contributions of trait impulsiveness and stress reactivity to the observed relationship between dispositional aggression and amplitude of the P3 brain potential response in a visual novelty-oddball procedure. A significant negative association was found between aggressiveness and amplitude of P3 response to both target and novel stimuli over frontal-central scalp sites. Impulsivity showed a parallel inverse relationship with P3 amplitude, attributable to its overlap with dispositional aggression. In contrast, stress reactivity did not exhibit a zero-order association with P3 amplitude, but modestly predicted P3 in a positive direction after accounting for its overlap with aggression. Results are discussed in terms of their implications for individual difference variables and brain processes underlying impulsive-aggressive behavior. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Ross, Muriel D.; Chee, Oliver; Black, Samuel; Cutler, Lynn
1991-01-01
Cupric ion-ferricyanide labeling methods and related ferrocyanide-stained tissues were used to locate the characterize, at the ultrastructural level, presumptive impulse initiation zones in the three types of vestibular macular nerve fibers. Large-diameter, M-type vestibular nerve fibers terminate in a calyx at the heminode, and labeling is coextensive with the base of the calyx. Intermediate, M/U-type nerve fibers have short, unmyelinated preterminal segments that sometimes bifurcate intamacularly, and small-diameter, U-type nerve fibers have long, unmyelinated preterminal axons and up to three branches. Preterminals of these nerve fibers display ultrastructural heterogeneity that is correlated with labeling patterns for sodium channels and/or associated polyanionic sites. They have a nodelike ultrastructure and label heavily from near the heminode to the base of the macula. Their intramacular branches, less organized ultrastructurally, label only slightly. Results indicate that vestibular nerve fibers have one impulse initiation zone, located near the heminode, that varies in length according to nerve fiber type. Structural heterogeneity may favor impulse conduction in the central direction, and length of the impulse initiation zone could influence nerve discharge patterns.
Multiobjective Optimization of Low-Energy Trajectories Using Optimal Control on Dynamical Channels
NASA Technical Reports Server (NTRS)
Coffee, Thomas M.; Anderson, Rodney L.; Lo, Martin W.
2011-01-01
We introduce a computational method to design efficient low-energy trajectories by extracting initial solutions from dynamical channels formed by invariant manifolds, and improving these solutions through variational optimal control. We consider trajectories connecting two unstable periodic orbits in the circular restricted 3-body problem (CR3BP). Our method leverages dynamical channels to generate a range of solutions, and approximates the areto front for impulse and time of flight through a multiobjective optimization of these solutions based on primer vector theory. We demonstrate the application of our method to a libration orbit transfer in the Earth-Moon system.
Behavioral Impulsivity Does Not Predict Naturalistic Alcohol Consumption or Treatment Outcomes
Mullen, Jillian; Mathias, Charles W.; Karns, Tara E.; Liang, Yuanyuan; Hill-Kapturczak, Nathalie; Roache, John D.; Lamb, Richard J.; Dougherty, Donald M.
2016-01-01
Objective The purpose of this study was to determine if behavioral impulsivity under multiple conditions (baseline, after alcohol consumption or after serotonin depletion) predicted naturalistic alcohol use or treatment outcomes from a moderation-based contingency management intervention. Method The current data analysis pulls information from three phases of a large study: 1) Phase 1 examined baseline and the effects of alcohol use and serotonin depletion on three types of behavioral impulsivity: response initiation (IMT task), response inhibition (GoStop task), and delay discounting (SKIP task); 2) Phase 2 involved 28 days of naturalistic drinking; and 3) Phase 3 involved 3 months of contingency management. During phases 2 and 3 alcohol use was measured objectively using transdermal alcohol monitors. The results of each individual phase has been previously published showing that at a group level the effects of alcohol consumption on impulsivity were dependent on the component of impulsivity being measured and the dose of alcohol consumed but serotonin depletion had no effect on impulsivity, and that a moderation-based contingency management intervention reduced heavy drinking. Results The current analysis combining data from those who completed all three phases (n = 67) showed that impulsivity measured at baseline, after alcohol consumption, or after serotonin depletion did not predict naturalistic drinking or treatment outcomes from a moderation-based CM treatment. Conclusions Contingency management interventions may prove to be an effective intervention for impulsive individuals, however, normal variations in measured impulsivity do not seem to relate to normal variations in drinking pattern or response to moderation-based contingency management. PMID:27746702
Optical Enhancement of Degraded Fingerprints.
1986-05-01
system. The integral 00 g(x,y) = ff f ( Cn)h(x-C,y-n)d dn -00 is the convolution operation g(x,y)=f(x,y)*h(x,y) where h(x,y) is the impulse response...periodic ridges on the left (1-) and right (2--) sides of the fingerprint in Figure 3-1 as periodic impulse -sheets (an impulse -sheet is a one...transformation of uniformly spaced, parallel impulse -sheets is a string of impulses (an impulse is a two-dimensional Dirac delta function, i.e. f(x,y) = 6(x,y
NASA Astrophysics Data System (ADS)
Lopour, Beth A.; Staba, Richard J.; Stern, John M.; Fried, Itzhak; Ringach, Dario L.
2016-04-01
Objective. Quantifying the relationship between microelectrode-recorded multi-unit activity (MUA) and local field potentials (LFPs) in distinct brain regions can provide detailed information on the extent of functional connectivity in spatially widespread networks. These methods are common in studies of cognition using non-human animal models, but are rare in humans. Here we applied a neuronal spike-triggered impulse response to electrophysiological recordings from the human epileptic brain for the first time, and we evaluate functional connectivity in relation to brain areas supporting the generation of seizures. Approach. Broadband interictal electrophysiological data were recorded from microwires adapted to clinical depth electrodes that were implanted bilaterally using stereotactic techniques in six presurgical patients with medically refractory epilepsy. MUA and LFPs were isolated in each microwire, and we calculated the impulse response between the MUA on one microwire and the LFPs on a second microwire for all possible MUA/LFP pairs. Results were compared to clinical seizure localization, including sites of seizure onset and interictal epileptiform discharges. Main results. We detected significant interictal long-range functional connections in each subject, in some cases across hemispheres. Results were consistent between two independent datasets, and the timing and location of significant impulse responses reflected anatomical connectivity. However, within individual subjects, the spatial distribution of impulse responses was unique. In two subjects with clear seizure localization and successful surgery, the epileptogenic zone was associated with significant impulse responses. Significance. The results suggest that the spike-triggered impulse response can provide valuable information about the neuronal networks that contribute to seizures using only interictal data. This technique will enable testing of specific hypotheses regarding functional connectivity in epilepsy and the relationship between functional properties and imaging findings. Beyond epilepsy, we expect that the impulse response could be more broadly applied as a measure of long-range functional connectivity in studies of cognition.
Lopour, Beth A; Staba, Richard J; Stern, John M; Fried, Itzhak; Ringach, Dario L
2017-01-01
Objective Quantifying the relationship between microelectrode-recorded multi-unit activity (MUA) and local field potentials (LFPs) in distinct brain regions can provide detailed information on the extent of functional connectivity in spatially widespread networks. These methods are common in studies of cognition using non-human animal models, but are rare in humans. Here we applied a neuronal spike-triggered impulse response to electrophysiological recordings from the human epileptic brain for the first time, and we evaluate functional connectivity in relation to brain areas supporting the generation of seizures. Approach Broadband interictal electrophysiological data were recorded from microwires adapted to clinical depth electrodes that were implanted bilaterally using stereotactic techniques in six presurgical patients with medically refractory epilepsy. MUA and LFPs were isolated in each microwire, and we calculated the impulse response between the MUA on one microwire and the LFPs on a second microwire for all possible MUA/LFP pairs. Results were compared to clinical seizure localization, including sites of seizure onset and interictal epileptiform discharges. Main results We detected significant interictal long-range functional connections in each subject, in some cases across hemispheres. Results were consistent between two independent datasets, and the timing and location of significant impulse responses reflected anatomical connectivity. However, within individual subjects, the spatial distribution of impulse responses was unique. In two subjects with clear seizure localization and successful surgery, the epileptogenic zone was associated with significant impulse responses. Significance The results suggest that the spike-triggered impulse response can provide valuable information about the neuronal networks that contribute to seizures using only interictal data. This technique will enable testing of specific hypotheses regarding functional connectivity in epilepsy and the relationship between functional properties and imaging findings. Beyond epilepsy, we expect that the impulse response could be more broadly applied as a measure of long-range functional connectivity in studies of cognition. PMID:26975603
Peña-Oliver, Yolanda; Giuliano, Chiara; Economidou, Daina; Goodlett, Charles R; Robbins, Trevor W; Dalley, Jeffrey W; Everitt, Barry J
2015-01-01
Drug addiction is often associated with impulsivity and altered behavioural responses to both primary and conditioned rewards. Here we investigated whether selectively bred alcohol-preferring (P) and alcohol-nonpreferring (NP) rats show differential levels of impulsivity and conditioned behavioural responses to food incentives. P and NP rats were assessed for impulsivity in the 5-choice serial reaction time task (5-CSRTT), a widely used translational task in humans and other animals, as well as Pavlovian conditioned approach to measure sign- and goal-tracking behaviour. Drug-naïve P and NP rats showed similar levels of impulsivity on the 5-CSRTT, assessed by the number of premature, anticipatory responses, even when the waiting interval to respond was increased. However, unlike NP rats, P rats were faster to enter the food magazine and spent more time in this area. In addition, P rats showed higher levels of goal-tracking responses than NP rats, as measured by the number of magazine nose-pokes during the presentation of a food conditioned stimulus. By contrast, NP showed higher levels of sign-tracking behaviour than P rats. Following a 4-week exposure to intermittent alcohol we confirmed that P rats had a marked preference for, and consumed more alcohol than, NP rats, but were not more impulsive when re-tested in the 5-CSRTT. These findings indicate that high alcohol preferring and drinking P rats are neither intrinsically impulsive nor do they exhibit impulsivity after exposure to alcohol. However, P rats do show increased goal-directed behaviour to food incentives and this may be associated with their strong preference for alcohol.
Simulation of the effect of a magnetically insulated anode on a low-power cylindrical Hall thruster
NASA Astrophysics Data System (ADS)
Yongjie, DING; Hong, LI; Boyang, JIA; Peng, LI; Liqiu, WEI; Yu, XU; Wuji, PENG; Hezhi, SUN; Yong, CAO; Daren, YU
2018-03-01
The intersection point of the characteristic magnetic field line (CMFL) crossing the anode boundary with the discharge channel wall, and its influence on thruster performance and the energy and flux of ions bombarding the channel wall, have been studied numerically. The simulation results demonstrate that with the increase in distance from the crossover point of the CMFL with the channel wall to the bottom of the thruster channel, the ionization rate in the discharge channel gradually increases; meanwhile, the ion energy and ion current density bombarding the channel wall decreases. When the point of the CMFL with the channel wall is at the channel outlet, the thrust, specific impulse, and efficiency are at a maximum, while the ion energy and ion current density bombarding the channel wall are at a minimum. Therefore, to improve the performance and lifetime of the thruster, it is important to control the point of intersection of the CMFL with the channel wall.
Reflective-impulsive style and conceptual tempo in a gross motor task.
Keller, J; Ripoll, H
2001-06-01
The reflective-impulsive construct refers to responses made slowly or quickly in a situation with high uncertainty. Children who are labeled "reflective" take a longer time to respond and make few errors, whereas "impulsive" children are fast and inaccurate. Although the validity of the test and the definition of reflective-impulsive style are well accepted, whether such respond fast or slow to all tasks is questioned. Some children do not fit the dichotomy. Two other groups arise, the fast-accurate and the slow-inaccurate. The response styles of 86 boys, ages 5, 7, and 9 years performing a gross motor task, i.e., hitting a ball with a racquet, were studied. Analysis indicated that the slowest children on the Matching Familiar Figures Test can be faster than the fastest ones and remain more accurate. As the definition of the reflective-impulsive style is based on time, the reflective ones might better be viewed as children who can adapt the response time to the context and thus be more efficient at problem-solving.
Impulsivity and overeating in children in the absence and presence of hunger.
Nederkoorn, Chantal; Dassen, Fania C M; Franken, Loes; Resch, Christine; Houben, Katrijn
2015-10-01
Overweight children appear to be more responsive to environmental, hedonic cues and easily overeat in the current obesogenic environment. They are also found to overeat in the absence of hunger, and this overeating seems related to impulsivity: impulsive participants are more prone to external eating. However, some studies showed that impulsive adults are also more prone to hunger cues: impulsive participants overate especially when feeling hungry. This would mean impulsive people are more reactive to both external and internal cues. The overeating was limited to palatable high energy-dense foods: hunger made them fancy a snack. In the current study, we wanted to test the interaction between impulsivity, hunger and consumption of food type in children. Impulsivity was measured in 88 children between the ages of 7 and 9. Next, half of the participants performed a taste test before their own regular lunch and half of the participants immediately after their lunch. During the taste test, low, medium and high energy-dense food items were presented. Results showed that impulsive children ate more high energy-dense foods than low impulsive children, both before and after their lunch. No differences were found on low or medium energy-dense foods. Impulsive children therefore showed normal sensitivity for internal hunger and satiety cues, but abnormal response to high energy-dense foods. This might render them vulnerable to tasty temptation in the environment and to weight gain in their future. Copyright © 2015 Elsevier Ltd. All rights reserved.
Interacting Mechanisms of Impulsivity in Bipolar Disorder and Antisocial Personality Disorder
Swann, Alan C.; Lijffijt, Marijn; Lane, Scott D.; Steinberg, Joel L.; Moeller, F. Gerard
2011-01-01
Background Bipolar disorder and antisocial personality disorder (ASPD) overlap in clinical characteristics and behavioral consequences. Impulsivity is prominent in both, but there is little information on how specific mechanisms of impulsivity differentiate, bridge, or underlie the disorders. Methods Subjects, all males, were controls (n=46), bipolar disorder without cluster B personality disorder (n=21), ASPD without bipolar disorder (n=50), and bipolar disorder with ASPD (n=16). Impulsivity measures were the Immediate Memory Task (IMT), a continuous performance test of response inhibition measuring ability to evaluate a stimulus before responding, and the Two Choice Impulsivity Paradigm (TCIP), a choice between smaller-sooner and larger-later reward. Data were analyzed using general linear models analysis. Results Subjects with bipolar disorder had fewer IMT correct detections and slower reaction times than controls. Reaction times were faster with combined diagnoses than in bipolar disorder alone. TCIP responding in either diagnosis alone resembled controls, but was more impulsive in combined disorders. These differences persisted after correction for age and education, which had significant independent effects. In combined ASPD and bipolar disorder, increased reaction speed, impulsive response bias, and reward-delay impulsivity occurred independent of substance-use disorder history. Conclusions Impulsivity was increased in the combined disorders over either disorder alone. Results were consistent with at least partially distinct mechanisms of impulsivity in ASPD and bipolar disorder. Compensatory mechanisms for impulsivity in uncomplicated ASPD or bipolar disorder appear to be compromised or lost when the disorders are combined. PMID:21719028
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorham, P. W.; Allison, P.; Hebert, C. L.
We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E{sub {nu}}{approx_equal}3x10{sup 18} eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived frommore » our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorham, P.W.; Allison, P.; /Hawaii U.
We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E{sub v} = 3 x 10{sup 18} eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result.more » Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers.« less
Seo, Dongju; Lacadie, Cheryl M.; Sinha, Rajita
2016-01-01
BACKGROUND Stress triggers impulsive and addictive behaviors, and alcoholism has been frequently associated with increased stress sensitivity and impulse control problems. However, neural correlates underlying the link between alcoholism and impulsivity in the context of stress in patients with alcohol use disorders (AUD) have not been well studied. METHOD The current study investigated neural correlates and connectivity patterns associated with impulse control difficulties in abstinent AUD patients. Using functional magnetic resonance imaging, brain responses of 37 AUD inpatients and 37 demographically-matched healthy controls were examined during brief individualized imagery trials of stress, alcohol-cue and neutral-relaxing conditions. Stress-related impulsivity was measured using a subscale score of impulse control problems from Difficulties in Emotion Regulation Scale (DERS). RESULTS Impulse control difficulties in AUD patients were significantly associated with hypoactive response to stress in the ventromedial prefrontal cortex (VmPFC), right caudate, and left lateral PFC (LPFC) compared to the neutral condition (p<0.01, whole-brain corrected). These regions were used as seed regions to further examine the connectivity patterns with other brain regions. With the VmPFC seed, AUD patients showed reduced connectivity with the anterior cingulate cortex (ACC) compared to controls, which are core regions of emotion regulation, suggesting AUD patients’ decreased ability to modulate emotional response under distressed state. With the right caudate seed, patients showed increased connectivity with the right motor cortex, suggesting increased tendency toward habitually driven behaviors. With the left LPFC seed, decreased connectivity with the dorsomedial PFC (DmPFC), but increased connectivity with sensory and motor cortices were found in AUD patients compared to controls (p<0.05, whole-brain corrected). Reduced connectivity between the left LPFC and DmPFC was further associated with increased stress-induced anxiety in AUD patients (p<0.05, with adjusted Bonferroni correction). CONCLUSION Hypoactive response to stress and altered connectivity in key emotion regulatory regions may account for greater stress-related impulse control problems in alcoholism. PMID:27501356
Seo, Dongju; Lacadie, Cheryl M; Sinha, Rajita
2016-09-01
Stress triggers impulsive and addictive behaviors, and alcoholism has been frequently associated with increased stress sensitivity and impulse control problems. However, neural correlates underlying the link between alcoholism and impulsivity in the context of stress in patients with alcohol use disorders (AUD) have not been well studied. This study investigated neural correlates and connectivity patterns associated with impulse control difficulties in abstinent AUD patients. Using functional magnetic resonance imaging, brain responses of 37 AUD inpatients, and 37 demographically matched healthy controls were examined during brief individualized imagery trials of stress, alcohol cue, and neutral-relaxing conditions. Stress-related impulsivity was measured using a subscale score of impulse control problems from Difficulties in Emotion Regulation Scale. Impulse control difficulties in AUD patients were significantly associated with hypo-active response to stress in the ventromedial prefrontal cortex (VmPFC), right caudate, and left lateral PFC (LPFC) compared to the neutral condition (p < 0.01, whole-brain corrected). These regions were used as seed regions to further examine the connectivity patterns with other brain regions. With the VmPFC seed, AUD patients showed reduced connectivity with the anterior cingulate cortex compared to controls, which are core regions of emotion regulation, suggesting AUD patients' decreased ability to modulate emotional response under distressed state. With the right caudate seed, patients showed increased connectivity with the right motor cortex, suggesting increased tendency toward habitually driven behaviors. With the left LPFC seed, decreased connectivity with the dorsomedial PFC (DmPFC), but increased connectivity with sensory and motor cortices were found in AUD patients compared to controls (p < 0.05, whole-brain corrected). Reduced connectivity between the left LPFC and DmPFC was further associated with increased stress-induced anxiety in AUD patients (p < 0.05, with adjusted Bonferroni correction). Hypo-active response to stress and altered connectivity in key emotion regulatory regions may account for greater stress-related impulse control problems in alcoholism. Copyright © 2016 by the Research Society on Alcoholism.
Kinetics of cycle length dependence of ventricular repolarization: effect of autonomic blockade
NASA Technical Reports Server (NTRS)
Raeder, E. A.; Albrecht, P.; Perrott, M.; Cohen, R. J.
1995-01-01
INTRODUCTION: Beat-to-beat adaptation of ventricular repolarization duration to cardiac cycle length and autonomic activity has not been previously characterized in the spontaneously beating human heart. METHODS AND RESULTS: The ECG of 14 healthy subjects was recorded from the supine and upright positions. Autonomic blockade was accomplished by atropine and propranolol. RR and RT intervals were measured by a computer algorithm, and the impulse response (h) from RR to RT computed. In the supine position the maximal adjustment of the RT interval occurred in the first beat following a change in cycle length (hpeak = 17.8 +/- 1.6 msec/sec), but continued to be detectable for 3.8 seconds (2.9-4.7 sec). Propranolol attenuated the peak impulse response to 15.8 +/- 4.0 msec/sec (P = NS). In the standing position the peak impulse response was increased to 25.2 +/- 5.0 msec/sec (P = 0.004 vs supine), and the impulse response duration (hdur) shortened to 1.4 seconds (1.3-1.6). This was reversed by beta blockade (hpeak = 10.7 +/- 3.6 [P = 0.005 vs standing]; hdur = 5.5 sec [4.8-6.1]). Parasympathetic and combined autonomic blockade resulted in too little residual heart rate variability to estimate the impulse response accurately. The slope of the regression of delta RT and delta RR in the supine position was 0.0177 +/- 0.0016, which was closely correlated with the peak impulse response (r = 0.91). CONCLUSIONS: System identification techniques can assist in characterizing the cycle dependence of ventricular repolarization and may provide new insights into conditions associated with abnormal repolarization.
Courtney, Kelly E.; Arellano, Ryan; Barkley-Levenson, Emily; Gálvan, Adriana; Poldrack, Russell A.; MacKillop, James; Jentsch, J. David; Ray, Lara A.
2011-01-01
Background Higher levels of impulsivity have been implicated in the development of alcohol use disorders. Recent findings suggest that impulsivity is not a unitary construct, highlighted by the diverse ways in which the various measures of impulsivity relate to alcohol use outcomes. This study simultaneously tested the following dimensions of impulsivity as determinants of alcohol use and alcohol problems: risky decision-making, self-reported risk attitudes, response inhibition, and impulsive decision-making. Method Participants were a community sample of non-treatment seeking problem drinkers (N = 158). Structural Equation Modeling (SEM) analyses employed behavioral measures of impulsive decision-making (Delay Discounting Task, DDT), response inhibition (Stop Signal Task, SST), and risky decision-making (Balloon Analogue Risk Task, BART), and a self-report measure of risk attitudes (Domain-specific Risk-attitude Scale, DOSPERT), as predictors of alcohol use and of alcohol-related problems in this sample. Results The model fit well, accounting for 38% of the variance in alcohol problems, and identified two impulsivity dimensions that significantly loaded onto alcohol outcomes: (1) impulsive decision-making, indexed by the DDT; and (2) risky decision-making, measured by the BART. Conclusions The impulsive decision-making dimension of impulsivity, indexed by the DDT, was the strongest predictor of alcohol use and alcohol pathology in this sample of problem drinkers. Unexpectedly, a negative relationship was found between risky decision-making and alcohol problems. The results highlight the importance of considering the distinct facets of impulsivity in order to elucidate their individual and combined effects on alcohol use initiation, escalation, and dependence. PMID:22091877
Meule, Adrian; Lutz, Annika; Vögele, Claus; Kübler, Andrea
2012-12-01
Addictive behaviors are accompanied by a lack of inhibitory control, specifically when individuals are confronted with substance-related cues. Thus, we expected women with symptoms of food addiction to be impaired in inhibitory control, when confronted with palatable, high-calorie food-cues. Female college students (N=50) were divided in low and high food addiction groups based on the symptom count of the Yale Food Addiction Scale. Participants performed a Go/No-go-task with high-calorie food-cues or neutral pictures presented behind the targets. Self-reported impulsivity was also assessed. The high food addiction group had faster reaction times in response to food-cues as compared to neutral cues and reported higher attentional impulsivity than the low food addiction group. Commission and omission errors did not differ between groups or picture types. Hence, women with food addiction symptoms reported higher attentional impulsivity and reacted faster in response to food-cues, although neither increased self-reported motor impulsivity nor impaired behavioral inhibition was found. Food addiction symptoms seem to be related to attentional aspects of impulsivity but not other facets of impulsivity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wilson, Michael J.; Vassileva, Jasmin
2016-01-01
Background Impulsivity is an important risk factor for HIV risky drug and sexual behaviors. Research identifies “hot” (i.e., affectively-mediated, reward-based) and “cool” (motoric, attentional, independent of context) neurocognitive and psychiatric dimensions of impulsivity, though the impact of specific drugs of abuse on these varieties of impulsivity remains an open question. Objectives The present study examined the associations of neurocognitive and psychiatric varieties of “hot” and “cool” impulsivity with measures of lifetime and recent sexual risk behaviors among users of different classes of drugs. Methods The study sample was comprised drug users in protracted (>1yr) abstinence: heroin monodependent (n=61), amphetamine monodependent (n=44), and polysubstance dependent (n= 73). “Hot” impulsivity was operationalized via neurocognitive tasks of reward-based decision-making and symptoms of psychopathy. “Cool” impulsivity was operationalized via neurocognitive tasks of response inhibition and symptoms of ADHD. Results “Hot” impulsivity was associated with sexual risk behaviors among heroin and amphetamine users in protracted abstinence, whereas “cool” impulsivity was not associated with sexual risk behaviors among any drug-using group. Neurocognitive “hot” impulsivity was associated with recent (past 30-day) sexual risk behaviors, whereas psychopathy was associated with sexual risk behaviors during more remote time-periods (past 6 month and lifetime) and mediated the association between heroin dependence and past 6-month sexual risk behaviors. Conclusion Assessments and interventions aimed at reducing sexual risk behaviors among drug users should focus on “hot” neurocognitive and psychiatric dimensions of impulsivity, such as decision-making and psychopathy. “Cool” dimensions of impulsivity such as response inhibition and ADHD were not related to sexual risk behaviors among drug users in protracted abstinence. PMID:26837332
Suicidality in Bipolar Disorder: The Role of Emotion-Triggered Impulsivity.
Johnson, Sheri L; Carver, Charles S; Tharp, Jordan A
2017-04-01
A growing body of research suggests that impulsive responses to emotion more robustly predict suicidality than do other forms of impulsivity. This issue has not yet been examined within bipolar disorder, however. Participants diagnosed with bipolar I disorder (n = 133) and control participants (n = 110) diagnosed with no mood or psychotic disorder completed self-report measures of emotion-triggered impulsivity (Negative and Positive Urgency Scales) and interviews concerning lifetime suicidality. Analyses examined the effects of emotion-triggered impulsivity alone and in combination with gender, age of onset, depression severity, comorbid anxiety, comorbid substance use, and medication. A history of suicide ideation and attempts, as well as self-harm, were significantly more common in the bipolar disorder group compared with the control group. Impulsive responses to positive emotions related to suicide ideation, attempts, and self-harm within the bipolar group. Findings extend research on the importance of emotion-triggered impulsivity to a broad range of key outcomes within bipolar disorder. The discussion focuses on limitations and potential clinical implications. © 2016 The American Association of Suicidology.
Heavy drinking, impulsivity and attentional narrowing following alcohol cue exposure.
Hicks, Joshua A; Fields, Sherecce; Davis, William E; Gable, Philip A
2015-08-01
Research shows that alcohol-related stimuli have the propensity to capture attention among individuals motivated to consume alcohol. Research has further demonstrated that impulsive individuals are especially prone to this type of attentional bias. Recently, it is suggested that alcohol cue exposure can also produce a general narrowing of attention consistent with the activation of approach motivational states. Based on previous models of addiction and recent research on the activation of approach motivational states, we predicted that impulsive individuals would demonstrate a constriction of attentional focus in response to alcohol cue exposure. Participants (n = 392) completed a task assessing attentional breadth in response to alcohol and non-alcohol cues, followed by measures of alcohol use and impulsivity. The findings revealed that impulsivity scores predicted narrowing of attentional scope following the presentation of alcohol cues for heavier drinkers but not for light drinkers. These results suggest that impulsive individuals who drink more heavily demonstrate a narrowing of attention in the presence of alcohol-related incentive cues. Implications for how these findings might account for the link between impulsivity and alcohol use and misuse are discussed.
Measuring Method for Lightning Channel Temperature.
Li, X; Zhang, J; Chen, L; Xue, Q; Zhu, R
2016-09-26
In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.
Effect of oblique channel on discharge characteristics of 200-W Hall thruster
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Peng, Wuji; Sun, Hezhi; Xu, Yu; Wei, Liqiu; Li, Hong; Zeng, Ming; Wang, Fufeng; Yu, Daren
2017-02-01
In an experiment involving a 200-W Hall thruster, partial ionization occurs in the plume area because of the extrapolation of the magnetic field. To improve the thruster performance, the concept of an oblique channel is proposed for improving the ionization degree in the plume area. Calculations performed using a Particle-in-cell (PIC) simulator and the experimental results both show that an oblique channel structure can reduce the wall loss. Compared with a straight channel under similar conditions of the discharge voltage and current, the ionization degree in the plume area, thrust, specific impulse, propellant utilization, and anode efficiency are improved by ˜20%. The oblique channel is an important design consideration for improving the partial ionization of the plume area in the thruster.
Measuring Method for Lightning Channel Temperature
NASA Astrophysics Data System (ADS)
Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.
2016-09-01
In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.
Image Processing, Coding, and Compression with Multiple-Point Impulse Response Functions.
NASA Astrophysics Data System (ADS)
Stossel, Bryan Joseph
1995-01-01
Aspects of image processing, coding, and compression with multiple-point impulse response functions are investigated. Topics considered include characterization of the corresponding random-walk transfer function, image recovery for images degraded by the multiple-point impulse response, and the application of the blur function to image coding and compression. It is found that although the zeros of the real and imaginary parts of the random-walk transfer function occur in continuous, closed contours, the zeros of the transfer function occur at isolated spatial frequencies. Theoretical calculations of the average number of zeros per area are in excellent agreement with experimental results obtained from computer counts of the zeros. The average number of zeros per area is proportional to the standard deviations of the real part of the transfer function as well as the first partial derivatives. Statistical parameters of the transfer function are calculated including the mean, variance, and correlation functions for the real and imaginary parts of the transfer function and their corresponding first partial derivatives. These calculations verify the assumptions required in the derivation of the expression for the average number of zeros. Interesting results are found for the correlations of the real and imaginary parts of the transfer function and their first partial derivatives. The isolated nature of the zeros in the transfer function and its characteristics at high spatial frequencies result in largely reduced reconstruction artifacts and excellent reconstructions are obtained for distributions of impulses consisting of 25 to 150 impulses. The multiple-point impulse response obscures original scenes beyond recognition. This property is important for secure transmission of data on many communication systems. The multiple-point impulse response enables the decoding and restoration of the original scene with very little distortion. Images prefiltered by the random-walk transfer function yield greater compression ratios than are obtained for the original scene. The multiple-point impulse response decreases the bit rate approximately 40-70% and affords near distortion-free reconstructions. Due to the lossy nature of transform-based compression algorithms, noise reduction measures must be incorporated to yield acceptable reconstructions after decompression.
Impulsivity and behaviour problems in dogs: A Reinforcement Sensitivity Theory perspective.
Piotti, Patrizia; Satchell, Liam Paul; Lockhart, Tom Steven
2018-06-01
Trait impulsivity is an increasingly relevant topic for human and non-human animal personality research. There are similarities in dog and human manifestations of trait impulsivity at the behavioural, genetic, and neurobiological level. We investigated a well-validated measure of dog impulsivity and responsivity (the Dog Impulsivity Assessment Scale, DIAS) and a neuropsychological theory of human trait approach and avoidance (the Reinforcement Sensitivity Theory of personality, RST). Owners reported their dogs' dispositional behaviour on the DIAS, an RST scale modified to describe dogs' behaviour, and a list of common dog behaviour problems. In a sample of 730 dogs, we observed convergence between the RST and the DIAS. There was a negative correlation between RST 'Behaviour Inhibition System' and DIAS impulsivity factor ('Behavioural Regulation'). RST 'Behavioural Approach System' correlated positively with DIAS 'Responsiveness'. The RST 'Fight-Flight-Freeze System' (FFFS) and the DIAS 'Aggression and response to novelty factor were both distinct from other factors. However, the DIAS 'Aggression and response to novelty' factor and the RST FFFS explained different aspects of dog behaviour problems. Importantly, whilst the DIAS factors indicated tendencies towards avoidant behaviours, the FFFS discriminated between active and passive avoidance. The findings suggest a partial overlapping between the DIAS and RST scales, and highlights the utility of personality models in investigating behaviour problems in dogs. Copyright © 2018 Elsevier B.V. All rights reserved.
Patros, Connor H G; Alderson, R Matt; Lea, Sarah E; Tarle, Stephanie J
2017-02-01
Attention-deficit/hyperactivity disorder (ADHD) is characterized by an impaired ability to maintain attention and/or hyperactivity/impulsivity. Impulsivity is frequently defined as the preference for small, immediate rewards over larger, delayed rewards, and has been associated with a variety of negative outcomes such as risky behavior and academic difficulty. Extant studies have uniformly utilized the traditional paradigm of presenting two response choices, which limits the generalization of findings to scenarios in which children/adolescents are faced with dichotomous decisions. The current study is the first to examine the effect of manipulating the number of available response options on impulsive decision-making in boys with and without ADHD. A total of 39 boys (ADHD = 16, typically developing [TD] = 23) aged 8-12 years completed a traditional two-choice impulsivity task and a novel five-choice impulsivity task to examine the effect of manipulating the number of choice responses (two vs five) on impulsive decision-making. A five-choice task was utilized as it presents a more continuous array of choice options when compared to the typical two-choice task, and is comparable given its methodological similarity to the two-choice task. Results suggested that boys with ADHD were significantly more impulsive than TD boys during the two-choice task, but not during the five-choice task. Collectively, these findings suggest that ADHD-related impulsivity is not ubiquitous, but rather dependent on variation in demands and/or context. Further, these findings highlight the importance of examining ADHD-related decision-making within the context of alternative paradigms, as the exclusive utilization of two-choice tasks may promote inaccurate conceptualizations of the disorder.
Does oxygen delivery explain interindividual variation in forearm critical impulse?
Kellawan, J Mikhail; Bentley, Robert F; Bravo, Michael F; Moynes, Jackie S; Tschakovsky, Michael E
2014-11-01
Within individuals, critical power appears sensitive to manipulations in O2 delivery. We asked whether interindividual differences in forearm O2 delivery might account for a majority of the interindividual differences in forearm critical force impulse (critical impulse), the force analog of critical power. Ten healthy men (24.6 ± 7.10 years) completed a maximal effort rhythmic handgrip exercise test (1 sec contraction-2 sec relaxation) for 10 min. The average of contraction impulses over the last 30 sec quantified critical impulse. Forearm brachial artery blood flow (FBF; echo and Doppler ultrasound) and mean arterial pressure (MAP; finger photoplethysmography) were measured continuously. O2 delivery (FBF arterial oxygen content (venous blood [hemoglobin] and oxygen saturation from pulse oximetry)) and forearm vascular conductance (FVC; FBF·MAP(-1)) were calculated. There was a wide range in O2 delivery (59.98-121.15 O2 mL·min(-1)) and critical impulse (381.5-584.8 N) across subjects. During maximal effort exercise, O2 delivery increased rapidly, plateauing well before the declining forearm impulse and explained most of the interindividual differences in critical impulse (r(2) = 0.85, P < 0.01). Both vasodilation (r(2) = 0.64, P < 0.001) and the exercise pressor response (r(2) = 0.33, P < 0.001) independently contributed to interindividual differences in FBF. In conclusion, interindividual differences in forearm O2 delivery account for most of the interindividual variation in critical impulse. Furthermore, individual differences in pressor response play an important role in determining differences in O2 delivery in addition to vasodilation. The mechanistic origins of this vasodilatory and pressor response heterogeneity across individuals remain to be determined. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Does oxygen delivery explain interindividual variation in forearm critical impulse?
Kellawan, J. Mikhail; Bentley, Robert F.; Bravo, Michael F.; Moynes, Jackie S.; Tschakovsky, Michael E.
2014-01-01
Abstract Within individuals, critical power appears sensitive to manipulations in O2 delivery. We asked whether interindividual differences in forearm O2 delivery might account for a majority of the interindividual differences in forearm critical force impulse (critical impulse), the force analog of critical power. Ten healthy men (24.6 ± 7.10 years) completed a maximal effort rhythmic handgrip exercise test (1 sec contraction‐2 sec relaxation) for 10 min. The average of contraction impulses over the last 30 sec quantified critical impulse. Forearm brachial artery blood flow (FBF; echo and Doppler ultrasound) and mean arterial pressure (MAP; finger photoplethysmography) were measured continuously. O2 delivery (FBF arterial oxygen content (venous blood [hemoglobin] and oxygen saturation from pulse oximetry)) and forearm vascular conductance (FVC; FBF·MAP−1) were calculated. There was a wide range in O2 delivery (59.98–121.15 O2 mL·min−1) and critical impulse (381.5–584.8 N) across subjects. During maximal effort exercise, O2 delivery increased rapidly, plateauing well before the declining forearm impulse and explained most of the interindividual differences in critical impulse (r2 = 0.85, P < 0.01). Both vasodilation (r2 = 0.64, P < 0.001) and the exercise pressor response (r2 = 0.33, P < 0.001) independently contributed to interindividual differences in FBF. In conclusion, interindividual differences in forearm O2 delivery account for most of the interindividual variation in critical impulse. Furthermore, individual differences in pressor response play an important role in determining differences in O2 delivery in addition to vasodilation. The mechanistic origins of this vasodilatory and pressor response heterogeneity across individuals remain to be determined. PMID:25413323
An improved algorithm for balanced POD through an analytic treatment of impulse response tails
NASA Astrophysics Data System (ADS)
Tu, Jonathan H.; Rowley, Clarence W.
2012-06-01
We present a modification of the balanced proper orthogonal decomposition (balanced POD) algorithm for systems with simple impulse response tails. In this new method, we use dynamic mode decomposition (DMD) to estimate the slowly decaying eigenvectors that dominate the long-time behavior of the direct and adjoint impulse responses. This is done using a new, low-memory variant of the DMD algorithm, appropriate for large datasets. We then formulate analytic expressions for the contribution of these eigenvectors to the controllability and observability Gramians. These contributions can be accounted for in the balanced POD algorithm by simply appending the impulse response snapshot matrices (direct and adjoint, respectively) with particular linear combinations of the slow eigenvectors. Aside from these additions to the snapshot matrices, the algorithm remains unchanged. By treating the tails analytically, we eliminate the need to run long impulse response simulations, lowering storage requirements and speeding up ensuing computations. To demonstrate its effectiveness, we apply this method to two examples: the linearized, complex Ginzburg-Landau equation, and the two-dimensional fluid flow past a cylinder. As expected, reduced-order models computed using an analytic tail match or exceed the accuracy of those computed using the standard balanced POD procedure, at a fraction of the cost.
Van Blyderveen, Sherry; Lafrance, Adele; Emond, Michael; Kosmerly, Stacey; O'Connor, Megan; Chang, Felicia
2016-12-01
Stress has been associated with deviations from typical eating patterns, with respect to both food choice and overall caloric intake. Both increases and decreases in dietary intake have been previously noted in response to stress. The purpose of the present study was to determine whether the affect regulation strategies of emotional control and impulsivity predict susceptibility to eating in response to stress. Specifically, it was anticipated that emotional suppression would predict decreases in caloric intake, whereas impulsivity would predict increases in caloric intake, in response to a stressor. Participants were randomly assigned to view either a video designed to elicit stress or a control video. Food was provided during the video and the amount and type of food consumed was measured. Participants' nutritional intake was greater in the stress condition than in the control condition. One aspect of affect regulation, impulsivity, moderated this relationship, with a tendency for greater impulsivity to be associated with greater caloric intake in the stress condition. The degree of negative affect that participants experienced in the stress condition predicted food choice and overall caloric intake. Both emotional control and impulsivity moderated the relationship between negative affect and both food choice and caloric intake in the stress condition. The present study highlights the importance of considering the personality attributes of both impulsivity and emotional suppression in understanding stress eating. Copyright © 2016. Published by Elsevier Ltd.
Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner; Sakaguchi, Jun; Olmos, Juan José Vegas; Awaji, Yoshinari; Monroy, Idelfonso Tafur; Wada, Naoya
2017-09-18
This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel photonic lantern spatial multiplexer, coupled to a 36-core 3-mode fiber, is experimentally demonstrated, extracting the full impulse response and complex transfer function matrices as well as insertion loss (IL) and mode-dependent loss (MDL) data. Moreover, the mode-mixing behavior of fiber splices in the few-mode multi-core fiber and their impact on system IL and MDL are analyzed, finding splices to cause significant mode-mixing and to be non-negligible in system capacity analysis.
[Electrical response of inner membrane structures of corynebacteria during electrotransformation].
Tiurin, M V; Voroshilova, E B; Rostova, Iu G; Oparina, N Iu; Gusiatiner, M M
1998-01-01
The efficiency of the electrotransformation of intact cells of corynebacteria by a solitary impulse with a complex shape amounted to 10(6) transformants/microgram of plasmid pNV1 DNA at an electric field strength of 14.2 kW/cm; the voltage-current curve of the cell samples was nonlinear. Under these conditions, the structure of the electric current impulse passing intact cells or protoplasts included oscillations characterized by increasing amplitude and a duration of 170 microseconds, which were not detected in the structure of the electric current impulses at field strengths insufficient for obtaining transformants. These changes in the impulse shape suggest the involvement of internal closed membrane structures in the electrical response of cells to the exogenous electric impulse. Most probably, under conditions of electrical treatment optimal for transformation, electropores are formed in the intracellular membranes of corynebacteria.
Notes on SAW Tag Interrogation Techniques
NASA Technical Reports Server (NTRS)
Barton, Richard J.
2010-01-01
We consider the problem of interrogating a single SAW RFID tag with a known ID and known range in the presence of multiple interfering tags under the following assumptions: (1) The RF propagation environment is well approximated as a simple delay channel with geometric power-decay constant alpha >/= 2. (2) The interfering tag IDs are unknown but well approximated as independent, identically distributed random samples from a probability distribution of tag ID waveforms with known second-order properties, and the tag of interest is drawn independently from the same distribution. (3) The ranges of the interfering tags are unknown but well approximated as independent, identically distributed realizations of a random variable rho with a known probability distribution f(sub rho) , and the tag ranges are independent of the tag ID waveforms. In particular, we model the tag waveforms as random impulse responses from a wide-sense-stationary, uncorrelated-scattering (WSSUS) fading channel with known bandwidth and scattering function. A brief discussion of the properties of such channels and the notation used to describe them in this document is given in the Appendix. Under these assumptions, we derive the expression for the output signal-to-noise ratio (SNR) for an arbitrary combination of transmitted interrogation signal and linear receiver filter. Based on this expression, we derive the optimal interrogator configuration (i.e., transmitted signal/receiver filter combination) in the two extreme noise/interference regimes, i.e., noise-limited and interference-limited, under the additional assumption that the coherence bandwidth of the tags is much smaller than the total tag bandwidth. Finally, we evaluate the performance of both optimal interrogators over a broad range of operating scenarios using both numerical simulation based on the assumed model and Monte Carlo simulation based on a small sample of measured tag waveforms. The performance evaluation results not only provide guidelines for proper interrogator design, but also provide some insight on the validity of the assumed signal model. It should be noted that the assumption that the impulse response of the tag of interest is known precisely implies that the temperature and range of the tag are also known precisely, which is generally not the case in practice. However, analyzing interrogator performance under this simplifying assumption is much more straightforward and still provides a great deal of insight into the nature of the problem.
Wilson, Michael J; Vassileva, Jasmin
2016-03-01
Impulsivity is an important risk factor for HIV risky drug and sexual behaviors. Research identifies hot (i.e. affectively-mediated, reward-based) and cool (motoric, attentional, independent of context) neurocognitive and psychiatric dimensions of impulsivity, though the impact of specific drugs of abuse on these varieties of impulsivity remains an open question. The present study examined the associations of neurocognitive and psychiatric varieties of hot and cool impulsivity with measures of lifetime and recent sexual risk behaviors among users of different classes of drugs. The study sample was comprised of drug users in protracted (> 1 year) abstinence: heroin mono-dependent (n = 61), amphetamine mono-dependent (n = 44), and polysubstance dependent (n = 73). Hot impulsivity was operationalized via neurocognitive tasks of reward-based decision-making and symptoms of psychopathy. Cool impulsivity was operationalized via neurocognitive tasks of response inhibition and symptoms of attention deficit/hyperactivity disorder (ADHD). Hot impulsivity was associated with sexual risk behaviors among heroin and amphetamine users in protracted abstinence, whereas cool impulsivity was not associated with sexual risk behaviors among any drug-using group. Neurocognitive hot impulsivity was associated with recent (past 30-day) sexual risk behaviors, whereas psychopathy was associated with sexual risk behaviors during more remote time-periods (past 6 month and lifetime) and mediated the association between heroin dependence and past 6-month sexual risk behaviors. Assessments and interventions aimed at reducing sexual risk behaviors among drug users should focus on hot neurocognitive and psychiatric dimensions of impulsivity, such as decision-making and psychopathy. Cool dimensions of impulsivity such as response inhibition and ADHD were not related to sexual risk behaviors among drug users in protracted abstinence.
Dong, Debo; Wang, Yulin; Jackson, Todd; Chen, Shuaiyu; Wang, Yu; Zhou, Feng; Chen, Hong
2016-10-01
Theory and associated research indicate that people with elevated restrained eating (RE) scores have higher risk for binge eating, future bulimic symptom onset and weight gain. Previous imaging studies have suggested hyper-responsive reward brain area activation in response to food cues contributes to this risk but little is known about associated neural impulse control mechanisms, especially when considering links between depleted cognitive resources related to unsuccessful RE. Towards illuminating this issue, we used a chocolate-specific delayed discounting (DD) task to investigate relations between RE scores, behavior impulsivity, and corresponding neural impulse control correlates in a functional magnetic resonance imaging (fMRI) study of 27 young women. Specifically, participants were required to choose between more immediate, smaller versus delayed, larger hypothetical chocolate rewards following initial consumption of a chocolate. As predicted, RE scores were correlated positively with behavior impulse control levels. More critically, higher RE scores were associated with stronger activation in impulse control region, the dorsal-lateral prefrontal cortex (DLPFC) during the completion of difficult decision trials reflecting higher cognitive demands and resource depletion relative to easy decision trials. Exploratory analyses revealed a positive correlation between RE scores and activity in a reward system hub, the right striatum. Moreover, a positive correlation between left DLPFC and striatum activation was posited to reflect, in part, impulse control region compensation in response to stronger reward signal among women with RE elevations. Findings suggested impulse control lapses may contribute to difficulties in maintaining RE, particularly when cognitive demands are high. Copyright © 2016. Published by Elsevier Ltd.
Reward Sensitivity and Waiting Impulsivity: Shift towards Reward Valuation away from Action Control
Mechelmans, Daisy J; Strelchuk, Daniela; Doñamayor, Nuria; Banca, Paula; Robbins, Trevor W; Baek, Kwangyeol
2017-01-01
Abstract Background Impulsivity and reward expectancy are commonly interrelated. Waiting impulsivity, measured using the rodent 5-Choice Serial Reaction Time task, predicts compulsive cocaine seeking and sign (or cue) tracking. Here, we assess human waiting impulsivity using a novel translational task, the 4-Choice Serial Reaction Time task, and the relationship with reward cues. Methods Healthy volunteers (n=29) performed the monetary incentive delay task as a functional MRI study where subjects observe a cue predicting reward (cue) and wait to respond for high (£5), low (£1), or no reward. Waiting impulsivity was tested with the 4-Choice Serial Reaction Time task. Results For high reward prospects (£5, no reward), greater waiting impulsivity on the 4-CSRT correlated with greater medial orbitofrontal cortex and lower supplementary motor area activity to cues. In response to high reward cues, greater waiting impulsivity was associated with greater subthalamic nucleus connectivity with orbitofrontal cortex and greater subgenual cingulate connectivity with anterior insula, but decreased connectivity with regions implicated in action selection and preparation. Conclusion These findings highlight a shift towards regions implicated in reward valuation and a shift towards compulsivity away from higher level motor preparation and action selection and response. We highlight the role of reward sensitivity and impulsivity, mechanisms potentially linking human waiting impulsivity with incentive approach and compulsivity, theories highly relevant to disorders of addiction. PMID:29020291
Field camera measurements of gradient and shim impulse responses using frequency sweeps.
Vannesjo, S Johanna; Dietrich, Benjamin E; Pavan, Matteo; Brunner, David O; Wilm, Bertram J; Barmet, Christoph; Pruessmann, Klaas P
2014-08-01
Applications of dynamic shimming require high field fidelity, and characterizing the shim field dynamics is therefore necessary. Modeling the system as linear and time-invariant, the purpose of this work was to measure the impulse response function with optimal sensitivity. Frequency-swept pulses as inputs are analyzed theoretically, showing that the sweep speed is a key factor for the measurement sensitivity. By adjusting the sweep speed it is possible to achieve any prescribed noise profile in the measured system response. Impulse response functions were obtained for the third-order shim system of a 7 Tesla whole-body MR scanner. Measurements of the shim fields were done with a dynamic field camera, yielding also cross-term responses. The measured shim impulse response functions revealed system characteristics such as response bandwidth, eddy currents and specific resonances, possibly of mechanical origin. Field predictions based on the shim characterization were shown to agree well with directly measured fields, also in the cross-terms. Frequency sweeps provide a flexible tool for shim or gradient system characterization. This may prove useful for applications involving dynamic shimming by yielding accurate estimates of the shim fields and a basis for setting shim pre-emphasis. Copyright © 2013 Wiley Periodicals, Inc.
Ma, Rubao; Xu, Weichao; Zhang, Yun; Ye, Zhongfu
2014-01-01
This paper investigates the robustness properties of Pearson's rank-variate correlation coefficient (PRVCC) in scenarios where one channel is corrupted by impulsive noise and the other is impulsive noise-free. As shown in our previous work, these scenarios that frequently encountered in radar and/or sonar, can be well emulated by a particular bivariate contaminated Gaussian model (CGM). Under this CGM, we establish the asymptotic closed forms of the expectation and variance of PRVCC by means of the well known Delta method. To gain a deeper understanding, we also compare PRVCC with two other classical correlation coefficients, i.e., Spearman's rho (SR) and Kendall's tau (KT), in terms of the root mean squared error (RMSE). Monte Carlo simulations not only verify our theoretical findings, but also reveal the advantage of PRVCC by an example of estimating the time delay in the particular impulsive noise environment.
On the limits of Kagan's impulsive reflective distinction.
Jones, B; McIntyre, L
1976-05-01
A logical analysis is made of the Matching Familiar Figures (MFF) Test on the basis of which children have been classified as "impulsive" or "reflective." The reflective strategy is implicitly preferred to the impulsive because the reflective child makes fewer errors though generally taking longer to make his first response. We show that the test allows the choice of a number of "game plans" and speed-accuracy tradeoffs which in practice may not be very different. Error rates may not indicate perceptual sensitivity, in any case, since sensitivity and response factors may be confounded in the error rate. Using a visual running-memory-span task to avoid the inherent difficulties of the MFF test, we found that children previously classified on the basis of that test as impulsive or reflective did not differ in recognition accuracy but did differ in response bias and response latency. Accuracy and bias are estimated by way of Luce's choice theory (Luce, 1963), and the results are discussed in those terms.
The effect of spinal manipulation impulse duration on spine neuromechanical responses
Pagé, Isabelle; Nougarou, François; Dugas, Claude; Descarreaux, Martin
2014-01-01
Introduction: Spinal manipulation therapy (SMT) is characterized by specific kinetic and kinematic parameters that can be modulated. The purpose of this study is to investigate fundamental aspects of SMT dose-physiological response relation in humans by varying SMT impulse duration. Methods: Twenty healthy adults were subjected to four different SMT force-time profiles delivered by a servo-controlled linear actuator motor and differing in their impulse duration. EMG responses of the left and right thoracic paraspinal muscles (T6 and T8 levels) and vertebral displacements of T7 and T8 were evaluated for all SMT phases. Results: Significant differences in paraspinal EMG were observed during the “Thrust phase” and immediately after (“Post-SMT1”) (all T8 ps < 0.01 and T6 during the thrust ps < 0.05). Sagittal vertebral displacements were similar across all conditions (p > 0.05). Conclusion: Decreasing SMT impulse duration leads to a linear increase in EMG response of thoracic paraspinal during and following the SMT thrust. PMID:24932018
On the interpretation of kernels - Computer simulation of responses to impulse pairs
NASA Technical Reports Server (NTRS)
Hung, G.; Stark, L.; Eykhoff, P.
1983-01-01
A method is presented for the use of a unit impulse response and responses to impulse pairs of variable separation in the calculation of the second-degree kernels of a quadratic system. A quadratic system may be built from simple linear terms of known dynamics and a multiplier. Computer simulation results on quadratic systems with building elements of various time constants indicate reasonably that the larger time constant term before multiplication dominates in the envelope of the off-diagonal kernel curves as these move perpendicular to and away from the main diagonal. The smaller time constant term before multiplication combines with the effect of the time constant after multiplication to dominate in the kernel curves in the direction of the second-degree impulse response, i.e., parallel to the main diagonal. Such types of insight may be helpful in recognizing essential aspects of (second-degree) kernels; they may be used in simplifying the model structure and, perhaps, add to the physical/physiological understanding of the underlying processes.
ERIC Educational Resources Information Center
Rodgers, Lisa; Basca, Belinda
2011-01-01
The natural world fascinates young children. Treasured leaves, shells, stones, and twigs always find their way into the kindergarten classroom. A kindergarten study of collections channels and deepens children's innate impulse to explore and collect. It also lays the foundation for understanding how scientists approach the study of objects in…
Linear response theory for annealing of radiation damage in semiconductor devices
NASA Technical Reports Server (NTRS)
Litovchenko, Vitaly
1988-01-01
A theoretical study of the radiation/annealing response of MOS ICs is described. Although many experiments have been performed in this field, no comprehensive theory dealing with radiation/annealing response has been proposed. Many attempts have been made to apply linear response theory, but no theoretical foundation has been presented. The linear response theory outlined here is capable of describing a broad area of radiation/annealing response phenomena in MOS ICs, in particular, both simultaneous irradiation and annealing, as well as short- and long-term annealing, including the case when annealing is nearing completion. For the first time, a simple procedure is devised to determine the response function from experimental radiation/annealing data. In addition, this procedure enables us to study the effect of variable temperature and dose rate, effects which are of interest in spaceflight. In the past, the shift in threshold potential due to radiation/annealing has usually been assumed to depend on one variable: the time lapse between an impulse dose and the time of observation. While such a suggestion of uniformity in time is certainly true for a broad range of radiation annealing phenomena, it may not hold for some ranges of the variables of interest (temperature, dose rate, etc.). A response function is projected which is dependent on two variables: the time of observation and the time of the impulse dose. This dependence on two variables allows us to extend the theory to the treatment of a variable dose rate. Finally, the linear theory is generalized to the case in which the response is nonlinear with impulse dose, but is proportional to some impulse function of dose. A method to determine both the impulse and response functions is presented.
Qualitative analysis of MTEM response using instantaneous attributes
NASA Astrophysics Data System (ADS)
Fayemi, Olalekan; Di, Qingyun
2017-11-01
This paper introduces new technique for qualitative analysis of multi-transient electromagnetic (MTEM) earth impulse response over complex geological structures. Instantaneous phase and frequency attributes were used in place of the conventional common offset section for improved qualitative interpretation of MTEM data by obtaining more detailed information from the earth impulse response. The instantaneous attributes were used to describe the lateral variation in subsurface resistivity and the visible geological structure with respect to given offsets. Instantaneous phase attribute was obtained by converting the impulse response into a complex form using the Hilbert transform. Conversely, the polynomial phase difference (PPD) estimator was favored over the center finite difference (CFD) approximation method in calculating the instantaneous frequency attribute because it is computationally efficient and has the ability to give a smooth variation of the instantaneous frequency over a common offset section. The observed results from the instantaneous attributes were in good agreement with both the subsurface model used and the apparent resistivity section obtained from the MTEM earth impulse response. Hence, this study confirms the capability of both instantaneous phase and frequency attributes as highly effective tools for MTEM qualitative analysis.
[Impulse control in addiction: a translational perspective].
Schmaal, L; Broos, N; Joos, L; Pattij, T; Goudriaan, A E
2013-01-01
Impulsivity is a hallmark of addiction and predicts treatment response and relapse. Impulsivity is, however, a complex construct. Translational cross-species research is needed to give us greater insight into the neurobiology and the role of impulsivity in addiction and to help with the development of new treatment strategies for improving patients' impulse control. To review recent evidence concerning the concept of impulsivity and the role of impulsivity in addiction. The concept and neurobiology of impulsivity are reviewed from a translational perspective. The role of impulsivity in addiction and implications for treatment are discussed. Our recent translational cross-species study indicates that impulsivity is made up of several, separate independent features with partly distinct underlying neurobiological substrates. There are also indications that these features make a unique and independent contribution to separate stages of the addiction cycle. In addition, the improvement of impulse control is a promising new target area for treatments that could lead to better results. However, those involved in developing new treatment strategies will have to take into account the complexity and multidimensional character of impulsivity.
Maguire, DR; Henson, C
2016-01-01
Background and Purpose Repeated administration of a μ opioid receptor agonist can enhance some forms of impulsivity, such as delay discounting. However, it is unclear whether repeated administration alters motor impulsivity. Experimental Approach We examined the effects of acute administration of morphine and amphetamine prior to and during daily morphine administration in rats responding under a five‐choice serial reaction time task. Rats (n = 5) were trained to detect a brief flash of light presented randomly in one of five response holes; responding in the target hole delivered food, whereas responding in the wrong hole or responding prior to illumination of the target stimulus (premature response) initiated a timeout. Premature responding served as an index of motor impulsivity. Key Results Administered acutely, morphine (0.1–10 mg·kg−1, i.p.) increased omissions and modestly, although not significantly, premature responding without affecting response accuracy; amphetamine (0.1–1.78 mg·kg−1, i.p.) increased premature responding without changing omissions or response accuracy. After 3 weeks of 10 mg·kg−1·day−1 morphine, tolerance developed to its effects on omissions whereas premature responding increased approximately fourfold, compared with baseline. Effects of amphetamine were not significantly affected by daily morphine administration. Conclusions and Implications These data suggest that repeated administration of morphine increased effects of morphine on motor impulsivity, although tolerance developed to other effects, such as omissions. To the extent that impulsivity is a risk factor for drug abuse, repeated administration of μ opioid receptor agonists, for recreational or therapeutic purposes, might increase impulsivity and thus the risk for drug abuse. PMID:26776751
NASA Technical Reports Server (NTRS)
Laird, Jamie S.; Onoda, Shinobu; Hirao, Toshio; Becker, Heidi; Johnston, Allan; Laird, Jamie S.; Itoh, Hisayoshi
2006-01-01
Effects of displacement damage and ionization damage induced by gamma irradiation on the dark current and impulse response of a high-bandwidth low breakdown voltage Si Avalanche Photodiode has been investigated using picosecond laser microscopy. At doses as high as 10Mrad (Si) minimal alteration in the impulse response and bandwidth were observed. However, dark current measurements also performed with and without biased irradiation exhibit anomalously large damage factors for applied biases close to breakdown. The absence of any degradation in the impulse response is discussed as are possible mechanisms for higher dark current damage factors observed for biased irradiation.
Measuring Method for Lightning Channel Temperature
Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.
2016-01-01
In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5–50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8–10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases. PMID:27665937
Strong potential wave functions with elastic channel distortion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macek, J.; Taulbjerg, K.
1989-06-01
The strong-potential Born approximation is analyzed in a channel-distorted-wave approach. Channel-distorted SPB wave functions are reduced to a conventional form in which the standard off-energy-shell factor /ital g/ has been replaced by a modified factor ..gamma.., which represents a suitable average of /ital g/ over the momentum distribution of the distorted-channel function. The modified factor is evaluated in a physically realistic model for the distortion potential, and it is found that ..gamma.. is well represented by a slowly varying phase factor. The channel-distorted SPB approximation is accordingly identical to the impulse approximation if the phase variation of ..gamma.. can bemore » ignored. This is generally the case in applications to radiative electron capture and to a good approximation for ordinary capture at not too small velocities.« less
Stanford, S Clare
2014-12-01
Both psychostimulants and antidepressants target monoamine transporters and, as a consequence, augment monoamine transmission. These two groups of drugs also increase motor activity in preclinical behavioural screens for antidepressants. Substance P-preferring receptor (NK1R) antagonists similarly increase both motor activity in these tests and monoamine transmission in the brain. In this article, the neurochemical and behavioural responses to these three groups of drugs are compared. It becomes evident that NK1R antagonists represent a distinct class of compounds ('motor disinhibitors') that differ substantially from both psychostimulants and antidepressants, especially during states of heightened arousal or stress. Also, all three groups of drugs influence the activation of voltage-gated Ca(v)1.2 and Ca(v)1.3 L-type channels (LTCCs) in the brain, albeit in different ways. This article discusses evidence that points to disruption of these functional interactions between NK1R and LTCCs as a contributing factor in the cognitive and behavioural abnormalities that are prominent features of Attention Deficit Hyperactivity Disorder (ADHD). Arising from this is the interesting possibility that the hyperactivity and impulsivity (as in ADHD) and psychomotor retardation (as in depression) reflect opposite poles of a behavioural continuum. A better understanding of this pharmacological network could help explain why psychostimulants augment motor behaviour during stress (e.g., in preclinical screens for antidepressants) and yet reduce locomotor activity and impulsivity in ADHD. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Aljedaani, Abdulrahman B.; Hussain, Muhammad M.
2015-10-01
Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal-oxide-semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.
Digital signal processing techniques for coherent optical communication
NASA Astrophysics Data System (ADS)
Goldfarb, Gilad
Coherent detection with subsequent digital signal processing (DSP) is developed, analyzed theoretically and numerically and experimentally demonstrated in various fiber-optic transmission scenarios. The use of DSP in conjunction with coherent detection unleashes the benefits of coherent detection which rely on the preservaton of full information of the incoming field. These benefits include high receiver sensitivity, the ability to achieve high spectral-efficiency and the use of advanced modulation formats. With the immense advancements in DSP speeds, many of the problems hindering the use of coherent detection in optical transmission systems have been eliminated. Most notably, DSP alleviates the need for hardware phase-locking and polarization tracking, which can now be achieved in the digital domain. The complexity previously associated with coherent detection is hence significantly diminished and coherent detection is once gain considered a feasible detection alternative. In this thesis, several aspects of coherent detection (with or without subsequent DSP) are addressed. Coherent detection is presented as a means to extend the dispersion limit of a duobinary signal using an analog decision-directed phase-lock loop. Analytical bit-error ratio estimation for quadrature phase-shift keying signals is derived. To validate the promise for high spectral efficiency, the orthogonal-wavelength-division multiplexing scheme is suggested. In this scheme the WDM channels are spaced at the symbol rate, thus achieving the spectral efficiency limit. Theory, simulation and experimental results demonstrate the feasibility of this approach. Infinite impulse response filtering is shown to be an efficient alternative to finite impulse response filtering for chromatic dispersion compensation. Theory, design considerations, simulation and experimental results relating to this topic are presented. Interaction between fiber dispersion and nonlinearity remains the last major challenge deterministic effects pose for long-haul optical data transmission. Experimental results which demonstrate the possibility to digitally mitigate both dispersion and nonlinearity are presented. Impairment compensation is achieved using backward propagation by implementing the split-step method. Efficient realizations of the dispersion compensation operator used in this implementation are considered. Infinite-impulse response and wavelet-based filtering are both investigated as a means to reduce the required computational load associated with signal backward-propagation. Possible future research directions conclude this dissertation.
van Eijk, Julia; Sebastian, Alexandra; Krause-Utz, Annegret; Cackowski, Sylvia; Demirakca, Traute; Biedermann, Sarah V; Lieb, Klaus; Bohus, Martin; Schmahl, Christian; Ende, Gabriele; Tüscher, Oliver
2015-12-30
Impulsivity is central to borderline personality disorder (BPD). Response inhibition, addressing the ability to suppress or stop actions, is one aspect of behavioral impulse control which is frequently used to assess impulsivity. BPD patients display deficits in response inhibition under stress condition or negative emotions. We assessed whether response inhibition and its neural underpinnings are impaired in BPD when tested in an emotionally neutral setting and when co-morbid attention-deficit/hyperactivity disorder (ADHD) is excluded. To this end, we studied response inhibition in unmedicated BPD patients and healthy controls (HC) in two independent samples using functional magnetic resonance imaging during Simon-, Go/nogo-, and Stopsignal tasks. BPD patients and HC did not differ significantly in their performance in the Go/nogo and the Stopsignal tasks. Response interference in the Simon task was increased in BPD patients in one sample, but this could not be replicated in the second sample. In both samples, no significant differences in brain activation patterns during any of the tasks were present while the neural impulse control network was robustly activated during the inhibition tasks in both groups. Our results provide evidence that under emotionally neutral conditions response inhibition is not impaired in patients with BPD without co-occurring ADHD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Sex differences in impulsive action and impulsive choice.
Weafer, Jessica; de Wit, Harriet
2014-11-01
Here, we review the evidence for sex differences in behavioral measures of impulsivity for both humans and laboratory animals. We focus on two specific components of impulsivity: impulsive action (i.e., difficulty inhibiting a prepotent response) and impulsive choice (i.e., difficulty delaying gratification). Sex differences appear to exist on these measures, but the direction and magnitude of the differences vary. In laboratory animals, impulsive action is typically greater in males than females, whereas impulsive choice is typically greater in females. In humans, women discount more steeply than men, but sex differences on measures of impulsive action depend on tasks and subject samples. We discuss implications of these findings as they relate to drug addiction. We also point out the major gaps in this research to date, including the lack of studies designed specifically to examine sex differences in behavioral impulsivity, and the lack of consideration of menstrual or estrous phase or sex hormone levels in the studies. © 2013.
Sex differences in impulsive action and impulsive choice
Weafer, Jessica; de Wit, Harriet
2013-01-01
Here, we review the evidence for sex differences in behavioral measures of impulsivity for both humans and laboratory animals. We focus on two specific components of impulsivity: impulsive action (i.e., difficulty inhibiting a prepotent response) and impulsive choice (i.e., difficulty delaying gratification). Sex differences appear to exist on these measures, but the direction and magnitude of the differences vary. In laboratory animals, impulsive action is typically greater in males than females, whereas impulsive choice is typically greater in females. In humans, women discount more steeply than men, but sex differences on measures of impulsive action depend on tasks and subject samples. We discuss implications of these findings as they relate to drug addiction. We also point out the major gaps in this research to date, including the lack of studies designed specifically to examine sex differences in behavioral impulsivity, and the lack of consideration of menstrual or estrous phase or sex hormone levels in the studies. PMID:24286704
Autogenic dynamics of debris-flow fans
NASA Astrophysics Data System (ADS)
van den Berg, Wilco; de Haas, Tjalling; Braat, Lisanne; Kleinhans, Maarten
2015-04-01
Alluvial fans develop their semi-conical shape by cyclic avulsion of their geomorphologically active sector from a fixed fan apex. These cyclic avulsions have been attributed to both allogenic and autogenic forcings and processes. Autogenic dynamics have been extensively studied on fluvial fans through physical scale experiments, and are governed by cyclic alternations of aggradation by unconfined sheet flow, fanhead incision leading to channelized flow, channel backfilling and avulsion. On debris-flow fans, however, autogenic dynamics have not yet been directly observed. We experimentally created debris-flow fans under constant extrinsic forcings, and show that autogenic dynamics are a fundamental intrinsic process on debris-flow fans. We found that autogenic cycles on debris-flow fans are driven by sequences of backfilling, avulsion and channelization, similar to the cycles on fluvial fans. However, the processes that govern these sequences are unique for debris-flow fans, and differ fundamentally from the processes that govern autogenic dynamics on fluvial fans. We experimentally observed that backfilling commenced after the debris flows reached their maximum possible extent. The next debris flows then progressively became shorter, driven by feedbacks on fan morphology and flow-dynamics. The progressively decreasing debris-flow length caused in-channel sedimentation, which led to increasing channel overflow and wider debris flows. This reduced the impulse of the liquefied flow body to the flow front, which then further reduced flow velocity and runout length, and induced further in-channel sedimentation. This commenced a positive feedback wherein debris flows became increasingly short and wide, until the channel was completely filled and the apex cross-profile was plano-convex. At this point, there was no preferential transport direction by channelization, and the debris flows progressively avulsed towards the steepest, preferential, flow path. Simultaneously, the debris flows started to channelize, forced by increasingly effective concentration of the flow impulse to the flow front, which caused more effective lateral levee formation and an increasingly well-defined channel. This process continued until the debris flows reached their maximum possible extent and the cycle was reverted. Channelization occurred in the absence of erosion, in contrast with fluvial fans. Backfilling and channelization cycles were gradual and symmetric, requiring multiple debris flows to be completed. These results add debris-flow fans to the spectrum of fan-shaped aqueous systems that are affected by autogenic dynamics, now ranging from low-gradient rivers systems to steep-gradient mass-flow fans.
Leshem, Rotem
2016-02-01
This study examined the relationship between trait impulsivity and cognitive control, as measured by the Barratt Impulsiveness Scale (BIS) and a focused attention dichotic listening to words task, respectively. In the task, attention was manipulated in two attention conditions differing in their cognitive control demands: one in which attention was directed to one ear at a time for a whole block of trials (blocked condition) and another in which attention was switched pseudo-randomly between the two ears from trial to trial (mixed condition). Results showed that high impulsivity participants exhibited more false alarm and intrusion errors as well as a lesser ability to distinguish between stimuli in the mixed condition, as compared to low impulsivity participants. In the blocked condition, the performance levels of the two groups were comparable with respect to these measures. In addition, total BIS scores were correlated with intrusions and laterality index in the mixed but not the blocked condition. The findings suggest that high impulsivity individuals may be less prone to attentional difficulties when cognitive load is relatively low. In contrast, when attention switching is involved, high impulsivity is associated with greater difficulty in inhibiting responses and resolving cognitive conflict than is low impulsivity, as reflected in error-prone information processing. The conclusion is that trait impulsivity in a non-clinical population is manifested more strongly when attention switching is required than during maintained attention. This may have important implications for the conceptualization and treatment of impulsivity in both non-clinical and clinical populations.
Annoyance due to simulated blade-slap noise
NASA Technical Reports Server (NTRS)
Powell, C. A.
1978-01-01
The effects of several characteristics of blade slap noise on annoyance response were studied. These characteristics or parameters were the sound pressure level of the continuous noise used to simulate helicopter broadband noise, the ratio of impulse peak to broadband noise or crest factor, the number of pressure excursions comprising an impulse event, the rise and fall time of the individual impulses, and the repetition frequency of the impulses. Analyses were conducted to determine the correlation between subjective response and various physical measures for the range of parameters studied. A small but significant improvement in the predictive ability of PNL was provided by an A-weighted crest factor correlation. No significant improvement in predictive ability was provided by a rate correction.
Understanding Computation of Impulse Response in Microwave Software Tools
ERIC Educational Resources Information Center
Potrebic, Milka M.; Tosic, Dejan V.; Pejovic, Predrag V.
2010-01-01
In modern microwave engineering curricula, the introduction of the many new topics in microwave industrial development, or of software tools for design and simulation, sometimes results in students having an inadequate understanding of the fundamental theory. The terminology for and the explanation of algorithms for calculating impulse response in…
Bluschke, A; Roessner, V; Beste, C
2016-04-01
Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent neuropsychiatric disorders in childhood. Besides inattention and hyperactivity, impulsivity is the third core symptom leading to diverse and serious problems. However, the neuronal mechanisms underlying impulsivity in ADHD are still not fully understood. This is all the more the case when patients with the ADHD combined subtype (ADHD-C) are considered who are characterized by both symptoms of inattention and hyperactivity/impulsivity. Combining high-density electroencephalography (EEG) recordings with source localization analyses, we examined what information processing stages are dysfunctional in ADHD-C (n = 20) compared with controls (n = 18). Patients with ADHD-C made more impulsive errors in a Go/No-go task than healthy controls. Neurophysiologically, different subprocesses from perceptual gating to attentional selection, resource allocation and response selection processes are altered in this patient group. Perceptual gating, stimulus-driven attention selection and resource allocation processes were more pronounced in ADHD-C, are related to activation differences in parieto-occipital networks and suggest attentional filtering deficits. However, only response selection processes, associated with medial prefrontal networks, predicted impulsive errors in ADHD-C. Although the clinical picture of ADHD-C is complex and a multitude of processing steps are altered, only a subset of processes seems to directly modulate impulsive behaviour. The present findings improve the understanding of mechanisms underlying impulsivity in patients with ADHD-C and might help to refine treatment algorithms focusing on impulsivity.
Radar wideband digital beamforming based on time delay and phase compensation
NASA Astrophysics Data System (ADS)
Fu, Wei; Jiang, Defu
2018-07-01
In conventional phased array radars, analogue time delay devices and phase shifters have been used for wideband beamforming. These methods suffer from insertion losses, gain mismatches and delay variations, and they occupy a large chip area. To solve these problems, a compact architecture of digital array antennas based on subarrays was considered. In this study, the receiving beam patterns of wideband linear frequency modulation (LFM) signals were constructed by applying analogue stretch processing via mixing with delayed reference signals at the subarray level. Subsequently, narrowband digital time delaying and phase compensation of the tone signals were implemented with reduced arithmetic complexity. Due to the differences in amplitudes, phases and time delays between channels, severe performance degradation of the beam patterns occurred without corrections. To achieve good beamforming performance, array calibration was performed in each channel to adjust the amplitude, frequency and phase of the tone signal. Using a field-programmable gate array, wideband LFM signals and finite impulse response filters with continuously adjustable time delays were implemented in a polyphase structure. Simulations and experiments verified the feasibility and effectiveness of the proposed digital beamformer.
Generalized fluid impulse functions for oscillating marine structures
NASA Astrophysics Data System (ADS)
Janardhanan, K.; Price, W. G.; Wu, Y.
1992-03-01
A selection of generalized impulse response functions is presented for a variety of rigid and flexible marine structures (i.e. mono-hull, SWATH, floating drydock and twin dock, fixed flexible pile). These functions are determined from calculated and experimental frequency-dependent hydrodynamic data, and the characteristics of these data depend on the type of structure considered. This information is reflected in the shape and duration of the generalized impulse response functions which are pre-requisites for a generalized integro-differential mathematical model describing the dynamic behaviour of the structures to seaway excitation.
Littel, Marianne; van den Berg, Ivo; Luijten, Maartje; van Rooij, Antonius J; Keemink, Lianne; Franken, Ingmar H A
2012-09-01
Excessive computer gaming has recently been proposed as a possible pathological illness. However, research on this topic is still in its infancy and underlying neurobiological mechanisms have not yet been identified. The determination of underlying mechanisms of excessive gaming might be useful for the identification of those at risk, a better understanding of the behavior and the development of interventions. Excessive gaming has been often compared with pathological gambling and substance use disorder. Both disorders are characterized by high levels of impulsivity, which incorporates deficits in error processing and response inhibition. The present study aimed to investigate error processing and response inhibition in excessive gamers and controls using a Go/NoGo paradigm combined with event-related potential recordings. Results indicated that excessive gamers show reduced error-related negativity amplitudes in response to incorrect trials relative to correct trials, implying poor error processing in this population. Furthermore, excessive gamers display higher levels of self-reported impulsivity as well as more impulsive responding as reflected by less behavioral inhibition on the Go/NoGo task. The present study indicates that excessive gaming partly parallels impulse control and substance use disorders regarding impulsivity measured on the self-reported, behavioral and electrophysiological level. Although the present study does not allow drawing firm conclusions on causality, it might be that trait impulsivity, poor error processing and diminished behavioral response inhibition underlie the excessive gaming patterns observed in certain individuals. They might be less sensitive to negative consequences of gaming and therefore continue their behavior despite adverse consequences. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.
Johnson, Sheri L; Carver, Charles S; Joormann, Jutta
2013-09-25
This study explored the hypothesis that impulsive reactions to heightened emotion may reflect a transdiagnostic vulnerability to both externalizing and internalizing symptoms. A sample of undergraduates completed self-report measures of aggression, borderline personality disorder symptoms, anxiety symptoms, and alcohol problems, and a subset completed interviews that assessed suicidality. All participants also completed self-report measures relating to impulsivity. We predicted that emotion-reactive impulsivity, but not other aspects of impulsivity, would be related to the set of psychopathology symptoms. Multiple regression analyses found that emotion-reactive impulsivity was uniquely related to each of the psychopathology scales, whereas non-emotion-relevant impulsivity was uniquely related only to alcohol problems. Discussion focuses on limitations and clinical implications. © 2013 Elsevier B.V. All rights reserved.
Free space optical ultra-wideband communications over atmospheric turbulence channels.
Davaslioğlu, Kemal; Cağiral, Erman; Koca, Mutlu
2010-08-02
A hybrid impulse radio ultra-wideband (IR-UWB) communication system in which UWB pulses are transmitted over long distances through free space optical (FSO) links is proposed. FSO channels are characterized by random fluctuations in the received light intensity mainly due to the atmospheric turbulence. For this reason, theoretical detection error probability analysis is presented for the proposed system for a time-hopping pulse-position modulated (TH-PPM) UWB signal model under weak, moderate and strong turbulence conditions. For the optical system output distributed over radio frequency UWB channels, composite error analysis is also presented. The theoretical derivations are verified via simulation results, which indicate a computationally and spectrally efficient UWB-over-FSO system.
Age and Impulsive Behavior in Drug Addiction: A Review of Past Research and Future Directions
Argyriou, Evangelia; Um, Miji; Carron, Clair; Cyders, Melissa A.
2018-01-01
Impulsive behavior is implicated in the initiation, maintenance, and relapse of drug-seeking behaviors involved in drug addiction. Research shows that changes in impulsive behavior across the lifespan contribute to drug use and addiction. The goal of this review is to examine existing research on the relationship between impulsive behavior and drug use across the lifespan and to recommend directions for future research. Three domains of impulsive behavior are explored in this review: impulsive behavior-related personality traits, delay discounting, and prepotent response inhibition. First, we present previous research on these three domains of impulsive behavior and drug use across developmental stages. Then, we discuss how changes in impulsive behavior across the lifespan are implicated in the progression of drug use and addiction. Finally, we discuss the relatively limited attention given to middle-to-older adults in the current literature, consider the validity of the measures used to assess impulsive behavior in middle-to-older adulthood, and suggest recommendations for future research. PMID:28778737
Methods and apparatuses for self-generating fault-tolerant keys in spread-spectrum systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Hussein; Farhang, Behrouz; Subramanian, Vijayarangam
Self-generating fault-tolerant keys for use in spread-spectrum systems are disclosed. At a communication device, beacon signals are received from another communication device and impulse responses are determined from the beacon signals. The impulse responses are circularly shifted to place a largest sample at a predefined position. The impulse responses are converted to a set of frequency responses in a frequency domain. The frequency responses are shuffled with a predetermined shuffle scheme to develop a set of shuffled frequency responses. A set of phase differences is determined as a difference between an angle of the frequency response and an angle ofmore » the shuffled frequency response at each element of the corresponding sets. Each phase difference is quantized to develop a set of secret-key quantized phases and a set of spreading codes is developed wherein each spreading code includes a corresponding phase of the set of secret-key quantized phases.« less
Cabo, Candido
2015-10-01
Myocardial infarction causes remodeling of the tissue structure and the density and kinetics of several ion channels in the cell membrane. Heterogeneities in refractory period (ERP) have been shown to occur in the infarct border zone and have been proposed to lead to initiation of arrhythmias. The purpose of this study is to quantify the window of vulnerability (WV) to block and initiation of reentrant impulses in myocardium with ERP heterogeneities using computer simulations. We found that ERP transitions at the border between normal ventricular cells (NZ) with different ERPs are smooth, whereas ERP transitions between NZ and infarct border zone cells (IZ) are abrupt. The profile of the ERP transitions is a combination of electrotonic interaction between NZ and IZ cells and the characteristic post-repolarization refractoriness (PRR) of IZ cells. ERP heterogeneities between NZ and IZ cells are more vulnerable to block and initiation of reentrant impulses than ERP heterogeneities between NZ cells. The relationship between coupling intervals of premature impulses (V1V2) and coupling intervals between premature and first reentrant impulses (V2T1) at NZ/NZ and NZ/IZ borders is inverse (i.e. the longer the coupling intervals of premature impulses the shorter the coupling interval between the premature and first reentrant impulses); this is in contrast with the reported V1V2/V2T1 relationship measured during initiation of reentrant impulses in canine infarcted hearts which is direct. (1) ERP transitions at the NZ-IZ border are abrupt as a consequence of PRR; (2) PRR increases the vulnerability to block and initiation of reentrant impulses in heterogeneous myocardium; (3) V1V2/V2T1 relationships measured at ERP heterogeneities in the computer model and in experimental canine infarcts are not consistent. Therefore, it is likely that other mechanisms like micro and/or macro structural heterogeneities also contribute to initiation of reentrant impulses in infarcted hearts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Vibrational Responses Of Structures To Impulses
NASA Technical Reports Server (NTRS)
Zak, Michail A.
1990-01-01
Report discusses propagation of vibrations in structure in response to impulsive and/or concentrated loads. Effects of pulsed loads treated by analyzing propagation of characteristic vibrational waves explicitly through each member of structure. This wave-front analysis used in combination with usual finite-element modal analysis to obtain more accurate representation of overall vibrational behavior.
ERIC Educational Resources Information Center
Falcomata, Terry S.; Cooper-Brown, Linda J.; Wacker, David P.; Gardner, Andrew W.; Boelter, Eric W.
2010-01-01
We conducted an assessment of self-control and impulsivity with 9 children referred to an outpatient clinic for impulsive, inattentive, and hyperactive behaviors. Each condition of the assessment consisted of a choice between 2 concurrently presented math or writing tasks, with 1 alternative reflecting impulsive responding and 1 alternative…
Reduced voltage sensitivity in a K+-channel voltage sensor by electric field remodeling
González-Pérez, Vivian; Stack, Katherine; Boric, Katica; Naranjo, David
2010-01-01
Propagation of the nerve impulse relies on the extreme voltage sensitivity of Na+ and K+ channels. The transmembrane movement of four arginine residues, located at the fourth transmembrane segment (S4), in each of their four voltage-sensing domains is mostly responsible for the translocation of 12 to 13 eo across the transmembrane electric field. Inserting additional positively charged residues between the voltage-sensing arginines in S4 would, in principle, increase voltage sensitivity. Here we show that either positively or negatively charged residues added between the two most external sensing arginines of S4 decreased voltage sensitivity of a Shaker voltage-gated K+-channel by up to ≈50%. The replacement of Val363 with a charged residue displaced inwardly the external boundaries of the electric field by at least 6 Å, leaving the most external arginine of S4 constitutively exposed to the extracellular space and permanently excluded from the electric field. Both the physical trajectory of S4 and its electromechanical coupling to open the pore gate seemed unchanged. We propose that the separation between the first two sensing charges at resting is comparable to the thickness of the low dielectric transmembrane barrier they must cross. Thus, at most a single sensing arginine side chain could be found within the field. The conserved hydrophobic nature of the residues located between the voltage-sensing arginines in S4 may shape the electric field geometry for optimal voltage sensitivity in voltage-gated ion channels. PMID:20194763
van den Akker, Karolien; Havermans, Remco C; Bouton, Mark E; Jansen, Anita
2014-10-01
Animals and humans can easily learn to associate an initially neutral cue with food intake through classical conditioning, but extinction of learned appetitive responses can be more difficult. Intermittent or partial reinforcement of food cues causes especially persistent behaviour in animals: after exposure to such learning schedules, the decline in responding that occurs during extinction is slow. After extinction, increases in responding with renewed reinforcement of food cues (reacquisition) might be less rapid after acquisition with partial reinforcement. In humans, it may be that the eating behaviour of some individuals resembles partial reinforcement schedules to a greater extent, possibly affecting dieting success by interacting with extinction and reacquisition. Furthermore, impulsivity has been associated with less successful dieting, and this association might be explained by impulsivity affecting the learning and extinction of appetitive responses. In the present two studies, the effects of different reinforcement schedules and impulsivity on the acquisition, extinction, and reacquisition of appetitive responses were investigated in a conditioning paradigm involving food rewards in healthy humans. Overall, the results indicate both partial reinforcement schedules and, possibly, impulsivity to be associated with worse extinction performance. A new model of dieting success is proposed: learning histories and, perhaps, certain personality traits (impulsivity) can interfere with the extinction and reacquisition of appetitive responses to food cues and they may be causally related to unsuccessful dieting. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dynamical analysis of rumor spreading model with impulse vaccination and time delay
NASA Astrophysics Data System (ADS)
Huo, Liang'an; Ma, Chenyang
2017-04-01
Rumor cause unnecessary conflicts and confusion by misleading the cognition of the public, its spreading has largely influence on human affairs. All kinds of rumors and people's suspicion are often caused by the lack of official information. Hence, the official should take a variety of channels to deny the rumors. The promotion of scientific knowledge is implemented to improve the quality of the whole nation, reduce the harm caused by rumor spreading. In this paper, regarding the process of the science education that official deny the rumor many times as periodic impulse, we propose a XWYZ rumor spreading model with impulse vaccination and time delay, and analyze the global dynamics behaviors of the model. By using the discrete dynamical system determined by the comparison theory and Floquet theorem, we show that there exists a rumor-free periodic solution. Further, we show that the rumor-free periodic solution is globally attractive under appropriate conditions. We also obtain a sufficient condition for the permanence of model. Finally, with the numerical simulation, our results indicate that large vaccination rate, short impulse period or long latent period is sufficient condition for the extinction of the rumors.
Yokoyama, Ryoichi; Nozawa, Takayuki; Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Hanihara, Mayu; Sassa, Yuko; Kawashima, Ryuta
2015-01-01
When faced with a problem or choice, humans can use two different strategies: “cognitive reflectivity,” which involves slow responses and fewer mistakes, or “cognitive impulsivity,” which comprises of quick responses and more mistakes. Different individuals use these two strategies differently. To our knowledge, no study has directly investigated the brain regions involved in reflectivity–impulsivity; therefore, this study focused on associations between these cognitive strategies and the gray matter structure of several brain regions. In order to accomplish this, we enrolled 776 healthy, right-handed individuals (432 men and 344 women; 20.7 ± 1.8 years) and used voxel-based morphometry with administration of a cognitive reflectivity–impulsivity questionnaire. We found that high cognitive reflectivity was associated with greater regional gray matter density in the ventral medial prefrontal cortex. Our finding suggests that this area plays an important role in defining an individual’s trait associated with reflectivity and impulsivity. PMID:25803809
Periodic components of hand acceleration/deceleration impulses during telemanipulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draper, J.V.; Handel, S.
1994-01-01
Responsiveness is the ability of a telemanipulator to recreate user trajectories and impedance in time and space. For trajectory production, a key determinant of responsiveness is the ability of the system to accept user inputs, which are forces on the master handle generated by user hand acceleration/deceleration (a/d) impulses, and translate them into slave arm acceleration/deceleration. This paper presents observations of master controller a/d impulses during completion of a simple target acquisition task. Power spectral density functions (PSDF`s) calculated from hand controller a/d impulses were used to assess impulse waveform. The relative contributions of frequency intervals ranging up to 25more » Hz for three spatially different versions of the task were used to determine which frequencies were most important. The highest relative power was observed in frequencies between 1 Hz and 6 Hz. The key frequencies related to task difficulty were in the range from 2 Hz to 8 Hz. the results provide clues to the source of the performance inhibition.« less
A Review of Research on Impulsive Loading of Marine Composites
NASA Astrophysics Data System (ADS)
Porfiri, Maurizio; Gupta, Nikhil
Impulsive loading conditions, such as those produced by blast waves, are being increasingly recognized as relevant in marine applications. Significant research efforts are directed towards understanding the impulsive loading response of traditional naval materials, such as aluminum and steel, and advanced composites, such as laminates and sandwich structures. Several analytical studies are directed towards establishing predictive models for structural response and failure of marine structures under blast loading. In addition, experimental research efforts are focused on characterizing structural response to blast loading. The aim of this review is to provide a general overview of the state of the art on analytical and experimental studies in this field that can serve as a guideline for future research directions. Reported studies cover the Office of Naval Research-Solid Mechanics Program sponsored research along with other worldwide research efforts of relevance to marine applications. These studies have contributed to developing a fundamental knowledge of the mechanics of advanced materials subjected to impulsive loading, which is of interest to all Department of Defense branches.
Kim, Minah; Lee, Tak Hyung; Choi, Jung-Seok; Kwak, Yoo Bin; Hwang, Wu Jeong; Kim, Taekwan; Lee, Ji Yoon; Lim, Jae-A; Park, Minkyung; Kim, Yeon Jin; Kim, Sung Nyun; Kim, Dai Jin; Kwon, Jun Soo
2017-01-01
Although internet gaming disorder (IGD) and obsessive-compulsive disorder (OCD) represent opposite ends of the impulsivity and compulsivity dimensions, the two disorders share common neurocognitive deficits in response inhibition. However, the similarities and differences in neurophysiological features of altered response inhibition between IGD and OCD have not been investigated sufficiently. In total, 27 patients with IGD, 24 patients with OCD, and 26 healthy control (HC) subjects participated in a Go/NoGo task with electroencephalographic recordings. N2-P3 complexes elicited during Go and NoGo condition were analyzed separately and compared among conditions and groups. NoGo-N2 latency at the central electrode site was delayed in IGD group versus the HC group and correlated positively with the severity of internet game addiction and impulsivity. NoGo-N2 amplitude at the frontal electrode site was smaller in OCD patients than in IGD patients. These findings suggest that prolonged NoGo-N2 latency may serve as a marker of trait impulsivity in IGD and reduced NoGo-N2 amplitude may be a differential neurophysiological feature between OCD from IGD with regard to compulsivity. We report the first differential neurophysiological correlate of the altered response inhibition in IGD and OCD, which may be a candidate biomarker for impulsivity and compulsivity. PMID:28134318
1991-11-01
Nicholas George "Image Deblurring for Multiple-Point Impulse Responses," Bryan J. Stossel and Nicholas George 14. SUBJECT TERMS 15. NUMBER OF PAGES...Keith B. Farr Nicholas George Backscatter from a Tilted Rough Disc Donald J. Schertler Nicholas George Image Deblurring for Multiple-Point Impulse ...correlation components. Uf) c)z 0 CL C/) Ix I- z 0 0 LL C,z -J a 0l IMAGE DEBLURRING FOR MULTIPLE-POINT IMPULSE RESPONSES Bryan J. Stossel and Nicholas George
Eyes wide shopped: shopping situations trigger arousal in impulsive buyers.
Serfas, Benjamin G; Büttner, Oliver B; Florack, Arnd
2014-01-01
The present study proposes arousal as an important mechanism driving buying impulsiveness. We examined the effect of buying impulsiveness on arousal in non-shopping and shopping contexts. In an eye-tracking experiment, we measured pupil dilation while participants viewed and rated pictures of shopping scenes and non-shopping scenes. The results demonstrated that buying impulsiveness is closely associated with arousal as response to viewing pictures of shopping scenes. This pertained for hedonic shopping situations as well as for utilitarian shopping situations. Importantly, the effect did not emerge for non-shopping scenes. Furthermore, we demonstrated that arousal of impulsive buyers is independent from cognitive evaluation of scenes in the pictures.
Giesen, Janneke C A H; Havermans, Remco C; Nederkoorn, Chantal; Jansen, Anita
2012-02-01
The present study investigated the effect of taxing high-energy dense products and subsidizing low-energy dense products on changes in calorie consumption. More specifically, we hypothesized that 'more impulsive' individuals were less influenced by such pricing strategies compared to 'less impulsive' individuals. Contrary to our hypothesis, results showed that 'more impulsive' individuals adjusted their calorie consumption with regard to price changes whereas 'less impulsive' participants were less influenced by price changes. Furthermore, taxing high-energy dense products was more successful in reducing calorie consumption than subsidizing low-energy dense products. Copyright © 2011 Elsevier Ltd. All rights reserved.
Biased Brownian motion in narrow channels with asymmetry and anisotropy
NASA Astrophysics Data System (ADS)
To, Kiwing; Peng, Zheng
2016-11-01
We study Brownian motion of a single millimeter size bead confined in a quasi-two-dimensional horizontal channel with built-in anisotropy and asymmetry. Channel asymmetry is implemented by ratchet walls while anisotropy is introduced using a channel base that is grooved along the channel axis so that a bead can acquire a horizontal impulse perpendicular to the longitudinal direction when it collides with the base. When energy is injected to the channel by vertical vibration, the combination of asymmetric walls and anisotropic base induces an effective force which drives the bead into biased diffusive motion along the channel axis with diffusivity and drift velocity increase with vibration strength. The magnitude of this driving force, which can be measured in experiments of tilted channel, is found to be consistent to those obtained from dynamic mobility and position probability distribution measurements. These results are explained by a simple collision model that suggests the random kinetic energies transfer between different translational degrees of freedom may be turned into useful work in the presence of asymmetry and anisotropy.
Biased Brownian motion in narrow channels with asymmetry and anisotropy
NASA Astrophysics Data System (ADS)
Peng, Zheng; To, Kiwing
2016-08-01
We study Brownian motion of a single millimeter size bead confined in a quasi-two-dimensional horizontal channel with built-in anisotropy and asymmetry. Channel asymmetry is implemented by ratchet walls while anisotropy is introduced using a channel base that is grooved along the channel axis so that a bead can acquire a horizontal impulse perpendicular to the longitudinal direction when it collides with the base. When energy is injected to the channel by vertical vibration, the combination of asymmetric walls and anisotropic base induces an effective force which drives the bead into biased diffusive motion along the channel axis with diffusivity and drift velocity increase with vibration strength. The magnitude of this driving force, which can be measured in experiments on a tilted channel, is found to be consistent with those obtained from dynamic mobility and position probability distribution measurements. These results are explained by a simple collision model that suggests the random kinetic energy transfer between different translational degrees of freedom may be turned into useful work in the presence of asymmetry and anisotropy.
Fitzpatrick, Ciaràn M; Maric, Vojislav S; Bate, Simon T; Andreasen, Jesper T
2018-01-01
Impulsivity is a characteristic of a number of neuropsychiatric disorders such as attention-deficit/hyperactivity disorder. The 5-choice serial reaction time task (5-CSRTT) is a rodent paradigm extensively used to assess attention and impulsivity. Notably, 5-CSRTT studies do not typically account for the reduction in premature responding, the measure of impulsive action, occurring upon repeated exposure to test sessions with long or variable intertrial intervals (ITIs). This present 5-CSRTT study investigated the use of variable ITIs (5, 10 or 15s) across 15 test days (4 training days followed by 1 drug test day per week for three weeks) as previous experience had shown that 4 training days would be sufficient to induce consistent premature response levels in male C57BL/6J mice. Once a steady state was achieved, the effects of dextroamphetamine (AMPH) and (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) were then assessed using a Latin-square design to determine whether pharmacological-induced impulsive actions depended on ITI length. Mice habituated to the variable ITI schedule after only 3days and showed consistently lower premature response levels until the end of the study. AMPH (p<0.05) and DOI (p<0.05) increased the percentage of premature responses at 15s ITI trials, while only DOI (p<0.05) increased impulsive action at 10s ITI trials. Additionally, DOI increased omission rates (p<0.001), mean correct latency (p<0.01), reward collection latency (p<0.001), and reduced the total attempted trials (p<0.001). In summary, we demonstrated that mice habituate to the variable ITI schedule, suggesting that using the variable ITI schedule during training allowed premature response rates to stabilize before commencing pharmacological testing. Moreover, in these habituated mice AMPH and DOI significantly enhanced impulsive action at the long ITI trials only. We propose that experimental design considerations can improve the sensitivity of the 5-CSRTT to detect pharmacologicallyinduced impulsive action. Copyright © 2017 Elsevier B.V. All rights reserved.
Modeling corona sheath dynamics and effects
NASA Astrophysics Data System (ADS)
Carlson, B.; Lehtinen, N. G.
2016-12-01
The conductive lightning channel is only a centimeter or so in diameter, but charge deposited along such a narrow channel produces a large electric field that drives corona discharge in nearby air, carrying the charge outward several meters. The formation of this "corona sheath" affects a wide range of observable properties of lightning, including the overall charge carried by the channel, the shape, speed, and attenuation of impulsive currents, and the possibility of x-ray production. Simplified electrostatic and electrodynamic models of the formation of the sheath will be discussed, with results given including regions near the tip of a hypothetical channel. These results suggest that the sheath initially expands very rapidly, limiting the lifetime of the intense fields nearest the channel. The expansion gradually slows as the fields decrease, but under certain circumstances a large-scale streamer-like process can lead to enhancement of electric fields displaced from the tip of the channel, possibly suggesting a mechanism for space stem formation and leader stepping.
ERIC Educational Resources Information Center
Camporesi, Roberto
2011-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…
Pinning impulsive control algorithms for complex network
NASA Astrophysics Data System (ADS)
Sun, Wen; Lü, Jinhu; Chen, Shihua; Yu, Xinghuo
2014-03-01
In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms.
Western Greenland Subglacial Hydrologic Modeling and Observables: Seismicity and GPS
NASA Astrophysics Data System (ADS)
Carmichael, J. D.; Joughin, I. R.
2010-12-01
I present a hydro-mechanical model of the Western Greenland ice sheet with surface observables for two modes of meltwater input. Using input prescribed from distributed surface data, First, I bound the subglacial carrying capacity for both a distributed and localized system, in a typical summer. I provide observations of the ambient seismic response and its support for an established surface-to-bed connection. Second, I show the ice sheet response to large impulsive hydraulic inputs (lake drainage events) should produce distinct seismic observables that depend upon the localization of the drainage systems. In the former case, the signal propagates as a diffusive wave, while the channelized case, the response is localized. I provide a discussion of how these results are consistent with previous reports (Das et al, 2008, Joughin et al, 2008) of melt-induced speedup along Greenland's Western Flank. Late summer seismicity for a four-receiver array deployed near a supraglacial lake, 68 44.379N, 49 30.064W. Clusters of seismic activity are characterized by dominant shear-wave energy, consistent with basal sliding events.
Impulsivity, self-control, and hypnotic suggestibility.
Ludwig, V U; Stelzel, C; Krutiak, H; Prunkl, C E; Steimke, R; Paschke, L M; Kathmann, N; Walter, H
2013-06-01
Hypnotic responding might be due to attenuated frontal lobe functioning after the hypnotic induction. Little is known about whether personality traits linked with frontal functioning are associated with responsiveness to hypnotic suggestions. We assessed whether hypnotic suggestibility is related to the traits of self-control and impulsivity in 154 participants who completed the Brief Self-Control Scale, the Self-Regulation Scale, the Barratt Impulsiveness Scale (BIS-11), and the Harvard Group Scale of Hypnotic Susceptibility (HGSHS:A). BIS-11 non-planning impulsivity correlated positively with HGSHS:A (Bonferroni-corrected). Furthermore, in the best model emerging from a stepwise multiple regression, both non-planning impulsivity and self-control positively predicted hypnotic suggestibility, and there was an interaction of BIS-11 motor impulsivity with gender. For men only, motor impulsivity tended to predict hypnotic suggestibility. Hypnotic suggestibility is associated with personality traits linked with frontal functioning, and hypnotic responding in men and women might differ. Copyright © 2013 Elsevier Inc. All rights reserved.
Impulse noise generator--design and operation.
Brinkmann, H
1991-01-01
In the seventies PFANDER (Pfander, 1975) proposed a screening test with an impulse noise simulator to check the particular responsivity of soldiers on vulnerability of the inner ear concerning the impulse noise-induced hearing loss. According to a system developed at the University of Oldenburg (Germany) (Klug & Radek, 1987), we have constructed an impulse noise generator designed for our specific requirements that will be presented. The simulator consists of an electrical ignited impulse noise spark gap which is supplied by a 3.5 kV high voltage source. At a distance of 1.10 m from the center of the impulse noise spark gap a peak pressure level of 155 dB with a C-Duration (Pfander, 1975) of .2 msec and with the main energy in the frequency range from 1 kHz to 2 kHz was good reproducible. It would be preferable to shift the impulse noise spectrum to lower frequencies but experimental effort has failed so far.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.
Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrappedmore » around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.« less
Anger and Impulsivity Among Japanese Adolescents: A Nationwide Representative Survey.
Itani, Osamu; Kaneita, Yoshitaka; Munezawa, Takeshi; Ikeda, Maki; Osaki, Yoneatsu; Higuchi, Susumu; Kanda, Hideyuki; Nakagome, Sachi; Suzuki, Kenji; Ohida, Takashi
2016-07-01
This study aimed to clarify the prevalence of anger and impulsivity and its associated factors through a nationwide survey of junior and senior high school adolescent students in Japan. A self-administered questionnaire covering (1) personal data, (2) lifestyle, (3) mental health status, and (4) feelings of anger and impulsivity was distributed to junior and senior high school students in Japan. Among the total of 10,955 junior high schools and 5,115 senior high schools nationwide, 130 and 110 were randomly selected, respectively. Of those, 92 junior and 80 senior high schools participated in the survey. The survey period was from December 2008 to the end of January 2009. A total of 95,680 questionnaires were collected. After excluding invalid responses, the remaining 94,777 responses (response rate: 62.3%) were analyzed. From the questions regarding anger and impulsivity, 8.7% (95% CI, 8.5%-8.9%) and 7.5% (95% CI, 7.3%-7.7%) of the participants were considered to have experienced intense anger and impulsivity, respectively. Logistic regression analysis indicated that the odds ratios for experiencing intense feelings of anger were significantly higher (all P values < .05) among students who smoked, consumed alcohol, skipped breakfast, did not wish to go to university, had short sleep duration, had decreased positive feelings, had increased depressive feelings, or used mobile phones for longer hours. The odds ratios for experiencing intense impulsivity were significantly higher among students who smoked, consumed alcohol, skipped breakfast, did not participate in club activities, had short sleep duration, had decreased positive feelings, had increased depressive feelings, or used mobile phones for longer hours. The results suggest that healthy lifestyle habits, good sleep habits, and improved mental health are important for preventing intense feelings of anger and impulsivity among adolescents. © Copyright 2016 Physicians Postgraduate Press, Inc.
Marek, Gerard J; Day, Mark; Hudzik, Thomas J
2016-03-01
Cognitive dysfunction may be a core feature of major depressive disorder, including affective processing bias, abnormal response to negative feedback, changes in decision making, and increased impulsivity. Accordingly, a translational medicine paradigm predicts clinical action of novel antidepressants by examining drug-induced changes in affective processing bias. With some exceptions, these concepts have not been systematically applied to preclinical models to test new chemical entities. The purpose of this review is to examine whether an empirically derived behavioral screen for antidepressant drugs may screen for compounds, at least in part, by modulating an impulsive biasing of responding and altered decision making. The differential-reinforcement-of-low-rate (DRL) 72-second schedule is an operant schedule with a documented fidelity for discriminating antidepressant drugs from nonantidepressant drugs. However, a theoretical basis for this empirical relationship has been lacking. Therefore, this review will discuss whether response bias toward impulsive behavior may be a critical screening characteristic of DRL behavior requiring long inter-response times to obtain rewards. This review will compare and contrast DRL behavior with the five-choice serial reaction time task, a test specifically designed for assessing motoric impulsivity, with respect to psychopharmacological testing and the neural basis of distributed macrocircuits underlying these tasks. This comparison suggests that the existing empirical basis for the DRL 72-second schedule as a pharmacological screen for antidepressant drugs is complemented by a novel hypothesis that altering impulsive response bias for rodents trained on this operant schedule is a previously unrecognized theoretical cornerstone for this screening paradigm. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Sex-specific attenuation of impulsive action by progesterone in a Go/No-go task for cocaine in rats
Swalve, Natashia; Smethells, John R.; Younk, Rebecca; Mitchell, Jared; Dougen, Ben; Carroll, Marilyn E.
2018-01-01
Rationale Previous work indicated that progesterone (PRO) reduced impulsive choice for cocaine in female but not male rats (Smethells et al. 2016). Impulsive action, typically measured by responding for a reinforcer during a signaled period of nonavailability of natural reinforcers, predicts initiation and escalation of drug use in animals and humans. The present study examined impulsive action for cocaine using progesterone (PRO) in male and female rats trained on a Go/No-go task. Objective Rats were trained on a Go/No-go task to respond for cocaine infusions (0.4 mg/kg/inf). During the “Go” component, responding was reinforced on a VI 30-s schedule; whereas, during the “No-Go” component withholding a response was reinforced on a differential reinforcement of other behavior (DRO) 30-s schedule. A response during the No-go component reset the DRO timer and served as a measure of impulsive action. After baseline responding was established, rats were pretreated with vehicle (VEH) or PRO (0.5 mg/kg), and DRO resets and responding during the Go component for cocaine were compared in males vs. females. Results DRO resets were significantly lower following PRO treatment compared to VEH in female, but not male, rats. Response rates and overall infusions during the Go component were not significantly altered by PRO in either females or males. Conclusion Treatment with PRO resulted in a sex-specific reduction in impulsive action for cocaine, while not affecting cocaine self-administration. PMID:29018893
Prefrontal Cortex and Impulsive Decision Making
Kim, Soyoun; Lee, Daeyeol
2010-01-01
Impulsivity refers to a set of heterogeneous behaviors that are tuned suboptimally along certain temporal dimensions. Impulsive inter-temporal choice refers to the tendency to forego a large but delayed reward and to seek an inferior but more immediate reward, whereas impulsive motor responses also result when the subjects fail to suppress inappropriate automatic behaviors. In addition, impulsive actions can be produced when too much emphasis is placed on speed rather than accuracy in a wide range of behaviors, including perceptual decision making. Despite this heterogeneous nature, the prefrontal cortex and its connected areas, such as the basal ganglia, play an important role in gating impulsive actions in a variety of behavioral tasks. Here, we describe key features of computations necessary for optimal decision making, and how their failures can lead to impulsive behaviors. We also review the recent findings from neuroimaging and single-neuron recording studies on the neural mechanisms related to impulsive behaviors. Converging approaches in economics, psychology, and neuroscience provide a unique vista for better understanding the nature of behavioral impairments associated with impulsivity. PMID:20728878
Age and impulsive behavior in drug addiction: A review of past research and future directions.
Argyriou, Evangelia; Um, Miji; Carron, Claire; Cyders, Melissa A
2018-01-01
Impulsive behavior is implicated in the initiation, maintenance, and relapse of drug-seeking behaviors involved in drug addiction. Research shows that changes in impulsive behavior across the lifespan contribute to drug use and addiction. The goal of this review is to examine existing research on the relationship between impulsive behavior and drug use across the lifespan and to recommend directions for future research. Three domains of impulsive behavior are explored in this review: impulsive behavior-related personality traits, delay discounting, and prepotent response inhibition. First, we present previous research on these three domains of impulsive behavior and drug use across developmental stages. Then, we discuss how changes in impulsive behavior across the lifespan are implicated in the progression of drug use and addiction. Finally, we discuss the relatively limited attention given to middle-to-older adults in the current literature, consider the validity of the measures used to assess impulsive behavior in middle-to-older adulthood, and suggest recommendations for future research. Copyright © 2017 Elsevier Inc. All rights reserved.
Stopping at the sight of food - How gender and obesity impact on response inhibition.
Mühlberg, Christoph; Mathar, David; Villringer, Arno; Horstmann, Annette; Neumann, Jane
2016-12-01
Recent research indicates that reduced inhibitory control is associated with higher body mass index (BMI), higher food craving and increased food intake. However, experimental evidence for the relationship between response inhibition and weight status is inconsistent and to date has been investigated predominantly in women. In the current study, 56 participants (26 obese, 30 lean; 27 female, 29 male) performed a Food Picture Rating Task followed by a Stop Signal Task where pictures of palatable high or low caloric food or non-food items were presented prior to the Go signal. We further assessed participants' self-reported eating behavior and trait impulsivity as potential factors influencing response inhibition, in particular within the food context. Independent of BMI, women showed significantly higher liking for low caloric food items than men. This was accompanied by shorter Stop Signal Reaction Times (SSRT) after high compared to low caloric food pictures for women, and shorter SSRT in women compared to men for high caloric food. No influence of gender on SSRT was observable outside of the food context. While SSRTs did not differ between obese and lean participants across the three picture categories, we found a moderating effect of trait impulsivity on the relationship between BMI and SSRT, specifically in the high caloric food context. Higher BMI was predictive of longer SSRT only for participants with low to normal trait impulsivity, pointing at a complex interplay between response inhibition, general impulsivity and weight status. Our results support the notion that individuals with obesity do not suffer from diminished response inhibition capacity per se. Rather, the ability to withhold a response depends on context and social norms, and strongly interacts with factors like gender and trait impulsivity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hulka, L M; Vonmoos, M; Preller, K H; Baumgartner, M R; Seifritz, E; Gamma, A; Quednow, B B
2015-10-01
In cross-sectional studies, cocaine users generally display elevated levels of self-reported and cognitive impulsivity. To what extent these impairments are stable v. variable markers of cocaine use disorder, and, thus, are pre-existing or drug-induced, has not yet been systematically investigated. We conducted a longitudinal study with cocaine users who changed or maintained their consumption intensity, measuring self-reported impulsivity with the Barratt Impulsiveness Scale (BIS-11), and cognitive impulsivity with the Rapid Visual Processing task (RVP), Iowa Gambling task (IGT), and Delay Discounting task (DD) at baseline and at 1-year follow-up. We assessed 48 psychostimulant-naive controls and 19 cocaine users with decreased, 19 users with increased, and 19 users with unchanged cocaine intake after 1 year as confirmed by hair analysis. Results of linear multilevel modelling showed significant group × time interactions for the BIS-11 total score and the IGT total card ratio. Increasers showed a trend for elevated scores, whereas decreasers exhibited reduced self-reported impulsivity scores within 1 year. Surprisingly, increasers' IGT performance was improved after 1 year, whereas decreasers' performance deteriorated. By contrast, neither RVP response bias B" nor DD total score showed substantial group × time interactions. Importantly, BIS-11 and DD revealed strong test-retest reliabilities. Self-reported impulsivity (BIS-11) and decision-making impulsivity (IGT) covary with changing cocaine use, whereas response bias and delay discounting remain largely unaffected. Thus, self-reported impulsivity and gambling decision-making were strongly state-dependent in a stimulant-using population and may be suitable to monitor treatment success, whereas delay of gratification was confirmed as a potential endophenotype of stimulant addiction.
Strickland, Justin C.; Feinstein, Max A.; Lacy, Ryan T.; Smith, Mark A.
2016-01-01
Impulsive choice is a diagnostic feature and/or complicating factor for several psychological disorders and may be examined in the laboratory using delay-discounting procedures. Recent investigators have proposed using quantitative measures of analysis to examine the behavioral processes contributing to impulsive choice. The purpose of this study was to examine the effects of physical activity (i.e., wheel running) on impulsive choice in a single-response, discrete-trial procedure using two quantitative methods of analysis. To this end, rats were assigned to physical activity or sedentary groups and trained to respond in a delay-discounting procedure. In this procedure, one lever always produced one food pellet immediately, whereas a second lever produced three food pellets after a 0, 10, 20, 40, or 80-second delay. Estimates of sensitivity to reinforcement amount and sensitivity to reinforcement delay were determined using (1) a simple linear analysis and (2) an analysis of logarithmically transformed response ratios. Both analyses revealed that physical activity decreased sensitivity to reinforcement amount and sensitivity to reinforcement delay. These findings indicate that (1) physical activity has significant but functionally opposing effects on the behavioral processes that contribute to impulsive choice and (2) both quantitative methods of analysis are appropriate for use in single-response, discrete-trial procedures. PMID:26964905
Voltage Gated Ion Channel Function: Gating, Conduction, and the Role of Water and Protons
Kariev, Alisher M.; Green, Michael E.
2012-01-01
Ion channels, which are found in every biological cell, regulate the concentration of electrolytes, and are responsible for multiple biological functions, including in particular the propagation of nerve impulses. The channels with the latter function are gated (opened) by a voltage signal, which allows Na+ into the cell and K+ out. These channels have several positively charged amino acids on a transmembrane domain of their voltage sensor, and it is generally considered, based primarily on two lines of experimental evidence, that these charges move with respect to the membrane to open the channel. At least three forms of motion, with greatly differing extents and mechanisms of motion, have been proposed. There is a “gating current”, a capacitative current preceding the channel opening, that corresponds to several charges (for one class of channel typically 12–13) crossing the membrane field, which may not require protein physically crossing a large fraction of the membrane. The coupling to the opening of the channel would in these models depend on the motion. The conduction itself is usually assumed to require the “gate” of the channel to be pulled apart to allow ions to enter as a section of the protein partially crosses the membrane, and a selectivity filter at the opposite end of the channel determines the ion which is allowed to pass through. We will here primarily consider K+ channels, although Na+ channels are similar. We propose that the mechanism of gating differs from that which is generally accepted, in that the positively charged residues need not move (there may be some motion, but not as gating current). Instead, protons may constitute the gating current, causing the gate to open; opening consists of only increasing the diameter at the gate from approximately 6 Å to approximately 12 Å. We propose in addition that the gate oscillates rather than simply opens, and the ion experiences a barrier to its motion across the channel that is tuned by the water present within the channel. Our own quantum calculations as well as numerous experiments of others are interpreted in terms of this hypothesis. It is also shown that the evidence that supports the motion of the sensor as the gating current can also be consistent with the hypothesis we present. PMID:22408417
High-Q microwave photonic filter with a tuned modulator.
Capmany, J; Mora, J; Ortega, B; Pastor, D
2005-09-01
We propose the use of tuned electro-optic or electroabsorption external modulators to implement high-quality (high-Q) factor, single-bandpass photonic filters for microwave signals. Using this approach, we experimentally demonstrate a transversal finite impulse response with a Q factor of 237. This is to our knowledge the highest value ever reported for a passive finite impulse-response microwave photonic filter.
Recursive inversion of externally defined linear systems
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1988-01-01
The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problems of system identification and compensation.
ERIC Educational Resources Information Center
Camporesi, Roberto
2016-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…
Eyes Wide Shopped: Shopping Situations Trigger Arousal in Impulsive Buyers
Serfas, Benjamin G.; Büttner, Oliver B.; Florack, Arnd
2014-01-01
The present study proposes arousal as an important mechanism driving buying impulsiveness. We examined the effect of buying impulsiveness on arousal in non-shopping and shopping contexts. In an eye-tracking experiment, we measured pupil dilation while participants viewed and rated pictures of shopping scenes and non-shopping scenes. The results demonstrated that buying impulsiveness is closely associated with arousal as response to viewing pictures of shopping scenes. This pertained for hedonic shopping situations as well as for utilitarian shopping situations. Importantly, the effect did not emerge for non-shopping scenes. Furthermore, we demonstrated that arousal of impulsive buyers is independent from cognitive evaluation of scenes in the pictures. PMID:25489955
A Finite-Element Method Model of Soft Tissue Response to Impulsive Acoustic Radiation Force
Palmeri, Mark L.; Sharma, Amy C.; Bouchard, Richard R.; Nightingale, Roger W.; Nightingale, Kathryn R
2010-01-01
Several groups are studying acoustic radiation force and its ability to image the mechanical properties of tissue. Acoustic radiation force impulse (ARFI) imaging is one modality using standard diagnostic ultrasound scanners to generate localized, impulsive, acoustic radiation forces in tissue. The dynamic response of tissue is measured via conventional ultrasonic speckle-tracking methods and provides information about the mechanical properties of tissue. A finite-element method (FEM) model has been developed that simulates the dynamic response of tissues, with and without spherical inclusions, to an impulsive acoustic radiation force excitation from a linear array transducer. These FEM models were validated with calibrated phantoms. Shear wave speed, and therefore elasticity, dictates tissue relaxation following ARFI excitation, but Poisson’s ratio and density do not significantly alter tissue relaxation rates. Increased acoustic attenuation in tissue increases the relative amount of tissue displacement in the near field compared with the focal depth, but relaxation rates are not altered. Applications of this model include improving image quality, and distilling material and structural information from tissue’s dynamic response to ARFI excitation. Future work on these models includes incorporation of viscous material properties and modeling the ultrasonic tracking of displaced scatterers. PMID:16382621
Reeve, J; Hesp, R
1976-12-22
1. A method has been devised for comparing the impulse response functions of the skeleton for two or more boneseeking tracers, and for estimating the contribution made by measurement errors to the differences between any pair of impulse response functions. 2. Comparisons were made between the calculated impulse response functions for 47Ca and 85Sr obtained in simultaneous double tracer studies in sixteen subjects. Collectively the differences between the 47Ca and 85Sr functions could be accounted for entirely by measurement errors. 3. Because the calculation of an impulse response function requires fewer a priori assumptions than other forms of mathematical analysis, and automatically corrects for differences induced by recycling of tracer and non-identical rates of excretory plasma clearance of tracer, it is concluded that differences shown in previous in vivo studies between the fluxes of Ca and Sr into bone can be fully accounted for by undetermined oversimplifications in the various mathematical models used to analyse the results of those studies. 85Sr is therefore an adequate tracer for bone calcium in most in vivo studies.
The impulse response of S-cone pathways in detection of increments and decrements
Shinomori, Keizo; Werner, John S.
2008-01-01
Impulse response functions (IRFs) were obtained from two-pulse detection thresholds using isoluminant stimuli that produced increments or decrements in S-cone excitation. The pulses were chromatically modulated at constant luminance (based on 18 Hz heterochromatic flicker photometry). Chromatic stimuli were presented as a Gaussian patch (±1 SD = 2.3°) in one of four quadrants around a central fixation cross on a CRT screen. Each of the two pulses (6.67 ms) was separated by an inter-stimulus interval (ISI) from 20 to 360 ms. Chromaticity of the pulses was changed from the equal-energy white of the background to a bluish or yellowish color along individually determined tritan lines (based on color matching under strong S-cone adaptation from a 420 nm background superimposed in Maxwellian view). Chromatic detection thresholds were determined by a four-alternative forced-choice method with staircases for each ISI interleaved in each session. Measurements were repeated in at least four sessions for each observer. IRFs were calculated by varying four parameters of an exponentially-damped sinewave. Both S-cone increment and decrement IRFs are characterized by a single excitatory phase and a much longer time course compared with IRFs derived for luminance modulation using the same apparatus and observers. S-cone increment IRFs are faster than S-cone decrement IRFs; the time to peak amplitude of S-cone increment and decrement IRFs is 50–70 and 100–120 ms, respectively. These results were used to derive the temporal contrast sensitivity for human observers of putative ON- and OFF-channels carrying signals from S-cones. PMID:18321402
Manufacturing Process Developments for Regeneratively-Cooled Channel Wall Rocket Nozzles
NASA Technical Reports Server (NTRS)
Gradl, Paul; Brandsmeier, Will
2016-01-01
Regeneratively cooled channel wall nozzles incorporate a series of integral coolant channels to contain the coolant to maintain adequate wall temperatures and expand hot gas providing engine thrust and specific impulse. NASA has been evaluating manufacturing techniques targeting large scale channel wall nozzles to support affordability of current and future liquid rocket engine nozzles and thrust chamber assemblies. The development of these large scale manufacturing techniques focus on the liner formation, channel slotting with advanced abrasive water-jet milling techniques and closeout of the coolant channels to replace or augment other cost reduction techniques being evaluated for nozzles. NASA is developing a series of channel closeout techniques including large scale additive manufacturing laser deposition and explosively bonded closeouts. A series of subscale nozzles were completed evaluating these processes. Fabrication of mechanical test and metallography samples, in addition to subscale hardware has focused on Inconel 625, 300 series stainless, aluminum alloys as well as other candidate materials. Evaluations of these techniques are demonstrating potential for significant cost reductions for large scale nozzles and chambers. Hot fire testing is planned using these techniques in the future.
Braking and Propulsive Impulses Increase with Speed during Accelerated and Decelerated Walking
Peterson, Carrie L.; Kautz, Steven A.; Neptune, Richard R.
2011-01-01
The ability to accelerate and decelerate is important for daily activities and likely more demanding than maintaining a steady-state walking speed. Walking speed is modulated by anterior-posterior (AP) ground reaction force (GRF) impulses. The purpose of this study was to investigate AP impulses across a wide range of speeds during accelerated and decelerated walking. Kinematic and GRF data were collected from ten healthy subjects walking on an instrumented treadmill. Subjects completed trials at steady-state speeds and at four rates of acceleration and deceleration across a speed range of 0 to 1.8 m/s. Mixed regression models were generated to predict AP impulses, step length and frequency from speed, and joint moment impulses from AP impulses during non-steady-state walking. Braking and propulsive impulses were positively related to speed. The braking impulse had a greater relationship with speed than the propulsive impulse, suggesting that subjects modulate the braking impulse more than the propulsive impulse to change speed. Hip and knee extensor, and ankle plantarflexor moment impulses were positively related to the braking impulse, and knee flexor and ankle plantarflexor moment impulses were positively related to the propulsive impulse. Step length and frequency increased with speed and were near the subjects’ preferred combination at steady-state speeds, at which metabolic cost is minimized in nondisabled walking. Thus, these variables may be modulated to minimize metabolic cost while accelerating and decelerating. The outcomes of this work provide the foundation to investigate motor coordination in pathological subjects in response to the increased task demands of non-steady-state walking. PMID:21356590
A north-south stationkeeping ion thruster system for ATS-F.
NASA Technical Reports Server (NTRS)
Worlock, R.; James, E.; Ramsey, W.; Trump, G.; Gant, G.; Jan, L.; Bartlett, R.
1972-01-01
An ion thruster system is being developed for the ATS-F satellite to demonstrate the application of ion thruster technology to the synchronous satellite north-south stationkeeping mission. The cesium bombardment ion thruster develops one millipound thrust at 2600 seconds specific impulse and provides thrust vectoring by accelerator electrode displacement. The propellant system is sized for two years operation at 25 percent duty cycle. Power conditioning circuitry is based on transistor inverters switching at 10 kHz. Thirteen command channels allow flexibility in operation; 12 telemetry channels provide information on system performance. Input power is less than 150 watts.
Hsi-Ping, Liu
1990-01-01
Impulse responses including near-field terms have been obtained in closed form for the zero-offset vertical seismic profiles generated by a horizontal point force acting on the surface of an elastic half-space. The method is based on the correspondence principle. Through transformation of variables, the Fourier transform of the elastic impulse response is put in a form such that the Fourier transform of the corresponding anelastic impulse response can be expressed as elementary functions and their definite integrals involving distance angular frequency, phase velocities, and attenuation factors. These results are used for accurate calculation of shear-wave arrival rise times of synthetic seismograms needed for data interpretation of anelastic-attenuation measurements in near-surface sediment. -Author
Impulse response measurement in the HgCdTe avalanche photodiode
NASA Astrophysics Data System (ADS)
Singh, Anand; Pal, Ravinder
2018-04-01
HgCdTe based mid-wave infrared focal plane arrays (MWIR FPAs) are being developed for high resolution imaging and range determination of distant camouflaged targets. Effect of bandgap grading on the response time in the n+/ν/p+ HgCdTe electron avalanche photodiode (e-APD) is evaluated using impulse response measurement. Gain normalized dark current density of 2 × 10-9 A/cm2 at low reverse bias for passive mode and 2 × 10-4 A/cm2 at -8 V for active mode is measured in the fabricated APD device, yielding high gain bandwidth product of 2.4 THZ at the maximum gain. Diffusion of carriers is minimized to achieve transit time limited impulse response by introducing composition grading in the HgCdTe epilayer. The noise equivalent photon performance less than one is achievable in the FPA that is suitable for active cum passive imaging applications.
Krause-Utz, A; Cackowski, S; Daffner, S; Sobanski, Esther; Plichta, Michael M; Bohus, M; Ende, G; Schmahl, C
2016-11-01
Impulsivity is a core feature of borderline personality disorder (BPD) and attention deficit hyperactivity disorder (ADHD). In BPD, impulsive behavior primarily occurs under acute stress; impulse control deficits under non-stress conditions may be partly related to co-morbid ADHD. We aimed to investigate whether acute experimental stress has an impact on self-reported impulsivity, response inhibition (action withholding, action cancelation) and delay discounting in BPD compared to ADHD. Thirty female BPD patients, 28 female ADHD patients (excluding patients with co-morbid BPD and ADHD), and 30 female healthy controls (HC) completed self-reports and behavioral measures of impulsivity (IMT, assessing action withholding; GoStop, measuring action cancelation, Delay Discounting Task) under baseline conditions and after an experimental stress induction (Mannheim Multicomponent Stress Test). Both patient groups reported higher impulsivity than HC, ADHD reported higher trait impulsivity than BPD. On the IMT, ADHD showed significant action-withholding deficits under both conditions, while BPD performed significantly worse than HC under stress. In BPD but not ADHD and HC, action-withholding deficits (IMT) were significantly increased under stress compared to baseline, while no group/stress effects were found for action cancelation (GoStop). Delay discounting was significantly more pronounced in BPD than in HC (no stress effect was found). In BPD, behavioral deficits in action withholding (but not in action cancelation) appear to be influenced by acute experimental stress. Delay discounting seems to be a general feature of BPD, independent of co-morbid ADHD and acute stress, possibly underlying typical expressions of behavioral impulsivity in the disorder.
Impulsive-choice patterns for food in genetically lean and obese Zucker rats
Boomhower, Steven R.; Rasmussen, Erin B.; Doherty, Tiffany S.
2012-01-01
Behavioral-economic studies have shown that differences between lean and obese Zuckers in food consumption depend on the response requirement for food. Since a response requirement inherently increases the delay to reinforcement, differences in sensitivity to delay may also be a relevant mechanism of food consumption in the obese Zucker rat. Furthermore, the endocannabinoid neurotransmitter system has been implicated in impulsivity, but studies that attempt to characterize the effects of cannabinoid drugs (e.g., rimonabant) on impulsive choice may be limited by floor effects. The present study aimed to characterize impulsive-choice patterns for sucrose using an adjusting-delay procedure in genetically lean and obese Zuckers. Ten lean and ten obese Zucker rats chose between one lever that resulted in one pellet after a standard delay (either 1 s or 5 s) and a second lever that resulted in two or three pellets after an adjusting delay. After behavior stabilized under baseline, rimonabant (0–10 mg/kg) was administered prior to some choice sessions in the two-pellet condition. Under baseline, obese Zuckers made more impulsive choices than leans in three of the four standard-delay/pellet conditions. Additionally, in the 2-pellet condition, rimonabant increased impulsive choice in lean rats in the 1-s standard-delay condition; however, rimonabant decreased impulsive choice in obese rats in the 1-s and 5-s standard-delay conditions. These data suggest that genetic factors that influence impulsive choice are stronger in some choice conditions than others, and that the endocannabinoid system may be a relevant neuromechanism. PMID:23261877
Impulsive-choice patterns for food in genetically lean and obese Zucker rats.
Boomhower, Steven R; Rasmussen, Erin B; Doherty, Tiffany S
2013-03-15
Behavioral-economic studies have shown that differences between lean and obese Zuckers in food consumption depend on the response requirement for food. Since a response requirement inherently increases the delay to reinforcement, differences in sensitivity to delay may also be a relevant mechanism of food consumption in the obese Zucker rat. Furthermore, the endocannabinoid neurotransmitter system has been implicated in impulsivity, but studies that attempt to characterize the effects of cannabinoid drugs (e.g., rimonabant) on impulsive choice may be limited by floor effects. The present study aimed to characterize impulsive-choice patterns for sucrose using an adjusting-delay procedure in genetically lean and obese Zuckers. Ten lean and ten obese Zucker rats chose between one lever that resulted in one pellet after a standard delay (either 1 s or 5 s) and a second lever that resulted in two or three pellets after an adjusting delay. After behavior stabilized under baseline, rimonabant (0-10 mg/kg) was administered prior to some choice sessions in the two-pellet condition. Under baseline, obese Zuckers made more impulsive choices than leans in three of the four standard-delay/pellet conditions. Additionally, in the 2-pellet condition, rimonabant increased impulsive choice in lean rats in the 1-s standard-delay condition; however, rimonabant decreased impulsive choice in obese rats in the 1-s and 5-s standard-delay conditions. These data suggest that genetic factors that influence impulsive choice are stronger in some choice conditions than others, and that the endocannabinoid system may be a relevant neuromechanism. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Parker, J. Morgan; Wilson, Michael J.
2005-01-01
The Minimum Impulse Thruster (MIT) was developed to improve the state-of-the-art minimum impulse capability of hydrazine monopropellant thrusters. Specifically, a new fast response solenoid valve was developed, capable of responding to a much shorter electrical pulse width, thereby reducing the propellant flow time and the minimum impulse bit. The new valve was combined with the Aerojet MR-103, 0.2 lbf (0.9 N) thruster and put through an extensive Delta-qualification test program, resulting in a factor of 5 reduction in the minimum impulse bit, from roughly 1.1 milli-lbf-seconds (5 milliNewton seconds) to - 0.22 milli-lbf-seconds (1 mN-s). To maintain it's extensive heritage, the thruster itself was left unchanged. The Minimum Impulse Thruster provides mission and spacecraft designers new design options for precision pointing and precision translation of spacecraft.
NASA Astrophysics Data System (ADS)
Liu, Bing; Teng, Zhidong; Chen, Lansun
2006-08-01
According to biological and chemical control strategy for pest control, we investigate the dynamic behavior of a Holling II functional response predator-prey system concerning impulsive control strategy-periodic releasing natural enemies and spraying pesticide at different fixed times. By using Floquet theorem and small amplitude perturbation method, we prove that there exists a stable pest-eradication periodic solution when the impulsive period is less than some critical value. Further, the condition for the permanence of the system is also given. Numerical results show that the system we consider can take on various kinds of periodic fluctuations and several types of attractor coexistence and is dominated by periodic, quasiperiodic and chaotic solutions, which implies that the presence of pulses makes the dynamic behavior more complex. Finally, we conclude that our impulsive control strategy is more effective than the classical one if we take chemical control efficiently.
Do Different Facets of Impulsivity Predict Different Types of Aggression?
Derefinko, Karen; DeWall, C. Nathan; Metze, Amanda V.; Walsh, Erin C.; Lynam, Donald R.
2011-01-01
The current study examined the relations between impulsivity-related traits (as assessed by the UPPS-P Impulsive Behavior Scale) and aggressive behaviors. Results indicated that UPPS-P Lack of Premeditation and Sensation Seeking were important in predicting general violence. In contrast, UPPS-P Urgency was most useful in predicting intimate partner violence. To further explore relations between intimate partner violence and Urgency, a measure of autonomic response to pleasant and aversive stimuli and facets of Neuroticism from the NEO PI-R were used as control variables. Autonomic responsivity was correlated with intimate partner violence at the zero-order level, and predicted significant variance in intimate partner violence in regression equations. However, UPPS-P Urgency was able to account for unique variance in intimate partner violence above and beyond measures of Neuroticism and arousal. Implications regarding the use of a multifaceted conceptualization of impulsivity in the prediction of different types of violent behavior are discussed. PMID:21259270
MacKillop, James; Weafer, Jessica; Gray, Joshua; Oshri, Assaf; Palmer, Abraham; de Wit, Harriet
2016-01-01
Rationale Impulsivity has been strongly linked to addictive behaviors, but can be operationalized in a number of ways that vary considerably in overlap, suggesting multidimensionality. Objective This study tested the hypothesis that the latent structure among multiple measures of impulsivity would reflect three broad categories: impulsive choice, reflecting discounting of delayed rewards; impulsive action, reflecting ability to inhibit a prepotent motor response; and impulsive personality traits, reflecting self-reported attributions of self-regulatory capacity. Methods The study used a cross-sectional confirmatory factor analysis of multiple impulsivity assessments. Participants were 1252 young adults (62% female) with low levels of addictive behavior who were assessed in individual laboratory rooms at the University of Chicago and the University of Georgia. The battery comprised a delay discounting task, Monetary Choice Questionnaire, Conners Continuous Performance Test, Go/NoGo Task, Stop Signal Task, Barratt Impulsivity Scale, and the UPPS-P Impulsive Behavior Scale. Results The hypothesized three-factor model provided the best fit to the data, although Sensation Seeking was excluded from the final model. The three latent factors were largely unrelated to each other and were variably associated with substance use. Conclusions These findings support the hypothesis that diverse measures of impulsivity can broadly be organized into three categories that are largely distinct from one another. These findings warrant investigation among individuals with clinical levels of addictive behavior and may be applied to understanding the underlying biological mechanisms of these categories. PMID:27449350
Optimization and Comparison of Different Digital Mammographic Tomosynthesis Reconstruction Methods
2008-04-01
physical measurements of impulse response analysis, modulation transfer function (MTF) and noise power spectrum (NPS). (Months 5- 12). This task has...and 2 impulse -added: projection images with simulated impulse and the I /r2 shading difference. Other system blur and noise issues are not...blur, and suppressed high frequency noise . Point-by-point BP rather than traditional SAA should be considered as the basis of further deblurring
Specific Impulse and Mass Flow Rate Error
NASA Technical Reports Server (NTRS)
Gregory, Don A.
2005-01-01
Specific impulse is defined in words in many ways. Very early in any text on rocket propulsion a phrase similar to .specific impulse is the thrust force per unit propellant weight flow per second. will be found.(2) It is only after seeing the mathematics written down does the definition mean something physically to scientists and engineers responsible for either measuring it or using someone.s value for it.
Anti-impulse-noise Edge Detection via Anisotropic Morphological Directional Derivatives.
Shui, Peng-Lang; Wang, Fu-Ping
2017-07-13
Traditional differential-based edge detection suffers from abrupt degradation in performance when images are corrupted by impulse noises. The morphological operators such as the median filters and weighted median filters possess the intrinsic ability to counteract impulse noise. In this paper, by combining the biwindow configuration with weighted median filters, anisotropic morphological directional derivatives (AMDD) robust to impulse noise are proposed to measure the local grayscale variation around a pixel. For ideal step edges, the AMDD spatial response and directional representation are derived. The characteristics and edge resolution of two kinds of typical biwindows are analyzed thoroughly. In terms of the AMDD spatial response and directional representation of ideal step edges, the spatial matched filter is used to extract the edge strength map (ESM) from the AMDDs of an image. The spatial and directional matched filters are used to extract the edge direction map (EDM). Embedding the extracted ESM and EDM into the standard route of the differential-based edge detection, an anti-impulse-noise AMDD-based edge detector is constructed. It is compared with the existing state-of-the-art detectors on a recognized image dataset for edge detection evaluation. The results show that it attains competitive performance in noise-free and Gaussian noise cases and the best performance in impulse noise cases.
Purali, Nuhan
2017-09-01
In the present study, cytosolic calcium concentration changes were recorded in response to various forms of excitations, using the fluorescent calcium indicator dye OG-BAPTA1 together with the current or voltage clamp methods in stretch receptor neurons of crayfish. A single action potential evoked a rise in the resting calcium level in the axon and axonal hillock, whereas an impulse train or a large saturating current injection would be required to evoke an equivalent response in the dendrite region. Under voltage clamp conditions, amplitude differences between axon and dendrite responses vanished completely. The fast activation time and the modulation of the response by extracellular calcium concentration changes indicated that the evoked calcium transients might be mediated by calcium entry into the cytosol through a voltage-gated calcium channel. The decay of the responses was slow and sensitive to extracellular sodium and calcium concentrations as well as exposure to 1-10 mM NiCl 2 and 10-500 µM lanthanum. Thus, a sodium calcium exchanger and a calcium ATPase might be responsible for calcium extrusion from the cytosol. Present results indicate that the calcium indicator OG-BAPTA1 might be an efficient but indirect way of monitoring regional membrane potential differences in a single neuron.
Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1997-01-01
This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Theodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modern three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.
Identification of Linear and Nonlinear Aerodynamic Impulse Responses Using Digital Filter Techniques
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1997-01-01
This paper discusses the mathematical existence and the numerically-correct identification of linear and nonlinear aerodynamic impulse response functions. Differences between continuous-time and discrete-time system theories, which permit the identification and efficient use of these functions, will be detailed. Important input/output definitions and the concept of linear and nonlinear systems with memory will also be discussed. It will be shown that indicial (step or steady) responses (such as Wagner's function), forced harmonic responses (such as Tbeodorsen's function or those from doublet lattice theory), and responses to random inputs (such as gusts) can all be obtained from an aerodynamic impulse response function. This paper establishes the aerodynamic impulse response function as the most fundamental, and, therefore, the most computationally efficient, aerodynamic function that can be extracted from any given discrete-time, aerodynamic system. The results presented in this paper help to unify the understanding of classical two-dimensional continuous-time theories with modem three-dimensional, discrete-time theories. First, the method is applied to the nonlinear viscous Burger's equation as an example. Next the method is applied to a three-dimensional aeroelastic model using the CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code and then to a two-dimensional model using the CFL3D Navier-Stokes code. Comparisons of accuracy and computational cost savings are presented. Because of its mathematical generality, an important attribute of this methodology is that it is applicable to a wide range of nonlinear, discrete-time problems.
Auditorium acoustics evaluation based on simulated impulse response
NASA Astrophysics Data System (ADS)
Wu, Shuoxian; Wang, Hongwei; Zhao, Yuezhe
2004-05-01
The impulse responses and other acoustical parameters of Huangpu Teenager Palace in Guangzhou were measured. Meanwhile, the acoustical simulation and auralization based on software ODEON were also made. The comparison between the parameters based on computer simulation and measuring is given. This case study shows that auralization technique based on computer simulation can be used for predicting the acoustical quality of a hall at its design stage.
Recursive inversion of externally defined linear systems by FIR filters
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1989-01-01
The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least-squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problem of system identification and compensation.
On the Spur of the Moment: Intrinsic Predictors of Impulse Sports Betting.
Hing, Nerilee; Li, En; Vitartas, Peter; Russell, Alex M T
2018-06-01
Betting on impulse, without thoughtful consideration, research or informed decision-making, may cause financial and other harms and lead to the development of gambling problems. Impulse betting undermines responsible consumption of gambling because it reflects self-regulatory failure, impaired control, unreflective decision-making and betting more than planned. In this paper we define impulse gambling and report on a study that aimed to understand more about the intrinsic characteristics of sports bettors who have a greater tendency to bet on impulse. Specifically, the study aimed to identify behavioural, psychological and socio-demographic predictors of impulse sports betting. A sample of 1816 Australian sports bettors completed an online survey that measured the proportion of their bets placed on impulse both before and during sporting events, as well as bets that were researched and planned in advance. Impulse betting was common, accounting for nearly one-half of all past-year sports bets by respondents. Over three-quarters of respondents had placed one or more impulse bets in the last year and one in seven respondents had made all of their sports bets on impulse. More impulsive sports bettors were characterised as having higher trait impulsiveness, higher problem gambling severity, more frequent sports betting and a shorter history of sports betting. They favoured betting on in-match contingencies instead of overall match outcomes. While health promotion strategies are needed to discourage impulse betting, research into contextual factors that arouse urges to bet would also provide direction for harm minimisation measures that help consumers to resist impulsive betting decisions.
Sebastian, Alexandra; Jung, Patrick; Krause-Utz, Annegret; Lieb, Klaus; Schmahl, Christian; Tüscher, Oliver
2014-01-01
Disorders such as borderline personality disorder (BPD) or attention-deficit/hyperactivity disorder (ADHD) are characterized by impulsive behaviors. Impulsivity as used in clinical terms is very broadly defined and entails different categories including personality traits as well as different cognitive functions such as emotion regulation or interference resolution and impulse control. Impulse control as an executive function, however, is neither cognitively nor neurobehaviorally a unitary function. Recent findings from behavioral and cognitive neuroscience studies suggest related but dissociable components of impulse control along functional domains like selective attention, response selection, motivational control, and behavioral inhibition. In addition, behavioral and neural dissociations are seen for proactive vs. reactive inhibitory motor control. The prefrontal cortex with its sub-regions is the central structure in executing these impulse control functions. Based on these concepts of impulse control, neurobehavioral findings of studies in BPD and ADHD were reviewed and systematically compared. Overall, patients with BPD exhibited prefrontal dysfunctions across impulse control components rather in orbitofrontal, dorsomedial, and dorsolateral prefrontal regions, whereas patients with ADHD displayed disturbed activity mainly in ventrolateral and medial prefrontal regions. Prefrontal dysfunctions, however, varied depending on the impulse control component and from disorder to disorder. This suggests a dissociation of impulse control related frontal dysfunctions in BPD and ADHD, although only few studies are hitherto available to assess frontal dysfunctions along different impulse control components in direct comparison of these disorders. Yet, these findings might serve as a hypothesis for the future systematic assessment of impulse control components to understand differences and commonalities of prefrontal cortex dysfunction in impulsive disorders.
NASA Astrophysics Data System (ADS)
Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.
2016-03-01
Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.
Adaptive spatial combining for passive time-reversed communications.
Gomes, João; Silva, António; Jesus, Sérgio
2008-08-01
Passive time reversal has aroused considerable interest in underwater communications as a computationally inexpensive means of mitigating the intersymbol interference introduced by the channel using a receiver array. In this paper the basic technique is extended by adaptively weighting sensor contributions to partially compensate for degraded focusing due to mismatch between the assumed and actual medium impulse responses. Two algorithms are proposed, one of which restores constructive interference between sensors, and the other one minimizes the output residual as in widely used equalization schemes. These are compared with plain time reversal and variants that employ postequalization and channel tracking. They are shown to improve the residual error and temporal stability of basic time reversal with very little added complexity. Results are presented for data collected in a passive time-reversal experiment that was conducted during the MREA'04 sea trial. In that experiment a single acoustic projector generated a 24-PSK (phase-shift keyed) stream at 200400 baud, modulated at 3.6 kHz, and received at a range of about 2 km on a sparse vertical array with eight hydrophones. The data were found to exhibit significant Doppler scaling, and a resampling-based preprocessing method is also proposed here to compensate for that scaling.
NASA Technical Reports Server (NTRS)
Hill, J. D.; Pilkey, J.; Uman, M, A.; Jordan, D. M.; Biggerstaff, M. I.; Rison, W.; Blakeslee, R.
2012-01-01
We characterize the geometrical and electrical characteristics of the initial stages of nine Florida triggered lightning discharges using a Lightning Mapping Array (LMA), a C-band SMART radar, and measured channel-base currents. We determine initial channel and subsequent branch lengths, average initial channel and branch propagation speeds, and channel-base current at the time of each branch initiation. The channel-base current is found to not change significantly when branching occurs, an unexpected result. The initial stage of Florida triggered lightning typically transitions from vertical to horizontal propagation at altitudes of 3-6 km, near the typical 0 C level of 4-5 km and several kilometers below the expected center of the negative cloud-charge region at 7-8 km. The data presented potentially provide information on thunderstorm electrical and hydrometeor structure and discharge propagation physics. LMA source locations were obtained from VHF sources of positive impulsive currents as small as 10 A, in contrast to expectations found in the literature.
Psychedelic symptoms of cannabis and cocaine use as a function of trait impulsivity.
van Wel, J H P; Spronk, D B; Kuypers, K P C; Theunissen, E L; Toennes, S W; Verkes, R J; Ramaekers, J G
2015-03-01
Trait impulsivity has been linked to addiction in humans. It has been suggested that drug users with high trait impulsivity levels are more sensitive to subjective drug intoxication. This study assessed whether subjective response to drugs differs between drug users with normal or high levels of trait impulsivity. Regular drug users (N = 122) received doses of cocaine HCl, cannabis, and placebo in a three-way crossover study. Their mood, dissociative state, and psychedelic symptoms were measured with subjective rating scales (CADDS, Bowdle, POMS). Trait impulsivity was assessed with the Barratt Impulsiveness Scale. Cannabis increased dissociation and psychedelic state, as well as fatigue, confusion, depression and anxiety, and decreased arousal, positive mood, vigor, friendliness, and elation. Cocaine increased dissociation, psychedelic state, vigor, friendliness, elation, positive mood, anxiety and arousal, while decreasing fatigue. Only a few subjective items revealed a drug × trait impulsivity interaction, suggesting that psychedelic symptoms were most intense in high impulsivity subjects. Trait impulsiveness ratings were negatively correlated with ratings of vigor (r = -.197) and positively correlated with ratings of loss of thought control (r = .237) during cannabis intoxication. It is concluded that a broad association between trait impulsivity and psychedelic subjective drug experience appears to be absent. © The Author(s) 2015.
Taylor, Jasmine B; Visser, Troy A W; Fueggle, Simone N; Bellgrove, Mark A; Fox, Allison M
2018-04-01
Previous studies have postulated that the error-related negativity (ERN) may reflect individual differences in impulsivity; however, none have used a longitudinal framework or evaluated impulsivity as a multidimensional construct. The current study evaluated whether ERN amplitude, measured in childhood and adolescence, is predictive of impulsiveness during adolescence. Seventy-five children participated in this study, initially at ages 7-9 years and again at 12-18 years. The interval between testing sessions ranged from 5 to 9 years. The ERN was extracted in response to behavioural errors produced during a modified visual flanker task at both time points (i.e. childhood and adolescence). Participants also completed the Barratt Impulsiveness Scale - a measure that considers impulsiveness to comprise three core sub-traits - during adolescence. At adolescence, the ERN amplitude was significantly larger than during childhood. Additionally, ERN amplitude during adolescence significantly predicted motor impulsiveness at that time point, after controlling for age, gender, and the number of trials included in the ERN. In contrast, ERN amplitude during childhood did not uniquely predict impulsiveness during adolescence. These findings provide preliminary evidence that ERN amplitude is an electrophysiological marker of self-reported motor impulsiveness (i.e. acting without thinking) during adolescence. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Joseph, Jane E.; Zhu, Xun; Lynam, Donald; Kelly, Thomas H.
2015-01-01
Adolescence is a particularly vulnerable period for the onset of substance use disorders and other psychopathology. Individual variability in motivational tendencies and temperament and significant changes in functional brain organization during adolescence are important factors to consider in the development of substance use and dependence. Recent conceptualizations suggest that sensitivity to reward is heightened in adolescence and that this motivation tendency may precipitate subsequent substance abuse. The present study examined the role of personality traits in mesolimbic neurobehavioral response on a monetary incentive delay (MID) task in young adolescents (11–14 years) and emerging adults (18–25 years) using functional magnetic resonance imaging. As a group, adolescents were not more sensitive to gains than losses compared to adults during either anticipatory and feedback phases; instead, compared to adults they showed less sensitivity to incentive magnitude in mesolimbic circuitry during anticipation and feedback stages. However, personality modulated this response such that adolescents high in impulsivity or low in avoidance tendencies showed greater gain sensitivity and adolescents high in avoidance showed greater loss sensitivity during cue anticipation. In adults, mesolimbic response was modulated by the impulsivity construct such that high-impulsive adults showed reduced magnitude sensitivity during both anticipation and feedback compared to low impulsive adults. The present findings suggest that impulsive personality significantly modulates mesolimbic reward response during both adolescence and adulthood but avoidance and approach tendencies also modulate this response in adolescents. Moreover, personality modulated incentive valence in adolescents but incentive magnitude in adults. Collectively, these findings suggest that mesolimbic reward circuitry function is modulated by somewhat different parameters in adolescence than in adulthood. PMID:26690806
Lightning-channel conditioning
NASA Astrophysics Data System (ADS)
Sonnenfeld, R.; da Silva, C. L.; Eack, K.; Edens, H. E.; Harley, J.; McHarg, M.; Contreras Vidal, L.
2017-12-01
The concept of "conditioning" has several distinct applications in understanding lightning. It is commonly associated to the greater speed of dart-leaders vs. stepped leaders and the retrace of a cloud-to-ground channel by later return strokes. We will showadditional examples of conditioning: (A) High-speed videos of triggered flashes show "dark" periods of up to 50 ms between rebrightenings of an existing channel. (B) Interferometer (INTF) images of intra-cloud (IC) flashes demonstrate that electric-field "K-changes" correspond to rapid propagation of RF impulses along a previously formed channel separated by up to 20 ms with little RF emission on that channel. (C) Further, INTF images (like the one below) frequently show that the initial IC channel is more branched and "fuzzier'' than its later incarnations. Also, we contrast high-speed video, INTF observations, and spectroscopic measurements with possible physical mechanisms that can explain how channel conditioning guides and facilitates dart leader propagation. These mechanisms include: (1) a plasmochemical effect where electrons are stored in negative ions and released during the dart leader propagation via field-induced detachment; (2) small-amplitude residual currents that can maintain electrical conductivity; and (3) slow heat conduction cooling of plasma owing to channel expansion dynamics.
Conductive Channel for Energy Transmission
NASA Astrophysics Data System (ADS)
Apollonov, Victor V.
2011-11-01
For many years the attempts to create conductive channels of big length were taken in order to study the upper atmosphere and to settle special tasks, related to energy transmission. There upon the program of creation of "Impulsar" represents a great interest, as this program in a combination with high-voltage high repetition rate electrical source can be useful to solve the above mentioned problems (N. Tesla ideas for the days of high power lasers). The principle of conductive channel production can be shortly described as follows. The "Impulsar"—laser jet engine vehicle—propulsion take place under the influence of powerful high repetition rate pulse-periodic laser radiation. In the experiments the CO2—laser and solid state Nd:YAG laser systems had been used. Active impulse appears thanks to air breakdown (<30 km) or to the breakdown of ablated material on the board (>30 km), placed in the vicinity of the focusing mirror-acceptor of the breakdown waves. With each pulse of powerful laser the device rises up, leaving a bright and dense trace of products with high degree of ionization and metallization by conductive nano-particles due to ablation. Conductive dust plasma properties investigation in our experiments was produced by two very effective approaches: high power laser controlled ablation and by explosion of wire. Experimental and theoretical results of conductive canal modeling will be presented. The estimations show that with already experimentally demonstrated figures of specific thrust impulse the lower layers of the Ionosphere can be reached in several ten seconds that is enough to keep the high level of channel conductivity and stability with the help of high repetition rate high voltage generator. Some possible applications for new technology are highlighted.
Overlapping Neural Endophenotypes in Addiction and Obesity
Michaud, Andréanne; Vainik, Uku; Garcia-Garcia, Isabel; Dagher, Alain
2017-01-01
Impulsivity refers to a tendency to act rapidly without full consideration of consequences. The trait is thought to result from the interaction between high arousal responses to potential rewards and poor self-control. Studies have suggested that impulsivity confers vulnerability to both addiction and obesity. However, results in this area are unclear, perhaps due to the high phenotypic complexity of addictions and obesity. Focusing on impulsivity, the aim of this review is to tackle the putative overlaps between addiction and obesity in four domains: (1) personality research, (2) neurocognitive tasks, (3) brain imaging, and (4) clinical evidence. We suggest that three impulsivity-related domains are particularly relevant for our understanding of similarities between addiction and obesity: lower self-control (high Disinhibition/low Conscientiousness), reward sensitivity (high Extraversion/Positive Emotionality), and negative affect (high Neuroticism/Negative Emotionality). Neurocognitive studies have shown that obesity and addiction are both associated with increased impulsive decision-making and attention bias in response to drug or food cues, respectively. Mirroring this, obesity and different forms of addiction seem to exhibit similar alterations in functional MRI brain activity in response to reward processing and during self-control tasks. Overall, our review provides an integrative approach to understand those facets of obesity that present similarities to addictive behaviors. In addition, we suggest that therapeutic interventions targeting inhibitory control may represent a promising approach for the prevention and/or treatment of obesity. PMID:28659866
Espel, Hallie M; Muratore, Alexandra F; Lowe, Michael R
2017-10-01
Loss-of-control (LOC) eating episodes represent one form of dysregulated eating common to full- and sub-threshold eating disorders. Extensive evidence suggests that impulsivity, particularly in the context of negative affect and/or depression, may play an important etiological role in the development and maintenance of LOC eating. However, most prior studies have considered LOC eating as a dichotomous rather than dimensional construct, and few studies have considered the interaction of multiple dimensions of impulsivity while also accounting for the role of depressive symptoms. The present study examined the independent and interacting effects of two facets of impulsivity-response inhibition and negative urgency-on LOC eating episode severity and frequency among college women (N = 102). Depressive symptom severity was included as a covariate. Results indicated that greater negative urgency was associated with greater LOC severity; this effect was moderated by response inhibition, such that the effect of urgency was particularly pronounced for individuals with higher response inhibition capacity. Negative urgency was the only significant predictor of LOC frequency. Depression had no significant effect on either LOC severity or frequency (ps ≥ 0.16). Results support the importance of considering multiple facets of impulsivity in predicting LOC eating behavior, and further indicate that factors influencing subjective severity and frequency of LOC may be distinct. Copyright © 2017 Elsevier Ltd. All rights reserved.
Strickland, Justin C; Feinstein, Max A; Lacy, Ryan T; Smith, Mark A
2016-05-01
Impulsive choice is a diagnostic feature and/or complicating factor for several psychological disorders and may be examined in the laboratory using delay-discounting procedures. Recent investigators have proposed using quantitative measures of analysis to examine the behavioral processes contributing to impulsive choice. The purpose of this study was to examine the effects of physical activity (i.e., wheel running) on impulsive choice in a single-response, discrete-trial procedure using two quantitative methods of analysis. To this end, rats were assigned to physical activity or sedentary groups and trained to respond in a delay-discounting procedure. In this procedure, one lever always produced one food pellet immediately, whereas a second lever produced three food pellets after a 0, 10, 20, 40, or 80-s delay. Estimates of sensitivity to reinforcement amount and sensitivity to reinforcement delay were determined using (1) a simple linear analysis and (2) an analysis of logarithmically transformed response ratios. Both analyses revealed that physical activity decreased sensitivity to reinforcement amount and sensitivity to reinforcement delay. These findings indicate that (1) physical activity has significant but functionally opposing effects on the behavioral processes that contribute to impulsive choice and (2) both quantitative methods of analysis are appropriate for use in single-response, discrete-trial procedures. Copyright © 2016 Elsevier B.V. All rights reserved.
Does impulsivity predict outcome in treatment for binge eating disorder? A multimodal investigation.
Manasse, Stephanie M; Espel, Hallie M; Schumacher, Leah M; Kerrigan, Stephanie G; Zhang, Fengqing; Forman, Evan M; Juarascio, Adrienne S
2016-10-01
Multiple dimensions of impulsivity (e.g., affect-driven impulsivity, impulsive inhibition - both general and food-specific, and impulsive decision-making) are associated with binge eating pathology cross-sectionally, yet the literature on whether impulsivity predicts treatment outcome is limited. The present pilot study explored impulsivity-related predictors of 20-week outcome in a small open trial (n = 17) of a novel treatment for binge eating disorder. Overall, dimensions of impulsivity related to emotions (i.e., negative urgency) and food cues emerged as predictors of treatment outcomes (i.e., binge eating frequency and global eating pathology as measured by the Eating Disorders Examination), while more general measures of impulsivity were statistically unrelated to global eating pathology or binge frequency. Specifically, those with higher levels of negative urgency at baseline experienced slower and less pronounced benefit from treatment, and those with higher food-specific impulsivity had more severe global eating pathology at baseline that was consistent at post-treatment and follow-up. These preliminary findings suggest that patients high in negative urgency and with poor response inhibition to food cues may benefit from augmentation of existing treatments to achieve optimal outcomes. Future research will benefit from replication with a larger sample, parsing out the role of different dimensions of impulsivity in treatment outcome for eating disorders, and identifying how treatment can be improved to accommodate higher levels of baseline impulsivity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparison of methods of predicting community response to impulsive and nonimpulsive noise
NASA Technical Reports Server (NTRS)
Fidell, Sanford; Pearsons, Karl S.
1994-01-01
Several scientific, regulatory, and policy-coordinating bodies have developed methods for predicting community response to sonic booms. The best known of these is the dosage-response relationship of Working Group 84 of the National Academy of Science's Committee on Hearing, Bioacoustics and Biomechanics. This dosage-response relationship between C-weighted DayNight Average Sound Level and the prevalence of annoyance with high energy impulsive sounds was derived from limited amounts of information about community response to regular, prolonged, and expected exposure to artillery and sonic booms. U.S. Army Regulation 201 adapts this approach to predictions of the acceptability of impulsive noise exposure in communities. This regulation infers equivalent degrees of effect with respect to a well known dosage-response relationship for general (nonimpulsive) transportation noise. Differences in prevalence of annoyance predicted by various relationships lead to different predictions of the compatibility of land uses with sonic boom exposure. An examination of these differences makes apparent several unresolved issues in current practice for predicting and interpreting the prevalence of annoyance due to sonic boom exposure.
The impact of comorbid impulsive/compulsive disorders in problematic Internet use.
Chamberlain, Samuel R; Ioannidis, Konstantinos; Grant, Jon E
2018-05-23
Background and aims Problematic Internet use (PIU) is commonplace but is not yet recognized as a formal mental disorder. Excessive Internet use could result from other conditions such as gambling disorder. The aim of the study was to assess the impact of impulsive-compulsive comorbidities on the presentation of PIU, defined using Young's Diagnostic Questionnaire. Methods A total of 123 adults aged 18-29 years were recruited using media advertisements, and attended the research center for a detailed psychiatric assessment, including interviews, completion of questionnaires, and neuropsychological testing. Participants were classified into three groups: PIU with no comorbid impulsive/compulsive disorders (n = 18), PIU with one or more comorbid impulsive/compulsive disorders (n = 37), and healthy controls who did not have any mental health diagnoses (n = 67). Differences between the three groups were characterized in terms of demographic, clinical, and cognitive variables. Effect sizes for overall effects of group were also reported. Results The three groups did not significantly differ on age, gender, levels of education, nicotine consumption, or alcohol use (small effect sizes). Quality of life was significantly impaired in PIU irrespective of whether or not individuals had comorbid impulsive/compulsive disorders (large effect size). However, impaired response inhibition and decision-making were only identified in PIU with impulsive/compulsive comorbidities (medium effect sizes). Discussion and conclusions Most people with PIU will have one or more other impulsive/compulsive disorders, but PIU can occur without such comorbidities and still present with impaired quality of life. Response inhibition and decision-making appear to be disproportionately impacted in the case of PIU comorbid with other impulsive/compulsive conditions, which may account for some of the inconsistencies in the existing literature. Large scale international collaborations are required to validate PIU and further assess its clinical, cognitive, and biological sequelae.
Effect of vortex inlet mode on low-power cylindrical Hall thruster
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Jia, Boyang; Xu, Yu; Wei, Liqiu; Su, Hongbo; Li, Peng; Sun, Hezhi; Peng, Wuji; Cao, Yong; Yu, Daren
2017-08-01
This paper examines a new propellant inlet mode for a low-power cylindrical Hall thruster called the vortex inlet mode. This new mode makes propellant gas diffuse in the form of a circumferential vortex in the discharge channel of the thruster. Simulation and experimental results show that the neutral gas density in the discharge channel increases upon the application of the vortex inlet mode, effectively extending the dwell time of the propellant gas in the channel. According to the experimental results, the vortex inlet increases the propellant utilization of the thruster by 3.12%-8.81%, thrust by 1.1%-53.5%, specific impulse by 1.1%-53.5%, thrust-to-power ratio by 10%-63%, and anode efficiency by 1.6%-7.3%, greatly improving the thruster performance.
2017-06-09
full ability to inhibit ANS and limbic response are prone to be impulsive, 25 unintentional, or hesitant when faced with high -threat decisions...graduate degrees in Criminal Justice, a Graduate Certificate in Organizational Leadership, and a current American Society for Industrial Security...experience and full ability to inhibit ANS and limbic response are prone to be impulsive, unintentional, or hesitant when faced with high -threat
Three-dimensional FLASH Laser Radar Range Estimation via Blind Deconvolution
2009-10-01
scene can result in errors due to several factors including the optical spatial impulse response, detector blurring, photon noise , timing jitter, and...estimation error include spatial blur, detector blurring, noise , timing jitter, and inter-sample targets. Unlike previous research, this paper ac- counts...for pixel coupling by defining the range image mathematical model as a 2D convolution between the system spatial impulse response and the object (target
Imaging through Scattering Media with Grating-Based Interferometers.
1980-12-01
Theoretically, if the instantaneous impulse response nf the scat- tering medium can be measured and an inverse filter [7, 8] can be created in real time, it... impulse response of a time- varying volume scattering medium. Moreover, no modulator appears to possess the required temporal and spatial bandwidth for...or optical deblurring techniques. Thirdly, since the achromatic grating interferometric system discriminates by the directions of propa- gation, the
Sebastian, Alexandra; Jung, Patrick; Krause-Utz, Annegret; Lieb, Klaus; Schmahl, Christian; Tüscher, Oliver
2014-01-01
Disorders such as borderline personality disorder (BPD) or attention-deficit/hyperactivity disorder (ADHD) are characterized by impulsive behaviors. Impulsivity as used in clinical terms is very broadly defined and entails different categories including personality traits as well as different cognitive functions such as emotion regulation or interference resolution and impulse control. Impulse control as an executive function, however, is neither cognitively nor neurobehaviorally a unitary function. Recent findings from behavioral and cognitive neuroscience studies suggest related but dissociable components of impulse control along functional domains like selective attention, response selection, motivational control, and behavioral inhibition. In addition, behavioral and neural dissociations are seen for proactive vs. reactive inhibitory motor control. The prefrontal cortex with its sub-regions is the central structure in executing these impulse control functions. Based on these concepts of impulse control, neurobehavioral findings of studies in BPD and ADHD were reviewed and systematically compared. Overall, patients with BPD exhibited prefrontal dysfunctions across impulse control components rather in orbitofrontal, dorsomedial, and dorsolateral prefrontal regions, whereas patients with ADHD displayed disturbed activity mainly in ventrolateral and medial prefrontal regions. Prefrontal dysfunctions, however, varied depending on the impulse control component and from disorder to disorder. This suggests a dissociation of impulse control related frontal dysfunctions in BPD and ADHD, although only few studies are hitherto available to assess frontal dysfunctions along different impulse control components in direct comparison of these disorders. Yet, these findings might serve as a hypothesis for the future systematic assessment of impulse control components to understand differences and commonalities of prefrontal cortex dysfunction in impulsive disorders. PMID:25232313
Correlation Filtering of Modal Dynamics using the Laplace Wavelet
NASA Technical Reports Server (NTRS)
Freudinger, Lawrence C.; Lind, Rick; Brenner, Martin J.
1997-01-01
Wavelet analysis allows processing of transient response data commonly encountered in vibration health monitoring tasks such as aircraft flutter testing. The Laplace wavelet is formulated as an impulse response of a single mode system to be similar to data features commonly encountered in these health monitoring tasks. A correlation filtering approach is introduced using the Laplace wavelet to decompose a signal into impulse responses of single mode subsystems. Applications using responses from flutter testing of aeroelastic systems demonstrate modal parameters and stability estimates can be estimated by correlation filtering free decay data with a set of Laplace wavelets.
Response of a piezoelectric pressure transducer to IR laser beam impingement
NASA Technical Reports Server (NTRS)
Smith, William C.; Leiweke, Robert J.; Beeson, Harold
1992-01-01
The non-pressure response of a PCB Model 113A transducer to a far infrared radiation impulse from a carbon dioxide laser was investigated. Incident radiation was applied both to the bare transducer diaphragm and to coated diaphragms. Coatings included two common ablative materials and a reflective gold coating. High-flux radiation impulses induced an immediate brief negative output followed by a longer-duration positive output. Both timing and amplitude of the responses will be discussed, and the effects of coatings will be compared. Bursts of blackbody radiation from a 1500 K source produced qualitatively similar responses.
Structural frequency functions for an impulsive, distributed forcing function
NASA Technical Reports Server (NTRS)
Bateman, Vesta I.
1987-01-01
The response of a penetrator structure to a spatially distributed mechanical impulse with a magnitude approaching field test force levels (1-2 Mlb) were measured. The frequency response function calculated from the response to this unique forcing function is compared to frequency response functions calculated from response to point forces of about 2000 pounds. The results show that the strain gages installed on the penetrator case respond similiarly to a point, axial force and to a spatially distributed, axial force. This result suggests that the distributed axial force generated in a penetration event may be reconstructed as a point axial force when the penetrator behaves in linear manner.
NASA Astrophysics Data System (ADS)
Lan, Chunbo; Tang, Lihua; Qin, Weiyang
2017-07-01
Nonlinear energy harvesters have attracted wide research attentions to achieve broadband performances in recent years. Nonlinear structures have multiple solutions in certain frequency region that contains high-energy and low-energy orbits. It is effectively the frequency region of capturing a high-energy orbit that determines the broadband performance. Thus, maintaining large-amplitude high-energy-orbit oscillations is highly desired. In this paper, a voltage impulse perturbation approach based on negative resistance is applied to trigger high-energy-orbit responses of piezoelectric nonlinear energy harvesters. First, the mechanism of the voltage impulse perturbation and the implementation of the synthetic negative resistance circuit are discussed in detail. Subsequently, numerical simulation and experiment are conducted and the results demonstrate that the high-energy-orbit oscillations can be triggered by the voltage impulse perturbation method for both monostable and bistable configurations given various scenarios. It is revealed that the perturbation levels required to trigger and maintain high-energy-orbit oscillations are different for various excitation frequencies in the region where multiple solutions exist. The higher gain in voltage output when high-energy-orbit oscillations are captured is accompanied with the demand of a higher voltage impulse perturbation level.
Is impulsivity a link between childhood abuse and suicide?
Braquehais, M Dolores; Oquendo, Maria A; Baca-García, Enrique; Sher, Leo
2010-01-01
Childhood abuse and neglect are known to affect psychological states through behavioral, emotional, and cognitive pathways. They increase the risk of having psychiatric diseases in adulthood and have been considered risk factors for suicidal behavior in all diagnostic categories. Early, prolonged, and severe trauma is also known to increase impulsivity, diminishing the capacity of the brain to inhibit negative actions and to control and modulate emotions. Many neurobiological studies hold that childhood maltreatment may lead to a persistent failure of the inhibitory processes ruled mainly by the frontal cortex over a fear-motivated hyperresponsive limbic system. Multiple neurotransmitters and hormones are involved in the stress response, but, to our knowledge, the two major biological consequences of the chronic exposure to trauma are the hypofunction of the serotonergic system and changes in the hypothalamic-pituitary-adrenal axis function. Some of these findings overlap with the neurobiological features of impulsivity and of suicidal behavior. Impulsivity has also been said to be both a consequence of trauma and a risk factor for the development of a pathological response to trauma. Thus, we suggest that impulsivity could be one of the links between childhood trauma and suicidal behavior. Prevention of childhood abuse could significantly reduce suicidal behavior in adolescents and adults, in part, through a decrease in the frequency of impulsive behaviors in the future. Copyright 2010 Elsevier Inc. All rights reserved.
Persistent effects of chronic Δ9-THC exposure on motor impulsivity in rats.
Irimia, Cristina; Polis, Ilham Y; Stouffer, David; Parsons, Loren H
2015-08-01
In humans, long-term marijuana use is associated with impaired impulse control and attentional capacity, though it has been difficult to distinguish pre-existing cognitive deficits from possible consequences of prolonged marijuana exposure. To evaluate the effects of long-term exposure to Δ9-Tetrahydrocannabinol (Δ9-THC), the primary psychoactive constituent in marijuana, on indices of impulse control and attentional capacity using the rat 5-Choice Serial Reaction Time Task (5-CSRTT). Ten 14-day cycles of Δ9-THC dosing and 5-CSRTT testing were employed, each comprised of 5-day Δ9-THC dosing (0.3 or 3 mg/kg b.i.d.) and 5-CSRTT testing during the 9 days of drug abstinence. Subsequent 5-CSRTT testing continued during 5 weeks of protracted abstinence. Dose-dependent increases in motor impulsivity (premature responses) and behavioral disinhibition (perseverative responses) emerged following 5 cycles of Δ9-THC exposure that persisted for the remaining dosing and testing cycles. Δ9-THC-related disruptions in motor impulsivity and behavioral inhibition were most pronounced during cognitively challenging 5-CSRTT sessions incorporating varying novel inter-trial intervals (ITIs), and these disruptions persisted for at least 5 weeks of Δ9-THC abstinence. Δ9-THC-related impairments in attentional capacity (response accuracy) were also evident during variable ITI challenge tests, though these attentional disruptions abated within 3 weeks of Δ9-THC abstinence. These observations demonstrate that long-term intermittent exposure to clinically meaningful Δ9-THC doses induces persistent impairments in impulse control and attentional function. If present in humans, these disruptions may impact academic and professional performance.
Characterizing Impulsivity in Mania
Strakowski, Stephen M.; Fleck, David E.; DelBello, Melissa P.; Adler, Caleb M.; Shear, Paula K.; McElroy, Susan L.; Keck, Paul E.; Moss, Quinton; Cerullo, Michael A.; Kotwal, Renu; Arndt, Stephan
2008-01-01
Objective To determine whether specific aspects of impulsivity (response disinhibition, inability to delay gratification, inattention) differ between healthy and bipolar manic subjects, and whether these aspects of impulsivity were associated with each other and severity of affective symptoms. Methods Performance of 70 bipolar I manic or mixed patients was compared to that of 34 healthy subjects on three tasks specifically designed to study response inhibition, ability to delay gratification, and attention; namely a stop signal task, a delayed reward task, and a continuous performance task respectively. Correlations among tasks and with symptom ratings were also performed. Results Bipolar subjects demonstrated significant deficits on all three tasks as compared to healthy subjects. Performance on the three tasks was largely independent. Task performance was not significantly associated with the severity of affective symptom ratings. However, measures of response inhibition and attention were sensitive to medication effects. Differences in the delayed reward task were independent of medication effects or symptom ratings. During the delayed reward task, although bipolar patients made their choices more slowly than healthy subjects, they were significantly more likely to choose a smaller, but more quickly obtained reward. Moreover performance on this task was not associated with performance on the other impulsivity measures. Manic patients showed more impulsive responding than mixed patients. Conclusions Bipolar I manic patients demonstrate deficits on tests of various aspects of impulsivity as compared to healthy subjects. Some of these differences between groups may be mediated by medication effects. Findings suggested that inability to delay gratification (i.e., delayed reward task) was not simply a result of the speed of decision making or inattention, but rather that it reflected differences between bipolar and healthy subjects in the valuation of reward relative to delay. PMID:19133965
Tomlinson, Anneka; Grayson, Ben; Marsh, Samuel; Harte, Michael K; Barnes, Samuel A; Marshall, Kay M; Neill, Joanna C
2014-08-01
Varying levels of attention and impulsivity deficits are core features of the three subtypes of adult attention deficit-hyperactivity disorder (ADHD). To date, little is known about the neurobiological correlates of these subtypes. Development of a translational animal model is essential to improve our understanding and improve therapeutic strategies. The 5-choice continuous performance task (5C-CPT) in rats can be used to examine different forms of attention and impulsivity. Adult rats were trained to pre-set 5C-CPT criterion and subsequently separated into subgroups according to baseline levels of sustained attention, vigilance, premature responding and response disinhibition in the 5C-CPT. The behavioural subgroups were selected to represent the different subtypes of adult ADHD. Consequently, effects of the clinically used pharmacotherapies (methylphenidate and atomoxetine) were assessed in the different subgroups. Four subgroups were identified: low-attentive (LA), high-attentive (HA), high-impulsive (HI) and low-impulsive (LI). Methylphenidate and atomoxetine produced differential effects in the subgroups. Methylphenidate increased sustained attention and vigilance in LA animals, and reduced premature responding in HI animals. Atomoxetine also improved sustained attention and vigilance in LA animals, and reduced response disinhibition and premature responding in HI animals. This is the first study using adult rats to demonstrate the translational value of the 5C-CPT to select subgroups of rats, which may be used to model the subtypes observed in adult ADHD. Our findings suggest that this as an important paradigm to increase our understanding of the neurobiological underpinnings of adult ADHD-subtypes and their response to pharmacotherapy. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Holak; Lim, Youbong; Choe, Wonho, E-mail: wchoe@kaist.ac.kr
2014-10-06
Plasma plume and thruster performance characteristics associated with multiply charged ions in a cylindrical type Hall thruster (CHT) and an annular type Hall thruster are compared under identical conditions such as channel diameter, channel depth, propellant mass flow rate. A high propellant utilization in a CHT is caused by a high ionization rate, which brings about large multiply charged ions. Ion currents and utilizations are much different due to the presence of multiply charged ions. A high multiply charged ion fraction and a high ionization rate in the CHT result in a higher specific impulse, thrust, and discharge current.
NASA Astrophysics Data System (ADS)
Gardiner, B. L.; Thomson, D. J.
2006-12-01
Starting with the designs of earlier solar radio telescopes, particularly the one at Bell Labs, Murray Hill, we have built a new instrument. The major differences between this telescope and its predecessors are that it has: 1) parallel low and high gain channels for both polarizations; 2) four additional channels for active interference cancellation; and 3) all eight IF strips terminating in 100 MHz, 14--bit analog--to--digital converters with synchronized sampling. The advantages of such a configuration are: a) The parallel low and high gain channels allow a higher dynamic range without saturating than a single channel. b) Estimating bispectra between the channels gives a sensitive test for saturation in the higher gain channel. c) In the usual case, when both channels are in their linear region, one can use them with a noise injection diode to track the amplifier noise figures. d) With the noise diode off, the two channels can be used in a mode similar to remote reference. As the telescope is operating in a small city we anticipate that more than 90% of the measurements will be contaminated by various communications signals and impulsive noise. Thus all the signal processing will build on various robust statistical procedures that have proven effective in other applications. The best mode of operating the four active interference cancelling channels is still under study
Mid-latency evoked potentials in self-reported impulsive aggression.
Houston, R J; Stanford, M S
2001-02-01
The present study was conducted to examine psychophysiological differences in arousability among individuals who display impulsive aggressive outbursts. Amplitude and latency for the mid-latency evoked potentials (P1, N1 and P2) were obtained at scalp electrode sites. The evoking stimuli were three intensities (low, medium, high) of photic stimulation. Compared to non-aggressive controls, impulsive aggressive subjects showed significantly reduced P1 amplitude, which is indicative of an inefficient sensory gating mechanism. In addition, these subjects exhibited significantly larger N1 amplitude implying an enhanced orienting of attention to stimuli. Impulsive aggressive subjects also exhibited shorter P1, N1 and P2 peak latency. These results suggest that impulsive aggressive individuals may display quicker orienting and processing of stimuli in an attempt to compensate for low resting arousal levels. Finally, impulsive aggressive subjects augmented the P1-N1 component more frequently than controls, which is consistent with previous studies examining impulsivity and sensation seeking. Together, these findings extend previous work concerning the underlying physiology of impulsive aggression. It has been suggested that impulsive aggressive individuals may attempt to compensate for low resting arousal levels by engaging in stimulus seeking behaviors. Accordingly, the present findings imply similar physiological compensatory responses as demonstrated by heightened orienting of attention, processing and arousability. In addition, a compromised sensory gating system in impulsive aggressors may exacerbate such circumstances, and lead to later cognitive processing deficits.
Effectual switching filter for removing impulse noise using a SCM detector
NASA Astrophysics Data System (ADS)
Yuan, Jin-xia; Zhang, Hong-juan; Ma, Yi-de
2012-03-01
An effectual method is proposed to remove impulse noise from corrupted color images. The spiking cortical model (SCM) is adopted as a noise detector to identify noisy pixels in each channel of color images, and detected noise pixels are saved in three marking matrices. According to the three marking matrices, the detected noisy pixels are divided into two types (type I and type II). They are filtered differently: an adaptive median filter is used for type I and an adaptive vector median for type II. Noise-free pixels are left unchanged. Extensive experiments show that the proposed method outperforms most of the other well-known filters in the aspects of both visual and objective quality measures, and this method can also reduce the possibility of generating color artifacts while preserving image details.
HITCal: a software tool for analysis of video head impulse test responses.
Rey-Martinez, Jorge; Batuecas-Caletrio, Angel; Matiño, Eusebi; Perez Fernandez, Nicolás
2015-09-01
The developed software (HITCal) may be a useful tool in the analysis and measurement of the saccadic video head impulse test (vHIT) responses and with the experience obtained during its use the authors suggest that HITCal is an excellent method for enhanced exploration of vHIT outputs. To develop a (software) method to analyze and explore the vHIT responses, mainly saccades. HITCal was written using a computational development program; the function to access a vHIT file was programmed; extended head impulse exploration and measurement tools were created and an automated saccade analysis was developed using an experimental algorithm. For pre-release HITCal laboratory tests, a database of head impulse tests (HITs) was created with the data collected retrospectively in three reference centers. This HITs database was evaluated by humans and was also computed with HITCal. The authors have successfully built HITCal and it has been released as open source software; the developed software was fully operative and all the proposed characteristics were incorporated in the released version. The automated saccades algorithm implemented in HITCal has good concordance with the assessment by human observers (Cohen's kappa coefficient = 0.7).
Testing the Impulsiveness of Solar Flare Heating through Analysis of Dynamic Atmospheric Response
NASA Astrophysics Data System (ADS)
Newton, E. K.; Emslie, A. G.; Mariska, J. T.
1996-03-01
One crucial test of a solar flare energy transport model is its ability to reproduce the characteristics of the atmospheric motions inferred from soft X-ray line spectra. Using a recently developed diagnostic, the velocity differential emission measure (VDEM), we can obtain from observations a physical measure of the amount of soft X-ray mitting plasma flowing at each velocity, v, and hence the total momentum of the upflowing plasma, without approximation or parametric fitting. We have correlated solar hard X-ray emission profiles by the Yohkoh Hard X-ray telescope with the mass and momentum histories inferred from soft X-ray line profiles observed by the Yohkoh Bragg crystal spectrometers. For suitably impulsive hard X-ray emission, an analysis of the hydrodynamic equations predicts a proportionality between the hard X-ray intensity and the second time derivative of the soft X-ray mitting plasma's momentum. This relationship is borne out by an analysis of 18 disk-center impulsive flares of varying durations, thereby lending support to the hypothesis that a prompt energy deposition mechanism, such as an energetic electron flux, is indeed responsible for the soft X-ray response observed in the rise phase of sufficiently impulsive solar flares.
The X3: A 200 kW Class Nested Channel Hall Thruster
NASA Astrophysics Data System (ADS)
Sheehan, J. P.
2016-10-01
Electric propulsion has seen rapid adoption in recent years for commercial, scientific, and exploratory space missions. The X3 is a three channel nested channel Hall thruster, designed to push the boundaries of high power electric propulsion for cargo transfer to Mars and large military assets. It has been operated at thermal steady state up to 30 kW of power. Thrust measurements were made on an inverted pendulum thrust stand, indicating over 2000 s specific impulse and 65 mN/kW thrust to power ratio. Detailed plume measurements were made with Faraday and Langmuir probes. The multiple concentric channels provide better performance than the sum of the individual channel operations due to superior propellant utilization from its compact design. Using a high speed camera, the breathing and spoke mode instabilities were captured in all three channels. Spoke and breathing instabilities couple between the channels, indicating that complex plasma and neutral interactions are at play. Electron transport, both cross field and in the cathode plume, are well suited to be explored in a thruster of this size. Supported under NASA contract No. NNH16CP17C.
Training impulsive choices for healthy and sustainable food.
Veling, Harm; Chen, Zhang; Tombrock, Merel C; Verpaalen, Iris A M; Schmitz, Laura I; Dijksterhuis, Ap; Holland, Rob W
2017-06-01
Many people find it hard to change their dietary choices. Food choice often occurs impulsively, without deliberation, and it has been unclear whether impulsive food choice can be experimentally created. Across 3 exploratory and 2 confirmatory preregistered experiments we examined whether impulsive food choice can be trained. Participants were cued to make motor responses upon the presentation of, among others, healthy and sustainable food items. They subsequently selected these food items more often for actual consumption when they needed to make their choices impulsively as a result of time pressure. This effect disappeared when participants were asked to think about their choices, merely received more time to make their choices, or when choosing required attention to alternatives. Participants preferred high to low valued food items under time pressure and without time pressure, suggesting that the impulsive choices reflect valid preferences. These findings demonstrate that it is possible to train impulsive choices for food items while leaving deliberative choices for these items unaffected, and connect research on attention training to dual-process theories of decision making. The present research suggests that attention training may lead to behavioral change only when people behave impulsively. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Robertson, W M; Parker, J M
2012-03-01
A straightforward and inexpensive implementation of acoustic impulse response measurement is described utilizing the signal processing technique of coherent averaging. The technique is capable of high signal-to-noise measurements with personal computer data acquisition equipment, an amplifier/speaker, and a high quality microphone. When coupled with simple waveguide test systems fabricated from commercial PVC plumbing pipe, impulse response measurement has proven to be ideal for undergraduate research projects-often of publishable quality-or for advanced laboratory experiments. The technique provides important learning objectives for science or engineering students in areas such as interfacing and computer control of experiments; analog-to-digital conversion and sampling; time and frequency analysis using Fourier transforms; signal processing; and insight into a variety of current research areas such as acoustic bandgap materials, acoustic metamaterials, and fast and slow wave manipulation. © 2012 Acoustical Society of America
Optimal spatial filtering and transfer function for SAR ocean wave spectra
NASA Technical Reports Server (NTRS)
Beal, R. C.; Tilley, D. G.
1981-01-01
The impulse response of the SAR system is not a delta function and the spectra represent the product of the underlying image spectrum with the transform of the impulse response which must be removed. A digitally computed spectrum of SEASAT imagery of the Atlantic Ocean east of Cape Hatteras was smoothed with a 5 x 5 convolution filter and the trend was sampled in a direction normal to the predominant wave direction. This yielded a transform of a noise-like process. The smoothed value of this trend is the transform of the impulse response. This trend is fit with either a second- or fourth-order polynomial which is then used to correct the entire spectrum. A 16 x 16 smoothing of the spectrum shows the presence of two distinct swells. Correction of the effects of speckle is effected by the subtraction of a bias from the spectrum.
Multidimensional Assessment of Impulsivity in Relation to Obesity and Food Addiction
VanderBroek-Stice, Lauren; Stojek, Monika K.; Beach, Steven R. H.; vanDellen, Michelle R.; MacKillop, James
2017-01-01
Based on similarities between overconsumption of food and addictive drugs, there is increasing interest in “food addiction,” a compulsive eating pattern defined using symptoms parallel to substance use disorders. Impulsivity, a multidimensional construct robustly linked to drug addiction, has been increasingly examined as an obesity determinant, but with mixed findings. This study sought to clarify relations between three major domains of impulsivity (i.e., impulsive personality traits, discounting of delayed rewards, and behavioral inhibition) in both obesity and food addiction. Based on the association between impulsivity and compulsive drug use, the general hypothesis was that the impulsivity-food addiction relation would be stronger than and responsible for the impulsivity-obesity relation. Using a cross-sectional dimensional design, participants (N = 181; 32% obese) completed a biometric assessment, the Yale Food Addiction Scale (YFAS), the UPPS-P Impulsive Behavior Scales, a Go/NoGo task, and measures of monetary delay discounting. Results revealed significantly higher prevalence of food addiction among obese participants and stronger zero-order associations between impulsivity indices and YFAS compared to obesity. Two aspects of impulsivity were independently significantly associated with food addiction: (a) a composite of Positive and Negative Urgency, reflecting proneness to act impulsively during intense mood states, and (b) steep discounting of delayed rewards. Furthermore, the results supported food addiction as a mediator connecting both urgency and delay discounting with obesity. These findings provide further evidence linking impulsivity to food addiction and obesity, and suggest that food addiction may be a candidate etiological pathway to obesity for individuals exhibiting elevations in these domains. PMID:28087369
Multidimensional assessment of impulsivity in relation to obesity and food addiction.
VanderBroek-Stice, Lauren; Stojek, Monika K; Beach, Steven R H; vanDellen, Michelle R; MacKillop, James
2017-05-01
Based on similarities between overconsumption of food and addictive drugs, there is increasing interest in "food addiction," a compulsive eating pattern defined using symptoms parallel to substance use disorders. Impulsivity, a multidimensional construct robustly linked to drug addiction, has been increasingly examined as an obesity determinant, but with mixed findings. This study sought to clarify relations between three major domains of impulsivity (i.e., impulsive personality traits, discounting of delayed rewards, and behavioral inhibition) in both obesity and food addiction. Based on the association between impulsivity and compulsive drug use, the general hypothesis was that the impulsivity-food addiction relation would be stronger than and responsible for the impulsivity-obesity relation. Using a cross-sectional dimensional design, participants (N = 181; 32% obese) completed a biometric assessment, the Yale Food Addiction Scale (YFAS), the UPPS-P Impulsive Behavior Scales, a Go/NoGo task, and measures of monetary delay discounting. Results revealed significantly higher prevalence of food addiction among obese participants and stronger zero-order associations between impulsivity indices and YFAS compared to obesity. Two aspects of impulsivity were independently significantly associated with food addiction: (a) a composite of Positive and Negative Urgency, reflecting proneness to act impulsively during intense mood states, and (b) steep discounting of delayed rewards. Furthermore, the results supported food addiction as a mediator connecting both urgency and delay discounting with obesity. These findings provide further evidence linking impulsivity to food addiction and obesity, and suggest that food addiction may be a candidate etiological pathway to obesity for individuals exhibiting elevations in these domains. Copyright © 2017 Elsevier Ltd. All rights reserved.
Swalve, Natashia; Smethells, John R.; Carroll, Marilyn E.
2016-01-01
Impulsivity, or a tendency to act without anticipation of future consequences, is associated with drug abuse. Impulsivity is typically separated into two main measures, impulsive action and impulsive choice. Given the association of impulsivity and drug abuse, treatments that reduce impulsivity have been proposed as an effective method for countering drug addiction. Progesterone has emerged as a promising treatment, as it is associated with decreased addiction-related behaviors and impulsive action. The goal of the present study was to determine the effects of progesterone (PRO) on impulsive action for food: a Go/No-Go task. Female and male rats responded for sucrose pellets during a Go component when lever pressing was reinforced on a variable-interval 30-s schedule. During the alternate No-Go component, withholding a lever press was reinforced on a differential reinforcement of other (DRO) behavior 30-s schedule, where a lever press reset the DRO timer. Impulsive action was operationally defined as the inability to withhold a response during the No-Go component (i.e. the number of DRO resets). Once Go/No-Go behavior was stable, responding between rats treated with PRO (0.5 mg/kg) or vehicle was examined. Progesterone significantly decreased the total number of DRO resets in both males and females, but it did not affect VI responding for sucrose pellets. This suggests that PRO decreases motor impulsivity for sucrose pellets without affecting motivation for food. Thus, PRO may reduce motor impulsivity, a behavior underlying drug addiction. PMID:27497836
77 FR 33724 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-07
... and OMB Number: Assessing Human Response to Military Impulse Noise; OMB Control Number 0710-TBD. Type... community annoyance and complaints, related to impulsive noise from military installations. The [[Page 33725... the need for training operations at military installations with public safety and welfare. Affected...
Anatomical and functional organization of the human substantia nigra and its connections
Zhang, Yu; Larcher, Kevin Michel-Herve; Misic, Bratislav
2017-01-01
We investigated the anatomical and functional organization of the human substantia nigra (SN) using diffusion and functional MRI data from the Human Connectome Project. We identified a tripartite connectivity-based parcellation of SN with a limbic, cognitive, motor arrangement. The medial SN connects with limbic striatal and cortical regions and encodes value (greater response to monetary wins than losses during fMRI), while the ventral SN connects with associative regions of cortex and striatum and encodes salience (equal response to wins and losses). The lateral SN connects with somatomotor regions of striatum and cortex and also encodes salience. Behavioral measures from delay discounting and flanker tasks supported a role for the value-coding medial SN network in decisional impulsivity, while the salience-coding ventral SN network was associated with motor impulsivity. In sum, there is anatomical and functional heterogeneity of human SN, which underpins value versus salience coding, and impulsive choice versus impulsive action. PMID:28826495
Hogarth, Lee; Stillwell, David J; Tunney, Richard J
2013-01-01
The Barratt Impulsivity Scale (BIS) provides a transdiagnostic marker for a number of psychiatric conditions and drug abuse, but the precise psychological trait(s) tapped by this questionnaire remain obscure. To address this, 51 smokers completed in counterbalanced order the BIS, a delay discounting task and a Harvard game that measured choice between a response that yielded a high immediate monetary payoff but decreased opportunity to earn money overall (local choice) versus a response that yielded a lower immediate payoff but afforded a greater opportunity to earn overall (global choice). Individual level of BIS impulsivity and self-elected smoking prior to the study were independently associated with increased preference for the local over the global choice in the Harvard game, but not delay discounting. BIS impulsivity and acute nicotine exposure reflect a bias in the governance of choice by immediate reward contingencies over global consequences, consistent with contemporary dual-process instrumental learning theories. Copyright © 2013 John Wiley & Sons, Ltd.
Leicht, Gregor; Troschütz, Stefan; Andreou, Christina; Karamatskos, Evangelos; Ertl, Matthias; Naber, Dieter; Mulert, Christoph
2013-01-01
The processing of reward and punishment stimuli in humans appears to involve brain oscillatory activity of several frequencies, probably each with a distinct function. The exact nature of associations of these electrophysiological measures with impulsive or risk-seeking personality traits is not completely clear. Thus, the aim of the present study was to investigate event-related oscillatory activity during reward processing across a wide spectrum of frequencies, and its associations with impulsivity and sensation seeking in healthy subjects. During recording of a 32-channel EEG 22 healthy volunteers were characterized with the Barratt Impulsiveness and the Sensation Seeking Scale and performed a computerized two-choice gambling task comprising different feedback options with positive vs. negative valence (gain or loss) and high or low magnitude (5 vs. 25 points). We observed greater increases of amplitudes of the feedback-related negativity and of activity in the theta, alpha and low-beta frequency range following loss feedback and, in contrast, greater increase of activity in the high-beta frequency range following gain feedback. Significant magnitude effects were observed for theta and delta oscillations, indicating greater amplitudes upon feedback concerning large stakes. The theta amplitude changes during loss were negatively correlated with motor impulsivity scores, whereas alpha and low-beta increase upon loss and high-beta increase upon gain were positively correlated with various dimensions of sensation seeking. The findings suggest that the processing of feedback information involves several distinct processes, which are subserved by oscillations of different frequencies and are associated with different personality traits.
Being impulsive and obese increases susceptibility to speeded detection of high-calorie foods.
Bongers, Peggy; van de Giessen, Elsmarieke; Roefs, Anne; Nederkoorn, Chantal; Booij, Jan; van den Brink, Wim; Jansen, Anita
2015-06-01
Overeating and obesity are associated with impulsivity. In studies among patients with a substance use disorder, impulsivity was found to be associated with substance-related attentional bias. This study examined whether obesity, impulsivity and food craving are associated with an attentional bias for high-calorie food. Obese (n = 185, mean BMI = 38.18 ± 6.17) and matched healthy-weight (n = 134, mean BMI = 22.35 ± 1.63) men (27.9%) and women (72.1%), aged 18-45 years, took part in the study. Participants were tested on several self-report and behavioral measures of impulsivity (i.e., response inhibition and reward sensitivity) and self-reported trait craving. In addition, they performed a visual search task to measure attentional bias for high- and low-caloric foods. Self-reported impulsivity influenced the relationship between weight status and detection speed of high- and low-caloric food items: High-impulsive participants with obesity were significantly faster than high-impulsive healthy-weight participants in detecting a high-caloric food item among neutral items, whereas no such difference was observed among low-impulsive participants. No significant effects were found on low-caloric food items, for trait craving or any of the behavioral measures of impulsivity. Self-reported impulsivity, but not trait craving or behavioral measures of impulsivity, is associated with an attentional bias for high-caloric foods, but only in people with obesity. It is in particular the speedy detection of high-caloric foods in the environment that characterizes the impulsive person with obesity, which in turn may cause risky eating patterns in a society were high-caloric food is overly present. (c) 2015 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Golbabaei-Asl, M.; Knight, D.; Wilkinson, S.
2013-01-01
The thermal efficiency of a SparkJet is evaluated by measuring the impulse response of a pendulum subject to a single spark discharge. The SparkJet is attached to the end of a pendulum. A laser displacement sensor is used to measure the displacement of the pendulum upon discharge. The pendulum motion is a function of the fraction of the discharge energy that is channeled into the heating of the gas (i.e., increasing the translational-rotational temperature). A theoretical perfect gas model is used to estimate the portion of the energy from the heated gas that results in equivalent pendulum displacement as in the experiment. The earlier results from multiple runs for different capacitances of C = 3, 5, 10, 20, and 40(micro)F demonstrate that the thermal efficiency decreases with higher capacitive discharges.1 In the current paper, results from additional run cases have been included and confirm the previous results
Chronic nerve compression alters Schwann cell myelin architecture in a murine model
Gupta, Ranjan; Nassiri, Nima; Hazel, Antony; Bathen, Mary; Mozaffar, Tahseen
2011-01-01
Introduction Myelinating Schwann cells compartmentalize their outermost layer to form actin-rich channels known as Cajal bands. Here, we investigate changes in Schwann cell architecture and cytoplasmic morphology in a novel mouse model of carpal tunnel syndrome. Methods Chronic nerve compression (CNC) injury was created in wild-type and slow-Wallerian degeneration (WldS) mice. Over 12 weeks, nerves were electrodiagnostically assessed, and Schwann cell morphology was thoroughly evaluated. Results A decline in nerve conduction velocity and increase in g-ratio is observed without early axonal damage. Schwann cells display shortened internodal lengths and severely disrupted Cajal bands. Quite surprisingly, the latter is reconstituted without improvements to nerve conduction velocity. Discussion Chronic entrapment injuries like carpal tunnel syndrome are primarily mediated by the Schwann cell response, wherein decreases in internodal length and myelin thickness disrupt the efficiency of impulse propagation. Restitution of Cajal bands is not sufficient for remyelination post-CNC injury. PMID:22246880
Underwater wireless optical MIMO system with spatial modulation and adaptive power allocation
NASA Astrophysics Data System (ADS)
Huang, Aiping; Tao, Linwei; Niu, Yilong
2018-04-01
In this paper, we investigate the performance of underwater wireless optical multiple-input multiple-output communication system combining spatial modulation (SM-UOMIMO) with flag dual amplitude pulse position modulation (FDAPPM). Channel impulse response for coastal and harbor ocean water links are obtained by Monte Carlo (MC) simulation. Moreover, we obtain the closed-form and upper bound average bit error rate (BER) expressions for receiver diversity including optical combining, equal gain combining and selected combining. And a novel adaptive power allocation algorithm (PAA) is proposed to minimize the average BER of SM-UOMIMO system. Our numeric results indicate an excellent match between the analytical results and numerical simulations, which confirms the accuracy of our derived expressions. Furthermore, the results show that adaptive PAA outperforms conventional fixed factor PAA and equal PAA obviously. Multiple-input single-output system with adaptive PAA obtains even better BER performance than MIMO one, at the same time reducing receiver complexity effectively.
Venables, Noah C; Hall, Jason R; Yancey, James R; Patrick, Christopher J
2015-05-01
The Two-Process theory of psychopathy posits that distinct etiological mechanisms contribute to the condition: (a) a weakness in defensive (fear) reactivity related to affective-interpersonal features, and (b) impaired cognitive-executive functioning, marked by reductions in brain responses such as P3, related to impulsive-antisocial features. The current study examined relations between psychopathy factors and electrocortical response to emotional and neutral pictures in male offenders (N = 139) assessed using the Psychopathy Checklist-Revised (PCL-R). Impulsive-antisocial features of the PCL-R (Factor 2) were associated with reduced amplitude of earlier P3 brain response to pictures regardless of valence, whereas the affective-interpersonal dimension (Factor 1) was associated specifically with reductions in late positive potential response to aversive pictures. Findings provide further support for the Two-Process theory and add to a growing body of evidence linking the impulsive-antisocial facet of psychopathy to the broader construct of externalizing proneness. Findings are discussed in terms of current initiatives directed at incorporating neuroscientific concepts into psychopathology classification. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Venables, Noah C.; Hall, Jason R.; Yancey, James R.; Patrick, Christopher J.
2014-01-01
The Two-Process theory of psychopathy posits distinct etiological mechanisms contribute to the disorder: 1) a weakness in defensive (fear) reactivity related to affective-interpersonal features, and 2) impaired cognitive-executive functioning, marked by reductions in brain responses such as P3, related to impulsive-antisocial features. The current study examined relations between psychopathy factors and electrocortical response to emotional and neutral pictures in male offenders (N=139) assessed using the Psychopathy Checklist-Revised (PCL-R). Impulsive-antisocial features of the PCL-R (Factor 2) were associated with reduced amplitude of earlier P3 brain response to pictures regardless of valence, whereas the affective-interpersonal dimension (Factor 1) was associated specifically with reductions in late positive potential response to aversive pictures. Findings provide further support for the Two-Process theory and add to a growing body of evidence linking the impulsive-antisocial facet of psychopathy to the broader construct of externalizing proneness. Findings are discussed in terms of current initiatives directed at incorporating neuroscientific concepts into psychopathology classification. PMID:25603361
Smári, Jakob; Martinsson, Davíð Rúrik; Einarsson, Hjalti
2010-10-01
The aim of the study was to investigate potential precursors of inflated responsibility (responsibility attitudes) and obsessive-compulsive (OCD) symptoms. It was argued that both parental overprotection and impulsivity, separately and in interaction with each other, contribute to inflated responsibility and OCD symptoms. In a large sample of young adults (N = 570), self-report measures of OCD symptoms (OCI-R), responsibility attitudes (RAS), anxiety/depression (HADS), rearing practices (EMBU), present and past impulsivity/hyperactivity symptoms (IMP/HY) were administered. Overprotection as well as IMP/HY were found to predict OCD symptoms as well as inflated responsibility. Finally, a significant interaction was found between IMP/HY and overprotection with regard to both OCD symptoms and inflated responsibility. This effect reflected that IMP/HY was more strongly related to OCD symptoms and responsibility in people who had not been overprotected than in people who had been. Conversely overprotection was related to OCD symptoms and responsibility in people low but not in people high in IMP/HY. The results seem to indicate that the inadequacy between offer and need for parental control may play a role in the development of OCD symptoms. © 2010 The Authors. Scandinavian Journal of Psychology © 2010 The Scandinavian Psychological Associations.
Fully Scalable Porous Metal Electrospray Propulsion
2012-03-20
particular emphasis on the variation of specific impulse for multi-modal propulsion is currently carried out by MIT and the Busek Company under an...Beam profile distributions in the negative (left) and positive (center) modes as visualized directly thorough a multi-channel plate and phosphor...screen. These profiles are parabolic (right) indicating the non-thermal character of these type of ion beams. Microscopic Image of pattern imprinted on Si
Cantagallo, Anna; Di Russo, Francesco; Favilla, Marco; Zoccolotti, Pierluigi
2015-04-15
The capability of quickly (as soon as possible) producing fast uncorrected and accurate isometric force impulses was examined to assess the motor efficiency of patients with moderate to severe traumatic brain injury (TBI) and good motor recovery at a clinical evaluation. Twenty male right-handed patients with moderate to severe TBI and 24 age-matched healthy male right-handed controls participated in the study. The experimental task required subjects to aim brief and uncorrected isometric force impulses to targets visually presented along with subjects' force displays. Both TBI patients and controls were able to produce force impulses whose mean peak amplitudes varied proportionally to the target load with no detectable group difference. Patients with TBI, however, were slower than controls in initiating their responses (reaction times [RTs] were longer by 125 msec) and were also slower during the execution of their motor responses, reaching the peak forces requested 23 msec later than controls (time to peak force: 35% delay). Further, their mean dF/dt (35 kg/sec) was slower than that of controls (53 kg/sec), again indicating a 34% impairment with respect to controls. Overall, patients with TBI showed accurate but delayed and slower isometric force impulses. Thus, an evaluation taking into account also response time features is more effective in picking up motor impairments than the standard clinical scales focusing on accuracy of movement only.
Murray, Sandra L.; Pinkus, Rebecca T.; Holmes, John G.; Harris, Brianna; Gomillion, Sarah; Aloni, Maya; Derrick, Jaye L.; Leder, Sadie
2011-01-01
A dual process model is proposed to explain how automatic evaluative associations to the partner (i.e., impulsive trust) and deliberative expectations of partner caring (i.e., reflective trust) interact to govern self-protection in romantic relationships. Experimental and correlational studies of dating and marital relationships supported the model. Subliminally conditioning more positive evaluative associations to the partner increased confidence in the partner’s caring, suggesting that trust has an impulsive basis. Being high on impulsive trust (i.e., more positive evaluative associations to the partner on the IAT) also reduced the automatic inclination to distance in response to doubts about the partner’s trustworthiness. It similarly reduced self-protective behavioral reactions to these reflective trust concerns. The studies further revealed that the effects of impulsive trust depend on working memory capacity: Being high on impulsive trust inoculated against reflective trust concerns for people low on working memory capacity. PMID:21443370
Impulse Testing of Corporate-Fed Patch Array Antennas
NASA Technical Reports Server (NTRS)
Chamberlain, Neil F.
2011-01-01
This paper discusses a novel method for detecting faults in antenna arrays. The method, termed Impulse Testing, was developed for corporate-fed patch arrays where the element is fed by a probe and is shorted at its center. Impulse Testing was devised to supplement conventional microwave measurements in order to quickly verify antenna integrity. The technique relies on exciting each antenna element in turn with a fast pulse (or impulse) that propagates through the feed network to the output port of the antenna. The resulting impulse response is characteristic of the path through the feed network. Using an oscilloscope, a simple amplitude measurement can be made to detect faults. A circuit model of the antenna elements and feed network was constructed to assess various fault scenarios and determine fault-detection thresholds. The experimental setup and impulse measurements for two patch array antennas are presented. Advantages and limitations of the technique are discussed along with applications to other antenna array topologies
Mathematical modelling of the active hearing process in mosquitoes
Avitabile, D.; Homer, M.; Champneys, A. R.; Jackson, J. C.; Robert, D.
2010-01-01
Insects have evolved diverse and delicate morphological structures in order to capture the inherently low energy of a propagating sound wave. In mosquitoes, the capture of acoustic energy and its transduction into neuronal signals are assisted by the active mechanical participation of the scolopidia. We propose a simple microscopic mechanistic model of the active amplification in the mosquito species Toxorhynchites brevipalpis. The model is based on the description of the antenna as a forced-damped oscillator coupled to a set of active threads (ensembles of scolopidia) that provide an impulsive force when they twitch. This twitching is in turn controlled by channels that are opened and closed if the antennal oscillation reaches a critical amplitude. The model matches both qualitatively and quantitatively with recent experiments: spontaneous oscillations, nonlinear amplification, hysteresis, 2 : 1 resonances, frequency response and gain loss owing to hypoxia. The numerical simulations presented here also generate new hypotheses. In particular, the model seems to indicate that scolopidia located towards the tip of Johnston's organ are responsible for the entrainment of the other scolopidia and that they give the largest contribution to the mechanical amplification. PMID:19447819
The dynamic flexural response of propeller blades. M.S. Thesis
NASA Technical Reports Server (NTRS)
Djordjevic, S. Z.
1982-01-01
The determination of the torsional constants of three blade models having NACA four-digit symmetrical airfoil cross sections is presented. Values were obtained for these models analytically and experimentally. Results were also obtained for three other models having rectangular, elliptical, and parabolic cross sections. Complete modal analyses were performed for five blade models. The identification of modal parameters was done for cases when the blades were modeled as either undamped or damped multi-degree-of-freedom systems. For the experimental phase of this study, the modal testing was performed using a Dual Channel FFT analyzer and an impact hammer (which produced an impulsive excitation). The natural frequency and damping of each mode in the frequency range up to 2 kHz were measured. A small computer code was developed to calculate the dynamic response of the blade models for comparison with the experimental results. A comparison of the undamped and damped cases was made for all five blade models at the instant of maximum excitation force. The program was capable of handling models where the excitation forces were distributed arbitrarily along the length of the blade.
1976-04-09
of the signal and noise remain HH ***^-^*--~ 53 h, to r(Mc) h2(r» r(we) Figure 3-2 Sy&toetric Impulse Response for Two FIR Linear Phase...Inputs x,y and Outputs x.j. , 15 2-2 Linear System with Impulse Response h("r) 23 2-3 Model of Error Resulting from Linearly Filtering x(t) to...Corrupted with Additive Noise 42 2-6 Model of Directional Signal Corrupted with Additive Noise and Processed .... 45 2-7 Source Driving Two
A-law/Mu-law Dynamic Range Compression Deconvolution (Preprint)
2008-02-04
noise filtering via the spectrum proportionality filter, and second the signal deblurring via the inverse filter. In this process for regions when...is the joint image of motion impulse response and the noisy blurred image with signal to noise ratio 5, 6(A’) is the gray level recovered image...joint image of motion impulse response and the noisy blurred image with signal to noise ratio 5, (A’) the gray level recovered image using the A-law
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Vartio, Eric; Shimko, Anthony; Kvaternik, Raymond G.; Eure, Kenneth W.; Scott,Robert C.
2007-01-01
Aeroservoelastic (ASE) analytical models of a SensorCraft wind-tunnel model are generated using measured data. The data was acquired during the ASE wind-tunnel test of the HiLDA (High Lift-to-Drag Active) Wing model, tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in late 2004. Two time-domain system identification techniques are applied to the development of the ASE analytical models: impulse response (IR) method and the Generalized Predictive Control (GPC) method. Using measured control surface inputs (frequency sweeps) and associated sensor responses, the IR method is used to extract corresponding input/output impulse response pairs. These impulse responses are then transformed into state-space models for use in ASE analyses. Similarly, the GPC method transforms measured random control surface inputs and associated sensor responses into an AutoRegressive with eXogenous input (ARX) model. The ARX model is then used to develop the gust load alleviation (GLA) control law. For the IR method, comparison of measured with simulated responses are presented to investigate the accuracy of the ASE analytical models developed. For the GPC method, comparison of simulated open-loop and closed-loop (GLA) time histories are presented.
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Shimko, Anthony; Kvaternik, Raymond G.; Eure, Kenneth W.; Scott, Robert C.
2006-01-01
Aeroservoelastic (ASE) analytical models of a SensorCraft wind-tunnel model are generated using measured data. The data was acquired during the ASE wind-tunnel test of the HiLDA (High Lift-to-Drag Active) Wing model, tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in late 2004. Two time-domain system identification techniques are applied to the development of the ASE analytical models: impulse response (IR) method and the Generalized Predictive Control (GPC) method. Using measured control surface inputs (frequency sweeps) and associated sensor responses, the IR method is used to extract corresponding input/output impulse response pairs. These impulse responses are then transformed into state-space models for use in ASE analyses. Similarly, the GPC method transforms measured random control surface inputs and associated sensor responses into an AutoRegressive with eXogenous input (ARX) model. The ARX model is then used to develop the gust load alleviation (GLA) control law. For the IR method, comparison of measured with simulated responses are presented to investigate the accuracy of the ASE analytical models developed. For the GPC method, comparison of simulated open-loop and closed-loop (GLA) time histories are presented.
Worbe, Yulia; Savulich, George; Voon, Valerie; Fernandez-Egea, Emilio; Robbins, Trevor W
2014-01-01
Convergent results from animal and human studies suggest that reducing serotonin neurotransmission promotes impulsive behavior. Here, serotonin depletion was induced by the dietary tryptophan depletion procedure (TD) in healthy volunteers to examine the role of serotonin in impulsive action and impulsive choice. We used a novel translational analog of a rodent 5-choice serial reaction time task (5-CSRTT)— the human 4-CSRTT—and a reward delay-discounting questionnaire to measure effects on these different forms of ‘waiting impulsivity'. There was no effect of TD on impulsive choice as indexed by the reward delay-discounting questionnaire. However, TD significantly increased 4-CSRTT premature responses (or impulsive action), which is remarkably similar to the previous findings of effect of serotonin depletion on rodent 5-CSRTT performance. Moreover, the increased premature responding in TD correlated significantly with individual differences on the motor impulsivity subscale of the Barratt Impulsivity Scale. TD also improved the accuracy of performance and speeded responding, possibly indicating enhanced attention and reward processing. The results suggest: (i) the 4-CSRTT will be a valuable addition to the tests already available to measure impulsivity in humans in a direct translational analog of a test extensively used in rodents; (ii) TD in humans produces a qualitatively similar profile of effects to those in rodents (ie, enhancing premature responding), hence supporting the conclusion that TD in humans exerts at least some of its effects on central serotonin; and (iii) this manipulation of serotonin produces dissociable effects on different measures of impulsivity, suggesting considerable specificity in its modulatory role. PMID:24385133
Ding, Wei-na; Sun, Jin-hua; Sun, Ya-Wen; Chen, Xue; Zhou, Yan; Zhuang, Zhi-guo; Li, Lei; Zhang, Yong; Xu, Jian-rong; Du, Ya-song
2014-05-30
Recent studies suggest that Internet gaming addiction (IGA) is an impulse disorder, or is at least related to impulse control disorders. In the present study, we hypothesized that different facets of trait impulsivity may be specifically linked to the brain regions with impaired impulse inhibition function in IGA adolescents. Seventeen adolescents with IGA and seventeen healthy controls were scanned during performance of a response-inhibition Go/No-Go task using a 3.0 T MRI scanner. The Barratt Impulsiveness Scale (BIS)-11 was used to assess impulsivity. There were no differences in the behavioral performance on the Go/No-Go task between the groups. However, the IGA group was significantly hyperactive during No-Go trials in the left superior medial frontal gyrus, right anterior cingulate cortex, right superior/middle frontal gyrus, left inferior parietal lobule, left precentral gyrus, and left precuneus and cuneus. Further, the bilateral middle temporal gyrus, bilateral inferior temporal gyrus, and right superior parietal lobule were significantly hypoactive during No-Go trials. Activation of the left superior medial frontal gyrus was positively associated with BIS-11 and Chen Internet Addiction Scale (CIAS) total score across IGA participants. Our data suggest that the prefrontal cortex may be involved in the circuit modulating impulsivity, while its impaired function may relate to high impulsivity in adolescents with IGA, which may contribute directly to the Internet addiction process.
2014-01-01
Background Recent studies suggest that Internet gaming addiction (IGA) is an impulse disorder, or is at least related to impulse control disorders. In the present study, we hypothesized that different facets of trait impulsivity may be specifically linked to the brain regions with impaired impulse inhibition function in IGA adolescents. Methods Seventeen adolescents with IGA and seventeen healthy controls were scanned during performance of a response-inhibition Go/No-Go task using a 3.0 T MRI scanner. The Barratt Impulsiveness Scale (BIS)-11 was used to assess impulsivity. Results There were no differences in the behavioral performance on the Go/No-Go task between the groups. However, the IGA group was significantly hyperactive during No-Go trials in the left superior medial frontal gyrus, right anterior cingulate cortex, right superior/middle frontal gyrus, left inferior parietal lobule, left precentral gyrus, and left precuneus and cuneus. Further, the bilateral middle temporal gyrus, bilateral inferior temporal gyrus, and right superior parietal lobule were significantly hypoactive during No-Go trials. Activation of the left superior medial frontal gyrus was positively associated with BIS-11 and Chen Internet Addiction Scale (CIAS) total score across IGA participants. Conclusions Our data suggest that the prefrontal cortex may be involved in the circuit modulating impulsivity, while its impaired function may relate to high impulsivity in adolescents with IGA, which may contribute directly to the Internet addiction process. PMID:24885073
The impact of self-reported life stress on current impulsivity in cocaine dependent adults
Ross, Elizabeth L.; Yoon, Jin H.; Mahoney, James J.; Omar, Yasmine; Newton, Thomas F.; De La Garza, Richard
2014-01-01
Current cocaine treatments may be enhanced with a better understanding of the underlying mechanisms that contribute to the onset and maintenance of the disease, such as life stress and impulsivity. Life stress and impulsivity have previously been studied independently as contributors to drug use, and the current study expands upon past research by examining how these factors interact with one another. The aim of the current study was to evaluate the role of life stress in predicting impulsivity in a non-treatment seeking cocaine-dependent sample (N = 112). Analyses revealed that trait impulsivity (as measured by the Barratt Impulsiveness Scale) was associated with education (r = −3.09, p < 0.01), as those who had higher educational attainment also reported lower rates of trait impulsivity. In addition, those over the age of 30 demonstrated lower impulsivity in decision-making (as measured by delay discounting) than those under 30 (t = 2.21, p = 0.03). Overall exposure to life stress was not significantly correlated to either aspect of impulsivity. However several specific life stressors were significantly related to greater impulsivity including having been put up for adoption or in foster care (t = −2.96, p < 0.01), and having a child taken away against their will (t = −2.68, p = 0.01). These findings suggest that age and education relate to impulsivity; and that while an overall compilation of life stress scores was not related to impulsivity, specific types of stress related to either being taken away from a parent or having a child taken away were. Future studies should assess these constructs longitudinally to restrict response bias. PMID:23796525
Attention switching after dietary brain 5-HT challenge in high impulsive subjects.
Markus, C Rob; Jonkman, Lisa M
2007-09-01
High levels of impulsivity have adverse effects on performance in cognitive tasks, particularLy in those tasks that require high attention investment. Furthermore, both animal and human research has indicated that reduced brain serotonin (5-HT) function is associated with increases in impulsive behaviour or decreased inhibition ability, but the effects of 5-HT challenge have not yet been investigated in subjects vulnerable to impulsivity. The present study aimed to investigate whether subjects with high trait impulsivity perform worse than low impulsive subjects in a task switching paradigm in which they have to rapidly shift their attention between two response rules, and to investigate the influence of a 5-HT enhancing diet. Healthy subjects with high ( n = 19) and low (n = 18) trait impulsivity scores participated in a double-blind placebo-controlled study. All subjects performed the attention switch task in the morning following breakfast containing either tryptophan-rich alpha-lactalbumin (4.8 g/100 g TRP) or placebo protein (1.4 g/100 g TRP). Whereas there were no baseline differences between high and low impulsive subjects in task switching abilities, high impulsive subjects made significantly more switch errors and responded slower after dietary 5-HT stimulation, whereas no dietary effects were found on task switching performance in low-impulsive subjects. The deterioration in task switching performance induced by the 5-HT enhancing diet in high impulsive subjects was suggested to be established by general arousal/attention-reducing effects of 5-HT, which might have a larger impact in high impulsive subjects due to either different brain circuitry involved in task switching in this group or lower baseline arousal levels.
Design and implementation of low complexity wake-up receiver for underwater acoustic sensor networks
NASA Astrophysics Data System (ADS)
Yue, Ming
This thesis designs a low-complexity dual Pseudorandom Noise (PN) scheme for identity (ID) detection and coarse frame synchronization. The two PN sequences for a node are identical and are separated by a specified length of gap which serves as the ID of different sensor nodes. The dual PN sequences are short in length but are capable of combating severe underwater acoustic (UWA) multipath fading channels that exhibit time varying impulse responses up to 100 taps. The receiver ID detection is implemented on a microcontroller MSP430F5529 by calculating the correlation between the two segments of the PN sequence with the specified separation gap. When the gap length is matched, the correlator outputs a peak which triggers the wake-up enable. The time index of the correlator peak is used as the coarse synchronization of the data frame. The correlator is implemented by an iterative algorithm that uses only one multiplication and two additions for each sample input regardless of the length of the PN sequence, thus achieving low computational complexity. The real-time processing requirement is also met via direct memory access (DMA) and two circular buffers to accelerate data transfer between the peripherals and the memory. The proposed dual PN detection scheme has been successfully tested by simulated fading channels and real-world measured channels. The results show that, in long multipath channels with more than 60 taps, the proposed scheme achieves high detection rate and low false alarm rate using maximal-length sequences as short as 31 bits to 127 bits, therefore it is suitable as a low-power wake-up receiver. The future research will integrate the wake-up receiver with Digital Signal Processors (DSP) for payload detection.
Johnson, Patricia L; Potts, Geoffrey F; Sanchez-Ramos, Juan; Cimino, Cynthia R
2017-09-01
Few studies have directly investigated impulsivity in Huntington's disease (HD) despite known changes in dopaminergic and frontal functioning, changes that have been associated with impulsivity in other disorders and in the normal population. This study sought to further categorize impulsivity in HD through examining differences in self-reported impulsivity between community controls and HD patients, the relationship between executive dysfunction and impulsivity, and the relationship of a reward/punishment behavioral inhibition task in relation to these self-report measures. It was expected that HD patients would report higher impulsivity and executive dysfunction and that these measures would relate to a reward/punishment behavioral inhibition task. The Barratt Impulsivity Scale (BIS-11) and Behavioral Inhibition/Behavioral Activation Scale (BIS/BAS) were completed, and the Mini-Mental State Examination (MMSE) and a reward-based flanker task with punishing and rewarding conditions were administered to 22 HD patients and 14 control participants. HD patients reported higher trait impulsivity (BIS-11) and executive dysfunction (Frontal Systems Behavior Scale, FrSBE) but not increased impulsivity on the BIS/BAS relative to controls. Higher BIS-11 scores were related to increased self-reported executive dysfunction and the attention/working memory factor of the MMSE. On a reward/punishment behavioral inhibition task, BAS was uniquely related to increased accuracy on rewarding trials of the flanker task, but was not related to punishing trials in HD patients. The relationships found suggest that trait impulsivity is reported higher in HD and may not be driven by altered reward evaluation and the appetitive nature of stimuli but rather by increased executive dysfunction and lack of sensitivity to punishment. Impulsivity in HD may represent a combination of trait impulsivity, altered dopaminergic circuitry, and executive dysfunction. Understanding impulsivity in HD is important as it is related to increased risk to the patient and difficult behaviors for the caregiver, and sheds light on the disease process.
Hybrid-PIC simulation of sputtering product distribution in a Hall thruster
NASA Astrophysics Data System (ADS)
Cao, Xifeng; Hang, Guanrong; Liu, Hui; Meng, Yingchao; Luo, Xiaoming; Yu, Daren
2017-10-01
Hall thrusters have been widely used in orbit correction and the station-keeping of geostationary satellites due to their high specific impulse, long life, and high reliability. During the operating life of a Hall thruster, high-energy ions will bombard the discharge channel and cause serious erosion. As time passes, this sputtering process will change the macroscopic surface morphology of the discharge channel, especially near the exit, thus affecting the performance of the thruster. Therefore, it is necessary to carry out research on the motion of the sputtering products and erosion process of the discharge wall. To better understand the moving characteristics of sputtering products, based on the hybrid particle-in-cell (PIC) numerical method, this paper simulates the different erosion states of the thruster discharge channel in different moments and analyzes the moving process of different particles, such as B atoms and B+ ions. In this paper, the main conclusion is that B atoms are mainly produced on both sides of the channel exit, and B+ ions are mainly produced in the middle of the channel exit. The ionization rate of B atoms is approximately 1%.
Bridge, Jeffrey A; Reynolds, Brady; McBee-Strayer, Sandra M; Sheftall, Arielle H; Ackerman, John; Stevens, Jack; Mendoza, Kristen; Campo, John V; Brent, David A
2015-03-01
Impulsive-aggressive behaviors have been consistently implicated in the phenomenology, neurobiology, and familial aggregation of suicidal behavior. The purpose of this study was to extend previous work by examining laboratory behavioral measures of delayed reward impulsivity and impulsive aggression in adolescent suicide attempters and never-suicidal comparison subjects. Using the Point Subtraction Aggression Paradigm (PSAP) and the Delay Discounting Task (DDQ), the authors examined delay discounting and impulsive aggression in 40 adolescent suicide attempters, ages 13-18, and 40 never-suicidal, demographically matched psychiatric comparison subjects. Overall, suicide attempters and comparison subjects performed similarly on the PSAP and DDQ. There was a significant group by current psychotropic medication use interaction (p=0.013) for mean aggressive responses on the PSAP. Group comparisons revealed that attempters emitted more aggressive responses per provocation than comparison subjects, only in those not on psychotropic medication (p=0.049), whereas for those currently treated with psychotropic medication, there were no group differences (p>0.05). This interaction effect was specific to current antidepressant use. Among all subjects, family history of suicidal behavior (suicide or suicide attempt) in first degree relatives was significantly correlated with both delay discounting (r=-0.22, p=0.049), and aggressive responding (r=0.27, p=0.015). Family history of suicidal behavior was associated with delay discounting, but not with aggressive responding on the PSAP, after controlling for relevant covariates. In this study, impulsive-aggressive responding was associated with suicide attempt only in those not being treated with antidepressants. Future work to replicate and extend these findings could have important therapeutic implications for the treatment of depressed suicide attempters, many of whom are affected by impulsive aggression.
Peña-Oliver, Yolanda; Carvalho, Fabiana M.; Sanchez-Roige, Sandra; Quinlan, Erin B.; Jia, Tianye; Walker-Tilley, Tom; Rulten, Stuart L.; Pearl, Frances M. G.; Banaschewski, Tobias; Barker, Gareth J.; Bokde, Arun L. W.; Büchel, Christian; Conrod, Patricia J.; Flor, Herta; Gallinat, Jürgen; Garavan, Hugh; Heinz, Andreas; Gowland, Penny; Paillere Martinot, Marie-Laure; Paus, Tomáš; Rietschel, Marcella; Robbins, Trevor W.; Smolka, Michael N.; Schumann, Gunter; Stephens, David N.
2016-01-01
Impulsivity is associated with a spectrum of psychiatric disorders including drug addiction. To investigate genetic associations with impulsivity and initiation of drug taking, we took a two-step approach. First, we identified genes whose expression level in prefrontal cortex, striatum and accumbens were associated with impulsive behavior in the 5-choice serial reaction time task across 10 BXD recombinant inbred (BXD RI) mouse strains and their progenitor C57BL/6J and DBA2/J strains. Behavioral data were correlated with regional gene expression using GeneNetwork (www.genenetwork.org), to identify 44 genes whose probability of association with impulsivity exceeded a false discovery rate of < 0.05. We then interrogated the IMAGEN database of 1423 adolescents for potential associations of SNPs in human homologs of those genes identified in the mouse study, with brain activation during impulsive performance in the Monetary Incentive Delay task, and with novelty seeking scores from the Temperament and Character Inventory, as well as alcohol experience. There was a significant overall association between the human homologs of impulsivity-related genes and percentage of premature responses in the MID task and with fMRI BOLD-response in ventral striatum (VS) during reward anticipation. In contrast, no significant association was found between the polygenic scores and anterior cingulate cortex activation. Univariate association analyses revealed that the G allele (major) of the intronic SNP rs6438839 in the KALRN gene was significantly associated with increased VS activation. Additionally, the A-allele (minor) of KALRN intronic SNP rs4634050, belonging to the same haplotype block, was associated with increased frequency of binge drinking. PMID:27092175
Reynolds, Brady; McBee-Strayer, Sandra M.; Sheftall, Arielle H.; Ackerman, John; Stevens, Jack; Mendoza, Kristen; Campo, John V.; Brent, David A.
2015-01-01
Abstract Objective: Impulsive-aggressive behaviors have been consistently implicated in the phenomenology, neurobiology, and familial aggregation of suicidal behavior. The purpose of this study was to extend previous work by examining laboratory behavioral measures of delayed reward impulsivity and impulsive aggression in adolescent suicide attempters and never-suicidal comparison subjects. Methods: Using the Point Subtraction Aggression Paradigm (PSAP) and the Delay Discounting Task (DDQ), the authors examined delay discounting and impulsive aggression in 40 adolescent suicide attempters, ages 13–18, and 40 never-suicidal, demographically matched psychiatric comparison subjects. Results: Overall, suicide attempters and comparison subjects performed similarly on the PSAP and DDQ. There was a significant group by current psychotropic medication use interaction (p=0.013) for mean aggressive responses on the PSAP. Group comparisons revealed that attempters emitted more aggressive responses per provocation than comparison subjects, only in those not on psychotropic medication (p=0.049), whereas for those currently treated with psychotropic medication, there were no group differences (p>0.05). This interaction effect was specific to current antidepressant use. Among all subjects, family history of suicidal behavior (suicide or suicide attempt) in first degree relatives was significantly correlated with both delay discounting (r=−0.22, p=0.049), and aggressive responding (r=0.27, p=0.015). Family history of suicidal behavior was associated with delay discounting, but not with aggressive responding on the PSAP, after controlling for relevant covariates. Conclusions: In this study, impulsive-aggressive responding was associated with suicide attempt only in those not being treated with antidepressants. Future work to replicate and extend these findings could have important therapeutic implications for the treatment of depressed suicide attempters, many of whom are affected by impulsive aggression. PMID:25745870
Costa, Vincent D; Kakalios, Laura C; Averbeck, Bruno B
2016-10-01
Dopamine and serotonin have opponent interactions on aspects of impulsivity. Therefore we wanted to test the hypothesis that dopamine and serotonin would have opposing effects on speed-accuracy trade offs in a perceptual decision making task. Unlike other behavioral measures of impulsivity, perceptual decision making allows us to determine whether decreasing premature responses, often interpreted as decreased impulsivity, corresponds to increased behavioral performance. We administered GBR-12909 (a dopamine transporter blocker), escitalopram (a serotonin transporter blocker), or saline in separate sessions to 3 rhesus macaques. We found that animals had slower reaction times (RTs) on escitalopram than on GBR-12909 or saline. However, they were also least accurate on escitalopram. Animals were faster, although nonsignificantly, on GBR than saline and had equivalent accuracy. Administration of GBR-12909 did cause animals to be faster in error trials than correct trials. Therefore, from the point of view of RTs the animals were less impulsive on escitalopram. However, the decreased accuracy of the monkeys shows that they were not able to make use of their slower response times to make more accurate decisions. Therefore, impulsivity was reduced on escitalopram, but at the expense of a slower information-processing rate in the perceptual inference task. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Cognitive control training for emotion-related impulsivity.
Peckham, Andrew D; Johnson, Sheri L
2018-06-01
Many forms of psychopathology are tied to a heightened tendency to respond impulsively to strong emotions, and this tendency, in turn, is closely tied to problems with cognitive control. The goal of the present study was to test whether a two-week, six-session cognitive control training program is efficacious in reducing emotion-related impulsivity. Participants (N = 52) reporting elevated scores on an emotion-related impulsivity measure completed cognitive control training targeting working memory and response inhibition. A subset of participants were randomized to a waitlist control group. Impulsivity, emotion regulation, and performance on near and far-transfer cognitive tasks were assessed at baseline and after completion of training. Emotion-related impulsivity declined significantly from pre-training to post-training and at two-week follow-up; improvements were not observed in the waitlist control group. A decrease in brooding rumination and an increase in reappraisal were also observed. Participants showed significant improvements on trained versions of the working memory and inhibition tasks as well as improvements on an inhibition transfer task. In sum, these preliminary findings show that cognitive training appears to be well-tolerated for people with significant emotion-driven impulsivity. Results provide preliminary support for the efficacy of cognitive training interventions as a way to reduce emotion-related impulsivity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Interrelationships among impulsive personality traits, food addiction, and Body Mass Index
Murphy, Cara M.; Stojek, Monika K.; MacKillop, James
2016-01-01
Objective Impulsive personality traits have been robustly associated with alcohol and drug misuse, but have received little attention in the context of food addiction. The goal of the current study was to examine the interrelationships between impulsive personality traits, food addiction, and Body Mass Index (BMI), including indirect pathways of influence. Method Participants (N = 233) completed the Yale Food Addiction Scale (YFAS) to assess patterns of addictive consumption of food, the UPPS-P Impulsivity Scale to assess impulsive personality traits, and provided weight and height to generate BMI. Results Significant positive associations were found between facets of impulsivity, food addiction symptoms, and BMI. Impulsivity was found to be indirectly associated with BMI by way of associations with addictive consumption of food. In particular, an inclination toward behaving irrationally while experiencing negative mood states (Negative Urgency) and low levels of task persistence (lack of Perseverance) were significantly associated with food addiction directly and that relationship was responsible for their relationship to BMI. Conclusions Dispositional impulsivity, routinely associated with high-risk behaviors including addictive consumption of alcohol and drugs, may be an important risk factor when considering tendency to engage in addictive consumption of food. Monitoring food addiction symptoms early may help reduce the likelihood that compulsive food consumption patterns result in weight gain and obesity. Methodological considerations are discussed. PMID:24511618
Interrelationships among impulsive personality traits, food addiction, and Body Mass Index.
Murphy, Cara M; Stojek, Monika K; MacKillop, James
2014-02-01
Impulsive personality traits have been robustly associated with alcohol and drug misuse, but have received little attention in the context of food addiction. The goal of the current study was to examine the interrelationships between impulsive personality traits, food addiction, and Body Mass Index (BMI), including indirect pathways of influence. Participants (N = 233) completed the Yale Food Addiction Scale (YFAS) to assess patterns of addictive consumption of food, the upps-p impulsivity scale to assess impulsive personality traits, and provided weight and height to generate BMI. Significant positive associations were found between facets of impulsivity, food addiction symptoms, and BMI. Impulsivity was found to be indirectly associated with BMI by way of associations with addictive consumption of food. In particular, an inclination toward behaving irrationally while experiencing negative mood states (Negative Urgency) and low levels of task persistence (lack of Perseverance) were significantly associated with food addiction directly and that relationship was responsible for their relationship to BMI. Dispositional impulsivity, routinely associated with high-risk behaviors including addictive consumption of alcohol and drugs, may be an important risk factor when considering tendency to engage in addictive consumption of food. Monitoring food addiction symptoms early may help reduce the likelihood that compulsive food consumption patterns result in weight gain and obesity. Methodological considerations are discussed.
Liu, Peiwei; Feng, Tingyong
2017-09-30
Procrastination is a prevalent problematic behavior that brings serious consequences, such as lower levels of health, wealth, and well-being. Previous research has verified that impulsivity is one of the traits most strongly correlated with procrastination. However, little is known about why there is a tight behavioral relationship between them. To address this question, we used voxel-based morphometry (VBM) to explore the common neural substrates between procrastination and impulsivity. In line with previous findings, the behavioral results showed a strong behavioral correlation between procrastination and impulsivity. Neuroimaging results showed impulsivity and procrastination shared the common neurobiological underpinnings in the dorsolateral prefrontal cortex (DLPFC) based on the data from 85 participants (sample 1). Furthermore, the mediation analysis revealed that impulsivity mediated the impact of gray matter (GM) volumes of this overlapping region in the DLPFC on procrastination on another independent 84 participants' data (sample 2). In conclusion, the overlapping brain region in the DLPFC would be responsible for the close relationship between procrastination and impulsivity. As a whole, the present study extends our knowledge on procrastination, and provides a novel perspective to explain the tight impulsivity - procrastination relationship. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
1984-02-01
conducting sphere 35 compared to inverse transform of exact solution. 4-5. Measured impulse response of a conducting 2:1 right 37 circular cylinder with...frequency domain. This is equivalent to multiplication in the time domain by the inverse transform of w(n), which is shown in Figure 3-1 for N=15. The...equivalent pulse width from 0.066 T for the rectangular window to 0.10 T for the Hanning window. The inverse transform of the Hanning window is shown
Impulse Response Shaping for Ultra Wide Band SAR in a Circular Flight Path
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1996-01-01
An ultra wide band SAR (synthetic aperture radar) has potential applications on imaging underground objects. Flying this SAR in a circular flight path is an efficient way to acquire high resolution images from a localized area. This paper characterizes the impulse response of sucha system. The results indicate that to achieve an image with a more uniformed resolution over the entire imaged area, proper weighting coeficients should be applied to both the principle aperture and the complimentary aperture.
Iterative design of one- and two-dimensional FIR digital filters. [Finite duration Impulse Response
NASA Technical Reports Server (NTRS)
Suk, M.; Choi, K.; Algazi, V. R.
1976-01-01
The paper describes a new iterative technique for designing FIR (finite duration impulse response) digital filters using a frequency weighted least squares approximation. The technique is as easy to implement (via FFT) and as effective in two dimensions as in one dimension, and there are virtually no limitations on the class of filter frequency spectra approximated. An adaptive adjustment of the frequency weight to achieve other types of design approximation such as Chebyshev type design is discussed.
Impulse oscillometry in the evaluation of diseases of the airways in children
Komarow, Hirsh D.; Myles, Ian A.; Uzzaman, Ashraf; Metcalfe, Dean D.
2012-01-01
Objective To provide an overview of impulse oscillometry and its application to the evaluation of children with diseases of the airways. Data Sources Medline and PubMed search, limited to English language and human disease, with keywords forced oscillation, impulse oscillometry, and asthma. Study Selections The opinions of the authors were used to select studies for inclusion in this review. Results Impulse oscillometry is a noninvasive and rapid technique requiring only passive cooperation by the patient. Pressure oscillations are applied at the mouth to measure pulmonary resistance and reactance. It is employed by health care professionals to help diagnose pediatric pulmonary diseases such asthma and cystic fibrosis; assess therapeutic responses; and measure airway resistance during provocation testing. Conclusions Impulse oscillometry provides a rapid, noninvasive measure of airway impedance. It may be easily employed in the diagnosis and management of diseases of the airways in children. PMID:21354020
Schag, Kathrin; Leehr, Elisabeth J; Skoda, Eva-Maria; Becker, Sandra; Zipfel, Stephan; Giel, Katrin E
2016-11-01
Binge Eating Disorder (BED) is an eating disorder where cognitive behavioural therapy (CBT) could already show reliable efficacy. Relying on basic research, CBT interventions which especially focus on impulsivity could be effective, because binge eating episodes represent highly impulsive eating behaviour. For this reason, we developed a treatment concept about an impulsivity-focused behavioural group intervention for patients with BED, called IMPULS. The efficacy of IMPULS is currently investigated in a randomised controlled trial 1. IMPULS is drafted as a weekly group training programme with 5-6 participants per group. The essential interventions are food-related cue exposure with response prevention and the development of self-control strategies. These interventions are adapted onto the impulsivity concept from conventional treatment of addictive disorders and BED. © Georg Thieme Verlag KG Stuttgart · New York.
Exclusive Meson Electroweak production off Bound Nucleons
NASA Astrophysics Data System (ADS)
Sato, Toru
2018-05-01
The effects of final state interaction in electroweak pion production reactions have been studied. The one loop corrections to the impulse approximation due to the nucleon and the pion rescattering is evaluated using the ANL-Osaka dynamical coupled channel model for the meson production reactions. It is found the final state interaction will affects the ν N cross section extracted in the previous analysis of the ν d data.
1986-11-01
mother and my brother. Their support and encouragement made this research exciting and enjoyable. I am grateful to my advisor, Professor H. Vincent Poor...the model. The m! M A variance of a random variable with density given by (A. 1) is a2 KmC 2 2A(I+l’)• (A.2) With the variance of the random variable
NASA Astrophysics Data System (ADS)
Zhang, Zhifeng; Drapaca, Corina
2016-11-01
Ischemic stroke accounts for about 87 percent of all stroke cases. In these cases, models of squeezing a droplet through a smaller constriction channel can help better understand the pathology and capillary restoring after a Stroke. In the present research, we analytical expressed the minimum impulse of squeezing a droplet through a circular channel as well as its critical velocity. By comparison with a previously defined critical velocity, we find the difference between these two. Applications of this research in the understanding of ischemic stroke are also discussed. Zhifeng Zhang thanks the support of Robert A. Sebrosky Graduate Fellowship in Engineering Science and Mechanics, the Pennsylvania State University.
Molecular Frame Reconstruction Using Time-Domain Photoionization Interferometry.
Marceau, Claude; Makhija, Varun; Platzer, Dominique; Naumov, A Yu; Corkum, P B; Stolow, Albert; Villeneuve, D M; Hockett, Paul
2017-08-25
Photoionization of molecular species is, essentially, a multipath interferometer with both experimentally controllable and intrinsic molecular characteristics. In this work, XUV photoionization of impulsively aligned molecular targets (N_{2}) is used to provide a time-domain route to "complete" photoionization experiments, in which the rotational wave packet controls the geometric part of the photoionization interferometer. The data obtained is sufficient to determine the magnitudes and phases of the ionization matrix elements for all observed channels, and to reconstruct molecular frame interferograms from lab frame measurements. In principle, this methodology provides a time-domain route to complete photoionization experiments and the molecular frame, which is generally applicable to any molecule (no prerequisites), for all energies and ionization channels.
An iterative algorithm for L1-TV constrained regularization in image restoration
NASA Astrophysics Data System (ADS)
Chen, K.; Loli Piccolomini, E.; Zama, F.
2015-11-01
We consider the problem of restoring blurred images affected by impulsive noise. The adopted method restores the images by solving a sequence of constrained minimization problems where the data fidelity function is the ℓ1 norm of the residual and the constraint, chosen as the image Total Variation, is automatically adapted to improve the quality of the restored images. Although this approach is general, we report here the case of vectorial images where the blurring model involves contributions from the different image channels (cross channel blur). A computationally convenient extension of the Total Variation function to vectorial images is used and the results reported show that this approach is efficient for recovering nearly optimal images.
Determination of acoustical transfer functions using an impulse method
NASA Astrophysics Data System (ADS)
MacPherson, J.
1985-02-01
The Transfer Function of a system may be defined as the relationship of the output response to the input of a system. Whilst recent advances in digital processing systems have enabled Impulse Transfer Functions to be determined by computation of the Fast Fourier Transform, there has been little work done in applying these techniques to room acoustics. Acoustical Transfer Functions have been determined for auditoria, using an impulse method. The technique is based on the computation of the Fast Fourier Transform (FFT) of a non-ideal impulsive source, both at the source and at the receiver point. The Impulse Transfer Function (ITF) is obtained by dividing the FFT at the receiver position by the FFT of the source. This quantity is presented both as linear frequency scale plots and also as synthesized one-third octave band data. The technique enables a considerable quantity of data to be obtained from a small number of impulsive signals recorded in the field, thereby minimizing the time and effort required on site. As the characteristics of the source are taken into account in the calculation, the choice of impulsive source is non-critical. The digital analysis equipment required for the analysis is readily available commercially.
Nikolaev, Yury A; Dosen, Peter J; Laver, Derek R; van Helden, Dirk F; Hamill, Owen P
2015-05-22
The mammalian brain is a mechanosensitive organ that responds to different mechanical forces ranging from intrinsic forces implicated in brain morphogenesis to extrinsic forces that can cause concussion and traumatic brain injury. However, little is known of the mechanosensors that transduce these forces. In this study we use cell-attached patch recording to measure single mechanically-gated (MG) channel currents and their affects on spike activity in identified neurons in neonatal mouse brain slices. We demonstrate that both neocortical and hippocampal pyramidal neurons express stretch-activated MG cation channels that are activated by suctions of ~25mm Hg, have a single channel conductance for inward current of 50-70pS and show weak selectivity for alkali metal cations (i.e., Na(+)
NASA Astrophysics Data System (ADS)
Flannery, D.; Keller, P.; Cartwright, S.; Loomis, J.
1987-06-01
Attractive correlation system performance potential is possible using magneto-optic spatial light modulators (SLM) to implement binary phase-only reference filters at high rates, provided the correlation performance of such reduced-information-content filters is adequate for the application. In the case studied here, the desired filter impulse response is a rectangular shape, which cannot be achieved with the usual binary phase-only filter formulation. The correlation application problem is described and techniques for synthesizing improved filter impulse response are considered. A compromise solution involves the cascading of a fixed amplitude-only weighting mask with the binary phase-only SLM. Based on simulations presented, this approach provides improved impulse responses and good correlation performance, while retaining the critical feature of real-time variations of the size, shape, and orientation of the rectangle by electronic programming of the phase pattern in the SLM. Simulations indicate that, for at least one very challenging input scene clutter situation, these filters provide higher correlation signal-to-noise than does "ideal" correlation, i.e. using a perfect rectangle filter response.
Fontaine, Reid Griffith; Dodge, Kenneth A.
2009-01-01
Considerable scientific and intervention attention has been paid to judgment and decision-making systems associated with aggressive behavior in youth. However, most empirical studies have investigated social-cognitive correlates of stable child and adolescent aggressiveness, and less is known about real-time decision making to engage in aggressive behavior. A model of real-time decision making must incorporate both impulsive actions and rational thought. The present paper advances a process model (response evaluation and decision; RED) of real-time behavioral judgments and decision making in aggressive youths with mathematic representations that may be used to quantify response strength. These components are a heuristic to describe decision making, though it is doubtful that individuals always mentally complete these steps. RED represents an organization of social–cognitive operations believed to be active during the response decision step of social information processing. The model posits that RED processes can be circumvented through impulsive responding. This article provides a description and integration of thoughtful, rational decision making and nonrational impulsivity in aggressive behavioral interactions. PMID:20802851
Fontaine, Reid Griffith; Dodge, Kenneth A
2006-11-01
Considerable scientific and intervention attention has been paid to judgment and decision-making systems associated with aggressive behavior in youth. However, most empirical studies have investigated social-cognitive correlates of stable child and adolescent aggressiveness, and less is known about real-time decision making to engage in aggressive behavior. A model of real-time decision making must incorporate both impulsive actions and rational thought. The present paper advances a process model (response evaluation and decision; RED) of real-time behavioral judgments and decision making in aggressive youths with mathematic representations that may be used to quantify response strength. These components are a heuristic to describe decision making, though it is doubtful that individuals always mentally complete these steps. RED represents an organization of social-cognitive operations believed to be active during the response decision step of social information processing. The model posits that RED processes can be circumvented through impulsive responding. This article provides a description and integration of thoughtful, rational decision making and nonrational impulsivity in aggressive behavioral interactions.
Rossiter, Sarah; Thompson, Julian; Hester, Robert
2012-09-01
Cognitive control dysfunction has been identified in dependent alcohol users and implicated in the transition from abuse to dependence, although evidence of dyscontrol in chronic but non-dependent 'harmful' alcohol abusers is mixed. The current study examined harmful alcohol users response inhibition over rewarding stimuli in the presence of monetary reward and punishment, to determine whether changes in sensitivity to these factors, noted in imaging studies of dependent users, influences impulse control. Harmful (n=30) and non-hazardous (n=55) alcohol users were administered a Monetary Incentive Go/No-go task that required participants to inhibit a prepotent motor response associated with reward. Harmful alcohol users showed a significantly poorer ability to withhold their impulse for a rewarding stimulus in the presence of immediate monetary punishment for failure, while retaining equivalent response inhibition performance under neutral conditions (associated with neither monetary loss or gain), and significantly better performance under delayed reward conditions. The results of the present study suggest that non-dependent alcohol abusers have altered sensitivity to reward and punishment that influences their impulse control for reward, in the absence of gross dyscontrol that is consistent with past findings in which such performance contingencies were not used. The ability of delayed monetary reward, but not punishment, to increase sustained impulse control in this sample has implications for the mechanism that might underlie the transition from alcohol abuse to dependence, as well as intervention strategies aimed at preventing this transition. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Neef, Nancy A.; Marckel, Julie; Ferreri, Summer J.; Bicard, David F.; Endo, Sayaka; Aman, Michael G.; Miller, Kelly M.; Jung, Sunhwa; Nist, Lindsay; Armstrong, Nancy
2005-01-01
We conducted a brief computer-based assessment involving choices of concurrently presented arithmetic problems associated with competing reinforcer dimensions to assess impulsivity (choices controlled primarily by reinforcer immediacy) as well as the relative influence of other dimensions (reinforcer rate, quality, and response effort), with 58…
INDIVIDUAL DIFFERENCES IN IMPULSIVE CHOICE AND TIMING IN RATS
Galtress, Tiffany; Garcia, Ana; Kirkpatrick, Kimberly
2012-01-01
Individual differences in impulsive choice behavior have been linked to a variety of behavioral problems including substance abuse, smoking, gambling, and poor financial decision-making. Given the potential importance of individual differences in impulsive choice as a predictor of behavioral problems, the present study sought to measure the extent of individual differences in a normal sample of hooded Lister rats. Three experiments utilized variations of a delay discounting task to measure the degree of variation in impulsive choice behavior across individual rats. The individual differences accounted for 22–55% of the variance in choice behavior across the three experiments. In Experiments 2 and 3, the individual differences were still apparent when behavior was measured across multiple choice points. Large individual differences in the rate of responding, and modest individual differences in timing of responding were also observed during occasional peak trials. The individual differences in timing and rate, however, did not correlate consistently with individual differences in choice behavior. This suggests that a variety of factors may affect choice behavior, response rate, and response timing. PMID:22851792
Detecting Structural Failures Via Acoustic Impulse Responses
NASA Technical Reports Server (NTRS)
Bayard, David S.; Joshi, Sanjay S.
1995-01-01
Advanced method of acoustic pulse reflectivity testing developed for use in determining sizes and locations of failures within structures. Used to detect breaks in electrical transmission lines, detect faults in optical fibers, and determine mechanical properties of materials. In method, structure vibrationally excited with acoustic pulse (a "ping") at one location and acoustic response measured at same or different location. Measured acoustic response digitized, then processed by finite-impulse-response (FIR) filtering algorithm unique to method and based on acoustic-wave-propagation and -reflection properties of structure. Offers several advantages: does not require training, does not require prior knowledge of mathematical model of acoustic response of structure, enables detection and localization of multiple failures, and yields data on extent of damage at each location.
Barlow, Rebecca L; Gorges, Martin; Wearn, Alfie; Niessen, Heiko G; Kassubek, Jan; Dalley, Jeffrey W; Pekcec, Anton
2018-03-15
Low dopamine D2/3 receptor availability in the nucleus accumbens (NAcb) shell is associated with highly-impulsive behavior in rats, as measured by premature responses in a cued attentional task. However, it is unclear whether dopamine D2/3 receptor availability in the NAcb is equally linked to intolerance for delayed rewards, a related form of impulsivity. We investigated the relationship between D2/3 receptor availability in the NAcb and impulsivity in a delay-discounting task (DDT) where animals must choose between immediate small-magnitude rewards and delayed larger-magnitude rewards. Corticostriatal D2/3 receptor availability was measured in rats stratified for high-, and low-impulsivity using in-vivo [18F]fallypride positron emission tomography (PET) and ex-vivo [3H]raclopride autoradiography. Resting-state functional connectivity in limbic corticostriatal networks was also assessed using fMRI. DDT impulsivity was inversely related to D2/3 receptor availability in the NAcb core but not the dorsal striatum with higher D2/3 binding in the NAcb shell of high-impulsive rats compared with low-impulsive rats. D2/3 receptor availability was associated with stronger connectivity between the cingulate cortex and hippocampus of high versus low impulsive rats. We conclude that DDT impulsivity is associated with low D2/3 receptor binding in the NAcb core. Thus two related forms of waiting impulsivity - premature responding and delay intolerance in a delay-of-reward task - implicate an involvement of D2/3 receptor availability in the NAcb shell and core, respectively. This dissociation may be causal or consequential to enhanced functional connectivity of limbic brain circuitry and hold relevance for attention-deficit/hyperactivity disorder, drug addiction and other psychiatric disorders.
Greco, Barbara; Carli, Mirjana
2006-05-15
Neuropeptide (NPY) Y2 receptors play an important role in some anxiety-related and stress-related behaviours in mice. Changes in the level of anxiety can affect some cognitive functions such as memory, attention and inhibitory response control. We investigated the effects of NPY Y2 receptor deletion (Y2(-/-)) in mice on visual attention and response control using the five-choice serial reaction time (5-CSRT) task in which accuracy of detection of a brief visual stimulus across five spatial locations may serve as a valid behavioural index of attentional functioning. Anticipatory and perseverative responses provide a measure of inhibitory response control. During training, the Y2(-/-) mice had lower accuracy (% correct), and made more anticipatory responses. At stimulus durations of 2 and 4s the Y2(-/-) were as accurate as the Y2(+/+) mice but still more impulsive than Y(+/+). At stimulus durations of 0.25 and 0.5s both groups performed worse but the Y2(-/-) mice made significantly fewer correct responses than the Y2(+/+) controls. The anxiolytic drug diazepam at 2mg/kg IP greatly increased the anticipatory responding of Y2(-/-) mice compared to Y2(+/+). The anxiogenic inverse benzodiazepine agonist, FG 7142, at 10mg/kg IP reduced the anticipatory responding of Y2(-/-) but not Y2(+/+) mice. These data suggest that NPY Y2 receptors make an important contribution to mechanisms controlling attentional functioning and "impulsivity". They also show that "impulsivity" of NPY Y2(-/-) mice may depend on their level of anxiety. These findings may help in understanding the pathophysiology of stress disorders and depression.
An efficient approach to ARMA modeling of biological systems with multiple inputs and delays
NASA Technical Reports Server (NTRS)
Perrott, M. H.; Cohen, R. J.
1996-01-01
This paper presents a new approach to AutoRegressive Moving Average (ARMA or ARX) modeling which automatically seeks the best model order to represent investigated linear, time invariant systems using their input/output data. The algorithm seeks the ARMA parameterization which accounts for variability in the output of the system due to input activity and contains the fewest number of parameters required to do so. The unique characteristics of the proposed system identification algorithm are its simplicity and efficiency in handling systems with delays and multiple inputs. We present results of applying the algorithm to simulated data and experimental biological data In addition, a technique for assessing the error associated with the impulse responses calculated from estimated ARMA parameterizations is presented. The mapping from ARMA coefficients to impulse response estimates is nonlinear, which complicates any effort to construct confidence bounds for the obtained impulse responses. Here a method for obtaining a linearization of this mapping is derived, which leads to a simple procedure to approximate the confidence bounds.
McGarvie, Leigh A; MacDougall, Hamish G; Halmagyi, G Michael; Burgess, Ann M; Weber, Konrad P; Curthoys, Ian S
2015-01-01
The video Head Impulse Test (vHIT) is now widely used to test the function of each of the six semicircular canals individually by measuring the eye rotation response to an abrupt head rotation in the plane of the canal. The main measure of canal adequacy is the ratio of the eye movement response to the head movement stimulus, i.e., the gain of the vestibulo-ocular reflex (VOR). However, there is a need for normative data about how VOR gain is affected by age and also by head velocity, to allow the response of any particular patient to be compared to the responses of healthy subjects in their age range. In this study, we determined for all six semicircular canals, normative values of VOR gain, for each canal across a range of head velocities, for healthy subjects in each decade of life. The VOR gain was measured for all canals across a range of head velocities for at least 10 healthy subjects in decade age bands: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89. The compensatory eye movement response to a small, unpredictable, abrupt head rotation (head impulse) was measured by the ICS impulse prototype system. The same operator delivered every impulse to every subject. Vestibulo-ocular reflex gain decreased at high head velocities, but was largely unaffected by age into the 80- to 89-year age group. There were some small but systematic differences between the two directions of head rotation, which appear to be largely due to the fact that in this study only the right eye was measured. The results are considered in relation to recent evidence about the effect of age on VOR performance. These normative values allow the results of any particular patient to be compared to the values of healthy people in their age range and so allow, for example, detection of whether a patient has a bilateral vestibular loss. VOR gain, as measured directly by the eye movement response to head rotation, seems largely unaffected by aging.
Connecting multimodality in human communication
Regenbogen, Christina; Habel, Ute; Kellermann, Thilo
2013-01-01
A successful reciprocal evaluation of social signals serves as a prerequisite for social coherence and empathy. In a previous fMRI study we studied naturalistic communication situations by presenting video clips to our participants and recording their behavioral responses regarding empathy and its components. In two conditions, all three channels transported congruent emotional or neutral information, respectively. Three conditions selectively presented two emotional channels and one neutral channel and were thus bimodally emotional. We reported channel-specific emotional contributions in modality-related areas, elicited by dynamic video clips with varying combinations of emotionality in facial expressions, prosody, and speech content. However, to better understand the underlying mechanisms accompanying a naturalistically displayed human social interaction in some key regions that presumably serve as specific processing hubs for facial expressions, prosody, and speech content, we pursued a reanalysis of the data. Here, we focused on two different descriptions of temporal characteristics within these three modality-related regions [right fusiform gyrus (FFG), left auditory cortex (AC), left angular gyrus (AG) and left dorsomedial prefrontal cortex (dmPFC)]. By means of a finite impulse response (FIR) analysis within each of the three regions we examined the post-stimulus time-courses as a description of the temporal characteristics of the BOLD response during the video clips. Second, effective connectivity between these areas and the left dmPFC was analyzed using dynamic causal modeling (DCM) in order to describe condition-related modulatory influences on the coupling between these regions. The FIR analysis showed initially diminished activation in bimodally emotional conditions but stronger activation than that observed in neutral videos toward the end of the stimuli, possibly by bottom-up processes in order to compensate for a lack of emotional information. The DCM analysis instead showed a pronounced top-down control. Remarkably, all connections from the dmPFC to the three other regions were modulated by the experimental conditions. This observation is in line with the presumed role of the dmPFC in the allocation of attention. In contrary, all incoming connections to the AG were modulated, indicating its key role in integrating multimodal information and supporting comprehension. Notably, the input from the FFG to the AG was enhanced when facial expressions conveyed emotional information. These findings serve as preliminary results in understanding network dynamics in human emotional communication and empathy. PMID:24265613
Connecting multimodality in human communication.
Regenbogen, Christina; Habel, Ute; Kellermann, Thilo
2013-01-01
A successful reciprocal evaluation of social signals serves as a prerequisite for social coherence and empathy. In a previous fMRI study we studied naturalistic communication situations by presenting video clips to our participants and recording their behavioral responses regarding empathy and its components. In two conditions, all three channels transported congruent emotional or neutral information, respectively. Three conditions selectively presented two emotional channels and one neutral channel and were thus bimodally emotional. We reported channel-specific emotional contributions in modality-related areas, elicited by dynamic video clips with varying combinations of emotionality in facial expressions, prosody, and speech content. However, to better understand the underlying mechanisms accompanying a naturalistically displayed human social interaction in some key regions that presumably serve as specific processing hubs for facial expressions, prosody, and speech content, we pursued a reanalysis of the data. Here, we focused on two different descriptions of temporal characteristics within these three modality-related regions [right fusiform gyrus (FFG), left auditory cortex (AC), left angular gyrus (AG) and left dorsomedial prefrontal cortex (dmPFC)]. By means of a finite impulse response (FIR) analysis within each of the three regions we examined the post-stimulus time-courses as a description of the temporal characteristics of the BOLD response during the video clips. Second, effective connectivity between these areas and the left dmPFC was analyzed using dynamic causal modeling (DCM) in order to describe condition-related modulatory influences on the coupling between these regions. The FIR analysis showed initially diminished activation in bimodally emotional conditions but stronger activation than that observed in neutral videos toward the end of the stimuli, possibly by bottom-up processes in order to compensate for a lack of emotional information. The DCM analysis instead showed a pronounced top-down control. Remarkably, all connections from the dmPFC to the three other regions were modulated by the experimental conditions. This observation is in line with the presumed role of the dmPFC in the allocation of attention. In contrary, all incoming connections to the AG were modulated, indicating its key role in integrating multimodal information and supporting comprehension. Notably, the input from the FFG to the AG was enhanced when facial expressions conveyed emotional information. These findings serve as preliminary results in understanding network dynamics in human emotional communication and empathy.
Global dynamics of a stochastic neuronal oscillator
NASA Astrophysics Data System (ADS)
Yamanobe, Takanobu
2013-11-01
Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These oscillators, which are called neuronal oscillators, share some common response structures with other biological oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength, and the impulsive input parameters.
Global dynamics of a stochastic neuronal oscillator.
Yamanobe, Takanobu
2013-11-01
Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These oscillators, which are called neuronal oscillators, share some common response structures with other biological oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength, and the impulsive input parameters.
Molecular Basis of Infrared Detection by Snakes
Gracheva, Elena O.; Ingolia, Nicolas T.; Kelly, Yvonne M.; Cordero-Morales, Julio F.; Hollopeter, Gunther; Chesler, Alexander T.; Sánchez, Elda E.; Perez, John C.; Weissman, Jonathan S.; Julius, David
2010-01-01
Snakes possess a unique sensory system for detecting infrared radiation, enabling them to generate a ‘thermal image’ of predators or prey. Infrared signals are initially received by the pit organ, a highly specialized facial structure that is innervated by nerve fibers of the somatosensory system. How this organ detects and transduces infrared signals into nerve impulses is not known. Here we use an unbiased transcriptional profiling approach to identify TRPA1 channels as infrared receptors on sensory nerve fibers that innervate the pit organ. TRPA1 orthologues from pit bearing snakes (vipers, pythons, and boas) are the most heat sensitive vertebrate ion channels thus far identified, consistent with their role as primary transducers of infrared stimuli. Thus, snakes detect infrared signals through a mechanism involving radiant heating of the pit organ, rather than photochemical transduction. These findings illustrate the broad evolutionary tuning of TRP channels as thermosensors in the vertebrate nervous system. PMID:20228791
Experimental test of 200 W Hall thruster with titanium wall
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Sun, Hezhi; Peng, Wuji; Xu, Yu; Wei, Liqiu; Li, Hong; Li, Peng; Su, Hongbo; Yu, Daren
2017-05-01
We designed a 200 W Hall thruster based on the technology of pushing down a magnetic field with two permanent magnetic rings. Boron nitride (BN) is an important insulating wall material for Hall thrusters. The discharge characteristics of the designed Hall thruster were studied by replacing BN with titanium (Ti). Experimental results show that the designed Hall thruster can discharge stably for a long time under a Ti channel. Experiments were performed to determine whether the channel and cathode are electrically connected. When the channel wall and cathode are insulated, the divergence angle of the plume increases, but the performance of the Hall thruster is improved in terms of thrust, specific impulse, anode efficiency, and thrust-to-power ratio. Ti exhibits a powerful antisputtering capability, a low emanation rate of gas, and a large structural strength, making it a potential candidate wall material in the design of low-power Hall thrusters.
Zou, Cheng; Sun, Zhenguo; Cai, Dong; Muhammad, Salman; Zhang, Wenzeng; Chen, Qiang
2016-01-01
A method is developed to accurately determine the spatial impulse response at the specifically discretized observation points in the radiated field of 1-D linear ultrasonic phased array transducers with great efficiency. In contrast, the previously adopted solutions only optimize the calculation procedure for a single rectangular transducer and required approximation considerations or nonlinear calculation. In this research, an algorithm that follows an alternative approach to expedite the calculation of the spatial impulse response of a rectangular linear array is presented. The key assumption for this algorithm is that the transducer apertures are identical and linearly distributed on an infinite rigid plane baffled with the same pitch. Two points in the observation field, which have the same position relative to two transducer apertures, share the same spatial impulse response that contributed from corresponding transducer, respectively. The observation field is discretized specifically to meet the relationship of equality. The analytical expressions of the proposed algorithm, based on the specific selection of the observation points, are derived to remove redundant calculations. In order to measure the proposed methodology, the simulation results obtained from the proposed method and the classical summation method are compared. The outcomes demonstrate that the proposed strategy can speed up the calculation procedure since it accelerates the speed-up ratio which relies upon the number of discrete points and the number of the array transducers. This development will be valuable in the development of advanced and faster linear ultrasonic phased array systems. PMID:27834799
Impulsivity and Gambling Type Among Treatment-Seeking Disordered Gamblers: An Explorative Study.
Lutri, Vittorio; Soldini, Emiliano; Ronzitti, Silvia; Smith, Neil; Clerici, Massimo; Blaszczynski, Alex; Bowden-Jones, Henrietta
2018-03-03
Several studies have found that certain traits of impulsivity are associated with gambling disorder, and influence its severity. Furthermore, it has been suggested that some forms of gambling, particularly electronic gambling machines, are particularly widespread among pathological gamblers. In the present, exploratory study, we aim to clarify the role played by impulsivity in influencing the choice of specific gambling activities, by examining the relation between individual dimensions of impulsivity, and the choice of specific gambling activities in a clinical population. 100 consecutively admitted pathological gamblers at the National Problem Gambling Clinic in London (UK) in 2014 were administered the UPPS-P and BIS-11 impulsivity questionnaires, the Problem Gambling Severity Index, and underwent a structured interview concerning their gambling activities in the month and year prior to assessment. The correlation between individual gambling activities and impulsivity dimensions was analyzed both at a bivariate level, and using logistic regression. We found a significant correlation between Negative Urgency, Motor impulsivity and low-stakes machine gambling on multivariate analysis. Negative urgency (i.e. the tendency to act impulsively in response to negative affect), and Motor impulsivity (a tendency to rash action and restlessness) might be mediating factors in the choice of electronic gambling machines, particularly among patients whose gambling is escape-oriented. Structural and situational characteristics of gambling machines, particularly the widespread availability of low-stakes-rather than high-stakes-gaming machines, might concur to the choice of this form of gambling among individuals who present higher negative urgency and restlessness.
Yeomans, Martin R; Brace, Aaron
2015-01-01
There is increasing evidence that individual differences in tendency to overeat relate to impulsivity, possibly by increasing reactivity to food-related cues in the environment. This study tested whether acute exposure to food cues enhanced impulsive and risky responses in women classified on tendency to overeat, indexed by scores on the three factor eating questionnaire disinhibition (TFEQ-D), restraint (TFEQ-R) and hunger scales. Ninety six healthy women completed two measures of impulsive responding (delayed discounting, DDT and a Go No-Go, GNG, task) and a measure of risky decision making (the balloon analogue risk task, BART) as well as questionnaire measures of impulsive behaviour either after looking at a series of pictures of food or visually matched controls. Impulsivity (DDT) and risk-taking (BART) were both positively associated with TFEQ-D scores, but in both cases this effect was exacerbated by prior exposure to food cues. No effects of restraint were found. TFEQ-D scores were also related to more commission errors on the GNG, while restrained women were slower on the GNG, but neither effect was modified by cue exposure. Overall these data suggest that exposure to food cues act to enhance general impulsive responding in women at risk of overeating and tentatively suggest an important interaction between tendency for impulsive decision making and food cues that may help explain a key underlying risk factor for overeating.
Yeomans, Martin R.; Brace, Aaron
2015-01-01
There is increasing evidence that individual differences in tendency to overeat relate to impulsivity, possibly by increasing reactivity to food-related cues in the environment. This study tested whether acute exposure to food cues enhanced impulsive and risky responses in women classified on tendency to overeat, indexed by scores on the three factor eating questionnaire disinhibition (TFEQ-D), restraint (TFEQ-R) and hunger scales. Ninety six healthy women completed two measures of impulsive responding (delayed discounting, DDT and a Go No-Go, GNG, task) and a measure of risky decision making (the balloon analogue risk task, BART) as well as questionnaire measures of impulsive behaviour either after looking at a series of pictures of food or visually matched controls. Impulsivity (DDT) and risk-taking (BART) were both positively associated with TFEQ-D scores, but in both cases this effect was exacerbated by prior exposure to food cues. No effects of restraint were found. TFEQ-D scores were also related to more commission errors on the GNG, while restrained women were slower on the GNG, but neither effect was modified by cue exposure. Overall these data suggest that exposure to food cues act to enhance general impulsive responding in women at risk of overeating and tentatively suggest an important interaction between tendency for impulsive decision making and food cues that may help explain a key underlying risk factor for overeating. PMID:26378459
D4 receptor deficiency in mice has limited effects on impulsivity and novelty seeking.
Helms, C M; Gubner, N R; Wilhelm, C J; Mitchell, S H; Grandy, D K
2008-09-01
Alleles of the human dopamine D(4) receptor (D(4)R) gene (DRD4.7) have repeatedly been found to correlate with novelty seeking, substance abuse, pathological gambling, and attention-deficit hyperactivity disorder (ADHD). If these various psychopathologies are a result of attenuated D(4)R-mediated signaling, mice lacking D(4)Rs (D(4)KO) should be more impulsive than wild-type (WT) mice and exhibit more novelty seeking. However, in our study, D(4)KO and WT mice showed similar levels of impulsivity as measured by delay discounting performance and response inhibition on a Go/No-go test, suggesting that D(4)R-mediated signaling may not affect impulsivity. D(4)KO mice were more active than WT mice in the first 5 min of a novel open field test, suggesting greater novelty seeking. For both genotypes, more impulsive mice habituated less in the novel open field. These data suggest that the absence of D(4)Rs is not sufficient to cause psychopathologies associated with heightened impulsivity and novelty seeking.
Tanaka, Saori C; Yahata, Noriaki; Todokoro, Ayako; Kawakubo, Yuki; Kano, Yukiko; Nishimura, Yukika; Ishii-Takahashi, Ayaka; Ohtake, Fumio; Kasai, Kiyoto
2018-04-30
Impulsive behaviours are common symptoms of attention-deficit hyperactivity disorder (ADHD). Although previous studies have suggested functional models of impulsive behaviour, a full explanation of impulsivity in ADHD remains elusive. To investigate the detailed mechanisms behind impulsive behaviour in ADHD, we applied an economic intertemporal choice task involving gains and losses to adults with ADHD and healthy controls and measured brain activity by functional magnetic resonance imaging. In the intertemporal choice of future gains, we observed no behavioural or neural difference between the two groups. In the intertemporal choice of future losses, adults with ADHD exhibited higher discount rates than the control participants. Furthermore, a comparison of brain activity representing the sensitivity of future loss in the two groups revealed significantly lower activity in the striatum and higher activity in the amygdala in adults with ADHD than in controls. Our preliminary findings suggest that an altered size sensitivity to future loss is involved in apparent impulsive choice behaviour in adults with ADHD and shed light on the multifaceted impulsivity underlying ADHD.
Vanyukov, P M; Szanto, K; Hallquist, M N; Siegle, G J; Reynolds, C F; Forman, S D; Aizenstein, H J; Dombrovski, A Y
2016-01-01
Alongside impulsive suicide attempts, clinicians encounter highly premeditated suicidal acts, particularly in older adults. We have previously found that in contrast to the more impulsive suicide attempters' inability to delay gratification, serious and highly planned suicide attempts were associated with greater willingness to wait for larger rewards. This study examined neural underpinnings of intertemporal preference in suicide attempters. We expected that impulsivity and suicide attempts, particularly poorly planned ones, would predict altered paralimbic subjective value representations. We also examined lateral prefrontal and paralimbic correlates of premeditation in suicidal behavior. A total of 48 participants aged 46-90 years underwent extensive clinical and cognitive characterization and completed the delay discounting task in the scanner: 26 individuals with major depression (13 with and 13 without history of suicide attempts) and 22 healthy controls. More impulsive individuals displayed greater activation in the precuneus/posterior cingulate cortex (PCC) to value difference favoring the delayed option. Suicide attempts, particularly better-planned ones, were associated with deactivation of the lateral prefrontal cortex (lPFC) in response to value difference favoring the immediate option. Findings were robust to medication exposure, depression severity and possible brain damage from suicide attempts, among other confounders. Finally, in suicide attempters longer reward delays were associated with diminished parahippocampal responses. Impulsivity was associated with an altered paralimbic (precuneus/PCC) encoding of value difference during intertemporal choice. By contrast, better-planned suicidal acts were associated with altered lPFC representations of value difference. The study provides preliminary evidence of impaired decision processes in both impulsive and premeditated suicidal behavior.
Impulsivity in binge eating disorder: food cues elicit increased reward responses and disinhibition.
Schag, Kathrin; Teufel, Martin; Junne, Florian; Preissl, Hubert; Hautzinger, Martin; Zipfel, Stephan; Giel, Katrin Elisabeth
2013-01-01
Binge eating disorder (BED) represents a distinct eating disorder diagnosis. Current approaches assume increased impulsivity to be one factor leading to binge eating and weight gain. We used eye tracking to investigate both components of impulsivity, namely reward sensitivity and rash-spontaneous behaviour towards food in BED for the first time. Overweight and obese people with BED (BED+; n = 25), without BED (BED-; n = 26) and healthy normal-weight controls (NWC; n = 25) performed a free exploration paradigm measuring reward sensitivity (experiment 1) and a modified antisaccade paradigm measuring disinhibited, rash-spontaneous behaviour (experiment 2) using food and nonfood stimuli. Additionally, trait impulsivity was assessed. In experiment 1, all participants located their initial fixations more often on food stimuli and BED+ participants gazed longer on food stimuli in comparison with BED- and NWC participants. In experiment 2, BED+ participants had more difficulties inhibiting saccades towards food and nonfood stimuli compared with both other groups in first saccades, and especially towards food stimuli in second saccades and concerning sequences of first and second saccades. BED- participants did not differ significantly from NWC participants in both experiments. Additionally, eye tracking performance was associated with self-reported reward responsiveness and self-control. According to these results, food-related reward sensitivity and rash-spontaneous behaviour, as the two components of impulsivity, are increased in BED in comparison with weight-matched and normal-weight controls. This indicates that BED represents a neurobehavioural phenotype of obesity that is characterised by increased impulsivity. Interventions for BED should target these special needs of affected patients.
A parameter quantifying radiation damping of bay oscillations excited by incident tsunamis
NASA Astrophysics Data System (ADS)
Endoh, Takahiro; Inazu, Daisuke; Waseda, Takuji; Hibiya, Toshiyuki
2018-04-01
The transient response of a bay with a narrow mouth to incident tsunamis is interpreted as the convolution of the input signal with the impulse response obtained by an inverse Fourier transform of the response curve of the oscillatory system with one degree of freedom. The rate of radiation damping associated with energy escaping seaward through the bay mouth is expressed in terms of the quality factor Q, which determines the decaying envelope of the impulse response. The value of Q of the resonant peak is approximated by the ratio of the resonant frequency ω0 to the bandwidth between frequencies at which the power spectral density of sea level within the bay drops to half of the peak value. Since the shape of the frequency power spectrum during the tsunami event is almost similar to that in the normal state in the neighborhood of ω0, Q can be estimated from sea level datasets in the normal state. Although the amplitude and phase of the impulse response need to be adjusted using the first crest or trough of the observed leading wave, this approach proves to work well in examining the transient responses of Miyako Bay and Kushimoto Bay on the Japanese Pacific coast to incident tsunamis.
NASA Astrophysics Data System (ADS)
Arevalo, L.; Wu, D.; Jacobson, B.
2013-08-01
The main propose of this paper is to present a physical model of long air gap electrical discharges under positive switching impulses. The development and progression of discharges in long air gaps are attributable to two intertwined physical phenomena, namely, the leader channel and the streamer zone. Experimental studies have been used to develop empirical and physical models capable to represent the streamer zone and the leader channel. The empirical ones have led to improvements in the electrical design of high voltage apparatus and insulation distances, but they cannot take into account factors associated with fundamental physics and/or the behavior of materials. The physical models have been used to describe and understand the discharge phenomena of laboratory and lightning discharges. However, because of the complex simulations necessary to reproduce real cases, they are not in widespread use in the engineering of practical applications. Hence, the aim of the work presented here is to develop a model based on physics of the discharge capable to validate and complement the existing engineering models. The model presented here proposes a new geometrical approximation for the representation of the streamer and the calculation of the accumulated electrical charge. The model considers a variable streamer region that changes with the temporal and spatial variations of the electric field. The leader channel is modeled using the non local thermo-equilibrium equations. Furthermore, statistical delays before the inception of the first corona, and random distributions to represent the tortuous nature of the path taken by the leader channel were included based on the behavior observed in experimental tests, with the intention of ensuring the discharge behaved in a realistic manner. For comparison purposes, two different gap configurations were simulated. A reasonable agreement was found between the physical model and the experimental test results.
Response of end tidal CO2 pressure to impulse exercise.
Yano, T; Afroundeh, R; Yamanak, R; Arimitsu, T; Lian, C-S; Shirkawa, K; Yunoki, T
2014-03-01
The purpose of the present study was to examine how end tidal CO(2) pressure (PETCO(2)) is controlled in impulse exercise. After pre-exercise at 25 watts for 5 min, impulse exercise for 10 sec with 200 watts followed by post exercise at 25 watts was performed. Ventilation (VE) significantly increased until the end of impulse exercise and significantly re-increased after a sudden decrease. Heart rate (HR) significantly increased until the end of impulse exercise and then decreased to the pre-exercise level. PETCO(2) remained constant during impulse exercise. PETCO(2) significantly increased momentarily after impulse exercise and then significantly decreased to the pre-exercise level. PETCO(2) showed oscillation. The average peak frequency of power spectral density in PETCO(2) appeared at 0.0078 Hz. Cross correlations were obtained after impulse exercise. The peak cross correlations between VE and PETCO(2), HR and PETCO(2), and VE and HR were 0.834 with a time delay of -7 sec, 0.813 with a time delay of 7 sec and 0.701 with a time delay of -15 sec, respectively. We demonstrated that PETCO(2) homeodynamics was interactively maintained by PETCO(2) itself, CO(2) transportation (product of cardiac output and mixed venous CO(2) content) into the lungs by heart pumping and CO(2) elimination by ventilation, and it oscillates as a result of their interactions.
Saadeh, Constantine; Saadeh, Charles; Cross, Blake; Gaylor, Michael; Griffith, Melissa
2015-01-01
This retrospective study was a comparative analysis of sensitivity of impulse oscillometry and spirometry techniques for use in a mixed chronic obstructive pulmonary disease group for assessing disease severity and inhalation therapy. A total of 30 patients with mild-to-moderate chronic obstructive pulmonary disease were monitored by impulse oscillometry, followed by spirometry. Lung function was measured at baseline after bronchodilation and at follow-up (3-18 months). The impulse oscillometry parameters were resistance in the small and large airways at 5 Hz (R5), resistance in the large airways at 15 Hz (R15), and lung reactance (area under the curve X; AX). After the bronchodilator therapy, forced expiratory volume in 1 second (FEV1) readings evaluated by spirometry were unaffected at baseline and at follow-up, while impulse oscillometry detected an immediate improvement in lung function, in terms of AX (p = 0.043). All impulse oscillometry parameters significantly improved at follow-up, with a decrease in AX by 37% (p = 0.0008), R5 by 20% (p = 0.0011), and R15 by 12% (p = 0.0097). Impulse oscillometry parameters demonstrated greater sensitivity compared with spirometry for monitoring reversibility of airway obstruction and the effect of maintenance therapy. Impulse oscillometry may facilitate early treatment dose optimization and personalized medicine for chronic obstructive pulmonary disease patients.
Quasi-Periodic Pulsations During the Impulsive and Decay Phases of an X-Class Flare
NASA Technical Reports Server (NTRS)
Hays, L. A.; Gallagher, P. T.; Dennis, B. R.; Ireland, J.; Inglis, A. R.; Ryan, D. F.
2016-01-01
Quasi-periodic pulsations (QPPs) are often observed in X-ray emission from solar flares. To date, it is unclear what their physical origins are. Here, we present a multi-instrument investigation of the nature of QPP during the impulsive and decay phases of the X1.0 flare of 2013 October 28. We focus on the character of the fine structure pulsations evident in the soft X-ray (SXR) time derivatives and compare this variability with structure across multiple wavelengths including hard X-ray and microwave emission. We find that during the impulsive phase of the flare, high correlations between pulsations in the thermal and non-thermal emissions are seen. A characteristic timescale of 20 s is observed in all channels and a second timescale of 55 s is observed in the non-thermal emissions. SXR pulsations are seen to persist into the decay phase of this flare, up to 20 minutes after the non-thermal emission has ceased. We find that these decay phase thermal pulsations have very small amplitude and show an increase in characteristic timescale from 40 s up to 70 s. We interpret the bursty nature of the co-existing multi-wavelength QPPs during the impulsive phase in terms of episodic particle acceleration and plasma heating. The persistent thermal decay phase QPPs are most likely connected with compressive magnetohydrodynamic processes in the post-flare loops such as the fast sausage mode or the vertical kink mode.
The scattering of electromagnetic pulses by a slit in a conducting screen
NASA Technical Reports Server (NTRS)
Ackerknecht, W. E., III; Chen, C.-L.
1975-01-01
A direct method for calculating the impulse response of a slit in a conducting screen is presented which is derived specifically for the analysis of transient scattering by two-dimensional objects illuminated by a plane incident wave. The impulse response is obtained by assuming that the total response is composed of two sequences of diffracted waves. The solution is determined for the first two waves in one sequence by using Green's functions and the equivalence principle, for additional waves in the sequence by iteration, and for the other sequence by a transformation of coordinates. The cases of E-polarization and H-polarization are considered.
High speed cross-amplitude modulation in concatenated SOA-EAM-SOA.
Cleary, Ciaran S; Manning, Robert J
2012-06-18
We observe a near-ideal high speed amplitude impulse response in an SOA-EAM-SOA configuration under optimum conditions. Full amplitude recovery times as low as 10 ps with modulation depths of 70% were observed in pump-probe measurements. System behavior could be controlled by the choice of signal wavelength, SOA current biases and EAM reverse bias voltages. Experimental data and impulse response modelling indicated that the slow tail in the gain response of first SOA was negated by a combination of cross-absorption modulation between pump and modulated CW probe, and self-gain modulation of the modulated CW probe in both the EAM and second SOA.
Basic Research on Plasma Cathode for HPM Sources (NE - Luginsland)
2011-11-30
to NEPP Vacuum Pump for Mock Magnetron 12 (b) Borosilicate glass (Insulator) Anode Cathode Vacuum chamber Ion gauge controller Charge...channeling may be one physical mechanism that can explain the stability of the pinch in the discharge. (a) Scroll Pump High Voltage Power Supply DC... vacuum and/or low vacuum slow wave devices and cross field devices) in burst mode? Here, burst mode effectively implies an impulse-like (short pulse
A Code Division Multiple Access Communication System for the Low Frequency Band.
1983-04-01
frequency channels spread-spectrum communication / complex sequences, orthogonal codes impulsive noise 20. ABSTRACT (Continue an reverse side It...their transmissions with signature sequences. Our LF/CDMA scheme is different in that each user’s signature sequence set consists of M orthogonal ...signature sequences. Our LF/CDMA scheme is different in that each user’s signature sequence set consists of M orthogonal sequences and thus log 2 M
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.
1989-01-01
The performance of bandwidth efficient trellis codes on channels with phase jitter, or those disturbed by jamming and impulse noise is analyzed. An heuristic algorithm for construction of bandwidth efficient trellis codes with any constraint length up to about 30, any signal constellation, and any code rate was developed. Construction of good distance profile trellis codes for sequential decoding and comparison of random coding bounds of trellis coded modulation schemes are also discussed.
Tracking rainfall impulses through progressively larger drainage basins in steep forested terrain
R. R. Ziemer; R. M. Rice
1990-01-01
Abstract - The precision of timing devices in modern electronic data loggers makes it possible to study the routing of water through small drainage basins having rapid responses to hydrologic impulses. Storm hyetographs were measured using digital tipping bucket rain gauges and their routing was observed at headwater piezometers located mid-slope, above a swale, and...
Controller reduction by preserving impulse response energy
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.; Su, Tzu-Jeng
1989-01-01
A model order reduction algorithm based on a Krylov recurrence formulation is developed to reduce order of controllers. The reduced-order controller is obtained by projecting the full-order LQG controller onto a Krylov subspace in which either the controllability or the observability grammian is equal to the identity matrix. The reduced-order controller preserves the impulse response energy of the full-order controller and has a parameter-matching property. Two numerical examples drawn from other controller reduction literature are used to illustrate the efficacy of the proposed reduction algorithm.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Long, Y. T.
1995-01-01
Sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 are investigated in response to constant lateral impulse with variable thrust. The study, including how the rotating bubble of superfluid helium 2 reacts to the constant impulse with variable time period of thrust action in microgravity, how amplitudes of bubble mass center fluctuates with growth and decay of disturbances, and how fluid feedback forces fluctuates in activating on the rotating dewar through the dynamics of sloshing waves are investigated. The numerical computation of sloshing dynamics is based on the non-inertial frame spacecraft bound coordinate with lateral impulses actuating on the rotating dewar in both inertial and non-inertial frames of thrust. Results of the simulations are illustrated.
Dissociable effects of cocaine and yohimbine on impulsive action and relapse to cocaine seeking.
Broos, Nienke; van Mourik, Yvar; Schetters, Dustin; De Vries, Taco J; Pattij, Tommy
2017-11-01
A strong association has been demonstrated between various forms of impulsivity and addiction-like behavior in both humans and rats. In this study, we investigated how impulsive action, as measured in the 5-choice serial reaction time task (5-CSRTT), is affected during various stages of cocaine taking and seeking and by relapse-provoking stimuli in animals that were trained both in an intravenous cocaine self-administration paradigm and in the 5-CSRTT. Rats were concurrently trained in the 5-CSRTT and cocaine self-administration protocol, and subsequently, the effects of cocaine (7.5 mg/kg) and the pharmacological stressor yohimbine (1.25 mg/kg) were tested in both paradigms. Cocaine self-administration (5 h/day) transiently altered impulsive action and increased errors of omission in the 5-CSRTT. Pharmacological challenges with cocaine and yohimbine induced increments in impulsive action and reinstated cocaine-seeking responses within the same animals. Further analyses revealed that the effects of cocaine and yohimbine on impulsive action did not correlate with their effects on reinstatement of cocaine seeking. These data suggest that although impulsive action and relapse can be pharmacologically modulated in the same direction within individuals, these effects appear not to be directly coupled.
Amygdala reactivity to fearful faces correlates positively with impulsive aggression.
da Cunha-Bang, Sofi; Fisher, Patrick M; Hjordt, Liv V; Holst, Klaus; Knudsen, Gitte M
2018-01-07
Facial expressions robustly activate the amygdala, a brain structure playing a critical role in aggression. Whereas previous studies suggest that amygdala reactivity is related to various measures of impulsive aggression, we here estimate a composite measure of impulsive aggression and evaluate whether it is associated with amygdala reactivity to angry and fearful faces. We estimated amygdala reactivity with functional magnetic resonance imaging in 47 men with varying degree of aggressive traits (19 incarcerated violent offenders and 28 healthy controls). We modeled a composite "impulsive aggression" trait construct (LV agg ) using a linear structural equation model, with a single latent variable capturing the shared correlation between five self-report measures of trait aggression, anger and impulsivity. We tested for associations between amygdala reactivity and the LV agg , adjusting for age and group. The LV agg was significantly positively associated with amygdala reactivity to fearful (p = 0.001), but not angry faces (p = 0.9). We found no group difference in amygdala reactivity to fearful or angry faces. The findings suggest that that amygdala reactivity to fearful faces is represented by a composite index of impulsive aggression and provide evidence that impulsive aggression is associated with amygdala reactivity in response to submissive cues, i.e., fearful faces.
Examination of the heterogeneity in PTSD and impulsivity facets: A latent profile analysis.
Contractor, Ateka A; Caldas, Stephanie; Weiss, Nicole H; Armour, Cherie
2018-04-15
The experience of traumatizing events and resulting posttraumatic stress disorder (PTSD) symptomology relates to a range of impulsive behaviors. While both PTSD and impulsivity are heterogeneous and multidimensional constructs, no research has used person-centered approaches to examine subgroups of individuals based on these response endorsements. Hence, our study examined PTSD-impulsivity typologies and their construct validity in two samples: university students ( n = 412) and community participants recruited through Amazon's MTurk ( n = 346). Measures included the Stressful Life Events Screening Questionnaire (PTEs), PTSD Checklist for DSM-5 (PTSD severity), UPPS Impulsive Behavior Scale (negative urgency, lack of premeditation, lack of perseverance, sensation seeking). Dimensions of Anger Reaction Scale (anger), and the Patient Health Questionnaire-9 (depression). For both samples, results of latent profile analyses indicated a best-fitting 3-class solution: High, Moderate, and Low PTSD-Negative Urgency. Negative urgency was the most distinguishing impulsivity facet. Anger and depression severity significantly predicted membership in the more severe symptomatology classes. Thus, individuals can be meaningfully categorized into three subgroups based on PTSD and impulsivity item endorsements. We provide some preliminary evidence for a negative urgency subtype of PTSD characterized by greater depression and anger regulation difficulties; and underscore addressing emotional regulation skills for these subgroup members.
Coccaro, Emil F; Lee, Royce; Kavoussi, Richard J
2010-01-01
Central serotonergic (5-HT) activity has long been implicated in the regulation of impulsive aggressive behavior. This study was performed to use a highly selective agent for 5-HT (d-Fenfluramine, d-FEN) in a large group of human subjects to further explore this relationship dimensionally and categorically. One hundred and fifty healthy subjects (100 with personality disorder, PD and 50 healthy volunteer controls, HV) underwent d-FEN challenge studies. Residual peak delta prolactin (ΔPRL[d-FEN]-R; ie, after the removal of potentially confounding variables) was used as the primary 5-HT response variable. Composite measures of aggression and impulsivity were used as dimensional measures, and history of suicidal/self-injurious behavior as well as the presence of intermittent explosive disorder (IED) were used as categorical variables. ΔPRL[d-FEN]-R responses correlated inversely with composite aggression, but not composite impulsivity, in all subjects and in males and females examined separately. The correlation with composite aggression was strongest in male PD subjects. ΔPRL[d-FEN]-R values were reduced in PD subjects with a history of suicidal behavior but not, self-injurious behavior. ΔPRL[d-FEN]-R values were also reduced in patients meeting Research Criteria for IED. Physiologic responses to 5-HT stimulation are reduced as a function of aggression (but not generalized impulsivity) in human subjects. The same is true for personality disordered subjects with a history of suicidal, but not self-injurious, behavior and for subjects with a diagnosis of IED by research criteria. These data have particular relevance to the notion of impulsive aggression and the biological validity of IED. PMID:19776731
Sex differences in impulsivity and brain morphometry in methamphetamine users
Kogachi, Shannon; Chang, Linda; Alicata, Daniel; Cunningham, Eric; Ernst, Thomas
2016-01-01
Methamphetamine (METH) is an addictive stimulant, and METH users have abnormal brain structures and function. The aims of this study were to investigate the relationships between impulsivity, brain structures, and possible sex-specific differences between METH users and non-drug using Controls. Structural MRI and the Barratt Impulsiveness Scale (BIS) questionnaire were completed in 124 subjects: 62 METH (ages 41.2 ± 1.4 years, 34 males) and 62 Controls (ages 43.3 ± 2.3 years, 36 males). Independent and interactive effects of METH use status and sex were evaluated. Relationships between METH usage characteristics, brain morphometry, and impulsivity scores were examined. METH users had higher impulsivity scores, on both the Cognitive and Behavioral Factors from the BIS (p < 0.0001–0.0001). Compared with same-sex Controls, male METH users had larger, while female METH users had smaller, right superior frontal cortex (interaction-p = 0.0005). The male METH users with larger frontal volumes and female METH users with smaller or thinner frontal cortices had greater Cognitive impulsivity (interaction-p ≤ 0.05). Only female METH users showed relatively larger nucleus accumbens (interaction-p = 0.03). Greater impulsivity and thinner frontal cortices in METH users are validated. Larger superior frontal cortex in male METH users with greater cognitive impulsivity suggest decreased dendritic pruning during adolescence might have contributed to their impulsive and drug use behaviors. In the female METH users, smaller frontal cortices and the associated greater impulsivity suggest greater neurotoxicity to these brain regions, while their relatively larger nucleus accumbens suggest an estrogen-mediated neuroprotective glial response. Men and women may be affected differently by METH use. PMID:27095357
Sex differences in impulsivity and brain morphometry in methamphetamine users.
Kogachi, Shannon; Chang, Linda; Alicata, Daniel; Cunningham, Eric; Ernst, Thomas
2017-01-01
Methamphetamine (METH) is an addictive stimulant, and METH users have abnormal brain structures and function. The aims of this study were to investigate the relationships between impulsivity, brain structures, and possible sex-specific differences between METH users and non-drug using Controls. Structural MRI and the Barratt Impulsiveness Scale (BIS) questionnaire were completed in 124 subjects: 62 METH (ages 41.2 ± 1.4 years, 34 males) and 62 Controls (ages 43.3 ± 2.3 years, 36 males). Independent and interactive effects of METH use status and sex were evaluated. Relationships between METH usage characteristics, brain morphometry, and impulsivity scores were examined. METH users had higher impulsivity scores, on both the Cognitive and Behavioral Factors from the BIS (p < 0.0001-0.0001). Compared with same-sex Controls, male METH users had larger, while female METH users had smaller, right superior frontal cortex (interaction-p = 0.0005). The male METH users with larger frontal volumes and female METH users with smaller or thinner frontal cortices had greater Cognitive impulsivity (interaction-p ≤ 0.05). Only female METH users showed relatively larger nucleus accumbens (interaction-p = 0.03). Greater impulsivity and thinner frontal cortices in METH users are validated. Larger superior frontal cortex in male METH users with greater cognitive impulsivity suggest decreased dendritic pruning during adolescence might have contributed to their impulsive and drug use behaviors. In the female METH users, smaller frontal cortices and the associated greater impulsivity suggest greater neurotoxicity to these brain regions, while their relatively larger nucleus accumbens suggest an estrogen-mediated neuroprotective glial response. Men and women may be affected differently by METH use.
Winstanley, Catharine A; Baunez, Christelle; Theobald, David E H; Robbins, Trevor W
2005-06-01
Although the subthalamic nucleus (STN) is involved in regulating motor function, and inactivation of this structure relieves the motor symptoms in Parkinsonian patients, recent data indicate that corticosubthalamic connections are involved in both the regulation of attention and the ability to withhold from responding. Considerable evidence suggests that the neural circuitry underlying such behavioural disinhibition or impulsive action can be at least partially dissociated from that implicated in impulsive decision-making and it has been suggested that the tendency to choose impulsively is related to the ability to form and use Pavlovian associations. To explore these hypotheses further, STN-lesioned rats were tested on the delay-discounting model of impulsive choice, where impulsivity is defined as the selection of a small immediate over a larger delayed reward, as well as in a rodent autoshaping paradigm. In contrast to previous reports of increased impulsive action, STN lesions decreased impulsive choice but dramatically impaired the acquisition of the autoshaping response. When the STN was lesioned after the establishment of autoshaping behaviour, lesioned subjects were more sensitive to the omission of reward, indicative of a reduction in the use of Pavlovian associations to control autoshaping performance. These results emphasize the importance of the STN in permitting conditioned stimulus-unconditioned stimulus associations to regulate goal-seeking, a function which may relate to the alterations in impulsive choice observed in the delay-discounting task. These data bear a striking similarity to those observed after lesions of the orbitofrontal cortex and are suggestive of an important role for corticosubthalamic connections in complex cognitive behaviour.
Lukacs, Viktor; Yudin, Yevgen; Hammond, Gerald R; Sharma, Esseim; Fukami, Kiyoko; Rohacs, Tibor
2013-07-10
Transient Receptor Potential Vanilloid 1 (TRPV1) is a polymodal, Ca(2+)-permeable cation channel crucial to regulation of nociceptor responsiveness. Sensitization of TRPV1 by G-protein coupled receptor (GPCR) agonists to its endogenous activators, such as low pH and noxious heat, is a key factor in hyperalgesia during tissue injury as well as pathological pain syndromes. Conversely, chronic pharmacological activation of TRPV1 by capsaicin leads to calcium influx-induced adaptation of the channel. Paradoxically, both conditions entail activation of phospholipase C (PLC) enzymes, which hydrolyze phosphoinositides. We found that in sensory neurons PLCβ activation by bradykinin led to a moderate decrease in phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), but no sustained change in the levels of its precursor PI(4)P. Preventing this selective decrease in PI(4,5)P2 inhibited TRPV1 sensitization, while selectively decreasing PI(4,5)P2 independently of PLC potentiated the sensitizing effect of protein kinase C (PKC) on the channel, thereby inducing increased TRPV1 responsiveness. Maximal pharmacological TRPV1 stimulation led to a robust decrease of both PI(4,5)P2 and its precursor PI(4)P in sensory neurons. Attenuating the decrease of either lipid significantly reduced desensitization, and simultaneous reduction of PI(4,5)P2 and PI(4)P independently of PLC inhibited TRPV1. We found that, on the mRNA level, the dominant highly Ca(2+)-sensitive PLC isoform in dorsal root ganglia is PLCδ4. Capsaicin-induced desensitization of TRPV1 currents was significantly reduced, whereas capsaicin-induced nerve impulses in the skin-nerve preparation increased in mice lacking this isoform. We propose a comprehensive model in which differential changes in phosphoinositide levels mediated by distinct PLC isoforms result in opposing changes in TRPV1 activity.
Lukacs, Viktor; Yudin, Yevgen; Hammond, Gerald R.; Sharma, Esseim; Fukami, Kiyoko
2013-01-01
Transient Receptor Potential Vanilloid 1 (TRPV1) is a polymodal, Ca2+-permeable cation channel crucial to regulation of nociceptor responsiveness. Sensitization of TRPV1 by G-protein coupled receptor (GPCR) agonists to its endogenous activators, such as low pH and noxious heat, is a key factor in hyperalgesia during tissue injury as well as pathological pain syndromes. Conversely, chronic pharmacological activation of TRPV1 by capsaicin leads to calcium influx-induced adaptation of the channel. Paradoxically, both conditions entail activation of phospholipase C (PLC) enzymes, which hydrolyze phosphoinositides. We found that in sensory neurons PLCβ activation by bradykinin led to a moderate decrease in phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), but no sustained change in the levels of its precursor PI(4)P. Preventing this selective decrease in PI(4,5)P2 inhibited TRPV1 sensitization, while selectively decreasing PI(4,5)P2 independently of PLC potentiated the sensitizing effect of protein kinase C (PKC) on the channel, thereby inducing increased TRPV1 responsiveness. Maximal pharmacological TRPV1 stimulation led to a robust decrease of both PI(4,5)P2 and its precursor PI(4)P in sensory neurons. Attenuating the decrease of either lipid significantly reduced desensitization, and simultaneous reduction of PI(4,5)P2 and PI(4)P independently of PLC inhibited TRPV1. We found that, on the mRNA level, the dominant highly Ca2+-sensitive PLC isoform in dorsal root ganglia is PLCδ4. Capsaicin-induced desensitization of TRPV1 currents was significantly reduced, whereas capsaicin-induced nerve impulses in the skin–nerve preparation increased in mice lacking this isoform. We propose a comprehensive model in which differential changes in phosphoinositide levels mediated by distinct PLC isoforms result in opposing changes in TRPV1 activity. PMID:23843517
Ionic channels and nerve membrane lipids. Cholesterol-tetrodotoxin interaction.
Villegas, R; Barnola, F V; Camejo, G
1970-04-01
Experiments were carried out to investigate possible interactions of tetrodotoxin (TTX) with lipid molecules isolated from nerve fiber plasma membranes of the squid Dosidicus gigas. TTX has a highly selective ability to block the channel normally used by Na(+) to cross the axolemma during nervous impulse conduction. In order to investigate the interaction each lipid sample was spread on 5 x 10(-7)M TTX and TTX-free 0.15 M NaCl solutions adjusted to pH 7.4 with 7 x 10(-3)M phosphate buffer. The surface pressure-area diagrams of the lipid monolayers revealed that TTX interacts only with cholesterol. The expansion of the cholesterol monolayers at 5 x 10(-7)M TTX was 2 A(2)/molecule at zero pressure for the experiments at 20 degrees C and 2.5 A(2)/molecule for those at 25 degrees C. Similar results were obtained in KCl subphases. The apparent dissociation constant of the cholesterol-TTX complex calculated from dose-response experiments is 2.6 x 10(-7)M. Experiments at pH 10.1 revealed that the zwitter ionic form of TTX is less active. Experiments with cholesterol derivatives (cholesteryl acetate, cholesterol methyl ether, cholestanol, and cholestanyl acetate) indicate that for the interaction with TTX a partial negatively charged group at C-3 and a double bond between C-5 and C-6 on the steroid nucleus are required. Tetrodonic acid, a biologically inactive derivative of TTX, does not interact with cholesterol. The results lead us to propose that cholesterol is part of the Na(+) channel.
Ionic Channels and Nerve Membrane Lipids Cholesterol-tetrodotoxin interaction
Villegas, Raimundo; Barnola, Flor V.; Camejo, Germáan
1970-01-01
Experiments were carried out to investigate possible interactions of tetrodotoxin (TTX) with lipid molecules isolated from nerve fiber plasma membranes of the squid Dosidicus gigas. TTX has a highly selective ability to block the channel normally used by Na+ to cross the axolemma during nervous impulse conduction. In order to investigate the interaction each lipid sample was spread on 5 x 10-7 M TTX and TTX-free 0.15 M NaCl solutions adjusted to pH 7.4 with 7 x 10-3 M phosphate buffer. The surface pressure-area diagrams of the lipid monolayers revealed that TTX interacts only with cholesterol. The expansion of the cholesterol monolayers at 5 x 10-7 M TTX was 2 A2/molecule at zero pressure for the experiments at 20°C and 2.5 A2/molecule for those at 25°C. Similar results were obtained in KCl subphases. The apparent dissociation constant of the cholesterol-TTX complex calculated from dose-response experiments is 2.6 x 10-7 M. Experiments at pH 10.1 revealed that the zwitter ionic form of TTX is less active. Experiments with cholesterol derivatives (cholesteryl acetate, cholesterol methyl ether, cholestanol, and cholestanyl acetate) indicate that for the interaction with TTX a partial negatively charged group at C-3 and a double bond between C-5 and C-6 on the steroid nucleus are required. Tetrodonic acid, a biologically inactive derivative of TTX, does not interact with cholesterol. The results lead us to propose that cholesterol is part of the Na+ channel. PMID:5435784
An optofluidic channel model for in vivo nanosensor networks in human blood
NASA Astrophysics Data System (ADS)
Johari, Pedram; Jornet, Josep M.
2017-05-01
In vivo Wireless Nanosensor Networks (iWNSNs) consist of nano-sized communicating devices with unprece- dented sensing and actuation capabilities, which are able to operate inside the human body. iWNSNs are a disruptive technology that enables the monitoring and control of biological processes at the cellular and sub- cellular levels. Compared to ex vivo measurements, which are conducted on samples extracted from the human body, iWNSNs can track (sub) cellular processes when and where they occur. Major progress in the field of na- noelectronics, nanophotonics and wireless communication is enabling the interconnection of nanosensors. Among others, plasmonic nanolasers with sub-micrometric footprint, plasmonic nano-antennas able to confine light in nanometric structures, and single-photon detectors with unrivaled sensitivity, enable the communication among implanted nanosensors in the near infrared and optical transmission windows. Motivated by these results, in this paper, an optofluidic channel model is developed to investigate the communication properties and temporal dynamics between a pair of in vivo nanosensors in the human blood. The developed model builds upon the authors' recent work on light propagation modeling through multi-layered single cells and cell assemblies and takes into account the geometric, electromagnetic and microfluidic properties of red blood cells in the human circulatory system. The proposed model guides the development of practical communication strategies among nanosensors, and paves the way through new nano-biosensing strategies able to identify diseases by detecting the slight changes in the channel impulse response, caused by either the change in shape of the blood cells or the presence of pathogens.
Solanto, M V
1990-07-01
Children with attention deficit hyperactivity disorder are more inattentive, active, and impulsive than normal children. Some researchers have postulated that these symptoms can all be explained as a result of reduced sensitivity to reinforcement. In order to evaluate this hypothesis, we tested 20 ADD-H children and 18 matched normal controls, 4 1/2-11 years of age, on a delayed response task, a measure of impulsiveness, under conditions of positive reinforcement, and punishment in the form of response-cost. The contingencies each improved performance compared to baseline but did not differ significantly from each other. Neither contingency affected the groups differentially, thus failing to provide support for the reinforcement hypothesis.
Fanti, Kostas A; Kyranides, Melina N; Georgiou, Giorgos; Petridou, Maria; Colins, Olivier F; Tuvblad, Catherine; Andershed, Henrik
2017-05-01
The present study aimed to examine whether callous-unemotional, grandiose-manipulative, and impulsive-irresponsible dimensions of psychopathy are differentially related to various affective and physiological measures, assessed at baseline and in response to violent and erotic movie scenes. Data were collected from young adults (N = 101) at differential risk for psychopathic traits. Findings from regression analyses revealed a unique predictive contribution of grandiose-manipulative traits in particular to higher ratings of positive valence for violent scenes. Callous-unemotional traits were uniquely associated with lower levels of sympathy toward victims and lower ratings of fear and sadness during violent scenes. All three psychopathy dimensions and the total psychopathy scale showed negative zero-order correlations with heart rate at baseline, but regression analyses revealed that only grandiose manipulation was uniquely predictive of lower baseline heart rate. Grandiose manipulation was also significantly associated with lower baseline skin conductance. Regarding autonomic activity, findings resulted in a unique negative association between grandiose manipulation and heart rate activity in response to violent scenes. In contrast, the impulsive-irresponsible dimension was positively related with heart rate activity to violent scenes. Finally, findings revealed that only callous-unemotional traits were negatively associated with startle potentiation in response to violent scenes. No associations during erotic scenes were identified. These findings point to unique associations between the three assessed dimensions of psychopathy with physiological measures, indicating that grandiose manipulation is associated with hypoarousal, impulsive irresponsibility with hyperarousal, and callous-unemotional traits with low emotional and fear responses to violent scenes. © 2017 Society for Psychophysiological Research.
Vinci, Christine; Peltier, MacKenzie; Waldo, Krystal; Kinsaul, Jessica; Shah, Sonia; Coffey, Scott F.; Copeland, Amy L.
2016-01-01
Mindfulness-based strategies show promise for targeting the construct of impulsivity and associated variables among problematic alcohol users. This study examined the moderating role of intervention (mindfulness vs relaxation vs control) on trait impulsivity and three outcomes examined post-intervention (negative affect, positive affect, and urge to drink) among 207 college students with levels of at-risk drinking. Moderation analyses revealed that the relationship between baseline impulsivity and the primary outcomes significantly differed for participants who underwent the mindfulness versus relaxation interventions. Notably, simple slope analyses revealed that negative urgency was positively associated with urge to drink following the mindfulness intervention. Among participants who underwent the relaxation intervention, analysis of simple slopes revealed that negative urgency was negatively associated with urge to drink, while positive urgency was positively associated with positive affect following the relaxation intervention. Findings suggest that level (low vs high) and subscale of impulsivity matter with regard to how a participant will respond to a mindfulness versus relaxation intervention. PMID:27344030
Development and automation of a test of impulse control in zebrafish
Parker, Matthew O.; Ife, Dennis; Ma, Jun; Pancholi, Mahesh; Smeraldi, Fabrizio; Straw, Chris; Brennan, Caroline H.
2013-01-01
Deficits in impulse control (difficulties in inhibition of a pre-potent response) are fundamental to a number of psychiatric disorders, but the molecular and cellular basis is poorly understood. Zebrafish offer a very useful model for exploring these mechanisms, but there is currently a lack of validated procedures for measuring impulsivity in fish. In mammals, impulsivity can be measured by examining rates of anticipatory responding in the 5-choice serial reaction time task (5-CSRTT), a continuous performance task where the subject is reinforced upon accurate detection of a briefly presented light in one of five distinct spatial locations. This paper describes the development of a fully-integrated automated system for testing impulsivity in adult zebrafish. We outline the development of our image analysis software and its integration with National Instruments drivers and actuators to produce the system. We also describe an initial validation of the system through a one-generation screen of chemically mutagenized zebrafish, where the testing parameters were optimized. PMID:24133417
Hadlington, Lee
2017-07-01
The present study explored the relationship between risky cybersecurity behaviours, attitudes towards cybersecurity in a business environment, Internet addiction, and impulsivity. 538 participants in part-time or full-time employment in the UK completed an online questionnaire, with responses from 515 being used in the data analysis. The survey included an attitude towards cybercrime and cybersecurity in business scale, a measure of impulsivity, Internet addiction and a 'risky' cybersecurity behaviours scale. The results demonstrated that Internet addiction was a significant predictor for risky cybersecurity behaviours. A positive attitude towards cybersecurity in business was negatively related to risky cybersecurity behaviours. Finally, the measure of impulsivity revealed that both attentional and motor impulsivity were both significant positive predictors of risky cybersecurity behaviours, with non-planning being a significant negative predictor. The results present a further step in understanding the individual differences that may govern good cybersecurity practices, highlighting the need to focus directly on more effective training and awareness mechanisms.
A novel time of arrival estimation algorithm using an energy detector receiver in MMW systems
NASA Astrophysics Data System (ADS)
Liang, Xiaolin; Zhang, Hao; Lyu, Tingting; Xiao, Han; Gulliver, T. Aaron
2017-12-01
This paper presents a new time of arrival (TOA) estimation technique using an improved energy detection (ED) receiver based on the empirical mode decomposition (EMD) in an impulse radio (IR) 60 GHz millimeter wave (MMW) system. A threshold is employed via analyzing the characteristics of the received energy values with an extreme learning machine (ELM). The effect of the channel and integration period on the TOA estimation is evaluated. Several well-known ED-based TOA algorithms are used to compare with the proposed technique. It is shown that this ELM-based technique has lower TOA estimation error compared to other approaches and provides robust performance with the IEEE 802.15.3c channel models.
Fine, Adam; Mahler, Alissa; Steinberg, Laurence; Frick, Paul J; Cauffman, Elizabeth
2017-07-01
Social ecological theories and decades of supporting research suggest that contexts exert a powerful influence on adolescent delinquency. Individual traits, such as impulse control, also pose a developmental disadvantage to adolescents through increasing risk of delinquency. However, such individual differences may also predispose some youth to struggle more in adverse environments, but also to excel in enriched environments. Despite the prominence of impulse control in both developmental and criminological literatures, researchers are only beginning to consider impulse control as an individual characteristic that may affect developmental outcomes in response to environmental input. Using a racially diverse (Latino 46 %; Black 37 %; White 15 %; other race 2 %) sample of 1,216 first-time, male, juvenile offenders from the longitudinal Crossroads Study, this study examined key interactions between baseline impulse control and the home, school, and neighborhood contexts in relation to delinquency within the following 6 months. The results indicated that even after accounting for prior delinquency, youth in more negative home, school, and neighborhood contexts engaged in the same amount of delinquency in the following 6 months regardless of their level of impulse control. However, the effects of positive home, school, and neighborhood contexts on delinquency were stronger for youth with moderate or high impulse control and minimally affected youth with low impulse control. The findings suggest two risk factors for delinquency: low impulse control as a dispositional vulnerability that operates independently of developmental context, and a second that results from a contextual vulnerability.
Microwave emission from lead zirconate titanate induced by impulsive mechanical load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aman, A., E-mail: alexander.aman@ovgu.de; Packaging Group, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg; Majcherek, S.
2015-10-28
This paper focuses on microwave emission from Lead zirconate titanate Pb [Zr{sub x}Ti{sub 1−x}] O{sub 3} (PZT) induced by mechanical stressing. The mechanical stress was initiated by impact of a sharp tungsten indenter on the upper surface of PZT ceramic. The sequences of microwave and current impulses, which flew from indenter to electric ground, were detected simultaneously. The voltage between the upper and lower surface of ceramic was measured to obtain the behavior of mechanical force acting on ceramic during the impact. It was found that the amplitude, form, and frequency of measured microwave impulses were different by compression andmore » restitution phase of impact. Two different mechanisms of electron emission, responsible for microwave impulse generation, were proposed based on the dissimilar impulse behavior. The field emission from tungsten indenter is dominant during compression, whereas ferroemission dominates during restitution phase. Indeed, it was observed that the direction of the current flow, i.e., sign of current impulses is changed by transitions from compression to restitution phase of impact. The observed dissimilar behavior of microwave impulses, caused by increasing and decreasing applied force, can be used to calculate the contact time and behavior of mechanical force during mechanical impact on ceramic surface. It is shown that the generation of microwave impulses exhibits high reproducibility, impulse intensity, a low damping factor, and high mechanical failure resistance. Based on these microwave emission properties of PZT, the development of new type of stress sensor with spatial resolution of few microns becomes possible.« less
NASA Astrophysics Data System (ADS)
Futko, S. I.; Ermolaeva, E. M.; Dobrego, K. V.; Bondarenko, V. P.; Dolgii, L. N.
2012-07-01
We have developed a sensitivity analysis permitting effective estimation of the change in the impulse responses of a microthrusters and in the ignition characteristics of the solid-fuel charge caused by the variation of the basic macrokinetic parameters of the mixed fuel and the design parameters of the microthruster's combustion chamber. On the basis of the proposed sensitivity analysis, we have estimated the spread of both the propulsive force and impulse and the induction period and self-ignition temperature depending on the macrokinetic parameters of combustion (pre-exponential factor, activation energy, density, and heat content) of the solid-fuel charge of the microthruster. The obtained results can be used for rapid and effective estimation of the spread of goal functions to provide stable physicochemical characteristics and impulse responses of solid-fuel mixtures in making and using microthrusters.
Aurally-adequate time-frequency analysis for scattered sound in auditoria
NASA Astrophysics Data System (ADS)
Norris, Molly K.; Xiang, Ning; Kleiner, Mendel
2005-04-01
The goal of this work was to apply an aurally-adequate time-frequency analysis technique to the analysis of sound scattering effects in auditoria. Time-frequency representations were developed as a motivated effort that takes into account binaural hearing, with a specific implementation of interaural cross-correlation process. A model of the human auditory system was implemented in the MATLAB platform based on two previous models [A. Härmä and K. Palomäki, HUTear, Espoo, Finland; and M. A. Akeroyd, A. Binaural Cross-correlogram Toolbox for MATLAB (2001), University of Sussex, Brighton]. These stages include proper frequency selectivity, the conversion of the mechanical motion of the basilar membrane to neural impulses, and binaural hearing effects. The model was then used in the analysis of room impulse responses with varying scattering characteristics. This paper discusses the analysis results using simulated and measured room impulse responses. [Work supported by the Frank H. and Eva B. Buck Foundation.
Making Professional Decisions in Research: Measurement and Key Predictors
Antes, Alison L.; Chibnall, John T.; Baldwin, Kari A.; Tait, Raymond C.; Vander Wal, Jillon S.; DuBois, James M.
2016-01-01
The professional decision-making in research (PDR) measure was administered to 400 NIH-funded and industry-funded investigators, along with measures of cynicism, moral disengagement, compliance disengagement, impulsivity, work stressors, knowledge of responsible conduct of research (RCR), and socially desirable response tendencies. Negative associations were found for the PDR and measures of cynicism, moral disengagement, and compliance disengagement, while positive associations were found for the PDR and RCR knowledge and positive urgency, an impulsivity subscale. PDR scores were not related to socially desirable responding, or to measures of work stressors and the remaining impulsivity subscales. In a multivariate logistic regression analysis, lower moral disengagement scores, higher RCR knowledge, and identifying the United States as one’s nation of origin emerged as key predictors of stronger performance on the PDR. The implications of these findings for understanding the measurement of decision-making in research and future directions for research and RCR education are discussed. PMID:27093003
2011-01-01
High-frequency surface acoustic waves can be generated by ultrafast laser excitation of nanoscale patterned surfaces. Here we study this phenomenon in the hypersonic frequency limit. By modeling the thermomechanics from first-principles, we calculate the system’s initial heat-driven impulsive response and follow its time evolution. A scheme is introduced to quantitatively access frequencies and lifetimes of the composite system’s excited eigenmodes. A spectral decomposition of the calculated response on the eigemodes of the system reveals asymmetric resonances that result from the coupling between surface and bulk acoustic modes. This finding allows evaluation of impulsively excited pseudosurface acoustic wave frequencies and lifetimes and expands our understanding of the scattering of surface waves in mesoscale metamaterials. The model is successfully benchmarked against time-resolved optical diffraction measurements performed on one-dimensional and two-dimensional surface phononic crystals, probed using light at extreme ultraviolet and near-infrared wavelengths. PMID:21910426
Revealing hidden states in visual working memory using electroencephalography
Wolff, Michael J.; Ding, Jacqueline; Myers, Nicholas E.; Stokes, Mark G.
2015-01-01
It is often assumed that information in visual working memory (vWM) is maintained via persistent activity. However, recent evidence indicates that information in vWM could be maintained in an effectively “activity-silent” neural state. Silent vWM is consistent with recent cognitive and neural models, but poses an important experimental problem: how can we study these silent states using conventional measures of brain activity? We propose a novel approach that is analogous to echolocation: using a high-contrast visual stimulus, it may be possible to drive brain activity during vWM maintenance and measure the vWM-dependent impulse response. We recorded electroencephalography (EEG) while participants performed a vWM task in which a randomly oriented grating was remembered. Crucially, a high-contrast, task-irrelevant stimulus was shown in the maintenance period in half of the trials. The electrophysiological response from posterior channels was used to decode the orientations of the gratings. While orientations could be decoded during and shortly after stimulus presentation, decoding accuracy dropped back close to baseline in the delay. However, the visual evoked response from the task-irrelevant stimulus resulted in a clear re-emergence in decodability. This result provides important proof-of-concept for a promising and relatively simple approach to decode “activity-silent” vWM content using non-invasive EEG. PMID:26388748
Saulskaya, Natalia B; Soloviova, Nina A
2004-12-30
In vivo microdialysis combined with a high-performance liquid chromatography was used to monitor extracellular glutamate (GLU) levels in the nucleus accumbens (N.Acc) of Sprague-Dawley rats during their behavioral responses to the concurrent presentation of appetitive and conditioned aversive stimuli. The presentation of a highly palatable diet followed by a tone previously paired with footshock to rats trained to take a pellet of the diet under these experimental conditions resulted in a marked and short lasting increase in extracellular glutamate, whereas the tone alone had no effect. A similar increase of the glutamate release was observed during the presentation of a piece of rubber instead of the diet. In both cases, the increase in extracellular glutamate was completely prevented by intra-accumbal infusions through the dialysis probe of 1 microM tetrodotoxin (a voltage-dependent Na(+) channel blocker), whereas (S)-4-carboxyphenylglycine (a cystine/glutamate exchange blocker, 5 microM) had no effect. The data obtained suggest that behavioral responses to unpredicted change in motivational value of expected reward appear to be associated with an increase of the extracellular glutamate level in the nucleus accumbens, and impulse-dependent synaptic release, rather than non-vesicular glutamate release via cystine/glutamate exchange, is responsible for this phenomenon.
Jang, Hae-Won; Ih, Jeong-Guon
2012-04-01
The time domain boundary element method (BEM) is associated with numerical instability that typically stems from the time marching scheme. In this work, a formulation of time domain BEM is derived to deal with all types of boundary conditions adopting a multi-input, multi-output, infinite impulse response structure. The fitted frequency domain impedance data are converted into a time domain expression as a form of an infinite impulse response filter, which can also invoke a modeling error. In the calculation, the response at each time step is projected onto the wave vector space of natural radiation modes, which can be obtained from the eigensolutions of the single iterative matrix. To stabilize the computation, unstable oscillatory modes are nullified, and the same decay rate is used for two nonoscillatory modes. As a test example, a transient sound field within a partially lined, parallelepiped box is used, within which a point source is excited by an octave band impulse. In comparison with the results of the inverse Fourier transform of a frequency domain BEM, the average of relative difference norm in the stabilized time response is found to be 4.4%.
Characterization of cocaine-induced block of cardiac sodium channels.
Crumb, W J; Clarkson, C W
1990-03-01
Recent evidence suggests that cocaine can produce marked cardiac arrhythmias and sudden death. A possible mechanism for this effect is slowing of impulse conduction due to block of cardiac Na channels. We therefore investigated its effects on Na channels in isolated guinea pig ventricular myocytes using the whole-cell variant of the patch clamp technique. Cocaine (10-50 microM) was found to reduce Na current in a use-dependent manner. The time course for block development and recovery were characterized. At 30 microM cocaine, two phases of block development were defined: a rapid phase (tau = 5.7 +/- 4.9 ms) and a slower phase (tau = 2.3 +/- 0.7 s). Recovery from block at -140 mV was also defined by two phases: (tau f = 136 +/- 61 ms, tau s = 8.5 +/- 1.7 s) (n = 6). To further clarify the molecular mechanisms of cocaine action on cardiac Na channels, we characterized its effects using the guarded receptor model, obtaining estimated Kd values of 328, 19, and 8 microM for channels predominantly in the rested, activated, and inactivated states. These data indicate that cocaine can block cardiac Na channels in a use-dependent manner and provides a possible cellular explanation for its cardiotoxic effects.
Finneran, J J; Schlundt, C E; Carder, D A; Clark, J A; Young, J A; Gaspin, J B; Ridgway, S H
2000-07-01
A behavioral response paradigm was used to measure masked underwater hearing thresholds in two bottlenose dolphins and one beluga whale before and after exposure to impulsive underwater sounds with waveforms resembling distant signatures of underwater explosions. An array of piezoelectric transducers was used to generate impulsive sounds with waveforms approximating those predicted from 5 or 500 kg HBX-1 charges at ranges from 1.5 to 55.6 km. At the conclusion of the study, no temporary shifts in masked-hearing thresholds (MTTSs), defined as a 6-dB or larger increase in threshold over pre-exposure levels, had been observed at the highest impulse level generated (500 kg at 1.7 km, peak pressure 70 kPa); however, disruptions of the animals' trained behaviors began to occur at exposures corresponding to 5 kg at 9.3 km and 5 kg at 1.5 km for the dolphins and 500 kg at 1.9 km for the beluga whale. These data are the first direct information regarding the effects of distant underwater explosion signatures on the hearing abilities of odontocetes.
Morouço, Pedro G; Marinho, Daniel A; Keskinen, Kari L; Badillo, Juan J; Marques, Mário C
2014-11-01
The purpose of this study was two-fold: (a) to compare stroke and the physiological responses between maximal tethered and free front crawl swimming and (b) to evaluate the contribution of force exertion for swimming performance over short distances. A total of 34 male swimmers, representing various levels of competitive performance, participated in this study. Each participant was tested in both a 30-second maximal tethered swimming test and a 50-m free swimming test. The tethered force parameters, the swimming speed, stroke (stroke rate [SR]), and the physiological responses (increase in blood lactate concentration [ΔBLa], heart rate, and rate of perceived exertion) were recorded and calculated. The results showed no differences in stroke and the physiological responses between tethered and free swimming, with a high level of agreement for the SR and ΔBLa. A strong correlation was obtained between the maximum impulse of force per stroke and the speed (r = 0.91; p < 0.001). Multiple regression analysis revealed that the maximum impulse and SR in the tethered condition explained 84% of the free swimming performance. The relationship between the swimming speed and maximum force tended to be nonlinear, whereas linear relationships were observed with the maximum impulse. This study demonstrates that tethered swimming does not significantly alter stroke and the physiological responses compared with free swimming, and that the maximum impulse per stroke should be used to evaluate the balance between force and the ability to effectively apply force during sprint swimming. Consequently, coaches can rely on tethered forces to identify strength deficits and improve swimming performance over short distances.
Statistics of “Cold” Early Impulsive Solar Flares in X-Ray and Microwave Domains
NASA Astrophysics Data System (ADS)
Lysenko, Alexandra L.; Altyntsev, Alexander T.; Meshalkina, Natalia S.; Zhdanov, Dmitriy; Fleishman, Gregory D.
2018-04-01
Solar flares often happen after a preflare/preheating phase, which is almost or entirely thermal. In contrast, there are the so-called early impulsive flares that do not show a (significant) preflare heating, but instead often show the Neupert effect—a relationship where the impulsive phase is followed by a gradual, cumulative-like, thermal response. This has been interpreted as a dominance of nonthermal energy release at the impulsive phase, even though a similar phenomenology is expected if the thermal and nonthermal energies are released in comparable amounts at the impulsive phase. Nevertheless, some flares do show a good quantitative correspondence between the nonthermal electron energy input and plasma heating; in such cases, the thermal response was weak, which results in them being called “cold” flares. We undertook a systematic search for such events among early impulsive flares registered by the Konus-Wind instrument in the triggered mode from 11/1994 to 4/2017, and selected 27 cold flares based on relationships between hard X-ray (HXR) (Konus-Wind) and soft X-ray (Geostationary Operational Environmental Satellite) emission. For these events, we put together all available microwave data from different instruments. We obtained temporal and spectral parameters of HXR and microwave emissions of the events and examined correlations between them. We found that, compared to a “mean” flare, the cold flares: (i) are weaker, shorter, and harder in the X-ray domain; (ii) are harder and shorter, but not weaker in the microwaves; (iii) have a significantly higher spectral peak frequencies in the microwaves. We discuss the possible physical reasons for these distinctions and implication of the finding.
Hammerslag, Lindsey R.; Waldman, Alex J.; Gulley, Joshua M.
2014-01-01
Heightened impulsivity is a feature of some psychiatric disorders, including addiction, that also have sex-specific patterns of expression. The relationship between addiction and impulsivity may be driven by drug-induced changes in behavior caused by long term adaptations in signaling within the medial prefrontal cortex (mPFC). Here, we used a response inhibition task that is sensitive to changes in mPFC function to examine the effects of sex and exposure to amphetamine (AMPH) on impulsive action and vigilance. We also examined drug-induced alterations in glutamatergic and dopaminergic signaling through challenge injections with the NMDA receptor antagonist MK-801 (dizocilpine) and AMPH. Male and female Sprague Dawley rats were injected (i.p.) with saline or 3 mg/kg AMPH every other day during adolescence (postnatal day (P) 27–45) or adulthood (P85–103). Starting on P125–135, rats were tested for their ability to lever press for a food reward during periods of signaled availability and withhold responding during a “premature response” phase. In experiment 1, rats received challenge injections (i.p.) of MK-801 and AMPH followed by tests of task performance and locomotor activity. In experiment 2, rats received intra-mPFC infusion of MK-801. We found that females had better inhibitory control and poorer vigilance than males and that AMPH exposure had both sex- and age-of-exposure dependent effects on impulsivity. Systemic drug challenges disrupted task performance, particularly in females, and increased impulsivity while intra-mPFC infusions had modest effects. AMPH exposure did not affect responses to drug challenges. Together, these results suggest that sex mediates both trait and drug-induced impulsivity. PMID:24462963
d'Acremont, Mathieu; Van der Linden, Martial
2007-04-01
The aim of this study was to validate a French version of the Cognitive Emotion Regulation Questionnaire (CERQ; Garnefski, N., Kraaij, V., & Spinhoven, P., 2001. Negative life events, cognitive emotion regulation and emotional problems. Personality and Individual Differences, 30, 1311-1327) and to explore its relationships with impulsivity and depression. Teenagers from a junior secondary (n=107, 13-16 years) and a secondary school (n=110, 15-19 years) completed the CERQ, which assesses regulation strategies in response to negative events. The secondary school adolescents also completed the UPPS Impulsive Behavior Scale (Whiteside, S. P., & Lynam, D. R., 2001. The five factor model and impulsivity: Using a structural model of personality to understand impulsivity. Personality and Individual Differences, 30, 669-689) and the Reynolds Adolescent Depression Scale (Reynolds, W. M., 1987. Reynolds Adolescent Depression Scale: Professional manual. Odessa, FL: Psychological Assessment Resources). Factor analysis for the CERQ confirmed the presence of the nine original regulation strategies. In the secondary school students, impulsivity was related to depression. A path analysis revealed that regulation strategies mediated this relationship. The role of emotion regulation in the development of adolescent psychopathology is discussed.
NASA Astrophysics Data System (ADS)
Crowther, Ashley R.; Singh, Rajendra; Zhang, Nong; Chapman, Chris
2007-10-01
Impulsive responses in geared systems with multiple clearances are studied when the mean torque excitation and system load change abruptly, with application to a vehicle driveline with an automatic transmission. First, torsional lumped-mass models of the planetary and differential gear sets are formulated using matrix elements. The model is then reduced to address tractable nonlinear problems while successfully retaining the main modes of interest. Second, numerical simulations for the nonlinear model are performed for transient conditions and a typical driving situation that induces an impulsive behaviour simulated. However, initial conditions and excitation and load profiles have to be carefully defined before the model can be numerically solved. It is shown that the impacts within the planetary or differential gears may occur under combinations of engine, braking and vehicle load transients. Our analysis shows that the shaping of the engine transient by the torque converter before reaching the clearance locations is more critical. Third, a free vibration experiment is developed for an analogous driveline with multiple clearances and three experiments that excite different response regimes have been carried out. Good correlations validate the proposed methodology.
Military Review. Volume 91, Number 3, May-June 2011
2011-06-01
resistance is pervasive. Pashtun concepts of shame and honor are often the impetus to fight. Channeling these impulses to work against the insurgency is...that many factors motivate anti-coalition sentiment—political aims, tribal infighting, economic rewards, and shame or honor motivations. Many...Force to The Bockscar and its crew, who dropped the “ Fat Man” atomic bomb on Nagasaki, 1945. U .S . A ir Fo rc e 86 May-June 2011 MILITARY REVIEW
DETECTING NANOFLARE HEATING EVENTS IN SUBARCSECOND INTER-MOSS LOOPS USING Hi-C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winebarger, Amy R.; Moore, Ronald; Cirtain, Jonathan
2013-07-01
The High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket on 2012 July 11 and captured roughly 345 s of high-spatial and temporal resolution images of the solar corona in a narrowband 193 A channel. In this paper, we analyze a set of rapidly evolving loops that appear in an inter-moss region. We select six loops that both appear in and fade out of the Hi-C images during the short flight. From the Hi-C data, we determine the size and lifetimes of the loops and characterize whether these loops appear simultaneously along their length or first appear at onemore » footpoint before appearing at the other. Using co-aligned, co-temporal data from multiple channels of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory, we determine the temperature and density of the loops. We find the loops consist of cool ({approx}10{sup 5} K), dense ({approx}10{sup 10} cm{sup -3}) plasma. Their required thermal energy and their observed evolution suggest they result from impulsive heating similar in magnitude to nanoflares. Comparisons with advanced numerical simulations indicate that such dense, cold and short-lived loops are a natural consequence of impulsive magnetic energy release by reconnection of braided magnetic field at low heights in the solar atmosphere.« less
Ground vibration test results of a JetStar airplane using impulsive sine excitation
NASA Technical Reports Server (NTRS)
Kehoe, Michael W.; Voracek, David F.
1989-01-01
Structural excitation is important for both ground vibration and flight flutter testing. The structural responses caused by this excitation are analyzed to determine frequency, damping, and mode shape information. Many excitation waveforms have been used throughout the years. The use of impulsive sine (sin omega t)/omega t as an excitation waveform for ground vibration testing and the advantages of using this waveform for flight flutter testing are discussed. The ground vibration test results of a modified JetStar airplane using impulsive sine as an excitation waveform are compared with the test results of the same airplane using multiple-input random excitation. The results indicated that the structure was sufficiently excited using the impulsive sine waveform. Comparisons of input force spectrums, mode shape plots, and frequency and damping values for the two methods of excitation are presented.
Anger, impulsivity, and anger control in combat-related posttraumatic stress disorder.
Chemtob, C M; Hamada, R S; Roitblat, H L; Muraoka, M Y
1994-08-01
Empirical evidence of a relationship between combat-related PTSD and increased anger is lacking. In this study, 24 veterans of the Vietnam War with posttraumatic stress disorder (PTSD) scored significantly higher on an Anger factor comprising multiple measures of anger than did comparison groups of 23 well-adjusted Vietnam combat veterans and 12 noncombat Vietnam-era veterans with psychiatric diagnoses. In contrast, the 3 groups did not differ significantly on orthogonal factors, one of which comprised cognitive impulsivity measures and the other of which reflected motor impulsivity. Changes in heart rate in response to provocation loaded positively on the Anger factor and negatively on the 2 Impulsivity factors. Concurrent depression and trait anxiety did not have an effect on level of anger in individuals with PTSD. These empirical findings support and extend the clinical evidence regarding PTSD and anger.
Moallem, Nathasha; Ray, Lara A.
2013-01-01
Rationale Quetiapine has been shown to be a promising medication for the treatment of alcoholism. As an atypical antipsychotic medication with antagonist activity at D1 and D2, 5-HT1A and 5-HT2A, H1 and α1 and α2 receptors, quetiapine has been found to decrease impulsivity in other psychiatric disorders but its effects on impulsivity have not been studied in alcohol dependent patients. Objective This study seeks to test the effects of quetiapine on a specific dimension of impulsivity, namely response inhibition. This pilot study seeks to further elucidate the mechanisms of action of quetiapine for alcohol use disorders. Method A total of 20 non-treatment seeking alcohol dependent individuals were randomized to one of the following conditions in a double-blind, placebo-controlled design: (1) quetiapine (400 mg/day); or (2) matched placebo. Participants completed two counterbalanced intravenous placebo-alcohol administration sessions as well as behavioral measure of response inhibition (i.e. stop signal task) pre and post placebo-alcohol administration sessions. Results Analyses revealed a significant effect of quetiapine in improving response inhibition as measured by the stop signal task. These results provide preliminary evidence suggesting that quetiapine improves response inhibition in alcohol dependent patients, as compared to placebo. Conclusion This pilot study contributes a novel putative mechanism of action of quetiapine in alcoholism, namely an improvement in response inhibition. PMID:22037407
Modeling our understanding of the His-Purkinje system.
Vigmond, Edward J; Stuyvers, Bruno D
2016-01-01
The His-Purkinje System (HPS) is responsible for the rapid electric conduction in the ventricles. It relays electrical impulses from the atrioventricular node to the muscle cells and, thus, coordinates the contraction of ventricles in order to ensure proper cardiac pump function. The HPS has been implicated in the genesis of ventricular tachycardia and fibrillation as a source of ectopic beats, as well as forming distinct portions of reentry circuitry. Despite its importance, it remains much less well characterized, structurally and functionally, than the myocardium. Notably, important differences exist with regard to cell structure and electrophysiology, including ion channels, intracellular calcium handling, and gap junctions. Very few computational models address the HPS, and the majority of organ level modeling studies omit it. This review will provide an overview of our current knowledge of structure and function (including electrophysiology) of the HPS. We will review the most recent advances in modeling of the system from the single cell to the organ level, with considerations for relevant interspecies distinctions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Adaptive waveform optimization design for target detection in cognitive radar
NASA Astrophysics Data System (ADS)
Zhang, Xiaowen; Wang, Kaizhi; Liu, Xingzhao
2017-01-01
The problem of adaptive waveform design for target detection in cognitive radar (CR) is investigated. This problem is analyzed in signal-dependent interference, as well as additive channel noise for extended target with unknown target impulse response (TIR). In order to estimate the TIR accurately, the Kalman filter is used in target tracking. In each Kalman filtering iteration, a flexible online waveform spectrum optimization design taking both detection and range resolution into account is modeled in Fourier domain. Unlike existing CR waveform, the proposed waveform can be simultaneously updated according to the environment information fed back by receiver and radar performance demands. Moreover, the influence of waveform spectral phase to radar performance is analyzed. Simulation results demonstrate that CR with the proposed waveform performs better than a traditional radar system with a fixed waveform and offers more flexibility and suitability. In addition, waveform spectral phase will not influence tracking, detection, and range resolution performance but will greatly influence waveform forming speed and peak-to-average power ratio.
Structure and hydration of membranes embedded with voltage-sensing domains.
Krepkiy, Dmitriy; Mihailescu, Mihaela; Freites, J Alfredo; Schow, Eric V; Worcester, David L; Gawrisch, Klaus; Tobias, Douglas J; White, Stephen H; Swartz, Kenton J
2009-11-26
Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field.
Structure and hydration of membranes embedded with voltage-sensing domains
Krepkiy, Dmitriy; Mihailescu, Mihaela; Freites, J. Alfredo; Schow, Eric V.; Worcester, David L.; Gawrisch, Klaus; Tobias, Douglas; White, Stephen H.; Swartz, Kenton J.
2009-01-01
Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly-charged S1–S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated potassium channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1–S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations, cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings reveal that voltage sensors have evolved to interact with the lipid membrane while keeping the energetic and structural perturbations to a minimum, and that water penetrates into the membrane to hydrate charged residues and shape the transmembrane electric field. PMID:19940918
A Neutron View of Proteins in Lipid Bilayers
NASA Astrophysics Data System (ADS)
White, Stephen
2012-02-01
Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly-charged S1-S4 voltage- sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated potassium channels. We have used neutron diffraction, solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations, cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings reveal that voltage sensors have evolved to interact with the lipid membrane while keeping the energetic and structural perturbations to a minimum, and that water penetrates into the membrane to hydrate charged residues and shape the transmembrane electric field.
Transition Region and Chromospheric Signatures of Impulsive Heating Events. I. Observations
NASA Astrophysics Data System (ADS)
Warren, Harry P.; Reep, Jeffrey W.; Crump, Nicholas A.; Simões, Paulo J. A.
2016-09-01
We exploit the high spatial resolution and high cadence of the Interface Region Imaging Spectrograph (IRIS) to investigate the response of the transition region and chromosphere to energy deposition during a small flare. Simultaneous observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager provide constraints on the energetic electrons precipitating into the flare footpoints, while observations of the X-Ray Telescope, Atmospheric Imaging Assembly, and Extreme Ultraviolet Imaging Spectrometer (EIS) allow us to measure the temperatures and emission measures from the resulting flare loops. We find clear evidence for heating over an extended period on the spatial scale of a single IRIS pixel. During the impulsive phase of this event, the intensities in each pixel for the Si IV 1402.770 Å, C II 1334.535 Å, Mg II 2796.354 Å, and O I 1355.598 Å emission lines are characterized by numerous small-scale bursts typically lasting 60 s or less. Redshifts are observed in Si IV, C II, and Mg II during the impulsive phase. Mg II shows redshifts during the bursts and stationary emission at other times. The Si IV and C II profiles, in contrast, are observed to be redshifted at all times during the impulsive phase. These persistent redshifts are a challenge for one-dimensional hydrodynamic models, which predict only short-duration downflows in response to impulsive heating. We conjecture that energy is being released on many small-scale filaments with a power-law distribution of heating rates.
Dellu-Hagedorn, Françoise; Rivalan, Marion; Fitoussi, Aurélie; De Deurwaerdère, Philippe
2018-04-19
Several impulse control disorders such as ADHD, mania, personality disorders or substance abuse share common behavioural traits, like impulsiveness, risk-taking or inflexible behaviour. These disorders are treated with drugs targeting dopamine (DA) and/or serotonin (5-HT). However, the patient's monoamine imbalance that these neurotransmitters compensate is unclear. This study aims to investigate the patterns of DA and 5-HT metabolisms at rest within selected brain regions related to inter-individual variability in six main components of impulsivity/compulsivity (anticipatory hyperactivity, premature responses, delay discounting, risk-taking, perseveration, flexibility). Rats with adaptive and highly inadaptive behaviours were identified in each task and a sensitive biochemical approach allowed mapping of post-mortem endogenous monoamine tissue content in 20 brain areas. Distinct patterns of 5-HT and DA metabolisms were revealed according to the behavioural traits. Except for hyperactive responses, lower control of actions was mainly associated with a lower DA or 5-HT metabolism in prefrontal and/or subcortical areas (i.e. in orbitofrontal cortex (DA), amygdala and anterior cingulate cortex (5-HT) for inflexible and risk-prone rats). Our results reveal the complex nature of behavioural traits related to impulse control disorders through their associated monoaminergic networks at rest, paving the way for understanding the link between mental disorders and drug therapeutic actions.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Author(s).
On the performance of piezoelectric harvesters loaded by finite width impulses
NASA Astrophysics Data System (ADS)
Doria, A.; Medè, C.; Desideri, D.; Maschio, A.; Codecasa, L.; Moro, F.
2018-02-01
The response of cantilevered piezoelectric harvesters loaded by finite width impulses of base acceleration is studied analytically in the frequency domain in order to identify the parameters that influence the generated voltage. Experimental tests are then performed on harvesters loaded by hammer impacts. The latter are used to confirm analytical results and to validate a linear finite element (FE) model of a unimorph harvester. The FE model is, in turn, used to extend analytical results to more general harvesters (tapered, inverse tapered, triangular) and to more general impulses (heel strike in human gait). From analytical and numerical results design criteria for improving harvester performance are obtained.
Numerical modeling of on-orbit propellant motion resulting from an impulsive acceleration
NASA Technical Reports Server (NTRS)
Aydelott, John C.; Mjolsness, Raymond C.; Torrey, Martin D.; Hochstein, John I.
1987-01-01
In-space docking and separation maneuvers of spacecraft that have large fluid mass fractions may cause undesirable spacecraft motion in response to the impulsive-acceleration-induced fluid motion. An example of this potential low gravity fluid management problem arose during the development of the shuttle/Centaur vehicle. Experimentally verified numerical modeling techniques were developed to establish the propellant dynamics, and subsequent vehicle motion, associated with the separation of the Centaur vehicle from the shuttle orbiter cargo bay. Although the shuttle/Centaur development activity was suspended, the numerical modeling techniques are available to predict on-orbit liquid motion resulting from impulsive accelerations for other missions and spacecraft.
Reduced-Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1999-01-01
This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.
Reduced Order Models Based on Linear and Nonlinear Aerodynamic Impulse Responses
NASA Technical Reports Server (NTRS)
Silva, Walter A.
1999-01-01
This paper discusses a method for the identification and application of reduced-order models based on linear and nonlinear aerodynamic impulse responses. The Volterra theory of nonlinear systems and an appropriate kernel identification technique are described. Insight into the nature of kernels is provided by applying the method to the nonlinear Riccati equation in a non-aerodynamic application. The method is then applied to a nonlinear aerodynamic model of an RAE 2822 supercritical airfoil undergoing plunge motions using the CFL3D Navier-Stokes flow solver with the Spalart-Allmaras turbulence model. Results demonstrate the computational efficiency of the technique.
NASA Astrophysics Data System (ADS)
Camporesi, Roberto
2011-06-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and the variation of constants method. The approach presented here can be used in a first course on differential equations for science and engineering majors.
Image Science Research for Speckle-based LADAR (Speckle Research for 3D Imaging LADAR)
2008-04-03
INVARIANT + FERGUS, TORRALBA, AND FREEMAN. MIT-CSAIL-TR-2006-058 MAP DETECTOR PATTERN FOR EACH POINT IN OBJECT SPACE DEBLURRING PROBLEM IMPULSE RESPONSE...GENERALIZED THEORY FOR THE LOGARITHMIC ASPHERE ( )( ) it e φ ρρ −= IMPULSE RESPONSE (PSF) 2 2 2 2 0 0 22 2( ) 2 2 0 2 2 2 2 2 2 0 0 2 ( ; ) 2 ( ) i s i i t R...ascent; γ=1, Burch, Skilling, Gull; Loops needed Noise deviation Area of PSF New parameter L σ A γ COMPARISON OF MAXIMUM ENTROPY METHODS † † W. CHI
VAR and generalized impulse response analysis of manufacturing unit labor costs
NASA Astrophysics Data System (ADS)
Ewing, Bradley T.; Thompson, Mark A.
2008-04-01
This paper examines the relationship among manufacturing unit labor costs in the United States, United Kingdom, and Canada. The analysis is conducted within the context of an economic system utilizing the recently developed method of generalized impulse response analysis to simulate the responses of the cost series to disturbances. The results indicate that, while unit labor costs do not share a common stochastic trend, there are significant responses in the unit labor costs of each country to shocks in the costs of other countries that are not captured by standard interpretation of the multiple-equation model results. The findings indicate the presence of significant linkages among unit labor costs in the countries studied. The results are consistent with the economic environment of manufacturing operations being characterized by a competitive, integrated marketplace.
Pechey, Rachel; Couturier, Dominique-Laurent; Deary, Ian J.; Marteau, Theresa M.
2016-01-01
Objective Executive function, impulsivity, and intelligence are correlated markers of cognitive resource that predict health-related behaviours. It is unknown whether executive function and impulsivity are unique predictors of these behaviours after accounting for intelligence. Methods Data from 6069 participants from the Avon Longitudinal Study of Parents and Children were analysed to investigate whether components of executive function (selective attention, attentional control, working memory, and response inhibition) and impulsivity (parent-rated) measured between ages 8 and 10, predicted having ever drunk alcohol, having ever smoked, fruit and vegetable consumption, physical activity, and overweight at age 13, after accounting for intelligence at age 8 and childhood socioeconomic characteristics. Results Higher intelligence predicted having drunk alcohol, not smoking, greater fruit and vegetable consumption, and not being overweight. After accounting for intelligence, impulsivity predicted alcohol use (odds ratio = 1.10; 99% confidence interval = 1.02, 1.19) and smoking (1.22; 1.11, 1.34). Working memory predicted not being overweight (0.90; 0.81, 0.99). Conclusions After accounting for intelligence, executive function predicts overweight status but not health-related behaviours in early adolescence, whilst impulsivity predicts the onset of alcohol and cigarette use, all with small effects. This suggests overlap between executive function and intelligence as predictors of health behaviour in this cohort, with trait impulsivity accounting for additional variance. PMID:27479488
Stautz, Kaidy; Pechey, Rachel; Couturier, Dominique-Laurent; Deary, Ian J; Marteau, Theresa M
2016-01-01
Executive function, impulsivity, and intelligence are correlated markers of cognitive resource that predict health-related behaviours. It is unknown whether executive function and impulsivity are unique predictors of these behaviours after accounting for intelligence. Data from 6069 participants from the Avon Longitudinal Study of Parents and Children were analysed to investigate whether components of executive function (selective attention, attentional control, working memory, and response inhibition) and impulsivity (parent-rated) measured between ages 8 and 10, predicted having ever drunk alcohol, having ever smoked, fruit and vegetable consumption, physical activity, and overweight at age 13, after accounting for intelligence at age 8 and childhood socioeconomic characteristics. Higher intelligence predicted having drunk alcohol, not smoking, greater fruit and vegetable consumption, and not being overweight. After accounting for intelligence, impulsivity predicted alcohol use (odds ratio = 1.10; 99% confidence interval = 1.02, 1.19) and smoking (1.22; 1.11, 1.34). Working memory predicted not being overweight (0.90; 0.81, 0.99). After accounting for intelligence, executive function predicts overweight status but not health-related behaviours in early adolescence, whilst impulsivity predicts the onset of alcohol and cigarette use, all with small effects. This suggests overlap between executive function and intelligence as predictors of health behaviour in this cohort, with trait impulsivity accounting for additional variance.
Grant, Jon E; Chamberlain, Samuel R
2014-11-01
Substance use disorders are prevalent and debilitating. Certain behavioral syndromes ('behavioral addictions') characterized by repetitive habits, such as gambling disorder, stealing, shopping, and compulsive internet use, may share clinical, co-morbid, and neurobiological parallels with substance addictions. This review considers overlap between substance and behavioral addictions with a particular focus on impulsive action (inability to inhibit motor responses), and impulsive choice (preference for immediate smaller rewards to the detriment of long-term outcomes). We find that acute consumption of drugs with abuse potential is capable of modulating impulsive choice and action, although magnitude and direction of effect appear contingent on baseline function. Many lines of evidence, including findings from meta-analyses, show an association between chronic drug use and elevated impulsive choice and action. In some instances, elevated impulsive choice and action have been found to predate the development of substance use disorders, perhaps signifying their candidacy as objective vulnerability markers. Research in behavioral addictions is preliminary, and has mostly focused on impulsive action, finding this to be elevated versus controls, similar to that seen in chronic substance use disorders. Only a handful of imaging studies has explored the neural correlates of impulsive action and choice across these disorders. Key areas for future research are highlighted along with potential implications in terms of neurobiological models and treatment. In particular, future work should further explore whether the cognitive deficits identified are state or trait in nature: i.e. are evident before addiction perhaps signaling risk; or are a consequence of repetitive engagement in habitual behavior; and effects of novel agents known to modulate these cognitive abilities on various addictive disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vestibulo-ocular reflex gain values in the suppression head impulse test of healthy subjects.
Rey-Martinez, Jorge; Thomas-Arrizabalaga, Izaskun; Espinosa-Sanchez, Juan Manuel; Batuecas-Caletrio, Angel; Trinidad-Ruiz, Gabriel; Matiño-Soler, Eusebi; Perez-Fernandez, Nicolas
2018-02-15
To assess whether there are differences in vestibulo-ocular reflex (VOR) gain for suppression head impulse (SHIMP) and head impulse (HIMP) video head impulse test paradigms, and if so, what are their causes. Prospective multicenter observational double-blind nonrandomized clinical study was performed by collecting 80 healthy subjects from four reference hospitals. SHIMP data was postprocessed to eliminate impulses in which early SHIMP saccades were detected. Differences between HIMP and SHIMP VOR gain values were statistically evaluated. Head impulse maximum velocity, gender, age, direction of impulse, and hospital center were considered as possible influential factors. A small significant statistical difference between HIMP and SHIMP VOR gain values was found on repeated measures analysis of variance (-0.05 ± 0.006, P < 0.001). Optimized linear model showed a significant influence of age variable on the observed differences for HIMP and SHIMP gain values and did not find influence between gain values differences and maximum head impulse velocity. Both HIMP and SHIMP VOR gain values were significant lower (-0.09, P < 0.001) when the impulses were performed to the left side. We had observed a difference in SHIMP and HIMP gain values not adequately explained by known gain modification factors. The persistence of this slight but significant difference indicates that there are more factors causing lower SHIMP VOR gain values. This difference must to be considered in further studies as well as in the clinical SHIMP testing protocols. We hypothesized that VOR phasic response inhibition could be the underlying cause of this difference. IIb. Laryngoscope, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.
de Waele, Catherine; Shen, Qiwen; Magnani, Christophe; Curthoys, Ian S
2017-01-01
We examined the eye movement response patterns of a group of patients with bilateral vestibular loss (BVL) during suppression head impulse testing. Some showed a new saccadic strategy that may have potential for explaining how patients use saccades to recover from vestibular loss. Eight patients with severe BVL [vestibulo-ocular reflex (VOR) gains less than 0.35 and absent otolithic function] were tested. All patients were given the Dizziness Handicap Inventory and questioned about oscillopsia during abrupt head movements. Two paradigms of video head impulse testing of the horizontal VOR were used: (1) the classical head impulse paradigm [called head impulse test (HIMPs)]-fixating an earth-fixed target during the head impulse and (2) the new complementary test paradigm-fixating a head-fixed target during the head impulse (called SHIMPs). The VOR gain of HIMPs was quantified by two algorithms. During SHIMPs testing, some BVL patients consistently generated an inappropriate covert compensatory saccade during the head impulse that required a corresponding large anti-compensatory saccade at the end of the head impulse in order to obey the instructions to maintain gaze on the head-fixed target. By contrast, other BVL patients did not generate this inappropriate covert saccade and did not exhibit a corresponding anti-compensatory saccade. The latencies of the covert saccade in SHIMPs and HIMPs were similar. The pattern of covert saccades during SHIMPs appears to be related to the reduction of oscillopsia during abrupt head movements. BVL patients who did not report oscillopsia showed this unusual saccadic pattern, whereas BVL patients who reported oscillopsia did not show this pattern. This inappropriate covert SHIMPs saccade may be an objective indicator of how some patients with vestibular loss have learned to trigger covert saccades during head movements in everyday life.
Poor impulse control predicts inelastic demand for nicotine but not alcohol in rats.
Diergaarde, Leontien; van Mourik, Yvar; Pattij, Tommy; Schoffelmeer, Anton N M; De Vries, Taco J
2012-05-01
Tobacco and alcohol dependence are characterized by continued use despite deleterious health, social and occupational consequences, implying that addicted individuals pay a high price for their use. In behavioral economic terms, such persistent consumption despite increased costs can be conceptualized as inelastic demand. Recent animal studies demonstrated that high-impulsive individuals are more willing to work for nicotine or cocaine infusions than their low-impulsive counterparts, indicating that this trait might be causally related to inelastic drug demand. By employing progressive ratio schedules of reinforcement combined with a behavioral economics approach of analysis, we determined whether trait impulsivity is associated with an insensitivity of nicotine or alcohol consumption to price increments. Rats were trained on a delayed discounting task, measuring impulsive choice. Hereafter, high- and low-impulsive rats were selected and trained to nose poke for intravenous nicotine or oral alcohol. Upon stable self-administration on a continuous reinforcement schedule, the price (i.e. response requirement) was increased. Demand curves, depicting the relationship between price and consumption, were produced using Hursh's exponential demand equation. Similar to human observations, nicotine and alcohol consumption in rats fitted this equation, thereby demonstrating the validity of our model. Moreover, high-impulsive rats displayed inelastic nicotine demand, as their nicotine consumption was less sensitive to price increments as compared with that in low-impulsive rats. Impulsive choice was not related to differences in alcohol demand elasticity. Our model seems well suited for studying nicotine and alcohol demand in rats and, as such, might contribute to our understanding of tobacco and alcohol dependence. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.
Local Fields in Human Subthalamic Nucleus Track the Lead-up to Impulsive Choices.
Pearson, John M; Hickey, Patrick T; Lad, Shivanand P; Platt, Michael L; Turner, Dennis A
2017-01-01
The ability to adaptively minimize not only motor but cognitive symptoms of neurological diseases, such as Parkinson's Disease (PD) and obsessive-compulsive disorder (OCD), is a primary goal of next-generation deep brain stimulation (DBS) devices. On the basis of studies demonstrating a link between beta-band synchronization and severity of motor symptoms in PD, the minimization of beta band activity has been proposed as a potential training target for closed-loop DBS. At present, no comparable signal is known for the impulsive side effects of PD, though multiple studies have implicated theta band activity within the subthalamic nucleus (STN), the site of DBS treatment, in processes of conflict monitoring and countermanding. Here, we address this challenge by recording from multiple independent channels within the STN in a self-paced decision task to test whether these signals carry information sufficient to predict stopping behavior on a trial-by-trial basis. As in previous studies, we found that local field potentials (LFPs) exhibited modulations preceding self-initiated movements, with power ramping across multiple frequencies during the deliberation period. In addition, signals showed phasic changes in power around the time of decision. However, a prospective model that attempted to use these signals to predict decision times showed effects of risk level did not improve with the addition of LFPs as regressors. These findings suggest information tracking the lead-up to impulsive choices is distributed across multiple frequency scales in STN, though current techniques may not possess sufficient signal-to-noise ratios to predict-and thus curb-impulsive behavior on a moment-to-moment basis.
Bentzley, Jessica P.; Tomko, Rachel L.; Gray, Kevin M.
2016-01-01
Background In light of recent progress toward pharmacologic interventions to treat adolescent cannabis use disorder, it is important to consider which adolescent characteristics may be associated with a favorable response to treatment. This study presents secondary analyses from a parent randomized controlled trial of N-acetylcysteine (NAC) in adolescents with cannabis use disorder. We hypothesized high pretreatment impulsivity and medication non-adherence would be associated with reduced abstinence rates. Methods Participants were treatment-seeking adolescents (N = 115) who met criteria for cannabis use disorder and were assessed for pretreatment impulsivity. They received 1200 mg NAC or placebo orally twice daily for 8 weeks. An intent-to-treat analysis using a repeated-measures logistic regression model was used to relate pretreatment impulsivity (Barratt Impulsiveness Scale) and treatment group to abstinence rates, measured by urine cannabinoid tests. To explore mechanisms by which NAC may reduce cannabis use, relationships between impulsivity, adherence, and abstinence were assessed in a second statistical model using data from participants with recorded adherence and urine cannabinoid test results (n = 54). Results In the intent-to-treat analysis, low pretreatment impulsivity, NAC treatment, and negative baseline urine cannabinoid test results independently increased the odds of having negative urine cannabinoid tests during treatment (OR = 2.1, 2.3, 5.3 respectively). In the sample of participants with adherence data (n = 54), adherence tripled the odds of abstinence. Notably, the effect of adherence on abstinence was only observed in the NAC treatment group. Lastly, although the highly impulsive participants had reduced rates of abstinence, highly impulsive individuals adherent to NAC treatment had increased abstinence rates compared to non-adherent individuals. Conclusion Low impulsivity, NAC treatment, medication adherence, and baseline negative cannabinoid testing were associated with increased rates of abstinence in adolescents seeking treatment for cannabis use disorder. Efforts to optimize pharmacotherapy adherence may be particularly crucial for highly impulsive individuals. Understanding and addressing factors, such as impulsivity and adherence, which may affect outcomes, may aid in the successful evaluation and development of potentially promising pharmacotherapies. PMID:26827257
Broadband VHF observations for lightning impulses from a small satellite SOHLA-1 (Maido 1)
NASA Astrophysics Data System (ADS)
Morimoto, T.; Kikuchi, H.; Ushio, T.; Kawasaki, Z.; Hidekazu, H.; Aoki, T.
2009-12-01
Lightning Research Group of Osaka University (LRG-OU) has been developing VHF Broadband Digital Interferometer (DITF) to image precise lightning channels and monitor lightning activity widely. The feature of broadband DITF is its ultrawide bandwidth (from 25MHz to 100MHz) and implicit redundancy for estimating VHF source location. LRG-OU considers an application of the broadband DITF to the spaceborne measurement system and joins the SOHLA (Space Oriented Higashi-Osaka Leading Associate) satellite project. The SOHLA satellite project represents a technology transfer program to expand the range of the space development community in Japan. The objective is to get SMEs (Small and Medium sized manufacturing Enterprises) involved in small space projects and new space technologies. Under the cooperative agreement, JAXA (Japan Aerospace Exploration Agency) intends to contribute to socio-economic development by returning its R&D results to society, and SOHLA tries to revitalize the local economy through the commercialization of versatile small satellites. According to the agreement, JAXA provides SOHLA its technical information on small satellites and other technical assistance for the development of the small satellites, SOHLA-1. The prime objective of the SOHLA-1 program is to realize low-cost and short term development of a microsatellite which utilizes the components and bus technologies of JAXA’s MicroLabSat. SOHLA-1 is a spin-stabilized microsatellite of MicroLabSat heritage (about 50 kg). The spin axis is fixed to inertial reference frame. The spin axis (z-axis) lies in the plane containing the solar direction and the normal to the orbital plane. LRG-OU takes responsibility for a science mission of SOHLA-1. To examine the feasibility of the DITF receiving VHF lightning impulses in space, LRG-OU proposes the BMW (Broadband Measurement of Waveform for VHF Lightning Impulses). BMW consists of a single pair of an antenna, a band-pass filter, an amplifier, and an analog-to-digital converter (ADC) to record broadband VHF pulses in orbit. The waveforms of 100 EM pulses in VHF band emitted from a lightning flash are obtained. Three pairs of BMW with accurate synchronized 3-channel-ADC are needed to realize DITF. From the successful satellite observation like TRMM/LIS, the effectiveness and impact of satellite observations for lightning are obvious. The combination of optical and VHF lightning observations are complimentary each other. ISS/JEM is a candidate platform to realize the simplest DITF and synchronous observations with optical sensors. SOHLA-1 was launched by a HII-A rocket at January 23, 2009 and named Maido-1. Then BMW has worked well and recorded VHF EM waveforms. The development of Maido-1 and its observations results will be presented.
Aguilar, J; Morales-Botello, M L; Foffani, G
2008-01-01
The majority of studies investigating responses of thalamocortical neurons to tactile stimuli have focused on the whisker representation of the rat thalamus: the ventral–posterior–medial nucleus (VPM). To test whether the basic properties of thalamocortical responses to tactile stimuli could be extended to the entire ventrobasal complex, we recorded single neurons from the whisker, forepaw and hindpaw thalamic representations. We performed a systematic analysis of responses to stereotyped tactile stimuli − 500 ms pulses (i.e. ON–OFF stimuli) or 1 ms pulses (i.e. impulsive stimuli) − under two different anesthetics (pentobarbital or urethane). We obtained the following main results: (i) the tuning of cells to ON vs. OFF stimuli displayed a gradient across neurons, so that two-thirds of cells responded more to ON stimuli and one-third responded more to OFF stimuli; (ii) on average, response magnitudes did not differ between ON and OFF stimuli, whereas latencies of response to OFF stimuli were a few milliseconds longer; (iii) latencies of response to ON and OFF stimuli were highly correlated; (iv) responses to impulsive stimuli and ON stimuli showed a strong correlation, whereas the relationship between the responses to impulsive stimuli and OFF stimuli was subtler; (v) unlike ON responses, OFF responses did not decrease when stimuli were moved from the receptive field center to a close location in the excitatory surround. We obtained the same results for hindpaw, forepaw and whisker neurons. Our results support the view of a neurophysiologically homogeneous ventrobasal complex, in which OFF responses participate in the structure of the spatiotemporal receptive field of thalamocortical neurons for tactile stimuli. PMID:18190520
Waliwitiya, Ranil; Belton, Peter; Nicholson, Russell A; Lowenberger, Carl A
2012-02-01
We evaluated the acute toxicities and the physiological effects of plant monoterpenoids (eugenol, pulegone, citronellal and alpha-terpineol) and neuroactive insecticides (malathion, dieldrin and RH3421) on flight muscle impulses (FMI) and wing beat signals (WBS) of the blow fly (Phaenicia sericata). Topically-applied eugenol, pulegone, citronellal, and alpha-terpineol produced neurotoxic symptoms, but were less toxic than malathion, dieldrin, or RH3421. Topical application of eugenol, pulegone, and citronellal reduced spike amplitude in one of the two banks of blow fly dorsolongitudinal flight muscles within 6-8 min, but with citronellal, the amplitude of FMIs reverted to a normal pattern within 1 hr. In contrast to pulegone and citronellal, where impulse frequency remained relatively constant, eugenol caused a gradual increase, then a decline in the frequency of spikes in each muscle bank. Wing beating was blocked permanently within 6-7 min of administering pulegone or citronellal and within 16 mins with eugenol. alpha-Terpineol-treated blow flies could not beat their wings despite normal FMI patterns. The actions of these monoterpenoids on blow fly flight motor patterns are discussed and compared with those of dieldrin, malathion, RH3421, and a variety of other neuroactive substances we have previously investigated in this system. Eugenol, pulegone and citronellal readily penetrate blow fly cuticle and interfere with flight muscle and/or central nervous function. Although there were differences in the effects of these compounds, they mainly depressed flight-associated responses, and acted similarly to compounds that block sodium channels and facilitate GABA action.
Runoff of small rocky headwater catchments: Field observations and hydrological modeling
NASA Astrophysics Data System (ADS)
Gregoretti, C.; Degetto, M.; Bernard, M.; Crucil, G.; Pimazzoni, A.; De Vido, G.; Berti, M.; Simoni, A.; Lanzoni, S.
2016-10-01
In dolomitic headwater catchments, intense rainstorms of short duration produce runoff discharges that often trigger debris flows on the scree slopes at the base of rock cliffs. In order to measure these discharges, we placed a measuring facility at the outlet (elevation 1770 m a.s.l.) of a small, rocky headwater catchment (area ˜0.032 km2, average slope ˜320%) located in the Venetian Dolomites (North Eastern Italian Alps). The facility consists of an approximately rectangular basin, ending with a sharp-crested weir. Six runoff events were recorded in the period 2011-2014, providing a unique opportunity for characterizing the hydrological response of the catchment. The measured hydrographs display impulsive shapes, with an abrupt raise up to the peak, followed by a rapidly decreasing tail, until a nearly constant plateau is eventually reached. This behavior can be simulated by means of a distributed hydrological model if the excess rainfall is determined accurately. We show that using the Soil Conservation Service Curve-Number (SCS-CN) method and assuming a constant routing velocity invariably results in an underestimated peak flow and a delayed peak time. A satisfactory prediction of the impulsive hydrograph shape, including peak value and timing, is obtained only by combining the SCS-CN procedure with a simplified version of the Horton equation, and simulating runoff routing along the channel network through a matched diffusivity kinematic wave model. The robustness of the proposed methodology is tested through a comparison between simulated and observed timings of runoff or debris flow occurrence in two neighboring alpine basins.
Underwater Chaotic Lidar using Blue Laser Diodes
NASA Astrophysics Data System (ADS)
Rumbaugh, Luke K.
The thesis proposes and explores an underwater lidar system architecture based on chaotic modulation of recently introduced, commercially available, low cost blue laser diodes. This approach is experimentally shown to allow accurate underwater impulse response measurements while eliminating the need for several major components typically found in high-performance underwater lidar systems. The proposed approach is to: 1. Generate wideband, noise-like intensity modulation signals using optical chaotic modulation of blue-green laser diodes, and then 2. Use this signal source to develop an underwater chaotic lidar system that uses no electrical signal generator, no electro-optic modulator, no optical frequency doubler, and no large-aperture photodetector. The outcome of this thesis is the demonstration of a new underwater lidar system architecture that could allow high resolution ranging, imaging, and water profiling measurements in turbid water, at a reduced size, weight, power and cost relative to state-of-the-art high-performance underwater lidar sensors. This work also makes contributions to the state of the art in optics, nonlinear dynamics, and underwater sensing by demonstrating for the first time: 1. Wideband noise-like intensity modulation of a blue laser diode using no electrical signal generator or electro-optic modulator. Optical chaotic modulation of a 462 nm blue InGaN laser diode by self-feedback is explored for the first time. The usefulness of the signal to chaotic lidar is evaluated in terms of bandwidth, modulation depth, and autocorrelation peak-to-sidelobe-ratio (PSLR) using both computer and laboratory experiments. In laboratory experiments, the optical feedback technique is shown to be effective in generating wideband, noise-like chaotic signals with strong modulation depth when the diode is operated in an external-cavity dominated state. The modulation signal strength is shown to be limited by the onset of lasing within the diode's internal cavity. The possibility of overcoming this limit by increasing optical feedback strength is discussed. 2. Power scaling in the blue-green spectrum using no optical frequency doubler. Synchronization of two 462 nm blue InGaN laser diodes by bi-directional optical injection is demonstrated for the first time in laboratory experiments. The improvement in chaotic intensity modulation signal strength is demonstrated to be 2.5x over the single-diode case. The signal strength is again shown to be limited by the onset of internal cavity lasing. The synchronized-laser arrangement is shown to be theoretically equivalent to a single-diode scenario in which the optical feedback is amplified by 2x, supporting the idea that increased optical feedback strength can be used to scale optical chaotic modulation of InGaN diodes to high powers. 3. Underwater impulse response measurements using a calibrated chaotic lidar system. An underwater chaotic lidar system using two synchronized diodes as transmitters is demonstrated in laboratory experiments for the first time. Reflective impulse response measurements using the lidar system are made in free space, and in a variety of clear and turbid water conditions, using a quasi-monostatic (i.e. co-located transmitter and receiver) arrangement. A calibration routine is implemented that increases accuracy and instantaneous dynamic range of the impulse response measurement, resulting in a baseline temporal resolution of 750 ps and a PSLR of over 10 dB. The calibrated system is shown to be able to simultaneously measure localized and distributed reflections, and to allow separation of the localized ( i.e. surface and target) reflections from the distributed ( i.e. backscatter) returns in several domains. Accurate range measurement with sub-inch typical error is demonstrated in laboratory water tank tests, which show accurate measurement through >6 feet of turbid water, as limited by the experimental water tank setup. Strong performance to the limit of the setup is shown at dwell times down to 1 mus. 4. Range measurement through turbid water using no large-aperture photodetector. The possibility of using a synchronized optical receiver to make range measurements through an attenuating channel (i.e. turbid water) is tested using two InGaN diodes for the first time. Using a variable optical attenuator to simulate channel attenuation, synchronization is maintained through 30 dB channel attenuation in the current experimental setup. Distance measurements are demonstrated by using the output of only one of the two diodes, suggesting that this method could be used to measure distance between two bi-static (i.e. physically separated), cooperative chaotic lidar systems in some water conditions. This thesis concludes that the proposed approach is a feasible path to a novel high resolution underwater lidar sensor capable of operating in turbid water, which would have significant size, weight, power, and cost reductions because it would not use an electrical signal generator, an electro-optic modulator, or an optical frequency doubler. The work also suggests the possibility of range measurement in a limited range of water conditions using no large-aperture photodetector, most feasibly in a bi-static cooperative arrangement.
Winstanley, Catharine A.; Olausson, Peter; Taylor, Jane R.; Jentsch, J. David
2010-01-01
Drug use disorders are often accompanied by deficits in the capacity to efficiently process reward-related information and to monitor, suppress, or override reward-controlled behavior when goals are in conflict with aversive or immediate outcomes. This emerging deficit in behavioral flexibility and impulse control may be a central component of the progression to addiction, as behavior becomes increasingly driven by drugs and drug-associated cues at the expense of more advantageous activities. Understanding how neural mechanisms implicated in impulse control are affected by addictive drugs may therefore prove a useful strategy in the search for new treatment options. Animal models of impulsivity and addiction could make a significant contribution to this endeavor. Here, some of the more common behavioral paradigms used to measure different aspects of impulsivity across species are outlined, and the importance of the response to reward-paired cues in such paradigms is discussed. Naturally occurring differences in forms of impulsivity have been found to be predictive of future drug self-administration, but drug exposure can also increase impulsive responding. Such data are in keeping with the suggestion that impulsivity may contribute to multiple stages within the spiral of addiction. From a neurobiological perspective, converging evidence from rat, monkey, and human studies suggest that compromised functioning within the orbitofrontal cortex may critically contribute to the cognitive sequelae of drug abuse. Changes in gene transcription and protein expression within this region may provide insight into the mechanism underlying drug-induced cortical hypofunction, reflecting new molecular targets for the treatment of uncontrolled drug-seeking and drug-taking behavior. PMID:20491734
NASA Technical Reports Server (NTRS)
Hall, G. F.
1975-01-01
A numerical analysis was developed to determine the airloads on helicopter rotors operating under near-hovering flight conditions capable of producing impulsive noise. A computer program was written in which the solutions for the rotor tip vortex geometry, inflow, aeroelastic response, and airloads are solved in a coupled manner at sequential time steps, with or without the influence of an imposed steady ambient wind or transient gust. The program was developed for future applications in which predicted airloads would be incorporated in an acoustics analysis to attempt to predict and analyze impulsive noise (blade slap). The analysis was applied to a hovering full-scale rotor for which impulsive noise was recorded in the presence of ambient wind. The predicted tip vortex coordinates are in reasonable agreement with the test data, and the blade airload solutions converged to a periodic behavior for an imposed steady ambient wind conditions.
THz impulse radar for biomedical sensing: nonlinear system behavior
NASA Astrophysics Data System (ADS)
Brown, E. R.; Sung, Shijun; Grundfest, W. S.; Taylor, Z. D.
2014-03-01
The THz impulse radar is an "RF-inspired" sensor system that has performed remarkably well since its initial development nearly six years ago. It was developed for ex vivo skin-burn imaging, and has since shown great promise in the sensitive detection of hydration levels in soft tissues of several types, such as in vivo corneal and burn samples. An intriguing aspect of the impulse radar is its hybrid architecture which combines the high-peak-power of photoconductive switches with the high-responsivity and -bandwidth (RF and video) of Schottky-diode rectifiers. The result is a very sensitive sensor system in which the post-detection signal-to-noise ratio depends super-linearly on average signal power up to a point where the diode is "turned on" in the forward direction, and then behaves quasi-linearly beyond that point. This paper reports the first nonlinear systems analysis done on the impulse radar using MATLAB.
Astragaloside IV inhibits apoptotic cell death in the guinea pig cochlea exposed to impulse noise.
Xiong, Min; He, Qinglian; Lai, Huangwen; Wang, Jian
2012-05-01
The results suggest that the beneficial effect of astragaloside IV on impulse noise-induced hearing loss may be due to its ability to inhibit reactive oxygen species (ROS) and prevent apoptosis. Astragaloside IV is the major active constituent of Astragalus membranaceus, which has been widely used for the treatment of diseases in China for its antioxidant properties. ROS and apoptosis are involved in damage induced by impulse noise trauma. We aimed to investigate if the beneficial effects of astragaloside IV on cochlea exposed to impulse noise are associated with the inhibition of ROS and the decrease in apoptosis. 4-Hydroxynonenal (HNE) was used as the marker of ROS. Active-caspase-3 (cas-3) served as a marker for apoptosis. 4HNE and cas-3 were determined immunohistochemically. Guinea pigs in the experimental group were administered astragaloside IV intragastrically. Auditory thresholds were assessed by sound-evoked auditory brainstem response (ABR) 72 h before and after exposure to impulse noise. The results showed that astragaloside IV significantly reduced ABR deficits, and decreased the expression of ROS and cas-3.
Vinci, Christine; Peltier, MacKenzie; Waldo, Krystal; Kinsaul, Jessica; Shah, Sonia; Coffey, Scott F; Copeland, Amy L
2016-08-30
Mindfulness-based strategies show promise for targeting the construct of impulsivity and associated variables among problematic alcohol users. This study examined the moderating role of intervention (mindfulness vs relaxation vs control) on trait impulsivity and three outcomes examined post-intervention (negative affect, positive affect, and urge to drink) among 207 college students with levels of at-risk drinking. Moderation analyses revealed that the relationship between baseline impulsivity and the primary outcomes significantly differed for participants who underwent the mindfulness versus relaxation interventions. Notably, simple slope analyses revealed that negative urgency was positively associated with urge to drink following the mindfulness intervention. Among participants who underwent the relaxation intervention, analysis of simple slopes revealed that negative urgency was negatively associated with urge to drink, while positive urgency was positively associated with positive affect following the relaxation intervention. Findings suggest that level (low vs high) and subscale of impulsivity matter with regard to how a participant will respond to a mindfulness versus relaxation intervention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.