Sample records for channel network geometry

  1. The Role of Surface Water for the Branching Geometry of Mars' Channel Networks

    NASA Astrophysics Data System (ADS)

    Seybold, H. F.; Rothman, D.; Kirchner, J. W.

    2016-12-01

    The controversy over the origin of Mars' channel networks is almost as old as their discovery 150 years ago. In recent decades, new Mars probe missions have revealed detailed network structures, and new studies suggest that Mars once had an active hydrologic cycle. But how this water flowed and how it could have carved these huge channel networks remains unclear. A recent analysis of high-resolution data for the Continental United States suggests that climate leaves a characteristic imprint in the branching geometry of stream networks: arid regions dominated by overland or near-surface flows have much narrower branching angles than humid regions with greater groundwater recharge. Based on this result we analyze the channel networks of Mars, and find that their geometry resembles those created by near-surface and overland flows on Earth. This result gives additional support to the hypothesis that Mars once had a more active hydrologic cycle, with liquid water flowing over its surface.

  2. Self-organization of linear nanochannel networks

    NASA Astrophysics Data System (ADS)

    Annabattula, R. K.; Veenstra, J. M.; Mei, Y. F.; Schmidt, O. G.; Onck, P. R.

    2010-06-01

    A theoretical study has been conducted to explore the mechanics of self-organizing channel networks with dimensions in the submicron range and nanorange. The channels form by the partial release and bond back of prestressed thin films. In the release phase, the film spontaneously buckles into wrinkles of a certain wavelength, followed by a bond-back phase in which the final channel geometry is established through cohesive interface attractions. Results are presented in terms of the channel spacing, height, and width as a function of the film stiffness, thickness, eigenstrain, etch width, and interface energy. We have identified two dimensionless parameters that fully quantify the network assembly, showing excellent agreement with experiments. Our results provide valuable insight for the design of submicron and nanoscale channel networks with specific geometries.

  3. Overland flow erosion inferred from Martian channel network geometry

    NASA Astrophysics Data System (ADS)

    Seybold, Hansjörg; Kirchner, James

    2016-04-01

    The controversy about the origin of Mars' channel networks is almost as old as their discovery 150 years ago. Over the last few decades, new Mars probes have revealed more detailed structures in Martian The controversy about the origin of Mars' channel networks is almost as old as their discovery 150 years ago. Over the last few decades, new Mars probes have revealed more detailed structures in Martian drainage networks, and new studies suggest that Mars once had large volumes of surface water. But how this water flowed, and how it could have carved the channels, remains unclear. Simple scaling arguments show that networks formed by similar mechanisms should have similar branching angles on Earth and Mars, suggesting that Earth analogues can be informative here. A recent analysis of high-resolution data for the continental United States shows that climate leaves a characteristic imprint in the branching geometry of stream networks. Networks growing in humid regions have an average branching angle of α = 2π/5 = 72° [1], which is characteristic of network growth by groundwater sapping [2]. Networks in arid regions, where overland flow erosion is more dominant, show much smaller branching angles. Here we show that the channel networks on Mars have branching angles that resemble those created by surficial flows on Earth. This result implies that the growth of Martian channel networks was dominated by near-surface flow, and suggests that deeper infiltration was inhibited, potentially by permafrost or by impermeable weathered soils. [1] Climate's Watermark in the Geometry of River Networks, Seybold et al.; under review [2] Ramification of stream networks, Devauchelle et al.; PNAS (2012)

  4. Salt marsh vegetation promotes efficient tidal channel networks

    PubMed Central

    Kearney, William S.; Fagherazzi, Sergio

    2016-01-01

    Tidal channel networks mediate the exchange of water, nutrients and sediment between an estuary and marshes. Biology feeds back into channel morphodynamics through the influence of vegetation on both flow and the cohesive strength of channel banks. Determining how vegetation affects channel networks is essential in understanding the biological functioning of intertidal ecosystems and their ecosystem services. However, the processes that control the formation of an efficient tidal channel network remain unclear. Here we compare the channel networks of vegetated salt marshes in Massachusetts and the Venice Lagoon to unvegetated systems in the arid environments of the Gulf of California and Yemen. We find that the unvegetated systems are dissected by less efficient channel networks than the vegetated salt marshes. These differences in network geometry reflect differences in the branching and meandering of the channels in the network, characteristics that are related to the density of vegetation on the marsh. PMID:27430165

  5. Development of a general method for obtaining the geometry of microfluidic networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razavi, Mohammad Sayed, E-mail: m.sayedrazavi@gmail.com; Salimpour, M. R.; Shirani, Ebrahim

    2014-01-15

    In the present study, a general method for geometry of fluidic networks is developed with emphasis on pressure-driven flows in the microfluidic applications. The design method is based on general features of network's geometry such as cross-sectional area and length of channels. Also, the method is applicable to various cross-sectional shapes such as circular, rectangular, triangular, and trapezoidal cross sections. Using constructal theory, the flow resistance, energy loss and performance of the network are optimized. Also, by this method, practical design strategies for the fabrication of microfluidic networks can be improved. The design method enables rapid prediction of fluid flowmore » in the complex network of channels and is very useful for improving proper miniaturization and integration of microfluidic networks. Minimization of flow resistance of the network of channels leads to universal constants for consecutive cross-sectional areas and lengths. For a Y-shaped network, the optimal ratios of consecutive cross-section areas (A{sub i+1}/A{sub i}) and lengths (L{sub i+1}/L{sub i}) are obtained as A{sub i+1}/A{sub i} = 2{sup −2/3} and L{sub i+1}/L{sub i} = 2{sup −1/3}, respectively. It is shown that energy loss in the network is proportional to the volume of network. It is also seen when the number of channels is increased both the hydraulic resistance and the volume occupied by the network are increased in a similar manner. Furthermore, the method offers that fabrication of multi-depth and multi-width microchannels should be considered as an integral part of designing procedures. Finally, numerical simulations for the fluid flow in the network have been performed and results show very good agreement with analytic results.« less

  6. Growth of a Dendritic Channel Network (Invited)

    NASA Astrophysics Data System (ADS)

    Rothman, D.; Abrams, D. M.; Devauchelle, O.; Petroff, A. P.; Lobkovsky, A. E.; Straub, K. M.; McElroy, B.; Mohrig, D. C.; Kudrolli, A.

    2009-12-01

    Dendritic channel networks are a ubiquitous feature of Earth's topography. A half century of work has detailed their scale-invariant geometry. But relatively little is known about how such networks grow, especially in natural settings at geologic time scales. This talk addresses the growth of a particularly simple class of channel networks: those which drain groundwater. We focus on a pristine field site in the Florida Panhandle, in which channels extending for kilometers have been incised vertically through tens of meters of ancient beach sands. We first show how the flow of subsurface water interacts with the planform geometry of the network. Ground-penetrating radar images of the water table shape near a highly-ramified section of the network provide a qualitative view of groundwater focusing. Noting that the water table represents a balance between water input via rain and water flowing into the channel network, we solve for the steady state shape of the water table around the entire network and the associated water fluxes. Comparison of predicted and measured fluxes shows that the ramified structure of the Florida network is consistent with uniformly forced unstable growth through a homogeneous medium. In other words, the dendritic pattern results intrinsically from growth dynamics rather than geologic heterogeneity. We then use these observations to show that the growth of groundwater-driven networks can be described by two linear response laws. Remarkably, one of these growth laws is reversible, which allows us to reconstruct network history and estimate network age. A particularly striking feature of the Florida network is the existence of a characteristic length scale between channels. Our theory predicts how this length scale evolves, thereby linking network growth to geometric form. Reference: D. M. Abrams, A. E. Lobkovsky, A. P. Petroff, K. M. Straub, B. McElroy, D. C. Mohrig, A. Kudrolli, and D. H. Rothman,, Growth laws for channel networks incised by groundwater flow, Nature Geoscience, v. 2, 193-196, March 2009.

  7. Emancipating traditional channel network types: quantification of topology and geometry, and relation to geologic boundary conditions

    NASA Astrophysics Data System (ADS)

    Temme, A.; Langston, A. L.

    2017-12-01

    Traditional classification of channel networks is helpful for qualitative geologic and geomorphic inference. For instance, a dendritic network indicates no strong lithological control on where channels flow. However, an approach where channel network structure is quantified, is required to be able to indicate for instance how increasing levels of lithological control lead, gradually or suddenly, to a trellis-type drainage network Our contribution aims to aid this transition to a quantitative analysis of channel networks. First, to establish the range of typically occurring channel network properties, we selected 30 examples of traditional drainage network types from around the world. For each of these, we calculated a set of topological and geometric properties, such as total drainage length, average length of a channel segment and the average angle of intersection of channel segments. A decision tree was used to formalize the relation between these newly quantified properties on the one hand, and traditional network types on the other hand. Then, to explore how variations in lithological and geomorphic boundary conditions affect channel network structure, we ran a set of experiments with landscape evolution model Landlab. For each simulated channel network, the same set of topological and geometric properties was calculated as for the 30 real-world channel networks. The latter were used for a first, visual evaluation to find out whether a simulated network that looked, for instance, rectangular, also had the same set of properties as real-world rectangular channel networks. Ultimately, the relation between these properties and the imposed lithological and geomorphic boundary conditions was explored using simple bivariate statistics.

  8. Airborne radar imaging of subaqueous channel evolution in Wax Lake Delta, Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Shaw, John B.; Ayoub, Francois; Jones, Cathleen E.; Lamb, Michael P.; Holt, Benjamin; Wagner, R. Wayne; Coffey, Thomas S.; Chadwick, J. Austin; Mohrig, David

    2016-05-01

    Shallow coastal regions are among the fastest evolving landscapes but are notoriously difficult to measure with high spatiotemporal resolution. Using Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data, we demonstrate that high signal-to-noise L band synthetic aperture radar (SAR) can reveal subaqueous channel networks at the distal ends of river deltas. Using 27 UAVSAR images collected between 2009 and 2015 from the Wax Lake Delta in coastal Louisiana, USA, we show that under normal tidal conditions, planform geometry of the distributary channel network is frequently resolved in the UAVSAR images, including ~700 m of seaward network extension over 5 years for one channel. UAVSAR also reveals regions of subaerial and subaqueous vegetation, streaklines of biogenic surfactants, and what appear to be small distributary channels aliased by the survey grid, all illustrating the value of fine resolution, low noise, L band SAR for mapping the nearshore subaqueous delta channel network.

  9. Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Mengjie; Xiao, Feng; Johnson-Paben, Rebecca

    2012-01-01

    The objective of this study was to create a microfluidic model of complex porous media for studying single and multiphase flows. Most experimental porous media models consist of periodic geometries that lend themselves to comparison with well-developed theoretical predictions. However, most real porous media such as geological formations and biological tissues contain a degree of randomness and complexity that is not adequately represented in periodic geometries. To design an experimental tool to study these complex geometries, we created microfluidic models of random homogeneous and heterogeneous networks based on Voronoi tessellations. These networks consisted of approximately 600 grains separated by amore » highly connected network of channels with an overall porosity of 0.11 0.20. We found that introducing heterogeneities in the form of large cavities within the network changed the permeability in a way that cannot be predicted by the classical porosity-permeability relationship known as the Kozeny equation. The values of permeability found in experiments were in excellent agreement with those calculated from three-dimensional lattice Boltzmann simulations. In two-phase flow experiments of oil displacement with water we found that the surface energy of channel walls determined the pattern of water invasion, while the network topology determined the residual oil saturation. These results suggest that complex network topologies lead to fluid flow behavior that is difficult to predict based solely on porosity. The microfluidic models developed in this study using a novel geometry generation algorithm based on Voronoi tessellation are a new experimental tool for studying fluid and solute transport problems within complex porous media.« less

  10. Development & Characterization of Multifunctional Microfluidic Materials

    NASA Astrophysics Data System (ADS)

    Ucar, Ahmet Burak

    The field of microfluidics has been mostly investigated for miniaturized lab on a chip devices for analytical and clinical applications. However, there is an emerging class of "smart" microfluidic materials, combining microfluidics with soft polymers to yield new functionalities. The best inspiration for such materials found in nature is skin, whose functions are maintained and controlled by a vascular "microfluidic" network. We report here the development and characterization of a few new classes of microfluidic materials. First, we introduced microfluidic materials that can change their stiffness on demand. These materials were based on an engineered microchannel network embedded into a matrix of polydimethylsiloxane (PDMS), whose channels were filled with a liquid photoresist (SU- 8). The elastomer filled with the photoresist was initially soft. The materials were shaped into a desired geometry and then exposed to UV-light. Once photocured, the material preserved the defined shape and it could be bent, twisted or stretched with a very high recoverable strain. As soon as the external force was removed the material returned back to its predefined shape. Thus, the polymerized SU-8 acted as the 'endoskeleton' of the microfluidic network, which drastically increased the composite's elastic and bending moduli. Second, we demonstrated a class of simple and versatile soft microfluidic materials that can be turned optically transparent or colored on demand. These materials were made in the form of flexible sheets containing a microchannel network embedded in PDMS, similar to the photocurable materials. However, this time the channels were filled with a glycerolwater mixture, whose refractive index was matched with that of the PDMS matrix. By pumping such dye solutions into the channel network and consecutively replacing the medium, we showed that we can control the material's color and light transmittance in the visible and near-infrared regions, which can be used for developing 'smart' windows and heat management. To better design new color changing elastomers, we investigated the role of the network geometry on liquid replacement efficiency with the aid of a multiphysics modeling and simulation software package, COMSOL. We simulated the liquid flow in various network geometries. Serpentine, parallel channel and lattice networks, as well as their tapered versions were compared. The comparison criteria were based on rapid and uniform liquid replacement with the least amount of dye/liquid required, for which we set multiple constraints such as constant inlet pressure or total channel area. We demonstrated that the tapered lattice type network provided the most rapid and uniform replacement with minimal liquid waste. Next, we designed a simple and inexpensive liquid dispensing microfluidic material which does not require complex micromachining techniques or automated actuators. It consisted of only a PDMS matrix with embedded chambers and channels. 'Pores/slits' were made on the surface and the liquid was released by contact on the dispensing surface of the material. We varied the network design, geometry, dimension, slit shape and length, and tested the material's liquid release performance. Promising preliminary results were obtained but for an end product with repeatable and reproducible performance, both material fabrication and characterization need to be improved further. Finally, we describe an alternative material/method for the fabrication of microfluidic materials. We aimed to replace the conventional fabrication material PDMS with Polyethylene (PE) sheets. The sheets were as transparent and flexible as PDMS, and also thinner. Channel patterns were drawn with a polymer solution of PolyVinylAlcohol (PVA), which is immiscible with PE, and captured in between the two PE sheets. After fusing the PE sheets on a hot press, PVA was washed off with water, so that the 'microfluidic channels' were successfully created. The produced channel widths were ˜0.7-0.8 mm. This novel method eliminates the need for soft lithography and master fabrication, thus decreases the cost and time of the material fabrication.

  11. Controls on stream network branching angles, tested using landscape evolution models

    NASA Astrophysics Data System (ADS)

    Theodoratos, Nikolaos; Seybold, Hansjörg; Kirchner, James W.

    2016-04-01

    Stream networks are striking landscape features. The topology of stream networks has been extensively studied, but their geometry has received limited attention. Analyses of nearly 1 million stream junctions across the contiguous United States [1] have revealed that stream branching angles vary systematically with climate and topographic gradients at continental scale. Stream networks in areas with wet climates and gentle slopes tend to have wider branching angles than in areas with dry climates or steep slopes, but the mechanistic linkages underlying these empirical correlations remain unclear. Under different climatic and topographic conditions different runoff generation mechanisms and, consequently, transport processes are dominant. Models [2] and experiments [3] have shown that the relative strength of channel incision versus diffusive hillslope transport controls the spacing between valleys, an important geometric property of stream networks. We used landscape evolution models (LEMs) to test whether similar factors control network branching angles as well. We simulated stream networks using a wide range of hillslope diffusion and channel incision parameters. The resulting branching angles vary systematically with the parameters, but by much less than the regional variability in real-world stream networks. Our results suggest that the competition between hillslope and channeling processes influences branching angles, but that other mechanisms may also be needed to account for the variability in branching angles observed in the field. References: [1] H. Seybold, D. H. Rothman, and J. W. Kirchner, 2015, Climate's watermark in the geometry of river networks, Submitted manuscript. [2] J. T. Perron, W. E. Dietrich, and J. W. Kirchner, 2008, Controls on the spacing of first-order valleys, Journal of Geophysical Research, 113, F04016. [3] K. E. Sweeney, J. J. Roering, and C. Ellis, 2015, Experimental evidence for hillslope control of landscape scale, Science, 349(6243), 51-53.

  12. Channel-Island Connectivity Affects Water Exposure Time Distributions in a Coastal River Delta

    NASA Astrophysics Data System (ADS)

    Hiatt, Matthew; Castañeda-Moya, Edward; Twilley, Robert; Hodges, Ben R.; Passalacqua, Paola

    2018-03-01

    The exposure time is a water transport time scale defined as the cumulative amount of time a water parcel spends in the domain of interest regardless of the number of excursions from the domain. Transport time scales are often used to characterize the nutrient removal potential of aquatic systems, but exposure time distribution estimates are scarce for deltaic systems. Here we analyze the controls on exposure time distributions using a hydrodynamic model in two domains: the Wax Lake delta in Louisiana, USA, and an idealized channel-island complex. In particular, we study the effects of river discharge, vegetation, network geometry, and tides and use a simple model for the fractional removal of nitrate. In both domains, we find that channel-island hydrological connectivity significantly affects exposure time distributions and nitrate removal. The relative contributions of the island and channel portions of the delta to the overall exposure time distribution are controlled by island vegetation roughness and network geometry. Tides have a limited effect on the system's exposure time distribution but can introduce significant spatial variability in local exposure times. The median exposure time for the WLD model is 10 h under the conditions tested and water transport within the islands contributes to 37-50% of the network-scale exposure time distribution and 52-73% of the modeled nitrate removal, indicating that islands may account for the majority of nitrate removal in river deltas.

  13. Reconstructing paleo-discharge from geometries of fluvial sinuous ridges on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Hayden, A.; Lamb, M. P.; Mohrig, D. C.; Williams, R. M. E.; Myrow, P.; Ewing, R. C.; Cardenas, B. T.; Findlay, C. P., III

    2017-12-01

    Sinuous, branching networks of topographic ridges resembling river networks are common across Mars, and show promise for quantifying ancient martian surface hydrology. There are two leading formation mechanisms for ridges with a fluvial origin. Inverted channels are ridges that represent casts (e.g., due to lava fill) of relict river channel topography, whereas exhumed channel deposits are eroded remnants of a more extensive fluvial deposit, such as a channel belt. The inverted channel model is often assumed on Mars; however, we currently lack the ability to distinguish these ridge formation mechanisms, motivating the need for Earth-analog study. To address this issue, we studied the extensive networks of sinuous ridges in the Ebro basin of northeast Spain. The Ebro ridges stand 3-15 meters above the surrounding plains and are capped by a cliff-forming sandstone unit 3-10 meters thick and 20-50 meters in breadth. The caprock sandstone bodies contain bar-scale cross stratification, point-bar deposits, levee deposits, and lenses of mudstone, indicating that these are channel-belt deposits, rather than casts of channels formed from lateral channel migration, avulsion and reoccupation. In plan view, ridges form segments branching outward to the north resembling a distributary network; however, crosscutting relationships indicate that ridges cross at different stratigraphic levels. Thus, the apparent network in planview reflects non-uniform exhumation of channel-belt deposits from multiple stratigraphic positions, rather than an inverted coeval river network. As compared to the inverted channel model, exhumed fluvial deposits indicate persistent fluvial activity over geologic timescales, indicating the potential for long-lived surface water on ancient Mars.

  14. Congruent Bifurcation Angles in River Delta and Tributary Channel Networks

    NASA Astrophysics Data System (ADS)

    Coffey, Thomas S.; Shaw, John B.

    2017-11-01

    We show that distributary channels on river deltas exhibit a mean bifurcation angle that can be understood using theory developed in tributary channel networks. In certain cases, tributary network bifurcation geometries have been demonstrated to be controlled by diffusive groundwater flow feeding incipient bifurcations, producing a characteristic angle of 72∘. We measured 25 unique distributary bifurcations in an experimental delta and 197 bifurcations in 10 natural deltas, yielding a mean angle of 70.4∘±2.6∘ (95% confidence interval) for field-scale deltas and a mean angle of 68.3∘±8.7∘ for the experimental delta, consistent with this theoretical prediction. The bifurcation angle holds for small scales relative to channel width length scales. Furthermore, the experimental data show that the mean angle is 72∘ immediately after bifurcation initiation and remains relatively constant over significant time scales. Although distributary networks do not mirror tributary networks perfectly, the similar control and expression of bifurcation angles suggests that additional morphodynamic insight may be gained from further comparative study.

  15. Geomorphological and hydrological implications of a given hydraulic geometry relationship, beyond the power-law

    NASA Astrophysics Data System (ADS)

    Kim, JongChun; Paik, Kyungrock

    2015-04-01

    Channel geometry and hydraulic characteristics of a given river network, i.e., spatio-temporal variability of width, depth, and velocity, can be described as power functional relationships of flow discharge, named 'hydraulic geometry' (Leopold and Maddock, 1953). Many studies have focused on the implication of this power-law itself, i.e., self-similarity, and accordingly its exponents. Coefficients of the power functional relationships, on the contrary, have received little attention. They are often regarded as empirical constants, determined by 'best fitting' to the power-law without significant scientific implications. Here, we investigate and claim that power-law coefficients of hydraulic geometry relationships carry vital information of a given river system. We approach the given problem on the basis of 'basin hydraulic geometry' formulation (Stall and Fok, 1968) which decomposes power-law coefficients into more elementary constants. The linkage between classical power-law relationship (Leopold and Maddock, 1953) and the basin hydraulic geometry is provided by Paik and Kumar (2004). On the basis of this earlier study, it can be shown that coefficients and exponents of power-law hydraulic geometry are interrelated. In this sense, we argue that more elementary constants that constitute both exponents and coefficients carry important messages. In this presentation, we will demonstrate how these elementary constants vary over a wide range of catchments provided from Stall and Fok (1968) and Stall and Yang (1970). Findings of this study can provide new insights on fundamental understanding about hydraulic geometry relationships. Further, we expect that this understanding can help interpretation of hydraulic geometry relationship in the context of flood propagation through a river system as well. Keywords: Hydraulic geometry; Power-law; River network References Leopold, L. B., & Maddock, T. J. (1953). The hydraulic geometry of stream channels and some physiographic implications. U. S. Geological Survey Professional Paper, 252. Paik, K., & Kumar, P. (2004). Hydraulic geometry and the nonlinearity of the network instantaneous response, Water Resource Research, 40, W03602. Stall, J. B., & Fok, Y. S. (1968). Hydraulic geometry of Illinois streams. University of Illinois Water Resources Center Research Report, 15. Stall, J. B., & Yang, C. T. (1970). Hydraulic geometry of 12 selected stream systems of the United States. University of Illinois Water Resources Center Research Report, 32.

  16. Quantitative measurement of channel-block hydraulic interactions by experimental saturation of a large, natural, fissured rock mass.

    PubMed

    Guglielmi, Y; Mudry, J

    2001-01-01

    The hydrodynamic behavior of fissured media relies on the relationships between a few very conductive fractures (channels) and the remaining low-conductivity fractures and matrix (blocks). We made a quantitative measurement of those relationships and their effect on water drainage and storage in a 19,000 m3 natural reservoir consisting of karstified limestones. This reservoir was artificially saturated with water by closing a water gate on the main outlet during a varying time (delta t) fixed by the operator. The water gate was completely or partly closed until the water pressure reached a particular specified value. If the water gate was left completely closed long enough, the water pressure was fixed by the elevation of temporary outlets at the site boundaries. The water elevation within the reservoir was monitored by means of pressure cells located on single fractures representative of the bedding plane and the two families of fractures of the massif network. The comparison of pressure variations with the network geometry allows us to identify a typical double permeability characterized by a few very conductive channels along 10 vertical faults. These channels limit blocks consisting of low-conductivity bedding planes and a rather impervious matrix. Depending on the closure interval, delta t, of the water gate, the total volume of water stored in the reservoir can vary from 0.8 m3 (delta t = 5 minutes) to 18.6 m3 (delta t = 2 days). Such a variance of storage versus closure time is explained by the reservoir's double permeability that is characterized by blocks that saturate much more slowly than channels. If plotted versus time, this injected volume fits a power relationship, according to the saturation state of the blocks. In less than 34 minutes, storage is close to zero in the blocks and to 1.6 to 2 m3 in the channels. For closing times shorter than 1 hour, only 1% of the volume that flows in the channels is stored into the blocks. Depending on the water pressure and for a given delta t = 3000 minutes, the volume of water stored is controlled by the geometry of the joint network and of the aquifer boundaries. Such an experiment shows that the flow is concentrated in about 10% of the fractured network (channels). The water storage that takes place in the 90% remaining fractures (blocks) depends mainly on time during which pressure remains high into the 10% channels. The accurate modeling of such typical double-permeability media needs a careful study of the geometry of the channels whose narrowings modify the flow and induce dam effects that maintain a high pressure gradient with surrounding blocks.

  17. From Fractal Trees to Deltaic Networks

    NASA Astrophysics Data System (ADS)

    Cazanacli, D.; Wolinsky, M. A.; Sylvester, Z.; Cantelli, A.; Paola, C.

    2013-12-01

    Geometric networks that capture many aspects of natural deltas can be constructed from simple concepts from graph theory and normal probability distributions. Fractal trees with symmetrical geometries are the result of replicating two simple geometric elements, line segments whose lengths decrease and bifurcation angles that are commonly held constant. Branches could also have a thickness, which in the case of natural distributary systems is the equivalent of channel width. In river- or wave-dominated natural deltas, the channel width is a function of discharge. When normal variations around the mean values for length, bifurcating angles, and discharge are applied, along with either pruning of 'clashing' branches or merging (equivalent to channel confluence), fractal trees start resembling natural deltaic networks, except that the resulting channels are unnaturally straight. Introducing a bifurcation probability fewer, naturally curved channels are obtained. If there is no bifurcation, the direction of each new segment depends on the direction the previous segment upstream (correlated random walk) and, to a lesser extent, on a general direction of growth (directional bias). When bifurcation occurs, the resulting two directions also depend on the bifurcation angle and the discharge split proportions, with the dominant branch following the direction of the upstream parent channel closely. The bifurcation probability controls the channel density and, in conjunction with the variability of the directional angles, the overall curvature of the channels. The growth of the network in effect is associated with net delta progradation. The overall shape and shape evolution of the delta depend mainly on the bifurcation angle average size and angle variability coupled with the degree of dominant direction dependency (bias). The proposed algorithm demonstrates how, based on only a few simple rules, a wide variety of channel networks resembling natural deltas, can be replicated. Network Example

  18. Development and application of hydraulic geometry equations for tidal channel restoration in Atlantic Canada

    NASA Astrophysics Data System (ADS)

    Graham, J.; van Proosdij, D.; Bowron, T.

    2017-12-01

    Tidal wetlands play a key role in our environment, particularly in the face of climate change and rising sea levels. Successful restoration of these coastal habitats requires a good understanding of the hydrology and morphology of the site. In Atlantic Canada, restoration design must consider significant variation in tidal range (1 to 16 m), sediment supply (50-70,000 mg/L) and winter conditions. In 2012 ground surveys, aerial photos and digital terrain data were used to conduct a morphometric analysis of representative tidal channels and to establish regional hydraulic geometry relationships to aid in restoration design. Channel morphology was strongly related to freshwater discharge and channel order while drainage density, channel length, and sinuosity were related to site history and maturity. Five years after the initial study, two restored salt marshes have been analyzed to assess the validity of the equations. At both marshes, tidal channels were excavated and erosion/accretion tracked for five years following restoration. Channels were found to experience rapid erosion in the first 2 years following restoration but to stabilize with dimensions on par with those predicted. Furthermore, both sites rapidly developed hybrid creek networks beyond the primary excavated channels when allowed to self design. The methodology has been used to design tidal channels for 2 additional sites. Although these sites have not been restored at present, hydrodynamic modeling supported channel dimension predictions, with acceptable in-channel velocities and flood extents simulated in the model. The authors conclude that the use of regional hydraulic geometry equations have been effective in salt marsh restoration design in Atlantic Canada, particularly when used in conjunction with other techniques such as hydrodynamic modeling and analysis of historic conditions.

  19. Dynamic self-assembly and directed flow of rotating colloids in microchannels

    NASA Astrophysics Data System (ADS)

    Götze, Ingo O.; Gompper, Gerhard

    2011-09-01

    Nonequilibrium structure formation and dynamics in suspensions of superparamagnetic colloids driven by an external rotating magnetic field are studied by particle-based mesoscale hydrodynamics simulations in confined geometry. We address the fundamental question how the rotation of the colloids about their own axes can be converted into a translational motion by breaking the symmetry of the confining geometry. We study a two-dimensional system of colloids with short-range repulsive interactions, which mimics flow in shallow microchannels. In straight channels, we observe a two-way traffic but—for symmetry reasons—no net transport. However, by keeping some colloids fixed near one of the two walls, net transport can be achieved. This approach allows the control and switchability of the flow in complex microchannel networks. A minimal geometry that fulfills the requirement of broken symmetry are ring channels. We determine the translational velocity of the spinning colloids and study its dependence on the channel width for various median radii. We conclude that spinning colloids present a promising alternative for flow generation and control in microfluidic devices.

  20. A network model for characterizing brine channels in sea ice

    NASA Astrophysics Data System (ADS)

    Lieblappen, Ross M.; Kumar, Deip D.; Pauls, Scott D.; Obbard, Rachel W.

    2018-03-01

    The brine pore space in sea ice can form complex connected structures whose geometry is critical in the governance of important physical transport processes between the ocean, sea ice, and surface. Recent advances in three-dimensional imaging using X-ray micro-computed tomography have enabled the visualization and quantification of the brine network morphology and variability. Using imaging of first-year sea ice samples at in situ temperatures, we create a new mathematical network model to characterize the topology and connectivity of the brine channels. This model provides a statistical framework where we can characterize the pore networks via two parameters, depth and temperature, for use in dynamical sea ice models. Our approach advances the quantification of brine connectivity in sea ice, which can help investigations of bulk physical properties, such as fluid permeability, that are key in both global and regional sea ice models.

  1. Paleo-hydraulic Reconstructions of Topographically Inverted River Deposits on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Hayden, A.; Lamb, M. P.; Fischer, W. W.; Ewing, R. C.; McElroy, B. J.

    2015-12-01

    River deposits are one of the keys to understanding the history of flowing water and sediment on Earth and Mars. Deposits of some ancient Martian rivers have been topographically inverted resulting in sinuous ridges visible from orbit. However, it is unclear what aspects of the fluvial deposits these ridges represent, so reconstructing paleo-hydraulics from ridge geometry is complicated. Most workers have assumed that ridges represent casts of paleo-river channels, such that ridge widths and slopes, for example, can be proxies for river widths and slopes at some instant in time. Alternatively, ridges might reflect differential erosion of extensive channel bodies, and therefore preserve a rich record of channel conditions and paleoenvironment over time. To explore these hypotheses, we examined well exposed inverted river deposits in the Jurassic Morrison and Early Cretaceous Cedar Mountain Formations across the San Rafael Swell of central Utah. We mapped features on foot and by UAV, measured stratigraphic sections and sedimentary structures to constrain deposit architecture and river paleo-hydraulics, and used field observations and drainage network analyses to constrain recent erosion. Our work partly confirms earlier work in that the local trend of the ridge axis generally parallels paleo-flow indicators. However, ridge relief is much greater than reconstructed channel depths, and ridge widths vary from zero to several times the reconstructed channel width. Ridges instead appear to record a rich history of channel lateral migration, floodplain deposition, and soil development over significant time. The ridge network is disjointed owing to active modern fluvial incision and scarp retreat. Our results suggest that ridge geometry alone contains limited quantitative information about paleo-rivers, and that stratigraphic sections and observations of sedimentary structures within ridge-forming deposits are necessary to constrain ancient river systems on Mars.

  2. Sand transport, shear stress, and the building of a delta

    NASA Astrophysics Data System (ADS)

    Wagner, W.; Miller, K. L.; Hiatt, M. R.; Mohrig, D. C.

    2017-12-01

    River deltas distribute sediment to the coastal sea through a complex branching network of channels; however, the routing and storage of this sediment in and through the delta is poorly understood. We present results from field studies of the sediment and water transport through the branching Wax Lake Delta on the coast of Louisiana. Two channels studied, Main Pass and East Pass, maintain a near-equal total partitioning of flow and sediment. However, East Pass is narrower and has higher river velocities, lower tidal velocity fluctuations, less alluvial bed cover, and more sediment flux per unit width than Main Pass. We connect these differences to small differences in the geometry of the two channels and feedbacks between these differences. We link trends in measured sediment deposits to both measured and modeled shear velocities in Wax Lake Delta's channels and open water `islands' to understand how hydrologic processes shaped the sedimentary architecture of the delta. These connections define the sediment transport and deposition regimes in the WLD. We extend the results herein to suggest that the relationships between the available sediment and shear stress determines the basic planform of the Wax Lake Delta and cross-sectional geometries of its channels.

  3. Experimental Study of Pollutant Dispersion Within a Network of Streets

    NASA Astrophysics Data System (ADS)

    Garbero, Valeria; Salizzoni, Pietro; Soulhac, Lionel

    2010-09-01

    We investigate the dispersion of a passive scalar within an idealised urban district made up of a building-like obstacle array. We focus on a street network in which the lateral dimension of the buildings exceeds the street width, a geometry representative of many European cities. To investigate the effect of different geometries and wind directions upon the pollutant dispersion process, we have performed a series of wind-tunnel experiments. Concentration measurements of a passive tracer have enabled us to infer the main features characterising its dispersion within the street network. We describe this by focusing on the roles of different transfer processes. These are the channelling of the tracer along the street axes, the mixing at street intersections, and the mass exchange between the streets and the overlying atmospheric flow. Our experiments provide evidence of the dependence of these processes on the geometrical properties of the array and the direction of the overlying atmospheric flow.

  4. Advanced computer-aided design for bone tissue-engineering scaffolds.

    PubMed

    Ramin, E; Harris, R A

    2009-04-01

    The design of scaffolds with an intricate and controlled internal structure represents a challenge for tissue engineering. Several scaffold-manufacturing techniques allow the creation of complex architectures but with little or no control over the main features of the channel network such as the size, shape, and interconnectivity of each individual channel, resulting in intricate but random structures. The combined use of computer-aided design (CAD) systems and layer-manufacturing techniques allows a high degree of control over these parameters with few limitations in terms of achievable complexity. However, the design of complex and intricate networks of channels required in CAD is extremely time-consuming since manually modelling hundreds of different geometrical elements, all with different parameters, may require several days to design individual scaffold structures. An automated design methodology is proposed by this research to overcome these limitations. This approach involves the investigation of novel software algorithms, which are able to interact with a conventional CAD program and permit the automated design of several geometrical elements, each with a different size and shape. In this work, the variability of the parameters required to define each geometry has been set as random, but any other distribution could have been adopted. This methodology has been used to design five cubic scaffolds with interconnected pore channels that range from 200 to 800 microm in diameter, each with an increased complexity of the internal geometrical arrangement. A clinical case study, consisting of an integration of one of these geometries with a craniofacial implant, is then presented.

  5. Heat Transfer in a Complex Trailing Edge Passage for a High Pressure Turbine Blade - Part 1: Experimental Measurements. Part 1; Experimental Measurements

    NASA Technical Reports Server (NTRS)

    Bunker, Ronald S.; Wetzel, Todd G.; Rigby, David L.; Reddy, D. R. (Technical Monitor)

    2000-01-01

    A combined experimental and computational study has been performed to investigate the detailed heat transfer coefficient distributions within a complex blade trailing edge passage. The experimental measurements are made using a steady liquid crystal thermography technique applied to one major side of the passage. The geometry of the trailing edge passage is that of a two-pass serpentine circuit with a sharp 180-degree turning region at the tip. The upflow channel is split by interrupted ribs into two major subchannels, one of which is turbulated. This channel has an average aspect ratio of roughly 14:1. The spanwise extent of the channel geometry includes both area convergence from root to tip, as well as taper towards the trailing edge apex. The average section Reynolds numbers tested in this upflow channel range from 55,000 to 98,000. The tip section contains a turning vane near the extreme comer. The downflow channel has an aspect ratio of about 5:1, and also includes convergence and taper. Turbulators of varying sizes are included in this channel also. Both detailed heat transfer and pressure distribution measurements are presented. The pressure measurements are incorporated into a flow network model illustrating the major loss contributors.

  6. Do distributaries in a delta plain resemble an ideal estuary? Results from theKapuas Delta,Indonesia

    NASA Astrophysics Data System (ADS)

    Hoitink, T.; Kastner, K.; Vermeulen, B.; Geertsema, T.; Nining, S. N.

    2017-12-01

    Coastal lowland plains under mixed fluvial-tidal influence can form complex channel networks, where distributaries blend the characteristics of mouth bar channels, avulsion channels and tidal creeks. These networks are shaped by the interplay of river flow and tides. Our goal is to increase the general understanding of physical processes in the fluvial-tidal transition. Here we present first results of an extensive field survey of the Kapuas river and give insight into the along channel trends of cross section geometry and bed material grain size. main distributary and slightly increases in downstream direction (Fig. 2c).The Kapuas river is a large tropical river in West Kalimantan, Indonesia. Discharge ranges between 10^3 m^3/s in the wet and 10^4 m^3/s in the dry season. The Kapuas consists of one main distributary from which three smaller distributaries branch off along the alluvial plain (Fig. 1a). Tides are mainly diurnal, with an average spring range of 1.5m at the mouth.Figure 1: Map of the Kapuas river delta plain Between 2013 and 2015 we surveyed the Kapuas from the sea to upstream km 300. Bankfull river width was extracted from Landsat images. Bathymetry was surveyed with a single beam each sounder. Bed material was sampled with a van Veen grabber. The geometry of the Kapuas river deviates from that of an idealized estuary, as it does not converge to an equilibirum width and depth. Such a break in scaling was previously found in the Mahakam Delta by Sassi et al. 2012, which suggests this may be a general characteristic in the fluvial to tidal transition. There is no simple relation between bed material grain size and channel geometry. The particular geometry of the Kapuas also leads to particular hydrodynamics in the fluvial-tidal transition. Thus the draw-down curve during high flow and backwater curve at flow are much less pronounced in the Kapuas, and tides propagate far up the river. At the moment we investigate the consequences for river discharge-tide interaction. In particular we focus on propagation of the tide depending on the river discharge as well as consequences for delta morphology.

  7. A model for simulation of flow in singular and interconnected channels

    USGS Publications Warehouse

    Schaffranek, Raymond W.; Baltzer, R.A.; Goldberg, D.E.

    1981-01-01

    A one-dimensional numerical model is presented for simulating the unsteady flow in singular riverine or estuarine reaches and in networks of reaches composed of interconnected channels. The model is both general and flexible in that it can be used to simulate a wide range of flow conditions for various channel configurations. The channel geometry of the network to be modeled should be sufficiently simple so as to lend itself to characterization in one spatial dimension. The flow must be substantially homogenous in density, and hydrostatic pressure must prevail everywhere in the network channels. The slope of each channel bottom ought to be mild and reasonably constant over its length so that the flow remains subcritical. The model accommodates tributary inflows and diversions and includes the effects of wind shear on the water surface as a forcing function in the flow equations. Water-surface elevations and flow discharges are computed at channel junctions, as well as at specified intermediate locations within the network channels. The one-dimensional branch-network flow model uses a four-point, implicit, finite-difference approximation of the unsteady-flow equations. The flow equations are linearized over a time step, and branch transformations are formulated that describe the relationship between the unknowns at the end points of the channels. The resultant matrix of branch-transformation equations and required boundary-condition equations is solved by Gaussian elimination using maximum pivot strategy. Five example applications of the flow model are illustrated. The applications cover such diverse conditions as a singular upland river reach in which unsteady flow results from hydropower regulations, coastal rivers composed of sequentially connected reaches subject to unsteady tide-driven flow, and a multiply connected network of channels whose flow is principally governed by wind tides and seiches in adjoining lakes. The report includes a listing of the FORTRAN IV computer program and a description of the input data requirements. Model supporting programs for the processing and input of initial and boundary-value data are identified, various model output formats are illustrated, and instructions are given to permit the production of graphical output using the line printer, electromechanical pen plotters, cathode-ray-tube display units, or microfilm recorders.

  8. Multi-Scale Thermal Heat Tracer Tests for Characterizing Transport Processes and Flow Channelling in Fractured Media: Theory and Field Experiments

    NASA Astrophysics Data System (ADS)

    de La Bernardie, J.; Klepikova, M.; Bour, O.; Le Borgne, T.; Dentz, M.; Guihéneuf, N.; Gerard, M. F.; Lavenant, N.

    2017-12-01

    The characterization of flow and transport in fractured media is particularly challenging because hydraulic conductivity and transport properties are often strongly dependent on the geometric structure of the fracture surfaces. Here we show how thermal tracer tests may be an excellent complement to conservative solute tracer tests to infer fracture geometry and flow channeling. We performed a series of thermal tracer tests at different scales in a crystalline rock aquifer at the experimental site of Ploemeur (H+ observatory network). The first type of thermal tracer tests are push-pull tracer tests at different scales. The temporal and spatial scaling of heat recovery, measured from thermal breakthrough curves, shows a clear signature of flow channeling. In particular, the late time tailing of heat recovery under channeled flow is shown to diverge from the T(t) α t-1,5 behavior expected for the classical parallel plate model and follow the scaling T(t) α 1/t(logt)2 for a simple channel modeled as a tube. Flow channeling is also manifested on the spatial scaling of heat recovery as flow channeling affects the decay of the thermal breakthrough peak amplitude and the increase of the peak time with scale. The second type of thermal tracer tests are flow-through tracer tests where a pulse of hot water was injected in a fracture isolated by a double straddle packer while pumping at the same flow rate in another fracture at a distance of about 10 meters to create a dipole flow field. Comparison with a solute tracer test performed under the same conditions also present a clear signature of flow channeling. We derive analytical expressions for the retardation and decay of the thermal breakthrough peak amplitude for different fracture geometries and show that the observed differences between thermal and solute breakthrough can be explained only by channelized flow. These results suggest that heat transport is much more sensitive to fracture heterogeneity and flow channeling than conservative solute transport. These findings, which bring new insights on the effect of flow channeling on heat transfer in fractured rocks, show how heat recovery in geothermal systems may be controlled by fracture geometry. This highlights the interest of thermal tracer tests as a complement to solute tracers tests to infer fracture aperture and geometry.

  9. Network Structure as a Modulator of Disturbance Impacts in Streams

    NASA Astrophysics Data System (ADS)

    Warner, S.; Tullos, D. D.

    2017-12-01

    This study examines how river network structure affects the propagation of geomorphic and anthropogenic disturbances through streams. Geomorphic processes such as debris flows can alter channel morphology and modify habitat for aquatic biota. Anthropogenic disturbances such as road construction can interact with the geomorphology and hydrology of forested watersheds to change sediment and water inputs to streams. It was hypothesized that the network structure of streams within forested watersheds would influence the location and magnitude of the impacts of debris flows and road construction on sediment size and channel width. Longitudinal surveys were conducted every 50 meters for 11 kilometers of third-to-fifth order streams in the H.J. Andrews Experimental Forest in the Western Cascade Range of Oregon. Particle counts and channel geometry measurements were collected to characterize the geomorphic impacts of road crossings and debris flows as disturbances. Sediment size distributions and width measurements were plotted against the distance of survey locations through the network to identify variations in longitudinal trends of channel characteristics. Thresholds for the background variation in sediment size and channel width, based on the standard deviations of sample points, were developed for sampled stream segments characterized by location as well as geomorphic and land use history. Survey locations were classified as "disturbed" when they deviated beyond the reference thresholds in expected sediment sizes and channel widths, as well as flow-connected proximity to debris flows and road crossings. River network structure was quantified by drainage density and centrality of nodes upstream of survey locations. Drainage density and node centrality were compared between survey locations with similar channel characteristic classifications. Cluster analysis was used to assess the significance of survey location, proximity of survey location to debris flows and road crossings, drainage density and node centrality in predicting sediment size and channel width classifications for locations within the watershed. Results contribute to the understanding of susceptibility and responses of streams supporting critical habitat for aquatic species to debris flows and forest road disturbances.

  10. Ramification of Channel Networks Incised by Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Yi, R. S.; Seybold, H. F.; Petroff, A. P.; Devauchelle, O.; Rothman, D.

    2011-12-01

    The geometry of channel networks has been a source of fascination since at least Leonardo da Vinci's time. Yet a comprehensive understanding of ramification---the mechanism of branching by which a stream network acquires its geometric complexity---remains elusive. To investigate the mechanisms of ramification and network growth, we consider channel growth driven by groundwater flow as a model system, analogous to a medical scientist's laboratory rat. We test our theoretical predictions through analysis of a particularly compelling example found on the Florida Panhandle north of Bristol. As our ultimate goal is to understand ramification and growth dynamics of the entire network, we build a computational model based on the following growth hypothesis: Channels grow in the direction that captures the maximum water flux. When there are two such directions, tips bifurcate. The direction of growth can be determined from the expansion of the ground water field around each tip, where each coefficient in this expansion has a physical interpretation. The first coefficient in the expansion determines the ground water discharge, leading to a straight growth of the channel. The second term describes the asymmetry in the water field leading to a bending of the stream in the direction of maximal water flux. The ratio between the first and the third coefficient determines a critical distance rc over which the tip feels inhomogeneities in the ground water table. This initiates then the splitting of the tip. In order to test our growth hypothesis and to determine rc, we grow the Florida network backward. At each time step we calculate the solution of the ground water field and determine the appropriate expansion coefficients around each tip. Comparing this simulation result to the predicted values provides us with a stringent measure for rc and the significance of our growth hypothesis.

  11. A Quantitative Characterization and Classification of Martian Valley Networks: New Constraints on Mars' Early Climate and Its Variability in Space and Time

    NASA Astrophysics Data System (ADS)

    Grau Galofre, A.; Jellinek, M.

    2014-12-01

    Valley networks and outflow channels are among the most arresting features of Mars' surface. Remarkable similarities between the structure and complexity of individual Martian channels with certain fluvial systems on Earth supports a popular picture of a warm wet early Mars. A key assumption in this picture is that "typical" Martian examples adequately capture the average character of the majority of all valley networks. However, a full catalog of the distribution of geomorphologic variability of valley networks over Mars' surface geometry has never been established. Accordingly, we present the first planet-wide map in which we use statistical methods and theoretical arguments to classify Martian channels in terms of the mechanics governing their formation. Using new metrics for the size, shape and complexity of channel networks, which we ground truth against a large suite of terrestrial examples, we distinguish drainage patterns related to glacial, subglacial, fluvial and lava flows. Preliminary results separate lava flows from other flow features and show that these features can be divided into three different groups of increasing complexity. The characteristics of these groups suggest that they represent fluvial, subglacial and glacial features. We show also that the relative proportions of the different groups varies systematically, with higher density of river-like features located in low longitudes and increasing glacial-like features as we move east or west. Our results suggest that the early Martian climate and hydrologic cycle was richer and more diverse than originally thought.

  12. A Missing Puzzle Piece in Murray's Law: the Optimal Angle of Junctions

    NASA Astrophysics Data System (ADS)

    Wang, Ruo-Qian; Taylor, Katherine; Winter, Amos G.; Global Engineering; Research Lab Team

    2014-11-01

    Branching flows are common in biological systems, such as the circulatory and respiratory systems of animals. The optimal radii of parent and daughter branches can be explained with Murray's law, which dictates that the sum of metabolic and pumping costs is minimized. Murray's Law can be used to determine the diameter of cascading channels but misses an important parameter: the angles of the branches. Past hydraulic studies have investigated the angle effect, but have not focused on whether this geometry follows Murray's Law; while a simple network optimization is able to show that at low Reynolds numbers a branch with a parent channel connecting to n equally distant channels obeying Murray's Law has a minimum total head loss with a branching angle θ, such that cos θ =n-2/3 , but it's not valid for high Reynolds number flows, which may experience separation and turbulence at the branches. The present study is focused on determining the optimal branch angle that complies with Murray's Law for moderate Reynolds numbers. Computational studies using Open FOAM and experiments using 3D printed branched channels will be presented. These results will be used to quantify the effect of Reynolds number on optimal branch geometry.

  13. Derivation and Application of Idealized Flow Conditions in River Network Simulation

    NASA Astrophysics Data System (ADS)

    Afshari Tork, S.; Fekete, B. M.

    2015-12-01

    Stream flow information is essential for many applications across broad range of scales, e.g. global water balances, engineering design, flood forecasting, environmental management, etc. Quantitative assessment of flow dynamics of natural streams, requires detailed knowledge of all the geometrical and geophysical variables (e.g. bed-slope, bed roughness, etc.) along river reaches. Simplifying the river bed geometries could reduce both the computational burden implementing flow simulations and challenges in assembling the required data, especially for large domains. Average flow conditions expressed as empirical "at-a-station" hydraulic geometry relationships between key channel components, (i.e. water depth, top-width, flow velocity, flow area against discharge) have been studied since 60's. Recent works demonstrated that power-function as idealized riverbed geometry whose parameters are correlated to those of exponential relationship between mean water depth and top-width, are consistent with empirical "at-a-station" relations.US Geological Surveys' National Water Information System web-interface provides huge amount of river discharge and corresponding stage height data from several thousands of streamflow monitoring stations over United States accompanied by river survey summaries providing additional flow informations (width, mean velocity, cross-sectional area). We conducted a series of analyses to indentify consistent data daily monitoring and corresponding survey records that are suitable to refine our current understanding of how the "at-a-station" properties of river channels relate to channel forming characteristics (e.g. riverbed slope, flow regime, geology, etc.). The resulting ~1,200 actively operating USGS stations with over ~225,000 corresponding survery records (almost 200 survey per gauge on average) is the largest river survey database ever studied in the past.Our presentation will show our process assembling our river monitoring and survey data base and we will present our first results translating "at-a-station" relations into he hydraulic geometry of river channels based on idealized power-law riverbed geometries. We also will also present a series of application (e.g. improved flow rounting, simplyfied river surveying).

  14. Dynamic reorganization of river basins.

    PubMed

    Willett, Sean D; McCoy, Scott W; Perron, J Taylor; Goren, Liran; Chen, Chia-Yu

    2014-03-07

    River networks evolve as migrating drainage divides reshape river basins and change network topology by capture of river channels. We demonstrate that a characteristic metric of river network geometry gauges the horizontal motion of drainage divides. Assessing this metric throughout a landscape maps the dynamic states of entire river networks, revealing diverse conditions: Drainage divides in the Loess Plateau of China appear stationary; the young topography of Taiwan has migrating divides driving adjustment of major basins; and rivers draining the ancient landscape of the southeastern United States are reorganizing in response to escarpment retreat and coastal advance. The ability to measure the dynamic reorganization of river basins presents opportunities to examine landscape-scale interactions among tectonics, erosion, and ecology.

  15. Integrated multiple patch-clamp array chip via lateral cell trapping junctions

    NASA Astrophysics Data System (ADS)

    Seo, J.; Ionescu-Zanetti, C.; Diamond, J.; Lal, R.; Lee, L. P.

    2004-03-01

    We present an integrated multiple patch-clamp array chip by utilizing lateral cell trapping junctions. The intersectional design of a microfluidic network provides multiple cell addressing and manipulation sites for efficient electrophysiological measurements at a number of patch sites. The patch pores consist of openings in the sidewall of a main fluidic channel, and a membrane patch is drawn into a smaller horizontal channel. This device geometry not only minimizes capacitive coupling between the cell reservoir and the patch channel, but also allows simultaneous optical and electrical measurements of ion channel proteins. Evidence of the hydrodynamic placement of mammalian cells at the patch sites as well as measurements of patch sealing resistance is presented. Device fabrication is based on micromolding of polydimethylsiloxane, thus allowing inexpensive mass production of disposable high-throughput biochips.

  16. Controls on the spatial variability of supraglacial channel morphology and network characteristics

    NASA Astrophysics Data System (ADS)

    King, L.

    2015-12-01

    Supraglacial streams are widespread and ubiquitous features of glacial ice surfaces around the world. They play an important role in the spatial and temporal distribution of meltwater on a glacier, moderating the flux of meltwater to the bed. They are themselves unique fluvial features in which erosion and deposition is achieved through thermal erosion of ice rather than alluvial substrate. As such, they are of both glaciological and fluvial geomorphological interest for both practical and theoretical reasons. However, little is known about their characteristics through space and time, or how these characteristics reflect external driving forces. This research aims to address these gaps by characterizing the spatial variability of supraglacial stream morphology across a range of glacier types and environmental conditions and identifying forcings that control channel form. Topographic data was analyzed from a range of glacier surface types including icesheets, pocket alpine glaciers, and outlet valley glaciers spanning a range of latitudes and elevations, comprising glaciers from Greenland, British Columbia, Alaska, Iceland and Sweden. Channels were extracted from the topographic data using an automated approach based on identifying topographic depressions at different size scales, in which the method was tested relative to manually digitized stream networks. Channel geomorphology was subsequently characterized according to planimetric and drainage network geometries. Resulting morphometric characteristics were analyzed with regards to endo and exogenic environmental forcings such as ice topography and characteristics and climatic forcings to identify the primary controls on supraglacial channel morphology and the response of these channels with respect to these controls.

  17. A Framework for Fracture Network Formation in Overpressurised Impermeable Shale: Deformability Versus Diagenesis

    NASA Astrophysics Data System (ADS)

    Alevizos, Sotiris; Poulet, Thomas; Sari, Mustafa; Lesueur, Martin; Regenauer-Lieb, Klaus; Veveakis, Manolis

    2017-03-01

    Understanding the formation, geometry and fluid connectivity of nominally impermeable unconventional shale gas and oil reservoirs is crucial for safe unlocking of these vast energy resources. We present a recent discovery of volumetric instabilities of ductile materials that may explain why impermeable formations become permeable. Here, we present the fundamental mechanisms, the critical parameters and the applicability of the novel theory to unconventional reservoirs. We show that for a reservoir under compaction, there exist certain ambient and permeability conditions at which diagenetic (fluid-release) reactions may provoke channelling localisation instabilities. These channels are periodically interspersed in the matrix and represent areas where the excess fluid from the reaction is segregated at high velocity. We find that channelling instabilities are favoured from pore collapse features for extremely low-permeability formations and fluid-release diagenetic reactions, therefore providing a natural, periodic network of efficient fluid pathways in an otherwise impermeable matrix (i.e. fractures). Such an outcome is of extreme importance the for exploration and extraction phases of unconventional reservoirs.

  18. Encapsulating Networks of Droplet Interface Bilayers in a Thermoreversible Organogel.

    PubMed

    Challita, Elio J; Najem, Joseph S; Monroe, Rachel; Leo, Donald J; Freeman, Eric C

    2018-04-24

    The development of membrane-based materials that exhibit the range and robustness of autonomic functions found in biological systems remains elusive. Droplet interface bilayers (DIBs) have been proposed as building blocks for such materials, owing to their simplicity, geometry, and capability for replicating cellular phenomena. Similar to how individual cells operate together to perform complex tasks and functions in tissues, networks of functionalized DIBs have been assembled in modular/scalable networks. Here we present the printing of different configurations of picoliter aqueous droplets in a bath of thermoreversible organogel consisting of hexadecane and SEBS triblock copolymers. The droplets are connected by means of lipid bilayers, creating a network of aqueous subcompartments capable of communicating and hosting various types of chemicals and biomolecules. Upon cooling, the encapsulating organogel solidifies to form self-supported liquid-in-gel, tissue-like materials that are robust and durable. To test the biomolecular networks, we functionalized the network with alamethicin peptides and alpha-hemolysin (αHL) channels. Both channels responded to external voltage inputs, indicating the assembly process does not damage the biomolecules. Moreover, we show that the membrane properties may be regulated through the deformation of the surrounding gel.

  19. Changes in channel geometry of six eruption-affected tributaries of the Lewis River, 1980-82, Mount St. Helens, Washington

    USGS Publications Warehouse

    Martinson, H.A.; Finneran, S.D.; Topinka, L.J.

    1984-01-01

    The May 18, 1980, eruption of Mount St. Helens generated a lateral blast, lahars and tephra deposits that altered tributary channels in the Lewis River drainage basin. In order to assess potential flood hazards, study channel adjustments, and construct a sediment budget for the perturbed drainages on the east and southeast flanks of the volcano, channel cross sections were monumented and surveyed on Pine Creek, Muddy River, and Smith Creek during September and October of 1980. Additional cross sections were monumented and surveyed on Swift Creek, Bean Creek, and Clearwater Creek during the summer of 1981. The network of 88 channel cross sections has been resurveyed annually. Selected cross sections have been surveyed more frequently, following periods of higher flow. The repetitive cross-section surveys provide measurements of bank erosion or accretion and of channel erosion or aggradation. The report presents channel cross-section profiles constructed from the survey data collected during water years 1980-82. (USGS)

  20. Single step sequential polydimethylsiloxane wet etching to fabricate a microfluidic channel with various cross-sectional geometries

    NASA Astrophysics Data System (ADS)

    Wang, C.-K.; Liao, W.-H.; Wu, H.-M.; Lo, Y.-H.; Lin, T.-R.; Tung, Y.-C.

    2017-11-01

    Polydimethylsiloxane (PDMS) has become a widely used material to construct microfluidic devices for various biomedical and chemical applications due to its desirable material properties and manufacturability. PDMS microfluidic devices are usually fabricated using soft lithography replica molding methods with master molds made of photolithogrpahy patterned photoresist layers on silicon wafers. The fabricated microfluidic channels often have rectangular cross-sectional geometries with single or multiple heights. In this paper, we develop a single step sequential PDMS wet etching process that can be used to fabricate microfluidic channels with various cross-sectional geometries from single-layer PDMS microfluidic channels. The cross-sections of the fabricated channel can be non-rectangular, and varied along the flow direction. Furthermore, the fabricated cross-sectional geometries can be numerically simulated beforehand. In the experiments, we fabricate microfluidic channels with various cross-sectional geometries using the developed technique. In addition, we fabricate a microfluidic mixer with alternative mirrored cross-sectional geometries along the flow direction to demonstrate the practical usage of the developed technique.

  1. Microfluidic System Simulation Including the Electro-Viscous Effect

    NASA Technical Reports Server (NTRS)

    Rojas, Eileen; Chen, C. P.; Majumdar, Alok

    2007-01-01

    This paper describes a practical approach using a general purpose lumped-parameter computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels including electro-viscous effects due to the existence of electrical double layer (EDL). In this study, an empirical formulation for calculating an effective viscosity of ionic solutions based on dimensional analysis is described to account for surface charge and bulk fluid conductivity, which give rise to electro-viscous effect in microfluidics network. Two dimensional slit micro flow data was used to determine the model coefficients. Geometry effect is then included through a Poiseuille number correlation in GFSSP. The bi-power model was used to calculate flow distribution of isotropically etched straight channel and T-junction microflows involving ionic solutions. Performance of the proposed model is assessed against experimental test data.

  2. Pipelining in structural health monitoring wireless sensor network

    NASA Astrophysics Data System (ADS)

    Li, Xu; Dorvash, Siavash; Cheng, Liang; Pakzad, Shamim

    2010-04-01

    Application of wireless sensor network (WSN) for structural health monitoring (SHM), is becoming widespread due to its implementation ease and economic advantage over traditional sensor networks. Beside advantages that have made wireless network preferable, there are some concerns regarding their performance in some applications. In long-span Bridge monitoring the need to transfer data over long distance causes some challenges in design of WSN platforms. Due to the geometry of bridge structures, using multi-hop data transfer between remote nodes and base station is essential. This paper focuses on the performances of pipelining algorithms. We summarize several prevent pipelining approaches, discuss their performances, and propose a new pipelining algorithm, which gives consideration to both boosting of channel usage and the simplicity in deployment.

  3. Spatial Characterization of Radio Propagation Channel in Urban Vehicle-to-Infrastructure Environments to Support WSNs Deployment

    PubMed Central

    Granda, Fausto; Azpilicueta, Leyre; Vargas-Rosales, Cesar; Lopez-Iturri, Peio; Aguirre, Erik; Astrain, Jose Javier; Villandangos, Jesus; Falcone, Francisco

    2017-01-01

    Vehicular ad hoc Networks (VANETs) enable vehicles to communicate with each other as well as with roadside units (RSUs). Although there is a significant research effort in radio channel modeling focused on vehicle-to-vehicle (V2V), not much work has been done for vehicle-to-infrastructure (V2I) using 3D ray-tracing tools. This work evaluates some important parameters of a V2I wireless channel link such as large-scale path loss and multipath metrics in a typical urban scenario using a deterministic simulation model based on an in-house 3D Ray-Launching (3D-RL) algorithm at 5.9 GHz. Results show the high impact that the spatial distance; link frequency; placement of RSUs; and factors such as roundabout, geometry and relative position of the obstacles have in V2I propagation channel. A detailed spatial path loss characterization of the V2I channel along the streets and avenues is presented. The 3D-RL results show high accuracy when compared with measurements, and represent more reliably the propagation phenomena when compared with analytical path loss models. Performance metrics for a real test scenario implemented with a VANET wireless sensor network implemented ad-hoc are also described. These results constitute a starting point in the design phase of Wireless Sensor Networks (WSNs) radio-planning in the urban V2I deployment in terms of coverage. PMID:28590429

  4. Spatial Characterization of Radio Propagation Channel in Urban Vehicle-to-Infrastructure Environments to Support WSNs Deployment.

    PubMed

    Granda, Fausto; Azpilicueta, Leyre; Vargas-Rosales, Cesar; Lopez-Iturri, Peio; Aguirre, Erik; Astrain, Jose Javier; Villandangos, Jesus; Falcone, Francisco

    2017-06-07

    Vehicular ad hoc Networks (VANETs) enable vehicles to communicate with each other as well as with roadside units (RSUs). Although there is a significant research effort in radio channel modeling focused on vehicle-to-vehicle (V2V), not much work has been done for vehicle-to-infrastructure (V2I) using 3D ray-tracing tools. This work evaluates some important parameters of a V2I wireless channel link such as large-scale path loss and multipath metrics in a typical urban scenario using a deterministic simulation model based on an in-house 3D Ray-Launching (3D-RL) algorithm at 5.9 GHz. Results show the high impact that the spatial distance; link frequency; placement of RSUs; and factors such as roundabout, geometry and relative position of the obstacles have in V2I propagation channel. A detailed spatial path loss characterization of the V2I channel along the streets and avenues is presented. The 3D-RL results show high accuracy when compared with measurements, and represent more reliably the propagation phenomena when compared with analytical path loss models. Performance metrics for a real test scenario implemented with a VANET wireless sensor network implemented ad-hoc are also described. These results constitute a starting point in the design phase of Wireless Sensor Networks (WSNs) radio-planning in the urban V2I deployment in terms of coverage.

  5. Artificial neural network modeling of a deflector in a grooved channel as well as optimization of its effective parameters

    NASA Astrophysics Data System (ADS)

    Abdollahi, Azita; Shams, Mehrzad; Abdollahi, Anita

    2018-01-01

    One of methods available to increase the rate of heat transfer in channels with parallel plates is making grooves in them. But, the fundamental problem of this method is the formation of stagnation zone in the grooves and as a result formation a zone with low energy transfer. In this paper, the effect of placing curved deflectors (geometries with elliptical forms) in channel on thermal and hydraulic characteristic of the fluid flow- with the aim of directing of the flow into the grooves and as a result increasing the rate of heat transfer in this zone- are investigated and heat transfer coefficient and pressure drop are calculated for different values of Reynolds number and geometrical parameters of the deflector (its small and large radiuses). The results show that the presence of the deflector in the channel significantly increases the heat transfer rate compare to the channel without deflector. Of course, it should be noted that this work also increases the pressure drop. So, finally in order to determine configurations of the deflector causing minimum pressure drop, maximum Nusselt number or a balance between them, optimization algorithm consisting of artificial neural network and multi-objective genetic algorithm was utilized to calculate the optimal values of these parameters.

  6. Estimating design-flood discharges for streams in Iowa using drainage-basin and channel-geometry characteristics

    USGS Publications Warehouse

    Eash, D.A.

    1993-01-01

    Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates. The drainage-basin regression equations are applicable to unregulated rural drainage areas less than 1,060 square miles, and the channel-geometry regression equations are applicable to unregulated rural streams in Iowa with stabilized channels.

  7. Channel geometry and hydrologic data for six eruption-affected tributaries of the Lewis River, Mount St. Helens, Washington, water years 1983-84

    USGS Publications Warehouse

    Martinson, H.A.; Hammond, H.E.; Mast, W.W.; Mango, P.D.

    1986-01-01

    The May 18, 1980, eruption of Mount St. Helens generated a lateral blast, lahars, and tephra deposits that altered stream channels in the Lewis River drainage basin. In order to assess potential flood hazards, monitor channel adjustments, and construct a sediment budget for disturbed drainages on the east and southeast flanks of the volcano, channel cross sections were monumented and surveyed on Pine Creek, Muddy River, and Smith Creek during September and October of 1980. Additional cross sections were monumented and surveyed on Swift Creek, Bean Creek , and Clearwater Creek during 1981. This network of channel cross sections has been resurveyed annually. Selected cross sections have been surveyed more frequently, following periods of higher flow. Longitudinal stream profiles of the low-water thalweg and (or) water surfaces were surveyed periodically for selected short reaches of channel. Corresponding map views for these reaches were constructed using the survey data and aerial photographs. This report presents plots of channel cross-section profiles, longitudinal stream profiles, and channel maps constructed from survey data collected during water years 1983-84. (USGS)

  8. Seismic patterns of a muddy contourite fan (Vema Channel, South Brazilian Basin) and a sandy distal turbidite deep-sea fan (Cap Ferret system, Bay of Biscay): a comparison

    NASA Astrophysics Data System (ADS)

    Faugères, J. C.; Imbert, P.; Mézerais, M. L.; Crémer, M.

    1998-01-01

    The aim of this paper is to discriminate the depositional facies, geometries and mechanisms of deposition of contouritic fans from those of turbidite distal fans, with a view to provide better resolution of reservoir prediction. Two examples are analysed: the Vema contouritic drift in the South Brazilian Basin and the Cap Ferret turbiditic fan in the Bay of Biscaye. The Vema contourite fan is a Neogene mud-rich accumulation (200-400 m thick), fed by Antarctic Bottom Water bottom currents and located downstream of the Rio Grande Rise. It forms one single-mound fan-shaped body in between two major channels, and where the main part of the deep circulation is funnelled into. As a result of the morphological and hydrological background, the comourite drift progrades mostly downstream. The accumulation was built as several depositional units ('channel-levee' systems) bounded by widespread discontinuities showing erosional patterns. This resulted from episodes of strong and/or unstable current activity producing the discontinuities, alternating with periods of relatively weak and stable currents and major deposition. The Pliocene-Quaternary Cap Ferret distal deep-sea fan is a thick (500 m) sand-rich turbiditic accumulation fed directly by an uplifting mountain range. The accumulation is developed downstream of a main turbiditic feeder channel and the volume of sediment involved is much higher than for the Vema contourite fan. It shows a complex network of shallow channels and low-relief levees which merge downstream into thin, sandy, sheet-like deposits. Several depositional units are stacked vertically. Each unit is built by the lateral migration of a 'channel-levee' system. The stacking pattern of the successive units is prograding towards the basin. The presence of major discontinuities cutting throughout a whole accumulation, and the fairly irregular geometry of the 'channel-levee' deposits (absence of any obvious migrating trend), appear to be the most distinctive features of a contourite fan. On the other hand, the lateral migration of the 'channel-level' geometries and the presence of erosional surfaces of limited extent and restricted to the channels, are the main diagnostic features of a distal turbidite fan. Otherwise the seismo-facies are fairly similar in both sedimentary bodies.

  9. Channel geometry change of a first-order stream after a small debris flow in Ashio Mountains of central Japan

    NASA Astrophysics Data System (ADS)

    Hattanji, T.; Wasklewicz, T.

    2006-12-01

    We examined geometry change of a steep first-order channel with a laserscanner before and after a small debris flow. The study site is located in chert area, Ashio Mountains, Japan. On August 12, 2005, a 20-year storm event with maximum 1-hour rainfall of 75.4 mm/h triggered a small landslide at a steep channel head. The sliding material moved as a debris flow along the first-order channel (C3) to the mouth. We successfully measured high-resolution channel topography with the Leica Geosystems High-Definition Surveying Laser Scanner before (April 30) and after the debris-flow event (October 9-11). Width, depth and other related parameters were measured for 30 selected cross sections. Bankfull stage of this first-order channel after the debris-flow event is much higher than two-year flood stage. The magnitude of channel geometry change varies non-linearly in downstream direction. The non-linear variability is attributed to differences in stream bed and bank characteristics. Bedrock-channel reach is less impacted by the debris flow. The largest magnitude changes in the channel geometry parameters occur along colluvially confined channel reaches.

  10. Characterizing the transient geomorphic response to base-level fall in the northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Huiping; Kirby, Eric; Pitlick, John; Anderson, Robert S.; Zhang, Peizhen

    2017-02-01

    Analysis of hillslope gradient, landscape relief, and channel steepness in the Daxia River basin provides evidence of a transient geomorphic response to base-level fall on the northeastern Tibetan Plateau. Low-gradient channels and gentle hillslopes of the upper watershed are separated from a steeper, high-relief landscape by a series of convex knickzones along channel longitudinal profiles. Downstream projection of the "relict" portions of the profiles implies 800-850 m of incision, consistent with geologic and geomorphic records of post 1.7 Ma incision in the lower watershed. We combine optically stimulated luminescence dating of fluvial terrace deposits to constrain incision rates downstream of knickpoints with catchment-averaged 10Be concentrations in modern sediment to estimate erosion rates in tributary basins both above and below knickpoints. Both sources of data imply landscape lowering rates of 300 m Ma-1 below the knickpoint and 50-100 m Ma-1 above. Field measurements of channel width (n = 48) and calculations of bankfull discharge (n = 9) allow determination of scaling relations among channel hydraulic geometry, discharge, and contributing area that we employ to estimate the patterns of basal shear stress, unit stream power, and bed load transport rate throughout the channel network. Our results imply a clear downstream increase of incision potential; this result would appear to be consistent with a detachment-limited response to imposed base-level fall, in which steepening of channels drives an increase in erosion rates. In contrast, however, we do not observe apparent narrowing of channels across the transition from slowly eroding to rapidly eroding portions of the watershed. Rather, the present-day channel morphology as well as its scaling of hydraulic geometry imply that the river is primarily adjusted to transport its sediment load and suggest that channel morphology may not always reflect the presence of knickpoints and differences in landscape relief.

  11. Baseline Channel Geometry and Aquatic Habitat Data for Selected Streams in the Matanuska-Susitna Valley, Alaska

    USGS Publications Warehouse

    Curran, Janet H.; Rice, William J.

    2009-01-01

    Small streams in the rapidly developing Matanuska-Susitna Valley in south-central Alaska are known to support anadromous and resident fish but little is known about their hydrologic and riparian conditions, or their sensitivity to the rapid development of the area or climate variability. To help address this need, channel geometry and aquatic habitat data were collected in 2005 as a baseline of stream conditions for selected streams. Three streams were selected as representative of various stream types, and one drainage network, the Big Lake drainage basin, was selected for a systematic assessment. Streams in the Big Lake basin were drawn in a Geographic Information System (GIS), and 55 reaches along 16 miles of Meadow Creek and its primary tributary Little Meadow Creek were identified from orthoimagery and field observations on the basis of distinctive physical and habitat parameters, most commonly gradient, substrate, and vegetation. Data-collection methods for sites at the three representative reaches and the 55 systematically studied reaches consisted of a field survey of channel and flood-plain geometry and collection of 14 habitat attributes using published protocols or slight modifications. Width/depth and entrenchment ratios along the Meadow-Little Meadow Creek corridor were large and highly variable upstream of Parks Highway and lower and more consistent downstream of Parks Highway. Channel width was strongly correlated with distance, increasing downstream in a log-linear relation. Runs formed the most common habitat type, and instream vegetation dominated the habitat cover types, which collectively covered 53 percent of the channel. Gravel suitable for spawning covered isolated areas along Meadow Creek and about 29 percent of Little Meadow Creek. Broad wetlands were common along both streams. For a comprehensive assessment of small streams in the Mat-Su Valley, critical additional data needs include hydrologic, geologic and geomorphic, and biologic data, in particular the contribution of ground water and lakes to streamflow, water quality, flood plain connectivity, and surficial geology.

  12. Differentially photo-crosslinked polymers enable self-assembling microfluidics

    PubMed Central

    Jamal, Mustapha; Zarafshar, Aasiyeh M.; Gracias, David H.

    2012-01-01

    An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional (3D) regions. Here, we report the self-assembly of photopatterned polymers, and consequently microfluidic devices, into curved geometries. We discovered that differentially photo-crosslinked SU-8 films spontaneously and reversibly curved upon film de-solvation and re-solvation. Photolithographic patterning of the SU-8 films enabled the self-assembly of cylinders, cubes, and bidirectionally folded sheets. We integrated polydimethylsiloxane (PDMS) microfluidic channels with these SU-8 films to self-assemble curved microfluidic networks. PMID:22068594

  13. Coupling MAST-1D, a sediment routing model for channel-floodplain complexes, with channel migration relationships to predict reach-averaged river morphodynamics. Preliminary results

    NASA Astrophysics Data System (ADS)

    Viparelli, E.; Eke, E. C.; Lauer, J. W.

    2017-12-01

    Sediment exchange between the channel and floodplain can occur via meander migration, overbank deposition or erosion, and changes in channel geometry. Depending on channel and floodplain history, floodplains can act either as sources or sinks of bed material and/or wash load. Here we present preliminary modeling results that explicitly account for the feedbacks between the changes in floodplain geometry and sediment size distribution and the changes in channel geometry and migration. These results are obtained by coupling the Morphodynamics And Sediment Tracers in 1D (MAST-1D) program with the results of meander migration studies linking the bankfull flow depth and mean velocity to channel migration, sinuosity and channel geometry. MAST-1D is a numerical model built to describe grain size specific transport of sediment and tracers and the long-term - i.e. decadal and longer - evolution of channel floodplain complexes. MAST-1D differs from other 1D numerical models because it allows for 1) uneven exchange of sediment and tracers between the river channel and the floodplain, 2) temporal changes in channel geometry, bed elevation and floodplain thickness, which result in changes in the channel hydraulic capacity, and 3) temporal changes of size distribution and tracer content in the floodplain, in the load and in the underlying substrate. Under conditions of constant base level, water and sediment supply, the system evolves toward a steady state wherein the amount of sediment deposited through point bar deposition and overbank sedimentation is balanced by the erosion of sediment from the floodplain through lateral migration. The current formulation couples MAST-1D with empirical channel migration relationships that link bankfull flow depth and mean velocity to channel migration, sinuosity and channel geometry. Future development of this preliminary work will involve a fully coupled MAST-1D model with a standard meander migration model that will allow for the building of floodplain stratigraphy and tracking of the position of the meandering channel in space and time.

  14. Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates

    DOEpatents

    Rogers, John A; Cao, Qing; Alam, Muhammad; Pimparkar, Ninad

    2015-02-03

    The present invention provides device components geometries and fabrication strategies for enhancing the electronic performance of electronic devices based on thin films of randomly oriented or partially aligned semiconducting nanotubes. In certain aspects, devices and methods of the present invention incorporate a patterned layer of randomly oriented or partially aligned carbon nanotubes, such as one or more interconnected SWNT networks, providing a semiconductor channel exhibiting improved electronic properties relative to conventional nanotubes-based electronic systems.

  15. Screening effects in flow through rough channels.

    PubMed

    Andrade, J S; Araújo, A D; Filoche, M; Sapoval, B

    2007-05-11

    A surprising similarity is found between the distribution of hydrodynamic stress on the wall of an irregular channel and the distribution of flux from a purely Laplacian field on the same geometry. This finding is a direct outcome of numerical simulations of the Navier-Stokes equations for flow at low Reynolds numbers in two-dimensional channels with rough walls presenting either deterministic or random self-similar geometries. For high Reynolds numbers, the distribution of wall stresses on deterministic and random fractal rough channels becomes substantially dependent on the microscopic details of the walls geometry. Finally, the effects on the flow behavior of the channel symmetry and aspect ratio are also investigated.

  16. A Stream Morphology Classification for Eco-hydraulic Purposes Based on Geospatial Data: a Solute Transport Application Case

    NASA Astrophysics Data System (ADS)

    Jiménez Jaramillo, M. A.; Camacho Botero, L. A.; Vélez Upegui, J. I.

    2010-12-01

    Variation in stream morphology along a basin drainage network leads to different hydraulic patterns and sediment transport processes. Moreover, solute transport processes along streams, and stream habitats for fisheries and microorganisms, rely on stream corridor structure, including elements such as bed forms, channel patterns, riparian vegetation, and the floodplain. In this work solute transport processes simulation and stream habitat identification are carried out at the basin scale. A reach-scale morphological classification system based on channel slope and specific stream power was implemented by using digital elevation models and hydraulic geometry relationships. Although the morphological framework allows identification of cascade, step-pool, plane bed and pool-riffle morphologies along the drainage network, it still does not account for floodplain configuration and bed-forms identification of those channel types. Hence, as a first application case in order to obtain parsimonious three-dimensional characterizations of drainage channels, the morphological framework has been updated by including topographical floodplain delimitation through a Multi-resolution Valley Bottom Flatness Index assessing, and a stochastic bed form representation of the step-pool morphology. Model outcomes were tested in relation to in-stream water storage for different flow conditions and representative travel times according to the Aggregated Dead Zone -ADZ- model conceptualization of solute transport processes.

  17. Do rivers really obey power-laws? Using continuous high resolution measurements to define bankfull channel and evaluate downstream hydraulic-scaling over large changes in drainage area

    NASA Astrophysics Data System (ADS)

    Scher, C.; Tennant, C.; Larsen, L.; Bellugi, D. G.

    2016-12-01

    Advances in remote-sensing technology allow for cost-effective, accurate, high-resolution mapping of river-channel topography and shallow aquatic bathymetry over large spatial scales. A combination of near-infrared and green spectra airborne laser swath mapping was used to map river channel bathymetry and watershed geometry over 90+ river-kilometers (75-1175 km2) of the Greys River in Wyoming. The day of flight wetted channel was identified from green LiDAR returns, and more than 1800 valley-bottom cross-sections were extracted at regular 50-m intervals. The bankfull channel geometry was identified using a "watershed-based" algorithm that incrementally filled local minima to a "spill" point, thereby constraining areas of local convergence and delineating all the potential channels along the cross-section for each distinct "spill stage." Multiple potential channels in alluvial floodplains and lack of clearly defined channel banks in bedrock reaches challenge identification of the bankfull channel based on topology alone. Here we combine a variety of topological measures, geometrical considerations, and stage levels to define a stage-dependent bankfull channel geometry, and compare the results with day of flight wetted channel data. Initial results suggest that channel hydraulic geometry and basin hydrology power-law scaling may not accurately capture downstream channel adjustments for rivers draining complex mountain topography.

  18. Where and why hyporheic exchange is important: Inferences from a parsimonious, physically-based river network model

    NASA Astrophysics Data System (ADS)

    Gomez-Velez, J. D.; Harvey, J. W.

    2014-12-01

    Hyporheic exchange has been hypothesized to have basin-scale consequences; however, predictions throughout river networks are limited by available geomorphic and hydrogeologic data as well as models that can analyze and aggregate hyporheic exchange flows across large spatial scales. We developed a parsimonious but physically-based model of hyporheic flow for application in large river basins: Networks with EXchange and Subsurface Storage (NEXSS). At the core of NEXSS is a characterization of the channel geometry, geomorphic features, and related hydraulic drivers based on scaling equations from the literature and readily accessible information such as river discharge, bankfull width, median grain size, sinuosity, channel slope, and regional groundwater gradients. Multi-scale hyporheic flow is computed based on combining simple but powerful analytical and numerical expressions that have been previously published. We applied NEXSS across a broad range of geomorphic diversity in river reaches and synthetic river networks. NEXSS demonstrates that vertical exchange beneath submerged bedforms dominates hyporheic fluxes and turnover rates along the river corridor. Moreover, the hyporheic zone's potential for biogeochemical transformations is comparable across stream orders, but the abundance of lower-order channels results in a considerably higher cumulative effect for low-order streams. Thus, vertical exchange beneath submerged bedforms has more potential for biogeochemical transformations than lateral exchange beneath banks, although lateral exchange through meanders may be important in large rivers. These results have implications for predicting outcomes of river and basin management practices.

  19. Reach-Scale Channel Adjustments to Channel Network Geometry in Mountain Bedrock Streams

    NASA Astrophysics Data System (ADS)

    Plitzuweit, S. J.; Springer, G. S.

    2008-12-01

    Channel network geometry (CNG) is a critical determinant of hydrological response and may significantly affect incision processes within the Appalachian Plateau near Richwood, West Virginia. The Williams, Cherry, and Cranberry Rivers share drainage divides and their lower reaches flow atop resistant, quartz-rich sandstones. The lower two-thirds of the Cranberry and Williams Rivers display linear profiles atop the sandstones; whereas the Cherry is concave upwards atop the sandstones. Because lithologies and geological structures are similar among the watersheds, we tested whether differences in CNGs explain the profile shapes and reach-scale channel properties. Specifically, we quantified CNG by calculating reach- specific area-distance functions using DEMs. The area-distance functions were then converted into synthetic hydrographs to model hydrological responses. The Cherry River exhibits a classic dendritic drainage pattern, producing peaked hydrographs and low interval transit times. The Cranberry River displays a trellis-like drainage pattern, which produces attenuated hydrographs and high interval transit times. The upstream reaches of the Williams River have a dendritic drainage pattern, but the lower two-thirds of the watershed transitions into an elongated basin with trellis-like CNG. Reach gradients are steeper in the lower reaches of the Williams and Cranberry Rivers where hydrographs are attenuated. In contrast, peaked hydrographs within the Cherry River are associated with lower reach gradients despite resistant sandstone channel beds. Trellis-like CNG may restrict the ability of downstream reaches within the Williams and Cranberry Rivers to achieve the critical discharge needed to cause incision during floods (all other things being equal). If so, increased reach gradients may be hydraulic adjustments that compensate for comparatively low discharges. We are now applying the synthetic hydrographs to HEC-RAS flow models generated from field channel surveys in order to analyze whether stream power and shear stress are adjusted to reflect CNG at the reach- scale. These models are compared to those with discharges calculated using drainage area and precipitation totals alone. We conclude that gradients in bedrock mountain streams may reflect basin-scale hydrology (CNG) and not simply local geological or geomorphic factors. This challenges the conclusions of others who ascribe local channel adjustments to: i) lithology and structure alone, or ii) local colluvium grain sizes.

  20. From biological neural networks to thinking machines: Transitioning biological organizational principles to computer technology

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.

    1991-01-01

    The three-dimensional organization of the vestibular macula is under study by computer assisted reconstruction and simulation methods as a model for more complex neural systems. One goal of this research is to transition knowledge of biological neural network architecture and functioning to computer technology, to contribute to the development of thinking computers. Maculas are organized as weighted neural networks for parallel distributed processing of information. The network is characterized by non-linearity of its terminal/receptive fields. Wiring appears to develop through constrained randomness. A further property is the presence of two main circuits, highly channeled and distributed modifying, that are connected through feedforward-feedback collaterals and biasing subcircuit. Computer simulations demonstrate that differences in geometry of the feedback (afferent) collaterals affects the timing and the magnitude of voltage changes delivered to the spike initiation zone. Feedforward (efferent) collaterals act as voltage followers and likely inhibit neurons of the distributed modifying circuit. These results illustrate the importance of feedforward-feedback loops, of timing, and of inhibition in refining neural network output. They also suggest that it is the distributed modifying network that is most involved in adaptation, memory, and learning. Tests of macular adaptation, through hyper- and microgravitational studies, support this hypothesis since synapses in the distributed modifying circuit, but not the channeled circuit, are altered. Transitioning knowledge of biological systems to computer technology, however, remains problematical.

  1. Four second-sphere residues of Thermus thermophilus SG0.5JP17-16 laccase tune the catalysis by hydrogen-bonding networks.

    PubMed

    Liu, Huiping; Zhu, Yanyun; Yang, Xiaorong; Lin, Ying

    2018-05-01

    The multicopper oxidases catalyze 1-electron oxidation of four substrate molecules and concomitantly 4-electron reduction of dioxygen to water. The substrate loses the electrons at the type 1 copper (T1 Cu) site of the enzyme, while the dioxygen is reduced to water at the trinuclear copper center. A highly conserved Glu residue, which is at the dioxygen-entering channel, shuttles the proton to break the O-O bond of dioxygen. At the water-leaving channel, an Asp residue was found to be important in the protonation mechanism. In this study, laccase from Thermus thermophilus SG0.5JP17-16 (lacTT) was investigated to address how four second-sphere residues E356, E456, D106, and D423 affect the activity of the enzyme. Kinetic data indicate that catalytic activities of the enzyme are altered by site-directed mutagenesis on four second-sphere residues. The structural model of lacTT was generated by homology modeling. Structural and spectral data indicate that the E356 residue is situated at the substrate-binding site, responsible for the binding of the substrate and the geometry of the T1 Cu site by hydrogen-bonding networks; the E456 residue, located at the dioxygen-entering channel, plays a critical role in stabilizing the structure of all active copper centers and shuttling the proton to the trinuclear copper cluster (TNC) for the reductive reaction of dioxygen; the D106 and D423 residues are at the water-leaving channel, and they are important for the essential geometry of the TNC and the release of the water molecules. Altogether, this study contributes to the further understanding of the basic mechanism involving the oxidation of the substrate, electron transfer, and the reduction of dioxygen in lacTT.

  2. The effects of tidal range on saltmarsh morphology

    NASA Astrophysics Data System (ADS)

    Goodwin, Guillaume; Mudd, Simon

    2017-04-01

    Saltmarshes are highly productive coastal ecosystems that act simultaneously as flood barriers, carbon storage, pollutant filters and nurseries. As halophytic plants trap suspended sediment and decay in the settled strata, innervated platforms emerge from the neighbouring tidal flats, forming sub-vertical scarps on their eroding borders and sub-horizontal pioneer zones in areas of seasonal expansion. These evolutions are subject to two contrasting influences: stochastically generated waves erode scarps and scour tidal flats, whereas tidally-generated currents transport sediment to and from the marsh through the channel network. Hence, the relative power of waves and tidal currents strongly influences saltmarsh evolution, and regional variations in tidal range yield marshes of differing morphologies. We analyse several sheltered saltmarshes to determine how their morphology reflects variations in tidal forcing. Using tidal, topographic and spectral data, we implement an algorithm based on the open-source software LSDTopoTools to automatically identify features such as marsh platforms, tidal flats, erosion scarps, pioneer zones and tidal channels on local Digital Elevation Models. Normalised geometric properties are then computed and compared throughout the spectrum of tidal range, highlighting a notable effect on channel networks, platform geometry and wave exposure. We observe that micro-tidal marshes typically display jagged outlines and multiple islands along with wide, shallow channels. As tidal range increases, we note the progressive disappearance of marsh islands and linearization of scarps, both indicative of higher hydrodynamic stress, along with a structuration of channel networks and the increase of levee volume, suggesting higher sediment input on the platform. Future research will lead to observing and modelling the evolution of saltmarshes under various tidal forcing in order to assess their resilience to environmental change.

  3. The bankfull hydraulic geometry of evolving meander bends

    NASA Astrophysics Data System (ADS)

    Monegaglia, F.; Tubino, M.; Zolezzi, G.

    2017-12-01

    Changes in the bankfull hydraulic geometry of meandering rivers associated with meander growth from incipient meandering to cutoffs have seldom been analysed in detail. Such information is also needed by meander morphodynamic models, most of which simulate the evolution of bankfull channel geometry by simply accounting for channel slope reduction inversely proportional to elongation, while changes in bankfull channel width are often neglected or, when they are considered, they are not consistent with the few available observations. To address these gaps we first perform an extensive, systematic, bend-scale evolutionary analysis of bankfull channel widths in several large meandering rivers in the Amazon basin, over a three decades time period, from remotely sensed field data. The analysis consistently show a slight decreasing trend of the bankfull channel width during the planform evolution towards cutoff. Furthermore, we develop a physically based model for the evolution of bankfull channel geometry during the planform development of meandering rivers. The model is based on the conservation of sediment discharge. An integrated one-dimensional Exner equation that accounts for meander elongation, sediment supply conservation and sediment income from the channel banks, allows us to predict the evolution of the channel slope. The evolution of the channel width is modeled through a threshold equation. The model correctly predicts the slight variability of channel width during meander development and a gentler reduction of the channel slope, which is mitigated by the conservation of sediment supply. The bankfull geometry of highly dynamic meandering rivers is predicted to be elongation-dominated, while the one related to slowly evolving meandering rivers is sediment supply-dominated. Finally, we discuss the implications of the proposed modeling framework in terms of planform structure, meander shape and morphodynamic influence.

  4. Stochastic Geomorphology: A Framework for Creating General Principles on Erosion and Sedimentation in River Basins (Invited)

    NASA Astrophysics Data System (ADS)

    Benda, L. E.

    2009-12-01

    Stochastic geomorphology refers to the interaction of the stochastic field of sediment supply with hierarchically branching river networks where erosion, sediment flux and sediment storage are described by their probability densities. There are a number of general principles (hypotheses) that stem from this conceptual and numerical framework that may inform the science of erosion and sedimentation in river basins. Rainstorms and other perturbations, characterized by probability distributions of event frequency and magnitude, stochastically drive sediment influx to channel networks. The frequency-magnitude distribution of sediment supply that is typically skewed reflects strong interactions among climate, topography, vegetation, and geotechnical controls that vary between regions; the distribution varies systematically with basin area and the spatial pattern of erosion sources. Probability densities of sediment flux and storage evolve from more to less skewed forms downstream in river networks due to the convolution of the population of sediment sources in a watershed that should vary with climate, network patterns, topography, spatial scale, and degree of erosion asynchrony. The sediment flux and storage distributions are also transformed downstream due to diffusion, storage, interference, and attrition. In stochastic systems, the characteristically pulsed sediment supply and transport can create translational or stationary-diffusive valley and channel depositional landforms, the geometries of which are governed by sediment flux-network interactions. Episodic releases of sediment to the network can also drive a system memory reflected in a Hurst Effect in sediment yields and thus in sedimentological records. Similarly, discreet events of punctuated erosion on hillslopes can lead to altered surface and subsurface properties of a population of erosion source areas that can echo through time and affect subsequent erosion and sediment flux rates. Spatial patterns of probability densities have implications for the frequency and magnitude of sediment transport and storage and thus for the formation of alluvial and colluvial landforms throughout watersheds. For instance, the combination and interference of probability densities of sediment flux at confluences creates patterns of riverine heterogeneity, including standing waves of sediment with associated age distributions of deposits that can vary from younger to older depending on network geometry and position. Although the watershed world of probability densities is rarified and typically confined to research endeavors, it has real world implications for the day-to-day work on hillslopes and in fluvial systems, including measuring erosion, sediment transport, mapping channel morphology and aquatic habitats, interpreting deposit stratigraphy, conducting channel restoration, and applying environmental regulations. A question for the geomorphology community is whether the stochastic framework is useful for advancing our understanding of erosion and sedimentation and whether it should stimulate research to further develop, refine and test these and other principles. For example, a changing climate should lead to shifts in probability densities of erosion, sediment flux, storage, and associated habitats and thus provide a useful index of climate change in earth science forecast models.

  5. Slip-flow in complex porous media as determined by a multi-relaxation-time lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Landry, C. J.; Prodanovic, M.; Eichhubl, P.

    2014-12-01

    The pores and throats of shales and mudrocks are predominantly found within a range of 1-100 nm, within this size range the flow of gas at reservoir conditions will fall within the slip-flow and low transition-flow regime (0.001 < Kn < 0.5). Currently, the study of slip-flows is for the most part limited to simple tube and channel geometries, however, the geometry of mudrock pores is often sponge-like (organic matter) and/or platy (clays). Molecular dynamics (MD) simulations can be used to predict slip-flow in complex geometries, but due to prohibitive computational demand are generally limited to small volumes (one to several pores). Here we present a multi-relaxation-time lattice Boltzmann model (LBM) parameterized for slip-flow (Guo et al. 2008) and adapted here to complex geometries. LBMs are inherently parallelizable, such that flow in complex geometries of significant (near REV-scale) volumes can be readily simulated at a fraction of the computational cost of MD simulations. At the macroscopic-scale the LBM is parameterized with local effective viscosities at each node to capture the variance of the mean-free-path of gas molecules in a bounded system. The corrected mean-free-path for each lattice node is determined using the mean distance of the node to the pore-wall and Stop's correction for mean-free-paths in an infinite parallel-plate geometry. At the microscopic-scale, a combined bounce-back specular-reflection boundary condition is applied to the pore-wall nodes to capture Maxwellian-slip. The LBM simulation results are first validated in simple tube and channel geometries, where good agreement is found for Knudsen numbers below 0.1, and fair agreement is found for Knudsen numbers between 0.1 and 0.5. More complex geometries are then examined including triangular-ducts and ellipsoid-ducts, both with constant and tapering/expanding cross-sections, as well as a clay pore-network imaged from a hydrocarbon producing shale by sequential focused ion-beam scanning electron microscopy. These results are analyzed to determine grid-independent resolutions, and used to explore the relationship between effective permeability and Knudsen number in complex geometries.

  6. Projection-Based 3D Printing of Cell Patterning Scaffolds with Multiscale Channels.

    PubMed

    Xue, Dai; Wang, Yancheng; Zhang, Jiaxin; Mei, Deqing; Wang, Yue; Chen, Shaochen

    2018-06-13

    To fully actualize artificial, cell-laden biological models in tissue engineering, such as 3D organoids and organs-on-a-chip systems, cells need to be patterned such that they can precisely mimic natural microenvironments in vitro. Despite increasing interest in this area, patterning cells at multiscale (∼10 μm to 10 mm) remains a significant challenge in bioengineering. Here, we report a projection-based 3D printing system that achieves rapid and high-resolution fabrication of hydrogel scaffolds featuring intricate channels for multiscale cell patterning. Using this system, we were able to use biocompatible poly(ethylene glycol)diacrylate in fabricating a variety of scaffold architectures, ranging from regular geometries such as serpentine, spiral, and fractal-like to more irregular/intricate geometries, such as biomimetic arborescent and capillary networks. A red food dye solution was able to freely fill all channels in the scaffolds, from the trunk (>1100 μm in width) to the small branch (∼17 μm in width) without an external pump. The dimensions of the printed scaffolds remained stable over 3 days while being immersed in Dulbecco's phosphate-buffered saline at 37 °C, and a penetration analysis revealed that these scaffolds are suitable for metabolic and nutrient transport. Cell patterning experiments showed that red fluorescent protein-transfected A549 human nonsmall lung cancer cells adhered well in the scaffolds' channels, and showed further attachment and penetration during cell culture proliferation.

  7. Seepage Bifurcation as a Critical Process

    NASA Astrophysics Data System (ADS)

    Yi, R.; Rothman, D.

    2015-12-01

    Channel networks form beautiful and surprisingly intricate geometries, yet diligently evade comprehensive mathematical understanding. Work in recent years has shed light on this problem. Networks driven by seepage flow, in particular, have been shown to grow in a field that can be described by the Laplace equation, providing us with an understanding of valley growth and shape. However, the process by which such networks branch to form these ramified shapes is yet a mystery. We focus our attention on a highly ramified seepage valley network in Bristol, Florida. We study the behavior of flux to valley heads as a function of valley length, and use this result to motivate our discussion of branch formation. We then hypothesize that a critical groundwater flux demarcates a transition point where topographic diffusion is overcome by branching processes, and we present network-wide flux calculations, cosmogenic data, and simulation to support our claim. Our results ultimately suggest a mechanism for seepage bifurcation, and inform our understanding of pattern formation in river networks.

  8. Development of bankfull hydraulic geometry relationships for the physiographic divisions of the United States

    USDA-ARS?s Scientific Manuscript database

    Bankfull hydraulic geometry relationships are used to estimate channel dimensions for stream flow simulation models, which require channel geometry data as input parameters. Often, one nationwide curve is used across the entire U.S. (e.g. in SWAT), even though studies have shown that the use of reg...

  9. Cyclic deformation-induced solute transport in tissue scaffolds with computer designed, interconnected, pore networks: experiments and simulations.

    PubMed

    Den Buijs, Jorn Op; Dragomir-Daescu, Dan; Ritman, Erik L

    2009-08-01

    Nutrient supply and waste removal in porous tissue engineering scaffolds decrease from the periphery to the center, leading to limited depth of ingrowth of new tissue into the scaffold. However, as many tissues experience cyclic physiological strains, this may provide a mechanism to enhance solute transport in vivo before vascularization of the scaffold. The hypothesis of this study was that pore cross-sectional geometry and interconnectivity are of major importance for the effectiveness of cyclic deformation-induced solute transport. Transparent elastic polyurethane scaffolds, with computer-programmed design of pore networks in the form of interconnected channels, were fabricated using a 3D printing and injection molding technique. The scaffold pores were loaded with a colored tracer for optical contrast, cyclically compressed with deformations of 10 and 15% of the original undeformed height at 1.0 Hz. Digital imaging was used to quantify the spatial distribution of the tracer concentration within the pores. Numerical simulations of a fluid-structure interaction model of deformation-induced solute transport were compared to the experimental data. The results of experiments and modeling agreed well and showed that pore interconnectivity heavily influences deformation-induced solute transport. Pore cross-sectional geometry appears to be of less relative importance in interconnected pore networks. Validated computer models of solute transport can be used to design optimal scaffold pore geometries that will enhance the convective transport of nutrients inside the scaffold and the removal of waste, thus improving the cell survivability deep inside the scaffold.

  10. Optimization of polymer electrolyte membrane fuel cell flow channels using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Catlin, Glenn; Advani, Suresh G.; Prasad, Ajay K.

    The design of the flow channels in PEM fuel cells directly impacts the transport of reactant gases to the electrodes and affects cell performance. This paper presents results from a study to optimize the geometry of the flow channels in a PEM fuel cell. The optimization process implements a genetic algorithm to rapidly converge on the channel geometry that provides the highest net power output from the cell. In addition, this work implements a method for the automatic generation of parameterized channel domains that are evaluated for performance using a commercial computational fluid dynamics package from ANSYS. The software package includes GAMBIT as the solid modeling and meshing software, the solver FLUENT, and a PEMFC Add-on Module capable of modeling the relevant physical and electrochemical mechanisms that describe PEM fuel cell operation. The result of the optimization process is a set of optimal channel geometry values for the single-serpentine channel configuration. The performance of the optimal geometry is contrasted with a sub-optimal one by comparing contour plots of current density, oxygen and hydrogen concentration. In addition, the role of convective bypass in bringing fresh reactant to the catalyst layer is examined in detail. The convergence to the optimal geometry is confirmed by a bracketing study which compares the performance of the best individual to those of its neighbors with adjacent parameter values.

  11. Lithologic and hydraulic controls on network-scale variations in sediment yield: Big Wood and North Fork Big Lost Rivers, Idaho

    NASA Astrophysics Data System (ADS)

    Mueller, E. R.; Pitlick, J.; Smith, M. E.

    2008-12-01

    Channel morphology and sediment textures in streams and rivers are a product of the flux of sediment and water conveyed to channel networks. Differences in sediment supply between watersheds should thus be reflected by differences in channel and bed-material properties. In order to address this directly, field measurements of channel morphology, substrate lithology, and bed sediment textures were made at 35 sites distributed evenly across two adjacent watersheds in south-central Idaho, the Big Wood River (BW) and N. Fork Big Lost River (NBL). Measurements of sediment transport indicate a five-fold difference in sediment yields between these basins, despite their geographic proximity. Three dominant lithologic modes (an intrusive and extrusive volcanic suite and a sedimentary suite) exist in different proportions between these basins. The spatial distribution of lithologies exhibits a first-order control on the variation in sediment supply, bed sediment textures, and size distribution of the bed load at the basin outlet. Here we document the coupled hydraulic and sedimentologic structuring of these stream channel networks to differences in sediment supply. The results show that width and depth are remarkably similar between the two basins across a range in channel gradient and drainage area, with the primary difference being decreased bed armoring in the NBL. As a result, dimensionless shear stress (τ*) increases downstream in the NBL with an average value of 0.073, despite declining slope. The opposite is true in the BW where τ* averages 0.048. Lithologic characterization of the substrate indicates that much of the discrepancy in bed armoring can be attributed to an increasing downstream supply of resistant intrusive granitic rocks to the BW, whereas the NBL is dominated by erodible extrusive volcanic and sedimentary rocks. A simple modeling approach using an excess shear stress-based bed load transport equation and observed channel geometry shows that subtle changes in sediment texture can reproduce the marked difference in sediment yield between basins. This suggests that in gravel-bed streams the flux of sediment through the channel network is governed as much by textural changes as by morphological changes, and that these textural changes are tightly coupled to source area lithology.

  12. No Snow No Flow: How Montane Stream Networks Respond to Drought

    NASA Astrophysics Data System (ADS)

    Grant, G.; Nolin, A. W.; Selker, J. S.; Lewis, S.; Hempel, L. A.; Jefferson, A.; Walter, C.; Roques, C.

    2015-12-01

    Hydrologic extremes, such as drought, offer an exceptional opportunity to explore how runoff generation mechanisms and stream networks respond to changing precipitation regimes. The winter of 2014-2015 was the warmest on record in western Oregon, US, with record low snowpacks, and was followed by an anomalously warm, dry spring, resulting in historically low streamflows. But a year like 2015 is more than an outlier meteorological year. It provides a unique opportunity to test fundamental hypotheses for how montane hydrologic systems will respond to anticipated changes in amount and timing of recharge. In particular, the volcanic Cascade Mountains represent a "landscape laboratory" comprised of two distinct runoff regimes: the surface-flow dominated Western Cascade watersheds, with flashy streamflow regimes, rapid baseflow recession, and very low summer flows; and (b) the spring-fed High Cascade watersheds, with a slow-responding streamflow regime, and a long and sustained baseflow recession that maintains late summer streamflow through deep-groundwater contributions to high volume, coldwater springs. We hypothesize that stream network response to the extremely low snowpack and recharge varies sharply in these two regions. In surface flow dominated streams, the location of channel heads can migrate downstream, contracting the network longitudinally; wetted channel width and depth contract laterally as summer recession proceeds and flows diminish. In contrast, in spring-fed streams, channel heads "jump" to the next downstream spring when upper basin spring flow diminishes to zero. Downstream of flowing springs, wetted channel width and depth contract laterally as flows recede. To test these hypotheses, we conducted a field campaign to measure changing discharge, hydraulic geometry, and channel head location in both types of watersheds throughout the summer and early fall. Multiple cross-section sites were established on 6 streams representing both flow regime types on either side of the Cascade crest. We also took Isotopic water samples to determine recharge elevations of receding streams. Taken together these measurements reveal the processes by which drainage networks contract as flows diminish - a fundamental property of montane stream systems both now and in the future.

  13. Development and comparison of multiple regression models to predict bankfull channel dimensions for use in hydrologic models

    USDA-ARS?s Scientific Manuscript database

    Bankfull hydraulic geometry relationships are used to estimate channel dimensions for streamflow simulation models, which require channel geometry data as input parameters. Often, one nationwide curve is used across the entire United States (U.S.) (e.g., in Soil and Water Assessment Tool), even tho...

  14. Pressure losses and heat transfer in non-circular channels with hydraulically smooth walls

    NASA Technical Reports Server (NTRS)

    Malak, J.

    1982-01-01

    The influence of channel geometry on pressure losses and heat transfer in noncircular channels with hydraulically smooth walls was studied. As a basic assumption for the description of this influence, integral geometrical criteria, selected according to experimental experience, were introduced. Using these geometrical criteria, a large set of experimental data for pressure losses and heat transfer in circular and annular channels with longitudinal fins was evaluated. In this way it as empirically proved that the criteria described channel geometry fairly well.

  15. User's Guide for Mixed-Size Sediment Transport Model for Networks of One-Dimensional Open Channels

    USGS Publications Warehouse

    Bennett, James P.

    2001-01-01

    This user's guide describes a mathematical model for predicting the transport of mixed sizes of sediment by flow in networks of one-dimensional open channels. The simulation package is useful for general sediment routing problems, prediction of erosion and deposition following dam removal, and scour in channels at road embankment crossings or other artificial structures. The model treats input hydrographs as stepwise steady-state, and the flow computation algorithm automatically switches between sub- and supercritical flow as dictated by channel geometry and discharge. A variety of boundary conditions including weirs and rating curves may be applied both external and internal to the flow network. The model may be used to compute flow around islands and through multiple openings in embankments, but the network must be 'simple' in the sense that the flow directions in all channels can be specified before simulation commences. The location and shape of channel banks are user specified, and all bedelevation changes take place between these banks and above a user-specified bedrock elevation. Computation of sediment-transport emphasizes the sand-size range (0.0625-2.0 millimeter) but the user may select any desired range of particle diameters including silt and finer (<0.0625 millimeter). As part of data input, the user may set the original bed-sediment composition of any number of layers of known thickness. The model computes the time evolution of total transport and the size composition of bed- and suspended-load sand through any cross section of interest. It also tracks bed -surface elevation and size composition. The model is written in the FORTRAN programming language for implementation on personal computers using the WINDOWS operating system and, along with certain graphical output display capability, is accessed from a graphical user interface (GUI). The GUI provides a framework for selecting input files and parameters of a number of components of the sediment-transport process. There are no restrictions in the use of the model as to numbers of channels, channel junctions, cross sections per channel, or points defining the cross sections. Following completion of the simulation computations, the GUI accommodates display of longitudinal plots of either bed elevation and size composition, or of transport rate and size composition of the various components, for individual channels and selected times during the simulation period. For individual cross sections, the GUI also allows display of time series of transport rate and size composition of the various components and of bed elevation and size composition.

  16. Drainage networks after wildfire

    USGS Publications Warehouse

    Kinner, D.A.; Moody, J.A.

    2005-01-01

    Predicting runoff and erosion from watersheds burned by wildfires requires an understanding of the three-dimensional structure of both hillslope and channel drainage networks. We investigate the small-and large-scale structures of drainage networks using field studies and computer analysis of 30-m digital elevation model. Topologic variables were derived from a composite 30-m DEM, which included 14 order 6 watersheds within the Pikes Peak batholith. Both topologic and hydraulic variables were measured in the field in two smaller burned watersheds (3.7 and 7.0 hectares) located within one of the order 6 watersheds burned by the 1996 Buffalo Creek Fire in Central Colorado. Horton ratios of topologic variables (stream number, drainage area, stream length, and stream slope) for small-scale and large-scale watersheds are shown to scale geometrically with stream order (i.e., to be scale invariant). However, the ratios derived for the large-scale drainage networks could not be used to predict the rill and gully drainage network structure. Hydraulic variables (width, depth, cross-sectional area, and bed roughness) for small-scale drainage networks were found to be scale invariant across 3 to 4 stream orders. The relation between hydraulic radius and cross-sectional area is similar for rills and gullies, suggesting that their geometry can be treated similarly in hydraulic modeling. Additionally, the rills and gullies have relatively small width-to-depth ratios, implying sidewall friction may be important to the erosion and evolutionary process relative to main stem channels.

  17. Bankfull-channel geometry and discharge curves for the Rocky Mountains Hydrologic Region in Wyoming

    USGS Publications Warehouse

    Foster, Katharine

    2012-01-01

    Regional curves relate bankfull-channel geometry and bankfull discharge to drainage area in regions with similar runoff characteristics and are used to estimate the bankfull discharge and bankfull-channel geometry when the drainage area of a stream is known. One-variable, ordinary least-squares regressions relating bankfull discharge, cross-sectional area, bankfull width, and bankfull mean depth to drainage area were developed from data collected at 35 streamgages in or near Wyoming. Watersheds draining to these streamgages are within the Rocky Mountains Hydrologic Region of Wyoming and neighboring states.

  18. Channeling, channel density and mass recovery in aquifer transport, with application to the MADE experiment

    NASA Astrophysics Data System (ADS)

    Fiori, A.

    2014-12-01

    Channeling effects in heterogeneous formations are studied through a new quantity denoted as channel density a(x,t). Focusing on advection only, a(x,t) is defined as the relative number of streamtubes (or channels) containing solute between x and x + dx at a given time t, regardless of the mass that they carry. The channel density generally differs from the widely employed longitudinal mass distribution m(x,t), and their difference increases with time and the degree of heterogeneity. The difference between a and m reflects the nonuniformity of mass distribution relative to the plume geometry. In particular, the "fast" channels typically carry a larger fraction of mass than their share in their relative volume, which in turn can be rather small. Detecting such channels by a network of monitoring wells may be a challenging task, which might explain the poor solute recovery of some field experiments at increasing times. After application of the proposed concepts to the simple case of stratified formations, we model the channel density and mass distribution pertaining to the MADE experiment, which exhibited poor mass recovery at large times. The results presented in this study emphasize the possible channeling effects at MADE and the general difficulty in sampling the leading edge of the plume, which in turn may contain a significant fraction of the plume mass.

  19. Information transmission and signal permutation in active flow networks

    NASA Astrophysics Data System (ADS)

    Woodhouse, Francis G.; Fawcett, Joanna B.; Dunkel, Jörn

    2018-03-01

    Recent experiments show that both natural and artificial microswimmers in narrow channel-like geometries will self-organise to form steady, directed flows. This suggests that networks of flowing active matter could function as novel autonomous microfluidic devices. However, little is known about how information propagates through these far-from-equilibrium systems. Through a mathematical analogy with spin-ice vertex models, we investigate here the input–output characteristics of generic incompressible active flow networks (AFNs). Our analysis shows that information transport through an AFN is inherently different from conventional pressure or voltage driven networks. Active flows on hexagonal arrays preserve input information over longer distances than their passive counterparts and are highly sensitive to bulk topological defects, whose presence can be inferred from marginal input–output distributions alone. This sensitivity further allows controlled permutations on parallel inputs, revealing an unexpected link between active matter and group theory that can guide new microfluidic mixing strategies facilitated by active matter and aid the design of generic autonomous information transport networks.

  20. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: bankfull and macrochannels in the Llano River watershed, central Texas, USA

    USGS Publications Warehouse

    Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.

    2015-01-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (< 1.5-year return periods) that mobilize channel-bed material and less frequent events that determine bankfull channel (1.5- to 3-year return periods) and macrochannel (10- to 40-year return periods) dimensions; (v) macrochannels with high f values (most ≤ 0.45) that develop at sites with unit stream power values in excess of 200 watts per square meter (W/m2); and (vi) downstream convergence of hydraulic geometry exponents for bankfull and macrochannels, explained by co-increases of flood magnitude and noncohesive sandy sediments that collectively minimize development of alluvial bankfull indicators. Collectively, these findings indicate that mixed alluvial–bedrock channels exhibit first-order lithologic controls (lithologic resistance and valley confinement) of channel geometry, second-order hydrologic (flow regime) control of channel dimensions, and third-order sedimentary controls that exert subsidiary influence on channel shape and bed configuration.

  1. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  2. Influence of cross-sectional geometry on the sensitivity and hysteresis of liquid-phase electronic pressure sensors

    NASA Astrophysics Data System (ADS)

    Park, Yong-Lae; Tepayotl-Ramirez, Daniel; Wood, Robert J.; Majidi, Carmel

    2012-11-01

    Cross-sectional geometry influences the pressure-controlled conductivity of liquid-phase metal channels embedded in an elastomer film. These soft microfluidic films may function as hyperelastic electric wiring or sensors that register the intensity of surface pressure. As pressure is applied to the elastomer, the cross-section of the embedded channel deforms, and the electrical resistance of the channel increases. In an effort to improve sensitivity and reduce sensor nonlinearity and hysteresis, we compare the electrical response of 0.25 mm2 channels with different cross-sectional geometries. We demonstrate that channels with a triangular or concave cross-section exhibit the least nonlinearity and hysteresis over pressures ranging from 0 to 70 kPa. These experimental results are in reasonable agreement with predictions made by theoretical calculations that we derive from elasticity and Ohm's Law.

  3. First results from different investigations on MHD flow in multichannel U-Bends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimann, J.; Barleon, L.; Molokov, S.

    1995-04-01

    In electrically coupled multichannel ducts with a U-bend geometry, MHD effects can result in strongly non-uniform distributions of flow rates Q{sub i} and pressure drops {Delta}p{sub i} in the individual channels. A multichannel U-bend geometry is part of the KfK self-cooled Pb-17Li blanket design for a fusion reactor (radial-toroidal-radial channels). However, inserts are proposed which decouple electrically the radial channels. The multi-channel effects (MCDs) were investigated by (i) Screening test with InGaSn at LAS, Riga, and (ii) more detailed experiments with NaK at KfK, Karlsruhe. Different flow channel geometries and channel numbers between 1 and 5 were used. Hartmann numbersmore » and interaction parameters were varied between O {le} M {le} 2300 and O {le} N {le} 40000. In parallel, a theoretical analysis was performed, based on the method of core flow approximation (CFA) which is valid for M {r_arrow} {infinity} and N {r_arrow} {infinity}. Significant MCEs occur in all ducts with totally electrically coupled channels. For the mode {Delta}p{sub i} = const, the flow rates in the outer channels can become significantly larger than those in the inner channels. For Q{sub i} = const, the highest pressure drop occurs in the middle channel and the lowest in the outer channels. The CFA predicts correctly the ratios of the pressure drops of the single channels but gives lower values than observed experimentally. No marked MCE was found for flow geometry which is similar to the KfK design, i.e., a fairly uniform flow rate and pressure drop distribution was observed for all values of M and N.« less

  4. System-level simulation of liquid filling in microfluidic chips.

    PubMed

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2011-06-01

    Liquid filling in microfluidic channels is a complex process that depends on a variety of geometric, operating, and material parameters such as microchannel geometry, flow velocity∕pressure, liquid surface tension, and contact angle of channel surface. Accurate analysis of the filling process can provide key insights into the filling time, air bubble trapping, and dead zone formation, and help evaluate trade-offs among the various design parameters and lead to optimal chip design. However, efficient modeling of liquid filling in complex microfluidic networks continues to be a significant challenge. High-fidelity computational methods, such as the volume of fluid method, are prohibitively expensive from a computational standpoint. Analytical models, on the other hand, are primarily applicable to idealized geometries and, hence, are unable to accurately capture chip level behavior of complex microfluidic systems. This paper presents a parametrized dynamic model for the system-level analysis of liquid filling in three-dimensional (3D) microfluidic networks. In our approach, a complex microfluidic network is deconstructed into a set of commonly used components, such as reservoirs, microchannels, and junctions. The components are then assembled according to their spatial layout and operating rationale to achieve a rapid system-level model. A dynamic model based on the transient momentum equation is developed to track the liquid front in the microchannels. The principle of mass conservation at the junction is used to link the fluidic parameters in the microchannels emanating from the junction. Assembly of these component models yields a set of differential and algebraic equations, which upon integration provides temporal information of the liquid filling process, particularly liquid front propagation (i.e., the arrival time). The models are used to simulate the transient liquid filling process in a variety of microfluidic constructs and in a multiplexer, representing a complex microfluidic network. The accuracy (relative error less than 7%) and orders-of-magnitude speedup (30 000X-4 000 000X) of our system-level models are verified by comparison against 3D high-fidelity numerical studies. Our findings clearly establish the utility of our models and simulation methodology for fast, reliable analysis of liquid filling to guide the design optimization of complex microfluidic networks.

  5. Cyclic Deformation-Induced Solute Transport in Tissue Scaffolds with Computer Designed, Interconnected, Pore Networks: Experiments and Simulations

    PubMed Central

    Op Den Buijs, Jorn; Dragomir-Daescu, Dan; Ritman, Erik L.

    2014-01-01

    Nutrient supply and waste removal in porous tissue engineering scaffolds decrease from the periphery to the center, leading to limited depth of ingrowth of new tissue into the scaffold. However, as many tissues experience cyclic physiological strains, this may provide a mechanism to enhance solute transport in vivo before vascularization of the scaffold. The hypothesis of this study was that pore cross-sectional geometry and interconnectivity are of major importance for the effectiveness of cyclic deformation-induced solute transport. Transparent elastic polyurethane scaffolds, with computer-programmed design of pore networks in the form of interconnected channels, were fabricated using a 3D printing and injection molding technique. The scaffold pores were loaded with a colored tracer for optical contrast, cyclically compressed with deformations of 10 and 15% of the original undeformed height at 1.0 Hz. Digital imaging was used to quantify the spatial distribution of the tracer concentration within the pores. Numerical simulations of a fluid–structure interaction model of deformation-induced solute transport were compared to the experimental data. The results of experiments and modeling agreed well and showed that pore interconnectivity heavily influences deformation-induced solute transport. Pore cross-sectional geometry appears to be of less relative importance in interconnected pore networks. Validated computer models of solute transport can be used to design optimal scaffold pore geometries that will enhance the convective transport of nutrients inside the scaffold and the removal of waste, thus improving the cell survivability deep inside the scaffold. PMID:19466547

  6. Anatomy of a Flash Flood in the Amargosa Desert, U.S.A.

    NASA Astrophysics Data System (ADS)

    Stonestrom, D. A.; Prudic, D. E.; Glancy, P. A.; Beck, D. A.

    2004-12-01

    In August 2004, intense convective rainstorms caused flash flooding throughout the Amargosa River drainage network, temporarily closing Death Valley National Park and causing two fatalities when runoff from Furnace Creek and other channels overtopped roadways in the Park. In 1998, we began installing streambed temperature loggers, pressure transducers, and scour chains in the normally dry channel and selected tributaries of the river in the Amargosa Desert and Oasis Valley. The primary objective of this work is to improve understanding of ground-water recharge from ephemeral streamflows under current climatic conditions. Two weeks after the flash flooding, we visited instrumented sites and estimated peak flows by surveying high-water marks and corresponding channel geometries. Time series of temperatures and stages, together with peak-flow estimates, reveal the routing and evolution of distinct flood pulses in the upper Amargosa River basin. The data also reveal previously undocumented details of individual flash-flood hydrographs, including initial and subsequent flood pulses at two sites. Arid environments are prone to flash flooding not only because vegetation is sparse, but also because the surface-water network is decoupled from underlying ground water by a thick unsaturated zone. Nonlinear interactions between runoff (with energy potentials on the order of a meter of head) and the unsaturated zone (with energy potentials on the order of negative hundreds of meters of head) keep advancing fronts of flood pulses sharp. Profiles of water content beneath the main channel before and after the passage of a flood pulse, together with down-channel attenuation of flow volume within individual pulses, show the leaky nature of dry alluvial channels and the efficiency at which flash floods become potential recharge.

  7. Fabrication of porous beta-tricalcium phosphate with microchannel and customized geometry based on gel-casting and rapid prototyping.

    PubMed

    Li, X; Bian, W; Li, D; Lian, Q; Jin, Z

    2011-03-01

    The tissue engineering scaffolds with three-dimensional porous structure are regarded to be beneficial to facilitate a sufficient supply of nutrients and enable cell ingrowth in bone reconstruction. However, the pores in scaffolds tend to be blocked by the cell ingrowth and result in a restraint of nutrient supply in the further side of the scaffold. An indirect approach of combining the rapid prototyping and gel-casting technique is introduced in this study to fabricate beta-tricalcium phosphate (beta-TCP) scaffolds which not only have interconnected porous structure, but also have a microchannel network inside. The scaffold was designed with customized geometry that matches the defect area, and a double-scale (micropores-microchannel) porous structure inside that is beneficial for cell ingrowth. The scaffolds fabricated have an open, uniform, and interconnected porous architecture with a pore size of 200-400 microm, and posses an internal channel network with a diameter of 600 microm. The porosity was controllable. The compressive yield strength was 4.5 MPa with a porosity of 70 per cent. X-ray diffraction analysis shows that these fabrication processes do not change the crystal structure and chemical composition of beta-TCP. With this technique, it was also possible to fabricate porous scaffolds with desired pore size, porosity, and microchannel, as well as customized geometries by other bioceramics.

  8. Evaluation of the applicability of the dual‐domain mass transfer model in porous media containing connected high‐conductivity channels

    USGS Publications Warehouse

    Liu, Gaisheng; Zheng, Chunmiao; Gorelick, Steven M.

    2007-01-01

    This paper evaluates the dual‐domain mass transfer (DDMT) model to represent transport processes when small‐scale high‐conductivity (K) preferential flow paths (PFPs) are present in a homogenous porous media matrix. The effects of PFPs upon solute transport were examined through detailed numerical experiments involving different realizations of PFP networks, PFP/matrix conductivity contrasts varying from 10:1 to 200:1, different magnitudes of effective conductivities, and a range of molecular diffusion coefficients. Results suggest that the DDMT model can reproduce both the near‐source peak and the downstream low‐concentration spreading observed in the embedded dendritic network when there are large conductivity contrasts between high‐K PFPs and the low‐K matrix. The accuracy of the DDMT model is also affected by the geometry of PFP networks and by the relative significance of the diffusion process in the network‐matrix system.

  9. Streamflow characteristics related to channel geometry of streams in western United States

    USGS Publications Warehouse

    Hedman, E.R.; Osterkamp, W.R.

    1982-01-01

    Assessment of surface-mining and reclamation activities generally requires extensive hydrologic data. Adequate streamflow data from instrumented gaging stations rarely are available, and estimates of surface- water discharge based on rainfall-runoff models, drainage area, and basin characteristics sometimes have proven unreliable. Channel-geometry measurements offer an alternative method of quickly and inexpensively estimating stream-flow characteristics for ungaged streams. The method uses the empirical development of equations to yield a discharge value from channel-geometry and channel-material data. The equations are developed by collecting data at numerous streamflow-gaging sites and statistically relating those data to selected discharge characteristics. Mean annual runoff and flood discharges with selected recurrence intervals can be estimated for perennial, intermittent, and ephemeral streams. The equations were developed from data collected in the western one-half of the conterminous United States. The effect of the channel-material and runoff characteristics are accounted for with the equations.

  10. Channel morphology and patterns of bedload transport in fluvial, formerly-glaciated, forested headwater streams of the Columbia Mountains, Canada

    NASA Astrophysics Data System (ADS)

    Green, Kim; Brardinoni, Francesco; Alila, Younes

    2013-04-01

    This study examines channel-reach morphology and bedload transport dynamics in relation to landscape structure and snowmelt hydrology in Cotton and Elk Creek, two headwater streams of the southern Columbia Mountains, Canada. Data collection is based on field surveys and GIS analysis in conjunction with a nested monitoring network of water discharge and bed load transfer. The nested monitoring network is designed to examine the effects of channel bed texture, and the influence of free-formed (i.e., boulder cascades, step pools, and riffle pools) and forced-alluvial morphologies (i.e., forced step pools) on bedload entrainment and transport. The landscape is characterized by subdued glaciated topography in which sediment is primarily supplied by bank failures and fluvial transfer dominates the channelized sediment cascade. The spatial distribution of channel types is mainly controlled by glacially imposed local slope together with availability of wood and glacigenic materials. Interestingly, downstream hydraulic geometry as well as downstream patterns of the coarse channel bed fraction and stream power are all insensitive to systematic changes of local slope along the typically stepped longitudinal profiles. An indication that the study alluvial systems are adjusted to the contemporary hydrologic and sedimentary regimes, and as such through post-LGM times have been able to compensate for the glacially-imposed boundary conditions. Stepwise multiple regression indicates that annual bedload yield is chiefly controlled by the number of peak events over threshold discharge. During such high flows, repeated destabilization of channel bed armouring and re-mobilization of sediment stored behind logjams can ensure sediment supply for bedload transport across the entire snowmelt season. In particular, channel morphology affects distinctively the variability of bed load response to hydrologic forcing. The observed spatial variability in annual bedload yield appears to correlate with inter-basin differences in basic morphometric attributes, among which slope aspect plays a prominent role.

  11. Flow, Sediment Supply, and Channel Width Controls on Gravel Bedform Dynamics

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.; Morgan, J. A.

    2017-12-01

    Heterogeneous, coarse-grained riverbeds often self-organize into migrating bedforms such as gravel dunes or bedload sheets. It has recently been suggested that sediment supply and the relative mobility of the bed surface sediment affects the type of bedforms that may be present in gravel-bed rivers; however, our understanding of gravel bedform dynamics remains well behind that of bedforms in sandy channels. Here, we present results from flume experiments in which we investigate how the formation and dynamics of gravel bedforms is affected by changes in discharge, sediment supply, and channel geometry. Experiments were conducted in a 1.1-m wide, 18-m long, sediment-feed flume. The initial bed material and the sediment feed mixture was composed of a sediment mixture ranging in size from 0.5-4 mm, with a median value of 3.6 mm. We used two channel geometries (a straight channel and a channel with sinusoidal width variations) and conducted three experimental runs for each geometry: 1) equilibrium sediment supply and steady flow, 2) equilibrium sediment supply and repeated hydrographs, and 3) doubled sediment supply and repeated hydrographs. During the experiments, low-amplitude, migrating bedforms developed and their dynamics were tracked both visually and via collection of repeated structure-from-motion topographic datasets. In the constant-width geometry, bedform amplitudes and migration rates were relatively constant under steady flow, but when subjected to repeated hydrographs the average bedform celerity decreased by about 50% and the amplitude of the bedforms increased and decreased with the changing flow rate. At twice the equilibrium sediment supply, the bedforms organized into an alternating pattern. This pattern was most pronounced at the lower flow rates, and became less stable at the higher discharges of the repeat hydrographs. Preliminary results suggest bedform celerity in the variable width geometry under steady flow and equilibrium sediment supply was half the celerity of the bedforms for the same conditions in the straight-walled geometry. These experiments suggest that variations in discharge, sediment supply, and channel geometry play an important role in the formation and dynamics of bedforms in gravel-bed rivers.

  12. On the time to steady state: insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Goren, L.; Willett, S.; McCoy, S. W.; Perron, J.

    2013-12-01

    How fast do fluvial landscapes approach steady state after an application of tectonic or climatic perturbation? While theory and some numerical models predict that the celerity of the advective wave (knickpoint) controls the response time for perturbations, experiments and other landscape evolution models demonstrate that the time to steady state is much longer than the theoretically predicted response time. We posit that the longevity of transient features and the time to steady state are controlled by the stability of the topology and geometry of channel networks. Evolution of a channel network occurs by a combination of discrete capture events and continuous migration of water divides, processes, which are difficult to represent accurately in landscape evolution models. We therefore address the question of the time to steady state using the DAC landscape evolution model that solves accurately for the location of water divides, using a combination of analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC also includes an explicit capture criterion. We have tested fundamental predictions from DAC and show that modeled networks reproduce natural network characteristics such as the Hack's exponent and coefficient and the fractal dimension. We define two steady-state criteria: a topographic steady state, defined by global, pointwise steady elevation, and a topological steady state defined as the state in which no further reorganization of the drainage network takes place. Analyzing block uplift simulations, we find that the time to achieve either topographic or topological steady state exceeds by an order of magnitude the theoretical response time of the fluvial network. The longevity of the transient state is the result of the area feedback, by which, migration of a divide changes the local contributing area. This change propagates downstream as a slope adjustment, forcing further divide migrations and area change in adjacent tributaries and basins. In order to characterize the evolution of the drainage network on its way to steady state, we define a proxy to steady state elevation, χ, which is also the characteristic parameter of the transient stream power PDE. Through simulations of tectonic tilting we find that reorganization tends to minimize moments of the χ distribution of the landscape and of Δχ across divides.

  13. Hydraulic-Geometry Relations for Rivers in Coastal and Central Maine

    USGS Publications Warehouse

    Dudley, Robert W.

    2004-01-01

    Hydraulic-geometry relations (curves) were derived for 15 sites on 12 rivers in coastal and central Maine on the basis of site-specific (at-a-station) hydraulic-geometry relations and hydraulic models. At-a-station hydraulic-geometry curves, expressed as well-established power functions, describe the relations between channel geometry, velocity, and flow at a given point on a river. The derived at-a-station hydraulic-geometry curves indicate that, on average, a given increase in flow at a given river cross section in the study area will be nearly equally conveyed by increases in velocity and channel cross-sectional area. Regional curves describing the bankfull streamflow and associated channel geometry as functions of drainage area were derived for use in stream-channel assessment and restoration projects specific to coastal and central Maine. Regional hydraulic-geometry curves were derived by combining hydraulic-geometry information for 15 river cross sections using bankfull flow as the common reference streamflow. The exponents of the derived regional hydraulic-geometry relations indicate that, in the downstream direction, most of the conveyance of increasing contribution of flow is accommodated by an increase in cross-sectional area?with about 50 percent of the increase in flow accommodated by an increase in channel width, and 32 percent by an increase in depth. The remaining 18 percent is accommodated by an increase in streamflow velocity. On an annual-peak-series basis, results of this study indicate that the occurrence of bankfull streamflow for rivers in Maine is more frequent than the 1.5-year streamflow. On a flow-duration basis, bankfull streamflow for rivers in coastal and central Maine is equaled or exceeded approximately 8.1 percent of the time on mean?or about 30 days a year. Bankfull streamflow is roughly three times that of the mean annual streamflow for the sites investigated in this study. Regional climate, snowmelt hydrology, and glacial geology may play important roles in dictating the magnitude and frequency of occurrence of bankfull streamflows observed for rivers in coastal and central Maine.

  14. Subglacial drainage patterns of Devon Island, Canada: detailed comparison of rivers and subglacial meltwater channels

    NASA Astrophysics Data System (ADS)

    Grau Galofre, Anna; Jellinek, A. Mark; Osinski, Gordon R.; Zanetti, Michael; Kukko, Antero

    2018-04-01

    Subglacial meltwater channels (N-channels) are attributed to erosion by meltwater in subglacial conduits. They exert a major control on meltwater accumulation at the base of ice sheets, serving as drainage pathways and modifying ice flow rates. The study of exposed relict subglacial channels offers a unique opportunity to characterize the geomorphologic fingerprint of subglacial erosion as well as study the structure and characteristics of ice sheet drainage systems. In this study we present detailed field and remote sensing observations of exposed subglacial meltwater channels in excellent preservation state on Devon Island (Canadian Arctic Archipelago). We characterize channel cross section, longitudinal profiles, and network morphologies and establish the spatial extent and distinctive characteristics of subglacial drainage systems. We use field-based GPS measurements of subglacial channel longitudinal profiles, along with stereo imagery-derived digital surface models (DSMs), and novel kinematic portable lidar data to establish a detailed characterization of subglacial channels in our field study area, including their distinction from rivers and other meltwater drainage systems. Subglacial channels typically cluster in groups of ˜ 10 channels and are oriented perpendicular to active or former ice margins. Although their overall direction generally follows topographic gradients, channels can be oblique to topographic gradients and have undulating longitudinal profiles. We also observe that the width of first-order tributaries is 1 to 2 orders of magnitude larger than in Devon Island river systems and approximately constant. Furthermore, our findings are consistent with theoretical expectations drawn from analyses of flow driven by gradients in effective water pressure related to variations in ice thickness. Our field and remote sensing observations represent the first high-resolution study of the subglacial geomorphology of the high Arctic, and provide quantitative and qualitative descriptions of subglacial channels that revisit well-established field identification guidelines. Distinguishing subglacial channels in topographic data is critical for understanding the emergence, geometry, and extent of channelized meltwater systems and their role in ice sheet drainage. The final aim of this study is to facilitate the identification of subglacial channel networks throughout the globe by using remote sensing techniques, which will improve the detection of these systems and help to build understanding of the underlying mechanics of subglacial channelized drainage.

  15. RMT focal plane sensitivity to seismic network geometry and faulting style

    USGS Publications Warehouse

    Johnson, Kendra L.; Hayes, Gavin; Herrmann, Robert B.; Benz, Harley M.; McNamara, Daniel E.; Bergman, Eric A.

    2016-01-01

    Modern tectonic studies often use regional moment tensors (RMTs) to interpret the seismotectonic framework of an earthquake or earthquake sequence; however, despite extensive use, little existing work addresses RMT parameter uncertainty. Here, we quantify how network geometry and faulting style affect RMT sensitivity. We examine how data-model fits change with fault plane geometry (strike and dip) for varying station configurations. We calculate the relative data fit for incrementally varying geometries about a best-fitting solution, applying our workflow to real and synthetic seismograms for both real and hypothetical station distributions and earthquakes. Initially, we conduct purely observational tests, computing RMTs from synthetic seismograms for hypothetical earthquakes and a series of well-behaved network geometries. We then incorporate real data and station distributions from the International Maule Aftershock Deployment (IMAD), which recorded aftershocks of the 2010 MW 8.8 Maule earthquake, and a set of regional stations capturing the ongoing earthquake sequence in Oklahoma and southern Kansas. We consider RMTs computed under three scenarios: (1) real seismic records selected for high data quality; (2) synthetic seismic records with noise computed for the observed source-station pairings and (3) synthetic seismic records with noise computed for all possible station-source pairings. To assess RMT sensitivity for each test, we observe the ‘fit falloff’, which portrays how relative fit changes when strike or dip varies incrementally; we then derive the ranges of acceptable strikes and dips by identifying the span of solutions with relative fits larger than 90 per cent of the best fit. For the azimuthally incomplete IMAD network, Scenario 3 best constrains fault geometry, with average ranges of 45° and 31° for strike and dip, respectively. In Oklahoma, Scenario 3 best constrains fault dip with an average range of 46°; however, strike is best constrained by Scenario 1, with a range of 26°. We draw two main conclusions from this study. (1) Station distribution impacts our ability to constrain RMTs using waveform time-series; however, in some tectonic settings, faulting style also plays a significant role and (2) increasing station density and data quantity (both the number of stations and the number of individual channels) does not necessarily improve RMT constraint. These results may be useful when organizing future seismic deployments (e.g. by concentrating stations in alignment with anticipated nodal planes), and in computing RMTs, either by guiding a more rigorous data selection process for input data or informing variable weighting among the selected data (e.g. by eliminating the transverse component when strike-slip mechanisms are expected).

  16. Numerical simulation of the transonic flow past the blunted wedge in the diverging channel

    NASA Astrophysics Data System (ADS)

    Ryabinin, Anatoly

    2018-05-01

    Positions of shock waves in the 2D channel with a blunted wedge are studied numerically. Solutions of the Euler equations are obtained with finite-volume solver SU2 for 15 variants of channel geometry. Numerical simulations reveal a considerable hysteresis in the shock wave position versus the supersonic Mach number given at the inlet. In the certain range of inlet Mach number, there are asymmetrical solutions of the equations. Small change in the geometry of the channel leads to shift of boundaries of the hysteresis range.

  17. Influence of stationary components on unsteady flow in industrial centrifugal compressors

    NASA Technical Reports Server (NTRS)

    Bonciani, L.; Terrinoni, L.

    1984-01-01

    An experimental investigation was performed to determine the characteristics of the onset and the growth of rotating nonuniform flow in a standard low specific speed stage, normally utilized in high pressure applications, in relation to change of stationary component geometry. Four configurations, differing only in the return channel and crossover geometry were tested on an atmospheric pressure open loop test rig. Experimental results make conspicious the effect of return channel geometry and give the possibility of shifting the unstable zone onset varying such geometry. An attempt was made to interpret the experimental results in the Emmons - Stenning's rotating stall theory.

  18. Characterization of the spatial variability of channel morphology

    USGS Publications Warehouse

    Moody, J.A.; Troutman, B.M.

    2002-01-01

    The spatial variability of two fundamental morphological variables is investigated for rivers having a wide range of discharge (five orders of magnitude). The variables, water-surface width and average depth, were measured at 58 to 888 equally spaced cross-sections in channel links (river reaches between major tributaries). These measurements provide data to characterize the two-dimensional structure of a channel link which is the fundamental unit of a channel network. The morphological variables have nearly log-normal probability distributions. A general relation was determined which relates the means of the log-transformed variables to the logarithm of discharge similar to previously published downstream hydraulic geometry relations. The spatial variability of the variables is described by two properties: (1) the coefficient of variation which was nearly constant (0.13-0.42) over a wide range of discharge; and (2) the integral length scale in the downstream direction which was approximately equal to one to two mean channel widths. The joint probability distribution of the morphological variables in the downstream direction was modelled as a first-order, bivariate autoregressive process. This model accounted for up to 76 per cent of the total variance. The two-dimensional morphological variables can be scaled such that the channel width-depth process is independent of discharge. The scaling properties will be valuable to modellers of both basin and channel dynamics. Published in 2002 John Wiley and Sons, Ltd.

  19. Changes in Channel Geometry through the Holocene in the Le Sueur River, South-Central Minnesota, USA

    NASA Astrophysics Data System (ADS)

    Targos, Courtney Ann

    Paleochannels preserved on terraces via meander cutoffs during an incisional period record the channel geometry and thus discharge at distinct points in time throughout a river's history. We measured paleochannel geometry on terraces throughout the Le Sueur River in south-central Minnesota, to track how channel geometry has changed over the last 13,400 years. A rapid drop in base level 13,400 yr B.P. triggered knickpoint migration and valley incision that is ongoing today. Since the 1800's, the area has developed rapidly with an increase in agriculture and associated drainage, directly impacting river discharge by increasing water input to the river. Five paleochannels were identified on terraces along the Le Sueur River from 1m-resolution lidar data. Ground Penetrating Radar (GPR) was used to obtain a subsurface image across paleomeanders to estimate the geometry of paleochannels. Paleochannel geometry and estimated discharge were then compared to modern conditions to assess how much change has occurred. Three lines were run across each paleochannel perpendicular to the historic water flow. Each of the 15 lines were processed using the EKKO Project 2 software supplied by Sensors and Software to sharpen the images, making it easier to identify the paleochannel geometry. Paleodischarge was determined using the Law of the Wall and Manning's Equation, using modern slope and roughness conditions. OSL samples were collected from overbank deposits on terraces to determine the time of channel abandonment, and supplemented with terrace ages obtained from a numerical model of valley incision. Paleodischarge coupled with depositional ages provide a history of flow conditions on the Le Sueur River. Results show an increase in channel widths from the time paleochannels were occupied to modern channel dimensions from an average of 20 meters to 35 meters. The change was not constant through time, as all paleochannels analyzed on terraces had similar-sized channels. The best way to determine paleogeometry was using the 'best interpretation' of GPR data couple with coring data; and paleodischarge was best estimated using Manning's equation with an n value of 0.035. Results show an increase in discharge compared to paleochannels of a factor of two. Uncertainty estimates in GPR-based paleogeometry can change paleodischarge calculations by 50 %. Incremental flood frequency analyses, based on data obtained from the Red Jacket stream gage at the outlet of the Le Sueur, suggest a 1.5- and 2-year flood of 102 m3/s and 154 m3/s, respectively, which is comparable to estimations of bankfull based on current channel geometry at the Red Jacket gage, validating the methodology. Problems associated with paleogeometry estimations are primarily due to meander bend preservation in the subsurface, challenging GPR interpretation. The increase in channel geometry and discharge implies that the increase in flow associated with drainage and climate change since the area's development has greatly impacted the Le Sueur River. This resulted in a change in channel morphometry through increased erosion along the bluffs and banks, widening channels. This increase in erosion has directly impacted the amount of sediment delivered to the rivers from banks and bluffs, increasing the fine sediment load in this turbidity-impaired river system.

  20. Origin of hyperbolicity in brain-to-brain coordination networks

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka; Andjelković, Miroslav; Šuvakov, Milovan

    2018-02-01

    Hyperbolicity or negative curvature of complex networks is the intrinsic geometric proximity of nodes in the graph metric space, which implies an improved network function. Here, we investigate hidden combinatorial geometries in brain-to-brain coordination networks arising through social communications. The networks originate from correlations among EEG signals previously recorded during spoken communications comprising of 14 individuals with 24 speaker-listener pairs. We find that the corresponding networks are delta-hyperbolic with delta_max=1 and the graph diameter D=3 in each brain. While the emergent hyperbolicity in the two-brain networks satisfies delta_max/D/2 < 1 and can be attributed to the topology of the subgraph formed around the cross-brains linking channels. We identify these subgraphs in each studied two-brain network and decompose their structure into simple geometric descriptors (triangles, tetrahedra and cliques of higher orders) that contribute to hyperbolicity. Considering topologies that exceed two separate brain networks as a measure of coordination synergy between the brains, we identify different neuronal correlation patterns ranging from weak coordination to super-brain structure. These topology features are in qualitative agreement with the listener’s self-reported ratings of own experience and quality of the speaker, suggesting that studies of the cross-brain connector networks can reveal new insight into the neural mechanisms underlying human social behavior.

  1. Mean annual runoff and peak flow estimates based on channel geometry of streams in northeastern and western Montana

    USGS Publications Warehouse

    Parrett, Charles; Omang, R.J.; Hull, J.A.

    1983-01-01

    Equations for estimating mean annual runoff and peak discharge from measurements of channel geometry were developed for western and northeastern Montana. The study area was divided into two regions for the mean annual runoff analysis, and separate multiple-regression equations were developed for each region. The active-channel width was determined to be the most important independent variable in each region. The standard error of estimate for the estimating equation using active-channel width was 61 percent in the Northeast Region and 38 percent in the West region. The study area was divided into six regions for the peak discharge analysis, and multiple regression equations relating channel geometry and basin characteristics to peak discharges having recurrence intervals of 2, 5, 10, 25, 50 and 100 years were developed for each region. The standard errors of estimate for the regression equations using only channel width as an independent variable ranged from 35 to 105 percent. The standard errors improved in four regions as basin characteristics were added to the estimating equations. (USGS)

  2. Reconstruction of lightning channel geometry by localizing thunder sources

    NASA Astrophysics Data System (ADS)

    Bodhika, J. A. P.; Dharmarathna, W. G. D.; Fernando, Mahendra; Cooray, Vernon

    2013-09-01

    Thunder is generated as a result of a shock wave created by sudden expansion of air in the lightning channel due to high temperature variations. Even though the highest amplitudes of thunder signatures are generated at the return stroke stage, thunder signals generated at other events such as preliminary breakdown pulses also can be of amplitudes which are large enough to record using a sensitive system. In this study, it was attempted to reconstruct the lightning channel geometry of cloud and ground flashes by locating the temporal and spatial variations of thunder sources. Six lightning flashes were reconstructed using the recorded thunder signatures. Possible effects due to atmospheric conditions were neglected. Numerical calculations suggest that the time resolution of the recorded signal and 10 ms-1error in speed of sound leads to 2% and 3% errors, respectively, in the calculated coordinates. Reconstructed channel geometries for cloud and ground flashes agreed with the visual observations. Results suggest that the lightning channel can be successfully reconstructed using this technique.

  3. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging

    PubMed Central

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J.; Ramella-Roman, Jessica C.; Mathews, Scott A.; Coburn, James C.; Sorg, Brian S.; Chen, Yu; Joshua Pfefer, T.

    2015-01-01

    Abstract. The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance. PMID:26662064

  4. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging.

    PubMed

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J; Ramella-Roman, Jessica C; Mathews, Scott A; Coburn, James C; Sorg, Brian S; Chen, Yu; Pfefer, T Joshua

    2015-01-01

    The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance.

  5. Compressible pulsating convection through regular and random porous media: the thermoacoustic case

    NASA Astrophysics Data System (ADS)

    Tasnim, Syeda Humaira; Mahmud, Shohel; Fraser, Roydon Andrew

    2012-02-01

    The effects of material, geometry, length and position of the porous channels on energy transfer in air-filled enclosures carrying a compressible pulsating wave are investigated. The pulsating fluid motion is created by an acoustic driver in a resonant chamber. Three different porous materials (Corning Celcor, Reticulated Vitreous Carbon (RVC), and Mylar plastic), three different geometries (square, open foam, and circular cross-section), six different lengths, " L" (varying between 1 and 6.5 cm, L = 0.01-0.068 λ, where λ is the wavelength of the fundamental acoustic mode), and eight different positions (hot end of the channel, varying between 0.5 and 8 cm) of the channels from the pressure anti-node is experimentally measured. The surface temperature distribution on the channel wall and temperature difference generated across the channel walls are measured while energy flow along the channel walls is calculated analytically. The experimental results are compared with a 1-D numerical code and found excellent agreement. The material, geometry, length, and position of the porous channel strongly affect the energy interactions between the porous channel and the working fluid. The temperature difference generated across the porous RVC channel increases as the porosity increases form 20 to 80 PPI; but decreases if the porosity increases further. Corning Celcor shows improved temperature difference generated across the channel as the length of the channel increases; but then decreases if the length is further increased. The results of this study are applicable to the design of thermoacoustic devices.

  6. Active Brownian motion in a narrow channel

    NASA Astrophysics Data System (ADS)

    Ao, X.; Ghosh, P. K.; Li, Y.; Schmid, G.; Hänggi, P.; Marchesoni, F.

    2014-12-01

    We review recent advances in rectification control of artificial microswimmers, also known as Janus particles, diffusing along narrow, periodically corrugated channels. The swimmer self-propulsion mechanism is modeled so as to incorporate a nonzero torque (propulsion chirality). We first summarize the effects of chirality on the autonomous current of microswimmers freely diffusing in channels of different geometries. In particular, left-right and upside-down asymmetric channels are shown to exhibit different transport properties. We then report new results on the dependence of the diffusivity of chiral microswimmers on the channel geometry and their own self-propulsion mechanism. The self-propulsion torque turns out to play a key role as a transport control parameter.

  7. Hydraulic modeling of stream channels and structures in Harbor and Crow Hollow Brooks, Meriden, Connecticut

    USGS Publications Warehouse

    Weiss, Lawrence A.; Sears, Michael P.; Cervione, Michael A.

    1994-01-01

    Effects of urbanization have increased the frequency and size of floods along certain reaches of Harbor Brook and Crow Hollow Brook in Meriden, Conn. A floodprofile-modeling study was conducted to model the effects of selected channel and structural modifications on flood elevations and inundated areas. The study covered the reach of Harbor Brook downstream from Interstate 691 and the reach of Crow Hollow Brook downstream from Johnson Avenue. Proposed modifications, which include changes to bank heights, channel geometry, structural geometry, and streambed armoring on Harbor Brook and changes to bank heights on Crow Hollow Brook, significantly lower flood elevations. Results of the modeling indicate a significant reduction of flood elevations for the 10-year, 25-year, 35-year, 50-year, and 100-year flood frequencies using proposed modifications to (1 ) bank heights between Harbor Brook Towers and Interstate 691 on Harbor Brook, and between Centennial Avenue and Johnson Avenue on Crow Hollow Brook; (2) channel geometry between Coe Avenue and Interstate 69 1 on Harbor Brook; (3) bridge and culvert opening geometry between Harbor Brook Towers and Interstate 691 on Harbor Brook; and (4) channel streambed armoring between Harbor Brook Towers and Interstate 691 on Harbor Brook. The proposed modifications were developed without consideration of cost-benefit ratios.

  8. Bootstrapping on Undirected Binary Networks Via Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Fushing, Hsieh; Chen, Chen; Liu, Shan-Yu; Koehl, Patrice

    2014-09-01

    We propose a new method inspired from statistical mechanics for extracting geometric information from undirected binary networks and generating random networks that conform to this geometry. In this method an undirected binary network is perceived as a thermodynamic system with a collection of permuted adjacency matrices as its states. The task of extracting information from the network is then reformulated as a discrete combinatorial optimization problem of searching for its ground state. To solve this problem, we apply multiple ensembles of temperature regulated Markov chains to establish an ultrametric geometry on the network. This geometry is equipped with a tree hierarchy that captures the multiscale community structure of the network. We translate this geometry into a Parisi adjacency matrix, which has a relative low energy level and is in the vicinity of the ground state. The Parisi adjacency matrix is then further optimized by making block permutations subject to the ultrametric geometry. The optimal matrix corresponds to the macrostate of the original network. An ensemble of random networks is then generated such that each of these networks conforms to this macrostate; the corresponding algorithm also provides an estimate of the size of this ensemble. By repeating this procedure at different scales of the ultrametric geometry of the network, it is possible to compute its evolution entropy, i.e. to estimate the evolution of its complexity as we move from a coarse to a fine description of its geometric structure. We demonstrate the performance of this method on simulated as well as real data networks.

  9. Streambank Protection and Erosion Control.

    DTIC Science & Technology

    1987-01-01

    TABLE OF CONTENTS N CHAPTER ONE - INTRODUCTION ----------------------------------------- -- 1. 1.1 Purpose...downstream cross sectional area by stream bank erosion and bed scour to accommodate the increased flow. This may be caused by poor planning and assessment...the magnitude, except for very large floods which occur infrequently. 3.2 Channel Geometry [6] .*. Channel geometry of a river cross section is an

  10. Distinctive channel geometry and riparian vegetation: A geomorphic classification for arid ephemeral streams

    NASA Astrophysics Data System (ADS)

    Sutfin, N.; Shaw, J. R.; Wohl, E. E.; Cooper, D.

    2012-12-01

    Interactions between hydrology, channel form, and riparian vegetation along arid ephemeral streams are not thoroughly understood and current stream classifications do not adequately represent variability in channel geometry and associated riparian communities. Relatively infrequent hydrologic disturbances in dryland environments are responsible for creation and maintenance of channel form that supports riparian communities. To investigate the influence of channel characteristics on riparian vegetation in the arid southwestern United States, we develop a geomorphic classification for arid ephemeral streams based on the degree of confinement and the composition of confining material that provide constraints on available moisture. Our conceptual model includes five stream types: 1) bedrock channels entirely confined by exposed bedrock and devoid of persistent alluvium; 2) bedrock with alluvium channels at least partially confined by bedrock but containing enough alluvium to create bedforms that persist through time; 3) incised alluvium channels bound only by unconsolidated alluvial material into which they are incised; 4) braided washes that exhibit multi-thread, braided characteristics regardless of the composition of confining material; and 5) piedmont headwater 0-2nd order streams (Strahler) confined only by unconsolidated alluvium and which initiate as secondary channels on piedmont surfaces. Eighty-six study reaches representing the five stream types were surveyed on the U.S. Army Yuma Proving Ground in the Sonoran Desert of southwestern Arizona. Non-parametric multivariate analysis of variance (PERMANOVA) indicates significant differences between the five stream types with regards to channel geometry (i.e., stream gradient, width-to-depth ratio, the ratio between valley width and channel width (Wv/Wc), shear stress, and unit stream power) and riparian vegetation (i.e., presence and canopy coverage by species, canopy stratum, and life form). Discriminant analysis of the physical driving variables is being conducted to produce a model that predicts stream type and resulting riparian vegetation communities based on channel geometry. This model will be tested on a separate set of 15 study reaches surveyed on the Barry M. Goldwater Air Force Range in southern Arizona. The resulting classification will provide a basis for examining relationships between hydrology, channel and watershed characteristics, riparian vegetation and ecosystem sensitivity of ephemeral streams in arid regions of the American Southwest.

  11. Role of Unchannelized Flow in Determining Bifurcation Angle in Distributary Channel Networks

    NASA Astrophysics Data System (ADS)

    Coffey, T.

    2016-12-01

    Distributary channel bifurcations on river deltas are important features in both modern systems, where the channels control water, sediment, and nutrient routing, and in ancient deltas, where the channel networks can dictate large-scale stratigraphic heterogeneity. Geometric features of distributary channels, such as channel dimensions and network structure, have long been thought to be defined by factors such as flow velocity, grain size, or channel aspect ratio where the channel enters the basin. We use theory originally developed for tributary networks fed by groundwater seepage to understand the dynamics of distributary channel bifurcations. Interestingly, bifurcations in groundwater-fed tributary networks have been shown to evolve dependent on the diffusive flow patterns around the channel network. These networks possess a characteristic bifurcation angle of 72°, due to Laplacian flow (gradient2h2=0, where h is water surface elevation) in the groundwater flow field near tributary channel tips. We develop and test the hypothesis that bifurcation angles in distributary channel networks are likewise dictated by the external flow field, in this case the shallow surface water surrounding the subaqueous portion of distributary channel bifurcations in a deltaic setting. We measured 130 unique distributary channel bifurcations in a single experimental delta and in 10 natural deltas, yielding a mean angle of 70.35°±2.59° (95% confidence interval), in line with the theoretical prediction. This similarity implies that flow outside of the distributary channel network is also Laplacian, which we use scaling arguments to justify. We conclude that the dynamics of the unchannelized flow control bifurcation formation in distributary networks.

  12. Hydraulic geometry and streamflow of channels in the Piceance Basin, Rio Blanco and Garfield counties, Colorado

    USGS Publications Warehouse

    Elliott, J.G.; Cartier, K.D.

    1986-01-01

    The influence of streamflow and basin characteristics on channel geometry was investigated at 18 perennial and ephemeral stream reaches in the Piceance basin of northwestern Colorado. Results of stepwise multiple regression analyses indicated that the variabilities of mean bankfull depth (D) and bankfull cross-sectional flow area (Af) were predominantly a function of bankfull discharge (QB), and that most of the variability in channel slopes (S) could be explained by drainage area (DA). None of the independent variables selected for the study could account for a large part of the variability in bankfull channel width (W). (USGS)

  13. An interactive graphics program for manipulation and display of panel method geometry

    NASA Technical Reports Server (NTRS)

    Hall, J. F.; Neuhart, D. H.; Walkley, K. B.

    1983-01-01

    Modern aerodynamic panel methods that handle large, complex geometries have made evident the need to interactively manipulate, modify, and view such configurations. With this purpose in mind, the GEOM program was developed. It is a menu driven, interactive program that uses the Tektronix PLOT 10 graphics software to display geometry configurations which are characterized by an abutting set of networks. These networks are composed of quadrilateral panels which are described by the coordinates of their corners. GEOM is divided into fourteen executive controlled functions. These functions are used to build configurations, scale and rotate networks, transpose networks defining M and N lines, graphically display selected networks, join and split networks, create wake networks, produce symmetric images of networks, repanel and rename networks, display configuration cross sections, and output network geometry in two formats. A data base management system is used to facilitate data transfers in this program. A sample session illustrating various capabilities of the code is included as a guide to program operation.

  14. Bedrock river networks of the Sierra Nevada, USA record westward tilting, large-scale drainage area loss, and distinct patterns and causes of stream incision between the northern and southern Sierra

    NASA Astrophysics Data System (ADS)

    Beeson, H. W.; McCoy, S. W.

    2017-12-01

    The timing, rates, and spatial patterns of elevation change in the Sierra Nevada, California, USA, has been the subject of vigorous debate with multiple lines of evidence supporting the contrasting hypotheses that (1) the Sierra has been topographically high throughout the Cenozoic and (2) that the range has experienced a pulse of late Cenozoic uplift. We combined 2-D landscape evolution modeling with topographic analysis of the Sierra Nevada to investigate whether river networks dissecting the range record a change in tectonic forcing during the late Cenozoic. Specifically, we quantify basin geometry, including its area-channel length scaling relationship, fluvial channel steepness, and the spatial distributions of knickzones. We show that, throughout the Sierra, short equilibrated reaches near the mountain front are consistent with an ongoing westward tilt. However, the disequilibrium forms of river profiles north of the Kaweah River reflect large-scale drainage area loss due to network beheading by the Sierra Frontal Fault and/or reestablishment of a fluvial network on an inclined planar surface. Despite these similarities along the length of the range, river network analysis reveals striking differences north and south of approximately 37° N. In the northern Sierra, topographic asymmetry of drainage divides and large differences in cross-divide steady-state elevation suggest mobile divides. Additionally, the broad distribution of normalized knickzone locations, variability in channel steepness and basin shape, and the prevalence of anomalous topology, narrow basins, unadjusted captured reaches, and wind gaps is consistent with large-scale drainage reorganization following incision into an inclined planar surface. In contrast, in the southern Sierra, drainage divides appear more stable and knickzone locations are tightly distributed. We suggest that, although the northern Sierra may currently be tilting westward, the presence of large knickzones and deeply incised valleys in the northern Sierra does not require a recent increase in uplift, but rather could largely reflect the reestablishment of a fluvial network after mid-late Miocene volcanism filled and smoothed preexisting topography. In contrast, it appears that the southern Sierras are responding to a pulse of localized rapid uplift.

  15. Electroosmotic flow mixing in zigzag microchannels.

    PubMed

    Chen, Jia-Kun; Yang, Ruey-Jen

    2007-03-01

    In this study we performed numerical and experimental investigations into the mixing of EOFs in zigzag microchannels with two different corner geometries, namely sharp corners and flat corners. In the zigzag microchannel with sharp corners, the flow travels more rapidly near the inner wall of the corner than near the outer wall as a result of the higher electric potential drop. The resulting velocity gradient induces a racetrack effect, which enhances diffusion within the fluid and hence improves the mixing performance. The simulation results reveal that the mixing index is approximately 88.83%. However, the sharp-corner geometry causes residual liquid or bubbles to become trapped in the channel at the point where the flow is almost stationary, when the channel is in the process of cleaning. Accordingly, a zigzag microchannel with flat-corner geometry is developed. The flat-corner geometry forms a convergent-divergent type nozzle which not only enhances the mixing performance in the channel, but also prevents the accumulation of residual liquid or bubbles. Scaling analysis reveals that this corner geometry leads to an effective increase in the mixing length. The experimental results reveal that the mixing index is increased to 94.30% in the flat-corner zigzag channel. Hence, the results demonstrate that the mixing index of the flat-corner zigzag channel is better than that of the conventional sharp-corner microchannel. Finally, the results of Taguchi analysis indicate that the attainable mixing index is determined primarily by the number of corners in the microchannel and by the flow passing height at each corner.

  16. Geometrical Effects on the Electromagnetic Radiation from Lightning Return Strokes

    NASA Technical Reports Server (NTRS)

    Willett, John C.; Smith, David A.; LeVine, David M.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Los Alamos National Laboratory (LANL) Sferic Array has recorded electric-field-change waveforms simultaneously at several stations surrounding the ground-strike points of numerous return strokes in cloud-to-ground lightning flashes. Such data are available from the five-station sub-networks in both Florida and New Mexico. With these data it has been possible for the first time to compare the waveforms radiated in different directions by a given stroke. Such comparisons are of interest to assess both the effects of channel geometry on the fine structure of subsequent-stroke radiation fields and the role of branches in the more jagged appearance of first-stroke waveforms. This paper presents multiple-station, time-domain waveforms with a 200 Hz to 500 kHz pass-band from both first and subsequent return strokes at ranges generally between 100 and 200 km. The differences among waveforms of the same stroke received at stations in different directions from the lightning channel are often obvious. These differences are illustrated and interpreted in the context of channel tortuosity and branches.

  17. The hydraulic geometry of narrow and deep channels; evidence for flow optimisation and controlled peatland growth

    NASA Astrophysics Data System (ADS)

    Nanson, Rachel A.; Nanson, Gerald C.; Huang, He Qing

    2010-04-01

    At-a-station and bankfull hydraulic geometry analyses of peatland channels at Barrington Tops, New South Wales, Australia, reveal adjustments in self-forming channels in the absence of sediment load. Using Rhodes ternary diagram, comparisons are made with hydraulic geometry data from self-forming channels carrying bedload in alluvial settings elsewhere. Despite constraints on channel depths caused at some locations by the restricted thickness of peat, most stations have cohesive, near-vertical, well-vegetated banks, and width/depth (w/d) ratios of ∼ 2 that are optimal for sediment-free flow. Because banks are strong, resist erosion and can stand nearly vertical, and depth is sometimes constrained, adjustments to discharge are accommodated largely by changes in velocity. These findings are consistent with the model of maximum flow efficiency and the overarching least action principle in open channels. The bankfull depth of freely adjusting laterally active channels in clastic alluvium is well known to be related to the thickness of floodplain alluvium and a similar condition appears to apply to these swamps that grow in situ and are formed almost entirely of organic matter. The thickness of peat in these swamps rarely exceeds that required to form a bankfull channel of optimum w/d ratio for the transport of sediment-free water. Swamp vegetation is highly dependent on proximity to the water table. To maintain a swamp-channel and associated floodplain system, the channels must flow with sufficient water much of the time; they not only offer an efficient morphology for flow but do so in a way that enables bankfull conditions to occur many times a year. They also prevent the swamp from growing above a level linked to the depth of the channel. Once the channel attains the most efficient cross section, further growth of the swamp vertically is restricted by enhanced flow velocities and limited flow depths. This means that the volume of peat in such swamps is determined by the hydraulic efficiency of their channels. The development and maintenance of the hydraulic geometry of these swamp channels is biogeomorphic and biohydraulic in nature and yet accords to the same optimising principles that govern the formation of self-adjusting channels and floodplains in clastic alluvium.

  18. Mechanical Cell-Cell Communication in Fibrous Networks: The Importance of Network Geometry.

    PubMed

    Humphries, D L; Grogan, J A; Gaffney, E A

    2017-03-01

    Cells contracting in extracellular matrix (ECM) can transmit stress over long distances, communicating their position and orientation to cells many tens of micrometres away. Such phenomena are not observed when cells are seeded on substrates with linear elastic properties, such as polyacrylamide (PA) gel. The ability for fibrous substrates to support far reaching stress and strain fields has implications for many physiological processes, while the mechanical properties of ECM are central to several pathological processes, including tumour invasion and fibrosis. Theoretical models have investigated the properties of ECM in a variety of network geometries. However, the effects of network architecture on mechanical cell-cell communication have received little attention. This work investigates the effects of geometry on network mechanics, and thus the ability for cells to communicate mechanically through different networks. Cell-derived displacement fields are quantified for various network geometries while controlling for network topology, cross-link density and micromechanical properties. We find that the heterogeneity of response, fibre alignment, and substrate displacement fields are sensitive to network choice. Further, we show that certain geometries support mechanical communication over longer distances than others. As such, we predict that the choice of network geometry is important in fundamental modelling of cell-cell interactions in fibrous substrates, as well as in experimental settings, where mechanical signalling at the cellular scale plays an important role. This work thus informs the construction of theoretical models for substrate mechanics and experimental explorations of mechanical cell-cell communication.

  19. Tidally-Driven Flow through a System of Interconnected Tidal Channels with Varying Hydraulic Geometry and Planform Configuration

    NASA Astrophysics Data System (ADS)

    Bain, R. L.; Goodbred, S. L., Jr.; Hale, R. P.

    2016-12-01

    In tidally-dominated environments such as the Ganges-Brahmaputra-Meghna Delta in Bangladesh and India, bidirectional flow interacts with the landscape to produce densely interconnected distributary channel networks. The exchange of discharge between adjacent channels results in counterintuitive hydrodynamic behavior throughout the system. Here, we present complementary field and modeling results to evaluate the propagation of mass and energy through two major tidal channels in the Polder 32 region of southwest Bangladesh. The Sibsa and Pussur Rivers initiate at an estuarine bifurcation 30 km north of the Bay of Bengal before extending an additional 60 km inland to our study area, where four secondary channels (from south to north, the Bhadra, Dhaki, Gorkhali, and Shengrali Rivers) reconnect these two primary conduits. In August/September 2015, we deployed an array of seven pressure sensors to collect high-resolution time series of water surface elevation over a monsoon season spring-neap cycle. Our data reveal several unexpected phenomena in tidal waveform propagation: (1) during spring tides, high water occurs at Sibsa RK 60 (RK—river kilometer; all distances measured from the Sibsa/Pussur bifurcation) approximately twenty minutes before Sibsa RK 51, despite distance from the coast suggesting that the opposite should occur; (2) high water at Pussur RK 50 precedes Sibsa RK 51 by over an hour, although the Pussur is significantly shallower than the Sibsa and should display a lower waveform celerity; and (3) the region experiences up to two hours of high water slack during spring tides. Using a numerical solution to the Saint Venant equations for a network of channels, we test several hypotheses concerning the physical processes responsible for our field observations. Specifically, our modeling results assess the effect of river discharge on tidal phasing throughout the system, the importance of secondary channel size and configuration, and the possibility of a major constriction in the Sibsa creating a "bottleneck" scenario that routes flow into the Pussur. This work illustrates that the presence of even a single connection between two major tidal channels may have significant implications for discharge and sedimentation.

  20. Deriving principal channel metrics from bank and long-profile geometry with the R package cmgo

    NASA Astrophysics Data System (ADS)

    Golly, Antonius; Turowski, Jens M.

    2017-09-01

    Landscape patterns result from landscape forming processes. This link can be exploited in geomorphological research by reversely analyzing the geometrical content of landscapes to develop or confirm theories of the underlying processes. Since rivers represent a dominant control on landscape formation, there is a particular interest in examining channel metrics in a quantitative and objective manner. For example, river cross-section geometry is required to model local flow hydraulics, which in turn determine erosion and thus channel dynamics. Similarly, channel geometry is crucial for engineering purposes, water resource management, and ecological restoration efforts. These applications require a framework to capture and derive the data. In this paper we present an open-source software tool that performs the calculation of several channel metrics (length, slope, width, bank retreat, knickpoints, etc.) in an objective and reproducible way based on principal bank geometry that can be measured in the field or in a GIS. Furthermore, the software provides a framework to integrate spatial features, for example the abundance of species or the occurrence of knickpoints. The program is available at https://github.com/AntoniusGolly/cmgo and is free to use, modify, and redistribute under the terms of the GNU General Public License version 3 as published by the Free Software Foundation.

  1. Dynamics and control of state-dependent networks for probing genomic organization

    PubMed Central

    Rajapakse, Indika; Groudine, Mark; Mesbahi, Mehran

    2011-01-01

    A state-dependent dynamic network is a collection of elements that interact through a network, whose geometry evolves as the state of the elements changes over time. The genome is an intriguing example of a state-dependent network, where chromosomal geometry directly relates to genomic activity, which in turn strongly correlates with geometry. Here we examine various aspects of a genomic state-dependent dynamic network. In particular, we elaborate on one of the important ramifications of viewing genomic networks as being state-dependent, namely, their controllability during processes of genomic reorganization such as in cell differentiation. PMID:21911407

  2. Effects of channel noise on firing coherence of small-world Hodgkin-Huxley neuronal networks

    NASA Astrophysics Data System (ADS)

    Sun, X. J.; Lei, J. Z.; Perc, M.; Lu, Q. S.; Lv, S. J.

    2011-01-01

    We investigate the effects of channel noise on firing coherence of Watts-Strogatz small-world networks consisting of biophysically realistic HH neurons having a fraction of blocked voltage-gated sodium and potassium ion channels embedded in their neuronal membranes. The intensity of channel noise is determined by the number of non-blocked ion channels, which depends on the fraction of working ion channels and the membrane patch size with the assumption of homogeneous ion channel density. We find that firing coherence of the neuronal network can be either enhanced or reduced depending on the source of channel noise. As shown in this paper, sodium channel noise reduces firing coherence of neuronal networks; in contrast, potassium channel noise enhances it. Furthermore, compared with potassium channel noise, sodium channel noise plays a dominant role in affecting firing coherence of the neuronal network. Moreover, we declare that the observed phenomena are independent of the rewiring probability.

  3. Analytical transport network theory to guide the design of 3-D microstructural networks in energy materials: Part 1. Flow without reactions

    NASA Astrophysics Data System (ADS)

    Cocco, Alex P.; Nakajo, Arata; Chiu, Wilson K. S.

    2017-12-01

    We present a fully analytical, heuristic model - the "Analytical Transport Network Model" - for steady-state, diffusive, potential flow through a 3-D network. Employing a combination of graph theory, linear algebra, and geometry, the model explicitly relates a microstructural network's topology and the morphology of its channels to an effective material transport coefficient (a general term meant to encompass, e.g., conductivity or diffusion coefficient). The model's transport coefficient predictions agree well with those from electrochemical fin (ECF) theory and finite element analysis (FEA), but are computed 0.5-1.5 and 5-6 orders of magnitude faster, respectively. In addition, the theory explicitly relates a number of morphological and topological parameters directly to the transport coefficient, whereby the distributions that characterize the structure are readily available for further analysis. Furthermore, ATN's explicit development provides insight into the nature of the tortuosity factor and offers the potential to apply theory from network science and to consider the optimization of a network's effective resistance in a mathematically rigorous manner. The ATN model's speed and relative ease-of-use offer the potential to aid in accelerating the design (with respect to transport), and thus reducing the cost, of energy materials.

  4. Hydraulic tomography of discrete networks of conduits and fractures in a karstic aquifer by using a deterministic inversion algorithm

    NASA Astrophysics Data System (ADS)

    Fischer, P.; Jardani, A.; Lecoq, N.

    2018-02-01

    In this paper, we present a novel inverse modeling method called Discrete Network Deterministic Inversion (DNDI) for mapping the geometry and property of the discrete network of conduits and fractures in the karstified aquifers. The DNDI algorithm is based on a coupled discrete-continuum concept to simulate numerically water flows in a model and a deterministic optimization algorithm to invert a set of observed piezometric data recorded during multiple pumping tests. In this method, the model is partioned in subspaces piloted by a set of parameters (matrix transmissivity, and geometry and equivalent transmissivity of the conduits) that are considered as unknown. In this way, the deterministic optimization process can iteratively correct the geometry of the network and the values of the properties, until it converges to a global network geometry in a solution model able to reproduce the set of data. An uncertainty analysis of this result can be performed from the maps of posterior uncertainties on the network geometry or on the property values. This method has been successfully tested for three different theoretical and simplified study cases with hydraulic responses data generated from hypothetical karstic models with an increasing complexity of the network geometry, and of the matrix heterogeneity.

  5. An experimental investigation of the cooling channel geometry effects on the internal forced convection of liquid methane

    NASA Astrophysics Data System (ADS)

    Trejo, Adrian

    Rocket engine fuel alternatives have been an area of discussion for use in high performance engines and deep spaceflight missions. In particular, LCH4 has showed promise as an alternative option in regeneratively cooled rocket engines due to its non-toxic nature, similar storage temperatures to liquid oxygen, and its potential as an in situ resource. However, data pertaining to the heat transfer characteristics of LCH4 is limited. For this reason, a High Heat Transfer Test Facility (HHTTF) at the University of Texas at El Paso's (UTEP) Center for Space Exploration Technology and Research has been developed for the purpose of flowing LCH4 through several heated tube geometry designs subjected to a constant heat flux. In addition, a Methane Condensing Unit (MCU) is integrated to the system setup to supply LCH4 to the test facility. Through the use of temperature and pressure measurements, this experiment will serve not only to study the heat transfer characteristics of LCH4; it serves as a method of simulating the cooling channels of a regeneratively cooled rocket engine at a subscale level. The cross sections for the cooling channels investigated are a 1.8 mm x 1.8 mm square channel, 1.8 mm x 4.1 mm rectangular channel, 3.2 mm and 6.34 mm inside diameter channel, and a 1.8 mm x 14.2 mm high aspect ratio cooling channel (HARCC). The test facility is currently designed for test pressures between 1.03 MPa to 2.06 MPa and heat fluxes up to 5 MW/m2. Results show that at the given test pressures, the Reynolds number reaches up to 140,000 for smaller cooling channels (3.2 mm diameter tube and 1.8 mm x 4.1 mm rectangle) while larger cooling channel geometries (6.35 mm diameter and HARCC) reached Reynolds number around 70,000. Nusselt numbers reached as high as 320 and 265 for a 3.2 mm diameter tube and 1.8 mm x 4.1 mm rectangular channel respectively. For cooling channel geometries with 6.35 mm diameter and HARCC geometry, Nusselt numbers reached 136 (excluding an outlier) and 106 respectively. Heat transfer predictions applied to the data yielded theoretical correlations within 40% of the experimental data. However, typical theoretical values fall within 10%-15% of the experimental values showing agreeable correlations and supporting theories stated in the present study.

  6. Regional Curves of Bankfull Channel Geometry for Non-Urban Streams in the Piedmont Physiographic Province, Virginia

    USGS Publications Warehouse

    Lotspeich, R. Russell

    2009-01-01

    Natural-channel design involves constructing a stream channel with the dimensions, slope, and plan-view pattern that would be expected to transport water and sediment and yet maintain habitat and aesthetics consistent with unimpaired stream segments, or reaches. Regression relations for bankfull stream characteristics based on drainage area, referred to as 'regional curves,' are used in natural stream channel design to verify field determinations of bankfull discharge and stream channel characteristics. One-variable, ordinary least-squares regressions relating bankfull discharge, bankfull cross-sectional area, bankfull width, bankfull mean depth, and bankfull slope to drainage area were developed on the basis of data collected at 17 streamflow-gaging stations in rural areas with less than 20 percent urban land cover within the basin area (non-urban areas) of the Piedmont Physiographic Province in Virginia. These regional curves can be used to estimate the bankfull discharge and bankfull channel geometry when the drainage area of a watershed is known. Data collected included bankfull cross-sectional geometry, flood-plain geometry, and longitudinal profile data. In addition, particle-size distributions of streambed material were determined, and data on basin characteristics were compiled for each reach. Field data were analyzed to determine bankfull cross-sectional area, bankfull width, bankfull mean depth, bankfull discharge, bankfull channel slope, and D50 and D84 particle sizes at each site. The bankfull geometry from the 17 sites surveyed during this study represents the average of two riffle cross sections for each site. Regional curves developed for the 17 sites had coefficient of determination (R2) values of 0.950 for bankfull cross-sectional area, 0.913 for bankfull width, 0.915 for bankfull mean depth, 0.949 for bankfull discharge, and 0.497 for bankfull channel slope. The regional curves represent conditions for streams with defined channels and bankfull features in the Piedmont Physiographic Province in Virginia with drainage areas ranging from 0.29 to 111 square miles. All sites included in the development of the regional curves were located on streams with current or historical U.S. Geological Survey streamflow-gaging stations. These curves can be used to verify bankfull features identified in the field and bankfull stage for ungaged streams in non-urban areas.

  7. The concept of entropy in landscape evolution

    USGS Publications Warehouse

    Leopold, Luna Bergere; Langbein, Walter Basil

    1962-01-01

    The concept of entropy is expressed in terms of probability of various states. Entropy treats of the distribution of energy. The principle is introduced that the most probable condition exists when energy in a river system is as uniformly distributed as may be permitted by physical constraints. From these general considerations equations for the longitudinal profiles of rivers are derived that are mathematically comparable to those observed in the field. The most probable river profiles approach the condition in which the downstream rate of production of entropy per unit mass is constant. Hydraulic equations are insufficient to determine the velocity, depths, and slopes of rivers that are themselves authors of their own hydraulic geometries. A solution becomes possible by introducing the concept that the distribution of energy tends toward the most probable. This solution leads to a theoretical definition of the hydraulic geometry of river channels that agrees closely with field observations. The most probable state for certain physical systems can also be illustrated by random-walk models. Average longitudinal profiles and drainage networks were so derived and these have the properties implied by the theory. The drainage networks derived from random walks have some of the principal properties demonstrated by the Horton analysis; specifically, the logarithms of stream length and stream numbers are proportional to stream order.

  8. The geometry of the ionic chànnel lumen formed by alpha-latroinsectotoxin from black widow spider venom in the bilayer lipid membranes.

    PubMed

    Shatursky, Oleg Ya; Volkova, Tatyana M; Himmelreich, Nina H; Grishin, Eugene V

    2007-11-01

    The dependence of single channel conductance formed by alpha-latroinsectotoxin (alpha-LIT) from black widow spider venom in the planar phospholipid membrane on the hydrodynamic radii of different nonelectrolytes allowed to determine the geometry of alpha-LIT water lumen. It was found that the cis- and trans-entrances of alpha-LIT channel had the same effective radii of 0.55-0.58 nm. Relatively small conductance of alpha-LIT channel (23.5+3.7 pS) in a symmetrical membrane bathing solution of 100 mM KCl (pH 7.4) may result from the constriction inside the channel with apparent radius of 0.37 nm located 32.5% of channel length away from the cis-entrance.

  9. River conferences under temperate valley glaciers

    NASA Astrophysics Data System (ADS)

    Lane, Stuart; Egli, Pascal; Irving, James

    2017-04-01

    Both geophysical measurements (ground penetrating radar) and hydrological inference has shown that subglacial drainage networks are dendritic and that means that they must have confluences. In general, there are very few studies of rivers under glaciers and almost no consideration at all of confluences, despite the fact that they could be a critical parameter in understanding coupling at the ice-sediment bed interface. Subglacial channels, normally known as conduits, are typically associated with the combined effect of hydraulic pressure driven ice melt (which opens them) and ice overburden pressure (which closes them). Inferences from dye break out curves shows that has the efficiency of ice melt increases progressively during the summer ablation season, melt rates closure rates and a channelized system becomes progressively more effective. Most recently, measurements at the Upper Arolla Glacier show that the effects of this growing efficiency is an evolution in the subglacial hydrological system towards higher peak flows and lower base flows later in the melt season. This increases the probability that late in the melt season, sediment transport becomes discontinuous, with overnight deposition and daytime erosion. This would in turn produce the rapid reductions in sediment transport capacity overnight needed to deposit sediment and to block conduits, increase basal water pressure and explain the hydraulic jacking observed in snout marginal zones at a time when it should not be expected. The question that follows is what effects do confluences have on this process? The geometry of subglacial channels is such that when they join they lead to rapid changes in hydraulic geometry. Crucially, these are likely to have a non-linear impact upon sediment transport capacity, which should reduce disproportionally in the conduits downstream of the junction. Thus, it is possible that confluence zones under glaciers become sites of very rapid sediment accumulation and blockage overnight. In this paper, we present some one-dimensional coupled hydraulic sediment transport modelling to show this process. It suggests that the dendritic form of the subglacial drainage network is the primary reason why sediment blockage occurs and suggests the need for a more in-depth assessment of how sediment moves through confluences under glaciers.

  10. Comparative evaluation of three heat transfer enhancement strategies in a grooved channel

    NASA Astrophysics Data System (ADS)

    Herman, C.; Kang, E.

    Results of a comparative evaluation of three heat transfer enhancement strategies for forced convection cooling of a parallel plate channel populated with heated blocks, representing electronic components mounted on printed circuit boards, are reported. Heat transfer in the reference geometry, the asymmetrically heated parallel plate channel, is compared with that for the basic grooved channel, and the same geometry enhanced by cylinders and vanes placed above the downstream edge of each heated block. In addition to conventional heat transfer and pressure drop measurements, holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in the self-sustained oscillatory flow. The locations of increased heat transfer within one channel periodicity depend on the enhancement technique applied, and were identified by analyzing the unsteady temperature distributions visualized by holographic interferometry. This approach allowed gaining insight into the mechanisms responsible for heat transfer enhancement. Experiments were conducted at moderate flow velocities in the laminar, transitional and turbulent flow regimes. Reynolds numbers were varied in the range Re=200-6500, corresponding to flow velocities from 0.076 to 2.36m/s. Flow oscillations were first observed between Re=1050 and 1320 for the basic grooved channel, and around Re=350 and 450 for the grooved channels equipped with cylinders and vanes, respectively. At Reynolds numbers above the onset of oscillations and in the transitional flow regime, heat transfer rates in the investigated grooved channels exceeded the performance of the reference geometry, the asymmetrically heated parallel plate channel. Heat transfer in the grooved channels enhanced with cylinders and vanes showed an increase by a factor of 1.2-1.8 and 1.5-3.5, respectively, when compared to data obtained for the basic grooved channel; however, the accompanying pressure drop penalties also increased significantly.

  11. Dynamics of Braided Channels, Bars, and Associated Deposits Under Experimental Density Currents

    NASA Astrophysics Data System (ADS)

    Limaye, A. B. S.; Jean-Louis, G.; Paola, C.

    2015-12-01

    Turbidity currents are the principal agents that transfer clastic sediment from continental margins to the deep ocean. The extensive sedimentary deposits that result can record influences from fluvial transport, ocean currents, and seafloor bathymetry; decoding these controls is key to understanding long-term continental denudation and the formation of hydrocarbon reservoirs. Experimental turbidity currents often use pre-formed, single-thread channels, but more recent experiments and seafloor observations suggest that braided channels also develop in submarine environments. Yet controls on the formation of submarine braided channels and relationships between these channels and stratigraphic evolution remain largely untested. We have conducted a series of experiments to determine the conditions conducive to forming braided submarine channels, and to relate channel geometry and kinematics to deposit architecture. Dissolved salt supplies the excess density of the experimental turbidity currents, which transport plastic, sand-sized sediment as bedload across a test section two meters long and one meter wide. Our experiments indicate that braided channels can form as constructional features without prior erosion for a range of input water and sediment fluxes. Channel migration, avulsion, and aggradation construct sedimentary deposits with bars at a variety of scales. Bar geometry and channel kinematics are qualitatively similar under subaerial and subaqueous experiments with other parameters fixed. We will present quantitative analyses of the relationships between channel geometry and mobility and deposit architecture, at scales from individual bars to the entire deposit, and compare these results to control experiments with subaerial braiding. These experimental results suggest parallels between subaerial and subaqueous braiding, and help to constrain forward models for stratigraphic evolution and inverse methods for estimating flow conditions from turbidites.

  12. Three-Dimensional Reconstruction from Single Image Base on Combination of CNN and Multi-Spectral Photometric Stereo.

    PubMed

    Lu, Liang; Qi, Lin; Luo, Yisong; Jiao, Hengchao; Dong, Junyu

    2018-03-02

    Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods.

  13. Three-Dimensional Reconstruction from Single Image Base on Combination of CNN and Multi-Spectral Photometric Stereo

    PubMed Central

    Lu, Liang; Qi, Lin; Luo, Yisong; Jiao, Hengchao; Dong, Junyu

    2018-01-01

    Multi-spectral photometric stereo can recover pixel-wise surface normal from a single RGB image. The difficulty lies in that the intensity in each channel is the tangle of illumination, albedo and camera response; thus, an initial estimate of the normal is required in optimization-based solutions. In this paper, we propose to make a rough depth estimation using the deep convolutional neural network (CNN) instead of using depth sensors or binocular stereo devices. Since high-resolution ground-truth data is expensive to obtain, we designed a network and trained it with rendered images of synthetic 3D objects. We use the model to predict initial normal of real-world objects and iteratively optimize the fine-scale geometry in the multi-spectral photometric stereo framework. The experimental results illustrate the improvement of the proposed method compared with existing methods. PMID:29498703

  14. Channel Noise-Enhanced Synchronization Transitions Induced by Time Delay in Adaptive Neuronal Networks with Spike-Timing-Dependent Plasticity

    NASA Astrophysics Data System (ADS)

    Xie, Huijuan; Gong, Yubing; Wang, Baoying

    In this paper, we numerically study the effect of channel noise on synchronization transitions induced by time delay in adaptive scale-free Hodgkin-Huxley neuronal networks with spike-timing-dependent plasticity (STDP). It is found that synchronization transitions by time delay vary as channel noise intensity is changed and become most pronounced when channel noise intensity is optimal. This phenomenon depends on STDP and network average degree, and it can be either enhanced or suppressed as network average degree increases depending on channel noise intensity. These results show that there are optimal channel noise and network average degree that can enhance the synchronization transitions by time delay in the adaptive neuronal networks. These findings could be helpful for better understanding of the regulation effect of channel noise on synchronization of neuronal networks. They could find potential implications for information transmission in neural systems.

  15. Analysis of heating, ventilation, and air conditioning ducts as a radio frequency communication channel

    NASA Astrophysics Data System (ADS)

    Nikitin, Pavel Viktorovich

    2002-01-01

    A typical HVAC duct system is a network of interconnected hollow metal pipes which can serve as waveguides and carry electromagnetic waves. This work presents an analysis of this system as a radio frequency communication channel. Two main parts of the analysis include channel modelling and antenna design. The propagation modelling approach used here is based on the waveguide mode theory and employs the transfer matrix method to describe propagation through various cascaded HVAC elements. This allows one to model the channel response in the frequency domain. Impulse response characteristics of the ducts are also analyzed in this work. The approximate transfer matrices of cylindrical straight sections, bends, and tapers are derived analytically. The transforming properties of cylindrical T-junctions are analyzed experimentally. Antenna designs in waveguides and free-space are different. In waveguides, mode excitation characteristics are important as well as the impedance match. The criteria for antenna design in waveguides are presented here. Antennas analyzed in this work are monopole antennas, dipole antennas, and antenna arrays. The developed model can predict both channel response and antenna characteristics for a given geometry and dimensions of the duct system and the antennas. The model is computationally efficient and can potentially be applied to duct systems of multiple story buildings. The accuracy of the model has been validated with extensive experimental measurements on real HVAC ducts.

  16. Fat fractal scaling of drainage networks from a random spatial network model

    USGS Publications Warehouse

    Karlinger, Michael R.; Troutman, Brent M.

    1992-01-01

    An alternative quantification of the scaling properties of river channel networks is explored using a spatial network model. Whereas scaling descriptions of drainage networks previously have been presented using a fractal analysis primarily of the channel lengths, we illustrate the scaling of the surface area of the channels defining the network pattern with an exponent which is independent of the fractal dimension but not of the fractal nature of the network. The methodology presented is a fat fractal analysis in which the drainage basin minus the channel area is considered the fat fractal. Random channel networks within a fixed basin area are generated on grids of different scales. The sample channel networks generated by the model have a common outlet of fixed width and a rule of upstream channel narrowing specified by a diameter branching exponent using hydraulic and geomorphologic principles. Scaling exponents are computed for each sample network on a given grid size and are regressed against network magnitude. Results indicate that the size of the exponents are related to magnitude of the networks and generally decrease as network magnitude increases. Cases showing differences in scaling exponents with like magnitudes suggest a direction of future work regarding other topologic basin characteristics as potential explanatory variables.

  17. ESTIMATING STREAMFLOW AND ASSOCIATED HYDRAULIC GEOMETRY, THE MID-ATLANTIC REGION, USA

    EPA Science Inventory

    Methods to estimate streamflow and channel hydraulic geometry were developed for ungaged streams in the Mid-Atlantic Region. Observed mean annual streamflow and associated hydraulic geometry data from 75 gaging stations located in the Appalachian Plateau, the Ridge and Valley, an...

  18. Don't Fence Me In: Free Meanders in a Confined River Valley

    NASA Astrophysics Data System (ADS)

    Eke, E. C.; Wilcock, P. R.

    2015-12-01

    The interaction between meandering river channels and inerodible valley walls provides a useful test of our ability to understand meander dynamics. In some cases, river meanders confined between valley walls display distinctive angular bends in a dynamic equilibrium such that their size and shape persist as the meander migrates. In other cases, meander geometry is more varied and changes as the meander migrates. The ratio of channel to valley width has been identified as a useful parameter for defining confined meanders, but is not sufficient to distinguish cases in which sharp angular bends are able to migrate with little change in geometry. Here, we examine the effect of water and sediment supply on the geometry of confined rivers in order to identify conditions under which meander geometry reaches a persistent dynamic equilibrium. Because channel width and meander geometry are closely related, we use a numerical meander model that allows for independent migration of both banks, thereby allowing channel width to vary in space and time. We hypothesize that confined meanders with persistent angular bends have smaller transport rates of bed material and that their migration is driven by erosion of the cutbank (bank-pull migration). When bed material supply is sufficiently large that point bar deposition drives meander migration (bar-push migration), confined meander bends have a larger radius of curvature and a geometry that varies as the meander migrates. We test this hypothesis using historical patterns of confined meander migration for rivers with different rates of sediment supply and bed material transport. Interpretation of the meander migration pattern is provided by the free-width meander migration model.

  19. Modeling effects of secondary tidal basins on estuarine morphodynamics

    NASA Astrophysics Data System (ADS)

    Nnafie, Abdel; Van Oyen, Tomas; De Maerschalck, Bart

    2017-04-01

    Many estuaries are situated in very densely populated areas with high economic activities that often conflict with their ecological values. For centuries, geometry and bathymetry of estuaries have been drastically modified trough engineering works such as embanking, sand extraction, channel deepening, land reclamations, etc. It is generally recognized that these works may increase the tidal range (e.g., Scheldt, Ems, Elbe) and turbidity (e.g., Loire, Ems) in estuaries [cf. Kerner, 2007; Wang et al., 2009; Winterwerp and Wang, 2013; Van Maren et al., 2015b,a]. In recent years, construction of secondary basins (also called retention basins) has gained increasing popularity among coastal managers to reduce tidal range and turbidity [Donner et al., 2012]. Previous studies have shown that location, geometry and number of secondary basins have a significant impact on tidal characteristics and sediment transport [Alebregtse and de Swart, 2014; Roos and Schuttelaars, 2015]. However, knowledge on how these secondary basins affect the morphodynamic development of estuaries on long time scales (order decades to centuries) is still lacking. The specific objectives of this study are twofold. First, to investigate effects of secondary basins on the long-term morphodynamic evolution of estuaries. In particular, effects of the presence of such a basin on the morphodynamic evolution of the main channel in the estuary and the physics underlying channel migration will be examined. For this, the Western Scheldt estuary (situated in the Netherlands) is used as a case study, which used to consist of multiple secondary tidal basins that were located at different positions in the estuary, and which have been gradually closed off between 1800 and 1968. Second, to systematically quantify sensitivity of model results to location, geometry, and to number of secondary basins. To this end, the state-of-the- art numerical model Delft3D is used, which has been successfully applied to morphodynamic modeling of estuaries and other coastal systems [cf. Hibma et al., 2003; Van der Wegen and Roelvink 2008; Dissanayake et al., 2012; Eelkema et al., 2013; Ridderinkhof et al., 2014]. With this contribution it will be shown that the presence of secondary basins causes, among other things, local migration of the main channel in the vicinity of the basin, and it decreases the overall depth of the channel network. These results agree well with findings from an observational study on historical morphological development of the Western Scheldt estuary. References available upon request

  20. Controls on the spacing and geometry of rill networks on hillslopes: Rainsplash detachment, initial hillslope roughness, and the competition between fluvial and colluvial transport

    USDA-ARS?s Scientific Manuscript database

    Rill networks have been a focus of study for many decades but we still lack a complete understanding of what variables control the spacing of rills and the geometry of rill networks (e.g. parallel or dendritic) on hillslopes. In this paper we investigate the controls on the spacing and geometry of ...

  1. Dynamic Channel Network Extraction from Satellite Imagery of the Jamuna River

    NASA Astrophysics Data System (ADS)

    Addink, E. A.; Marra, W. A.; Kleinhans, M. G.

    2010-12-01

    Evolution of the largest rivers on Earth is poorly understood while their response to global change is dramatic, such as severe drought and flooding problems. Rivers with high annual dynamics, like the Jamuna, allow us to study their response to changing conditions. Most remote-sensing work so far focused only on pixel-based analysis of channels and change detection or manual digitisation of channels, which is far from urgently needed quantifiers of pattern and pattern change. Using a series of Landsat TM images taken at irregular intervals showing inter- and intra-annual variation, we demonstrate that braided rivers can be represented as nearly chain-like directional networks. These can be studied with novel methods gleaned from neurology. These networks provide an integral spatial description of the network and should not be confused with hierarchical hydrological stream network descriptions developed in the ’60s to describe drainage basins. The images were first classified into water, bare sediment and vegetation. The contiguous water body of the river was then selected and translated into a network description with bifurcations and confluences at the nodes, and interconnecting channels. Along the entire river the well-known braiding indices were derived from the network. The channel width is a crucial attribute of the channel network as this allows the calculation of bifurcation asymmetry. The width was also used with channel length as weights to all the elements in the network in the calculation of more advanced measures for the nature and evolution of the channel network. The key step here is to describe river network evolution by identifying the same node in multiple subsequent images as well as new and abandoned nodes, in order to distinguish migration of bifurcations from avulsion processes. Once identified through time, the changes in node position and the changes in the connected channels can be quantified. These changes can potentially be linked to channel migration and vegetation cover along the channels. A network evolves in time by adding or removing channels and their bifurcation- and confluence couples. Using the network topology, we quantified network properties such as `centrality’, which provides a measure for the overall importance of individual channels in a network. This is a novel and robust indicator to assess the effect of a change or engineering measure in a channel on the entire network. The physical basis for downstream propagation of information through a fluvial network is the flood conveyance and sediment transport, and for upstream propagation it is the backwater effect. Using the dynamic network description we can start quantifying the effects of local changes in the network on the entire upstream and downstream network. We conclude that the developed workflow allows the use of novel and useful measures borrowed from other sciences in river network analysis, and provides, e.g., the assessment of the importance of individual branches in a large complicated network.

  2. Self-organized topology of recurrence-based complex networks

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Liu, Gang

    2013-12-01

    With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., "what is the self-organizing geometry of a recurrence network?" and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.

  3. Self-organized topology of recurrence-based complex networks.

    PubMed

    Yang, Hui; Liu, Gang

    2013-12-01

    With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., "what is the self-organizing geometry of a recurrence network?" and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.

  4. Self-organized topology of recurrence-based complex networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hui, E-mail: huiyang@usf.edu; Liu, Gang

    With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article ismore » to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., “what is the self-organizing geometry of a recurrence network?” and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.« less

  5. Effect of ceramic membrane channel geometry and uniform transmembrane pressure on limiting flux and serum protein removal during skim milk microfiltration.

    PubMed

    Adams, Michael C; Hurt, Emily E; Barbano, David M

    2015-11-01

    Our objectives were to determine the effects of a ceramic microfiltration (MF) membrane's retentate flow channel geometry (round or diamond-shaped) and uniform transmembrane pressure (UTP) on limiting flux (LF) and serum protein (SP) removal during skim milk MF at a temperature of 50°C, a retentate protein concentration of 8.5%, and an average cross-flow velocity of 7 m·s(-1). Performance of membranes with round and diamond flow channels was compared in UTP mode. Performance of the membrane with round flow channels was compared with and without UTP. Using UTP with round flow channel MF membranes increased the LF by 5% when compared with not using UTP, but SP removal was not affected by the use of UTP. Using membranes with round channels instead of diamond-shaped channels in UTP mode increased the LF by 24%. This increase was associated with a 25% increase in Reynolds number and can be explained by lower shear at the vertices of the diamond-shaped channel's surface. The SP removal factor of the diamond channel system was higher than the SP removal factor of the round channel system below the LF. However, the diamond channel system passed more casein into the MF permeate than the round channel system. Because only one batch of each membrane was tested in our study, it was not possible to determine if the differences in protein rejection between channel geometries were due to the membrane design or random manufacturing variation. Despite the lower LF of the diamond channel system, the 47% increase in membrane module surface area of the diamond channel system produced a modular permeate removal rate that was at least 19% higher than the round channel system. Consequently, using diamond channel membranes instead of round channel membranes could reduce some of the costs associated with ceramic MF of skim milk if fewer membrane modules could be used to attain the required membrane area. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Seismic Analysis of the 2017 Oroville Dam Spillway Erosion Crisis

    NASA Astrophysics Data System (ADS)

    Goodling, P.; Lekic, V.; Prestegaard, K. L.

    2017-12-01

    The outflow channel of the northern California (USA) Oroville Dam suffered catastrophic erosion damage in February and March, 2017. High discharges released through the spillway (up to 3,000 m3/s) caused rapid spillway erosion, forming a deep chasm. A repeat LiDAR survey obtained from the California Department of Water Resources indicates that the chasm eroded to a depth of 48 meters. A three-component broadband seismometer (STS-1) operated by the Berkeley Digital Seismological Network recorded microseismic energy produced by the flowing water, providing a natural laboratory to test methods for seismically monitoring sudden catastrophic floods and erosion. In this study, we evaluate the three-component waveforms recorded during five constant-discharge periods - before, during, and after the spillway crisis - each of which had a different channel geometry. We apply frequency-dependent polarization analysis (FDPA; following Park, 1987), which characterizes particle motion at each frequency. The method is based on principal component analysis on a spectral covariance matrix in one-hour windows and it produces the horizontal azimuth, vertical tilt, horizontal phase, and vertical phase of the dominant particle motion. The results indicate a greater vertical component (perhaps roughness-induced) of power at a broad range of frequencies at a given discharge after the formation of the chasm. As the outflow crater developed, the back-azimuth of the primary source of seismic energy changed from the nearby Thermalito Diversion Pool (188 degrees) to the center of the outflow channel (170 degrees). To further analyze FDPA results, we apply the 2D spectral-element solver package SPECFEM2D (Tromp et al. 2008), and find that local topography should be considered when interpreting the surface waveforms predicted by FDPA results. This research suggests that monitoring changing channel geometry and erosion in large-scale flood events may be enhanced by seismic FDPA analysis. The results of this work are compared and contrasted with 3-component seismic observations of cobble-bed stream floods in Maryland.

  7. Potential interaction between transport and stream networks over the lowland rivers in Eastern India.

    PubMed

    Roy, Suvendu; Sahu, Abhay Sankar

    2017-07-15

    Extension of transport networks supports good accessibility and associated with the development of a region. However, transport lines have fragmented the regional landscape and disturbed the natural interplay between rivers and their floodplains. Spatial analysis using multiple buffers provides information about the potential interaction between road and stream networks and their impact on channel morphology of a small watershed in the Lower Gangetic Plain. Present study is tried to understand the lateral and longitudinal disconnection in headwater stream by rural roads with the integration of geoinformatics and field survey. Significant (p < 0.001) growth of total road length and number of road-stream crossing in the last five decades (1970s-2010s) contribute to making longitudinal and lateral disconnection in the fluvial system of Kunur River Basin. Channel geometry from ten road-stream crossings shows significant (p = 0.01) differences between upstream and downstream of crossing structure and created problems like downstream scouring, increased drop height at outlet, formation of stable bars, severe bank erosion, and make barriers for river biota. The hydro-geomorphic processes are also adversely affected due to lateral disconnection and input of fine to coarse sediments from the river side growth of unpaved road (1922%). Limited streamside development, delineation of stream corridor, regular monitoring and engineering efficiency for the construction of road and road-stream crossing might be effective in managing river geomorphology and riverine landscape. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The Global Geometry of River Drainage Basins and the Signature of Tectonic and Autogenic Processes

    NASA Astrophysics Data System (ADS)

    Giachetta, E.; Willett, S.

    2015-12-01

    The plan-form structure of the world's river basins contains extensive information regarding tectonic, paleo-geographic and paleo-climate conditions, but interpretation of this structure is complicated by the need to disentangle these processes from the autogenic behavior of fluvial processes. One method of interpreting this structure is by utilizing the well-established scaling between drainage area and channel slope. Integration of this scaling relationship predicts a relationship between channel length and downstream integrated drainage area, referred to in recent studies as χ (Willett et al., 2014). In this paper, we apply this methodology at a continental scale by calculating χ for the world's river networks using hydrological information from the HydroSHED (Hydrological data and maps based on SHuttleElevation Derivatives at multiple Scales) suite of geo-referenced data sets (drainage directions and flow accumulations). River pixels were identified using a minimum drainage area of 5 km2. A constant value of m/n of 0.45 was assumed. We applied a new method to correct χ within closed basins where base level is different from sea level. Mapping of χ illustrates the geometric stability of a river network, thus highlighting where tectonic or climatic forcing has perturbed the shape and geometry. Each continent shows characteristic features. Continental rift margins on all continents show clear asymmetric escarpments indicating inland migration. Active orogenic belts break up older river basins, but are difficult to interpret because of spatially variable uplift rates. Regions of recent tilting are evident even in cratonic areas by lateral reorganizations of basins. Past and pending river captures are identified on all continents. Very few regions on Earth appear to be in near-equilibrium, though some are identified; for example the Urals appears to provide a stable continental divide for Eurasia. Our analysis of maps of χ at the global scale quantifies a dynamic view of Earth's river networks and helps to identify past and ongoing evolution of Earth's landscapes. References Willett, S.D., McCoy, S.W., Perron, J.T., Goren, L., Chen C.Y. (2014): Dynamic reorganization of river basins, Science 343, 1248765. DOI: 10.1126/science.1248765.

  9. Control of soft machines using actuators operated by a Braille display.

    PubMed

    Mosadegh, Bobak; Mazzeo, Aaron D; Shepherd, Robert F; Morin, Stephen A; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M

    2014-01-07

    One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds-often built for a single purpose-are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled Braille display and a micropneumatic device. The Braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface.

  10. Control of Soft Machines using Actuators Operated by a Braille Display

    PubMed Central

    Mosadegh, Bobak; Mazzeo, Aaron D.; Shepherd, Robert F.; Morin, Stephen A.; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M.

    2013-01-01

    One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds—often built for a single purpose—are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled braille display and a micropneumatic device. The braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface. PMID:24196070

  11. Export of earthquake-triggered landslides in active mountain ranges: insights from 2D morphodynamic modelling.

    NASA Astrophysics Data System (ADS)

    Croissant, Thomas; Lague, Dimitri; Davy, Philippe; Steer, Philippe

    2016-04-01

    In active mountain ranges, large earthquakes (Mw > 5-6) trigger numerous landslides that impact river dynamics. These landslides bring local and sudden sediment piles that will be eroded and transported along the river network causing downstream changes in river geometry, transport capacity and erosion efficiency. The progressive removal of landslide materials has implications for downstream hazards management and also for understanding landscape dynamics at the timescale of the seismic cycle. The export time of landslide-derived sediments after large-magnitude earthquakes has been studied from suspended load measurements but a full understanding of the total process, including the coupling between sediment transfer and channel geometry change, still remains an issue. Note that the transport of small sediment pulses has been studied in the context of river restoration, but the magnitude of sediment pulses generated by landslides may make the problem different. Here, we study the export of large volumes (>106 m3) of sediments with the 2D hydro-morphodynamic model, Eros. This model uses a new hydrodynamic module that resolves a reduced form of the Saint-Venant equations with a particle method. It is coupled with a sediment transport and lateral and vertical erosion model. Eros accounts for the complex retroactions between sediment transport and fluvial geometry, with a stochastic description of the floods experienced by the river. Moreover, it is able to reproduce several features deemed necessary to study the evacuation of large sediment pulses, such as river regime modification (single-thread to multi-thread), river avulsion and aggradation, floods and bank erosion. Using a synthetic and simple topography we first present how granulometry, landslide volume and geometry, channel slope and flood frequency influence 1) the dominance of pulse advection vs. diffusion during its evacuation, 2) the pulse export time and 3) the remaining volume of sediment in the catchment. The model is then applied to a high resolution (5-10 m) digital elevation model of the Poerua catchment in New Zealand which has been impacted by the effect of a large landslide during the last 15 years. We investigate several plausible Alpine Faults earthquake scenarios to study the propagation of the sediment along a complex river network. We characterize and quantify the sediment pulse export time and mechanism for this river configuration and show its impact on the alluvial plain evolution. Our findings have strong implications for the understanding of aggradation rates and the temporal persistence of induced hazards in the alluvial plain as well as of sediment transfers in active mountain belts.

  12. Geometry of generalized depolarizing channels

    NASA Astrophysics Data System (ADS)

    Burrell, Christian K.

    2009-10-01

    A generalized depolarizing channel acts on an N -dimensional quantum system to compress the “Bloch ball” in N2-1 directions; it has a corresponding compression vector. We investigate the geometry of these compression vectors and prove a conjecture of Dixit and Sudarshan [Phys. Rev. A 78, 032308 (2008)], namely, that when N=2d (i.e., the system consists of d qubits), and we work in the Pauli basis then the set of all compression vectors forms a simplex. We extend this result by investigating the geometry in other bases; in particular we find precisely when the set of all compression vectors forms a simplex.

  13. Geometry of generalized depolarizing channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrell, Christian K.

    2009-10-15

    A generalized depolarizing channel acts on an N-dimensional quantum system to compress the 'Bloch ball' in N{sup 2}-1 directions; it has a corresponding compression vector. We investigate the geometry of these compression vectors and prove a conjecture of Dixit and Sudarshan [Phys. Rev. A 78, 032308 (2008)], namely, that when N=2{sup d} (i.e., the system consists of d qubits), and we work in the Pauli basis then the set of all compression vectors forms a simplex. We extend this result by investigating the geometry in other bases; in particular we find precisely when the set of all compression vectors formsmore » a simplex.« less

  14. Theoretical regime diagrams for thermally driven flows in a beta-plane channel. [in atmosphere

    NASA Technical Reports Server (NTRS)

    Geisler, J. E.; Fowlis, W. W.

    1979-01-01

    It is noted that thermally driven flows in rotating laboratory containers with cylindrical geometry can be axially symmetric or wavelike depending on the experimental parameters. In anticipation that rotating fluid experiments might soon be done in spherical shell geometry, Barcilon's model has been extended to a beta-plane channel in order to gain a rough understanding of the effects of rotating spherical geometry. An incompressible fluid version of the Charney (1947) model of baroclinic instability, modified to include Ekman pumping at rigid horizontal boundaries is used. With this model, stability boundaries are mapped out for individual zonal wavenumbers in the parameter space used by Barcilon.

  15. The "normal" elongation of river basins

    NASA Astrophysics Data System (ADS)

    Castelltort, Sebastien

    2013-04-01

    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)

  16. An Emergent Bifurcation Angle on River Deltas

    NASA Astrophysics Data System (ADS)

    Shaw, J.; Coffey, T.

    2017-12-01

    Distributary channel bifurcations on river deltas are important features that control water, sediment, and nutrient routing and can dictate large-scale stratigraphic heterogeneity. We use theory originally developed for a special case of tributary networks to understand the dynamics of distributary channel bifurcations. Interestingly, bifurcations in groundwater-fed tributary networks have been shown to evolve dependent on the diffusive flow field outside the network. These networks possess a characteristic bifurcation angle of 72°, due to Laplacian flow in the groundwater flow field near tributary channel tips (gradient2h2=0, where h is water surface elevation). We develop and test the hypothesis that bifurcation angles in distributary channel networks are likewise dictated by the external flow field, in this case the shallow surface water surrounding the subaqueous portion of distributary channel bifurcations in a deltaic setting. We measured 130 unique distributary channel bifurcations in a single experimental delta and in 10 natural deltas, yielding a mean angle of 70.35°±2.59° (95% confidence interval), in line with the theoretical prediction. These data and hydrodynamic scaling arguments convince us that distributary network formation can result simply from the coupling of (Laplacian) extra-channel flow to channels along subaqueous channel networks. The simplicity of this model provides new insight into distributary network formation and its geomorphic and stratigraphic consequences.

  17. Melting of Wigner Crystal on Helium in Quasi-One-Dimensional Geometry

    NASA Astrophysics Data System (ADS)

    Ikegami, Hiroki; Akimoto, Hikota; Kono, Kimitoshi

    2015-05-01

    We discuss melting of a Wigner crystal formed on a free surface of superfluid He, in quasi-one-dimensional (Q1D) channels of width between 5 and 15 m. We reexamine our previous transport data (Ikegami et al. in Phys Rev B 82:201104(R), 2010), in particular, by estimating the number of electrons across the channel in a more accurate way with the aid of numerical calculations of distributions of the electrons in the channels. The results of reexamination indicate more convincingly that the melting of the Wigner crystal in the Q1D geometry is understood by the finite size effect on the Kosterlitz-Thouless-Halperin-Nelson-Young melting process. We also present technical details of the transport measurements of the electrons in a Q1D geometry, including a fabrication method of devices used for the transport measurements, numerical simulations of response of the devices, and a procedure for analyzing transport data.

  18. Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer

    NASA Astrophysics Data System (ADS)

    Szwaba, Ryszard; Kaczynski, Piotr; Telega, Janusz; Doerffer, Piotr

    2017-12-01

    This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a corner fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features.

  19. Stationary bubbles and their tunneling channels toward trivial geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; Yeom, Dong-han; Domènech, Guillem

    2016-04-01

    In the path integral approach, one has to sum over all histories that start from the same initial condition in order to obtain the final condition as a superposition of histories. Applying this into black hole dynamics, we consider stable and unstable stationary bubbles as a reasonable and regular initial condition. We find examples where the bubble can either form a black hole or tunnel toward a trivial geometry, i.e., with no singularity nor event horizon. We investigate the dynamics and tunneling channels of true vacuum bubbles for various tensions. In particular, in line with the idea of superposition ofmore » geometries, we build a classically stable stationary thin-shell solution in a Minkowski background where its fate is probabilistically given by non-perturbative effects. Since there exists a tunneling channel toward a trivial geometry in the entire path integral, the entire information is encoded in the wave function. This demonstrates that the unitarity is preserved and there is no loss of information when viewed from the entire wave function of the universe, whereas a semi-classical observer, who can see only a definitive geometry, would find an effective loss of information. This may provide a resolution to the information loss dilemma.« less

  20. Stationary bubbles and their tunneling channels toward trivial geometry

    DOE PAGES

    Chen, Pisin; Domènech, Guillem; Sasaki, Misao; ...

    2016-04-07

    In the path integral approach, one has to sum over all histories that start from the same initial condition in order to obtain the final condition as a superposition of histories. Applying this into black hole dynamics, we consider stable and unstable stationary bubbles as a reasonable and regular initial condition. We find examples where the bubble can either form a black hole or tunnel toward a trivial geometry, i.e., with no singularity nor event horizon. We investigate the dynamics and tunneling channels of true vacuum bubbles for various tensions. In particular, in line with the idea of superposition ofmore » geometries, we build a classically stable stationary thin-shell solution in a Minkowski background where its fate is probabilistically given by non-perturbative effects. Since there exists a tunneling channel toward a trivial geometry in the entire path integral, the entire information is encoded in the wave function. This demonstrates that the unitarity is preserved and there is no loss of information when viewed from the entire wave function of the universe, whereas a semi-classical observer, who can see only a definitive geometry, would find an effective loss of information. Ultimately, this may provide a resolution to the information loss dilemma.« less

  1. Stream-profile analysis and stream-gradient index

    USGS Publications Warehouse

    Hack, John T.

    1973-01-01

    The generally regular three-dimensional geometry of drainage networks is the basis for a simple method of terrain analysis providing clues to bedrock conditions and other factors that determine topographic forms. On a reach of any stream, a gradient-index value can be obtained which allows meaningful comparisons of channel slope on streams of different sizes. The index is believed to reflect stream power or competence and is simply the product of the channel slope at a point and channel length measured along the longest stream above the pointwhere the calculation is made. In an adjusted topography, changes in gradient-index values along a stream generally correspond to differences in bedrock or introduced load. In any landscape the gradient index of a stream is related to total relief and stream regimen. Thus, climate, tectonic events, and geomorphic history must be considered in using the gradient index. Gradient-index values can be obtained quickly by simple measurements on topographic maps, or they can be obtained by more sophisticated photogrammetric measurements that involve simple computer calculations from x, y, z coordinates.

  2. Geometrical effect characterization of femtosecond-laser manufactured glass microfluidic chips based on optical manipulation of submicroparticles

    NASA Astrophysics Data System (ADS)

    Kotsifaki, Domna G.; Mackenzie, Mark D.; Polydefki, Georgia; Kar, Ajoy K.; Makropoulou, Mersini; Serafetinides, Alexandros A.

    2017-12-01

    Microfluidic devices provide a platform with wide ranging applications from environmental monitoring to disease diagnosis. They offer substantive advantages but are often not optimized or designed to be used by nonexpert researchers. Microchannels of a microanalysis platform and their geometrical characterization are of eminent importance when designing such devices. We present a method that is used to optimize each microchannel within a device using high-throughput particle manipulation. For this purpose, glass-based microfluidic devices, with three-dimensional channel networks of several geometrical sizes, were fabricated by employing laser fabrication techniques. The effect of channel geometry was investigated by employing an optical tweezer. The optical trapping force depends on the flow velocity that is associated with the dimensions of the microchannel. We observe a linear dependence of the trapping efficiency and of the fluid flow velocity, with the channel dimensions. We determined that the highest trapping efficiency was achieved for microchannels with aspect ratio equal to one. Numerical simulation validated the impact of the device design dimensions on the trapping efficiency. This investigation indicates that the geometrical characteristics, the flow velocity, and trapping efficiency are crucial and should be considered when fabricating microfluidic devices for cell studies.

  3. Role of Unchannelized Flow in Determining Bifurcation Angle in Distributary Channel Networks

    NASA Astrophysics Data System (ADS)

    Coffey, T.

    2016-02-01

    Distributary channel bifurcations on river deltas are important features in both actively prograding river deltas and in lithified deltas within the stratigraphic record. Attributes of distributary channels have long been thought to be defined by flow velocity, grain size and channel aspect ratio where the channel enters the basin. Interestingly, bifurcations in groundwater-fed tributary networks have been shown to grow and bifurcate independent of flow within the exposed channel network. These networks possess a characteristic bifurcation angle of 72°, based on Laplacian flow (water surface concavity equals zero) in the groundwater flow field near tributary channel tips. Based on the tributary channel model, we develop and test the hypothesis that bifurcation angles in distributary channels are likewise dictated by the external flow field, in this case the surface water surrounding the subaqueous portion of distributary channel tips in a deltaic setting. We measured 64 unique distributary bifurcations in an experimental delta, yielding a characteristic angle of 70.2°±2.2° (95% confidence interval), in line with the theoretical prediction for tributary channels. This similarity between bifurcation angles suggests that (A) flow directly outside of the distributary network is Laplacian, (B) the external flow field controls the bifurcation dynamics of distributary channels, and (C) that flow within the channel plays a secondary role in network dynamics.

  4. Triple differential study of ionization of H2 by proton impact for varying electron ejection geometries

    NASA Astrophysics Data System (ADS)

    Hasan, A.; Sharma, S.; Arthanayaka, T. P.; Lamichhane, B. R.; Remolina, J.; Akula, S.; Madison, D. H.; Schulz, M.

    2014-11-01

    We have performed a kinematically complete experiment on ionization of H2 by 75 keV proton impact. The triple differential cross sections (TDCS) extracted from the measurement were compared to a molecular 3-body distorted wave (M3DW) calculation for three different electron ejection geometries. Overall, the agreement between experiment and theory is better than in the case of a helium target for the same projectile. Nevertheless, significant quantitative discrepancies remain, which probably result from the capture channel, which may be strongly coupled to the ionization channel. Therefore, improved agreement could be expected from a non-perturbative coupled-channel approach.

  5. Channel Bank Cohesion and the Maintenance of Suspension Rivers

    NASA Astrophysics Data System (ADS)

    Dunne, K. B. J.; Jerolmack, D. J.

    2017-12-01

    Gravel-bedded rivers organize their channel geometry and grain size such that transport is close to the threshold of motion at bankfull. Sand-bedded rivers, however, typically maintain bankfull fluid shear (or Shields) stresses far in excess of threshold; there is no widely accepted explanation for these "suspension rivers". We propose that all alluvial rivers are at the threshold of motion for their erosion-limiting material, i.e., the structural component of the river cross-section that is most difficult to mobilize. The entrainment threshold of gravel is large enough that bank cohesion has little influence on gravel-bed rivers. Sand, however, is the most easily entrained material; silt and clay can raise the entrainment threshold of sand by orders of magnitude. We examine a global dataset of river channel geometry and show that the shear stress range for sand-bedded channels is entirely within the range of entrainment thresholds for sand-mud mixtures - suggesting that rivers that suspend their sandy bed material are still threshold rivers in terms of bank material. We then present new findings from a New Jersey coastal-plain river examining if and how river-bank toe composition controls hydraulic geometry. We consider the toe because it is the foundation of the river bank, and its erosion leads to channel widening. Along a 20-km profile of the river we measure cross-section geometry, bed slope, and bed and bank composition, and we explore multiple methods of measuring the threshold shear stress of the the river-bank toe in-situ. As the composition of the river bed transitions from gravel to sand, we see preliminary evidence of a shift from bed-threshold to bank-threshold control on hydraulic geometry. We also observe that sub-bankfull flows are insufficient to erode (cohesive) bank materials, even though transport of sand is active at nearly all flows. Our findings highlight the importance of focusing on river-bank toe material, which in the studied stream is always submerged. The toe is more compacted and more resistant to erosion than the subaerially-exposed upper bank. We find mounting evidence that sand-bedded rivers are much like gravel-bedded river; they are near-threshold channels in which the suspended load does not play a controlling role in the determination of equilibrium hydraulic geometry.

  6. How Are Television Networks Involved in Distance Learning?

    ERIC Educational Resources Information Center

    Bucher, Katherine

    1996-01-01

    Reviews the involvement of various television networks in distance learning, including public broadcasting stations, Cable in the Classroom, Arts and Entertainment Network, Black Entertainment Television, C-SPAN, CNN (Cable News Network), The Discovery Channel, The Learning Channel, Mind Extension University, The Weather Channel, National Teacher…

  7. Preferential paths in yield stress fluid flow through a porous medium

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Waisbord, Nicolas; Stoop, Norbert; Dunkel, Jörn

    2016-11-01

    A broad range of biological, geological, and industrial materials with complex rheological properties are subjected to flow through porous media in applications ranging from oil recovery to food manufacturing. In this experimental study, we examine the flow of a model yield stress fluid (Carbopol micro-gel) through a quasi-2D porous medium, fabricated in a microfluidic channel. The flow is driven by applying a precisely-controlled pressure gradient and measured by particle tracking velocimetry, and our observations are complemented by a pore-network model of the yield stress fluid flow. While remaining unyielded at small applied pressure, the micro-gel begins to yield at a critical pressure gradient, exhibiting a single preferential flow path that percolates through the porous medium. As the applied pressure gradient increases, we observe a subsequent coarsening and invasion of the yielded, fluidized network. An examination of both the yielded network topology and pore-scale flow reveal that two cooperative phenomena are involved in sculpting the preferential flow paths: (1) the geometry of the porous microstructure, and (2) the adhesive surface interactions between the micro-gel and substrate. NSF CBET-1511340.

  8. Microscale transport and sorting by kinesin molecular motors.

    PubMed

    Jia, Lili; Moorjani, Samira G; Jackson, Thomas N; Hancock, William O

    2004-03-01

    As biomolecular detection systems shrink in size, there is an increasing demand for systems that transport and position materials at micron- and nanoscale dimensions. Our goal is to combine cellular transport machinery-kinesin molecular motors and microtubules-with integrated optoelectronics into a hybrid biological/engineered microdevice that will bind, transport, and detect specific proteins, DNA/RNA molecules, viruses, or cells. For microscale transport, 1.5 microm deep channels were created with SU-8 photoresist on glass, kinesin motors adsorbed to the bottom of the channels, and the channel walls used to bend and redirect microtubules moving over the immobilized motors. Novel channel geometries were investigated as a means to redirect and sort microtubules moving in these channels. We show that DC and AC electric fields are sufficient to transport microtubules in solution, establishing an approach for redirecting microtubules moving in channels. Finally, we inverted the geometry to demonstrate that kinesins can transport gold nanowires along surface immobilized microtubules, providing a model for nanoscale directed assembly.

  9. Multi-channel distributed coordinated function over single radio in wireless sensor networks.

    PubMed

    Campbell, Carlene E-A; Loo, Kok-Keong Jonathan; Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band.

  10. Multi-Channel Distributed Coordinated Function over Single Radio in Wireless Sensor Networks

    PubMed Central

    Campbell, Carlene E.-A.; Loo, Kok-Keong (Jonathan); Gemikonakli, Orhan; Khan, Shafiullah; Singh, Dhananjay

    2011-01-01

    Multi-channel assignments are becoming the solution of choice to improve performance in single radio for wireless networks. Multi-channel allows wireless networks to assign different channels to different nodes in real-time transmission. In this paper, we propose a new approach, Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks (WSNs) over 802.11 networks. We presented simulation experiments in order to investigate the characteristics of multi-channel communication in wireless sensor networks using an NS2 platform. Nodes only use a single radio and perform channel switching only after specified threshold is reached. Single radio can only work on one channel at any given time. All nodes initiate constant bit rate streams towards the receiving nodes. In this work, we studied the impact of non-overlapping channels in the 2.4 frequency band on: constant bit rate (CBR) streams, node density, source nodes sending data directly to sink and signal strength by varying distances between the sensor nodes and operating frequencies of the radios with different data rates. We showed that multi-channel enhancement using our proposed algorithm provides significant improvement in terms of throughput, packet delivery ratio and delay. This technique can be considered for WSNs future use in 802.11 networks especially when the IEEE 802.11n becomes popular thereby may prevent the 802.15.4 network from operating effectively in the 2.4 GHz frequency band. PMID:22346614

  11. Digital breast tomosynthesis for detecting multifocal and multicentric breast cancer: influence of acquisition geometry on model observer performance in breast phantom images

    NASA Astrophysics Data System (ADS)

    Wen, Gezheng; Park, Subok; Markey, Mia K.

    2017-03-01

    Multifocal and multicentric breast cancer (MFMC), i.e., the presence of two or more tumor foci within the same breast, has an immense clinical impact on treatment planning and survival outcomes. Detecting multiple breast tumors is challenging as MFMC breast cancer is relatively uncommon, and human observers do not know the number or locations of tumors a priori. Digital breast tomosynthesis (DBT), in which an x-ray beam sweeps over a limited angular range across the breast, has the potential to improve the detection of multiple tumors.1, 2 However, prior efforts to optimize DBT image quality only considered unifocal breast cancers (e.g.,3-9), so the recommended geometries may not necessarily yield images that are informative for the task of detecting MFMC. Hence, the goal of this study is to employ a 3D multi-lesion (ml) channelized-Hotelling observer (CHO) to identify optimal DBT acquisition geometries for MFMC. Digital breast phantoms and simulated DBT scanners of different geometries (e.g., wide or narrow arc scans, different number of projections in each scan) were used to generate image data for the simulation study. Multiple 3D synthetic lesions were inserted into different breast regions to simulate MF cases and MC cases. 3D partial least squares (PLS) channels, and 3D Laguerre-Gauss (LG) channels were estimated to capture discriminant information and correlations among signals in locally varying anatomical backgrounds, enabling the model observer to make both image-level and location-specific detection decisions. The 3D ml-CHO with PLS channels outperformed that with LG channels in this study. The simulated MC cases and MC cases were not equally difficult for the ml-CHO to detect across the different simulated DBT geometries considered in this analysis. Also, the results suggest that the optimal design of DBT may vary as the task of clinical interest changes, e.g., a geometry that is better for finding at least one lesion may be worse for counting the number of lesions.

  12. Optimal fractal tree-like microchannel networks with slip for laminar-flow-modified Murray's law.

    PubMed

    Jing, Dalei; Song, Shiyu; Pan, Yunlu; Wang, Xiaoming

    2018-01-01

    The fractal tree-like branched network is an effective channel design structure to reduce the hydraulic resistance as compared with the conventional parallel channel network. In order for a laminar flow to achieve minimum hydraulic resistance, it is believed that the optimal fractal tree-like channel network obeys the well-accepted Murray's law of β m = N -1/3 (β m is the optimal diameter ratio between the daughter channel and the parent channel and N is the branching number at every level), which is obtained under the assumption of no-slip conditions at the channel wall-liquid interface. However, at the microscale, the no-slip condition is not always reasonable; the slip condition should indeed be considered at some solid-liquid interfaces for the optimal design of the fractal tree-like channel network. The present work reinvestigates Murray's law for laminar flow in a fractal tree-like microchannel network considering slip condition. It is found that the slip increases the complexity of the optimal design of the fractal tree-like microchannel network to achieve the minimum hydraulic resistance. The optimal diameter ratio to achieve minimum hydraulic resistance is not only dependent on the branching number, as stated by Murray's law, but also dependent on the slip length, the level number, the length ratio between the daughter channel and the parent channel, and the diameter of the channel. The optimal diameter ratio decreases with the increasing slip length, the increasing level number and the increasing length ratio between the daughter channel and the parent channel, and decreases with decreasing channel diameter. These complicated relations were found to become relaxed and simplified to Murray's law when the ratio between the slip length and the diameter of the channel is small enough.

  13. Simulation of water flow in fractured porous medium by using discretized virtual internal bond

    NASA Astrophysics Data System (ADS)

    Peng, Shujun; Zhang, Zhennan; Li, Chunfang; He, Guofu; Miao, Guoqing

    2017-12-01

    The discretized virtual internal bond (DVIB) is adopted to simulate the water flow in fractured porous medium. The intact porous medium is permeable because it contains numerous micro cracks and pores. These micro discontinuities construct a fluid channel network. The representative volume of this fluid channel network is modeled as a lattice bond cell with finite number of bonds in statistical sense. Each bond serves as a fluid channel. In fractured porous medium, many bond cells are cut by macro fractures. The conductivity of the fracture facet in a bond cell is taken over by the bonds parallel to the flow direction. The equivalent permeability and volumetric storage coefficient of a micro bond are calibrated based on the ideal bond cell conception, which makes it unnecessary to consider the detailed geometry of a specific element. Such parameter calibration method is flexible and applicable to any type of element. The accuracy check results suggest this method has a satisfying accuracy in both the steady and transient flow simulation. To simulate the massive fractures in rockmass, the bond cells intersected by fracture are assigned aperture values, which are assumed random numbers following a certain distribution law. By this method, any number of fractures can be implicitly incorporated into the background mesh, avoiding the setup of fracture element and mesh modification. The fracture aperture heterogeneity is well represented by this means. The simulation examples suggest that the present method is a feasible, simple and efficient approach to the numerical simulation of water flow in fractured porous medium.

  14. Hydraulic Geometry Characteristics of Continuous-Record Streamflow-Gaging Stations on Four Urban Watersheds Along the Main Stem of Gwynns Falls, Baltimore County and Baltimore City, Maryland

    USGS Publications Warehouse

    Doheny, Edward J.; Fisher, Gary T.

    2007-01-01

    Four continuous-record streamflow-gaging stations are currently being operated by the U.S. Geological Survey on the main stem of Gwynns Falls in western Baltimore County and Baltimore City, Maryland. The four streamflow-gaging stations drain urban or suburban watersheds with significantly different drainage areas. In addition to providing continuous- record discharge data at these four locations, operation of these stations also provides a long-term record of channel geometry variables such as cross-sectional area, channel width, mean channel depth, and mean velocity that are obtained from physical measurement of the discharge at a variety of flow conditions. Hydraulic geometry analyses were performed using discharge-measurement data from four continuous-record streamflow-gaging stations on the main stem of Gwynns Falls. Simple linear regression was used to develop relations that (1) quantify changes in cross-sectional area, channel width, mean channel depth, and mean velocity with changes in discharge at each station, and (2) quantify changes in these variables in the Gwynns Falls watershed with changes in drainage area and annual mean discharge. Results of the hydraulic geometry analyses indicated that mean velocity is more responsive to changes in discharge than channel width and mean channel depth for all four streamflow-gaging stations on the main stem of Gwynns Falls. For the two largest and most developed watersheds, on Gwynns Falls at Villa Nova, and Gwynns Falls at Washington Boulevard at Baltimore, the slope of the regression lines, or hydraulic exponents, indicated that mean velocity was more responsive to changes in discharge than any of the other hydraulic variables that were analyzed. This was true even when considering changes in cross-sectional area with discharge, which incorporates the combined effects of channel width and mean channel depth. A comparison of hydraulic exponents for Gwynns Falls to average values from previous work indicated that the velocity exponents for all four stations on the Gwynns Falls are larger than the average value of 0.34. For stations 01589300 and 01589352, the exponents for mean velocity are about twice as large as the average value. Analyses of cross-sectional area, channel width, mean channel depth, and mean velocity in conjunction with changes in drainage area and annual mean discharge indicated that channel width is much more responsive to changes in drainage area and annual mean discharge than are mean channel depth or mean velocity. Cross-sectional area, which combines the effects of channel width and mean channel depth, was also found to be highly responsive to changes in drainage area and annual mean discharge.

  15. Inception of supraglacial channelization under turbulent flow conditions

    NASA Astrophysics Data System (ADS)

    Mantelli, E.; Camporeale, C.; Ridolfi, L.

    2013-12-01

    Glacier surfaces exhibit an amazing variety of meltwater-induced morphologies, ranging from small scale ripples and dunes on the bed of supraglacial channels to meandering patterns, till to large scale drainage networks. Even though the structure and geometry of these morphologies play a key role in the glacier melting processes, the physical-based modeling of such spatial patterns have attracted less attention than englacial and subglacial channels. In order to partially fill this gap, our work concerns the large scale channelization occurring on the ice slopes and focuses on the role of turbulence on the wavelength selection processes during the channelization inception. In a recent study[1], two of us showed that the morphological instability induced by a laminar film flowing over an ice bed is characterized by transversal length scales of order of centimeters. Being these scales much smaller than the spacing observed in the channelization of supraglacial drainage networks (that are of order of meters) and considering that the water films flowing on glaciers can exhibit Reynolds numbers larger than 104, we investigated the role of turbulence in the inception of channelization. The flow-field is modeled by means of two-dimensional shallow water equations, where Reynolds stresses are also considered. In the depth-averaged heat balance equation an incoming heat flux from air is assumed and forced convection heat exchange with the wall is taken into account, in addition to convection and diffusion in the liquid. The temperature profile in the ice is finally coupled to the liquid through Stefan equation. We then perform a linear stability analysis and, under the assumption of small Stefan number, we solve the differential eigenvalue problem analytically. As main outcome of such an analysis, the morphological instability of the ice-water interface is detected and investigated in a wide range of the independent parameters: longitudinal and transversal wavenumbers, glacier surface slope, and Froude number and temperature of the water stream. The most remarkable result is that critical transversal wavelengths of order of meters are obtained, which are in general agreement with the patterns observed on glaciers during the melting season. Moreover, the key role played by the free surface of the water film, turbulent heat transfer and Reynolds stresses on the inception of channelization is highlighted and discussed. [1] Camporeale, C. & Ridolfi, L. (2012) Ice ripple formation at large Reynolds number. J. Fluid Mech. 694, 225-251.

  16. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Winkelmann, Joseph P. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface is a state machine, such as an ASIC, that operates independent of a processor in communicating with the bus controller and data channels.

  17. Development of Relations of Stream Stage to Channel Geometry and Discharge for Stream Segments Simulated with Hydrologic Simulation Program-Fortran (HSPF), Chesapeake Bay Watershed and Adjacent Parts of Virginia, Maryland, and Delaware

    USGS Publications Warehouse

    Moyer, Douglas; Bennett, Mark

    2007-01-01

    The U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (USEPA), Chesapeake Bay Program (CBP), Interstate Commission for the Potomac River Basin (ICPRB), Maryland Department of the Environment (MDE), Virginia Department of Conservation and Recreation (VADCR), and University of Maryland (UMD) are collaborating to improve the resolution of the Chesapeake Bay Regional Watershed Model (CBRWM). This watershed model uses the Hydrologic Simulation Program-Fortran (HSPF) to simulate the fate and transport of nutrients and sediment throughout the Chesapeake Bay watershed and extended areas of Virginia, Maryland, and Delaware. Information from the CBRWM is used by the CBP and other watershed managers to assess the effectiveness of water-quality improvement efforts as well as guide future management activities. A critical step in the improvement of the CBRWM framework was the development of an HSPF function table (FTABLE) for each represented stream channel. The FTABLE is used to relate stage (water depth) in a particular stream channel to associated channel surface area, channel volume, and discharge (streamflow). The primary tool used to generate an FTABLE for each stream channel is the XSECT program, a computer program that requires nine input variables used to represent channel morphology. These input variables are reach length, upstream and downstream elevation, channel bottom width, channel bankfull width, channel bankfull stage, slope of the floodplain, and Manning's roughness coefficient for the channel and floodplain. For the purpose of this study, the nine input variables were grouped into three categories: channel geometry, Manning's roughness coefficient, and channel and floodplain slope. Values of channel geometry for every stream segment represented in CBRWM were obtained by first developing regional regression models that relate basin drainage area to observed values of bankfull width, bankfull depth, and bottom width at each of the 290 USGS streamflow-gaging stations included in the areal extent of the model. These regression models were developed on the basis of data from stations in four physiographic provinces (Appalachian Plateaus, Valley and Ridge, Piedmont, and Coastal Plain) and were used to predict channel geometry for all 738 stream segments in the modeled area from associated basin drainage area. Manning's roughness coefficient for the channel and floodplain was represented in the XSECT program in two forms. First, all available field-estimated values of roughness were compiled for gaging stations in each physiographic province. The median of field-estimated values of channel and floodplain roughness for each physiographic province was applied to all respective stream segments. The second representation of Manning's roughness coefficient was to allow roughness to vary with channel depth. Roughness was estimated at each gaging station for each 1-foot depth interval. Median values of roughness were calculated for each 1-foot depth interval for all stations in each physiographic province. Channel and floodplain slope were determined for every stream segment in CBRWM using the USGS National Elevation Dataset. Function tables were generated by the XSECT program using values of channel geometry, channel and floodplain roughness, and channel and floodplain slope. The FTABLEs for each of the 290 USGS streamflow-gaging stations were evaluated by comparing observed discharge to the XSECT-derived discharge. Function table stream discharge derived using depth-varying roughness was found to be more representative of and statistically indistinguishable from values of observed stream discharge. Additionally, results of regression analysis showed that XSECT-derived discharge accounted for approximately 90 percent of the variability associated with observed discharge in each of the four physiographic provinces. The results of this study indicate that the methodology developed to generate FTABLEs for every s

  18. Experimental investigation of five parallel plane jets with variation of Reynolds number and outlet conditions

    NASA Astrophysics Data System (ADS)

    Daubner, Tomas; Kizhofer, Jens; Dinulescu, Mircea

    2018-06-01

    This article describes an experimental investigation in the near field of five parallel plane jets. The study applies 2D Particle Image Velocimetry (PIV) for ventilated and unventilated jets, where ventilated means exiting into a duct with expansion ratio 3.5 and unventilated means exiting to the free atmosphere. Results are presented for Reynolds numbers 1408, 5857 and 10510. The Reynolds number is calculated for the middle channel and is based on the height of the nozzle (channel) equivalent diameter 2h. All characteristic regions of the methodology to describe multiple interacting jets are observed by the PIV measurements - converging, merging and combined. Each of the five parallel channels has an aspect ratio of 25 defined as nozzle width (w) to height (h). The channels have a length of 185 times the channel height guaranteeing a fully developed velocity profile at the exit from the channel. Spacing between the single plane jets is 3 times the channel height. The near field of multiple mixing jets is depended on outlet nozzle geometry. Blunt geometry of the nozzle was chosen (sudden contraction).

  19. Network geometry with flavor: From complexity to quantum geometry

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph

    2016-03-01

    Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but its statistical properties reveal the relation to its quantum mechanical description. In fact the δ -dimensional faces of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ .

  20. Network geometry with flavor: From complexity to quantum geometry.

    PubMed

    Bianconi, Ginestra; Rahmede, Christoph

    2016-03-01

    Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d-dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s=-1,0,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d. In d=1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d>1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t. Interestingly the NGF remains fully classical but its statistical properties reveal the relation to its quantum mechanical description. In fact the δ-dimensional faces of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ.

  1. Traffic of leukocytes in microfluidic channels with rectangular and rounded cross-sections.

    PubMed

    Yang, Xiaoxi; Forouzan, Omid; Burns, Jennie M; Shevkoplyas, Sergey S

    2011-10-07

    Traffic of leukocytes in microvascular networks (particularly through arteriolar bifurcations and venular convergences) affects the dynamics of capillary blood flow, initiation of leukocyte adhesion during inflammation, and localization and development of atherosclerotic plaques in vivo. Recently, a growing research effort has been focused on fabricating microvascular networks comprising artificial vessels with more realistic, rounded cross-sections. This paper investigated the impact of the cross-sectional geometry of microchannels on the traffic of leukocytes flowing with human whole blood through a non-symmetrical bifurcation that consisted of a 50 μm mother channel bifurcating into 30 μm and 50 μm daughter branches. Two versions of the same bifurcation comprising microchannels with rectangular and rounded cross-sections were fabricated using conventional multi-layer photolithography to produce rectangular microchannles that were then rounded in situ using a recently developed method of liquid PDMS/air bubble injection. For microchannels with rounded cross-sections, about two-thirds of marginated leukocytes traveling along a path in the top plane of the bifurcation entered the smallest 30 μm daughter branch. This distribution was reversed in microchannels with rectangular cross-sections--the majority of leukocytes traveling along a similar path continued to follow the 50 μm microchannels after the bifurcation. This dramatic difference in the distribution of leukocyte traffic among the branches of the bifurcation can be explained by preferential margination of leukocytes towards the corners of the 50 μm mother microchannels with rectangular cross-sections, and by the additional hindrance to leukocyte entry created by the sharp transition from the 50 μm mother microchannel to the 30 μm daughter branch at the intersection. The results of this study suggest that the trajectories of marginated leukocytes passing through non-symmetrical bifurcations are significantly affected by the cross-sectional geometry of microchannels and emphasize the importance of using microfludic systems with geometrical configurations closely matching physiological configurations when modeling the dynamics of whole blood flow in the microcirculation.

  2. Are Equilibrium Multichannel Networks Predictable? the Case of the Indus River, Pakistan

    NASA Astrophysics Data System (ADS)

    Darby, S. E.; Carling, P. A.

    2017-12-01

    Focusing on the specific case of the Indus River, we argue that the equilibrium planform network structure of large, multi-channel, rivers is predictable. Between Chashma and Taunsa, Pakistan, the Indus is a 264 km long multiple-channel reach. Remote sensing imagery, including a period of time that encompasses the occurrence of major floods in 2007 and 2010, shows that Indus has a minimum of two and a maximum of nine channels, with on average four active channels during the dry season and five during the monsoon. We show that the network structure, if not detailed planform, remains stable, even for the record 2010 flood (27,100 m3s-1; recurrence interval > 100 years). Bankline recession is negligible for discharges less than a peak annual discharge of 6,000 m3s-1 ( 80% of mean annual flow). Maximum Flow Efficiency (MFE) principle demonstrates the channel network is insensitive to the monsoon floods, which typically peak at 13,200 m3s-1. Rather, the network is in near-equilibrium with the mean annual flood (7,530 m3s-1). MFE principle indicates stable networks have three to four channels, thus the observed stability in the number of active channels accords with the presence of a near-equilibrium reach-scale channel network. Insensitivity to the annual hydrological cycle demonstrates that the time-scale for network adjustment is much longer than the time-scale of the monsoon hydrograph, with the annual excess water being stored on floodplains, rather than being conveyed in an enlarged channel network. The analysis explains the lack of significant channel adjustment following the largest flood in 40 years and the extensive Indus flooding experienced on an annual basis, with its substantial impacts on the populace and agricultural production.

  3. Channel Networks on Large Fans: Refining Analogs for the Ridge-forming Unit, Sinus Meridiani

    NASA Technical Reports Server (NTRS)

    Wilkinson, Justin

    2009-01-01

    Stream channels are generally thought of as forming within confined valley settings, separated by interfluves. Sinuous ridges on Mars and Earth are often interpreted as stream channels inverted by subsequent erosion of valley sides. In the case of the ridge-forming unit (RFU), this interpretation fails to explain the (i) close spacing of the ridges, which are (ii) organized in networks, and which (iii) cover large areas (approximately 175,000 km (exp 2)). Channel networks on terrestrial fans develop unconfined by valley slopes. Large fans (100s km long) are low-angle, fluvial features, documented worldwide, with characteristics that address these aspects of the RFU. Ridge patterns Channels on large fans provide an analog for the sinuous and elongated morphology of RFU ridges, but more especially for other patterns such as subparallel, branching and crossing networks. Branches are related to splays (delta-like distributaries are rare), whose channels can rejoin the main channel. Crossing patterns can be caused by even slight sinuosity splay-related side channels often intersect. An avulsion node distant from the fan apex, gives rise to channels with slightly different, and hence intersecting, orientations. Channels on neighboring fans intersect along the common fan margin. 2. Network density Channels are the dominant feature on large terrestrial fans (lakes and dune fields are minor). Inverted landscapes on subsequently eroded fans thus display indurated channels as networks of significantly close-spaced ridges. 3. Channel networks covering large areas Areas of individual large terrestrial fans can reach >200,000 km 2 (105-6 km 2 with nested fans), providing an analog for the wide area distribution of the RFU.

  4. Load-adaptive practical multi-channel communications in wireless sensor networks.

    PubMed

    Islam, Md Shariful; Alam, Muhammad Mahbub; Hong, Choong Seon; Lee, Sungwon

    2010-01-01

    In recent years, a significant number of sensor node prototypes have been designed that provide communications in multiple channels. This multi-channel feature can be effectively exploited to increase the overall capacity and performance of wireless sensor networks (WSNs). In this paper, we present a multi-channel communications system for WSNs that is referred to as load-adaptive practical multi-channel communications (LPMC). LPMC estimates the active load of a channel at the sink since it has a more comprehensive view of the network behavior, and dynamically adds or removes channels based on the estimated load. LPMC updates the routing path to balance the loads of the channels. The nodes in a path use the same channel; therefore, they do not need to switch channels to receive or forward packets. LPMC has been evaluated through extensive simulations, and the results demonstrate that it can effectively increase the delivery ratio, network throughput, and channel utilization, and that it can decrease the end-to-end delay and energy consumption.

  5. The Effects of Channel Curvature and Protrusion Height on Nucleate Boiling and the Critical Heat Flux of a Simulated Electronic Chip

    DTIC Science & Technology

    1994-05-01

    parameters and geometry factor. 57 3.2 Laminar sublayer and buffer layer thicknesses for geometry of Mudawar and Maddox.ŝ 68 3.3 Correlation constants...transfer from simulated electronic chip heat sources that are flush with the flow channel wall. Mudawar and Maddox2" have studied enhanced surfaces...bias error was not estimated; however, the percentage of heat loss measured compares with that previously reported by Mudawar and Maddox19 for a

  6. Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Keshock, Edward G.; Lin, Chin S.

    1996-01-01

    A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.

  7. River meanders - Theory of minimum variance

    USGS Publications Warehouse

    Langbein, Walter Basil; Leopold, Luna Bergere

    1966-01-01

    Meanders are the result of erosion-deposition processes tending toward the most stable form in which the variability of certain essential properties is minimized. This minimization involves the adjustment of the planimetric geometry and the hydraulic factors of depth, velocity, and local slope.The planimetric geometry of a meander is that of a random walk whose most frequent form minimizes the sum of the squares of the changes in direction in each successive unit length. The direction angles are then sine functions of channel distance. This yields a meander shape typically present in meandering rivers and has the characteristic that the ratio of meander length to average radius of curvature in the bend is 4.7.Depth, velocity, and slope are shown by field observations to be adjusted so as to decrease the variance of shear and the friction factor in a meander curve over that in an otherwise comparable straight reach of the same riverSince theory and observation indicate meanders achieve the minimum variance postulated, it follows that for channels in which alternating pools and riffles occur, meandering is the most probable form of channel geometry and thus is more stable geometry than a straight or nonmeandering alinement.

  8. Enhanced heat sink with geometry induced wall-jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Md. Mahamudul, E-mail: sohel0991@gmail.com; Tikadar, Amitav; Bari, Fazlul

    Mini-channels embedded in solid matrix have already proven to be a very efficient way of electronic cooling. Traditional mini-channel heat sinks consist of single layer of parallel channels. Although mini-channel heat sink can achieve very high heat flux, its pumping requirement for circulating liquid through the channel increase very sharply as the flow velocity increases. The pumping requirements of the heat sink can be reduced by increasing its performance. In this paper a novel approach to increase the thermal performance of the mini-channel heat sink is proposed through geometry induced wall jet which is a passive technique. Geometric irregularities alongmore » the channel length causes abrupt pressure change between the channels which causes cross flow through the interconnections thus one channel faces suction and other channel jet action. This suction and jet action disrupts boundary layer causing enhanced heat transfer performance. A CFD model has been developed using commercially available software package FLUENT to evaluate the technique. A parametric study of the velocities and the effect of the position of the wall-jets have been performed. Significant reduction in thermal resistance has been observed for wall-jets, it is also observed that this reduction in thermal resistance is dependent on the position and shape of the wall jet.« less

  9. Historical Channel Changes in Cache Creek, Capay Valley, California

    NASA Astrophysics Data System (ADS)

    Higgins, S. A.; Kamman, G. R.

    2009-12-01

    Historical channel changes were assessed for the 21-mile segment of Cache Creek through Capay Valley in order to evaluate temporal changes in stream channel morphology. The Capay Valley segment of Cache Creek is primarily a low-gradient channel with a gravel/cobble substrate. Hydrologic conditions have been affected by dam operations that store runoff during the wet season and deliver water during the dry season for downstream irrigation uses. Widespread distribution of invasive plant species has altered the condition of the riparian corridor. The assessment evaluated a hypothesis that historical changes in hydrology and vegetation cover have triggered changes in geomorphic conditions. Historic channel alignments were digitized to assess planform channel adjustments. Results illustrate a dynamic system with frequent channel movements throughout the historic period. Evaluation of longitudinal channel adjustments revealed a relatively stable bed surface elevation since the 1930’s. Comparisons of cross-sectional channel geometry for topographic profiles surveyed in 1984 were compared to equivalent features in a LiDAR survey from 2008. The comparisons show a relatively consistent channel geometry that has maintained a similar form despite rather large planform adjustments with areas of bank retreat in excess of 500 feet. Results suggest that the study reach has maintained a relatively stable morphology through a series of dynamic planform adjustments during the historic period.

  10. Effects of spatial constraints on channel network topology: Implications for geomorphological inference

    NASA Astrophysics Data System (ADS)

    Cabral, Mariza Castanheira De Moura Da Costa

    In the fifty-two years since Robert Horton's 1945 pioneering quantitative description of channel network planform (or plan view morphology), no conclusive findings have been presented that permit inference of geomorphological processes from any measures of network planform. All measures of network planform studied exhibit limited geographic variability across different environments. Horton (1945), Langbein et al. (1947), Schumm (1956), Hack (1957), Melton (1958), and Gray (1961) established various "laws" of network planform, that is, statistical relationships between different variables which have limited variability. A wide variety of models which have been proposed to simulate the growth of channel networks in time over a landsurface are generally also in agreement with the above planform laws. An explanation is proposed for the generality of the channel network planform laws. Channel networks must be space filling, that is, they must extend over the landscape to drain every hillslope, leaving no large undrained areas, and with no crossing of channels, often achieving a roughly uniform drainage density in a given environment. It is shown that the space-filling constraint can reduce the sensitivity of planform variables to different network growth models, and it is proposed that this constraint may determine the planform laws. The "Q model" of network growth of Van Pelt and Verwer (1985) is used to generate samples of networks. Sensitivity to the model parameter Q is markedly reduced when the networks generated are required to be space filling. For a wide variety of Q values, the space-filling networks are in approximate agreement with the various channel network planform laws. Additional constraints, including of energy efficiency, were not studied but may further reduce the variability of planform laws. Inference of model parameter Q from network topology is successful only in networks not subject to spatial constraints. In space-filling networks, for a wide range of Q values, the maximal-likelihood Q parameter value is generally in the vicinity of 1/2, which yields topological randomness. It is proposed that space filling originates the appearance of randomness in channel network topology, and may cause difficulties to geomorphological inference from network planform.

  11. Geometry correction Algorithm for UAV Remote Sensing Image Based on Improved Neural Network

    NASA Astrophysics Data System (ADS)

    Liu, Ruian; Liu, Nan; Zeng, Beibei; Chen, Tingting; Yin, Ninghao

    2018-03-01

    Aiming at the disadvantage of current geometry correction algorithm for UAV remote sensing image, a new algorithm is proposed. Adaptive genetic algorithm (AGA) and RBF neural network are introduced into this algorithm. And combined with the geometry correction principle for UAV remote sensing image, the algorithm and solving steps of AGA-RBF are presented in order to realize geometry correction for UAV remote sensing. The correction accuracy and operational efficiency is improved through optimizing the structure and connection weight of RBF neural network separately with AGA and LMS algorithm. Finally, experiments show that AGA-RBF algorithm has the advantages of high correction accuracy, high running rate and strong generalization ability.

  12. Remote sensing of channels and riparian zones with a narrow-beam aquatic-terrestrial LIDAR

    Treesearch

    Jim McKean; Dave Nagel; Daniele Tonina; Philip Bailey; Charles Wayne Wright; Carolyn Bohn; Amar Nayegandhi

    2009-01-01

    The high-resolution Experimental Advanced Airborne Research LIDAR (EAARL) is a new technology for cross-environment surveys of channels and floodplains. EAARL measurements of basic channel geometry, such as wetted cross-sectional area, are within a few percent of those from control field surveys. The largest channel mapping errors are along stream banks. The LIDAR data...

  13. Stream channel erosion in a rapidly urbanizing region of the US-Mexico border: documenting importance of channel hardpoints with structure-from-motion

    USDA-ARS?s Scientific Manuscript database

    A combination of field surveys and Structure-from-Motion (SfM) techniques were used to document spatial patterns in stream channel geometry in a rapidly urbanizing watershed, Los Laureles Canyon (LLCW), in Tijuana, Mexico. Ground-based SfM was used to map channel dimensions with 10 cm vertical accur...

  14. Human impacts to mountain streams

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope/channel connections, process domains, physical and ecological roles of disturbance, and stream resilience.

  15. A method for estimating spatially variable seepage and hydrualic conductivity in channels with very mild slopes

    USGS Publications Warehouse

    Shanafield, Margaret; Niswonger, Richard G.; Prudic, David E.; Pohll, Greg; Susfalk, Richard; Panday, Sorab

    2014-01-01

    Infiltration along ephemeral channels plays an important role in groundwater recharge in arid regions. A model is presented for estimating spatial variability of seepage due to streambed heterogeneity along channels based on measurements of streamflow-front velocities in initially dry channels. The diffusion-wave approximation to the Saint-Venant equations, coupled with Philip's equation for infiltration, is connected to the groundwater model MODFLOW and is calibrated by adjusting the saturated hydraulic conductivity of the channel bed. The model is applied to portions of two large water delivery canals, which serve as proxies for natural ephemeral streams. Estimated seepage rates compare well with previously published values. Possible sources of error stem from uncertainty in Manning's roughness coefficients, soil hydraulic properties and channel geometry. Model performance would be most improved through more frequent longitudinal estimates of channel geometry and thalweg elevation, and with measurements of stream stage over time to constrain wave timing and shape. This model is a potentially valuable tool for estimating spatial variability in longitudinal seepage along intermittent and ephemeral channels over a wide range of bed slopes and the influence of seepage rates on groundwater levels.

  16. Control of interaction strength in a network of the true slime mold by a microfabricated structure.

    PubMed

    Takamatsu, A; Fujii, T; Endo, I

    2000-02-01

    The plasmodium of the true slime mold, Physarum polycephalum, which shows various nonlinear oscillatory phenomena, for example, in its thickness, protoplasmic streaming and concentration of intracellular chemicals, can be regarded as a collective of nonlinear oscillators. The plasmodial oscillators are interconnected by microscale tubes whose dimensions can be closely related to the strength of interaction between the oscillators. Investigation of the collective behavior of the oscillators under the conditions in which the interaction strength can be systematically controlled gives significant information on the characteristics of the system. In this study, we proposed a living model system of a coupled oscillator system in the Physarum plasmodium. We patterned the geometry and dimensions of the microscale tube structure in the plasmodium by a microfabricated structure (microstructure). As the first step, we constructed a two-oscillator system for the plasmodium that has two wells (oscillator part) and a channel (coupling part). We investigated the oscillation behavior by monitoring the thickness oscillation of the plasmodium in the microstructure with various channel widths. It was found that the oscillation behavior of two oscillators dynamically changed depending on the channel width. Based on the results of measurements of the tube dimensions and the velocity of the protoplasmic streaming in the tube, we discuss how the channel width relates to the interaction strength of the coupled oscillator system.

  17. Hybrid soft-lithography/laser machined microchips for the parallel generation of droplets†

    PubMed Central

    Muluneh, M.

    2015-01-01

    Microfluidic chips have been developed to generate droplets and microparticles with control over size, shape, and composition not possible using conventional methods. However, it has remained a challenge to scale-up production for practical applications due to the inherently limited throughput of micro-scale devices. To address this problem, we have developed a self-contained microchip that integrates many (N = 512) micro-scale droplet makers. This 3 × 3 cm2 PDMS microchip consists of a two-dimensional array of 32 × 16 flow-focusing droplet makers, a network of flow channels that connect them, and only two inputs and one output. The key innovation of this technology is the hybrid use of both soft-lithography and direct laser-micromachining. The microscale resolution of soft lithography is used to fabricate flow-focusing droplet makers that can produce small and precisely defined droplets. Deeply engraved (h ≈ 500 μm) laser-machined channels are utilized to supply each of the droplet makers with its oil phase, aqueous phase, and access to an output channel. The engraved channels' low hydrodynamic resistance ensures that each droplet maker is driven with the same flow rates for highly uniform droplet formation.To demonstrate the utility of this approach, water droplets (d ≈ 80 μm) were generated in hexadecane on both 8 × 1 and 32 × 16 geometries. PMID:24166156

  18. Identification of channel geometries applying seismic attributes and spectral decomposition techniques, Temsah Field, Offshore East Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Othman, Adel A. A.; Fathy, M.; Negm, Adel

    2018-06-01

    The Temsah field is located in eastern part of the Nile delta to seaward. The main reservoirs of the area are Middle Pliocene mainly consist from siliciclastic which associated with a close deep marine environment. The Distribution pattern of the reservoir facies is limited scale indicating fast lateral and vertical changes which are not easy to resolve by applying of conventional seismic attribute. The target of the present study is to create geophysical workflows to a better image of the channel sand distribution in the study area. We apply both Average Absolute Amplitude and Energy attribute which are indicated on the distribution of the sand bodies in the study area but filled to fully described the channel geometry. So another tool, which offers more detailed geometry description is needed. The spectral decomposition analysis method is an alternative technique focused on processing Discrete Fourier Transform which can provide better results. Spectral decomposition have been done over the upper channel shows that the frequency in the eastern part of the channel is the same frequency in places where the wells are drilled, which confirm the connection of both the eastern and western parts of the upper channel. Results suggest that application of the spectral decomposition method leads to reliable inferences. Hence, using the spectral decomposition method alone or along with other attributes has a positive impact on reserves growth and increased production where the reserve in the study area increases to 75bcf.

  19. DAB user's guide

    NASA Technical Reports Server (NTRS)

    Trosin, J.

    1985-01-01

    Use of the Display AButments (DAB) which plots PAN AIR geometries is presented. The DAB program creates hidden line displays of PAN AIR geometries and labels specified geometry components, such as abutments, networks, and network edges. It is used to alleviate the very time consuming and error prone abutment list checking phase of developing a valid PAN AIR geometry, and therefore represents a valuable tool for debugging complex PAN AIR geometry definitions. DAB is written in FORTRAN 77 and runs on a Digital Equipment Corporation VAX 11/780 under VMS. It utilizes a special color version of the SKETCH hidden line analysis routine.

  20. Expected number of quantum channels in quantum networks.

    PubMed

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-07-15

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.

  1. Expected number of quantum channels in quantum networks

    PubMed Central

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-01-01

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks. PMID:26173556

  2. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor); Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor)

    2007-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. In some embodiments, network device interfaces associated with different data channels coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  3. Subglacial meltwater channels on the Antarctic continental shelf

    NASA Astrophysics Data System (ADS)

    Kirkham, J. D.; Hogan, K.; Dowdeswell, J. A.; Larter, R. D.; Arnold, N. S.; Nitsche, F. O.; Golledge, N. R.

    2017-12-01

    Extensive submarine channel networks exist on the Antarctic continental shelf. The genesis of the channels has been attributed to the flow of subglacial meltwater beneath a formerly more expansive Antarctic Ice Sheet (AIS), implying that there was an active subglacial hydrological system beneath the past AIS which influenced its ice flow dynamics and mass-loss behaviour. However, the dimensions of the channels are inconsistent with the minimal quantities of meltwater produced under the AIS at present; consequently, their formative mechanism, and its implications for past ice-sheet dynamics, remain unresolved. Here, analysis of >100,000 km2 of multibeam bathymetric data is used to produce the most comprehensive inventory of Antarctic submarine channelised landforms to date. Over 2700 bedrock channels are mapped across four locations on the inner continental shelves of the Bellingshausen and Amundsen Seas. Morphometric analysis reveals highly similar distributions of channel widths, depths, cross-sectional areas and geometric properties, with subtle differences present between channels located in the Bellingshausen Sea compared to those situated in the Amundsen Sea region. The channels are 75-3400 m wide, 3-280 m deep, 160-290,000 m2 in cross-sectional area, and exhibit V-shaped cross-sectional geometries that are typically eight times as wide as they are deep. The features are comparable, but substantially larger, than the system of channels known as the Labyrinth in the McMurdo Dry Valleys whose genesis has been attributed to catastrophic outburst floods, sourced from subglacial lakes, during the middle Miocene. A similar process origin is proposed for the channels observed on the Antarctic continental shelf, formed through the drainage of relict subglacial lake basins, including some 59 identified using submarine geomorphological evidence and numerical modelling calculations. Water is predicted to accumulate in the subglacial lakes over centuries to millennia and to drain over daily to monthly timescales, potentially influencing past ice-sheet dynamics.

  4. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.

    PubMed

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun

    2015-12-03

    Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.

  5. 3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems

    NASA Astrophysics Data System (ADS)

    Wang, Jianting; Ghassemi, Pejhman; Melchiorri, Anthony; Ramella-Roman, Jessica; Mathews, Scott A.; Coburn, James; Sorg, Brian; Chen, Yu; Pfefer, Joshua

    2015-03-01

    The emerging technique of three-dimensional (3D) printing provides a revolutionary way to fabricate objects with biologically realistic geometries. Previously we have performed optical and morphological characterization of basic 3D printed tissue-simulating phantoms and found them suitable for use in evaluating biophotonic imaging systems. In this study we assess the potential for printing phantoms with irregular, image-defined vascular networks that can be used to provide clinically-relevant insights into device performance. A previously acquired fundus camera image of the human retina was segmented, embedded into a 3D matrix, edited to incorporate the tubular shape of vessels and converted into a digital format suitable for printing. A polymer with biologically realistic optical properties was identified by spectrophotometer measurements of several commercially available samples. Phantoms were printed with the retinal vascular network reproduced as ~1.0 mm diameter channels at a range of depths up to ~3 mm. The morphology of the printed vessels was verified by volumetric imaging with μ-CT. Channels were filled with hemoglobin solutions at controlled oxygenation levels, and the phantoms were imaged by a near-infrared hyperspectral reflectance imaging system. The effect of vessel depth on hemoglobin saturation estimates was studied. Additionally, a phantom incorporating the vascular network at two depths was printed and filled with hemoglobin solution at two different saturation levels. Overall, results indicated that 3D printed phantoms are useful for assessing biophotonic system performance and have the potential to form the basis of clinically-relevant standardized test methods for assessment of medical imaging modalities.

  6. Analysis of a Channeled Centerbody Supersonic Inlet for F-15B Flight Research

    NASA Technical Reports Server (NTRS)

    Ratnayake, Nalin A.

    2010-01-01

    The Propulsion Flight Test Fixture at the NASA Dryden Flight Research Center is a unique test platform available for use on the NASA F-15B airplane, tail number 836, as a modular host for a variety of aerodynamics and propulsion research. The first experiment that is to be flown on the test fixture is the Channeled Centerbody Inlet Experiment. The objectives of this project at Dryden are twofold: 1) flight evaluation of an innovative new approach to variable geometry for high-speed inlets, and 2) flight validation of channeled inlet performance prediction by complex computational fluid dynamics codes. The inlet itself is a fixed-geometry version of a mixed-compression, variable-geometry, supersonic in- let developed by TechLand Research, Inc. (North Olmsted, Ohio) to improve the efficiency of supersonic flight at off-nominal conditions. The concept utilizes variable channels in the centerbody section to vary the mass flow of the inlet, enabling efficient operation at a range of flight conditions. This study is particularly concerned with the starting characteristics of the inlet. Computational fluid dynamics studies were shown to align well with analytical predictions, showing the inlet to remain unstarted as designed at the primary test point of Mach 1.5 at an equivalent pressure altitude of 29,500 ft local conditions. Mass-flow-related concerns such as the inlet start problem, as well as inlet efficiency in terms of total pressure loss, are assessed using the flight test geometry.

  7. Complex quantum network geometries: Evolution and phase transitions

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  8. Complex quantum network geometries: Evolution and phase transitions.

    PubMed

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  9. Laser beam micro-milling of nickel alloy: dimensional variations and RSM optimization of laser parameters

    NASA Astrophysics Data System (ADS)

    Ahmed, Naveed; Alahmari, Abdulrahman M.; Darwish, Saied; Naveed, Madiha

    2016-12-01

    Micro-channels are considered as the integral part of several engineering devices such as micro-channel heat exchangers, micro-coolers, micro-pulsating heat pipes and micro-channels used in gas turbine blades for aerospace applications. In such applications, a fluid flow is required to pass through certain micro-passages such as micro-grooves and micro-channels. The fluid flow characteristics (flow rate, turbulence, pressure drop and fluid dynamics) are mainly established based on the size and accuracy of micro-passages. Variations (oversizing and undersizing) in micro-passage's geometry directly affect the fluid flow characteristics. In this study, the micro-channels of several sizes are fabricated in well-known aerospace nickel alloy (Inconel 718) through laser beam micro-milling. The variations in geometrical characteristics of different-sized micro-channels are studied under the influences of different parameters of Nd:YAG laser. In order to have a minimum variation in the machined geometries of each size of micro-channel, the multi-objective optimization of laser parameters has been carried out utilizing the response surface methodology approach. The objective was set to achieve the targeted top widths and depths of micro-channels with minimum degree of taperness associated with the micro-channel's sidewalls. The optimized sets of laser parameters proposed for each size of micro-channel can be used to fabricate the micro-channels in Inconel 718 with minimum amount of geometrical variations.

  10. A model for Entropy Production, Entropy Decrease and Action Minimization in Self-Organization

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi; Chatterjee, Atanu; Vu, Thanh; Iannacchione, Germano

    In self-organization energy gradients across complex systems lead to change in the structure of systems, decreasing their internal entropy to ensure the most efficient energy transport and therefore maximum entropy production in the surroundings. This approach stems from fundamental variational principles in physics, such as the principle of least action. It is coupled to the total energy flowing through a system, which leads to increase the action efficiency. We compare energy transport through a fluid cell which has random motion of its molecules, and a cell which can form convection cells. We examine the signs of change of entropy, and the action needed for the motion inside those systems. The system in which convective motion occurs, reduces the time for energy transmission, compared to random motion. For more complex systems, those convection cells form a network of transport channels, for the purpose of obeying the equations of motion in this geometry. Those transport networks are an essential feature of complex systems in biology, ecology, economy and society.

  11. Mean annual runoff and peak flow estimates based on channel geometry of streams in southeastern Montana

    USGS Publications Warehouse

    Omang, R.J.; Parrett, Charles; Hull, J.A.

    1983-01-01

    Equations using channel-geometry measurements were developed for estimating mean runoff and peak flows of ungaged streams in southeastern Montana. Two separate sets of esitmating equations were developed for determining mean annual runoff: one for perennial streams and one for ephemeral and intermittent streams. Data from 29 gaged sites on perennial streams and 21 gaged sites on ephemeral and intermittent streams were used in these analyses. Data from 78 gaged sites were used in the peak-flow analyses. Southeastern Montana was divided into three regions and separate multiple-regression equations for each region were developed that relate channel dimensions to peak discharge having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Channel-geometery relations were developed using measurements of the active-channel width and bankfull width. Active-channel width and bankfull width were the most significant channel features for estimating mean annual runoff for al types of streams. Use of this method requires that onsite measurements be made of channel width. The standard error of estimate for predicting mean annual runoff ranged from about 38 to 79 percent. The standard error of estimate relating active-channel width or bankfull width to peak flow ranged from about 37 to 115 percent. (USGS)

  12. [Application of Brownian dynamics to the description of transmembrane ion flow as exemplified by the chloride channel of glycine receptor].

    PubMed

    Boronovskiĭ, S E; Nartsissov, Ia R

    2009-01-01

    Using the Brownian dynamics of the movement of hydrated ion in a viscous water solution, a mathematical model has been built, which describes the transport of charged particles through a single protein pore in a lipid membrane. The dependences of transmembrane ion currents on ion concentrations in solution have been obtained. It was shown that, if the geometry of a membrane pore is identical to that of the inner part of the glycine receptor channel and there is no ion selectivity, then the values of both chloride and sodium currents are not greater than 0.5 pA at the physiological concentrations of these ions. If local charge heterogeneity caused by charged amino acid residues of transmembrane protein segments is included into the model calculations, the chloride current increases to about 3.7 pA, which exceeds more than seven times the value for sodium ions under the conditions of the complex channel geometry in the range of physiological concentrations of ions in the solution. The model takes changes in the density of charge distribution both inside the channel and near the protein surface into account. The alteration of pore geometry can be also considered as a parameter at the researcher's option. Thus, the model appears as an effective tool for the description of transmembrane currents for other types of membrane channels.

  13. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2014-09-30

    underwater acoustic communication technologies for autonomous distributed underwater networks , through innovative signal processing, coding, and...4. TITLE AND SUBTITLE Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and...coding: 3) OFDM modulated dynamic coded cooperation in underwater acoustic channels; 3 Localization, Networking , and Testbed: 4) On-demand

  14. Electroosmotically Driven Liquid Flows in Complex Micro-Geometries

    NASA Astrophysics Data System (ADS)

    Dutta, Prashanta; Warburton, Timothy C.; Beskok, Ali

    1999-11-01

    Electroosmotically driven flows in micro-channels are analyzed analytically and numerically by using a high-order h/p type spectral element simulation suite, Nektar. The high-resolution characteristic of the spectral element method enables us to resolve the sharp electric double layers with successive p-type mesh refinements. For electric double layers that are much smaller than the channel height, the Helmholtz Smoluchowski velocity is used to develop semi-analytical relations for the velocity and the pressure distributions in micro channels. Analytical relations for wall shear stress and pressure distributions are also obtained. These relations show amplification of the normal and shear stresses on the micro-channel walls. Finally, flow through a step-channel is analyzed to document the interaction of the electroosmotic forces with the adverse pressure gradients. Depending on the direction and the magnitude of the electroosmotic force, enhancement or elimination of the separation bubble is observed. These findings can be used to develop innovative strategies for flow control with no moving components and for promotion of mixing in micro-scale geometries.

  15. The relationship between dynamic and average flow rates of the coolant in the channels of complex shape

    NASA Astrophysics Data System (ADS)

    Fedoseev, V. N.; Pisarevsky, M. I.; Balberkina, Y. N.

    2018-01-01

    This paper presents interconnection of dynamic and average flow rates of the coolant in a channel of complex geometry that is a basis for a generalization model of experimental data on heat transfer in various porous structures. Formulas for calculation of heat transfer of fuel rods in transversal fluid flow are acquired with the use of the abovementioned model. It is shown that the model describes a marginal case of separated flows in twisting channels where coolant constantly changes its flow direction and mixes in the communicating channels with large intensity. Dynamic speed is suggested to be identified by power for pumping. The coefficient of proportionality in general case depends on the geometry of the channel and the Reynolds number (Re). A calculation formula of the coefficient of proportionality for the narrow line rod packages is provided. The paper presents a comparison of experimental data and calculated values, which shows usability of the suggested models and calculation formulas.

  16. Geologic Seafloor Mapping Defines Extensive Paleochannel Network Offshore of the Delmarva Peninsula, U.S.A: Implications for Mid-Atlantic Bight Evolution since the Pliocene

    NASA Astrophysics Data System (ADS)

    Brothers, L. L.; Foster, D. S.; Pendleton, E. A.; Thieler, E. R.; Baldwin, W. E.; Sweeney, E. M.

    2017-12-01

    Nearly 10,000 km of geophysical data and seafloor grab samples along with photo and video data from more than 200 seafloor stations are used to interpret seafloor and shallow subsurface geology on the Delmarva Peninsula's inner continental shelf. These USGS data are supplemented with existing National Oceanic Atmospheric Administration hydrographic survey data and Bureau of Ocean Energy Management Wind Energy Area seismic reflection profile data to support one of the most data-rich and extensive inner continental shelf studies on the U.S. Atlantic coast. Using chirp, multi-channel boomer and sparker seismic reflection profile data, we map an extensive paleochannel network from 500 meters to 30 kilometers offshore of the modern Delmarva coastline. Fluvial erosional surfaces relating to six sea-level lowstands are identified at two-way travel times between 0.01 and 0.12 ms. Paleochannels exhibit up to 30 meters of relief and the discrete complexes can be >25 kilometers wide. Based on areal distribution, stratigraphic relationships and amino acid dating results from earlier borehole studies, we interpret the infilled channels as Late Tertiary and Quaternary courses of the Delaware, Susquehanna, Potomac and York Rivers. Our study generates a detailed illustration of major river systems' paleochannel frequency, distribution and geometry and provides new insight into how coastal river systems evolve in low-gradient passive margins.

  17. A new scripting library for modeling flow and transport in fractured rock with channel networks

    NASA Astrophysics Data System (ADS)

    Dessirier, Benoît; Tsang, Chin-Fu; Niemi, Auli

    2018-02-01

    Deep crystalline bedrock formations are targeted to host spent nuclear fuel owing to their overall low permeability. They are however highly heterogeneous and only a few preferential paths pertaining to a small set of dominant rock fractures usually carry most of the flow or mass fluxes, a behavior known as channeling that needs to be accounted for in the performance assessment of repositories. Channel network models have been developed and used to investigate the effect of channeling. They are usually simpler than discrete fracture networks based on rock fracture mappings and rely on idealized full or sparsely populated lattices of channels. This study reexamines the fundamental parameter structure required to describe a channel network in terms of groundwater flow and solute transport, leading to an extended description suitable for unstructured arbitrary networks of channels. An implementation of this formalism in a Python scripting library is presented and released along with this article. A new algebraic multigrid preconditioner delivers a significant speedup in the flow solution step compared to previous channel network codes. 3D visualization is readily available for verification and interpretation of the results by exporting the results to an open and free dedicated software. The new code is applied to three example cases to verify its results on full uncorrelated lattices of channels, sparsely populated percolation lattices and to exemplify the use of unstructured networks to accommodate knowledge on local rock fractures.

  18. 30 CFR 942.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: (1) Channel lining shall be designed using standards engineering practices to pass safely the design... material not utilized in diversion channel geometry or regrading of the channel shall be disposed of in... lieu of the requirements of § 817.46(c)(1)(ii)(A) of this chapter, sedimentation ponds shall provide a...

  19. 30 CFR 942.816 - Performance standards-Surface mining activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: (1) Channel lining shall be designed using standard engineering practices to pass safely the design... material not utilized in diversion channel geometry or regrading of the channel shall be disposed of in... lieu of the requirements of § 816.46(c)(1)(iii)(A) of this chapter, sedimentation ponds shall provide a...

  20. 30 CFR 942.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: (1) Channel lining shall be designed using standards engineering practices to pass safely the design... material not utilized in diversion channel geometry or regrading of the channel shall be disposed of in... lieu of the requirements of § 817.46(c)(1)(ii)(A) of this chapter, sedimentation ponds shall provide a...

  1. 30 CFR 942.816 - Performance standards-Surface mining activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: (1) Channel lining shall be designed using standard engineering practices to pass safely the design... material not utilized in diversion channel geometry or regrading of the channel shall be disposed of in... lieu of the requirements of § 816.46(c)(1)(iii)(A) of this chapter, sedimentation ponds shall provide a...

  2. MicrofluIdic circuit designs for performing electrokinetic manipulations that reduce the number of voltage sources and fluid reservoirs

    DOEpatents

    Jacobson, Stephen C.; Ramsey, J. Michael

    2000-01-01

    A microfabricated device and method for proportioning and mixing electrokinetically manipulated biological or chemical materials is disclosed. The microfabricated device mixes a plurality of materials in volumetric proportions controlled by the electrical resistances of tributary reagent channels through which the materials are transported. The microchip includes two or more tributary reagent channels combining at one or more junctions to form one or more mixing channels. By varying the geometries of the channels (length, cross section, etc.), a plurality of reagent materials can be mixed at a junction such that the proportions of the reagent materials in the mixing channel depend on a ratio of the channel geometries and material properties. Such an approach facilitates voltage division on the microchip without relying on external wiring schemes and voltage division techniques external to the microchip. Microchannel designs that provide the necessary voltage division to accomplish electrokinetic valving operations using a single voltage source and a switch are also described. In addition, microchannel designs that accomplish fluidic operation utilizing a minimal number of fluidic reservoirs are disclosed.

  3. Microfluidic circuit designs for performing fluidic manipulations that reduce the number of pumping sources and fluid reservoirs

    DOEpatents

    Jacobson, Stephen C [Knoxville, TN; Ramsey, J Michael [Knoxville, TN

    2001-01-01

    A microfabricated device and method for proportioning and mixing biological or chemical materials by pressure- or vacuum-driven flow is disclosed. The microfabricated device mixes a plurality of materials in volumetric proportions controlled by the flow resistances of tributary reagent channels through which the materials are transported. The microchip includes two or more tributary reagent channels combining at one or more junctions to form one or more mixing channels. By varying the geometries of the channels (length, cross section, etc.), a plurality of reagent materials can be mixed at a junction such that the proportions of the reagent materials in the mixing channel depend on a ratio of the channel geometries and material properties. Such an approach facilitates flow division on the microchip without relying on techniques external to the microchip. Microchannel designs that provide the necessary flow division to accomplish valving operations using a minimum of pressure or vacuum sources are also described. In addition, microchannel designs that accomplish fluidic operation utilizing a minimal number of fluidic reservoirs are disclosed.

  4. Effect of Dihedral Angle and Porosity on Percolating-Sealing Capacity of Texturally Equilibrated Rock Salt

    NASA Astrophysics Data System (ADS)

    Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.; Gardner, J. E.

    2013-12-01

    Salt deposits in sedimentary basins have long been considered to be a seal against fluid penetration. However, experimental, theoretical and field evidence suggests brine (and oil) can wet salt crystal surfaces at higher pressures and temperatures, which can form a percolating network. This network may act as flow conduits even at low porosities. The aim of this work is to investigate the effects of dihedral angle and porosity on the formation of percolating paths in different salt network lattices. However, previous studies considered only simple homogeneous and isotropic geometries. This work extends the analysis to realistic salt textures by presenting a novel numerical method to describe the texturally equilibrated pore shapes in polycrystalline rock salt and brine systems. First, a theoretical interfacial topology was formulated to minimize the interfacial surface between brine and salt. Then, the resulting nonlinear system of ordinary differential equations was solved using the Newton-Raphson method. Results show that the formation of connected fluid channels is more probable in lower dihedral angles and at higher porosities. The connectivity of the pore network is hysteretic, because the connection and disconnection at the pore throats for processes with increasing or decreasing porosities occur at different porosities. In porous media with anisotropic solids, pores initially connect in the direction of the shorter crystal axis and only at much higher porosities in the other directions. Consequently, even an infinitesimal elongation of the crystal shape can give rise to very strong anisotropy in permeability of the pore network. Also, fluid flow was simulated in the resulting pore network to calculate permeability, capillary entry pressure and velocity field. This work enabled us to investigate the opening of pore space and sealing capacity of rock salts. The obtained pore geometries determine a wide range of petrophysical properties such as permeability and capillary entry pressure. This expanded knowledge of the salt textural behavior vs. depth could also improve drilling operations in salt. Second, a series of experiments in different P-T conditions was carried out to investigate the actual shape of equilibrated channels in salt. The synthetic salt samples were scanned at the High Resolution X-ray CT Facility at the Department of Geological Science, the University of Texas at Austin with resolution in 1-6 micron range. The experimental results show both equilibrated (tubular pores) and non-equilibrated (planar features) in salt structure. Image processing was carried out by two open source software programs: ImageJ, which is a public domain Java image processing program, and 3DMA-Rock, which is a software package for quantitative analyzing of the pore space in three-dimensional X-ray computed microtomographic images of rock. We obtain medial axis and medial surface of the pore space, as well as find and characterize the corresponding pore-throat network. We also report permeability of the pore space computed using Palabos software.

  5. Extraction of tidal channel networks from airborne scanning laser altimetry

    NASA Astrophysics Data System (ADS)

    Mason, David C.; Scott, Tania R.; Wang, Hai-Jing

    Tidal channel networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. This paper describes a semi-automatic technique developed to extract networks from high-resolution LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low-level algorithms first extract channel fragments based mainly on image properties then a high-level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism. The algorithm may be extended to extract networks from aerial photographs as well as LiDAR data. Its performance is illustrated using LiDAR data of two study sites, the River Ems, Germany and the Venice Lagoon. For the River Ems data, the error of omission for the automatic channel extractor is 26%, partly because numerous small channels are lost because they fall below the edge threshold, though these are less than 10 cm deep and unlikely to be hydraulically significant. The error of commission is lower, at 11%. For the Venice Lagoon data, the error of omission is 14%, but the error of commission is 42%, due partly to the difficulty of interpreting channels in these natural scenes. As a benchmark, previous work has shown that this type of algorithm specifically designed for extracting tidal networks from LiDAR data is able to achieve substantially improved results compared with those obtained using standard algorithms for drainage network extraction from Digital Terrain Models.

  6. A Low Collision and High Throughput Data Collection Mechanism for Large-Scale Super Dense Wireless Sensor Networks.

    PubMed

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Gaura, Elena; Brusey, James; Zhang, Xuekun; Dutkiewicz, Eryk

    2016-07-18

    Super dense wireless sensor networks (WSNs) have become popular with the development of Internet of Things (IoT), Machine-to-Machine (M2M) communications and Vehicular-to-Vehicular (V2V) networks. While highly-dense wireless networks provide efficient and sustainable solutions to collect precise environmental information, a new channel access scheme is needed to solve the channel collision problem caused by the large number of competing nodes accessing the channel simultaneously. In this paper, we propose a space-time random access method based on a directional data transmission strategy, by which collisions in the wireless channel are significantly decreased and channel utility efficiency is greatly enhanced. Simulation results show that our proposed method can decrease the packet loss rate to less than 2 % in large scale WSNs and in comparison with other channel access schemes for WSNs, the average network throughput can be doubled.

  7. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor)

    2005-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface uses a specialized protocol for communicating across the network bus that uses a low-level instruction set and has low overhead for data communication.

  8. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Konz, Daniel W. (Inventor); Winkelmann, Joseph P. (Inventor); Grant, Robert L. (Inventor)

    2004-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted by the network device interface into digital signals and transmitted back to the controller. In one advantageous embodiment, the network device interface uses a specialized protocol for communicating across the network bus that uses a low-level instruction set and has low overhead for data communication.

  9. FDD Massive MIMO Channel Estimation With Arbitrary 2D-Array Geometry

    NASA Astrophysics Data System (ADS)

    Dai, Jisheng; Liu, An; Lau, Vincent K. N.

    2018-05-01

    This paper addresses the problem of downlink channel estimation in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems. The existing methods usually exploit hidden sparsity under a discrete Fourier transform (DFT) basis to estimate the cdownlink channel. However, there are at least two shortcomings of these DFT-based methods: 1) they are applicable to uniform linear arrays (ULAs) only, since the DFT basis requires a special structure of ULAs, and 2) they always suffer from a performance loss due to the leakage of energy over some DFT bins. To deal with the above shortcomings, we introduce an off-grid model for downlink channel sparse representation with arbitrary 2D-array antenna geometry, and propose an efficient sparse Bayesian learning (SBL) approach for the sparse channel recovery and off-grid refinement. The main idea of the proposed off-grid method is to consider the sampled grid points as adjustable parameters. Utilizing an in-exact block majorization-minimization (MM) algorithm, the grid points are refined iteratively to minimize the off-grid gap. Finally, we further extend the solution to uplink-aided channel estimation by exploiting the angular reciprocity between downlink and uplink channels, which brings enhanced recovery performance.

  10. Effect of restricted geometry on the superconducting properties of low-melting metals (Review Article)

    NASA Astrophysics Data System (ADS)

    Kumzerov, Yu. A.; Naberezhnov, A. A.

    2016-11-01

    This is a review of results from studies of the effect of artificially restricted geometry (the size effect) on the superconducting properties of nanoparticles of low-melting metals (Hg, Pb, Sn, In). Restricted geometrical conditions are created by embedding molten metals under high pressure into nanoporous matrices of two types: channel structures based on chrysotile asbestos and porous alkali-borosilicate glasses. Chrysotile asbestos is a system of parallel nanotubes with channel diameters ranging from 2 to 20 nm and an aspect ratio (channel length to diameter) of up to 107. The glasses are a random dendritic three-dimensional system of interconnected channels with a technologically controllable mean diameter of 2-30 nm. Temperature dependences of the resistance and heat capacity in the region of the superconducting transition and the dependences of the critical temperature on the mean pore diameter are obtained. The critical magnetic fields are also determined.

  11. Switching of transmission resonances in a two-channels coupler: A Boundary Wall Method scattering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunes, A.; Zanetti, F.M.; Lyra, M.L., E-mail: marcelo@fis.ufal.br

    2016-10-15

    In this work, we study the transmission characteristics of a two-channels coupler model system using the Boundary Wall Method (BWM) to determine the solution of the corresponding scattering problem of an incident plane wave. We show that the BWM provides detailed information regarding the transmission resonances. In particular, we focus on the case of single channel input aiming to explore the energy switching performance of the coupler. We show that the coupler geometry can be tailored to allow for the first transmission resonances to be predominantly transmitted on specific output channels, an important characteristic for the realization of logical operations.more » - Highlights: • The switching performance of a coupled waveguide device is studied via the boundary wall method. • The method efficiently identifies all resonant transmission modes. • Energy switching is controlled and optimized as a function of the device geometry.« less

  12. Nonlinear elastic instability in channel flows at low Reynolds numbers.

    PubMed

    Pan, L; Morozov, A; Wagner, C; Arratia, P E

    2013-04-26

    It is presently believed that flows of viscoelastic polymer solutions in geometries such as a straight pipe or channel are linearly stable. Here we present experimental evidence that such flows can be nonlinearly unstable and can exhibit a subcritical bifurcation. Velocimetry measurements are performed in a long, straight microchannel; flow disturbances are introduced at the entrance of the channel system by placing a variable number of obstacles. Above a critical flow rate and a critical size of the perturbation, a sudden onset of large velocity fluctuations indicates the presence of a nonlinear subcritical instability. Together with the previous observations of hydrodynamic instabilities in curved geometries, our results suggest that any flow of polymer solutions becomes unstable at sufficiently high flow rates.

  13. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Winkelmann, Joseph P. (Inventor); Konz, Daniel W. (Inventor)

    2009-01-01

    A communications system and method are provided for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is converted into digital signals and transmitted to the controller. Network device interfaces associated with different data channels can coordinate communications with the other interfaces based on either a transition in a command message sent by the bus controller or a synchronous clock signal.

  14. The role of entropic potential in voltage activation and K+ transport through Kv 1.2 channels

    NASA Astrophysics Data System (ADS)

    Wawrzkiewicz-Jałowiecka, Agata; Grzywna, Zbigniew J.

    2018-03-01

    We analyze the entropic effects of inner pore geometry changes of Kv 1.2 channel during membrane depolarization and their implications for the rate of transmembrane transport of potassium ions. We base this on the idea that spatial confinements within the channel pore give rise to entropic barriers which can both effectively affect the stability of open macroconformation and influence channel's ability to conduct the potassium ions through the membrane. First, we calculate the differences in entropy between voltage-activated and resting states of the channel. As a template, we take a set of structures of channel pore in an open state at different membrane potentials generated in our previous research. The obtained results indicate that tendency to occupy open states at membrane depolarization is entropy facilitated. Second, we describe the differences in rates of K+ transport through the channel pore at different voltages based on the results of appropriate random walk simulations in entropic and electric potentials. The simulated single channel currents (I) suggest that the geometry changes during membrane depolarization are an important factor contributing to the observed flow of potassium ions through the channel. Nevertheless, the charge distribution within the channel pore (especially at the extracellular entrance) seems most prominent for the observed I/Imax relation at a qualitative level at analyzed voltages.

  15. Are equilibrium multichannel networks predictable? The case of the regulated Indus River, Pakistan

    NASA Astrophysics Data System (ADS)

    Carling, P. A.; Trieu, H.; Hornby, D. D.; Huang, He Qing; Darby, S. E.; Sear, D. A.; Hutton, C.; Hill, C.; Ali, Z.; Ahmed, A.; Iqbal, I.; Hussain, Z.

    2018-02-01

    Arguably, the current planform behaviour of the Indus River is broadly predictable. Between Chashma and Taunsa, Pakistan, the Indus is a 264-km-long multiple-channel reach. Remote sensing imagery, encompassing major floods in 2007 and 2010, shows that the Indus has a minimum of two and a maximum of nine channels, with on average four active channels during the dry season and five during the annual monsoon. Thus, the network structure, if not detailed planform, remains stable even for the record 2010 flood (27,100 m3 s- 1; recurrence interval > 100 years). Bankline recession is negligible for discharges less than a peak annual discharge of 6000 m3 s- 1 ( 80% of mean annual flood). The Maximum Flow Efficiency (MFE) principle demonstrates that the channel network is insensitive to the monsoon floods, which typically peak at 13,200 m3 s- 1. Rather, the network is in near-equilibrium with the mean annual flood (7530 m3 s- 1). The MFE principle indicates that stable networks have three to four channels, thus the observed stability in the number of active channels accords with the presence of a near-equilibrium reach-scale channel network. Insensitivity to the annual hydrological cycle demonstrates that the timescale for network adjustment is much longer than the timescale of the monsoon hydrograph, with the annual excess water being stored on floodplains rather than being conveyed in an enlarged channel network. The analysis explains the lack of significant channel adjustment following the largest flood in 40 years and the extensive Indus flooding experienced on an annual basis, with its substantial impacts on the populace and agricultural production.

  16. Sediment and Vegetation Controls on Delta Channel Networks

    NASA Astrophysics Data System (ADS)

    Lauzon, R.; Murray, A. B.; Piliouras, A.; Kim, W.

    2016-12-01

    Numerous factors control the patterns of distributary channels formed on a delta, including water and sediment discharge, grain size, sea level rise rates, and vegetation type. In turn, these channel networks influence the shape and evolution of a delta, including what types of plant and animal life - such as humans - it can support. Previous fluvial modeling and flume experiments, outside of the delta context, have addressed how interactions between sediment and vegetation, through their influence on lateral transport of sediment, determine what type of channel networks develops. Similar interactions likely also shape delta flow patterns. Vegetation introduces cohesion, tending to reduce channel migration rates and strengthen existing channel banks, reinforcing existing channels and resulting in localized, relatively stable flow patterns. On the other hand, sediment transport processes can result in lateral migration and frequent switching of active channels, resulting in flow resembling that of a braided stream. While previous studies of deltas have indirectly explored the effects of vegetation through the introduction of cohesive sediment, we directly incorporate key effects of vegetation on flow and sediment transport into the delta-building model DeltaRCM to explore how these effects influence delta channel network formation. Model development is informed by laboratory flume experiments at UT Austin. Here we present initial results of experiments exploring the effects of sea level rise rate, sediment grain size, vegetation type, and vegetation growth rate on delta channel network morphology. These results support the hypothesis that the ability for lateral transport of sediment to occur plays a key role in determining the evolution of delta channel networks and delta morphology.

  17. Indentation versus Rolling: Dependence of Adhesion on Contact Geometry for Biomimetic Structures.

    PubMed

    Moyle, Nichole; He, Zhenping; Wu, Haibin; Hui, Chung-Yuen; Jagota, Anand

    2018-04-03

    Numerous biomimetic structures made from elastomeric materials have been developed to produce enhancement in properties such as adhesion, static friction, and sliding friction. As a property, one expects adhesion to be represented by an energy per unit area that is usually sensitive to the combination of shear and normal stresses at the crack front but is otherwise dependent only on the two elastic materials that meet at the interface. More specifically, one would expect that adhesion measured by indentation (a popular and convenient technique) could be used to predict adhesion hysteresis in the more practically important rolling geometry. Previously, a structure with a film-terminated fibrillar geometry exhibited dramatic enhancement of adhesion by a crack-trapping mechanism during indentation with a rigid sphere. Roughly isotropic structures such as the fibrillar geometry show a strong correlation between adhesion enhancement in indentation versus adhesion hysteresis in rolling. However, anisotropic structures, such as a film-terminated ridge-channel geometry, surprisingly show a dramatic divergence between adhesion measured by indentation versus rolling. We study this experimentally and theoretically, first comparing the adhesion of the anisotropic ridge-channel structure to the roughly isotropic fibrillar structure during indentation with a rigid sphere, where only the isotropic structure shows adhesion enhancement. Second, we examine in more detail the anomalous anisotropic film-terminated ridge-channel structure during indentation with a rigid sphere versus rolling to show why these structures show a dramatic adhesion enhancement for the rolling case and no adhesion enhancement for indentation.

  18. Forward and backward motion of artificial helical swimmers in cylindrical channels

    NASA Astrophysics Data System (ADS)

    Acemoglu, Alperen; Temel, Fatma Zeynep; Yesilyurt, Serhat

    2013-11-01

    Motion of micro swimmers in confined geometries such as channels is important due to its relevance in in vivo medical applications such as minimally invasive surgery and drug delivery. Here, swimmers with diameters 0.8 mm and lengths 2 to 3 mm are produced with a 3D printer and cylindrical Nd2Fe14B magnets are placed inside the bodies. Rotating external magnetic field is used for the actuation of artificial swimmers. Different body and tail geometries are produced and experiments are conducted with a glycerol filled circular channel. Result demonstrate that decreasing channel diameter directly affects the forward motion of the swimmer due to the increasing drag. It is observed that step-out frequency, which defines maximum frequency at which the swimmer can establish a synchronous rotation with the external magnetic field, depends on the geometry of the swimmer and the channel diameter. There are significant differences between low and high frequency motion and forward and backward swimming. Longer tails enable higher forward velocities in high frequencies than backward ones, whereas forward and backward velocities are approximately the same at low frequencies. Furthermore backward motion is more stable than the forward one; at high frequencies, swimmers travel almost at the center of the channel for backward motion, and follow a helical trajectory near the wall during the forward motion. According to simulation results there is a flow which is induced by the rotation of the swimmer rotation that affects the swimmer's trajectory. We acknowledge the support from TUBITAK (Techonological & Research Council of Turkey) under the grant no: 111M376.

  19. Influence of large wood on channel morphology and sediment storage in headwater mountain streams, Fraser Experimental Forest, Colorado

    Treesearch

    Sandra E. Ryan; Erica L. Bishop; J. Michael Daniels

    2014-01-01

    Large fallen wood can have a significant impact on channel form and process in forested mountain streams. In this study, four small channels on the Fraser Experimental Forest near Fraser, Colorado, USA, were surveyed for channel geometries and large wood loading, including the size, source, and characteristics of individual pieces. The study is part of a larger effort...

  20. Connectivity of Multi-Channel Fluvial Systems: A Comparison of Topology Metrics for Braided Rivers and Delta Networks

    NASA Astrophysics Data System (ADS)

    Tejedor, A.; Marra, W. A.; Addink, E. A.; Foufoula-Georgiou, E.; Kleinhans, M. G.

    2016-12-01

    Advancing quantitative understanding of the structure and dynamics of complex networks has transformed research in many fields as diverse as protein interactions in a cell to page connectivity in the World Wide Web and relationships in human societies. However, Geosciences have not benefited much from this new conceptual framework, although connectivity is at the center of many processes in hydro-geomorphology. One of the first efforts in this direction was the seminal work of Smart and Moruzzi (1971), proposing the use of graph theory for studying the intricate structure of delta channel networks. In recent years, this preliminary work has precipitated in a body of research that examines the connectivity of multiple-channel fluvial systems, such as delta networks and braided rivers. In this work, we compare two approaches recently introduced in the literature: (1) Marra et al. (2014) utilized network centrality measures to identify important channels in a braided section of the Jamuna River, and used the changes of bifurcations within the network over time to explain the overall river evolution; and (2) Tejedor et al. (2015a,b) developed a set of metrics to characterize the complexity of deltaic channel networks, as well as defined a vulnerability index that quantifies the relative change of sediment and water delivery to the shoreline outlets in response to upstream perturbations. Here we present a comparative analysis of metrics of centrality and vulnerability applied to both braided and deltaic channel networks to depict critical channels in those systems, i.e., channels where a change would contribute more substantially to overall system changes, and to understand what attributes of interest in a channel network are most succinctly depicted in what metrics. Marra, W. A., Kleinhans, M. G., & Addink, E. A. (2014). Earth Surface Processes and Landforms, doi:10.1002/esp.3482Smart, J. S., and V. L. Moruzzi (1971), Quantitative properties of delta channel networks, Tech. Rep. 3, 27 pp., IBM Thomas J. Watson Res. Cent., Yorktown, NYTejedor, A., Longjas, A., Zaliapin, I., & Foufoula-Georgiou, E. (2015a/b). Water Resources Research, doi:10.1002/2014WR016259 & doi:10.1002/2014WR016604

  1. A network-analysis-based comparative study of the throughput behavior of polymer melts in barrier screw geometries

    NASA Astrophysics Data System (ADS)

    Aigner, M.; Köpplmayr, T.; Kneidinger, C.; Miethlinger, J.

    2014-05-01

    Barrier screws are widely used in the plastics industry. Due to the extreme diversity of their geometries, describing the flow behavior is difficult and rarely done in practice. We present a systematic approach based on networks that uses tensor algebra and numerical methods to model and calculate selected barrier screw geometries in terms of pressure, mass flow, and residence time. In addition, we report the results of three-dimensional simulations using the commercially available ANSYS Polyflow software. The major drawbacks of three-dimensional finite-element-method (FEM) simulations are that they require vast computational power and, large quantities of memory, and consume considerable time to create a geometric model created by computer-aided design (CAD) and complete a flow calculation. Consequently, a modified 2.5-dimensional finite volume method, termed network analysis is preferable. The results obtained by network analysis and FEM simulations correlated well. Network analysis provides an efficient alternative to complex FEM software in terms of computing power and memory consumption. Furthermore, typical barrier screw geometries can be parameterized and used for flow calculations without timeconsuming CAD-constructions.

  2. Network device interface for digitally interfacing data channels to a controller a via network

    NASA Technical Reports Server (NTRS)

    Konz, Daniel W. (Inventor); Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. In one embodiment, the bus controller transmits messages to the network device interface containing a plurality of bits having a value defined by a transition between first and second states in the bits. The network device interface determines timing of the data sequence of the message and uses the determined timing to communicate with the bus controller.

  3. Ionic Channels as Natural Nanodevices

    DTIC Science & Technology

    2006-05-01

    introduce the numerical techniques required to simulate charge transport in ion channels. [1] Using Poisson- Nernst -Planck-type (PNP) equations ...Eisenberg. 2003. Ionic diffusion through protein channels: from molecular description to continuum equations . Nanotech 2003, 3: 439-442. 4...Nadler, B., Schuss, Z., Singer, A., and R. S. Eisenberg. 2004. Ionic diffusion through confined geometries: from Langevin equations to partial

  4. Efficacy of bedrock erosion by subglacial water flow

    NASA Astrophysics Data System (ADS)

    Beaud, F.; Flowers, G. E.; Venditti, J. G.

    2015-09-01

    Bedrock erosion by sediment-bearing subglacial water remains little-studied, however the process is thought to contribute to bedrock erosion rates in glaciated landscapes and is implicated in the excavation of tunnel valleys and the incision of inner gorges. We adapt physics-based models of fluvial abrasion to the subglacial environment, assembling the first model designed to quantify bedrock erosion caused by transient subglacial water flow. The subglacial drainage model consists of a one-dimensional network of cavities dynamically coupled to one or several Röthlisberger channels (R-channels). The bedrock erosion model is based on the tools and cover effect, whereby particles entrained by the flow impact exposed bedrock. We explore the dependency of glacial meltwater erosion on the structure and magnitude of water input to the system, the ice geometry and the sediment supply. We find that erosion is not a function of water discharge alone, but also depends on channel size, water pressure and on sediment supply, as in fluvial systems. Modelled glacial meltwater erosion rates are one to two orders of magnitude lower than the expected rates of total glacial erosion required to produce the sediment supply rates we impose, suggesting that glacial meltwater erosion is negligible at the basin scale. Nevertheless, due to the extreme localization of glacial meltwater erosion (at the base of R-channels), this process can carve bedrock (Nye) channels. In fact, our simulations suggest that the incision of bedrock channels several centimetres deep and a few meters wide can occur in a single year. Modelled incision rates indicate that subglacial water flow can gradually carve a tunnel valley and enhance the relief or even initiate the carving of an inner gorge.

  5. Vortex Formation During Unsteady Boundary-Layer Separation

    NASA Astrophysics Data System (ADS)

    Das, Debopam; Arakeri, Jaywant H.

    1998-11-01

    Unsteady laminar boundary-layer separation is invariably accompanied by the formation of vortices. The aim of the present work is to study the vortex formation mechanism(s). An adverse pressure gradient causing a separation can be decomposed into a spatial component ( spatial variation of the velocity external to the boundary layer ) and a temporal component ( temporal variation of the external velocity ). Experiments were conducted in a piston driven 2-D water channel, where the spatial component could be be contolled by geometry and the temporal component by the piston motion. We present results for three divergent channel geometries. The piston motion consists of three phases: constant acceleration from start, contant velocity, and constant deceleration to stop. Depending on the geometry and piston motion we observe different types of unsteady separation and vortex formation.

  6. 75 FR 36456 - Channel America Television Network, Inc., EquiMed, Inc., Kore Holdings, Inc., Robotic Vision...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Channel America Television Network, Inc., EquiMed, Inc., Kore Holdings, Inc., Robotic Vision Systems, Inc. (n/k/a Acuity Cimatrix, Inc.), Security... information concerning the securities of Channel America Television Network, Inc. because it has not filed any...

  7. Observations of brine drainage networks and microstructure of first-year sea ice

    NASA Astrophysics Data System (ADS)

    Cole, D. M.; Shapiro, L. H.

    1998-09-01

    Brine drainage networks and the microstructure of first-year sea ice have been examined at two locations near Barrow, northern Alaska. A method for obtaining full-depth sections of ice sheets up to 1.8 m thick is presented and shown to provide information on the spatial distribution and geometry of brine drainage networks on a scale of meters. A number of such sections from the two test sites are presented which reveal a greater variety of main channel and side branch configurations than is typically observed in ice grown in the laboratory. Vertical and horizontal micrographs and thin section photographs were obtained in November 1993, and March and May 1994 at a test site in the relatively protected Elson Lagoon. The resulting time series of photographic records provide detailed information on the size, shape, and spatial distribution of the brine- and gas-filled inclusions and a means to quantify their size and shape changes with time. An example of the changes with time in inclusion sizes and aspect ratios in the vertical and horizontal directions for a depth of 0.2 m, with a given thermal history is also presented.

  8. Channel noise-induced temporal coherence transitions and synchronization transitions in adaptive neuronal networks with time delay

    NASA Astrophysics Data System (ADS)

    Gong, Yubing; Xie, Huijuan

    2017-09-01

    Using spike-timing-dependent plasticity (STDP), we study the effect of channel noise on temporal coherence and synchronization of adaptive scale-free Hodgkin-Huxley neuronal networks with time delay. It is found that the spiking regularity and spatial synchronization of the neurons intermittently increase and decrease as channel noise intensity is varied, exhibiting transitions of temporal coherence and synchronization. Moreover, this phenomenon depends on time delay, STDP, and network average degree. As time delay increases, the phenomenon is weakened, however, there are optimal STDP and network average degree by which the phenomenon becomes strongest. These results show that channel noise can intermittently enhance the temporal coherence and synchronization of the delayed adaptive neuronal networks. These findings provide a new insight into channel noise for the information processing and transmission in neural systems.

  9. Connectivity of Secondary Channels in the Floodplain of a Low-Gradient Midwestern U.S. Agricultural River

    NASA Astrophysics Data System (ADS)

    Czuba, J. A.; David, S. R.; Edmonds, D. A.

    2016-12-01

    Floodplains of low-gradient Midwestern U.S. agricultural rivers are commonly dissected by a network of secondary channels that convey flow only during flood events. These networks of secondary channels have only recently been revealed by high resolution digital elevation models. Secondary channels, as referred to here, span multiple meander wavelengths and appear fundamentally different from chute channels. While secondary channels have been described to some extent in other river systems, our focus here is on those found in Indiana, which are revealed by state-wide LiDAR data acquired in 2011. In this work, we quantify how the network connectivity of the secondary channels in the floodplain develops as a function of flow stage. Secondary channels begin conveying water at stages just below bankfull, become an interconnected web of flow pathways above bankfull stage, and are completely inundated at higher stages. We construct a two-dimensional numerical model of the river/floodplain system from LiDAR data and from main-channel river bathymetry in order to obtain the extent of floodplain inundation at various flows. The inundated area within the secondary channels is then converted into a river/floodplain flow-channel network and quantified using various network metrics. Future work will explore the morphodynamics of this river/floodplain system extended to 100-1,000 year timescales. The goal is to develop a simple model to test hypotheses about how these floodplain channels evolve. Relevant research questions include: do secondary channels serve as preferential avulsion pathways? Or could secondary channels evolve to create a multi-channeled anabranching system? Furthermore, under what hydrologic and sedimentologic conditions would a river/floodplain system evolve to one state or another?

  10. Energy-Efficient Channel Handoff for Sensor Network-Assisted Cognitive Radio Network

    PubMed Central

    Usman, Muhammad; Sajjad Khan, Muhammad; Vu-Van, Hiep; Insoo, Koo

    2015-01-01

    The visiting and less-privileged status of the secondary users (SUs) in a cognitive radio network obligates them to release the occupied channel instantly when it is reclaimed by the primary user. The SU has a choice to make: either wait for the channel to become free, thus conserving energy at the expense of delayed transmission and delivery, or find and switch to a vacant channel, thereby avoiding delay in transmission at the expense of increased energy consumption. An energy-efficient decision that considers the tradeoff between energy consumption and continuous transmission needs to be taken as to whether to switch the channels. In this work, we consider a sensor network-assisted cognitive radio network and propose a backup channel, which is sensed by the SU in parallel with the operating channel that is being sensed by the sensor nodes. Imperfect channel sensing and residual energy of the SU are considered in order to develop an energy-efficient handoff strategy using the partially observable Markov decision process (POMDP), which considers beliefs about the operating and backup channels and the remaining energy of the SU in order to take an optimal channel handoff decision on the question “Should we switch the channel?” The objective is to dynamically decide in each time slot whether the SU should switch the channel or not in order to maximize throughput by utilizing energy efficiently. Extensive simulations were performed to show the effectiveness of the proposed channel handoff strategy, which was demonstrated in the form of throughput with respect to various parameters, i.e., detection probability, the channel idle probabilities of the operating and backup channels, and the maximum energy of the SU. PMID:26213936

  11. Optimal design of wavy microchannel and comparison of heat transfer characteristics with zigzag and straight geometries

    NASA Astrophysics Data System (ADS)

    Parlak, Zekeriya

    2018-05-01

    Design concept of microchannel heat exchangers is going to plan with new flow microchannel configuration to reduce the pressure drop and improve heat transfer performance. The study aims to find optimum microchannel design providing the best performance of flow and heat transfer characterization in a heat sink. Therefore, three different types of microchannels in which water is used, straight, wavy and zigzag have been studied. The optimization operation has been performed to find optimum geometry with ANSYS's Response Surface Optimization Tool. Primarily, CFD analysis has been performed by parameterizing a wavy microchannel geometry. Optimum wavy microchannel design has been obtained by the response surface created for the range of velocity from 0.5 to 5, the range of amplitude from 0.06 to 0.3, the range of microchannel height from 0.1 to 0.2, the range of microchannel width from 0.1 to 0.2 and range of sinusoidal wave length from 0.25 to 2.0. All simulations have been performed in the laminar regime for Reynolds number ranging from 100 to 900. Results showed that the Reynolds number range corresponding to the industrial pressure drop limits is between 100 and 400. Nu values obtained in this range for optimum wavy geometry were found at a rate of 10% higher than those of the zigzag channel and 40% higher than those of the straight channels. In addition, when the pressure values of the straight channel did not exceed 10 kPa, the inlet pressure data calculated for zigzag and wavy channel data almost coincided with each other.

  12. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network

    PubMed Central

    Lin, Kai; Wang, Di; Hu, Long

    2016-01-01

    With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC). The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S) evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods. PMID:27376302

  13. Distributed and localized horizontal tectonic deformation as inferred from drainage network geometry and topology: A case study from Lebanon

    NASA Astrophysics Data System (ADS)

    Goren, Liran; Castelltort, Sébastien; Klinger, Yann

    2016-04-01

    Partitioning of horizontal deformation between localized and distributed modes in regions of oblique tectonic convergence is, in many cases, hard to quantify. As a case study, we consider the Dead Sea Fault System that changes its orientation across Lebanon and forms a restraining bend. The oblique deformation along the Lebanese restraining bend is characterized by a complex suite of tectonic structures, among which, the Yammouneh fault, is believed to be the main strand that relays deformation from the southern section to the northern section of the Dead Sea Fault System. However, uncertainties regarding slip rates along the Yammouneh fault and strain partitioning in Lebanon still prevail. In the current work we use the geometry and topology of river basins together with numerical modeling to evaluate modes and rates of the horizontal deformation in Mount Lebanon that is associated with the Arabia-Sinai relative plate motion. We focus on river basins that drain Mount Lebanon to the Mediterranean and originate close to the Yammouneh fault. We quantify a systematic counterclockwise rotation of these basins and evaluate drainage area disequilibrium using an application of the χ mapping technique, which aims at estimating the degree of geometrical and topological disequilibrium in river networks. The analysis indicates a systematic spatial pattern whereby tributaries of the rotated basins appear to experience drainage area loss or gain with respect to channel length. A kinematic model that is informed by river basin geometry reveals that since the late Miocene, about a quarter of the relative plate motion parallel to the plate boundary has been distributed along a wide band of deformation to the west of the Yammouneh fault. Taken together with previous, shorter-term estimates, the model indicates little variation of slip rate along the Yammouneh fault since the late Miocene. Kinematic model results are compatible with late Miocene paleomagnetic rotations in western Mount Lebanon. A numerical landscape evolution experiment demonstrates the emergence of a similar χ pattern of drainage area disequilibrium in response to progressive distributed shear deformation of river basins with relatively minor drainage network reorganization.

  14. Spatial and temporal variability in sedimentation rates associated with cutoff channel infill deposits: Ain River, France

    USGS Publications Warehouse

    Piégay, H.; Hupp, C.R.; Citterio, A.; Dufour, S.; Moulin, B.; Walling, D.E.

    2008-01-01

    Floodplain development is associated with lateral accretion along stable channel geometry. Along shifting rivers, the floodplain sedimentation is more complex because of changes in channel position but also cutoff channel presence, which exhibit specific overflow patterns. In this contribution, the spatial and temporal variability of sedimentation rates in cutoff channel infill deposits is related to channel changes of a shifting gravel bed river (Ain River, France). The sedimentation rates estimated from dendrogeomorphic analysis are compared between and within 14 cutoff channel infills. Detailed analyses along a single channel infill are performed to assess changes in the sedimentation rates through time by analyzing activity profiles of the fallout radionuclides 137Cs and unsupported 210Pb. Sedimentation rates are also compared within the channel infills with rates in other plots located in the adjacent floodplain. Sedimentation rates range between 0.65 and 2.4 cm a−1 over a period of 10 to 40 years. The data provide additional information on the role of distance from the bank, overbank flow frequency, and channel geometry in controlling the sedimentation rate. Channel infills, lower than adjacent floodplains, exhibit higher sedimentation rates and convey overbank sediment farther away within the floodplain. Additionally, channel degradation, aggradation, and bank erosion, which reduce or increase the distance between the main channel and the cutoff channel aquatic zone, affect local overbank flow magnitude and frequency and therefore sedimentation rates, thereby creating a complex mosaic of sedimentation zones within the floodplain and along the cutoff channel infills. Last, the dendrogeomorphic and 137Cs approaches are cross validated for estimating the sedimentation rate within a channel infill.

  15. New multi-scale approach to improve explanation of patterns of contemporary morphodynamics in the badland landscapes of Central Italy: the important Quaternary context

    NASA Astrophysics Data System (ADS)

    Vergari, Francesca; Troiani, Francesco; Della Seta, Marta; Faulkner, Hazel; Schwanghart, Wolfgang; Ciccacci, Sirio; Del Monte, Maurizio; Fredi, Paola

    2016-04-01

    Spatial patterns and magnitudes of short-term erosional processes are often the result of longer-term landscape-wide morphodynamics. Their combined analysis, however, is challenged by different spatial scales, data availability and resolution. Integrating both analyses has thus rarely been done though urgently needed to better understand and manage present day erosional dynamics and land degradation. In this study we aim at overcoming these shortcomings by exploring a multi-scale approach, based on a nested experimental design that integrates the traditional monitoring of erosion processes at local and short time scale, with the longer-term (over the last 103-105 yr) and basin-to-morphostructure scale analysis of landscape morphodynamics. We investigated the geomorphological behaviour of a Mediterranean active badland site located in the Upper Orcia Valley (Southern Tuscany, Italy). This choice is justified by the availability of decadal erosion monitoring datasets at a range of scales, and the rapidity of development of erosion processes. Based on the analysis of drainage network and its longitudinal and planform pattern, we tested the hypothesis that this rejuvenating, actively erosional landscape presents hotspots of denudation processes on hillslope and in channel network that are largely associated with (a) knickpoints on stream longitudinal profiles, (b) sites of strong connectivity, and (c) sites of strong divide competition with adjacent, aggressive and non-aggressive systems. To illustrate and explore this nested approach, we extracted the channel network and analysed stream longitudinal profiles using the MATLAB-based TopoToolbox program, starting from the 27x27 m Aster GDEM. The stream network morphometric analyses involved computing and mapping χ-values, a transformation that normalizes the longitudinal distance by upslope area and which serves as a proxy of the dynamic state of river basins based on the current geometry of the river network. Finally, we projected on the longitudinal profiles of the Orcia River and some of its main tributaries a full range of geomorphic features which are relevant for the interpretation of the landscape morphoevolution, connectivity and erosion/deposition dynamics: i) competitive divides; ii) sites with different degree of connectivity within the drainage system; iii) sites experiencing different erosion rates; iv) sites with in-channel depositional features and landslide deposits; v) remnants of relict geomorphic surfaces. The plano-altimetric distribution of such features, compared with the drainage network evolutionary stage, allowed to better understand the morphodynamics of badland areas and to define future scenarios in the perspective of a better management of hazardous processes.

  16. Reorganization of river networks under changing spatiotemporal precipitation patterns: An optimal channel network approach

    NASA Astrophysics Data System (ADS)

    Abed-Elmdoust, Armaghan; Miri, Mohammad-Ali; Singh, Arvind

    2016-11-01

    We investigate the impact of changing nonuniform spatial and temporal precipitation patterns on the evolution of river networks. To achieve this, we develop a two-dimensional optimal channel network (OCN) model with a controllable rainfall distribution to simulate the evolution of river networks, governed by the principle of minimum energy expenditure, inside a prescribed boundary. We show that under nonuniform precipitation conditions, river networks reorganize significantly toward new patterns with different geomorphic and hydrologic signatures. This reorganization is mainly observed in the form of migration of channels of different orders, widening or elongation of basins as well as formation and extinction of channels and basins. In particular, when the precipitation gradient is locally increased, the higher-order channels, including the mainstream river, migrate toward regions with higher precipitation intensity. Through pertinent examples, the reorganization of the drainage network is quantified via stream parameters such as Horton-Strahler and Tokunaga measures, order-based channel total length and river long profiles obtained via simulation of three-dimensional basin topography, while the hydrologic response of the evolved network is investigated using metrics such as hydrograph and power spectral density of simulated streamflows at the outlet of the network. In addition, using OCNs, we investigate the effect of orographic precipitation patterns on multicatchment landscapes composed of several interacting basins. Our results show that network-inspired methods can be utilized as insightful and versatile models for directly exploring the effects of climate change on the evolution of river drainage systems.

  17. Electrohydrodynamic channeling effects in narrow fractures and pores

    NASA Astrophysics Data System (ADS)

    Bolet, Asger; Linga, Gaute; Mathiesen, Joachim

    2018-04-01

    In low-permeability rock, fluid and mineral transport occur in pores and fracture apertures at the scale of micrometers and below. At this scale, the presence of surface charge, and a resultant electrical double layer, may considerably alter transport properties. However, due to the inherent nonlinearity of the governing equations, numerical and theoretical studies of the coupling between electric double layers and flow have mostly been limited to two-dimensional or axisymmetric geometries. Here, we present comprehensive three-dimensional simulations of electrohydrodynamic flow in an idealized fracture geometry consisting of a sinusoidally undulated bottom surface and a flat top surface. We investigate the effects of varying the amplitude and the Debye length (relative to the fracture aperture) and quantify their impact on flow channeling. The results indicate that channeling can be significantly increased in the plane of flow. Local flow in the narrow regions can be slowed down by up to 5 % compared to the same geometry without charge, for the highest amplitude considered. This indicates that electrohydrodynamics may have consequences for transport phenomena and surface growth in geophysical systems.

  18. SMITHERS: An object-oriented modular mapping methodology for MCNP-based neutronic–thermal hydraulic multiphysics

    DOE PAGES

    Richard, Joshua; Galloway, Jack; Fensin, Michael; ...

    2015-04-04

    A novel object-oriented modular mapping methodology for externally coupled neutronics–thermal hydraulics multiphysics simulations was developed. The Simulator using MCNP with Integrated Thermal-Hydraulics for Exploratory Reactor Studies (SMITHERS) code performs on-the-fly mapping of material-wise power distribution tallies implemented by MCNP-based neutron transport/depletion solvers for use in estimating coolant temperature and density distributions with a separate thermal-hydraulic solver. The key development of SMITHERS is that it reconstructs the hierarchical geometry structure of the material-wise power generation tallies from the depletion solver automatically, with only a modicum of additional information required from the user. In addition, it performs the basis mapping from themore » combinatorial geometry of the depletion solver to the required geometry of the thermal-hydraulic solver in a generalizable manner, such that it can transparently accommodate varying levels of thermal-hydraulic solver geometric fidelity, from the nodal geometry of multi-channel analysis solvers to the pin-cell level of discretization for sub-channel analysis solvers.« less

  19. Regional Curve Development and Use in Stream Restoration and Hydrologic Assessment in High Gradient Headwater Streams

    EPA Pesticide Factsheets

    Introduction to Regional Curves including; regressions relating bankfull channelcharacteristics to drainage area, providing estimates of bankfull discharge and channel geometry, validating the selection of the bankfull channel as determined in the field

  20. Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network.

    PubMed

    Choi, Sangil; Park, Jong Hyuk

    2016-12-02

    Wireless mesh networks (WMNs) have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA) algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM). In addition, MICA achieves much lower throughput variation among the destination nodes than MCM.

  1. Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network

    PubMed Central

    Choi, Sangil; Park, Jong Hyuk

    2016-01-01

    Wireless mesh networks (WMNs) have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA) algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM). In addition, MICA achieves much lower throughput variation among the destination nodes than MCM. PMID:27918438

  2. Crowd counting via region based multi-channel convolution neural network

    NASA Astrophysics Data System (ADS)

    Cao, Xiaoguang; Gao, Siqi; Bai, Xiangzhi

    2017-11-01

    This paper proposed a novel region based multi-channel convolution neural network architecture for crowd counting. In order to effectively solve the perspective distortion in crowd datasets with a great diversity of scales, this work combines the main channel and three branch channels. These channels extract both the global and region features. And the results are used to estimate density map. Moreover, kernels with ladder-shaped sizes are designed across all the branch channels, which generate adaptive region features. Also, branch channels use relatively deep and shallow network to achieve more accurate detector. By using these strategies, the proposed architecture achieves state-of-the-art performance on ShanghaiTech datasets and competitive performance on UCF_CC_50 datasets.

  3. Numerical simulation of the baking of porous anode carbon in a vertical flue ring furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, M.; Melaaen, M.C.

    The interaction of pitch pyrolysis in porous anode carbon during heating and volatiles combustion in the flue gas channel has been analyzed to gain insight in the anode baking process. A two-dimensional geometry of a flue gas channel adjacent to a porous flue gas wall, packing coke, and an anode was used for studying the effect of heating rate on temperature gradients and internal gas pressure in the anodes. The mathematical model included porous heat and mass transfer, pitch pyrolysis, combustion of volatiles, radiation, and turbulent channel flow. The mathematical model was developed through source code modification of the computationalmore » fluid dynamics code FLUENT. The model was useful for studying the effects of heating rate, geometry, and anode properties.« less

  4. Capillary Flows Along Open Channel Conduits: The Open-Star Section

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark; Geile, John; Chen, Yongkang; Nguyen, Thanh Tung; Callahan, Michael

    2014-01-01

    Capillary rise in tubes, channels, and grooves has received significant attention in the literature for over 100 years. In yet another incremental extension of such work, a transient capillary rise problem is solved for spontaneous flow along an interconnected array of open channels forming what is referred to as an 'open-star' section. This geometry possesses several attractive characteristics including passive phase separations and high diffusive gas transport. Despite the complex geometry, novel and convenient approximations for capillary pressure and viscous resistance enable closed form predictions of the flow. As part of the solution, a combined scaling approach is applied that identifies unsteady-inertial-capillary, convective-inertial-capillary, and visco-capillary transient regimes in a single parameter. Drop tower experiments are performed employing 3-D printed conduits to corroborate all findings.

  5. Direct numerical simulation of supercritical gas flow in complex nanoporous media: Elucidating the relationship between permeability and pore space geometry

    NASA Astrophysics Data System (ADS)

    Landry, C. J.; Prodanovic, M.; Eichhubl, P.

    2015-12-01

    Mudrocks and shales are currently a significant source of natural gas and understanding the basic transport properties of these formations is critical to predicting long-term production, however, the nanoporous nature of mudrocks presents a unique challenge. Mudrock pores are predominantly in the range of 1-100 nm, and within this size range the flow of gas at reservoir conditions will fall within the slip-flow and early transition-flow regime (0.001 < Kn < 1.0). Therefore, flow-rates will significantly deviate from Navier-Stokes predictions. Currently, the study of slip-flows is mostly limited to simple tube and channel geometries, but the geometry of mudrock pores is often sponge-like (organic matter) and/or platy (clays). Here we present a local effective viscosity lattice Boltzmann model (LEV-LBM) constructed for flow simulation in the slip- and early-transition flow regimes, adapted here for complex geometries. At the macroscopic scale the LEV-LBM is parameterized with local effective viscosities at each node to capture the variance of the mean free path of gas molecules in a bounded system. The LEV-LBM is first validated in simple tube geometries, where excellent agreement with linearized Boltzmann solutions is found for Knudsen numbers up to 1.0. The LEV-LBM is then employed to quantify the length effect on the apparent permeability of tubes, which suggests pore network modeling of flow in the slip and early-transition regime will result in overestimation unless the length effect is considered. Furthermore, the LEV-LBM is used to evaluate the predictive value of commonly measured pore geometry characteristics such as porosity, pore size distribution, and specific solid surface area for the calculation of permeability. We show that bundle of tubes models grossly overestimate apparent permeability, as well as underestimate the increase in apparent permeability with decreasing pressure as a result of excluding topology and pore shape from calculations.

  6. An overview of historical channel adjustment and selected hydraulic values in the Lower Sabine and Lower Brazos River Basins, Texas and Louisiana

    USGS Publications Warehouse

    Heitmuller, Franklin T.; Greene, Lauren E.; John D. Gordon, John D.

    2010-01-01

    The Sabine and Brazos are alluvial rivers; alluvial rivers are dynamic systems that adjust their geometry in response to changes in streamflow (discharge) and sediment load. In fluvial geomorphology, the term 'channel adjustment' refers to river channel changes in three geometric dimensions: (1) channel slope (profile); (2) the outline or shape, such as meandering or braided, projected on a horizontal plane (planform); and (3) cross-sectional form (shape). The primary objective of the study was to investigate how the channel morphology of these rivers has changed in response to reservoirs and other anthropogenic disturbances that have altered streamflow and sediment load. The results of this study are expected to aid ecological assessments in the lower Sabine River and lower Brazos River Basins for the Texas Instream Flow Program. Starting in the 1920s, several dams have been constructed on the Sabine and Brazos Rivers and their tributaries, and numerous bridges have been built and sometimes replaced multiple times, which have changed the natural flow regime and reduced or altered sediment loads downstream. Changes in channel geometry over time can reduce channel conveyance and thus streamflow, which can have adverse ecological effects. Channel attributes including cross-section form, channel slope, and planform change were evaluated to learn how each river's morphology changed over many years in response to natural and anthropogenic disturbances. Climate has large influence on the hydrologic regimes of the lower Sabine and lower Brazos River Basins. Equally important as climate in controlling the hydrologic regime of the two river systems are numerous reservoirs that regulate downstream flow releases. The hydrologic regimes of the two rivers and their tributaries reflect the combined influences of climate, flow regulation, and drainage area. Historical and contemporary cross-sectional channel geometries at 15 streamflow-gaging stations in the lower Sabine and lower Brazos River Basins were evaluated. An in-depth discussion of results from streamflow-gaging station 08028500 Sabine River near Bon Weir, Tex., is featured here as an example of the analyses that were done at each station.

  7. Network device interface for digitally interfacing data channels to a controller via a network

    NASA Technical Reports Server (NTRS)

    Konz, Daniel W. (Inventor); Ellerbrock, Philip J. (Inventor); Grant, Robert L. (Inventor); Winkelmann, Joseph P. (Inventor)

    2006-01-01

    The present invention provides a network device interface and method for digitally connecting a plurality of data channels, such as sensors, actuators, and subsystems, to a controller using a network bus. The network device interface interprets commands and data received from the controller and polls the data channels in accordance with these commands. Specifically, the network device interface receives digital commands and data from the controller, and based on these commands and data, communicates with the data channels to either retrieve data in the case of a sensor or send data to activate an actuator. Data retrieved from the sensor is then converted into digital signals and transmitted back to the controller. In one embodiment, the bus controller sends commands and data a defined bit rate, and the network device interface senses this bit rate and sends data back to the bus controller using the defined bit rate.

  8. Characterizing Social Networks and Communication Channels in a Web-Based Peer Support Intervention.

    PubMed

    Owen, Jason E; Curran, Michaela; Bantum, Erin O'Carroll; Hanneman, Robert

    2016-06-01

    Web and mobile (mHealth) interventions have promise for improving health outcomes, but engagement and attrition may be reducing effect sizes. Because social networks can improve engagement, which is a key mechanism of action, understanding the structure and potential impact of social networks could be key to improving mHealth effects. This study (a) evaluates social network characteristics of four distinct communication channels (discussion board, chat, e-mail, and blog) in a large social networking intervention, (b) predicts membership in online communities, and (c) evaluates whether community membership impacts engagement. Participants were 299 cancer survivors with significant distress using the 12-week health-space.net intervention. Social networking attributes (e.g., density and clustering) were identified separately for each type of network communication (i.e., discussion board, blog, web mail, and chat). Each channel demonstrated high levels of clustering, and being a community member in one communication channel was associated with being in the same community in each of the other channels (φ = 0.56-0.89, ps < 0.05). Predictors of community membership differed across communication channels, suggesting that each channel reached distinct types of users. Finally, membership in a discussion board, chat, or blog community was strongly associated with time spent engaging with coping skills exercises (Ds = 1.08-1.84, ps < 0.001) and total time of intervention (Ds = 1.13-1.80, ps < 0.001). mHealth interventions that offer multiple channels for communication allow participants to expand the number of individuals with whom they are communicating, create opportunities for communicating with different individuals in distinct channels, and likely enhance overall engagement.

  9. Characterizing Social Networks and Communication Channels in a Web-Based Peer Support Intervention

    PubMed Central

    Curran, Michaela; Bantum, Erin O'Carroll; Hanneman, Robert

    2016-01-01

    Abstract Web and mobile (mHealth) interventions have promise for improving health outcomes, but engagement and attrition may be reducing effect sizes. Because social networks can improve engagement, which is a key mechanism of action, understanding the structure and potential impact of social networks could be key to improving mHealth effects. This study (a) evaluates social network characteristics of four distinct communication channels (discussion board, chat, e-mail, and blog) in a large social networking intervention, (b) predicts membership in online communities, and (c) evaluates whether community membership impacts engagement. Participants were 299 cancer survivors with significant distress using the 12-week health-space.net intervention. Social networking attributes (e.g., density and clustering) were identified separately for each type of network communication (i.e., discussion board, blog, web mail, and chat). Each channel demonstrated high levels of clustering, and being a community member in one communication channel was associated with being in the same community in each of the other channels (φ = 0.56–0.89, ps < 0.05). Predictors of community membership differed across communication channels, suggesting that each channel reached distinct types of users. Finally, membership in a discussion board, chat, or blog community was strongly associated with time spent engaging with coping skills exercises (Ds = 1.08–1.84, ps < 0.001) and total time of intervention (Ds = 1.13–1.80, ps < 0.001). mHealth interventions that offer multiple channels for communication allow participants to expand the number of individuals with whom they are communicating, create opportunities for communicating with different individuals in distinct channels, and likely enhance overall engagement. PMID:27327066

  10. Quantification of shear stress in a meandering native topographic channel using a physical hydraulic model

    Treesearch

    Michael E. Ursic; Christopher I. Thornton; Amanda L. Cox; Steven R. Abt

    2012-01-01

    Fluvial systems respond to changes in boundary conditions in order to sustain the flow and sediment supplied to the system. Local channel responses are typically difficult to predict due to possible affects from upstream, downstream, or local boundary conditions that cause changes in channel or planform geometry. Changes to the system can threaten riverside...

  11. Bidirectional Teleportation Protocol in Quantum Wireless Multi-hop Network

    NASA Astrophysics Data System (ADS)

    Cai, Rui; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-06-01

    We propose a bidirectional quantum teleportation protocol based on a composite GHZ-Bell state. In this protocol, the composite GHZ-Bell state channel is transformed into two-Bell state channel through gate operations and single qubit measurements. The channel transformation will lead to different kinds of quantum channel states, so a method is proposed to help determine the unitary matrices effectively under different quantum channels. Furthermore, we discuss the bidirectional teleportation protocol in the quantum wireless multi-hop network. This paper is aimed to provide a bidirectional teleportation protocol and study the bidirectional multi-hop teleportation in the quantum wireless communication network.

  12. Bidirectional Teleportation Protocol in Quantum Wireless Multi-hop Network

    NASA Astrophysics Data System (ADS)

    Cai, Rui; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-02-01

    We propose a bidirectional quantum teleportation protocol based on a composite GHZ-Bell state. In this protocol, the composite GHZ-Bell state channel is transformed into two-Bell state channel through gate operations and single qubit measurements. The channel transformation will lead to different kinds of quantum channel states, so a method is proposed to help determine the unitary matrices effectively under different quantum channels. Furthermore, we discuss the bidirectional teleportation protocol in the quantum wireless multi-hop network. This paper is aimed to provide a bidirectional teleportation protocol and study the bidirectional multi-hop teleportation in the quantum wireless communication network.

  13. Biased and flow driven Brownian motion in periodic channels

    NASA Astrophysics Data System (ADS)

    Martens, S.; Straube, A.; Schmid, G.; Schimansky-Geier, L.; Hänggi, P.

    2012-02-01

    In this talk we will present an expansion of the common Fick-Jacobs approximation to hydrodynamically as well as by external forces driven Brownian transport in two-dimensional channels exhibiting smoothly varying periodic cross-section. We employ an asymptotic analysis to the components of the flow field and to stationary probability density for finding the particles within the channel in a geometric parameter. We demonstrate that the problem of biased Brownian dynamics in a confined 2D geometry can be replaced by Brownian motion in an effective periodic one-dimensional potential ψ(x) which takes the external bias, the change of the local channel width, and the flow velocity component in longitudinal direction into account. In addition, we study the influence of the external force magnitude, respectively, the pressure drop of the fluid on the particle transport quantities like the averaged velocity and the effective diffusion coefficient. The critical ratio between the external force and pressure drop where the average velocity equals zero is identified and the dependence of the latter on the channel geometry is derived. Analytic findings are confirmed by numerical simulations of the particle dynamics in a reflection symmetric sinusoidal channel.

  14. Inversion of Acoustic and Electromagnetic Recordings for Mapping Current Flow in Lightning Strikes

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Johnson, J.; Arechiga, R. O.; Thomas, R. J.

    2012-12-01

    Acoustic recordings can be used to map current-carrying conduits in lightning strikes. Unlike stepped leaders, whose very high frequency (VHF) radio emissions have short (meter-scale) wavelengths and can be located by lightning-mapping arrays, current pulses emit longer (kilometer-scale) waves and cannot be mapped precisely by electromagnetic observations alone. While current pulses are constrained to conductive channels created by stepped leaders, these leaders often branch as they propagate, and most branches fail to carry current. Here, we present a method to use thunder recordings to map current pulses, and we apply it to acoustic and VHF data recorded in 2009 in the Magdalena mountains in central New Mexico, USA. Thunder is produced by rapid heating and expansion of the atmosphere along conductive channels in response to current flow, and therefore can be used to recover the geometry of the current-carrying channel. Toward this goal, we use VHF pulse maps to identify candidate conductive channels where we treat each channel as a superposition of finely-spaced acoustic point sources. We apply ray tracing in variable atmospheric structures to forward model the thunder that our microphone network would record for each candidate channel. Because multiple channels could potentially carry current, a non-linear inversion is performed to determine the acoustic source strength of each channel. For each combination of acoustic source strengths, synthetic thunder is modeled as a superposition of thunder signals produced by each channel, and a power envelope of this stack is then calculated. The inversion iteratively minimizes the misfit between power envelopes of recorded and modeled thunder. Because the atmospheric sound speed structure through which the waves propagate during these events is unknown, we repeat the procedure on many plausible atmospheres to find an optimal fit. We then determine the candidate channel, or channels, that minimizes residuals between synthetic and acoustic recordings. We demonstrate the usefulness of this method on both intracloud and cloud-to-ground strikes, and discuss factors affecting our ability to replicate recorded thunder.

  15. A molecular dynamics study of freezing in a confined geometry

    NASA Technical Reports Server (NTRS)

    Ma, Wen-Jong; Banavar, Jayanth R.; Koplik, Joel

    1992-01-01

    The dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls is studied by computer simulation. The time development of ordering is quantified and a novel freezing mechanism is observed. The liquid forms layers and subsequent in-plane ordering within a layer is accompanied by a sharpening of the layer in the transverse direction. The effects of channel size, the methods of quench, the liquid-wall interaction and the roughness of walls on the freezing mechanism are elucidated. Comparison with recent experiments on freezing in confined geometries is presented.

  16. Tensor networks from kinematic space

    DOE PAGES

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; ...

    2016-07-20

    We point out that the MERA network for the ground state of a 1+1-dimensional conformal field theory has the same structural features as kinematic space — the geometry of CFT intervals. In holographic theories kinematic space becomes identified with the space of bulk geodesics studied in integral geometry. We argue that in these settings MERA is best viewed as a discretization of the space of bulk geodesics rather than of the bulk geometry itself. As a test of this kinematic proposal, we compare the MERA representation of the thermofield-double state with the space of geodesics in the two-sided BTZ geometry,more » obtaining a detailed agreement which includes the entwinement sector. In conclusion, we discuss how the kinematic proposal can be extended to excited states by generalizing MERA to a broader class of compression networks.« less

  17. Modeling fluvial incision and transient landscape evolution: Influence of dynamic channel adjustment

    NASA Astrophysics Data System (ADS)

    Attal, M.; Tucker, G. E.; Whittaker, A. C.; Cowie, P. A.; Roberts, G. P.

    2008-09-01

    Channel geometry exerts a fundamental control on fluvial processes. Recent work has shown that bedrock channel width depends on a number of parameters, including channel slope, and is not solely a function of drainage area as is commonly assumed. The present work represents the first attempt to investigate the consequences of dynamic, gradient-sensitive channel adjustment for drainage-basin evolution. We use the Channel-Hillslope Integrated Landscape Development (CHILD) model to analyze the response of a catchment to a given tectonic perturbation, using, as a template, the topography of a well-documented catchment in the footwall of an active normal fault in the Apennines (Italy) that is known to be undergoing a transient response to tectonic forcing. We show that the observed transient response can be reproduced to first order with a simple detachment-limited fluvial incision law. Transient landscape is characterized by gentler gradients and a shorter response time when dynamic channel adjustment is allowed. The differences in predicted channel geometry between the static case (width dependent solely on upstream area) and dynamic case (width dependent on both drainage area and channel slope) lead to contrasting landscape morphologies when integrated at the scale of a whole catchment, particularly in presence of strong tilting and/or pronounced slip-rate acceleration. Our results emphasize the importance of channel width in controlling fluvial processes and landscape evolution. They stress the need for using a dynamic hydraulic scaling law when modeling landscape evolution, particularly when the relative uplift field is nonuniform.

  18. Present understanding of MHD and heat transfer phenomena for liquid metal blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirillov, I.R.; Barleon, L.; Reed, C.B.

    1994-07-01

    A review of experimental work on magnetohydrodynamic (MHD) and heat transfer (HT) characteristics of liquid metal flows in fusion relevant conditions is presented. Experimental data on MHD flow pressure drop in straight channels of round and rectangular cross-section with electroconducting walls in a transverse magnetic field show good agreement with theoretical predictions, and simple engineering formulas are confirmed. Less data are available on velocity distribution and HT characteristics, and even less data are available for channels with electroinsulating walls or artificially made self-heating electroinsulating coatings. Some experiments show an interesting phenomena of HT increase in the presence of a transversemore » or axial magnetic field. For channels of complex geometry -- expansions, contractions, bends, and manifolds -- few experimental data are available. Future efforts should be directed toward investigation of MHD/HT in straight channels with perfect and nonperfect electroinsulated walls, including walls with controlled imperfections, and in channels of complex geometry. International cooperation in manufacturing and operating experimental facilities with magnetic fields at, or even higher than, 5--7 T with comparatively large volumes may be of great help.« less

  19. Influence of dendrite network defects on channel segregate growth

    NASA Technical Reports Server (NTRS)

    Simpson, M.; Yerebakan, M.; Flemings, M. C.

    1985-01-01

    The solidifying ingot interdendritic flow analysis in which channel segregates are assumed to be produced by interdendritic fluid flow dissolving channels in the primary dendrite network is presently refined by examining the flow through a dendrite network possessing a small defect. Attention is given to the section of the mushy zone in a solidifying casting. Since defects such as that presently treated are unavoidable in a real casting, a more reliable indication may be furnished of the occurrence of channel segregates.

  20. Parsimonious mathematical characterization of channel shape and size

    USDA-ARS?s Scientific Manuscript database

    This work has two purposes: 1) using a Leopold and Maddock (1953) hydraulic geometry approach, present a mathematically parsimonious, two parameter, characterization of channel shape and size; and 2) analytically quantify cross-sectional area, top width, average depth, critical energy, and bankfull ...

  1. Opportunistic quantum network coding based on quantum teleportation

    NASA Astrophysics Data System (ADS)

    Shang, Tao; Du, Gang; Liu, Jian-wei

    2016-04-01

    It seems impossible to endow opportunistic characteristic to quantum network on the basis that quantum channel cannot be overheard without disturbance. In this paper, we propose an opportunistic quantum network coding scheme by taking full advantage of channel characteristic of quantum teleportation. Concretely, it utilizes quantum channel for secure transmission of quantum states and can detect eavesdroppers by means of quantum channel verification. What is more, it utilizes classical channel for both opportunistic listening to neighbor states and opportunistic coding by broadcasting measurement outcome. Analysis results show that our scheme can reduce the times of transmissions over classical channels for relay nodes and can effectively defend against classical passive attack and quantum active attack.

  2. A Change in the Ion Selectivity of Ligand-Gated Ion Channels Provides a Mechanism to Switch Behavior.

    PubMed

    Pirri, Jennifer K; Rayes, Diego; Alkema, Mark J

    2015-01-01

    Behavioral output of neural networks depends on a delicate balance between excitatory and inhibitory synaptic connections. However, it is not known whether network formation and stability is constrained by the sign of synaptic connections between neurons within the network. Here we show that switching the sign of a synapse within a neural circuit can reverse the behavioral output. The inhibitory tyramine-gated chloride channel, LGC-55, induces head relaxation and inhibits forward locomotion during the Caenorhabditis elegans escape response. We switched the ion selectivity of an inhibitory LGC-55 anion channel to an excitatory LGC-55 cation channel. The engineered cation channel is properly trafficked in the native neural circuit and results in behavioral responses that are opposite to those produced by activation of the LGC-55 anion channel. Our findings indicate that switches in ion selectivity of ligand-gated ion channels (LGICs) do not affect network connectivity or stability and may provide an evolutionary and a synthetic mechanism to change behavior.

  3. Spacer geometry and particle deposition in spiral wound membrane feed channels.

    PubMed

    Radu, A I; van Steen, M S H; Vrouwenvelder, J S; van Loosdrecht, M C M; Picioreanu, C

    2014-11-01

    Deposition of microspheres mimicking bacterial cells was studied experimentally and with a numerical model in feed spacer membrane channels, as used in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane systems. In-situ microscopic observations in membrane fouling simulators revealed formation of specific particle deposition patterns for different diamond and ladder feed spacer orientations. A three-dimensional numerical model combining fluid flow with a Lagrangian approach for particle trajectory calculations could describe very well the in-situ observations on particle deposition in flow cells. Feed spacer geometry, positioning and cross-flow velocity sensitively influenced the particle transport and deposition patterns. The deposition patterns were not influenced by permeate production. This combined experimental-modeling approach could be used for feed spacer geometry optimization studies for reduced (bio)fouling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Morphological resilience to flow fluctuations of fine sediment deposits in bank lateral cavities

    NASA Astrophysics Data System (ADS)

    Juez, C.; Thalmann, M.; Schleiss, A. J.; Franca, M. J.

    2018-05-01

    Lateral cavities are built in the banks of rivers for several purposes: to create harbors, to capture sediment, to keep a central navigable channel (i.e., Casiers de Girardon in the Rhone river) or to promote the formation of aquatic habitats if a limited amount of sediment is captured, providing hydraulic and morphologic diversity (i.e., the case of Japanese Wandos). This work is focused on this latter purpose: promotion of hydraulic and morphologic diversity. In these scenarios, an increase in the flow discharge in the main channel may, however, re-mobilize the deposit of sediment inside these lateral embayments and cause a sudden increase of the sediment concentration and turbidity in the main channel. It is thus of interest to characterize the resistance and resilience of these sedimentary deposits when the main channel is subjected to high flow or flushing events. Laboratory tests were carried out for five different normalized geometries of the cavities installed in the banks of an open channel and for five hydrographs with different levels of unsteadiness. Water depth, sediment deposit mass, sediment concentration and area covered by the settled sediments were recorded throughout each experiment. Although sediment deposits established at equilibrium before the flushing events are different depending on the geometry of the cavities, generally, they are recovered after being flushed by the high flow events. It is shown that the resistance and resilience of the sediment deposits are strongly dependent on the flow field and the mass exchange between the main channel and the cavities. This mass exchange is governed by the geometry of the cavities and the magnitude of the hydrographs applied.

  5. Synthetic River Valleys

    NASA Astrophysics Data System (ADS)

    Brown, R.; Pasternack, G. B.

    2011-12-01

    The description of fluvial form has evolved from anecdotal descriptions to artistic renderings to 2D plots of cross section or longitudinal profiles and more recently 3D digital models. Synthetic river valleys, artificial 3D topographic models of river topography, have a plethora of potential applications in fluvial geomorphology, and the earth sciences in general, as well as in computer science and ecology. Synthetic river channels have existed implicitly since approximately the 1970s and can be simulated from a variety of approaches spanning the artistic and numerical. An objective method of synthesizing 3D stream topography based on reach scale attributes would be valuable for sizing 3D flumes in the physical and numerical realms, as initial input topography for morphodynamic models, stream restoration design, historical reconstruction, and mechanistic testing of interactions of channel geometric elements. Quite simply - simulation of synthetic channel geometry of prescribed conditions can allow systematic evaluation of the dominant relationships between river flow and geometry. A new model, the control curve method, is presented that uses hierarchically scaled parametric curves in over-lapping 2D planes to create synthetic river valleys. The approach is able to simulate 3D stream geometry from paired 2D descriptions and can allow experimental insight into form-process relationships in addition to visualizing past measurements of channel form that are limited to two dimension descriptions. Results are presented that illustrate the models ability to simulate fluvial topography representative of real world rivers as well as how channel geometric elements can be adjusted. The testing of synthetic river valleys would open up a wealth of knowledge as to why some 3D attributes of river channels are more prevalent than others as well as bridging the gap between the 2D descriptions that have dominated fluvial geomorphology the past century and modern, more complete, 3D treatments.

  6. Long-range forces affecting equilibrium inertial focusing behavior in straight high aspect ratio microfluidic channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reece, Amy E.; Oakey, John, E-mail: joakey@uwyo.edu

    2016-04-15

    The controlled and directed focusing of particles within flowing fluids is a problem of fundamental and technological significance. Microfluidic inertial focusing provides passive and precise lateral and longitudinal alignment of small particles without the need for external actuation or sheath fluid. The benefits of inertial focusing have quickly enabled the development of miniaturized flow cytometers, size-selective sorting devices, and other high-throughput particle screening tools. Straight channel inertial focusing device design requires knowledge of fluid properties and particle-channel size ratio. Equilibrium behavior of inertially focused particles has been extensively characterized and the constitutive phenomena described by scaling relationships for straight channelsmore » of square and rectangular cross section. In concentrated particle suspensions, however, long-range hydrodynamic repulsions give rise to complex particle ordering that, while interesting and potentially useful, can also dramatically diminish the technique’s effectiveness for high-throughput particle handling applications. We have empirically investigated particle focusing behavior within channels of increasing aspect ratio and have identified three scaling regimes that produce varying degrees of geometrical ordering between focused particles. To explore the limits of inertial particle focusing and identify the origins of these long-range interparticle forces, we have explored equilibrium focusing behavior as a function of channel geometry and particle concentration. Experimental results for highly concentrated particle solutions identify equilibrium thresholds for focusing that scale weakly with concentration and strongly with channel geometry. Balancing geometry mediated inertial forces with estimates for interparticle repulsive forces now provide a complete picture of pattern formation among concentrated inertially focused particles and enhance our understanding of the fundamental limits of inertial focusing for technological applications.« less

  7. Band-broadening suppressed effect in long turned geometry channel and high-sensitive analysis of DNA sample by using floating electrokinetic supercharging on a microchip.

    PubMed

    Xu, Zhongqi; Murata, Kenji; Arai, Akihiro; Hirokawa, Takeshi

    2010-03-12

    A featured microchip owning three big reservoirs and long turned geometry channel was designed to improve the detection limit of DNA fragments by using floating electrokinetic supercharging (FEKS) method. The novel design matches the FEKS preconcentration needs of a large sample volume introduction with electrokinetic injection (EKI), as well as long duration of isotachophoresis (ITP) process to enrich low concentration sample. In the curved channel [ approximately 45.6 mm long between port 1 (P1) and the intersection point of two channels], EKI and ITP were performed while the side port 3 (P3) was electrically floated. The turn-induced band broadening with or without ITP process was investigated by a computer simulation (using CFD-ACE+ software) when the analytes traveling through the U-shaped geometry. It was found that the channel curvature determined the extent of band broadening, however, which could be effectively eliminated by the way of ITP. After the ITP-stacked zones passed the intersection point from P1, they were rapidly destacked for separation and detection from ITP to zone electrophoresis by using leading ions from P3. The FEKS carried on the novel chip successfully contributed to higher sensitivities of DNA fragments in comparison with our previous results realized on either a single channel or a cross microchip. The analysis of low concentration 50 bp DNA step ladders (0.23 mugml after 1500-fold diluted) was achieved with normal UV detection at 260 nm. The obtained limit of detections (LODs) were on average 100 times better than using conventional pinched injection, down to several ngml for individual DNA fragment.

  8. Hydraulic Geometry and Microtopography of Tidal Freshwater Forested Wetlands and Implications for Restoration, Columbia River, U.S.A.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenderfer, Heida L.; Coleman, Andre M.; Borde, Amy B.

    2008-01-01

    The hydrologic reconnection of tidal channels, riverine floodplains, and main stem channels are among responses by ecological restoration practitioners to the increasing fragmentation and land conversion occurring in coastal and riparian zones. Design standards and monitoring of such ecological restoration depend upon the characterization of reference sites that vary within and among regions. Few locales, such as the 235 km tidal portion of the Columbia River on the West Coast U.S.A., remain in which the reference conditions and restoration responses of tidal freshwater forested wetlands on temperate zone large river floodplains can be compared. This study developed hydraulic geometry relationshipsmore » for Picea sitchensis (Sitka spruce) dominated tidal forests (swamps) in the vicinity of Grays Bay on the Columbia River some 37 km from the Pacific Coast using field surveys and Light Detection and Ranging (LiDAR) data. Scaling relationships between catchment area and the parameters of channel cross-sectional area at outlet and total channel length were comparable to tidally influenced systems of San Francisco Bay and the United Kingdom. Dike breaching, culvert replacement, and tide gate replacement all affected channel cross-sectional geometry through changes in the frequency of over-marsh flows. Radiocarbon dating of buried wood provided evidence of changes in sedimentation rates associated with diking, and restoration trajectories may be confounded by historical subsidence behind dikes rendering topographical relationships with water level incomparable to reference conditions. At the same time, buried wood is influencing the development of channel morphology toward characteristics resembling reference conditions. Ecological restoration goals and practices in tidal forested wetland regions of large river floodplains should reflect the interactions of these controlling factors.« less

  9. Model observer for assessing digital breast tomosynthesis for multi-lesion detection in the presence of anatomical noise

    NASA Astrophysics Data System (ADS)

    Wen, Gezheng; Markey, Mia K.; Miner Haygood, Tamara; Park, Subok

    2018-02-01

    Model observers are widely used in task-based assessments of medical image quality. The presence of multiple abnormalities in a single set of images, such as in multifocal multicentric breast cancer (MFMC), has an immense clinical impact on treatment planning and survival outcomes. Detecting multiple breast tumors is challenging as MFMC is relatively uncommon, and human observers do not know the number or locations of tumors a priori. Digital breast tomosynthesis (DBT), in which an x-ray beam sweeps over a limited angular range across the breast, has the potential to improve the detection of multiple tumors. However, prior studies of DBT image quality all focus on unifocal breast cancers. In this study, we extended our 2D multi-lesion (ML) channelized Hotelling observer (CHO) into a 3D ML-CHO that detects multiple lesions from volumetric imaging data. Then we employed the 3D ML-CHO to identify optimal DBT acquisition geometries for detection of MFMC. Digital breast phantoms with multiple embedded synthetic lesions were scanned by simulated DBT scanners of different geometries (wide/narrow angular span, different number of projections per scan) to simulate MFMC cases. With new implementations of 3D partial least squares (PLS) and modified Laguerre-Gauss (LG) channels, the 3D ML-CHO made detection decisions based upon the overall information from individual DBT slices and their correlations. Our evaluation results show that: (1) the 3D ML-CHO could achieve good detection performance with a small number of channels, and 3D PLS channels on average outperform the counterpart LG channels; (2) incorporating locally varying anatomical backgrounds and their correlations as in the 3D ML-CHO is essential for multi-lesion detection; (3) the most effective DBT geometry for detection of MFMC may vary when the task of clinical interest changes, and a given DBT geometry may not yield images that are equally informative for detecting MF, MC, and unifocal cancers.

  10. Modeling multi-process connectivity in river deltas: extending the single layer network analysis to a coupled multilayer network framework

    NASA Astrophysics Data System (ADS)

    Tejedor, A.; Longjas, A.; Foufoula-Georgiou, E.

    2017-12-01

    Previous work [e.g. Tejedor et al., 2016 - GRL] has demonstrated the potential of using graph theory to study key properties of the structure and dynamics of river delta channel networks. Although the distribution of fluxes in river deltas is mostly driven by the connectivity of its channel network a significant part of the fluxes might also arise from connectivity between the channels and islands due to overland flow and seepage. This channel-island-subsurface interaction creates connectivity pathways which facilitate or inhibit transport depending on their degree of coupling. The question we pose here is how to collectively study system connectivity that emerges from the aggregated action of different processes (different in nature, intensity and time scales). Single-layer graphs as those introduced for delta channel networks are inadequate as they lack the ability to represent coupled processes, and neglecting across-process interactions can lead to mis-representation of the overall system dynamics. We present here a framework that generalizes the traditional representation of networks (single-layer graphs) to the so-called multi-layer networks or multiplex. A multi-layer network conceptualizes the overall connectivity arising from different processes as distinct graphs (layers), while allowing at the same time to represent interactions between layers by introducing interlayer links (across process interactions). We illustrate this framework using a study of the joint connectivity that arises from the coupling of the confined flow on the channel network and the overland flow on islands, on a prototype delta. We show the potential of the multi-layer framework to answer quantitatively questions related to the characteristic time scales to steady-state transport in the system as a whole when different levels of channel-island coupling are modulated by different magnitudes of discharge rates.

  11. Distinctive fingerprints of erosional regimes in terrestrial channel networks

    NASA Astrophysics Data System (ADS)

    Grau Galofre, A.; Jellinek, M.

    2017-12-01

    Satellite imagery and digital elevation maps capture the large scale morphology of channel networks attributed to long term erosional processes, such as fluvial, glacial, groundwater sapping and subglacial erosion. Characteristic morphologies associated with each of these styles of erosion have been studied in detail, but there exists a knowledge gap related to their parameterization and quantification. This knowledge gap prevents a rigorous analysis of the dominant processes that shaped a particular landscape, and a comparison across styles of erosion. To address this gap, we use previous morphological descriptions of glaciers, rivers, sapping valleys and tunnel valleys to identify and measure quantitative metrics diagnostic of these distinctive styles of erosion. From digital elevation models, we identify four geometric metrics: The minimum channel width, channel aspect ratio (longest length to channel width at the outlet), presence of undulating longitudinal profiles, and tributary junction angle. We also parameterize channel network complexity in terms of its stream order and fractal dimension. We then perform a statistical classification of the channel networks using a Principal Component Analysis on measurements of these six metrics on a dataset of 70 channelized systems. We show that rivers, glaciers, groundwater seepage and subglacial meltwater erode the landscape in rigorously distinguishable ways. Our methodology can more generally be applied to identify the contributions of different processes involved in carving a channel network. In particular, we are able to identify transitions from fluvial to glaciated landscapes or vice-versa.

  12. Evaluation of urban drainage network based geographycal information system (GIS) in Sumenep City

    NASA Astrophysics Data System (ADS)

    Agrianto, F.; Hadiani, R.; Purwana, Y. M.

    2017-02-01

    Sumenep City frequently hit by floods. Drainage network conditions greatly affect the performance of her maid, especially those aspects that affect the capacity of the drainage channel. Aspects that affect the capacity of the drainage channel in the form of sedimentation rate and complementary buildings on drainage channels, for example, the presence of street inlet and trash rack. The method used is a drainage channel capacity level approach that level assessment of each segment drainage network conditions by calculating the ratio of the channel cross-sectional area that is filled with sediment to the total cross-sectional area wet and the existence of complementary buildings. Having obtained the condition index value of each segment, the subsequent analysis is spatial analysis using ArcGIS applications to obtain a map of the drainage network information. The analysis showed that the level condition of drainage network in the city of Sumenep in 2016 that of the total 428 drainage network there are 43 sections belonging to the state level “Good”, 198 drainage network belong to the state level “Enough”, 115 drainage network belong to the state “Mild Damaged”, 50 sections belonging to the state “Heavy Damage” and 22 drainage network belong to the state of “Dysfunction”.

  13. Morphometric analysis of the Marmara Sea river basins, Turkey

    NASA Astrophysics Data System (ADS)

    Elbaşı, Emre; Ozdemir, Hasan

    2014-05-01

    The drainage basin, the fundamental unit of the fluvial landscape, has been focus of research aimed at understanding the geometric characteristics of the master channel and its tributary network. This geometry is referred to as the basin morphometry and is nicely reviewed by Abrahams (1984). A great amount of research has focused on geometric characteristic of drainage basins, including the topology of the stream networks, and quantitative description of drainage texture, pattern, shape, and relief characteristics. Evaluation of morphometric parameters necessitates the analysis of various drainage parameters such as ordering of the various streams, measurement of basin area and perimeter, length of drainage channels, drainage density (Dd), stream frequency (Fs), bifurcation ratio (Rb), texture ratio (T), basin relief (Bh), Ruggedness number (Rn), time of concentration (Tc), hypsometric curve and integral (Hc and Hi) (Horton, 1932, Schumn, 1956, Strahler, 1957; Verstappen 1983; Keller and Pinter, 2002; Ozdemir and Bird, 2009). These morphometric parameters have generally been used to predict flood peaks, to assess sediment yield, and to estimate erosion rates in the basins. River basins of the Marmara Sea, has an area of approximately 40,000 sqkm, are the most important basins in Turkey based on their dense populations, industry and transportation systems. The primary aim of this study is to determine and analyse of morphometric characteristics of the Marmara Sea river basins using 10 m resolution Digital Elevation Model (DEM) and to evaluate of the results. For these purposes, digital 10 m contour maps scaled 1:25000 and geological maps scaled 1:100000 were used as the main data sources in the study. 10 m resolution DEM data were created using the contour maps and then drainage networks and their watersheds were extracted using D8 pour point model. Finally, linear, areal and relief morphometries were applied to the river basins using Geographic Information Systems (GIS). This study shows that morphometric analysis of the basins in regional level are very important to understand general morphological characteristics of the basins. In this case, tectonic and lithological conditions of the basins have greatly affected the morphometric characteristics of the north and south basins of the Marmara Sea. References Abrahams, AD. 1984. Channel Networks: A Geomorphological Perspective. Water Resources Research, Volume 20, Issue 2, pages 161-188. Horton, R.E. 1932. Drainage basin characteristics. Trans Am Geophys Union 13:350-361. Keller, E.A., Pinter, N. 2002. Active Tectonics Earthquakes, Uplift, and Landscape, Second Edition, Prentice Hall, New Jersey. Ozdemir H., Bird D. 2009. Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods, Environmental Geology, vol.56, pp.1405-1415. Schumm, S.A. 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67:597-646. Strahler, A.N. 1957. Quantitative geomorphology of drainage and channel networks. In: Chow YT (ed) Handbook of appliecl hydrology. Me Graw Hill Book Company, New York. Verstappen, H.Th. 1983. Applied geomorphology. ITC, Enschede.

  14. Channel-Based Key Generation for Encrypted Body-Worn Wireless Sensor Networks.

    PubMed

    Van Torre, Patrick

    2016-09-08

    Body-worn sensor networks are important for rescue-workers, medical and many other applications. Sensitive data are often transmitted over such a network, motivating the need for encryption. Body-worn sensor networks are deployed in conditions where the wireless communication channel varies dramatically due to fading and shadowing, which is considered a disadvantage for communication. Interestingly, these channel variations can be employed to extract a common encryption key at both sides of the link. Legitimate users share a unique physical channel and the variations thereof provide data series on both sides of the link, with highly correlated values. An eavesdropper, however, does not share this physical channel and cannot extract the same information when intercepting the signals. This paper documents a practical wearable communication system implementing channel-based key generation, including an implementation and a measurement campaign comprising indoor as well as outdoor measurements. The results provide insight into the performance of channel-based key generation in realistic practical conditions. Employing a process known as key reconciliation, error free keys are generated in all tested scenarios. The key-generation system is computationally simple and therefore compatible with the low-power micro controllers and low-data rate transmissions commonly used in wireless sensor networks.

  15. High fidelity wireless network evaluation for heterogeneous cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso

    2012-06-01

    We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal-level interactions with real radios. This holistic wireless evaluation approach supports a large-scale, het- erogeneous, and dynamic CR network architecture and allows developing cross-layer network protocols under high fidelity, repeatable, and scalable wireless test scenarios suitable for heterogeneous space, air, and ground networks.

  16. A three-dimensional dynamical model for channeled lava flow with nonlinear rheology

    NASA Astrophysics Data System (ADS)

    Filippucci, Marilena; Tallarico, Andrea; Dragoni, Michele

    2010-05-01

    Recent laboratory studies on the rheology of lava samples from different volcanic areas have highlighted that the apparent viscosity depends on a power of the strain rate. Several authors agree in attributing this dependence to the crystal content of the sample and to temperature. Starting from these results, in this paper we studied the effect of a power law rheology on a gravity-driven lava flow. The equation of motion is nonlinear in the diffusion term, and an analytical solution does not seem to be possible. The finite-volume method has been applied to solve numerically the equation governing the fully developed laminar flow of a power law non-Newtonian fluid in an inclined rectangular channel. The convergence, the stability, and the order of approximation were tested for the Newtonian rheology case, comparing the numerical solution with the available analytical solution. Results indicate that the assumption on the rheology, whether linear or nonlinear, strongly affects the velocity and/or the thickness of the lava channel both for channels with fixed geometry and for channels with constant flow rate. Results on channels with fixed geometry are confirmed by some simulations for real lava channels. Finally, the study of the Reynolds number indicates that gravity-driven lava channel flows are always in laminar regime, except for strongly nonlinear pseudoplastic fluids with low fluid consistency and at high slopes.

  17. Flow boiling with enhancement devices for cold plate coolant channel design

    NASA Technical Reports Server (NTRS)

    Boyd, Ronald D., Sr.; Smith, Alvin

    1990-01-01

    The use of flow boiling for thermal energy transport is intended to provide an alternative for accommodating higher heat fluxes in commercial space systems. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls, spiral fins, or both spiral fins and a twisted tape; (2) examine the effects of channel diameter and subcooling; and (3) develop an improved reduction analysis and/or suggest possible heat transfer correlation of the present data. Freon-11 is the working fluid. Two-dimensional (circumferential and axial) wall temperature distributions were measured for coolant channels with the above noted internal geometries. The flow regimes which are being studied are: (1) single phase; (2) subcooled flow boiling; and (3) stratified flow boiling. The inside diameter of all test sections is near 1.0 cm. Cicumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a mass velocity of 210 kg/sq m s, an exit pressure of 0.19 MPa (absolute), and an inlet subcooling of 20.8 C. Overall (averaged over the entire channel) heat transfer coefficients were compared for the above channel geometries. This comparison showed that the channel with large pitch spiral fins had higher heat transfer coefficients at all power levels.

  18. The creation and influence of bifurcations and confluences in Hawaiian lava flows on conditions of flow emplacement

    NASA Astrophysics Data System (ADS)

    Dietterich, H. R.; Cashman, K. V.

    2011-12-01

    Hawaiian lava channels are characterized by numerous bifurcations and confluences that have important implications for flow behavior. The ubiquity of anastomosing flows, and their detailed observation over time, makes Hawai`i an ideal place to investigate the formation of these features and their effect on simple models of lava flow emplacement. Using a combination of high-resolution LiDAR data from the Kilauea December 1974 and Mauna Loa 1984 flows, orthoimagery of the Mauna Loa 1859 flow, and historical and InSAR mapping of the current eruption of Kilauea (1983-present), we quantify the geometry of distributary, anastomosing, and simple channel networks and compare these to flow advance rates and lengths. We use a pre-eruptive DEM of the Mauna Loa 1984 flow created from aerial photographs to investigate the relationship between underlying topography and channel morphology. In the Mauna Loa 1984 flow, the slope of the pre-eruptive surface correlates with the number of parallel channels. Slopes >4° generate up to thirteen parallel channels in contrast to slopes of <4° that produce fewer than eight parallel channels. In the 1983-1986 lava flows erupted from Pu`u `O`o, average effusion rate correlates with the number of bifurcations, each producing a new parallel channel. Flows with a volume flux <60 m3/s only have one bifurcation at most in the entire flow, while flows with a volume flux >60 m3/s contain up to four bifurcations. These data show that the splitting and merging of individual flows is a product of both the underlying ground surface and eruption rate. Important properties of the pre-eruptive topography include both the slope and the scale of surface roughness. We suggest that a crucial control is the height of the flow front in comparison to the scale of local topography and roughness. Greater slopes may create more active channels because the reduced flow thickness allows interaction with local obstacles of a greater size range. Conversely, higher viscosities could reduce the number of active channels by increasing the flow thickness. The effusion rate also influences the degree of flow branching, possibly by generating overflows and widening the flow. Branched channels can also rejoin at confluences, which occur on the leeward sides of obstacles and where the flow is confined against large-scale features, including fault scarps and older flow margins. We expect the maintenance of parallel channels past an obstacle that splits the flow to be a function of the slope and flux, which drives the flow downhill and governs the formation of levees. Our data reveal that by controlling the effective lava flux, bifurcations slow flow advance and restrict flow length. We postulate that flow branching may therefore restrict most Mauna Loa flow lengths to ~25 km, despite a wide range of effusion rates. In contrast, both confluences and the shut off of an active branch accelerate the flow. The complexity of Hawaiian flows has largely been ignored in predictive models of flow emplacement in Hawaii, but the flow geometries must be incorporated to improve syn-eruptive prediction of lava flow behavior.

  19. Direct simulation Monte Carlo method for gas flows in micro-channels with bends with added curvature

    NASA Astrophysics Data System (ADS)

    Tisovský, Tomáš; Vít, Tomáš

    Gas flows in micro-channels are simulated using an open source Direct Simulation Monte Carlo (DSMC) code dsmcFOAM for general application to rarefied gas flow written within the framework of the open source C++ toolbox called OpenFOAM. Aim of this paper is to investigate the flow in micro-channel with bend with added curvature. Results are compared with flows in channel without added curvature and equivalent straight channel. Effects of micro-channel bend was already thoroughly investigated by White et al. Geometry proposed by White is also used here for refference.

  20. RAC-multi: reader anti-collision algorithm for multichannel mobile RFID networks.

    PubMed

    Shin, Kwangcheol; Song, Wonil

    2010-01-01

    At present, RFID is installed on mobile devices such as mobile phones or PDAs and provides a means to obtain information about objects equipped with an RFID tag over a multi-channeled telecommunication networks. To use mobile RFIDs, reader collision problems should be addressed given that readers are continuously moving. Moreover, in a multichannel environment for mobile RFIDs, interference between adjacent channels should be considered. This work first defines a new concept of a reader collision problem between adjacent channels and then suggests a novel reader anti-collision algorithm for RFID readers that use multiple channels. To avoid interference with adjacent channels, the suggested algorithm separates data channels into odd and even numbered channels and allocates odd-numbered channels first to readers. It also sets an unused channel between the control channel and data channels to ensure that control messages and the signal of the adjacent channel experience no interference. Experimental results show that suggested algorithm shows throughput improvements ranging from 29% to 46% for tag identifications compared to the GENTLE reader anti-collision algorithm for multichannel RFID networks.

  1. RAC-Multi: Reader Anti-Collision Algorithm for Multichannel Mobile RFID Networks

    PubMed Central

    Shin, Kwangcheol; Song, Wonil

    2010-01-01

    At present, RFID is installed on mobile devices such as mobile phones or PDAs and provides a means to obtain information about objects equipped with an RFID tag over a multi-channeled telecommunication networks. To use mobile RFIDs, reader collision problems should be addressed given that readers are continuously moving. Moreover, in a multichannel environment for mobile RFIDs, interference between adjacent channels should be considered. This work first defines a new concept of a reader collision problem between adjacent channels and then suggests a novel reader anti-collision algorithm for RFID readers that use multiple channels. To avoid interference with adjacent channels, the suggested algorithm separates data channels into odd and even numbered channels and allocates odd-numbered channels first to readers. It also sets an unused channel between the control channel and data channels to ensure that control messages and the signal of the adjacent channel experience no interference. Experimental results show that suggested algorithm shows throughput improvements ranging from 29% to 46% for tag identifications compared to the GENTLE reader anti-collision algorithm for multichannel RFID networks. PMID:22315528

  2. Simulations of the heat exchange in thermoplastic injection molds manufactured by additive techniques

    NASA Astrophysics Data System (ADS)

    Daldoul, Wafa; Toulorge, Thomas; Vincent, Michel

    2017-10-01

    The cost and quality of complex parts manufactured by thermoplastic injection is traditionally limited by design constraints on the cooling system of the mold. A possible solution is to create the mold by additive manufacturing, which makes it possible to freely design the cooling channels. Such molds normally contain hollow parts (alveoli) in order to decrease their cost. However, the complex geometry of the cooling channels and the alveoli makes it difficult to predict the performance of the cooling system. This work aims to compute the heat exchanges between the polymer, the mold and the cooling channels with complex geometries. An Immersed Volume approach is taken, where the different parts of the domain (i.e. the polymer, the cooling channels, the alveoli and the mold) are represented by level-sets and the thermo-mechanical properties of the materials vary smoothly at the interface between the parts. The energy and momentum equations are solved by a stabilized Finite Element method. In order to accurately resolve the large variations of material properties and the steep temperature gradients at interfaces, state-of-the art anisotropic mesh refinement techniques are employed. The filling stage of the process is neglected. In a first step, only the heat equation is solved, so that the packing stage is also disregarded. In a second step, thermo-mechanical effects occurring in the polymer during the packing stage are taken into account, which results in the injection of an additional amount of polymer that significantly influences the temperature evolution. The method is validated on the simple geometry of a center-gated disk and compared with experimental measurements. The agreement is very good. Simulations are performed on an industrial case which illustrates the ability of the method to deal with complex geometries.

  3. Performance Analysis of Modified Accelerative Preallocation MAC Protocol for Passive Star-Coupled WDMA Networks

    NASA Astrophysics Data System (ADS)

    Yun, Changho; Kim, Kiseon

    2006-04-01

    For the passive star-coupled wavelength-division multiple-access (WDMA) network, a modified accelerative preallocation WDMA (MAP-WDMA) media access control (MAC) protocol is proposed, which is based on AP-WDMA. To show the advantages of MAP-WDMA as an adequate MAC protocol for the network over AP-WDMA, the channel utilization, the channel-access delay, and the latency of MAP-WDMA are investigated and compared with those of AP-WDMA under various data traffic patterns, including uniform, quasi-uniform type, disconnected type, mesh type, and ring type data traffics, as well as the assumption that a given number of network stations is equal to that of channels, in other words, without channel sharing. As a result, the channel utilization of MAP-WDMA can be competitive with respect to that of AP-WDMA at the expense of insignificantly higher latency. Namely, if the number of network stations is small, MAP-WDMA provides better channel utilization for uniform, quasi-uniform-type, and disconnected-type data traffics at all data traffic loads, as well as for mesh and ring-type data traffics at low data traffic loads. Otherwise, MAP-WDMA only outperforms AP-WDMA for the first three data traffics at higher data traffic loads. In the aspect of channel-access delay, MAP-WDMA gives better performance than AP-WDMA, regardless of data traffic patterns and the number of network stations.

  4. Tests of peak flow scaling in simulated self-similar river networks

    USGS Publications Warehouse

    Menabde, M.; Veitzer, S.; Gupta, V.; Sivapalan, M.

    2001-01-01

    The effect of linear flow routing incorporating attenuation and network topology on peak flow scaling exponent is investigated for an instantaneously applied uniform runoff on simulated deterministic and random self-similar channel networks. The flow routing is modelled by a linear mass conservation equation for a discrete set of channel links connected in parallel and series, and having the same topology as the channel network. A quasi-analytical solution for the unit hydrograph is obtained in terms of recursion relations. The analysis of this solution shows that the peak flow has an asymptotically scaling dependence on the drainage area for deterministic Mandelbrot-Vicsek (MV) and Peano networks, as well as for a subclass of random self-similar channel networks. However, the scaling exponent is shown to be different from that predicted by the scaling properties of the maxima of the width functions. ?? 2001 Elsevier Science Ltd. All rights reserved.

  5. Data Reduction Procedures for Laser Velocimeter Measurements in Turbomachinery Rotors

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    1994-01-01

    Blade-to-blade velocity distributions based on laser velocimeter data acquired in compressor or fan rotors are increasingly used as benchmark data for the verification and calibration of turbomachinery computational fluid dynamics (CFD) codes. Using laser Doppler velocimeter (LDV) data for this purpose, however, must be done cautiously. Aside from the still not fully resolved issue of the seed particle response in complex flowfields, there is an important inherent difference between CFD predictions and LDV blade-to-blade velocity distributions. CFD codes calculate velocity fields for an idealized rotor passage. LDV data, on the other hand, stem from the actual geometry of all blade channels in a rotor. The geometry often varies from channel to channel as a result of manufacturing tolerances, assembly tolerances, and incurred operational damage or changes in the rotor individual blades.

  6. Definition and evaluation of the data-link layer of PACnet

    NASA Astrophysics Data System (ADS)

    Alsafadi, Yasser H.; Martinez, Ralph; Sanders, William H.

    1991-07-01

    PACnet is a 200-500 Mbps dual-ring fiber optic network designed to implement a picture archiving and communication system (PACS) in a hospital environment. The network consists of three channels: an image transfer channel, a command and control channel, and a real-time data channel. An initial network interface unit (NIU) design for PACnet consisted of a functional description of the protocols and NIU major components. In order to develop a demonstration prototype, additional definition of protocol algorithms of each channel is necessary. Using the International Standards Organization/Open Systems Interconnection (ISO/OSI) reference model as a guide, the definition of the data link layer is extended. This definition covers interface service specifications for the two constituent sublayers: logical link control (LLC) and medium access control (MAC). Furthermore, it describes procedures for data transfer, mechanisms of error detection and fault recovery. A performance evaluation study was then made to determine how the network performs under various application scenarios. The performance evaluation study was performed using stochastic activity networks, which can formally describe the network behavior. The results of the study demonstrate the feasibility of PACnet as an integrated image, data, and voice network for PACS.

  7. Monodisperse alginate microgel formation in a three-dimensional microfluidic droplet generator.

    PubMed

    Lian, Meng; Collier, C Patrick; Doktycz, Mitchel J; Retterer, Scott T

    2012-01-01

    Droplet based microfluidic systems provide an ideal platform for partitioning and manipulating aqueous samples for analysis. Identifying stable operating conditions under which droplets are generated is challenging yet crucial for real-world applications. A novel three-dimensional microfluidic platform that facilitates the consistent generation and gelation of alginate-calcium hydrogel microbeads for microbial encapsulation, over a broad range of input pressures, in the absence of surfactants is described. The unique three-dimensional design of the fluidic network utilizes a height difference at the junction between the aqueous sample injection and organic carrier channels to induce droplet formation via a surface tension enhanced self-shearing mechanism. Combined within a flow-focusing geometry, under constant pressure control, this arrangement facilitates predictable generation of droplets over a much broader range of operating conditions than that of conventional two-dimensional systems. The impact of operating pressures and geometry on droplet gelation, aqueous and organic material flow rates, microbead size, and bead generation frequency are described. The system presented provides a robust platform for encapsulating single microbes in complex mixtures into individual hydrogel beads, and provides the foundation for the development of a complete system for sorting and analyzing microbes at the single cell level.

  8. Monodisperse alginate microgel formation in a three-dimensional microfluidic droplet generator

    PubMed Central

    Lian, Meng; Collier, C. Patrick; Doktycz, Mitchel J.; Retterer, Scott T.

    2012-01-01

    Droplet based microfluidic systems provide an ideal platform for partitioning and manipulating aqueous samples for analysis. Identifying stable operating conditions under which droplets are generated is challenging yet crucial for real-world applications. A novel three-dimensional microfluidic platform that facilitates the consistent generation and gelation of alginate-calcium hydrogel microbeads for microbial encapsulation, over a broad range of input pressures, in the absence of surfactants is described. The unique three-dimensional design of the fluidic network utilizes a height difference at the junction between the aqueous sample injection and organic carrier channels to induce droplet formation via a surface tension enhanced self-shearing mechanism. Combined within a flow-focusing geometry, under constant pressure control, this arrangement facilitates predictable generation of droplets over a much broader range of operating conditions than that of conventional two-dimensional systems. The impact of operating pressures and geometry on droplet gelation, aqueous and organic material flow rates, microbead size, and bead generation frequency are described. The system presented provides a robust platform for encapsulating single microbes in complex mixtures into individual hydrogel beads, and provides the foundation for the development of a complete system for sorting and analyzing microbes at the single cell level. PMID:24198865

  9. Cell Migration in 1D and 2D Nanofiber Microenvironments.

    PubMed

    Estabridis, Horacio M; Jana, Aniket; Nain, Amrinder; Odde, David J

    2018-03-01

    Understanding how cells migrate in fibrous environments is important in wound healing, immune function, and cancer progression. A key question is how fiber orientation and network geometry influence cell movement. Here we describe a quantitative, modeling-based approach toward identifying the mechanisms by which cells migrate in fibrous geometries having well controlled orientation. Specifically, U251 glioblastoma cells were seeded onto non-electrospinning Spinneret based tunable engineering parameters fiber substrates that consist of networks of suspended 400 nm diameter nanofibers. Cells were classified based on the local fiber geometry and cell migration dynamics observed by light microscopy. Cells were found in three distinct geometries: adhering two a single fiber, adhering to two parallel fibers, and adhering to a network of orthogonal fibers. Cells adhering to a single fiber or two parallel fibers can only move in one dimension along the fiber axis, whereas cells on a network of orthogonal fibers can move in two dimensions. We found that cells move faster and more persistently in 1D geometries than in 2D, with cell migration being faster on parallel fibers than on single fibers. To explain these behaviors mechanistically, we simulated cell migration in the three different geometries using a motor-clutch based model for cell traction forces. Using nearly identical parameter sets for each of the three cases, we found that the simulated cells naturally replicated the reduced migration in 2D relative to 1D geometries. In addition, the modestly faster 1D migration on parallel fibers relative to single fibers was captured using a correspondingly modest increase in the number of clutches to reflect increased surface area of adhesion on parallel fibers. Overall, the integrated modeling and experimental analysis shows that cell migration in response to varying fibrous geometries can be explained by a simple mechanical readout of geometry via a motor-clutch mechanism.

  10. Allometric relationships between traveltime channel networks, convex hulls, and convexity measures

    NASA Astrophysics Data System (ADS)

    Tay, Lea Tien; Sagar, B. S. Daya; Chuah, Hean Teik

    2006-06-01

    The channel network (S) is a nonconvex set, while its basin [C(S)] is convex. We remove open-end points of the channel connectivity network iteratively to generate a traveltime sequence of networks (Sn). The convex hulls of these traveltime networks provide an interesting topological quantity, which has not been noted thus far. We compute lengths of shrinking traveltime networks L(Sn) and areas of corresponding convex hulls C(Sn), the ratios of which provide convexity measures CM(Sn) of traveltime networks. A statistically significant scaling relationship is found for a model network in the form L(Sn) ˜ A[C(Sn)]0.57. From the plots of the lengths of these traveltime networks and the areas of their corresponding convex hulls as functions of convexity measures, new power law relations are derived. Such relations for a model network are CM(Sn) ˜ ? and CM(Sn) ˜ ?. In addition to the model study, these relations for networks derived from seven subbasins of Cameron Highlands region of Peninsular Malaysia are provided. Further studies are needed on a large number of channel networks of distinct sizes and topologies to understand the relationships of these new exponents with other scaling exponents that define the scaling structure of river networks.

  11. Medium Access Control for Opportunistic Concurrent Transmissions under Shadowing Channels

    PubMed Central

    Son, In Keun; Mao, Shiwen; Hur, Seung Min

    2009-01-01

    We study the problem of how to alleviate the exposed terminal effect in multi-hop wireless networks in the presence of log-normal shadowing channels. Assuming node location information, we propose an extension of the IEEE 802.11 MAC protocol that sched-ules concurrent transmissions in the presence of log-normal shadowing, thus mitigating the exposed terminal problem and improving network throughput and delay performance. We observe considerable improvements in throughput and delay achieved over the IEEE 802.11 MAC under various network topologies and channel conditions in ns-2 simulations, which justify the importance of considering channel randomness in MAC protocol design for multi-hop wireless networks. PMID:22408556

  12. Downstream variation in bankfull width of wadeable streams across the conterminous United States

    EPA Science Inventory

    Bankfull channel width is a fundamental measure of stream size and a key parameter of interest for many applications in hydrology, fluvial geomorphology, and stream ecology. We developed downstream hydraulic geometry relationships for bankfull channel width w as a function of dra...

  13. THE EMERGING USE OF LIDAR AS A TOOL FOR ASSESSING WATERSHED MORPHOLOGY

    EPA Science Inventory

    Stream channel morphology is an integral component of the stream fluvial process and is inherently related to the stability of stream aquatic ecology. Numerous studies have shown that changes in stream channel geometry are related to changes in biotic integrity. In urbanizing la...

  14. Morphology and spacing of river meander scrolls

    NASA Astrophysics Data System (ADS)

    Strick, Robert J. P.; Ashworth, Philip J.; Awcock, Graeme; Lewin, John

    2018-06-01

    Many of the world's alluvial rivers are characterised by single or multiple channels that are often sinuous and that migrate to produce a mosaicked floodplain landscape of truncated scroll (or point) bars. Surprisingly little is known about the morphology and geometry of scroll bars despite increasing interest from hydrocarbon geoscientists working with ancient large meandering river deposits. This paper uses remote sensing imagery, LiDAR data-sets of meandering scroll bar topography, and global coverage elevation data to quantify scroll bar geometry, anatomy, relief, and spacing. The analysis focuses on preserved scroll bars in the Mississippi River (USA) floodplain but also compares attributes to 19 rivers of different scale and depositional environments from around the world. Analysis of 10 large scroll bars (median area = 25 km2) on the Mississippi shows that the point bar deposits can be categorised into three different geomorphological units of increasing scale: individual 'scrolls', 'depositional packages', and 'point bar complexes'. Scroll heights and curvatures are greatest near the modern channel and at the terminating boundaries of different depositional packages, confirming the importance of the formative main channel on subsequent scroll bar relief and shape. Fourier analysis shows a periodic variation in signal (scroll bar height) with an average period (spacing) of 167 m (range 150-190 m) for the Mississippi point bars. For other rivers, a strong relationship exists between the period of scroll bars and the adjacent primary channel width for a range of rivers from 55 to 2042 mis 50% of the main channel width. The strength of this correlation over nearly two orders of magnitude of channel size indicates a scale independence of scroll bar spacing and suggests a strong link between channel migration and scroll bar construction with apparent regularities despite different flow regimes. This investigation of meandering river dynamics and floodplain patterns shows that it is possible to develop a suite of metrics that describe scroll bar morphology and geometry that can be valuable to geoscientists predicting the heterogeneity of subsurface meandering deposits.

  15. Geologic and physiographic controls on bed-material yield, transport, and channel morphology for alluvial and bedrock rivers, western Oregon

    USGS Publications Warehouse

    O'Connor, James E.; Mangano, Joseph F.; Anderson, Scott A.; Wallick, J. Rose; Jones, Krista L.; Keith, Mackenzie K.

    2014-01-01

    The rivers of western Oregon have diverse forms and characteristics, with channel substrates ranging from continuous alluvial gravel to bare bedrock. Analysis of several measurable morphologic attributes of 24 valley reaches on 17 rivers provides a basis for comparing nonalluvial and alluvial channels. Key differences are that alluvial reaches have greater bar area, greater migration rates, and show systematic correlation among variables relating grain size to bed-material transport capacity. We relate these differences between channel types to bed-material transport rates as derived from a coupled regional analysis of empirical sediment yield measurements and physical experiments of clast attrition during transport. This sediment supply analysis shows that overall bed-material transport rates for western Oregon are chiefly controlled by (1) lithology and basin slope, which are the key factors for bed-material supply into the stream network, and (2) lithologic control of bed-material attrition from in-transport abrasion and disintegration. This bed-material comminution strongly affects bed-material transport in the study area, reducing transport rates by 50%–90% along the length of the larger rivers in the study area. A comparison of the bed-material transport estimates with the morphologic analyses shows that alluvial gravel-bed channels have systematic and bounding relations between bed-material transport rate and attributes such as bar area and local transport capacity. By contrast, few such relations are evident for nonalluvial rivers with bedrock or mixed-bed substrates, which are apparently more influenced by local controls on channel geometry and sediment supply. At the scale of western Oregon, the physiographic and lithologic controls on the balance between bed-material supply and transport capacity exert far-reaching influence on the distribution of alluvial and nonalluvial channels and their consequently distinctive morphologies and behaviors—differences germane for understanding river response to tectonics and environmental perturbations, as well as for implementing effective restoration and monitoring strategies.

  16. Orienteering in Knowledge Spaces: The Hyperbolic Geometry of Wikipedia Mathematics

    PubMed Central

    Leibon, Gregory; Rockmore, Daniel N.

    2013-01-01

    In this paper we show how the coupling of the notion of a network with directions with the adaptation of the four-point probe from materials testing gives rise to a natural geometry on such networks. This four-point probe geometry shares many of the properties of hyperbolic geometry wherein the network directions take the place of the sphere at infinity, enabling a navigation of the network in terms of pairs of directions: the geodesic through a pair of points is oriented from one direction to another direction, the pair of which are uniquely determined. We illustrate this in the interesting example of the pages of Wikipedia devoted to Mathematics, or “The MathWiki.” The applicability of these ideas extends beyond Wikipedia to provide a natural framework for visual search and to prescribe a natural mode of navigation for any kind of “knowledge space” in which higher order concepts aggregate various instances of information. Other examples would include genre or author organization of cultural objects such as books, movies, documents or even merchandise in an online store. PMID:23844017

  17. Orienteering in knowledge spaces: the hyperbolic geometry of Wikipedia Mathematics.

    PubMed

    Leibon, Gregory; Rockmore, Daniel N

    2013-01-01

    In this paper we show how the coupling of the notion of a network with directions with the adaptation of the four-point probe from materials testing gives rise to a natural geometry on such networks. This four-point probe geometry shares many of the properties of hyperbolic geometry wherein the network directions take the place of the sphere at infinity, enabling a navigation of the network in terms of pairs of directions: the geodesic through a pair of points is oriented from one direction to another direction, the pair of which are uniquely determined. We illustrate this in the interesting example of the pages of Wikipedia devoted to Mathematics, or "The MathWiki." The applicability of these ideas extends beyond Wikipedia to provide a natural framework for visual search and to prescribe a natural mode of navigation for any kind of "knowledge space" in which higher order concepts aggregate various instances of information. Other examples would include genre or author organization of cultural objects such as books, movies, documents or even merchandise in an online store.

  18. Machine learning spatial geometry from entanglement features

    NASA Astrophysics Data System (ADS)

    You, Yi-Zhuang; Yang, Zhao; Qi, Xiao-Liang

    2018-02-01

    Motivated by the close relations of the renormalization group with both the holography duality and the deep learning, we propose that the holographic geometry can emerge from deep learning the entanglement feature of a quantum many-body state. We develop a concrete algorithm, call the entanglement feature learning (EFL), based on the random tensor network (RTN) model for the tensor network holography. We show that each RTN can be mapped to a Boltzmann machine, trained by the entanglement entropies over all subregions of a given quantum many-body state. The goal is to construct the optimal RTN that best reproduce the entanglement feature. The RTN geometry can then be interpreted as the emergent holographic geometry. We demonstrate the EFL algorithm on a 1D free fermion system and observe the emergence of the hyperbolic geometry (AdS3 spatial geometry) as we tune the fermion system towards the gapless critical point (CFT2 point).

  19. Multi-photon microfabrication of three-dimensional capillary-scale vascular networks

    NASA Astrophysics Data System (ADS)

    Skylar-Scott, Mark A.; Liu, Man-Chi; Wu, Yuelong; Yanik, Mehmet Fatih

    2017-02-01

    Biomimetic models of microvasculature could enable assays of complex cellular behavior at the capillary-level, and enable efficient nutrient perfusion for the maintenance of tissues. However, existing three-dimensional printing methods for generating perfusable microvasculature with have insufficient resolution to recapitulate the microscale geometry of capillaries. Here, we present a collection of multiphoton microfabrication methods that enable the production of precise, three-dimensional, branched microvascular networks in collagen. When endothelial cells are added to the channels, they form perfusable lumens with diameters as small as 10 μm. Using a similar photochemistry, we also demonstrate the micropatterning of proteins embedded in microfabricated collagen scaffolds, producing hybrid scaffolds with both defined microarchitecture with integrated gradients of chemical cues. We provide examples for how these hybrid microfabricated scaffolds could be used in angiogenesis and cell homing assays. Finally, we describe a new method for increasing the micropatterning speed by synchronous laser and stage scanning. Using these technologies, we are working towards large-scale (>1 cm), high resolution ( 1 μm) scaffolds with both microarchitecture and embedded protein cues, with applications in three-dimensional assays of cellular behavior.

  20. Faithful qubit transmission in a quantum communication network with heterogeneous channels

    NASA Astrophysics Data System (ADS)

    Chen, Na; Zhang, Lin Xi; Pei, Chang Xing

    2018-04-01

    Quantum communication networks enable long-distance qubit transmission and distributed quantum computation. In this paper, a quantum communication network with heterogeneous quantum channels is constructed. A faithful qubit transmission scheme is presented. Detailed calculations and performance analyses show that even in a low-quality quantum channel with serious decoherence, only modest number of locally prepared target qubits are required to achieve near-deterministic qubit transmission.

  1. K-Channel: A Multifunctional Architecture for Dynamically Reconfigurable Sample Processing in Droplet Microfluidics.

    PubMed

    Doonan, Steven R; Bailey, Ryan C

    2017-04-04

    By rapidly creating libraries of thousands of unique, miniaturized reactors, droplet microfluidics provides a powerful method for automating high-throughput chemical analysis. In order to engineer in-droplet assays, microfluidic devices must add reagents into droplets, remove fluid from droplets, and perform other necessary operations, each typically provided by a unique, specialized geometry. Unfortunately, modifying device performance or changing operations usually requires re-engineering the device among these specialized geometries, a time-consuming and costly process when optimizing in-droplet assays. To address this challenge in implementing droplet chemistry, we have developed the "K-channel," which couples a cross-channel flow to the segmented droplet flow to enable a range of operations on passing droplets. K-channels perform reagent injection (0-100% of droplet volume), fluid extraction (0-50% of droplet volume), and droplet splitting (1:1-1:5 daughter droplet ratio). Instead of modifying device dimensions or channel configuration, adjusting external conditions, such as applied pressure and electric field, selects the K-channel process and tunes its magnitude. Finally, interfacing a device-embedded magnet allows selective capture of 96% of droplet-encapsulated superparamagnetic beads during 1:1 droplet splitting events at ∼400 Hz. Addition of a second K-channel for injection (after the droplet splitting K-channel) enables integrated washing of magnetic beads within rapidly moving droplets. Ultimately, the K-channel provides an exciting opportunity to perform many useful droplet operations across a range of magnitudes without requiring architectural modifications. Therefore, we envision the K-channel as a versatile, easy to use microfluidic component enabling diverse, in-droplet (bio)chemical manipulations.

  2. Graphene nanoribbon field-effect transistors fabricated by etchant-free transfer from Au(788)

    NASA Astrophysics Data System (ADS)

    Ohtomo, Manabu; Sekine, Yoshiaki; Hibino, Hiroki; Yamamoto, Hideki

    2018-01-01

    We report etching-free and iodine-free transfer of highly aligned array of armchair-edge graphene nanoribbons (ACGNRs) and their field-effect transistor (FET) characteristics. They were prepared by on-surface polymerization on Au(788) templates. The ACGNRs were mechanically delaminated and transferred onto insulating substrates with the aid of a nano-porous support layer composed of hydrogen silsesquioxane (HSQ). The key process in the mechanical delamination is the intercalation of octanethiol self-assembled monolayers (SAMs), which penetrate the HSQ layer and intercalate between the ACGNRs and Au(788). After the transfer, the octanethiol SAMs were removed with Piranha solution, enabling the reuse of the Au single crystals. The FETs fabricated with the transferred ACGNR array showed ambipolar behavior when the channel length was as long as 60 nm. Quasi-one-dimensional conductivity was observed, which implies a good alignment of GNRs after the transfer. In contrast, short-channel ACGNR FETs (channel length ˜20 nm) suffer from a geometry-dependent short-channel effect. This effect is more severe in the FETs with ACGNRs parallel to the channel, which is an ideal geometry, than in ones perpendicular to the channel. Since the ID-VD curve is well fitted by the power-law model, the short-channel effect likely stems from the space-charge limited current effect, while the wide charge-transfer region in the GNR channel can be another possible cause for the short-channel effect. These results provide us with important insights into the designing short-channel GNR-FETs with improved performance.

  3. Present understanding of MHD and heat transfer phenomena for liquid metal blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirillov, I.R.; Barleon, L.; Reed, C.B.

    1994-12-31

    Liquid metals (Li, Li17Pb83, Pb) are considered as coolants in many designs of fusion reactor blankets. To estimate their potential and to make an optimal design, one has to know the magnetohydrodynamic (MHD) and heat transfer characteristics of liquid metal flow in the magnetic field. Such flows with high characteristic parameter values (Hartmann number M and interaction parameter N) open up a relatively new field in Magnetohydrodynamics requiring both theoretical and experimental efforts. A review of experimental work done for the last ten years in different countries shows that there are some data on MHD/HT characteristics in straight channels ofmore » simple geometry under fusion reactor relevant conditions (M>>1, N>>1) and not enough data for complex flow geometries. Future efforts should be directed to investigation of MHD/HT in straight channels with perfect and imperfect electroinsulated walls, including those with controlled imperfections, and in channels of complex geometry. The experiments are not simple, since the fusion relevant conditions require facilities with magnetic fields at, or even higher than, 5-7 T in comparatively large volumes. International cooperation in constructing and operating these facilities may be of great help.« less

  4. Quantitative metrics that describe river deltas and their channel networks

    NASA Astrophysics Data System (ADS)

    Edmonds, Douglas A.; Paola, Chris; Hoyal, David C. J. D.; Sheets, Ben A.

    2011-12-01

    Densely populated river deltas are losing land at an alarming rate and to successfully restore these environments we must understand the details of their morphology. Toward this end we present a set of five metrics that describe delta morphology: (1) the fractal dimension, (2) the distribution of island sizes, (3) the nearest-edge distance, (4) a synthetic distribution of sediment fluxes at the shoreline, and (5) the nourishment area. The nearest-edge distance is the shortest distance to channelized or unchannelized water from a given location on the delta and is analogous to the inverse of drainage density in tributary networks. The nourishment area is the downstream delta area supplied by the sediment coming through a given channel cross section and is analogous to catchment area in tributary networks. As a first step, we apply these metrics to four relatively simple, fluvially dominated delta networks. For all these deltas, the average nearest-edge distances are remarkably constant moving down delta suggesting that the network organizes itself to maintain a consistent distance to the nearest channel. Nourishment area distributions can be predicted from a river mouth bar model of delta growth, and also scale with the width of the channel and with the length of the longest channel, analogous to Hack's law for drainage basins. The four delta channel networks are fractal, but power laws and scale invariance appear to be less pervasive than in tributary networks. Thus, deltas may occupy an advantageous middle ground between complete similarity and complete dissimilarity, where morphologic differences indicate different behavior.

  5. Predicting protein complex geometries with a neural network.

    PubMed

    Chae, Myong-Ho; Krull, Florian; Lorenzen, Stephan; Knapp, Ernst-Walter

    2010-03-01

    A major challenge of the protein docking problem is to define scoring functions that can distinguish near-native protein complex geometries from a large number of non-native geometries (decoys) generated with noncomplexed protein structures (unbound docking). In this study, we have constructed a neural network that employs the information from atom-pair distance distributions of a large number of decoys to predict protein complex geometries. We found that docking prediction can be significantly improved using two different types of polar hydrogen atoms. To train the neural network, 2000 near-native decoys of even distance distribution were used for each of the 185 considered protein complexes. The neural network normalizes the information from different protein complexes using an additional protein complex identity input neuron for each complex. The parameters of the neural network were determined such that they mimic a scoring funnel in the neighborhood of the native complex structure. The neural network approach avoids the reference state problem, which occurs in deriving knowledge-based energy functions for scoring. We show that a distance-dependent atom pair potential performs much better than a simple atom-pair contact potential. We have compared the performance of our scoring function with other empirical and knowledge-based scoring functions such as ZDOCK 3.0, ZRANK, ITScore-PP, EMPIRE, and RosettaDock. In spite of the simplicity of the method and its functional form, our neural network-based scoring function achieves a reasonable performance in rigid-body unbound docking of proteins. Proteins 2010. (c) 2009 Wiley-Liss, Inc.

  6. Aggregating quantum repeaters for the quantum internet

    NASA Astrophysics Data System (ADS)

    Azuma, Koji; Kato, Go

    2017-09-01

    The quantum internet holds promise for accomplishing quantum teleportation and unconditionally secure communication freely between arbitrary clients all over the globe, as well as the simulation of quantum many-body systems. For such a quantum internet protocol, a general fundamental upper bound on the obtainable entanglement or secret key has been derived [K. Azuma, A. Mizutani, and H.-K. Lo, Nat. Commun. 7, 13523 (2016), 10.1038/ncomms13523]. Here we consider its converse problem. In particular, we present a universal protocol constructible from any given quantum network, which is based on running quantum repeater schemes in parallel over the network. For arbitrary lossy optical channel networks, our protocol has no scaling gap with the upper bound, even based on existing quantum repeater schemes. In an asymptotic limit, our protocol works as an optimal entanglement or secret-key distribution over any quantum network composed of practical channels such as erasure channels, dephasing channels, bosonic quantum amplifier channels, and lossy optical channels.

  7. Consistent initial conditions for the Saint-Venant equations in river network modeling

    NASA Astrophysics Data System (ADS)

    Yu, Cheng-Wei; Liu, Frank; Hodges, Ben R.

    2017-09-01

    Initial conditions for flows and depths (cross-sectional areas) throughout a river network are required for any time-marching (unsteady) solution of the one-dimensional (1-D) hydrodynamic Saint-Venant equations. For a river network modeled with several Strahler orders of tributaries, comprehensive and consistent synoptic data are typically lacking and synthetic starting conditions are needed. Because of underlying nonlinearity, poorly defined or inconsistent initial conditions can lead to convergence problems and long spin-up times in an unsteady solver. Two new approaches are defined and demonstrated herein for computing flows and cross-sectional areas (or depths). These methods can produce an initial condition data set that is consistent with modeled landscape runoff and river geometry boundary conditions at the initial time. These new methods are (1) the pseudo time-marching method (PTM) that iterates toward a steady-state initial condition using an unsteady Saint-Venant solver and (2) the steady-solution method (SSM) that makes use of graph theory for initial flow rates and solution of a steady-state 1-D momentum equation for the channel cross-sectional areas. The PTM is shown to be adequate for short river reaches but is significantly slower and has occasional non-convergent behavior for large river networks. The SSM approach is shown to provide a rapid solution of consistent initial conditions for both small and large networks, albeit with the requirement that additional code must be written rather than applying an existing unsteady Saint-Venant solver.

  8. Wireless Computing Architecture III

    DTIC Science & Technology

    2013-09-01

    MIMO Multiple-Input and Multiple-Output MIMO /CON MIMO with concurrent hannel access and estimation MU- MIMO Multiuser MIMO OFDM Orthogonal...compressive sensing \\; a design for concurrent channel estimation in scalable multiuser MIMO networking; and novel networking protocols based on machine...Network, Antenna Arrays, UAV networking, Angle of Arrival, Localization MIMO , Access Point, Channel State Information, Compressive Sensing 16

  9. Analysis of radio wave propagation for ISM 2.4 GHz Wireless Sensor Networks in inhomogeneous vegetation environments.

    PubMed

    Azpilicueta, Leire; López-Iturri, Peio; Aguirre, Erik; Mateo, Ignacio; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco

    2014-12-10

    The use of wireless networks has experienced exponential growth due to the improvements in terms of battery life and low consumption of the devices. However, it is compulsory to conduct previous radio propagation analysis when deploying a wireless sensor network. These studies are necessary to perform an estimation of the range coverage, in order to optimize the distance between devices in an actual network deployment. In this work, the radio channel characterization for ISM 2.4 GHz Wireless Sensor Networks (WSNs) in an inhomogeneous vegetation environment has been analyzed. This analysis allows designing environment monitoring tools based on ZigBee and WiFi where WSN and smartphones cooperate, providing rich and customized monitoring information to users in a friendly manner. The impact of topology as well as morphology of the environment is assessed by means of an in-house developed 3D Ray Launching code, to emulate the realistic operation in the framework of the scenario. Experimental results gathered from a measurement campaign conducted by deploying a ZigBee Wireless Sensor Network, are analyzed and compared with simulations in this paper. The scenario where this network is intended to operate is a combination of buildings and diverse vegetation species. To gain insight in the effects of radio propagation, a simplified vegetation model has been developed, considering the material parameters and simplified geometry embedded in the simulation scenario. An initial location-based application has been implemented in a real scenario, to test the functionality within a context aware scenario. The use of deterministic tools can aid to know the impact of the topological influence in the deployment of the optimal Wireless Sensor Network in terms of capacity, coverage and energy consumption, making the use of these systems attractive for multiple applications in inhomogeneous vegetation environments.

  10. River network bedload model: a tool to investigate the impact of flow regulation on grain size distribution in a large Alpine catchment

    NASA Astrophysics Data System (ADS)

    Costa, Anna; Molnar, Peter

    2017-04-01

    Sediment transport rates along rivers and the grain size distribution (GSD) of coarse channel bed sediment are the result of the long term balance between transport capacity and sediment supply. Transport capacity, mainly a function of channel geometry and flow competence, can be altered by changes in climatic forcing as well as by human activities. In Alpine rivers it is hydropower production systems that are the main causes of modification to the transport capacity of water courses through flow regulation, leading over longer time scales to the adjustment of river bed GSDs. We developed a river network bedload transport model to evaluate the impacts of hydropower on the transfer of sediments and the GSDs of the Upper Rhône basin, a 5,200 km2 catchment located in the Swiss Alps. Many large reservoirs for hydropower production have been built along the main tributaries of the Rhône River since the 1960s, resulting in a complex system of intakes, tunnels, and pumping stations. Sediment storage behind dams and intakes, is accompanied by altered discharge due to hydropower operations, mainly higher flow in winter and lower in summer. It is expected that this change in flow regime may have resulted in different bedload transport. However, due the non-linear, threshold-based nature of the relation between discharge and sediment mobilization, the effects of changed hydraulic conditions are not easily deducible, and because observations of bedload in pre- and post-dam conditions are usually not available, a modelling approach is often necessary. In our modelling approach, the river network is conceptualized as a series of connected links (river reaches). Average geometric characteristics of each link (width, length, and slope of cross section) are extracted from digital elevation data, while surface roughness coefficients are assigned based on the GSD. Under the assumptions of rectangular prismatic cross sections and normal flow conditions, bed shear stress is estimated from available time series of daily discharge distributed along the river network. Potential bedload transport is estimated by the Wilcock and Crowe surface-based model for the entire GSD. Mass balance between transport capacity and sediment supply, applied to each individual grain size, determines the actual transport and the resulting GSD of the channel bed. Channel bed erosion is allowed through a long-term erosion rate. Sediment input from hillslopes is included as lateral sediment flux. Initial and boundary conditions are set based on available data of GSDs, while an approximation of the depth of the mobile bed is selected through sensitivity analysis. With the river network bedload model we aim to estimate the effect of flow regulation, i.e. altered transport capacity, on sediment transport and GSD of the entire Rhône river system. The model can also be applied as a tool to explore possible changes in bedload transport and channel GSDs under different discharge scenarios based, for example, on climate change projections or modified hydropower operation policies.

  11. Experiments with a Supersonic Multi-Channel Radial Diffuser.

    DTIC Science & Technology

    1980-09-01

    unlimited. 17 . DISTRIBUTION STATEMENT (o the *bsta~c entered nRItok 20, it dffttt Iton, Report) IS. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue o...Improvements 17 VI SIGNIFICANT TEST RESULTS 20 1. General Considerations 20 2. Typical Radial Diffuser Performance 20 3. Flow Stability Experiments 22 VIII...Adjustments Indicated 39 16 Comparison of the Single Channel Performances for Two Extreme Channel Geometries 40 17 Typical Radial Diffuser Performance

  12. Rip currents and alongshore flows in single channels dredged in the surf zone

    NASA Astrophysics Data System (ADS)

    Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh

    2017-05-01

    To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.

  13. Rip currents and alongshore flows in single channels dredged in the surf zone

    USGS Publications Warehouse

    Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh

    2017-01-01

    To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.

  14. Optimization of digital breast tomosynthesis (DBT) acquisition parameters for human observers: effect of reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Zeng, Rongping; Badano, Aldo; Myers, Kyle J.

    2017-04-01

    We showed in our earlier work that the choice of reconstruction methods does not affect the optimization of DBT acquisition parameters (angular span and number of views) using simulated breast phantom images in detecting lesions with a channelized Hotelling observer (CHO). In this work we investigate whether the model-observer based conclusion is valid when using humans to interpret images. We used previously generated DBT breast phantom images and recruited human readers to find the optimal geometry settings associated with two reconstruction algorithms, filtered back projection (FBP) and simultaneous algebraic reconstruction technique (SART). The human reader results show that image quality trends as a function of the acquisition parameters are consistent between FBP and SART reconstructions. The consistent trends confirm that the optimization of DBT system geometry is insensitive to the choice of reconstruction algorithm. The results also show that humans perform better in SART reconstructed images than in FBP reconstructed images. In addition, we applied CHOs with three commonly used channel models, Laguerre-Gauss (LG) channels, square (SQR) channels and sparse difference-of-Gaussian (sDOG) channels. We found that LG channels predict human performance trends better than SQR and sDOG channel models for the task of detecting lesions in tomosynthesis backgrounds. Overall, this work confirms that the choice of reconstruction algorithm is not critical for optimizing DBT system acquisition parameters.

  15. Distributed Joint Source-Channel Coding in Wireless Sensor Networks

    PubMed Central

    Zhu, Xuqi; Liu, Yu; Zhang, Lin

    2009-01-01

    Considering the fact that sensors are energy-limited and the wireless channel conditions in wireless sensor networks, there is an urgent need for a low-complexity coding method with high compression ratio and noise-resisted features. This paper reviews the progress made in distributed joint source-channel coding which can address this issue. The main existing deployments, from the theory to practice, of distributed joint source-channel coding over the independent channels, the multiple access channels and the broadcast channels are introduced, respectively. To this end, we also present a practical scheme for compressing multiple correlated sources over the independent channels. The simulation results demonstrate the desired efficiency. PMID:22408560

  16. Finite element micro-modelling of a human ankle bone reveals the importance of the trabecular network to mechanical performance: new methods for the generation and comparison of 3D models.

    PubMed

    Parr, W C H; Chamoli, U; Jones, A; Walsh, W R; Wroe, S

    2013-01-04

    Most modelling of whole bones does not incorporate trabecular geometry and treats bone as a solid non-porous structure. Some studies have modelled trabecular networks in isolation. One study has modelled the performance of whole human bones incorporating trabeculae, although this required considerable computer resources and purpose-written code. The difference between mechanical behaviour in models that incorporate trabecular geometry and non-porous models has not been explored. The ability to easily model trabecular networks may shed light on the mechanical consequences of bone loss in osteoporosis and remodelling after implant insertion. Here we present a Finite Element Analysis (FEA) of a human ankle bone that includes trabecular network geometry. We compare results from this model with results from non-porous models and introduce protocols achievable on desktop computers using widely available softwares. Our findings show that models including trabecular geometry are considerably stiffer than non-porous whole bone models wherein the non-cortical component has the same mass as the trabecular network, suggesting inclusion of trabecular geometry is desirable. We further present new methods for the construction and analysis of 3D models permitting: (1) construction of multi-property, non-porous models wherein cortical layer thickness can be manipulated; (2) maintenance of the same triangle network for the outer cortical bone surface in both 3D reconstruction and non-porous models allowing exact replication of load and restraint cases; and (3) creation of an internal landmark point grid allowing direct comparison between 3D FE Models (FEMs). Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. GABA receptors and T-type Ca2+ channels crosstalk in thalamic networks.

    PubMed

    Leresche, Nathalie; Lambert, Régis C

    2017-06-07

    Although the thalamus presents a rather limited repertoire of GABAergic cell types compare to other CNS area, this structure is a privileged system to study how GABA impacts neuronal network excitability. Indeed both glutamatergic thalamocortical (TC) and GABAergic nucleus reticularis thalami (NRT) neurons present a high expression of T-type voltage-dependent Ca 2+ channels whose activation that shapes the output of the thalamus critically depends upon a preceding hyperpolarisation. Because of this strict dependence, a tight functional link between GABA mediated hyperpolarization and T-currents characterizes the thalamic network excitability. In this review we summarize a number of studies showing that the relationships between the various thalamic GABA A/B receptors and T-channels are complex and bidirectional. We discuss how this dynamic interaction sets the global intrathalamic network activity and its long-term plasticity and highlight how the functional relationship between GABA release and T-channel-dependent excitability is finely tuned by the T-channel activation itself. Finally, we illustrate how an impaired balance between T-channels and GABA receptors can lead to pathologically abnormal cellular and network behaviours. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Avoiding disentanglement of multipartite entangled optical beams with a correlated noisy channel

    PubMed Central

    Deng, Xiaowei; Tian, Caixing; Su, Xiaolong; Xie, Changde

    2017-01-01

    A quantum communication network can be constructed by distributing a multipartite entangled state to space-separated nodes. Entangled optical beams with highest flying speed and measurable brightness can be used as carriers to convey information in quantum communication networks. Losses and noises existing in real communication channels will reduce or even totally destroy entanglement. The phenomenon of disentanglement will result in the complete failure of quantum communication. Here, we present the experimental demonstrations on the disentanglement and the entanglement revival of tripartite entangled optical beams used in a quantum network. We experimentally demonstrate that symmetric tripartite entangled optical beams are robust in pure lossy but noiseless channels. In a noisy channel, the excess noise will lead to the disentanglement and the destroyed entanglement can be revived by the use of a correlated noisy channel (non-Markovian environment). The presented results provide useful technical references for establishing quantum networks. PMID:28295024

  19. Longitudinal Variation in Paleo-channel Complex Geometry and Associated Fill: Offshore South Carolina

    NASA Astrophysics Data System (ADS)

    Long, A. M.; Hill, J. C.

    2017-12-01

    In northeastern South Carolina, several shallow (<25 m deep) paleo-channel complexes have previously been interpreted as the result of the southward migration of the ancestral Pee Dee River system along the southern limb of the Cape Fear Arch since the Pliocene. These paleo-channel complexes can be traced 80 km across the continental shelf via Boomer and Chirp subbottom data. The Murrells Inlet paleo-channel complex is the most well imaged offshore; and this data coverage provides an opportunity for a detailed seismic stratigraphic interpretation and analysis of downstream variability. Initial observations from this case study indicate that inner shelf incisions, where bedrock is folded and faulted, tend to be shallow with numerous channels, while the incisions across the middle shelf appear to be deeper and contains larger, more sinuous channels that are cut into broadly tilted strata with a gentle south-southeastward dip. This suggests the geometry and spatial distribution of the incisions were a function of the inherited fabric of the underlying basement, which created local deflection and areas of aggradation and degradation. The inner shelf paleo-channel complex fill is dominated by fluvial cut and fill seismic facies, while the middle shelf contains a wide variety of seismic facies (i.e. transparent, layered, chaotic, etc). This overall longitudinal fill pattern is most likely due to each location's general proximity to base level. The variation in the cut and fill seismic facies may be driven by substantial changes in discharge, driven locally by the joining of another major river or by climatic changes in the drainage basin. There also appears to be preferential reoccupation of previously filled paleo-channels, as the basement in this region is Tertiary and Cretaceous carbonates and siliciclastic rocks that are more resistant to erosion. The most recent occupation in any given paleo-channel tends to be on the southern margin, which may imply tectonic forcing from the uplift of the Cape Fear Arch. Preliminary results from this case study suggest that first order controls on the position and geometry of the paleo-channel complexes appears to be largely allogenic (i.e. tectonic and base level driven), while the depositional history of the fill may have been a mix of autogenic and allogenic processes.

  20. A computer program for analyzing channel geometry

    USGS Publications Warehouse

    Regan, R.S.; Schaffranek, R.W.

    1985-01-01

    The Channel Geometry Analysis Program (CGAP) provides the capability to process, analyze, and format cross-sectional data for input to flow/transport simulation models or other computational programs. CGAP allows for a variety of cross-sectional data input formats through use of variable format specification. The program accepts data from various computer media and provides for modification of machine-stored parameter values. CGAP has been devised to provide a rapid and efficient means of computing and analyzing the physical properties of an open-channel reach defined by a sequence of cross sections. CGAP 's 16 options provide a wide range of methods by which to analyze and depict a channel reach and its individual cross-sectional properties. The primary function of the program is to compute the area, width, wetted perimeter, and hydraulic radius of cross sections at successive increments of water surface elevation (stage) from data that consist of coordinate pairs of cross-channel distances and land surface or channel bottom elevations. Longitudinal rates-of-change of cross-sectional properties are also computed, as are the mean properties of a channel reach. Output products include tabular lists of cross-sectional area, channel width, wetted perimeter, hydraulic radius, average depth, and cross-sectional symmetry computed as functions of stage; plots of cross sections; plots of cross-sectional area and (or) channel width as functions of stage; tabular lists of cross-sectional area and channel width computed as functions of stage for subdivisions of a cross section; plots of cross sections in isometric projection; and plots of cross-sectional area at a fixed stage as a function of longitudinal distance along an open-channel reach. A Command Procedure Language program and Job Control Language procedure exist to facilitate program execution on the U.S. Geological Survey Prime and Amdahl computer systems respectively. (Lantz-PTT)

  1. Modeling Fluvial Incision and Transient Landscape Evolution: Influence of Dynamic Channel Adjustment

    NASA Astrophysics Data System (ADS)

    Attal, M.; Tucker, G. E.; Cowie, P. A.; Whittaker, A. C.; Roberts, G. P.

    2007-12-01

    Channel geometry exerts a fundamental control on fluvial processes. Recent work has shown that bedrock channel width (W) depends on a number of parameters, including channel slope, and is not only a function of drainage area (A) as is commonly assumed. The present work represents the first attempt to investigate the consequences, for landscape evolution, of using a static expression of channel width (W ~ A0.5) versus a relationship that allows channels to dynamically adjust to changes in slope. We consider different models for the evolution of the channel geometry, including constant width-to-depth ratio (after Finnegan et al., Geology, v. 33, no. 3, 2005), and width-to-depth ratio varying as a function of slope (after Whittaker et al., Geology, v. 35, no. 2, 2007). We use the Channel-Hillslope Integrated Landscape Development (CHILD) model to analyze the response of a catchment to a given tectonic disturbance. The topography of a catchment in the footwall of an active normal fault in the Apennines (Italy) is used as a template for the study. We show that, for this catchment, the transient response can be fairly well reproduced using a simple detachment-limited fluvial incision law. We also show that, depending on the relationship used to express channel width, initial steady-state topographies differ, as do transient channel width, slope, and the response time of the fluvial system. These differences lead to contrasting landscape morphologies when integrated at the scale of a whole catchment. Our results emphasize the importance of channel width in controlling fluvial processes and landscape evolution. They stress the need for using a dynamic hydraulic scaling law when modeling landscape evolution, particularly when the uplift field is non-uniform.

  2. Air-photo based change in channel width in the Minnesota River basin: Modes of adjustment and implications for sediment budget

    NASA Astrophysics Data System (ADS)

    Wesley Lauer, J.; Echterling, Caitlyn; Lenhart, Christian; Belmont, Patrick; Rausch, Rachel

    2017-11-01

    The Minnesota River and major tributaries have experienced large increases in discharge over the past century. Aerial photograph-based measurements of channel width were made for the 1938-2015 period at 16 multibend subreaches by digitizing the area between vegetation lines and dividing by centerline length. Results show considerable increases in width for the main stem (0.62 ± 0.10%/y) and major tributaries (0.31 ± 0.08%/y) but are inconclusive for smaller channels (width < 25 m). Width change for a 146.5-km reach of the lower Minnesota River between 1938 and 2008 is similar to that from the subreach-scale analysis. Widening was associated with lateral centerline movement and temporal change in at-a-station hydraulic geometry for water surface width, indicating that widening is associated with cross-sectional change and not simply upward movement of the vegetation line. Digital elevation model analysis and regional hydraulic geometry show that the main stem and larger tributaries account for the vast majority ( 85%) of bankfull channel volume. High-order channels are thus disproportionately responsible for sediment production through cross section enlargement, although floodplains or off-channel water bodies adjacent to these channels likely represent important sediment sinks. Because channel enlargement can play an important role in sediment production, it should be considered in sediment reduction strategies in the Minnesota River basin and carefully evaluated in other watersheds undergoing long-term increases in discharge.

  3. Collapse of triangular channels in a soft elastomer

    NASA Astrophysics Data System (ADS)

    Tepáyotl-Ramírez, Daniel; Lu, Tong; Park, Yong-Lae; Majidi, Carmel

    2013-01-01

    We extend classical solutions in contact mechanics to examine the collapse of channels in a soft elastomer. These channels have triangular cross-section and collapse when pressure is applied to the surrounding elastomer. Treating the walls of the channel as indenters that penetrate the channel base, we derive an algebraic mapping between pressure and cross-sectional area. These theoretical predictions are in strong agreement with results that we obtain through finite element analysis and experimental measurements. This is accomplished without data fitting and suggests that the theoretical approach may be generalized to a broad range of cross-sectional geometries in soft microfluidics.

  4. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device.

    PubMed

    Cole, Russell H; Tran, Tuan M; Abate, Adam R

    2015-12-25

    Double emulsions are useful in a number of biological and industrial applications in which it is important to have an aqueous carrier fluid. This paper presents a polydimethylsiloxane (PDMS) microfluidic device capable of generating water/oil/water double emulsions using a coaxial flow focusing geometry that can be fabricated entirely using soft lithography. Similar to emulsion devices using glass capillaries, double emulsions can be formed in channels with uniform wettability and with dimensions much smaller than the channel sizes. Three dimensional flow focusing geometry is achieved by casting a pair of PDMS slabs using two layer soft lithography, then mating the slabs together in a clamshell configuration. Complementary locking features molded into the PDMS slabs enable the accurate registration of features on each of the slab surfaces. Device testing demonstrates formation of double emulsions from 14 µm to 50 µm in diameter while using large channels that are robust against fouling and clogging.

  5. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device

    PubMed Central

    Cole, Russell H.; Tran, Tuan M.; Abate, Adam R.

    2015-01-01

    Double emulsions are useful in a number of biological and industrial applications in which it is important to have an aqueous carrier fluid. This paper presents a polydimethylsiloxane (PDMS) microfluidic device capable of generating water/oil/water double emulsions using a coaxial flow focusing geometry that can be fabricated entirely using soft lithography. Similar to emulsion devices using glass capillaries, double emulsions can be formed in channels with uniform wettability and with dimensions much smaller than the channel sizes. Three dimensional flow focusing geometry is achieved by casting a pair of PDMS slabs using two layer soft lithography, then mating the slabs together in a clamshell configuration. Complementary locking features molded into the PDMS slabs enable the accurate registration of features on each of the slab surfaces. Device testing demonstrates formation of double emulsions from 14 µm to 50 µm in diameter while using large channels that are robust against fouling and clogging. PMID:26780079

  6. Biomimetic Unidirectional Capillary Action

    NASA Astrophysics Data System (ADS)

    Rupert, Eric; Moran, Patrick; Dahl, Jason

    2017-11-01

    In arid environments animals require specialized adaptations to collect adequate water. The Texas horned lizard (P. cornutum) has superhydrophylic skin which draws water out of moist soil or directly from water sources. The water then makes its way into the lizard's unidirectional capillary system, made of overlapping scales, which serves to channel water to its mouth. Testing different channel geometries, repeated ``D'' shaped chambers as in Commans et al. (2015) and truncated isosceles triangle chambers, as found in P. cornutum, we show the ability to have passive, unidirectional, fluid transport. Tests were carried out with the capillaries in a horizontal configuration. While both capillary geometries produced the desired traits, the triangular chambers showed superior unidirectionality, with no observed back flow, while ``D'' chambers showed back flow under testing conditions. The chambers provided similar flow rates. These types of channel systems will find use in microfluidics, notably in medical, printing, and lab-on-chip applications.

  7. Distributed Channel Allocation and Time Slot Optimization for Green Internet of Things.

    PubMed

    Ding, Kaiqi; Zhao, Haitao; Hu, Xiping; Wei, Jibo

    2017-10-28

    In sustainable smart cities, power saving is a severe challenge in the energy-constrained Internet of Things (IoT). Efficient utilization of limited multiple non-overlap channels and time resources is a promising solution to reduce the network interference and save energy consumption. In this paper, we propose a joint channel allocation and time slot optimization solution for IoT. First, we propose a channel ranking algorithm which enables each node to rank its available channels based on the channel properties. Then, we propose a distributed channel allocation algorithm so that each node can choose a proper channel based on the channel ranking and its own residual energy. Finally, the sleeping duration and spectrum sensing duration are jointly optimized to maximize the normalized throughput and satisfy energy consumption constraints simultaneously. Different from the former approaches, our proposed solution requires no central coordination or any global information that each node can operate based on its own local information in a total distributed manner. Also, theoretical analysis and extensive simulations have validated that when applying our solution in the network of IoT: (i) each node can be allocated to a proper channel based on the residual energy to balance the lifetime; (ii) the network can rapidly converge to a collision-free transmission through each node's learning ability in the process of the distributed channel allocation; and (iii) the network throughput is further improved via the dynamic time slot optimization.

  8. Flow control using audio tones in resonant microfluidic networks: towards cell-phone controlled lab-on-a-chip devices.

    PubMed

    Phillips, Reid H; Jain, Rahil; Browning, Yoni; Shah, Rachana; Kauffman, Peter; Dinh, Doan; Lutz, Barry R

    2016-08-16

    Fluid control remains a challenge in development of portable lab-on-a-chip devices. Here, we show that microfluidic networks driven by single-frequency audio tones create resonant oscillating flow that is predicted by equivalent electrical circuit models. We fabricated microfluidic devices with fluidic resistors (R), inductors (L), and capacitors (C) to create RLC networks with band-pass resonance in the audible frequency range available on portable audio devices. Microfluidic devices were fabricated from laser-cut adhesive plastic, and a "buzzer" was glued to a diaphragm (capacitor) to integrate the actuator on the device. The AC flowrate magnitude was measured by imaging oscillation of bead tracers to allow direct comparison to the RLC circuit model across the frequency range. We present a systematic build-up from single-channel systems to multi-channel (3-channel) networks, and show that RLC circuit models predict complex frequency-dependent interactions within multi-channel networks. Finally, we show that adding flow rectifying valves to the network creates pumps that can be driven by amplified and non-amplified audio tones from common audio devices (iPod and iPhone). This work shows that RLC circuit models predict resonant flow responses in multi-channel fluidic networks as a step towards microfluidic devices controlled by audio tones.

  9. Medical reliable network using concatenated channel codes through GSM network.

    PubMed

    Ahmed, Emtithal; Kohno, Ryuji

    2013-01-01

    Although the 4(th) generation (4G) of global mobile communication network, i.e. Long Term Evolution (LTE) coexisting with the 3(rd) generation (3G) has successfully started; the 2(nd) generation (2G), i.e. Global System for Mobile communication (GSM) still playing an important role in many developing countries. Without any other reliable network infrastructure, GSM can be applied for tele-monitoring applications, where high mobility and low cost are necessary. A core objective of this paper is to introduce the design of a more reliable and dependable Medical Network Channel Code system (MNCC) through GSM Network. MNCC design based on simple concatenated channel code, which is cascade of an inner code (GSM) and an extra outer code (Convolution Code) in order to protect medical data more robust against channel errors than other data using the existing GSM network. In this paper, the MNCC system will provide Bit Error Rate (BER) equivalent to the BER for medical tele monitoring of physiological signals, which is 10(-5) or less. The performance of the MNCC has been proven and investigated using computer simulations under different channels condition such as, Additive White Gaussian Noise (AWGN), Rayleigh noise and burst noise. Generally the MNCC system has been providing better performance as compared to GSM.

  10. Tunable thin film filters for intelligent WDM networks

    NASA Astrophysics Data System (ADS)

    Cahill, Michael; Bartolini, Glenn; Lourie, Mark; Domash, Lawrence

    2006-08-01

    Optical transmission systems have evolved rapidly in recent years with the emergence of new technologies for gain management, wavelength multiplexing, tunability, and switching. WDM networks are increasingly expected to be agile, flexible, and reconfigurable which in turn has led to a need for monitoring to be more widely distributed within the network. Automation of many actions performed on these networks, such as channel provisioning and power balancing, can only be realized by the addition of optical channel monitors (OCMs). These devices provide information about the optical transmission system including the number of optical channels, channel identification, wavelength, power, and in some cases optical signal-to-noise ratio (OSNR). Until recently OCMs were costly and bulky and thus the number of OCMs used in optical networks was often kept to a minimum. We describe a family of tunable thin film filters which have greatly reduced the cost and physical footprint of channel monitors, making possible 'monitoring everywhere' for intelligent optical networks which can serve long haul, metro and access requirements from a single technology platform. As examples of specific applications we discuss network issues such as auto provisioning, wavelength collision avoidance, power balancing, OSNR balancing, gain equalization, alien wavelength recognition, interoperability, and other requirements assigned to the emerging concept of an Optical Control Plane.

  11. Roughness characteristics of natural channels

    USGS Publications Warehouse

    Barnes, Harry Hawthorne

    1967-01-01

    Color photographs and descriptive data are presented for 50 stream channels for which roughness coefficients have been determined. All hydraulic computations involving flow in open channels require an evaluation of the roughness characteristics of the channel. In the absence of a satisfactory quantitative procedure this evaluation remains chiefly an art. The ability to evaluate roughness coefficients must be developed through experience. One means of gaining this experience is by examining and becoming acquainted with the appearance of some typical channels whose roughness coefficients are known. The photographs and data contained in this report represent a wide range of channel conditions. Familiarity with the appearance, geometry, and roughness characteristics of these channels will improve the engineer's ability to select roughness coefficients for other channels .

  12. Robust Rate Maximization for Heterogeneous Wireless Networks under Channel Uncertainties

    PubMed Central

    Xu, Yongjun; Hu, Yuan; Li, Guoquan

    2018-01-01

    Heterogeneous wireless networks are a promising technology in next generation wireless communication networks, which has been shown to efficiently reduce the blind area of mobile communication and improve network coverage compared with the traditional wireless communication networks. In this paper, a robust power allocation problem for a two-tier heterogeneous wireless networks is formulated based on orthogonal frequency-division multiplexing technology. Under the consideration of imperfect channel state information (CSI), the robust sum-rate maximization problem is built while avoiding sever cross-tier interference to macrocell user and maintaining the minimum rate requirement of each femtocell user. To be practical, both of channel estimation errors from the femtocells to the macrocell and link uncertainties of each femtocell user are simultaneously considered in terms of outage probabilities of users. The optimization problem is analyzed under no CSI feedback with some cumulative distribution function and partial CSI with Gaussian distribution of channel estimation error. The robust optimization problem is converted into the convex optimization problem which is solved by using Lagrange dual theory and subgradient algorithm. Simulation results demonstrate the effectiveness of the proposed algorithm by the impact of channel uncertainties on the system performance. PMID:29466315

  13. The formation mechanism of defects, spiral wave in the network of neurons.

    PubMed

    Wu, Xinyi; Ma, Jun

    2013-01-01

    A regular network of neurons is constructed by using the Morris-Lecar (ML) neuron with the ion channels being considered, and the potential mechnism of the formation of a spiral wave is investigated in detail. Several spiral waves are initiated by blocking the target wave with artificial defects and/or partial blocking (poisoning) in ion channels. Furthermore, possible conditions for spiral wave formation and the effect of partial channel blocking are discussed completely. Our results are summarized as follows. 1) The emergence of a target wave depends on the transmembrane currents with diversity, which mapped from the external forcing current and this kind of diversity is associated with spatial heterogeneity in the media. 2) Distinct spiral wave could be induced to occupy the network when the target wave is broken by partially blocking the ion channels of a fraction of neurons (local poisoned area), and these generated spiral waves are similar with the spiral waves induced by artificial defects. It is confirmed that partial channel blocking of some neurons in the network could play a similar role in breaking a target wave as do artificial defects; 3) Channel noise and additive Gaussian white noise are also considered, and it is confirmed that spiral waves are also induced in the network in the presence of noise. According to the results mentioned above, we conclude that appropriate poisoning in ion channels of neurons in the network acts as 'defects' on the evolution of the spatiotemporal pattern, and accounts for the emergence of a spiral wave in the network of neurons. These results could be helpful to understand the potential cause of the formation and development of spiral waves in the cortex of a neuronal system.

  14. The Formation Mechanism of Defects, Spiral Wave in the Network of Neurons

    PubMed Central

    Wu, Xinyi; Ma, Jun

    2013-01-01

    A regular network of neurons is constructed by using the Morris-Lecar (ML) neuron with the ion channels being considered, and the potential mechnism of the formation of a spiral wave is investigated in detail. Several spiral waves are initiated by blocking the target wave with artificial defects and/or partial blocking (poisoning) in ion channels. Furthermore, possible conditions for spiral wave formation and the effect of partial channel blocking are discussed completely. Our results are summarized as follows. 1) The emergence of a target wave depends on the transmembrane currents with diversity, which mapped from the external forcing current and this kind of diversity is associated with spatial heterogeneity in the media. 2) Distinct spiral wave could be induced to occupy the network when the target wave is broken by partially blocking the ion channels of a fraction of neurons (local poisoned area), and these generated spiral waves are similar with the spiral waves induced by artificial defects. It is confirmed that partial channel blocking of some neurons in the network could play a similar role in breaking a target wave as do artificial defects; 3) Channel noise and additive Gaussian white noise are also considered, and it is confirmed that spiral waves are also induced in the network in the presence of noise. According to the results mentioned above, we conclude that appropriate poisoning in ion channels of neurons in the network acts as ‘defects’ on the evolution of the spatiotemporal pattern, and accounts for the emergence of a spiral wave in the network of neurons. These results could be helpful to understand the potential cause of the formation and development of spiral waves in the cortex of a neuronal system. PMID:23383179

  15. A complex valued radial basis function network for equalization of fast time varying channels.

    PubMed

    Gan, Q; Saratchandran, P; Sundararajan, N; Subramanian, K R

    1999-01-01

    This paper presents a complex valued radial basis function (RBF) network for equalization of fast time varying channels. A new method for calculating the centers of the RBF network is given. The method allows fixing the number of RBF centers even as the equalizer order is increased so that a good performance is obtained by a high-order RBF equalizer with small number of centers. Simulations are performed on time varying channels using a Rayleigh fading channel model to compare the performance of our RBF with an adaptive maximum-likelihood sequence estimator (MLSE) consisting of a channel estimator and a MLSE implemented by the Viterbi algorithm. The results show that the RBF equalizer produces superior performance with less computational complexity.

  16. Investigating fluvial pattern and delta-planform geometry based on varying intervals of flood and interflood

    NASA Astrophysics Data System (ADS)

    Rambo, J. E.; Kim, W.; Miller, K.

    2017-12-01

    Physical modeling of a delta's evolution can represent how changing the intervals of flood and interflood can alter a delta's fluvial pattern and geometry. Here we present a set of six experimental runs in which sediment and water were discharged at constant rates over each experiment. During the "flood" period, both sediment and water were discharged at rates of 0.25 cm3/s and 15 ml/s respectively, and during the "interflood" period, only water was discharged at 7.5 ml/s. The flood periods were only run for 30 minutes to keep the total volume of sediment constant. Run 0 did not have an interflood period and therefore ran with constant sediment and water discharge for the duration of the experiment.The other five runs had either 5, 10, or 15-min intervals of flood with 5, 10, or 15-min intervals of interflood. The experimental results show that Run 0 had the smallest topset area. This is due to a lack of surface reworking that takes place during interflood periods. Run 1 had 15-minute intervals of flood and 15-minute intervals of interflood, and it had the largest topset area. Additionally, the experiments that had longer intervals of interflood than flood had more elongated delta geometries. Wetted fraction color maps were also created to plot channel locations during each run. The maps show that the runs with longer interflood durations had channels occurring predominantly down the middle with stronger incisions; these runs produced deltas with more elongated geometries. When the interflood duration was even longer, however, strong channels started to occur at multiple locations. This increased interflood period allowed for the entire area over the delta's surface to be reworked, thus reducing the downstream slope and allowing channels to be more mobile laterally. Physical modeling of a delta allows us to predict a delta's resulting geometry given a set of conditions. This insight is needed especially with delta's being the home to many populations of people and a habitat for various other species.

  17. Military Hydrology. Report 12. Case Study Evaluation of Alternative Dam-Breach Flood Wave Methods. Volume 1. Main Report.

    DTIC Science & Technology

    1986-11-01

    Report Organization. .................... 7 *PART 11: CASE STUDIES .......................... 9 Teton Dam Failure Flood. ...................... 9...channel, (3) Laurel Run Dam , and (4) Stillhouse Hollow Dam . The Laurel Run and Teton case studies involved field data sets from actual dam failures. The...hypothetical prismatic channel case study used the Teton reservoir and dam data but replaced the complex Teton Valley geometry with a prismatic channel

  18. A Modal Approach to Compact MIMO Antenna Design

    NASA Astrophysics Data System (ADS)

    Yang, Binbin

    MIMO (Multiple-Input Multiple-Output) technology offers new possibilities for wireless communication through transmission over multiple spatial channels, and enables linear increases in spectral efficiency as the number of the transmitting and receiving antennas increases. However, the physical implementation of such systems in compact devices encounters many physical constraints mainly from the design of multi-antennas. First, an antenna's bandwidth decreases dramatically as its electrical size reduces, a fact known as antenna Q limit; secondly, multiple antennas closely spaced tend to couple with each other, undermining MIMO performance. Though different MIMO antenna designs have been proposed in the literature, there is still a lack of a systematic design methodology and knowledge of performance limits. In this dissertation, we employ characteristic mode theory (CMT) as a powerful tool for MIMO antenna analysis and design. CMT allows us to examine each physical mode of the antenna aperture, and to access its many physical parameters without even exciting the antenna. For the first time, we propose efficient circuit models for MIMO antennas of arbitrary geometry using this modal decomposition technique. Those circuit models demonstrate the powerful physical insight of CMT for MIMO antenna modeling, and simplify MIMO antenna design problem to just the design of specific antenna structural modes and a modal feed network, making possible the separate design of antenna aperture and feeds. We therefore develop a feed-independent shape synthesis technique for optimization of broadband multi-mode apertures. Combining the shape synthesis and circuit modeling techniques for MIMO antennas, we propose a shape-first feed-next design methodology for MIMO antennas, and designed and fabricated two planar MIMO antennas, each occupying an aperture much smaller than the regular size of lambda/2 x lambda/2. Facilitated by the newly developed source formulation for antenna stored energy and recently reported work on antenna Q factor minimization, we extend the minimum Q limit to antennas of arbitrary geometry, and show that given an antenna aperture, any antenna design based on its substructure will result into minimum Q factors larger than or equal to that of the complete structure. This limit is much tighter than Chu's limit based on spherical modes, and applies to antennas of arbitrary geometry. Finally, considering the almost inevitable presence of mutual coupling effects within compact multiport antennas, we develop new decoupling networks (DN) and decoupling network synthesis techniques. An information-theoretic metric, information mismatch loss (Gammainfo), is defined for DN characterization. Based on this metric, the optimization of decoupling networks for broadband system performance is conducted, which demonstrates the limitation of the single-frequency decoupling techniques and room for improvement.

  19. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.

    PubMed

    Kim, Suntae; Oh, Jonghyun; Cha, Chaenyung

    2016-11-01

    Microfluidic flow-focusing devices (FFD) are widely used to generate monodisperse droplets and microgels with controllable size, shape and composition for various biomedical applications. However, highly inconsistent and often low viability of cells encapsulated within the microgels prepared via microfluidic FFD has been a major concern, and yet this aspect has not been systematically explored. In this study, we demonstrate that the biocompatibility of microfluidic FFD to fabricate cell-laden microgels can be significantly enhanced by controlling the channel geometry. When a single emulsion ("single") microfluidic FFD is used to fabricate cell-laden microgels, there is a significant decrease and batch-to-batch variability in the cell viability, regardless of their size and composition. It is determined that during droplet generation, some of the cells are exposed to the oil phase which is shown to have a cytotoxic effect. Therefore, a microfluidic device with a sequential ('double') flow-focusing channels is employed instead, in which a secondary aqueous phase containing cells enters the primary aqueous phase, so the cells' exposure to the oil phase is minimized by directing them to the center of droplets. This microfluidic channel geometry significantly enhances the biocompatibility of cell-laden microgels, while maintaining the benefits of a typical microfluidic process. This study therefore provides a simple and yet highly effective strategy to improve the biocompatibility of microfluidic fabrication of cell-laden microgels. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. TDM interrogation of intensity-modulated USFBGs network based on multichannel lasers.

    PubMed

    Rohollahnejad, Jalal; Xia, Li; Cheng, Rui; Ran, Yanli; Rahubadde, Udaya; Zhou, Jiaao; Zhu, Lin

    2017-01-23

    We report a large-scale multi-channel fiber sensing network, where ultra-short FBGs (USFBGs) instead of conventional narrow-band ultra-weak FBGs are used as the sensors. In the time division multiplexing scheme of the network, each grating response is resolved as three adjacent discrete peaks. The central wavelengths of USFBGs are tracked with the differential detection, which is achieved by calculating the peak-to-peak ratio of two maximum peaks. Compared with previous large-scale hybrid multiplexing sensing networks (e.g., WDM/TDM) which typically have relatively low interrogation speed and very high complexity, the proposed system can achieve interrogation of all channel sensors through very fast and simple intensity measurements with a broad dynamic range. A proof-of-concept experiment with twenty USFBGs, at two wavelength channels, was performed and a fast static strain measurements were demonstrated, with a high average sensitivity of ~0.54dB/µƐ and wide dynamic range of over ~3000µƐ. The channel to channel switching time was 10ms and total network interrogation time was 50ms.

  1. Valley and channel networks extraction based on local topographic curvature and k-means clustering of contours

    NASA Astrophysics Data System (ADS)

    Hooshyar, Milad; Wang, Dingbao; Kim, Seoyoung; Medeiros, Stephen C.; Hagen, Scott C.

    2016-10-01

    A method for automatic extraction of valley and channel networks from high-resolution digital elevation models (DEMs) is presented. This method utilizes both positive (i.e., convergent topography) and negative (i.e., divergent topography) curvature to delineate the valley network. The valley and ridge skeletons are extracted using the pixels' curvature and the local terrain conditions. The valley network is generated by checking the terrain for the existence of at least one ridge between two intersecting valleys. The transition from unchannelized to channelized sections (i.e., channel head) in each first-order valley tributary is identified independently by categorizing the corresponding contours using an unsupervised approach based on k-means clustering. The method does not require a spatially constant channel initiation threshold (e.g., curvature or contributing area). Moreover, instead of a point attribute (e.g., curvature), the proposed clustering method utilizes the shape of contours, which reflects the entire cross-sectional profile including possible banks. The method was applied to three catchments: Indian Creek and Mid Bailey Run in Ohio and Feather River in California. The accuracy of channel head extraction from the proposed method is comparable to state-of-the-art channel extraction methods.

  2. Endogenous Voltage Potentials and the Microenvironment: Bioelectric Signals that Reveal, Induce and Normalize Cancer

    PubMed Central

    Chernet, Brook; Levin, Michael

    2014-01-01

    Cancer may be a disease of geometry: a misregulation of the field of information that orchestrates individual cells’ activities towards normal anatomy. Recent work identified molecular mechanisms underlying a novel system of developmental control: bioelectric gradients. Endogenous spatio-temporal differences in resting potential of non-neural cells provide instructive cues for cell regulation and complex patterning during embryogenesis and regeneration. It is now appreciated that these cues are an important layer of the dysregulation of cell: cell interactions that leads to cancer. Abnormal depolarization of resting potential (Vmem) is a convenient marker for neoplasia and activates a metastatic phenotype in genetically-normal cells in vivo. Moreover, oncogene expression depolarizes cells that form tumor-like structures, but is unable to form tumors if this depolarization is artificially prevented by misexpression of hyperpolarizing ion channels. Vmem triggers metastatic behaviors at considerable distance, mediated by transcriptional and epigenetic effects of electrically-modulated flows of serotonin and butyrate. While in vivo data on voltages in carcinogenesis comes mainly from the amphibian model, unbiased genetic screens and network profiling in rodents and human tissues reveal several ion channel proteins as bona fide oncogene and promising targets for cancer drug development. However, we propose that a focus on specific channel genes is just the tip of the iceberg. Bioelectric state is determined by post-translational gating of ion channels, not only from genetically-specified complements of ion translocators. A better model is a statistical dynamics view of spatial Vmem gradients. Cancer may not originate at the single cell level, since gap junctional coupling results in multi-cellular physiological networks with multiple stable attractors in bioelectrical state space. New medical applications await a detailed understanding of the mechanisms by which organ target morphology stored in real-time patterns of ion flows is perceived or mis-perceived by cells. Mastery of somatic voltage gradients will lead to cancer normalization or rebooting strategies, such as those that occur in regenerating and embryonic organs, resulting in transformative advances in basic biology and oncology. PMID:25525610

  3. A DC electrophoresis method for determining electrophoretic mobility through the pressure driven negation of electro osmosis

    NASA Astrophysics Data System (ADS)

    Karam, Pascal; Pennathur, Sumita

    2016-11-01

    Characterization of the electrophoretic mobility and zeta potential of micro and nanoparticles is important for assessing properties such as stability, charge and size. In electrophoretic techniques for such characterization, the bulk fluid motion due to the interaction between the fluid and the charged surface must be accounted for. Unlike current industrial systems which rely on DLS and oscillating potentials to mitigate electroosmotic flow (EOF), we propose a simple alternative electrophoretic method for optically determining electrophoretic mobility using a DC electric fields. Specifically, we create a system where an adverse pressure gradient counters EOF, and design the geometry of the channel so that the flow profile of the pressure driven flow matches that of the EOF in large regions of the channel (ie. where we observe particle flow). Our specific COMSOL-optimized geometry is two large cross sectional areas adjacent to a central, high aspect ratio channel. We show that this effectively removes EOF from a large region of the channel and allows for the accurate optical characterization of electrophoretic particle mobility, no matter the wall charge or particle size.

  4. Extended length microchannels for high density high throughput electrophoresis systems

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    2000-01-01

    High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.

  5. Observations and consequences of nonuniform aluminum concentrations in the channel regions of AlGaAs channeled-substrate-planar lasers

    NASA Technical Reports Server (NTRS)

    Evans, Gary A.; Goldstein, Bernard; Butler, Jerome K.

    1987-01-01

    Compositional changes in the n-clad layer within the channel region of channel substrate planar (CSP) type semiconductor lasers have been observed. As a consequece, a large optical cavity (LOC) or an enhanced substrate loss (ESL) version of the CSP geometry may result, both of which may have significantly different characteristics from those of a conventional CSP laser. The CSP-LOC generally has a larger near-field spot size, while the ESL-CSP is characterized by an off-axis, asymmetric far-field pattern.

  6. Stratigraphy and paleohydrology of delta channel deposits, Jezero crater, Mars

    NASA Astrophysics Data System (ADS)

    Goudge, Timothy A.; Mohrig, David; Cardenas, Benjamin T.; Hughes, Cory M.; Fassett, Caleb I.

    2018-02-01

    The Jezero crater open-basin lake contains two well-exposed fluvial sedimentary deposits formed early in martian history. Here, we examine the geometry and architecture of the Jezero western delta fluvial stratigraphy using high-resolution orbital images and digital elevation models (DEMs). The goal of this analysis is to reconstruct the evolution of the delta and associated shoreline position. The delta outcrop contains three distinct classes of fluvial stratigraphy that we interpret, from oldest to youngest, as: (1) point bar strata deposited by repeated flood events in meandering channels; (2) inverted channel-filling deposits formed by avulsive distributary channels; and (3) a valley that incises the deposit. We use DEMs to quantify the geometry of the channel deposits and estimate flow depths of ∼7 m for the meandering channels and ∼2 m for the avulsive distributary channels. Using these estimates, we employ a novel approach for assessing paleohydrology of the formative channels in relative terms. This analysis indicates that the shift from meandering to avulsive distributary channels was associated with an approximately four-fold decrease in the water to sediment discharge ratio. We use observations of the fluvial stratigraphy and channel paleohydrology to propose a model for the evolution of the Jezero western delta. The delta stratigraphy records lake level rise and shoreline transgression associated with approximately continuous filling of the basin, followed by outlet breaching, and eventual erosion of the delta. Our results imply a martian surface environment during the period of delta formation that supplied sufficient surface runoff to fill the Jezero basin without major drops in lake level, but also with discrete flooding events at non-orbital (e.g., annual to decadal) timescales.

  7. Ganges-Brahmaputra-Meghna Delta Connectivity Analysis Using New Tools for the Automatic Extraction of Channel Networks from Remotely Sensed Imagery

    NASA Astrophysics Data System (ADS)

    Jarriel, T. M.; Isikdogan, F.; Passalacqua, P.; Bovik, A.

    2017-12-01

    River deltas are one of the environmental ecosystems most threatened by climate change and anthropogenic activity. While their low elevation gradients and fertile soil have made them optimal for human inhabitation and diverse ecologic growth, it also makes them susceptible to adverse effects of sea level rise, flooding, subsidence, and manmade structures such as dams, levees, and dikes. One particularly large and threatened delta that is the focus area of this study, is the Ganges-Brahmaputra-Meghna Delta (GBMD) on the southern coast of Bangladesh/West Bengal India. In this study we analyze the GBMD channel network, identify areas of maximum change of the network, and use this information to predict how the network will respond under future scenarios. Landsat images of the delta from 1973 to 2017 are analyzed using new tools for the automatic extraction of channel networks from remotely sensed imagery [Isikdogan et al., 2017a, Isikdogan et al., 2017b]. The tools return channel width and channel centerline location at the resolution of the input imagery (30 m). Channel location variance over time is computed using the combined data from 1973 to 2017 and, based on this information, zones of highest change in the system are identified (Figure 1). Network metrics measuring characteristics of the delta's channels and islands are calculated for each year of the study and compared to the variance results in order to identify what metrics capture this change. These results provide both a method to identify zones of the GBMD that are currently experiencing the most change, as well as a means to predict what areas of the delta will experience network changes in the future. This information will be useful for informing coastal sustainability decisions about what areas of such a large and complex network should be the focus of remediation and mitigation efforts. Isikdogan, F., A. Bovik, P. Passalacqua (2017a), RivaMap: An Automated River Analysis and Mapping Engine, Remote Sensing of Environment, in press. Isikdogan, F., A. Bovik, P. Passalacqua (2017b), River Network Extraction by Deep Convolutional Neural Networks, IEEE Geoscience and Remote Sensing Letters, under review.

  8. A Network Steganography Lab on Detecting TCP/IP Covert Channels

    ERIC Educational Resources Information Center

    Zseby, Tanja; Vázquez, Félix Iglesias; Bernhardt, Valentin; Frkat, Davor; Annessi, Robert

    2016-01-01

    This paper presents a network security laboratory to teach data analysis for detecting TCP/IP covert channels. The laboratory is mainly designed for students of electrical engineering, but is open to students of other technical disciplines with similar background. Covert channels provide a method for leaking data from protected systems, which is a…

  9. Coaxial microreactor for particle synthesis

    DOEpatents

    Bartsch, Michael; Kanouff, Michael P; Ferko, Scott M; Crocker, Robert W; Wally, Karl

    2013-10-22

    A coaxial fluid flow microreactor system disposed on a microfluidic chip utilizing laminar flow for synthesizing particles from solution. Flow geometries produced by the mixing system make use of hydrodynamic focusing to confine a core flow to a small axially-symmetric, centrally positioned and spatially well-defined portion of a flow channel cross-section to provide highly uniform diffusional mixing between a reactant core and sheath flow streams. The microreactor is fabricated in such a way that a substantially planar two-dimensional arrangement of microfluidic channels will produce a three-dimensional core/sheath flow geometry. The microreactor system can comprise one or more coaxial mixing stages that can be arranged singly, in series, in parallel or nested concentrically in parallel.

  10. Super-channel oriented routing, spectrum and core assignment under crosstalk limit in spatial division multiplexing elastic optical networks

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Zhu, Ye; Wang, Chunhui; Yu, Xiaosong; Liu, Chuan; Liu, Binglin; Zhang, Jie

    2017-07-01

    With the capacity increasing in optical networks enabled by spatial division multiplexing (SDM) technology, spatial division multiplexing elastic optical networks (SDM-EONs) attract much attention from both academic and industry. Super-channel is an important type of service provisioning in SDM-EONs. This paper focuses on the issue of super-channel construction in SDM-EONs. Mixed super-channel oriented routing, spectrum and core assignment (MS-RSCA) algorithm is proposed in SDM-EONs considering inter-core crosstalk. Simulation results show that MS-RSCA can improve spectrum resource utilization and reduce blocking probability significantly compared with the baseline RSCA algorithms.

  11. Truthful Channel Sharing for Self Coexistence of Overlapping Medical Body Area Networks

    PubMed Central

    Dutkiewicz, Eryk; Zheng, Guanglou

    2016-01-01

    As defined by IEEE 802.15.6 standard, channel sharing is a potential method to coordinate inter-network interference among Medical Body Area Networks (MBANs) that are close to one another. However, channel sharing opens up new vulnerabilities as selfish MBANs may manipulate their online channel requests to gain unfair advantage over others. In this paper, we address this issue by proposing a truthful online channel sharing algorithm and a companion protocol that allocates channel efficiently and truthfully by punishing MBANs for misreporting their channel request parameters such as time, duration and bid for the channel. We first present an online channel sharing scheme for unit-length channel requests and prove that it is truthful. We then generalize our model to settings with variable-length channel requests, where we propose a critical value based channel pricing and preemption scheme. A bid adjustment procedure prevents unbeneficial preemption by artificially raising the ongoing winner’s bid controlled by a penalty factor λ. Our scheme can efficiently detect selfish behaviors by monitoring a trust parameter α of each MBAN and punish MBANs from cheating by suspending their requests. Our extensive simulation results show our scheme can achieve a total profit that is more than 85% of the offline optimum method in the typical MBAN settings. PMID:26844888

  12. Graphene-based battery electrodes having continuous flow paths

    DOEpatents

    Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

    2014-05-24

    Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

  13. Development of spiral wave in a regular network of excitatory neurons due to stochastic poisoning of ion channels

    NASA Astrophysics Data System (ADS)

    Wu, Xinyi; Ma, Jun; Li, Fan; Jia, Ya

    2013-12-01

    Some experimental evidences show that spiral wave could be observed in the cortex of brain, and the propagation of this spiral wave plays an important role in signal communication as a pacemaker. The profile of spiral wave generated in a numerical way is often perfect while the observed profile in experiments is not perfect and smooth. In this paper, formation and development of spiral wave in a regular network of Morris-Lecar neurons, which neurons are placed on nodes uniformly in a two-dimensional array and each node is coupled with nearest-neighbor type, are investigated by considering the effect of stochastic ion channels poisoning and channel noise. The formation and selection of spiral wave could be detected as follows. (1) External forcing currents with diversity are imposed on neurons in the network of excitatory neurons with nearest-neighbor connection, a target-like wave emerges and its potential mechanism is discussed; (2) artificial defects and local poisoned area are selected in the network to induce new wave to interact with the target wave; (3) spiral wave can be induced to occupy the network when the target wave is blocked by the artificial defects or poisoned area with regular border lines; (4) the stochastic poisoning effect is introduced by randomly modifying the border lines (areas) of specific regions in the network. It is found that spiral wave can be also developed to occupy the network under appropriate poisoning ratio. The process of growth for the poisoned area of ion channels poisoning is measured, the effect of channels noise is also investigated. It is confirmed that perfect spiral wave emerges in the network under gradient poisoning even if the channel noise is considered.

  14. Massively parallel processor networks with optical express channels

    DOEpatents

    Deri, R.J.; Brooks, E.D. III; Haigh, R.E.; DeGroot, A.J.

    1999-08-24

    An optical method for separating and routing local and express channel data comprises interconnecting the nodes in a network with fiber optic cables. A single fiber optic cable carries both express channel traffic and local channel traffic, e.g., in a massively parallel processor (MPP) network. Express channel traffic is placed on, or filtered from, the fiber optic cable at a light frequency or a color different from that of the local channel traffic. The express channel traffic is thus placed on a light carrier that skips over the local intermediate nodes one-by-one by reflecting off of selective mirrors placed at each local node. The local-channel-traffic light carriers pass through the selective mirrors and are not reflected. A single fiber optic cable can thus be threaded throughout a three-dimensional matrix of nodes with the x,y,z directions of propagation encoded by the color of the respective light carriers for both local and express channel traffic. Thus frequency division multiple access is used to hierarchically separate the local and express channels to eliminate the bucket brigade latencies that would otherwise result if the express traffic had to hop between every local node to reach its ultimate destination. 3 figs.

  15. Massively parallel processor networks with optical express channels

    DOEpatents

    Deri, Robert J.; Brooks, III, Eugene D.; Haigh, Ronald E.; DeGroot, Anthony J.

    1999-01-01

    An optical method for separating and routing local and express channel data comprises interconnecting the nodes in a network with fiber optic cables. A single fiber optic cable carries both express channel traffic and local channel traffic, e.g., in a massively parallel processor (MPP) network. Express channel traffic is placed on, or filtered from, the fiber optic cable at a light frequency or a color different from that of the local channel traffic. The express channel traffic is thus placed on a light carrier that skips over the local intermediate nodes one-by-one by reflecting off of selective mirrors placed at each local node. The local-channel-traffic light carriers pass through the selective mirrors and are not reflected. A single fiber optic cable can thus be threaded throughout a three-dimensional matrix of nodes with the x,y,z directions of propagation encoded by the color of the respective light carriers for both local and express channel traffic. Thus frequency division multiple access is used to hierarchically separate the local and express channels to eliminate the bucket brigade latencies that would otherwise result if the express traffic had to hop between every local node to reach its ultimate destination.

  16. Aperiodic linear networked control considering variable channel delays: application to robots coordination.

    PubMed

    Santos, Carlos; Espinosa, Felipe; Santiso, Enrique; Mazo, Manuel

    2015-05-27

    One of the main challenges in wireless cyber-physical systems is to reduce the load of the communication channel while preserving the control performance. In this way, communication resources are liberated for other applications sharing the channel bandwidth. The main contribution of this work is the design of a remote control solution based on an aperiodic and adaptive triggering mechanism considering the current network delay of multiple robotics units. Working with the actual network delay instead of the maximum one leads to abandoning this conservative assumption, since the triggering condition is fixed depending on the current state of the network. This way, the controller manages the usage of the wireless channel in order to reduce the channel delay and to improve the availability of the communication resources. The communication standard under study is the widespread IEEE 802.11g, whose channel delay is clearly uncertain. First, the adaptive self-triggered control is validated through the TrueTime simulation tool configured for the mentioned WiFi standard. Implementation results applying the aperiodic linear control laws on four P3-DX robots are also included. Both of them demonstrate the advantage of this solution in terms of network accessing and control performance with respect to periodic and non-adaptive self-triggered alternatives.

  17. Networks of channels for self-healing composite materials

    NASA Astrophysics Data System (ADS)

    Bejan, A.; Lorente, S.; Wang, K.-M.

    2006-08-01

    This is a fundamental study of how to vascularize a self-healing composite material so that healing fluid reaches all the crack sites that may occur randomly through the material. The network of channels is built into the material and is filled with pressurized healing fluid. When a crack forms, the pressure drops at the crack site and fluid flows from the network into the crack. The objective is to discover the network configuration that is capable of delivering fluid to all the cracks the fastest. The crack site dimension and the total volume of the channels are fixed. It is argued that the network must be configured as a grid and not as a tree. Two classes of grids are considered and optimized: (i) grids with one channel diameter and regular polygonal loops (square, triangle, hexagon) and (ii) grids with two channel sizes. The best architecture of type (i) is the grid with triangular loops. The best architecture of type (ii) has a particular (optimal) ratio of diameters that departs from 1 as the crack length scale becomes smaller than the global scale of the vascularized structure from which the crack draws its healing fluid. The optimization of the ratio of channel diameters cuts in half the time of fluid delivery to the crack.

  18. Geomorphic Segmentation, Hydraulic Geometry, and Hydraulic Microhabitats of the Niobrara River, Nebraska - Methods and Initial Results

    USGS Publications Warehouse

    Alexander, Jason S.; Zelt, Ronald B.; Schaepe, Nathaniel J.

    2009-01-01

    The Niobrara River of Nebraska is a geologically, ecologically, and economically significant resource. The State of Nebraska has recognized the need to better manage the surface- and ground-water resources of the Niobrara River so they are sustainable in the long term. In cooperation with the Nebraska Game and Parks Commission, the U.S. Geological Survey is investigating the hydrogeomorphic settings and hydraulic geometry of the Niobrara River to assist in characterizing the types of broad-scale physical habitat attributes that may be of importance to the ecological resources of the river system. This report includes an inventory of surface-water and ground-water hydrology data, surface water-quality data, a longitudinal geomorphic segmentation and characterization of the main channel and its valley, and hydraulic geometry relations for the 330-mile section of the Niobrara River from Dunlap Diversion Dam in western Nebraska to the Missouri River confluence. Hydraulic microhabitats also were analyzed using available data from discharge measurements to demonstrate the potential application of these data and analysis methods. The main channel of the Niobrara was partitioned into three distinct fluvial geomorphic provinces: an upper province characterized by open valleys and a sinuous, equiwidth channel; a central province characterized by mixed valley and channel settings, including several entrenched canyon reaches; and a lower province where the valley is wide, yet restricted, but the river also is wide and persistently braided. Within the three fluvial geomorphic provinces, 36 geomorphic segments were identified using a customized, process-orientated classification scheme, which described the basic physical characteristics of the Niobrara River and its valley. Analysis of the longitudinal slope characteristics indicated that the Niobrara River longitudinal profile may be largely bedrock-controlled, with slope inflections co-located at changes in bedrock type at river level. Hydraulic geometry relations indicated that local (at-a-station) channel adjustments of the Niobrara River to changing discharge are accommodated mainly by changes in velocity, and streamwise adjustments are accommodated through changes in channel width. Downstream hydraulic geometry relations are in general agreement with values previously published for rivers of the Great Plains, but coefficients are likely skewed low because the locations of the streamflow-gaging stations used in this analysis are located at natural or engineered constrictions and may not be accurately representing downstream adjustment processes of the Niobrara River. A demonstration analysis of hydraulic microhabitat attributes at a single station indicated that changes in velocity-related habitat types is the primary microhabitat adjustment over a range of discharges, but the magnitude of that adjustment for any particular discharge is temporally variable.

  19. Control and formation mechanism of extended nanochannel geometry in colloidal mesoporous silica particles.

    PubMed

    Sokolov, I; Kalaparthi, V; Volkov, D O; Palantavida, S; Mordvinova, N E; Lebedev, O I; Owens, J

    2017-01-04

    A large class of colloidal multi-micron mesoporous silica particles have well-defined cylindrical nanopores, nanochannels which self-assembled in the templated sol-gel process. These particles are of broad interest in photonics, for timed drug release, enzyme stabilization, separation and filtration technologies, catalysis, etc. Although the pore geometry and mechanism of pore formation of such particles has been widely investigated at the nanoscale, their pore geometry and its formation mechanism at a larger (extended) scale is still under debate. The extended geometry of nanochannels is paramount for all aforementioned applications because it defines accessibility of nanochannels, and subsequently, kinetics of interaction of the nanochannel content with the particle surrounding. Here we present both experimental and theoretical investigation of the extended geometry and its formation mechanism in colloidal multi-micron mesoporous silica particles. We demonstrate that disordered (and consequently, well accessible) nanochannels in the initially formed colloidal particles gradually align and form extended self-sealed channels. This knowledge allows to control the percentage of disordered versus self-sealed nanochannels, which defines accessibility of nanochannels in such particles. We further show that the observed aligning the channels is in agreement with theory; it is thermodynamically favored as it decreases the Gibbs free energy of the particles. Besides the practical use of the obtained results, developing a fundamental understanding of the mechanisms of morphogenesis of complex geometry of nanopores will open doors to efficient and controllable synthesis that will, in turn, further fuel the practical utilization of these particles.

  20. Theory of liquid crystal elastomers and polymer networks : Connection between neoclassical theory and differential geometry.

    PubMed

    Nguyen, Thanh-Son; Selinger, Jonathan V

    2017-09-01

    In liquid crystal elastomers and polymer networks, the orientational order of liquid crystals is coupled with elastic distortions of crosslinked polymers. Previous theoretical research has described these materials through two different approaches: a neoclassical theory based on the liquid crystal director and the deformation gradient tensor, and a geometric elasticity theory based on the difference between the actual metric tensor and a reference metric. Here, we connect those two approaches using a formalism based on differential geometry. Through this connection, we determine how both the director and the geometry respond to a change of temperature.

  1. A picoliter-volume mixer for microfluidic analytical systems.

    PubMed

    He, B; Burke, B J; Zhang, X; Zhang, R; Regnier, F E

    2001-05-01

    Mixing confluent liquid streams is an important, but difficult operation in microfluidic systems. This paper reports the construction and characterization of a 100-pL mixer for liquids transported by electroosmotic flow. Mixing was achieved in a microfabricated device with multiple intersecting channels of varying lengths and a bimodal width distribution. All channels running parallel to the direction of flow were 5 microm in width whereas larger 27-microm-width channels ran back and forth through the parallel channel network at a 45 degrees angle. The channel network composing the mixer was approximately 10 microm deep. It was observed that little mixing of the confluent solvent streams occurred in the 100-microm-wide, 300-microm-long mixer inlet channel where mixing would be achieved almost exclusively by diffusion. In contrast, after passage through the channel network in the approximately 200-microm-length static mixer bed, mixing was complete as determined by confocal microscopy and CCD detection. Theoretical simulations were also performed in an attempt to describe the extent of mixing in microfabricated systems.

  2. The ``cinquefoil" resistive/Hall measurement geometry

    NASA Astrophysics Data System (ADS)

    Koon, Daniel W.

    2000-03-01

    This talk begins by analyzing the charge transport weighting functions -- the sensitivity of resistive and Hall measurements to local macroscopic inhomogeneities -- of bridge-shaped transport specimens. As expected, such measurements sample only that region of the specimen between the central voltage electrodes, in the limit of narrow current channels connected by even narrower arms to the voltage electrodes. The bridge geometry has a few advantages over the van der Pauw cloverleaf geometry -- including ease in zeroing out the null-field Hall voltage -- but also some disadvantages. The talk concludes with an analysis of a hybrid geometry, the “cinquefoil” or five-leafed clover, which combines the best features of both.

  3. Three issues on spatial scaling in hydrological processes (Invited)

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.; Bertuzzo, E.; Rodriguez-Iturbe, I.; Schaefli, B.

    2013-12-01

    The talk will address a few issues (either open or fully addressed) on the spatial scaling in hydrological processes relevant to catchment-scale transport phenomena and largely reflecting the scaling features observed ubiquitously in the geometry and topology of river basins. Three issues have recently caught the authors' attention. One deals with the signatures of catchment geomorphology on base flow recession curves. The talk will discuss the geomorphic origins of recession curves by linking the time-varying recession of saturated channel sites with the classic Brutsaert parametrization of recession events (in particular, by assimilating two scaling exponents, β and b i.e. |dQ/dt|∝Q^β where Q is at-a-station gauged flow rate; N(l) ∝ G(l)^b where l is the downstream distance from the channel heads receding in time, N(l) is the number of draining channel reaches located at distance l from their heads, and G(l) is the total active drainage network length at a distance greater or equal to l). The role of scaling cutoffs dictated by heterogeneous local drainage densities will be discussed. Second, the scaling of mean catchment travel times with total contributing area will be investigated as a byproduct of the features of channeled and unchanneled distances from any catchment site to the outlet. Third, we shall examine the emergence of evenly spaced ridges and valleys, and the embedded lack of scaling properties implied by a fundamental topographic wavelength. The issue is of particular theoretical importance as the ridge-valley wavelength can be predicted from erosional mechanics. Notably, we recall that the nonlinear model which describes the evolution of a landscape under the effects of erosion and regeneration by geologic uplift can be exactly derived by reparametrization invariance arguments and exactly solved in one dimension. Results of numerical simulations show that the model is indeed able to reproduce the critical scaling characterizing landscapes associated with natural river basins. Specifically, the distribution of the distances between tributaries of a given size (or of sizes larger than a given area) draining along either an open boundary or the mainstream of a river network is analyzed for several landscape types. By proposing a description of the distance separating prescribed merging contributing areas, we also address the scaling of related variables like mean (or bankfull) flow rates and channel and riparian area widths, which are derived under a set of reasonable hydrologic assumptions. We explore the consequences on the third problem of exact theoretical arguments explicitly using the alongstream distribution of confluences carrying a given flow i.e. the general probabilistic structure of tributaries in river networks.

  4. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge.

    PubMed

    Xuan, Xiangchun; Li, Dongqing

    2005-09-01

    General solutions are developed for direct current (DC) and alternating current (AC) electroosmotic flows in microfluidic channels with arbitrary cross-sectional geometry and arbitrary distribution of wall charge (zeta potential). The applied AC electric field can also be of arbitrary waveform. By proposing a nondimensional time scale varpi defined as the ratio of the diffusion time of momentum across the electric double-layer thickness to the period of the applied electric field, we demonstrate analytically that the Helmholtz-Smoluchowski electroosmotic velocity is an appropriate slip condition for AC electroosmotic flows in typical microfluidic applications. With this slip condition approach, electroosmotic flows in rectangular and asymmetric trapezoidal microchannels with nonuniform wall charge, as examples, are investigated. The unknown constants in the proposed general solutions are numerically determined with a least-squares method through matching the boundary conditions. We find that the wall charge affects significantly the electroosmotic flow while the channel geometry does not. Moreover, the flow feature is characterized by another nondimensional time scale Omega defined as the ratio of the diffusion time of momentum across the channel hydraulic radius to the period of the applied electric field. The onset of phase shift between AC electroosmotic velocity and applied electric field is also examined analytically.

  5. Analysis of flow reversal test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L.Y.; Tichler, P.R.

    A series of tests has been conducted to measure the dryout power associated with a flow transient whereby the coolant in a heated channel undergoes a change in flow direction. An analysis of the test was made with the aid of a system code, RELAP5. A dryout criterion was developed in terms of a time-averaged void fraction calculated by RELAP5 for the heated channel. The dryout criterion was also compared with several CHF correlations developed for the channel geometry.

  6. Debris flows associated with the 2015 Gorkha Earthquake in Nepal

    NASA Astrophysics Data System (ADS)

    Dahlquist, M. P.; West, A. J.; Martinez, J.

    2017-12-01

    Debris flows are a primary driver of erosion and a major geologic hazard in many steep landscapes, particularly near the headwaters of rivers, and are generated in large numbers by extreme events. The 2015 Mw 7.8 Gorkha Earthquake triggered 25,000 coseismic landslides in central Nepal. During the ensuing monsoon, sediment delivered to channels by landslides was mobilized in the heavy rains, and new postseismic landslides were triggered in rock weakened by the shaking. These coseismic and postseismic landslide-generated debris flows form a useful dataset for studying the impact and behavior of debris flows on one of the most active landscapes on Earth. Debris flow-dominated channel reaches are generally understood to have a topographic signature recognizable in slope-area plots and distinct from fluvial channels, but in examining debris flows associated with the Gorkha earthquake we find they frequently extend into reaches with geometry typically associated with fluvial systems. We examine a dataset of these debris flows, considering whether they are generated by coseismic or postseismic landslides, whether they are likely to be driving active incision into bedrock, and whether their channels correspond with those typically associated with debris flows. Preliminary analysis of debris flow channels in Nepal suggests there may be systematic differences in the geometry of channels containing debris flows triggered by coseismic versus postseismic landslides, which potentially holds implications for hazard analyses and the mechanics behind the different debris flow types.

  7. Buoyancy-driven mean flow in a long channel with a hydraulically constrained exit condition

    NASA Astrophysics Data System (ADS)

    Grimm, Th.; Maxworthy, T.

    1999-11-01

    Convection plays a major role in a variety of natural hydrodynamic systems. Those in which convection drives exchange flows through a lateral contraction and/or over a sill form a special class with typical examples being the Red and Mediterranean Seas, the Persian Gulf, and the fjords that indent many coastlines. The present work focuses on the spatial distribution and scaling of the density difference between the inflowing and outflowing fluid layers. Using a long water-filled channel, fitted with buoyancy sources at its upper surface, experiments were conducted to investigate the influence of the geometry of the strait and the channel as well as the magnitude of the buoyancy flux. Two different scaling laws, one by Phillips (1966), and one by Maxworthy (1994, 1997) were compared with the experimental results. It has been shown that a scaling law for which g[prime prime or minute] = kB02/3x/h4/3 best describes the distribution of the observed density difference along the channel, where B0 is the buoyancy flux, x the distance from the closed end of the channel, h its height at the open end (sill) and k a constant that depends on the details of the channel geometry and flow conditions. This result holds for the experimental results and appears to be valid for a number of natural systems as well.

  8. Geomorphological origin of recession curves

    NASA Astrophysics Data System (ADS)

    Biswal, Basudev; Marani, Marco

    2010-12-01

    We identify a previously undetected link between the river network morphology and key recession curves properties through a conceptual-physical model of the drainage process of the riparian unconfined aquifer. We show that the power-law exponent, α, of -dQ/dt vs. Q curves is related to the power-law exponent of N(l) vs. G(l) curves (which we show to be connected to Hack's law), where l is the downstream distance from the channel heads, N(l) is the number of channel reaches exactly located at a distance l from their channel head, and G(l) is the total length of the network located at a distance greater or equal to l from channel heads. Using Digital Terrain Models and daily discharge observations from 67 US basins we find that geomorphologic α estimates match well the values obtained from recession curves analyses. Finally, we argue that the link between recession flows and network morphology points to an important role of low-flow discharges in shaping the channel network.

  9. Nonlinear channel equalization for QAM signal constellation using artificial neural networks.

    PubMed

    Patra, J C; Pal, R N; Baliarsingh, R; Panda, G

    1999-01-01

    Application of artificial neural networks (ANN's) to adaptive channel equalization in a digital communication system with 4-QAM signal constellation is reported in this paper. A novel computationally efficient single layer functional link ANN (FLANN) is proposed for this purpose. This network has a simple structure in which the nonlinearity is introduced by functional expansion of the input pattern by trigonometric polynomials. Because of input pattern enhancement, the FLANN is capable of forming arbitrarily nonlinear decision boundaries and can perform complex pattern classification tasks. Considering channel equalization as a nonlinear classification problem, the FLANN has been utilized for nonlinear channel equalization. The performance of the FLANN is compared with two other ANN structures [a multilayer perceptron (MLP) and a polynomial perceptron network (PPN)] along with a conventional linear LMS-based equalizer for different linear and nonlinear channel models. The effect of eigenvalue ratio (EVR) of input correlation matrix on the equalizer performance has been studied. The comparison of computational complexity involved for the three ANN structures is also provided.

  10. Analytical Study on Multi-Tier 5G Heterogeneous Small Cell Networks: Coverage Performance and Energy Efficiency.

    PubMed

    Xiao, Zhu; Liu, Hongjing; Havyarimana, Vincent; Li, Tong; Wang, Dong

    2016-11-04

    In this paper, we investigate the coverage performance and energy efficiency of multi-tier heterogeneous cellular networks (HetNets) which are composed of macrocells and different types of small cells, i.e., picocells and femtocells. By virtue of stochastic geometry tools, we model the multi-tier HetNets based on a Poisson point process (PPP) and analyze the Signal to Interference Ratio (SIR) via studying the cumulative interference from pico-tier and femto-tier. We then derive the analytical expressions of coverage probabilities in order to evaluate coverage performance in different tiers and investigate how it varies with the small cells' deployment density. By taking the fairness and user experience into consideration, we propose a disjoint channel allocation scheme and derive the system channel throughput for various tiers. Further, we formulate the energy efficiency optimization problem for multi-tier HetNets in terms of throughput performance and resource allocation fairness. To solve this problem, we devise a linear programming based approach to obtain the available area of the feasible solutions. System-level simulations demonstrate that the small cells' deployment density has a significant effect on the coverage performance and energy efficiency. Simulation results also reveal that there exits an optimal small cell base station (SBS) density ratio between pico-tier and femto-tier which can be applied to maximize the energy efficiency and at the same time enhance the system performance. Our findings provide guidance for the design of multi-tier HetNets for improving the coverage performance as well as the energy efficiency.

  11. Analytical Study on Multi-Tier 5G Heterogeneous Small Cell Networks: Coverage Performance and Energy Efficiency

    PubMed Central

    Xiao, Zhu; Liu, Hongjing; Havyarimana, Vincent; Li, Tong; Wang, Dong

    2016-01-01

    In this paper, we investigate the coverage performance and energy efficiency of multi-tier heterogeneous cellular networks (HetNets) which are composed of macrocells and different types of small cells, i.e., picocells and femtocells. By virtue of stochastic geometry tools, we model the multi-tier HetNets based on a Poisson point process (PPP) and analyze the Signal to Interference Ratio (SIR) via studying the cumulative interference from pico-tier and femto-tier. We then derive the analytical expressions of coverage probabilities in order to evaluate coverage performance in different tiers and investigate how it varies with the small cells’ deployment density. By taking the fairness and user experience into consideration, we propose a disjoint channel allocation scheme and derive the system channel throughput for various tiers. Further, we formulate the energy efficiency optimization problem for multi-tier HetNets in terms of throughput performance and resource allocation fairness. To solve this problem, we devise a linear programming based approach to obtain the available area of the feasible solutions. System-level simulations demonstrate that the small cells’ deployment density has a significant effect on the coverage performance and energy efficiency. Simulation results also reveal that there exits an optimal small cell base station (SBS) density ratio between pico-tier and femto-tier which can be applied to maximize the energy efficiency and at the same time enhance the system performance. Our findings provide guidance for the design of multi-tier HetNets for improving the coverage performance as well as the energy efficiency. PMID:27827917

  12. Geometric pumping in autophoretic channels.

    PubMed

    Michelin, Sébastien; Montenegro-Johnson, Thomas D; De Canio, Gabriele; Lobato-Dauzier, Nicolas; Lauga, Eric

    2015-08-07

    Many microfluidic devices use macroscopic pressure differentials to overcome viscous friction and generate flows in microchannels. In this work, we investigate how the chemical and geometric properties of the channel walls can drive a net flow by exploiting the autophoretic slip flows induced along active walls by local concentration gradients of a solute species. We show that chemical patterning of the wall is not required to generate and control a net flux within the channel, rather channel geometry alone is sufficient. Using numerical simulations, we determine how geometric characteristics of the wall influence channel flow rate, and confirm our results analytically in the asymptotic limit of lubrication theory.

  13. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes.

    PubMed

    Bucs, Szilard S; Linares, Rodrigo Valladares; Marston, Jeremy O; Radu, Andrea I; Vrouwenvelder, Johannes S; Picioreanu, Cristian

    2015-12-15

    Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.074 and 0.163 m·s(-1)) the recorded flow was laminar with only slight unsteadiness in the upper velocity limit. At higher linear flow velocity (0.3 m·s(-1)) the flow was observed to be unsteady and with recirculation zones. Measurements made at different locations in the flow cell exhibited very similar flow patterns within all feed spacer mesh elements, thus revealing the same hydrodynamic conditions along the length of the flow channel. Three-dimensional (3-D) computational fluid dynamics simulations were performed using the same geometries and flow parameters as the experiments, based on steady laminar flow assumption. The numerical results were in good agreement (0.85-0.95 Bray-Curtis similarity) with the measured flow fields at linear velocities of 0.074 and 0.163 m·s(-1), thus supporting the use of model-based studies in the optimization of feed spacer geometries and operational conditions of spiral wound membrane systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Mixing and segregation of microspheres in microchannel flows of mono- and bidispersed suspensions

    NASA Astrophysics Data System (ADS)

    Gao, C.; Xu, B.; Gilchrist, J. F.

    2009-03-01

    We investigate the mixing and segregation of mono- and bidispersed microsphere suspensions in microchannel flows. These flows are common in biological microelectromechanical systems (BioMEMS) applications handling blood or suspensions of DNA. Suspension transport in pressure driven flows is significantly hindered by shear-induced migration, where particles migrate away from the walls and are focused in the center due to multibody hydrodynamic interactions. The microchannels used in this study have geometries that induce chaotic advection in Newtonian fluids. Our results show that mixing in straight, herringbone and staggered herringbone channels depends strongly on volume fraction. Due to this complex interplay of advection and shear-induced migration, a staggered herringbone channel that typically results in chaotic mixing is not always effective for dispersing particles. The maximum degree of segregation is observed in a straight channel once the maximum packing fraction is reached at channel center. We modify a one-dimensional suspension balance model [R. Miller and J. Morris, J. Non-Newtonian Fluid Mech. 135, 149 (2006)] to describe the behavior at the center of the straight channel. The degree of mixing is then calculated as a function of bulk volume fraction, predicting the volume fraction that results in the maximum degree of segregation. In bidispersed suspension flow, it is shown that mixing of the larger species is enhanced in straight and staggered herringbone channels while segregation is enhanced at moderate volume fractions in herringbone channels. This suggests mixing and separations can be tailored by adjusting both the suspension properties and the channel geometry.

  15. Effect of cross sectional geometry on PDMS micro peristaltic pump performance: comparison of SU-8 replica molding vs. micro injection molding.

    PubMed

    Graf, Neil J; Bowser, Michael T

    2013-10-07

    Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM). The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold's bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold's bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries.

  16. Apparatus and method for data communication in an energy distribution network

    DOEpatents

    Hussain, Mohsin; LaPorte, Brock; Uebel, Udo; Zia, Aftab

    2014-07-08

    A system for communicating information on an energy distribution network is disclosed. In one embodiment, the system includes a local supervisor on a communication network, wherein the local supervisor can collect data from one or more energy generation/monitoring devices. The system also includes a command center on the communication network, wherein the command center can generate one or more commands for controlling the one or more energy generation devices. The local supervisor can periodically transmit a data signal indicative of the data to the command center via a first channel of the communication network at a first interval. The local supervisor can also periodically transmit a request for a command to the command center via a second channel of the communication network at a second interval shorter than the first interval. This channel configuration provides effective data communication without a significant increase in the use of network resources.

  17. Hydrodynamics and Connectivity of Channelized Floodplains: Insights from the Meandering East Fork White River, Indiana, USA

    NASA Astrophysics Data System (ADS)

    Czuba, J. A.; David, S. R.; Edmonds, D. A.

    2017-12-01

    High resolution topography reveals that meandering river floodplains in Indiana commonly have networks of channels. These floodplain channel networks are most prevalent in agricultural, low-gradient, wide floodplains. It appears that these networks are formed when floodplain channels connect oxbows to each other and the main river channel. Collectively, the channels in the floodplain create an interconnected network of pathways that convey water beginning at flows less than bankfull, and as stage increases, more of the floodplain becomes dissected by floodplain channels. In this work, we quantify the hydrodynamics and connectivity of the flow on the floodplain and in the main channel of the East Fork White River near Seymour, Indiana, USA. We constructed a two-dimensional numerical model using HECRAS of the river-floodplain system from LiDAR data and from main-channel river bathymetry to elucidate the behaviour of these floodplain channels across a range of flows. Model calibration and verification data included stage from a USGS gage, high-water marks at a high and medium flow, and an aerial photograph of inundation in the floodplain channels. The numerical model simulated flow depth and velocity, which was used to quantify connectivity of the floodplain channels, exchange between the main channel and floodplain channels, and residence time of water on the floodplain. Model simulations suggest that the floodplain channels convey roughly 50% of the total flow at what is typically considered "bankfull" flow. Overall, we present a process-based approach for analyzing complex floodplain-river systems where an individual floodplain-river system can be distilled down to a set of characteristic curves. Notably, we map the East Fork White River system to exchange-residence time space and argue that this characterization forms the basis for thinking about morphologic evolution (e.g., sediment deposition and erosion) and biogeochemistry (e.g., nitrate removal) in floodplain-river systems.

  18. Initial-phase investigation of multi-dimensional streamflow simulations in the Colorado River, Moab Valley, Grand County, Utah, 2004

    USGS Publications Warehouse

    Kenney, Terry A.

    2005-01-01

    A multi-dimensional hydrodynamic model was applied to aid in the assessment of the potential hazard posed to the uranium mill tailings near Moab, Utah, by flooding in the Colorado River as it flows through Moab Valley. Discharge estimates for the 100- and 500-year recurrence interval and for the Probable Maximum Flood (PMF) were evaluated with the model for the existing channel geometry. These discharges also were modeled for three other channel-deepening configurations representing hypothetical scour of the channel at the downstream portal of Moab Valley. Water-surface elevation, velocity distribution, and shear-stress distribution were predicted for each simulation.The hydrodynamic model was developed from measured channel topography and over-bank topographic data acquired from several sources. A limited calibration of the hydrodynamic model was conducted. The extensive presence of tamarisk or salt cedar in the over-bank regions of the study reach presented challenges for determining roughness coefficients.Predicted water-surface elevations for the current channel geometry indicated that the toe of the tailings pile would be inundated by about 4 feet by the 100-year discharge and 25 feet by the PMF discharge. A small area at the toe of the tailings pile was characterized by velocities of about 1 to 2 feet per second for the 100-year discharge. Predicted velocities near the toe for the PMF discharge increased to between 2 and 4 feet per second over a somewhat larger area. The manner to which velocities progress from the 100-year discharge to the PMF discharge in the area of the tailings pile indicates that the tailings pile obstructs the over-bank flow of flood discharges. The predicted path of flow for all simulations along the existing Colorado River channel indicates that the current distribution of tamarisk in the over-bank region affects how flood-flow velocities are spatially distributed. Shear-stress distributions were predicted throughout the study reach for each discharge and channel geometry examined. Material transport was evaluated by applying these shear-stress values to empirically determined critical shear-stress values for grain sizes ranging from very fine sands to very coarse gravels.

  19. Navigability Potential of Washington Rivers and Streams Determined with Hydraulic Geometry and a Geographic Information System

    USGS Publications Warehouse

    Magirl, Christopher S.; Olsen, Theresa D.

    2009-01-01

    Using discharge and channel geometry measurements from U.S. Geological Survey streamflow-gaging stations and data from a geographic information system, regression relations were derived to predict river depth, top width, and bottom width as a function of mean annual discharge for rivers in the State of Washington. A new technique also was proposed to determine bottom width in channels, a parameter that has received relatively little attention in the geomorphology literature. These regression equations, when combined with estimates of mean annual discharge available in the National Hydrography Dataset, enabled the prediction of hydraulic geometry for any stream or river in the State of Washington. Predictions of hydraulic geometry can then be compared to thresholds established by the Washington State Department of Natural Resources to determine navigability potential of rivers. Rivers with a mean annual discharge of 1,660 cubic feet per second or greater are 'probably navigable' and rivers with a mean annual discharge of 360 cubic feet per second or less are 'probably not navigable'. Variance in the dataset, however, leads to a relatively wide range of prediction intervals. For example, although the predicted hydraulic depth at a mean annual discharge of 1,660 cubic feet per second is 3.5 feet, 90-percent prediction intervals indicate that the actual hydraulic depth may range from 1.8 to 7.0 feet. This methodology does not determine navigability - a legal concept determined by federal common law - instead, this methodology is a tool for predicting channel depth, top width, and bottom width for rivers and streams in Washington.

  20. Injector-concentrator electrodes for microchannel electrophoresis

    DOEpatents

    Swierkowski, Stefan P.

    2003-05-06

    An input port geometry, with injector-concentrator electrodes, for planar microchannel array for electrophoresis. This input port geometry enables efficient extraction and injection of the DNA sample from a single input port. The geometry, which utilizes injector-concentrator electrodes, allows simultaneous concentration, in different channels, of the sample into a longitudinally narrow strip just before releasing it for a run with enhanced injection spatial resolution, and time resolution. Optional multiple electrodes, at a different bias than the concentrator electrodes, may be used to discriminate against sample impurity ions. Electrode passivation can be utilized to prevent electrolysis. An additional electrode in or on the input hole can better define the initial loading. The injector-concentrator electrodes are positioned so that they cross the drift channel in a narrow strip at the bond plane between the top and bottom plates of the instrument and are located close to the inlet hole. The optional sample purification electrodes are located at a greater distance from the input hole than the injector-concentrate electrodes.

  1. From conformal blocks to path integrals in the Vaidya geometry

    NASA Astrophysics Data System (ADS)

    Anous, Tarek; Hartman, Thomas; Rovai, Antonin; Sonner, Julian

    2017-09-01

    Correlators in conformal field theory are naturally organized as a sum over conformal blocks. In holographic theories, this sum must reorganize into a path integral over bulk fields and geometries. We explore how these two sums are related in the case of a point particle moving in the background of a 3d collapsing black hole. The conformal block expansion is recast as a sum over paths of the first-quantized particle moving in the bulk geometry. Off-shell worldlines of the particle correspond to subdominant contributions in the Euclidean conformal block expansion, but these same operators must be included in order to correctly reproduce complex saddles in the Lorentzian theory. During thermalization, a complex saddle dominates under certain circumstances; in this case, the CFT correlator is not given by the Virasoro identity block in any channel, but can be recovered by summing heavy operators. This effectively converts the conformal block expansion in CFT from a sum over intermediate states to a sum over channels that mimics the bulk path integral.

  2. On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging

    PubMed Central

    Hettiarachchi, Kanaka; Talu, Esra; Longo, Marjorie L.; Dayton, Paul A.; Lee, Abraham P.

    2007-01-01

    This paper presents a new manufacturing method to generate monodisperse microbubble contrast agents with polydispersity index (σ) values of <2% through microfluidic flow-focusing. Micron-sized lipid shell-based perfluorocarbon (PFC) gas microbubbles for use as ultrasound contrast agents were produced using this method. The poly(dimethylsiloxane) (PDMS)-based devices feature expanding nozzle geometry with a 7 μm orifice width, and are robust enough for consistent production of microbubbles with runtimes lasting several hours. With high-speed imaging, we characterized relationships between channel geometry, liquid flow rate Q, and gas pressure P in controlling bubble sizes. By a simple optimization of the channel geometry and Q and P, bubbles with a mean diameter of <5 μm can be obtained, ideal for various ultrasonic imaging applications. This method demonstrates the potential of microfluidics as an efficient means for custom-designing ultrasound contrast agents with precise size distributions, different gas compositions and new shell materials for stabilization, and for future targeted imaging and therapeutic applications. PMID:17389962

  3. Capillary filling rules and displacement mechanisms for spontaneous imbibition of CO2 for carbon storage and EOR using micro-model experiments and pore scale simulation

    NASA Astrophysics Data System (ADS)

    Chapman, E.; Yang, J.; Crawshaw, J.; Boek, E. S.

    2012-04-01

    In the 1980s, Lenormand et al. carried out their pioneering work on displacement mechanisms of fluids in etched networks [1]. Here we further examine displacement mechanisms in relation to capillary filling rules for spontaneous imbibition. Understanding the role of spontaneous imbibition in fluid displacement is essential for refining pore network models. Generally, pore network models use simple capillary filling rules and here we examine the validity of these rules for spontaneous imbibition. Improvement of pore network models is vital for the process of 'up-scaling' to the field scale for both enhanced oil recovery (EOR) and carbon sequestration. In this work, we present our experimental microfluidic research into the displacement of both supercritical CO2/deionised water (DI) systems and analogous n-decane/air - where supercritical CO2 and n-decane are the respective wetting fluids - controlled by imbibition at the pore scale. We conducted our experiments in etched PMMA and silicon/glass micro-fluidic hydrophobic chips. We first investigate displacement in single etched pore junctions, followed by displacement in complex network designs representing actual rock thin sections, i.e. Berea sandstone and Sucrosic dolomite. The n-decane/air experiments were conducted under ambient conditions, whereas the supercritical CO2/DI water experiments were conducted under high temperature and pressure in order to replicate reservoir conditions. Fluid displacement in all experiments was captured via a high speed video microscope. The direction and type of displacement the imbibing fluid takes when it enters a junction is dependent on the number of possible channels in which the wetting fluid can imbibe, i.e. I1, I2 and I3 [1]. Depending on the experiment conducted, the micro-models were initially filled with either DI water or air before the wetting fluid was injected. We found that the imbibition of the wetting fluid through a single pore is primarily controlled by the geometry of the pore body rather than the downstream pore throat sizes, contrary to the established capillary filling rules as used in current pore network models. Our experimental observations are confirmed by detailed lattice-Boltzmann pore scale computer simulations of fluid displacement in the same geometries. This suggests that capillary filling rules for imbibition as used in pore network models may need to be revised. [1] G. Lenormand, C. Zarcone and A. Sarr, J. Fluid Mech. 135 , 337-353 (1983).

  4. Channel evolution of the Hatchie River near the U.S. Highway 51 crossing in Lauderdale and Tipton counties, West Tennessee

    USGS Publications Warehouse

    Bryan, B.A.

    1989-01-01

    An investigation was conducted to describe the channel cross-section evolution near the bridge crossing of the Hatchie River at U.S. Highway 51 in Lauderdale and Tipton Counties, in West Tennessee. The study also included velocity and discharge distributions near the bridge crossing, and definition of streamflow duration and flood frequencies at the bridge site and comparison of these statistics with flows prior to the bridge collapse. Cross-section measurements at the site indicated that the channel was widening at a rate of 0.8 ft/year from 1931 through about 1975. The channel bed was stable at an elevation of about 235 ft. Construction of a south bound bridge in 1974 and 1975 reduced the effective flow width from about 4,000 to about 1,000 ft. Data collected from 1975 to 1981 indicated that the channel bed degraded to an elevation of about 230 ft and the widening rate increased to about 4.5 ft/year. The channel bed returned to approximately the pre-construction elevation of 235 ft as channel width increased. The widening rate decreased to about 1.8 ft/year from 1981 through 1989. Channel-geometry data indicated that recent channel morphology changes along the toe of the right bank have resulted in continued bank undercutting and bank failure. Cross-section geometry and flow-velocity distributions from measurements made from April 6 through 10, 1989, indicate that there is a high-flow meander pattern through this river reach and that the bridges are located at the point where the current strikes the right bank. (USGS)

  5. Beamspace Multiple Input Multiple Output. Part II: Steerable Antennas in Mobile Ad Hoc Networks

    DTIC Science & Technology

    2016-09-01

    to the transmitter with half the channel transfer function power , since the actual receiver dwells on each channel only half the time. Fourth diagram...steering in a wireless network to maximize signal power and minimize interference [8–10]. The ability to switch beams adds another diversity dimension to...channel transfer function power , since the actual receiver dwells on each channel only half the time. Fourth diagram: The transmit array sends four

  6. Diffusion in random networks

    DOE PAGES

    Zhang, Duan Z.; Padrino, Juan C.

    2017-06-01

    The ensemble averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of pockets connected by tortuous channels. Inside a channel, fluid transport is assumed to be governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pocket mass density. The so-called dual-porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem,more » we consider the one-dimensional mass diffusion in a semi-infinite domain. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt $-$1/4 rather than xt $-$1/2 as in the traditional theory. We found this early time similarity can be explained by random walk theory through the network.« less

  7. Optimal design of mixed-media packet-switching networks - Routing and capacity assignment

    NASA Technical Reports Server (NTRS)

    Huynh, D.; Kuo, F. F.; Kobayashi, H.

    1977-01-01

    This paper considers a mixed-media packet-switched computer communication network which consists of a low-delay terrestrial store-and-forward subnet combined with a low-cost high-bandwidth satellite subnet. We show how to route traffic via ground and/or satellite links by means of static, deterministic procedures and assign capacities to channels subject to a given linear cost such that the network average delay is minimized. Two operational schemes for this network model are investigated: one is a scheme in which the satellite channel is used as a slotted ALOHA channel; the other is a new multiaccess scheme we propose in which whenever a channel collision occurs, retransmission of the involved packets will route through ground links to their destinations. The performance of both schemes is evaluated and compared in terms of cost and average packet delay tradeoffs for some examples. The results offer guidelines for the design and optimal utilization of mixed-media networks.

  8. Reconstruction of an infrared band of meteorological satellite imagery with abductive networks

    NASA Technical Reports Server (NTRS)

    Singer, Harvey A.; Cockayne, John E.; Versteegen, Peter L.

    1995-01-01

    As the current fleet of meteorological satellites age, the accuracy of the imagery sensed on a spectral channel of the image scanning system is continually and progressively degraded by noise. In time, that data may even become unusable. We describe a novel approach to the reconstruction of the noisy satellite imagery according to empirical functional relationships that tie the spectral channels together. Abductive networks are applied to automatically learn the empirical functional relationships between the data sensed on the other spectral channels to calculate the data that should have been sensed on the corrupted channel. Using imagery unaffected by noise, it is demonstrated that abductive networks correctly predict the noise-free observed data.

  9. In-service communication channel sensing based on reflectometry for TWDM-PON systems

    NASA Astrophysics Data System (ADS)

    Iida, Daisuke; Kuwano, Shigeru; Terada, Jun

    2014-05-01

    Many base stations are accommodated in TWDM-PON based mobile backhaul and fronthaul networks for future radio access, and failed connections in an optical network unit (ONU) wavelength channel severely degrade system performance. A cost effective in-service ONU wavelength channel monitor is essential to ensure proper system operation without failed connections. To address this issue we propose a reflectometry-based remote sensing method that provides wavelength channel information with the optical line terminal (OLT)-ONU distance. The method realizes real-time monitoring of ONU wavelength channels without signal quality degradation. Experimental results show it achieves wavelength channel distinction with high distance resolution.

  10. Multiple-access relaying with network coding: iterative network/channel decoding with imperfect CSI

    NASA Astrophysics Data System (ADS)

    Vu, Xuan-Thang; Renzo, Marco Di; Duhamel, Pierre

    2013-12-01

    In this paper, we study the performance of the four-node multiple-access relay channel with binary Network Coding (NC) in various Rayleigh fading scenarios. In particular, two relay protocols, decode-and-forward (DF) and demodulate-and-forward (DMF) are considered. In the first case, channel decoding is performed at the relay before NC and forwarding. In the second case, only demodulation is performed at the relay. The contributions of the paper are as follows: (1) two joint network/channel decoding (JNCD) algorithms, which take into account possible decoding error at the relay, are developed in both DF and DMF relay protocols; (2) both perfect channel state information (CSI) and imperfect CSI at receivers are studied. In addition, we propose a practical method to forward the relays error characterization to the destination (quantization of the BER). This results in a fully practical scheme. (3) We show by simulation that the number of pilot symbols only affects the coding gain but not the diversity order, and that quantization accuracy affects both coding gain and diversity order. Moreover, when compared with the recent results using DMF protocol, our proposed DF protocol algorithm shows an improvement of 4 dB in fully interleaved Rayleigh fading channels and 0.7 dB in block Rayleigh fading channels.

  11. Stochastic simulation of karst conduit networks

    NASA Astrophysics Data System (ADS)

    Pardo-Igúzquiza, Eulogio; Dowd, Peter A.; Xu, Chaoshui; Durán-Valsero, Juan José

    2012-01-01

    Karst aquifers have very high spatial heterogeneity. Essentially, they comprise a system of pipes (i.e., the network of conduits) superimposed on rock porosity and on a network of stratigraphic surfaces and fractures. This heterogeneity strongly influences the hydraulic behavior of the karst and it must be reproduced in any realistic numerical model of the karst system that is used as input to flow and transport modeling. However, the directly observed karst conduits are only a small part of the complete karst conduit system and knowledge of the complete conduit geometry and topology remains spatially limited and uncertain. Thus, there is a special interest in the stochastic simulation of networks of conduits that can be combined with fracture and rock porosity models to provide a realistic numerical model of the karst system. Furthermore, the simulated model may be of interest per se and other uses could be envisaged. The purpose of this paper is to present an efficient method for conditional and non-conditional stochastic simulation of karst conduit networks. The method comprises two stages: generation of conduit geometry and generation of topology. The approach adopted is a combination of a resampling method for generating conduit geometries from templates and a modified diffusion-limited aggregation method for generating the network topology. The authors show that the 3D karst conduit networks generated by the proposed method are statistically similar to observed karst conduit networks or to a hypothesized network model. The statistical similarity is in the sense of reproducing the tortuosity index of conduits, the fractal dimension of the network, the direction rose of directions, the Z-histogram and Ripley's K-function of the bifurcation points (which differs from a random allocation of those bifurcation points). The proposed method (1) is very flexible, (2) incorporates any experimental data (conditioning information) and (3) can easily be modified when implemented in a hydraulic inverse modeling procedure. Several synthetic examples are given to illustrate the methodology and real conduit network data are used to generate simulated networks that mimic real geometries and topology.

  12. A Novel Dynamic Spectrum Access Framework Based on Reinforcement Learning for Cognitive Radio Sensor Networks.

    PubMed

    Lin, Yun; Wang, Chao; Wang, Jiaxing; Dou, Zheng

    2016-10-12

    Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel.

  13. A Novel Dynamic Spectrum Access Framework Based on Reinforcement Learning for Cognitive Radio Sensor Networks

    PubMed Central

    Lin, Yun; Wang, Chao; Wang, Jiaxing; Dou, Zheng

    2016-01-01

    Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel. PMID:27754316

  14. Entanglement of spin waves among four quantum memories.

    PubMed

    Choi, K S; Goban, A; Papp, S B; van Enk, S J; Kimble, H J

    2010-11-18

    Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a 'web' for connecting quantum processors for computation and communication, or as a 'simulator' allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems, entangled states have not been achieved for interconnects capable of 'mapping' multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations. Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium.

  15. PREFACE: Algebra, Geometry, and Mathematical Physics 2010

    NASA Astrophysics Data System (ADS)

    Stolin, A.; Abramov, V.; Fuchs, J.; Paal, E.; Shestopalov, Y.; Silvestrov, S.

    2012-02-01

    This proceedings volume presents results obtained by the participants of the 6th Baltic-Nordic workshop 'Algebra, Geometry, and Mathematical Physics (AGMP-6)' held at the Sven Lovén Centre for Marine Sciences in Tjärnö, Sweden on October 25-30, 2010. The Baltic-Nordic Network AGMP 'Algebra, Geometry, and Mathematical Physics' http://www.agmp.eu was created in 2005 on the initiative of two Estonian universities and two Swedish universities: Tallinn University of Technology represented by Eugen Paal (coordinator of the network), Tartu University represented by Viktor Abramov, Lund University represented by Sergei Silvestrov, and Chalmers University of Technology and the University of Gothenburg represented by Alexander Stolin. The goal was to promote international and interdisciplinary cooperation between scientists and research groups in the countries of the Baltic-Nordic region in mathematics and mathematical physics, with special emphasis on the important role played by algebra and geometry in modern physics, engineering and technologies. The main activities of the AGMP network consist of a series of regular annual international workshops, conferences and research schools. The AGMP network also constitutes an important educational forum for scientific exchange and dissimilation of research results for PhD students and Postdocs. The network has expanded since its creation, and nowadays its activities extend beyond countries in the Baltic-Nordic region to universities in other European countries and participants from elsewhere in the world. As one of the important research-dissimilation outcomes of its activities, the network has a tradition of producing high-quality research proceedings volumes after network events, publishing them with various international publishers. The PDF also contains the following: List of AGMP workshops and other AGMP activities Main topics discussed at AGMP-6 Review of AGMP-6 proceedings Acknowledgments List of Conference Participants

  16. Model microswimmers in channels with varying cross section

    NASA Astrophysics Data System (ADS)

    Malgaretti, Paolo; Stark, Holger

    2017-05-01

    We study different types of microswimmers moving in channels with varying cross section and thereby interacting hydrodynamically with the channel walls. Starting from the Smoluchowski equation for a dilute suspension, for which interactions among swimmers can be neglected, we derive analytic expressions for the lateral probability distribution between plane channel walls. For weakly corrugated channels, we extend the Fick-Jacobs approach to microswimmers and thereby derive an effective equation for the probability distribution along the channel axis. Two regimes arise dominated either by entropic forces due to the geometrical confinement or by the active motion. In particular, our results show that the accumulation of microswimmers at channel walls is sensitive to both the underlying swimming mechanism and the geometry of the channels. Finally, for asymmetric channel corrugation, our model predicts a rectification of microswimmers along the channel, the strength and direction of which strongly depends on the swimmer type.

  17. Optimal Performance Monitoring of Hybrid Mid-Infrared Wavelength MIMO Free Space Optical and RF Wireless Networks in Fading Channels

    NASA Astrophysics Data System (ADS)

    Schmidt, Barnet Michael

    An optimal performance monitoring metric for a hybrid free space optical and radio-frequency (RF) wireless network, the Outage Capacity Objective Function, is analytically developed and studied. Current and traditional methods of performance monitoring of both optical and RF wireless networks are centered on measurement of physical layer parameters, the most common being signal-to-noise ratio, error rate, Q factor, and eye diagrams, occasionally combined with link-layer measurements such as data throughput, retransmission rate, and/or lost packet rate. Network management systems frequently attempt to predict or forestall network failures by observing degradations of these parameters and to attempt mitigation (such as offloading traffic, increasing transmitter power, reducing the data rate, or combinations thereof) prior to the failure. These methods are limited by the frequent low sensitivity of the physical layer parameters to the atmospheric optical conditions (measured by optical signal-to-noise ratio) and the radio frequency fading channel conditions (measured by signal-to-interference ratio). As a result of low sensitivity, measurements of this type frequently are unable to predict impending failures sufficiently in advance for the network management system to take corrective action prior to the failure. We derive and apply an optimal measure of hybrid network performance based on the outage capacity of the hybrid optical and RF channel, the outage capacity objective function. The objective function provides high sensitivity and reliable failure prediction, and considers both the effects of atmospheric optical impairments on the performance of the free space optical segment as well as the effect of RF channel impairments on the radio frequency segment. The radio frequency segment analysis considers the three most common RF channel fading statistics: Rayleigh, Ricean, and Nakagami-m. The novel application of information theory to the underlying physics of the gamma-gamma optical channel and radio fading channels in determining the joint hybrid channel outage capacity provides the best performance estimate under any given set of operating conditions. It is shown that, unlike traditional physical layer performance monitoring techniques, the objective function based upon the outage capacity of the hybrid channel at any combination of OSNR and SIR, is able to predict channel degradation and failure well in advance of the actual outage. An outage in the information-theoretic definition occurs when the offered load exceeds the outage capacity under the current conditions of OSNR and SIR. The optical channel is operated at the "long" mid-infrared wavelength of 10000 nm. which provides improved resistance to scattering compared to shorter wavelengths such as 1550 nm.

  18. Diffractive optics for combined spatial- and mode- division demultiplexing of optical vortices: design, fabrication and optical characterization.

    PubMed

    Ruffato, Gianluca; Massari, Michele; Romanato, Filippo

    2016-04-20

    During the last decade, the orbital angular momentum (OAM) of light has attracted growing interest as a new degree of freedom for signal channel multiplexing in order to increase the information transmission capacity in today's optical networks. Here we present the design, fabrication and characterization of phase-only diffractive optical elements (DOE) performing mode-division (de)multiplexing (MDM) and spatial-division (de)multiplexing (SDM) at the same time. Samples have been fabricated with high-resolution electron-beam lithography patterning a polymethylmethacrylate (PMMA) resist layer spun over a glass substrate. Different DOE designs are presented for the sorting of optical vortices differing in either OAM content or beam size in the optical regime, with different steering geometries in far-field. These novel DOE designs appear promising for telecom applications both in free-space and in multi-core fibers propagation.

  19. Multileg Heat-Pipe Evaporator

    NASA Technical Reports Server (NTRS)

    Alario, J. P.; Haslett, R. A.

    1986-01-01

    Parallel pipes provide high heat flow from small heat exchanger. Six parallel heat pipes extract heat from overlying heat exchanger, forming evaporator. Vapor channel in pipe contains wick that extends into screen tube in liquid channel. Rods in each channel hold wick and screen tube in place. Evaporator compact rather than extended and more compatible with existing heat-exchanger geometries. Prototype six-pipe evaporator only 0.3 m wide and 0.71 m long. With ammonia as working fluid, transports heat to finned condenser at rate of 1,200 W.

  20. Software-defined network abstractions and configuration interfaces for building programmable quantum networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasari, Venkat; Sadlier, Ronald J; Geerhart, Mr. Billy

    Well-defined and stable quantum networks are essential to realize functional quantum applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. We develop new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.

  1. Validating a new methodology for optical probe design and image registration in fNIRS studies

    PubMed Central

    Wijeakumar, Sobanawartiny; Spencer, John P.; Bohache, Kevin; Boas, David A.; Magnotta, Vincent A.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an imaging technique that relies on the principle of shining near-infrared light through tissue to detect changes in hemodynamic activation. An important methodological issue encountered is the creation of optimized probe geometry for fNIRS recordings. Here, across three experiments, we describe and validate a processing pipeline designed to create an optimized, yet scalable probe geometry based on selected regions of interest (ROIs) from the functional magnetic resonance imaging (fMRI) literature. In experiment 1, we created a probe geometry optimized to record changes in activation from target ROIs important for visual working memory. Positions of the sources and detectors of the probe geometry on an adult head were digitized using a motion sensor and projected onto a generic adult atlas and a segmented head obtained from the subject's MRI scan. In experiment 2, the same probe geometry was scaled down to fit a child's head and later digitized and projected onto the generic adult atlas and a segmented volume obtained from the child's MRI scan. Using visualization tools and by quantifying the amount of intersection between target ROIs and channels, we show that out of 21 ROIs, 17 and 19 ROIs intersected with fNIRS channels from the adult and child probe geometries, respectively. Further, both the adult atlas and adult subject-specific MRI approaches yielded similar results and can be used interchangeably. However, results suggest that segmented heads obtained from MRI scans be used for registering children's data. Finally, in experiment 3, we further validated our processing pipeline by creating a different probe geometry designed to record from target ROIs involved in language and motor processing. PMID:25705757

  2. An improved approximate network blocking probability model for all-optical WDM Networks with heterogeneous link capacities

    NASA Astrophysics Data System (ADS)

    Khan, Akhtar Nawaz

    2017-11-01

    Currently, analytical models are used to compute approximate blocking probabilities in opaque and all-optical WDM networks with the homogeneous link capacities. Existing analytical models can also be extended to opaque WDM networking with heterogeneous link capacities due to the wavelength conversion at each switch node. However, existing analytical models cannot be utilized for all-optical WDM networking with heterogeneous structure of link capacities due to the wavelength continuity constraint and unequal numbers of wavelength channels on different links. In this work, a mathematical model is extended for computing approximate network blocking probabilities in heterogeneous all-optical WDM networks in which the path blocking is dominated by the link along the path with fewer number of wavelength channels. A wavelength assignment scheme is also proposed for dynamic traffic, termed as last-fit-first wavelength assignment, in which a wavelength channel with maximum index is assigned first to a lightpath request. Due to heterogeneous structure of link capacities and the wavelength continuity constraint, the wavelength channels with maximum indexes are utilized for minimum hop routes. Similarly, the wavelength channels with minimum indexes are utilized for multi-hop routes between source and destination pairs. The proposed scheme has lower blocking probability values compared to the existing heuristic for wavelength assignments. Finally, numerical results are computed in different network scenarios which are approximately equal to values obtained from simulations. Since January 2016, he is serving as Head of Department and an Assistant Professor in the Department of Electrical Engineering at UET, Peshawar-Jalozai Campus, Pakistan. From May 2013 to June 2015, he served Department of Telecommunication Engineering as an Assistant Professor at UET, Peshawar-Mardan Campus, Pakistan. He also worked as an International Internship scholar in the Fukuda Laboratory, National Institute of Informatics, Tokyo, Japan on the topic large-scale simulation for internet topology analysis. His research interests include design and analysis of optical WDM networks, network algorithms, network routing, and network resource optimization problems.

  3. A New Hybrid Scheme for Preventing Channel Interference and Collision in Mobile Networks

    NASA Astrophysics Data System (ADS)

    Kim, Kyungjun; Han, Kijun

    This paper proposes a new hybrid scheme based on a given set of channels for preventing channel interference and collision in mobile networks. The proposed scheme is designed for improving system performance, focusing on enhancement of performance related to path breakage and channel interference. The objective of this scheme is to improve the performance of inter-node communication. Simulation results from this paper show that the new hybrid scheme can reduce a more control message overhead than a conventional random scheme.

  4. Regional bankfull-channel dimensions of non-urban wadeable streams in Indiana

    USGS Publications Warehouse

    Robinson, Bret A.

    2013-01-01

    During floods, damage to properties and community infrastructure may result from inundation and the processes of erosion. The damages imparted by erosion are collectively termed the fluvial erosion hazard (FEH), and the Indiana Silver Jackets Multi-agency Hazard Mitigation Taskforce is supporting a program to build tools that will assist Indiana property owners and communities with FEH-mitigation efforts. As part of that program, regional channel-dimension relations are identified for non-urban wadeable streams in Indiana. With a site-selection process that targeted the three largest physiographic regions of the state, field work was completed to measure channel-dimension and channel-geometry characteristics across Indiana. In total, 82 sites were identified for data collection; 25 in the Northern Moraine and Lake region, 31 in the Central Till Plain region, and 26 in the Southern Hills and Lowlands region. Following well established methods, for each data-collection site, effort was applied to identify bankfull stage, determine bankfull-channel dimensions, and document channel-geometry characteristics that allowed for determinations of channel classification. In this report, regional bankfull-channel dimension results are presented as a combination of plots and regression equations that identify the relations between drainage area and the bankfull-channel dimensions of width, mean depth, and cross-sectional area. This investigation found that the channel-dimension data support independent relations for each of the three physiographic regions noted above. Furthermore, these relations show that, for any given drainage area, northern Indiana channels have the smallest predicted dimensions, southern Indiana channels have the largest predicted dimensions, and central Indiana channels are intermediate in their predicted dimensions. When considering the suite of variables that influence bankfull-channel dimensions, it appears that contrasting runoff characteristics between the three physiographic regions may explain much of the inequality observed in the measured channel dimensions. While this investigation targeted non-urban wadeable streams in Indiana, site conditions prevented data collection in some areas. Therefore, application of the results of this study always should include knowledge gained from local observations.

  5. Complex Networks/Foundations of Information Systems

    DTIC Science & Technology

    2013-03-06

    the benefit of feedback or dynamic correlations in coding and protocol. Using Renyi correlation analysis and entropy to model this wider class of...dynamic heterogeneous conditions. Lizhong Zheng, MIT Renyi Channel Correlation Analysis (connected to geometric curvature) Network Channel

  6. Basal terraces on melting ice shelves

    NASA Astrophysics Data System (ADS)

    Dutrieux, Pierre; Stewart, Craig; Jenkins, Adrian; Nicholls, Keith W.; Corr, Hugh F. J.; Rignot, Eric; Steffen, Konrad

    2014-08-01

    Ocean waters melt the margins of Antarctic and Greenland glaciers, and individual glaciers' responses and the integrity of their ice shelves are expected to depend on the spatial distribution of melt. The bases of the ice shelves associated with Pine Island Glacier (West Antarctica) and Petermann Glacier (Greenland) have similar geometries, including kilometer-wide, hundreds-of-meter high channels oriented along and across the direction of ice flow. The channels are enhanced by, and constrain, oceanic melt. New meter-scale observations of basal topography reveal peculiar glaciated landscapes. Channel flanks are not smooth, but are instead stepped, with hundreds-of-meters-wide flat terraces separated by 5-50 m high walls. Melting is shown to be modulated by the geometry: constant across each terrace, changing from one terrace to the next, and greatly enhanced on the ~45° inclined walls. Melting is therefore fundamentally heterogeneous and likely associated with stratification in the ice-ocean boundary layer, challenging current models of ice shelf-ocean interactions.

  7. Designing spin-channel geometries for entanglement distribution

    NASA Astrophysics Data System (ADS)

    Levi, E. K.; Kirton, P. G.; Lovett, B. W.

    2016-09-01

    We investigate different geometries of spin-1/2 nitrogen impurity channels for distributing entanglement between pairs of remote nitrogen vacancy centers (NVs) in diamond. To go beyond the system size limits imposed by directly solving the master equation, we implement a matrix product operator method to describe the open system dynamics. In so doing, we provide an early demonstration of how the time-evolving block decimation algorithm can be used for answering a problem related to a real physical system that could not be accessed by other methods. For a fixed NV separation there is an interplay between incoherent impurity spin decay and coherent entanglement transfer: Long-transfer-time, few-spin systems experience strong dephasing that can be overcome by increasing the number of spins in the channel. We examine how missing spins and disorder in the coupling strengths affect the dynamics, finding that in some regimes a spin ladder is a more effective conduit for information than a single-spin chain.

  8. Instability in extensional microflow of aqueous gel

    NASA Astrophysics Data System (ADS)

    Bryce, Robert; Freeman, Mark

    2007-03-01

    Microfluidic devices are typically characterized by laminar flows, often leading to diffusion limited mixing. Recently it has been demonstrated that the addition of polymer to fluids can lead to elastic instabilities and, under some conditions, turbulence at arbitrarily low Reynolds numbers in mechanically driven flows [1]. We investigated electroosmotic driven extensional flow of an aqueous polymer gel. Microchannels with 100 micron width and 20 micron depth with the characteristic ``D'' chemical etch cross section were formed in glass. A Y-channel geometry with two input channels and a single output created extensional flow at the channel intersection. Instabilities where observed in the extensional region by fluorescently tagging one input stream. Instabilities were characterized by 1/f spectra in laser induced fluorescent brightness profiles. Due to the simple geometry of extensional flow and the importance of electroosmotic flows for integrated applications and in scaling, this is of interest for device applications. [1] A. Groisman and V. Steinberg, Nature 405, 53-55, 2000.

  9. Magnetic mirror effect in a cylindrical Hall thruster

    NASA Astrophysics Data System (ADS)

    Jiang, Yiwei; Tang, Haibin; Ren, Junxue; Li, Min; Cao, Jinbin

    2018-01-01

    For cylindrical Hall thrusters, the magnetic field geometry is totally different from that in conventional Hall thrusters. In this study, we investigate the magnetic mirror effect in a fully cylindrical Hall thruster by changing the number of iron rings (0-5), which surround the discharge channel wall. The plasma properties inside the discharge channel and plume area are simulated with a self-developed PIC-MCC code. The numerical results show significant influence of magnetic geometry on the electron confinement. With the number of rings increasing above three, the near-wall electron density gap is reduced, indicating the suppression of neutral gas leakage. The electron temperature inside the discharge channel reaches its peak (38.4 eV) when the magnetic mirror is strongest. It is also found that the thruster performance has strong relations with the magnetic mirror as the propellant utilisation efficiency reaches the maximum (1.18) at the biggest magnetic mirror ratio. Also, the optimal magnetic mirror improves the multi-charged ion dynamics, including the ion production and propellant utilisation efficiency.

  10. Geomorphic analyses from space imagery

    NASA Technical Reports Server (NTRS)

    Morisawa, M.

    1985-01-01

    One of the most obvious applications of space imagery to geomorphological analyses is in the study of drainage patterns and channel networks. LANDSAT, high altitude photography and other types of remote sensing imagery are excellent for depicting stream networks on a regional scale because of their broad coverage in a single image. They offer a valuable tool for comparing and analyzing drainage patterns and channel networks all over the world. Three aspects considered in this geomorphological study are: (1) the origin, evolution and rates of development of drainage systems; (2) the topological studies of network and channel arrangements; and (3) the adjustment of streams to tectonic events and geologic structure (i.e., the mode and rate of adjustment).

  11. Using Resin-Based 3D Printing to Build Geometrically Accurate Proxies of Porous Sedimentary Rocks.

    PubMed

    Ishutov, Sergey; Hasiuk, Franciszek J; Jobe, Dawn; Agar, Susan

    2018-05-01

    Three-dimensional (3D) printing is capable of transforming intricate digital models into tangible objects, allowing geoscientists to replicate the geometry of 3D pore networks of sedimentary rocks. We provide a refined method for building scalable pore-network models ("proxies") using stereolithography 3D printing that can be used in repeated flow experiments (e.g., core flooding, permeametry, porosimetry). Typically, this workflow involves two steps, model design and 3D printing. In this study, we explore how the addition of post-processing and validation can reduce uncertainty in the 3D-printed proxy accuracy (difference of proxy geometry from the digital model). Post-processing is a multi-step cleaning of porous proxies involving pressurized ethanol flushing and oven drying. Proxies are validated by: (1) helium porosimetry and (2) digital measurements of porosity from thin-section images of 3D-printed proxies. 3D printer resolution was determined by measuring the smallest open channel in 3D-printed "gap test" wafers. This resolution (400 µm) was insufficient to build porosity of Fontainebleau sandstone (∼13%) from computed tomography data at the sample's natural scale, so proxies were printed at 15-, 23-, and 30-fold magnifications to validate the workflow. Helium porosities of the 3D-printed proxies differed from digital calculations by up to 7% points. Results improved after pressurized flushing with ethanol (e.g., porosity difference reduced to ∼1% point), though uncertainties remain regarding the nature of sub-micron "artifact" pores imparted by the 3D printing process. This study shows the benefits of including post-processing and validation in any workflow to produce porous rock proxies. © 2017, National Ground Water Association.

  12. Catchment Power and the Joint Distribution of Elevation and Travel Distance to the Outlet

    NASA Astrophysics Data System (ADS)

    Sklar, L. S.; Riebe, C. S.; Bellugi, D. G.; Lukens, C. E.; Noll, C.

    2014-12-01

    The delivery of water, sediment and solutes by catchments is influenced by the distribution of source elevations and their travel distances to the outlet. For example, elevation affects the magnitude and phase of precipitation, as well as the climatic factors that govern rock weathering, which influences the particle size and production rate of sediment from slopes. Travel distance, in turn, affects the timing of flood peaks at the outlet and the degree of sediment size reduction by wear, which affect particle size distributions at the outlet. The distributions of elevation and travel distance have been studied extensively but separately, as the hypsometric curve and width function. Yet a catchment can be considered as a collection of points, each with paired values of elevation and travel distance. We refer to the joint distribution of these two fundamental catchment attributes as "catchment power," recognizing that the ratio of elevation to travel distance is proportional to the average rate of loss of the potential energy provided by source elevation, as water or sediment travel to the outlet. We explore patterns in catchment power across a suite of catchments spanning a range of relief, drainage area and channel network geometry. We also develop an empirical algorithm for generating synthetic catchment power distributions, which can be parameterized with data from natural catchments, and used to explore the effects of varying the shape of the distribution on fluxes of water, sediment, isotopes and other landscape products passing through catchment outlets. Ultimately, our goal is to understand how catchment power distributions arise from the branching properties of networks and the relief structure of landscapes. This new way of quantifying catchment geometry may provide a fresh perspective on problems of both practical and theoretical interest.

  13. On the role of flood wave celerity-discharge relationship and its applications on hydrological studies

    NASA Astrophysics Data System (ADS)

    Fleischmann, Ayan; Collischonn, Walter; Jardim, Pedro; Meyer, Aline; Paiva, Rodrigo

    2017-04-01

    The non-linear relationship between flood wave celerity (C) and discharge (Q) plays an important role on defining how flood waves are routed through the river network. The behavior of this curve is driven by cross section geometry, which leads to increasing celerity with discharge in rivers without floodplains. In reaches with floodplain storage, C may decrease after bankfull Q. Thus, in a set of studies we investigate the effects of C x Q relationships on the basin hydrological response. (i) We studied these curves for several Brazilian river reaches, and analyzed to which extent they are related to river channel geometry and other characteristics (e.g., slope, width, drainage area and sinuosity). (ii) It is shown through empirical, analytical and numerical experiments how C x Q relation affects hydrograph skewness, and how the decreasing relationship existent in rivers with important floodplain storage leads to negatively skewed hydrographs, such as in the Amazon and Pantanal regions, which could be used to infer important floodplain processes (e.g., presence of overbank flow wetlands, which feature negatively skewed hydrographs or interfluvial wetlands not directly connected to rivers). (iii) Finally, we found that it is possible to use these concepts to calibrate the effective bathymetry of a hydrodynamic model by fitting the C x Q relationship using SCE-UA optimization method. Our results show how important it is to investigate the non-linear hydraulic processes occurring throughout river basins to understand the overall hydrological response, and propose new frameworks to assist such studies, including the evaluation of hydrograph skewness and estimation of hydraulic geometry.

  14. Genesis of Miocene litho-stratigraphic trap and hydrocarbon accumulation in the Qiongdongnan Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Fan, Caiwei; Jiang, Tao; Liu, Kun; Tan, Jiancai; Li, Hu; Li, Anqi

    2018-12-01

    In recent years, several large gas fields have been discovered in western Qiongdongnan Basin. It is important and necessary to illustrate their sedimentary characteristics and hydrocarbon migration so that more gas fields could be discovered in the future. Previous regional tectonic-sedimentary researchers show that large-scale source rock of the Yacheng Formation developed in the Ledong and Lingshui sags due to the Red River Fault pull-apart strike slip in early Oligocene. The main targets for hydrocarbon exploration in this area are the Miocene deep water reservoirs. In late Miocene, the Huangliu Formation reservoirs are composed of the early channels which were sourced by river systems in Hainan uplift and the consequent channels were sourced by Qiupen River in Kunsong uplift. Both axial channels exhibit unique spatial distribution patterns and geometries. The other kind of reservoir developed in the middle Miocene Meishan Formation, which compose of slope break-controlled submarine fan. They can be further classified into three types—slope channelized fan, basin floor fan, and bottom current reworked fan. The various fans have different reservoir quality. These two kinds of reservoirs contribute to four types of litho-stratigraphic traps under the actions of sedimentation and subsidence. The overpressure caused by hydrocarbon generation can fracture deeper strata and result in regional fractured network for hydrocarbon migration. Therefore, free gas driven by overpressure and buoyancy force can be migrated into Miocene litho-stratigraphic traps to accumulate. The revealed genesis of Miocene lithologic trap and hydrocarbon accumulation in the Qiongdongnan Basin would greatly contribute to the further hydrocarbon exploration in northern South China Sea and can be helpful for other deep water areas around the world.

  15. In silico determination of the effect of multi-target drugs on calcium dynamics signaling network underlying sea urchin spermatozoa motility.

    PubMed

    Espinal-Enríquez, Jesús; Darszon, Alberto; Guerrero, Adán; Martínez-Mekler, Gustavo

    2014-01-01

    The motility of spermatozoa of both Lytechinus pictus and Strongylocentrotus purpuratus sea urchin species is modulated by the egg-derived decapeptide speract via an oscillatory [Ca2+]-dependent signaling pathway. Comprehension of this pathway is hence directly related to the understanding of regulated sperm swimming. Niflumic acid (NFA), a nonsteroidal anti-inflammatory drug alters several ion channels. Though unspecific, NFA profoundly affects how sea urchin sperm respond to speract, increasing the [Ca2+]i oscillation period, amplitude, peak and average level values of the responses in immobilized and swimming cells. A previous logical network model we developed for the [Ca2+] dynamics of speract signaling cascade in sea urchin sperm allows integrated dissection of individual and multiple actions of NFA. Among the channels affected by NFA are: hyperpolarization-activated and cyclic nucleotide gated Na+ channels (HCN), [Ca2+]-dependent Cl- channels (CaCC) and [Ca2+]-dependent K+ channels (CaKC), all present in the sea urchin genome. Here, using our model we investigated the effect of blocking in silico HCN and CaCC channels suggested by experiments. Regarding CaKC channels, arguments can be provided for either their blockage or activation by NFA. Our study yielded two scenarios compliant with experimental observations: i) under CaKC inhibition, this [Ca2+]-dependent K+ channel should be different from the Slo1 channel and ii) under activation of the CaKC channel, another [Ca2+] channel not considered previously in the network is required, such as the pH-dependent CatSper channel. Additionally, our findings predict cause-effect relations resulting from a selective inhibition of those channels. Knowledge of these relations may be of consequence for a variety of electrophysiological studies and have an impact on drug related investigations. Our study contributes to a better grasp of the network dynamics and suggests further experimental work.

  16. In Silico Determination of the Effect of Multi-Target Drugs on Calcium Dynamics Signaling Network Underlying Sea Urchin Spermatozoa Motility

    PubMed Central

    Espinal-Enríquez, Jesús; Darszon, Alberto; Guerrero, Adán; Martínez-Mekler, Gustavo

    2014-01-01

    The motility of spermatozoa of both Lytechinus pictus and Strongylocentrotus purpuratus sea urchin species is modulated by the egg-derived decapeptide speract via an oscillatory [Ca2+]-dependent signaling pathway. Comprehension of this pathway is hence directly related to the understanding of regulated sperm swimming. Niflumic acid (NFA), a nonsteroidal anti-inflammatory drug alters several ion channels. Though unspecific, NFA profoundly affects how sea urchin sperm respond to speract, increasing the [Ca2+]i oscillation period, amplitude, peak and average level values of the responses in immobilized and swimming cells. A previous logical network model we developed for the [Ca2+] dynamics of speract signaling cascade in sea urchin sperm allows integrated dissection of individual and multiple actions of NFA. Among the channels affected by NFA are: hyperpolarization-activated and cyclic nucleotide gated Na+ channels (HCN), [Ca2+]-dependent Cl− channels (CaCC) and [Ca2+]-dependent K+ channels (CaKC), all present in the sea urchin genome. Here, using our model we investigated the effect of blocking in silico HCN and CaCC channels suggested by experiments. Regarding CaKC channels, arguments can be provided for either their blockage or activation by NFA. Our study yielded two scenarios compliant with experimental observations: i) under CaKC inhibition, this [Ca2+]-dependent K+ channel should be different from the Slo1 channel and ii) under activation of the CaKC channel, another [Ca2+] channel not considered previously in the network is required, such as the pH-dependent CatSper channel. Additionally, our findings predict cause-effect relations resulting from a selective inhibition of those channels. Knowledge of these relations may be of consequence for a variety of electrophysiological studies and have an impact on drug related investigations. Our study contributes to a better grasp of the network dynamics and suggests further experimental work. PMID:25162222

  17. Architectures and protocols for an integrated satellite-terrestrial mobile system

    NASA Technical Reports Server (NTRS)

    Delre, E.; Dellipriscoli, F.; Iannucci, P.; Menolascino, R.; Settimo, F.

    1993-01-01

    This paper aims to depict some basic concepts related to the definition of an integrated system for mobile communications, consisting of a satellite network and a terrestrial cellular network. In particular three aspects are discussed: (1) architecture definition for the satellite network; (2) assignment strategy of the satellite channels; and (3) definition of 'internetworking procedures' between cellular and satellite network, according to the selected architecture and the satellite channel assignment strategy.

  18. A generalized optimization principle for asymmetric branching in fluidic networks

    PubMed Central

    Stephenson, David

    2016-01-01

    When applied to a branching network, Murray’s law states that the optimal branching of vascular networks is achieved when the cube of the parent channel radius is equal to the sum of the cubes of the daughter channel radii. It is considered integral to understanding biological networks and for the biomimetic design of artificial fluidic systems. However, despite its ubiquity, we demonstrate that Murray’s law is only optimal (i.e. maximizes flow conductance per unit volume) for symmetric branching, where the local optimization of each individual channel corresponds to the global optimum of the network as a whole. In this paper, we present a generalized law that is valid for asymmetric branching, for any cross-sectional shape, and for a range of fluidic models. We verify our analytical solutions with the numerical optimization of a bifurcating fluidic network for the examples of laminar, turbulent and non-Newtonian fluid flows. PMID:27493583

  19. Improved Iterative Decoding of Network-Channel Codes for Multiple-Access Relay Channel.

    PubMed

    Majumder, Saikat; Verma, Shrish

    2015-01-01

    Cooperative communication using relay nodes is one of the most effective means of exploiting space diversity for low cost nodes in wireless network. In cooperative communication, users, besides communicating their own information, also relay the information of other users. In this paper we investigate a scheme where cooperation is achieved using a common relay node which performs network coding to provide space diversity for two information nodes transmitting to a base station. We propose a scheme which uses Reed-Solomon error correcting code for encoding the information bit at the user nodes and convolutional code as network code, instead of XOR based network coding. Based on this encoder, we propose iterative soft decoding of joint network-channel code by treating it as a concatenated Reed-Solomon convolutional code. Simulation results show significant improvement in performance compared to existing scheme based on compound codes.

  20. Restoring Wood-Rich Hotspots in Mountain Stream Networks

    NASA Astrophysics Data System (ADS)

    Wohl, E.; Scott, D.

    2016-12-01

    Mountain streams commonly include substantial longitudinal variability in valley and channel geometry, alternating repeatedly between steep, narrow and relatively wide, low gradient segments. Segments that are wider and lower gradient than neighboring steeper sections are hotspots with respect to: retention of large wood (LW) and finer sediment and organic matter; uptake of nutrients; and biomass and biodiversity of aquatic and riparian organisms. These segments are also more likely to be transport-limited with respect to floodplain and instream LW. Management designed to protect and restore riverine LW and the physical and ecological processes facilitated by the presence of LW is likely to be most effective if focused on relatively low-gradient stream segments. These segments can be identified using a simple, reach-scale gradient analysis based on high-resolution DEMs, with field visits to identify factors that potentially limit or facilitate LW recruitment and retention, such as forest disturbance history or land use. Drawing on field data from the western US, this presentation outlines a procedure for mapping relatively low-gradient segments in a stream network and for identifying those segments where LW reintroduction or retention is most likely to balance maximizing environmental benefits derived from the presence of LW while minimizing hazards associated with LW.

  1. Martian channels and valleys - Their characteristics, distribution, and age

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Clow, G. D.

    1981-01-01

    The distribution and ages of Martian channels and valleys, which are generally believed to have been cut by running water, are examined with particular emphasis on the small branching networks referred to as runoff channels or valley networks. Valleys at latitudes from 65 deg S to 65 deg N were surveyed on Viking images at resolutions between 125 and 300 m. Almost all of the valleys are found in the old cratered terrain, in areas characterized by high elevations, low albedos and low violet/red ratios. The networks are deduced to have formed early in the history of the planet, with a formation rate declining rapidly shortly after the decline of the cratering rate 3.9 billion years ago. Two types of outflow channels are distinguished: unconfined, in which broad swaths of terrain are scoured, and confined, in which flow is restricted to discrete channels. Both types start at local sources, and have formed episodically throughout Martian history. Fretted channels, found mainly in two latitude belts characterized by relatively rapid erosion along escarpments, are explained by the lateral enlargement of other channels by mass wasting.

  2. Sediment transport data and related information for selected coarse-bed streams and rivers in Idaho

    Treesearch

    John G. King; William W. Emmett; Peter J. Whiting; Robert P. Kenworthy; Jeffrey J. Barry

    2004-01-01

    This report and associated web site files provide sediment transport and related data for coarse-bed streams and rivers to potential users. Information on bedload and suspended sediment transport, streamflow, channel geometry, channel bed material, floodplain material, and large particle transport is provided for 33 study reaches in Idaho that represent a wide range of...

  3. Enhanced heat transfer combustor technology, subtasks 1 and 2, tast C.1

    NASA Technical Reports Server (NTRS)

    Baily, R. D.

    1986-01-01

    Analytical and experimental studies are being conducted for NASA to evaluate means of increasing the heat extraction capability and service life of a liquid rocket combustor. This effort is being conducted in conjunction with other tasks to develop technologies for an advanced, expander cycle, oxygen/hydrogen engine planned for upper stage propulsion applications. Increased heat extraction, needed to raise available turbine drive energy for higher chamber pressure, is derived from combustion chamber hot gas wall ribs that increase the heat transfer surface area. Life improvement is obtained through channel designs that enhance cooling and maintain the wall temperature at an accepatable level. Laboratory test programs were conducted to evaluate the heat transfer characteristics of hot gas rib and coolant channel geometries selected through an analytical screening process. Detailed velocity profile maps, previously unavailable for rib and channel geometries, were obtained for the candidate designs using a cold flow laser velocimeter facility. Boundary layer behavior and heat transfer characteristics were determined from the velocity maps. Rib results were substantiated by hot air calorimeter testing. The flow data were analytically scaled to hot fire conditions and the results used to select two rib and three enhanced coolant channel configurations for further evaluation.

  4. Results From a Channel Restoration Project: Hydraulic Design Considerations

    USGS Publications Warehouse

    Karle, K.F.; Densmore, R.V.; ,

    2001-01-01

    Techniques for the hydraulic restoration of placer-mined streams and floodplains were developed in Denali National Park and Preserve, Alaska. The two-year study at Glen Creek focused on a design of stream and floodplain geometry using hydraulic capacity and shear stress equations. Slope and sinuosity values were based on regional relationships. Design requirements included a channel capacity for a bankfull discharge and a floodplain capacity for a 1.5- to 100-year discharge. Several bio-engineering techniques using alder and willow, including anchored brush bars, streambank hedge layering, seedlings, and cuttings, were tested to dissipate floodwater energy and encourage sediment deposition until natural revegetation stabilized the new floodplains. Permanently monumented cross-sections installed throughout the project site were surveyed every one to three years. Nine years after the project began, a summer flood caused substantial damage to the channel form, including a change in width/depth ratio, slope, and thalweg location. Many of the alder brush bars were heavily damaged or destroyed, resulting in significant bank erosion. This paper reviews the original hydraulic design process, and describes changes to the channel and floodplain geometry over time, based on nine years of cross-section surveys.

  5. Networks of Interacting Processes: Relationships Between Drivers and Deltaic Variables to Understand Water and Sediment Transport in Wax Lake Delta, Coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Sendrowski, A.; Passalacqua, P.; Wagner, W.; Mohrig, D. C.; Meselhe, E. A.; Sadid, K. M.; Castañeda-Moya, E.; Twilley, R.

    2017-12-01

    Studying distributary channel networks in river deltaic systems provides important insight into deltaic functioning and evolution. This view of networks highlights the physical connection along channels and can also encompass the structural link between channels and deltaic islands (termed structural connectivity). An alternate view of the deltaic network is one composed of interacting processes, such as relationships between external drivers (e.g., river discharge, tides, and wind) and internal deltaic response variables (e.g., water level and sediment concentration). This network, also referred to as process connectivity, is dynamic across space and time, often comprises nonlinear relationships, and contributes to the development of complex channel networks and ecologically rich island platforms. The importance of process connectivity has been acknowledged, however, few studies have directly quantified these network interactions. In this work, we quantify process connections in Wax Lake Delta (WLD), coastal Louisiana. WLD is a naturally prograding delta that serves as an analogue for river diversion projects, thus it provides an excellent setting for understanding the influence of river discharge, tides, and wind on water and sediment in a delta. Time series of water level and sediment concentration were collected in three channels from November 2013 to February 2014, while water level and turbidity were collected on an island from April 2014 to August 2015. Additionally, a model run on WLD bathymetry generated two years of sediment concentration time series in multiple channels. River discharge, tide, and wind measurements were collected from the USGS and NOAA, respectively. We analyze this data with information theory (IT), a set of statistics that measure uncertainty in signals and communication between signals. Using IT, the timescale, strength, and direction of network links are quantified by measuring the synchronization and direct influence from one variable to another. We compare channel and island process connections, which show distinct differences. Our study captures the temporal evolution of variable transport at multiple locations. While WLD is river dominated, tides and wind show unique transport signatures related to tidal spring and neap transitions and wind events.

  6. Maja Valley and the Chryse outflow complex sites

    NASA Technical Reports Server (NTRS)

    Rice, Jim W.

    1994-01-01

    This candidate landing site is located at 19 deg N, 53.5 deg W near the mouth of a major outflow channel. Maja Valles, and two 'valley network' channel systems, Maumee and Vedra Valles. The following objectives are to be analyzed in this region: (1) origin and paleohydrology of outflow and valley network channels; (2) fan delta complex composition (the deposit located in this area is one of the few identified at the mouth s of any channels on the planet); and (3) analysis of any paleolake sediments (carbonates, evaporites). The primary objectives of the Chryse Outflow Complex region (Ares, Tiu, Mawrth, Simud, and Shalbatana Valles) would be outflow channel dynamics (paleohydrology) of five different channel systems.

  7. Dependency-based long short term memory network for drug-drug interaction extraction.

    PubMed

    Wang, Wei; Yang, Xi; Yang, Canqun; Guo, Xiaowei; Zhang, Xiang; Wu, Chengkun

    2017-12-28

    Drug-drug interaction extraction (DDI) needs assistance from automated methods to address the explosively increasing biomedical texts. In recent years, deep neural network based models have been developed to address such needs and they have made significant progress in relation identification. We propose a dependency-based deep neural network model for DDI extraction. By introducing the dependency-based technique to a bi-directional long short term memory network (Bi-LSTM), we build three channels, namely, Linear channel, DFS channel and BFS channel. All of these channels are constructed with three network layers, including embedding layer, LSTM layer and max pooling layer from bottom up. In the embedding layer, we extract two types of features, one is distance-based feature and another is dependency-based feature. In the LSTM layer, a Bi-LSTM is instituted in each channel to better capture relation information. Then max pooling is used to get optimal features from the entire encoding sequential data. At last, we concatenate the outputs of all channels and then link it to the softmax layer for relation identification. To the best of our knowledge, our model achieves new state-of-the-art performance with the F-score of 72.0% on the DDIExtraction 2013 corpus. Moreover, our approach obtains much higher Recall value compared to the existing methods. The dependency-based Bi-LSTM model can learn effective relation information with less feature engineering in the task of DDI extraction. Besides, the experimental results show that our model excels at balancing the Precision and Recall values.

  8. Hyperbolic geometry of Kuramoto oscillator networks

    NASA Astrophysics Data System (ADS)

    Chen, Bolun; Engelbrecht, Jan R.; Mirollo, Renato

    2017-09-01

    Kuramoto oscillator networks have the special property that their trajectories are constrained to lie on the (at most) 3D orbits of the Möbius group acting on the state space T N (the N-fold torus). This result has been used to explain the existence of the N-3 constants of motion discovered by Watanabe and Strogatz for Kuramoto oscillator networks. In this work we investigate geometric consequences of this Möbius group action. The dynamics of Kuramoto phase models can be further reduced to 2D reduced group orbits, which have a natural geometry equivalent to the unit disk \

  9. Review: The state-of-art of sparse channel models and their applicability to performance assessment of radioactive waste repositories in fractured crystalline formations

    NASA Astrophysics Data System (ADS)

    Figueiredo, Bruno; Tsang, Chin-Fu; Niemi, Auli; Lindgren, Georg

    2016-11-01

    Laboratory and field experiments done on fractured rock show that flow and solute transport often occur along flow channels. `Sparse channels' refers to the case where these channels are characterised by flow in long flow paths separated from each other by large spacings relative to the size of flow domain. A literature study is presented that brings together information useful to assess whether a sparse-channel network concept is an appropriate representation of the flow system in tight fractured rock of low transmissivity, such as that around a nuclear waste repository in deep crystalline rocks. A number of observations are made in this review. First, conventional fracture network models may lead to inaccurate results for flow and solute transport in tight fractured rocks. Secondly, a flow dimension of 1, as determined by the analysis of pressure data in well testing, may be indicative of channelised flow, but such interpretation is not unique or definitive. Thirdly, in sparse channels, the percolation may be more influenced by the fracture shape than the fracture size and orientation but further studies are needed. Fourthly, the migration of radionuclides from a waste canister in a repository to the biosphere may be strongly influenced by the type of model used (e.g. discrete fracture network, channel model). Fifthly, the determination of appropriateness of representing an in situ flow system by a sparse-channel network model needs parameters usually neglected in site characterisation, such as the density of channels or fracture intersections.

  10. Generation of Complex Karstic Conduit Networks with a Hydro-chemical Model

    NASA Astrophysics Data System (ADS)

    De Rooij, R.; Graham, W. D.

    2016-12-01

    The discrete-continuum approach is very well suited to simulate flow and solute transport within karst aquifers. Using this approach, discrete one-dimensional conduits are embedded within a three-dimensional continuum representative of the porous limestone matrix. Typically, however, little is known about the geometry of the karstic conduit network. As such the discrete-continuum approach is rarely used for practical applications. It may be argued, however, that the uncertainty associated with the geometry of the network could be handled by modeling an ensemble of possible karst conduit networks within a stochastic framework. We propose to generate stochastically realistic karst conduit networks by simulating the widening of conduits as caused by the dissolution of limestone over geological relevant timescales. We illustrate that advanced numerical techniques permit to solve the non-linear and coupled hydro-chemical processes efficiently, such that relatively large and complex networks can be generated in acceptable time frames. Instead of specifying flow boundary conditions on conduit cells to recharge the network as is typically done in classical speleogenesis models, we specify an effective rainfall rate over the land surface and let model physics determine the amount of water entering the network. This is advantageous since the amount of water entering the network is extremely difficult to reconstruct, whereas the effective rainfall rate may be quantified using paleoclimatic data. Furthermore, we show that poorly known flow conditions may be constrained by requiring a realistic flow field. Using our speleogenesis model we have investigated factors that influence the geometry of simulated conduit networks. We illustrate that our model generates typical branchwork, network and anastomotic conduit systems. Flow, solute transport and water ages in karst aquifers are simulated using a few illustrative networks.

  11. Characterizing the transient geomorphic response to base level fall in the northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhang, P.; Kirby, E.; Pitlick, J.; Anderson, R. S.

    2015-12-01

    Analyses of hillslope gradient, landscape relief, and channel steepness in the Daxiahe drainage basin along the northeastern margin of the Tibetan Plateau provides evidence of a transient geomorphic response to base level fall along the main stem Yellow River. The upper portions of the watershed are characterized by low-gradient channels and gentle hillslopes and are separated from a steeper, high relief landscape by a series of convex knickzones along channel profiles. Downstream projection of the upper channel profiles implies ~500-600 m of incision, consistent with terrace records of post ~1.7 Ma incision in the Linxia basin. We characterize erosion rates across this transient landscape using both optically-stimulated dating of fluvial terraces and catchment-averaged 10Be concentrations in modern sediment. Both data sets are consistent and suggest erosion/incision rates of ~300 m/Myr below knickpoints and ~50-100 m/Myr above. Field measurements of channel width (n=48) and bankfull discharge (n=9) allow us to determine local scaling relations among channel hydraulic geometry, discharge, and contributing area that we employ to estimate basal shear stress, unit stream power and bedload transport along the main stem of the Daxiahe River. We find a clear downstream increase of incision potential across this transient landscape, consistent with topographic observations and erosion rates. In contrast to recent studies, we find no evidence for adjustment of channel width across the transition from slowly eroding to rapidly eroding portions of the watershed. We hypothesize that this behavior is consistent with detachment-limited models of fluvial incision, despite the presence of significant sediment in channel bed and banks. Our results imply that the controls on hydraulic geometry along actively incising rivers remain incompletely understood.

  12. Comparison of neural network applications for channel assignment in cellular TDMA networks and dynamically sectored PCS networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    1997-04-01

    The use of artificial neural networks (NNs) to address the channel assignment problem (CAP) for cellular time-division multiple access and code-division multiple access networks has previously been investigated by this author and many others. The investigations to date have been based on a hexagonal cell structure established by omnidirectional antennas at the base stations. No account was taken of the use of spatial isolation enabled by directional antennas to reduce interference between mobiles. Any reduction in interference translates into increased capacity and consequently alters the performance of the NNs. Previous studies have sought to improve the performance of Hopfield- Tank network algorithms and self-organizing feature map algorithms applied primarily to static channel assignment (SCA) for cellular networks that handle uniformly distributed, stationary traffic in each cell for a single type of service. The resulting algorithms minimize energy functions representing interference constraint and ad hoc conditions that promote convergence to optimal solutions. While the structures of the derived neural network algorithms (NNAs) offer the potential advantages of inherent parallelism and adaptability to changing system conditions, this potential has yet to be fulfilled the CAP for emerging mobile networks. The next-generation communication infrastructures must accommodate dynamic operating conditions. Macrocell topologies are being refined to microcells and picocells that can be dynamically sectored by adaptively controlled, directional antennas and programmable transceivers. These networks must support the time-varying demands for personal communication services (PCS) that simultaneously carry voice, data and video and, thus, require new dynamic channel assignment (DCA) algorithms. This paper examines the impact of dynamic cell sectoring and geometric conditioning on NNAs developed for SCA in omnicell networks with stationary traffic to improve the metrics of convergence rate and call blocking. Genetic algorithms (GAs) are also considered in PCS networks as a means to overcome the known weakness of Hopfield NNAs in determining global minima. The resulting GAs for DCA in PCS networks are compared to improved DCA algorithms based on Hopfield NNs for stationary cellular networks. Algorithm performance is compared on the basis of rate of convergence, blocking probability, analytic complexity, and parametric sensitivity to transient traffic demands and channel interference.

  13. Optimization-based channel constrained data aggregation routing algorithms in multi-radio wireless sensor networks.

    PubMed

    Yen, Hong-Hsu

    2009-01-01

    In wireless sensor networks, data aggregation routing could reduce the number of data transmissions so as to achieve energy efficient transmission. However, data aggregation introduces data retransmission that is caused by co-channel interference from neighboring sensor nodes. This kind of co-channel interference could result in extra energy consumption and significant latency from retransmission. This will jeopardize the benefits of data aggregation. One possible solution to circumvent data retransmission caused by co-channel interference is to assign different channels to every sensor node that is within each other's interference range on the data aggregation tree. By associating each radio with a different channel, a sensor node could receive data from all the children nodes on the data aggregation tree simultaneously. This could reduce the latency from the data source nodes back to the sink so as to meet the user's delay QoS. Since the number of radios on each sensor node and the number of non-overlapping channels are all limited resources in wireless sensor networks, a challenging question here is to minimize the total transmission cost under limited number of non-overlapping channels in multi-radio wireless sensor networks. This channel constrained data aggregation routing problem in multi-radio wireless sensor networks is an NP-hard problem. I first model this problem as a mixed integer and linear programming problem where the objective is to minimize the total transmission subject to the data aggregation routing, channel and radio resources constraints. The solution approach is based on the Lagrangean relaxation technique to relax some constraints into the objective function and then to derive a set of independent subproblems. By optimally solving these subproblems, it can not only calculate the lower bound of the original primal problem but also provide useful information to get the primal feasible solutions. By incorporating these Lagrangean multipliers as the link arc weight, the optimization-based heuristics are proposed to get energy-efficient data aggregation tree with better resource (channel and radio) utilization. From the computational experiments, the proposed optimization-based approach is superior to existing heuristics under all tested cases.

  14. Channel MAC Protocol for Opportunistic Communication in Ad Hoc Wireless Networks

    NASA Astrophysics Data System (ADS)

    Ashraf, Manzur; Jayasuriya, Aruna; Perreau, Sylvie

    2008-12-01

    Despite significant research effort, the performance of distributed medium access control methods has failed to meet theoretical expectations. This paper proposes a protocol named "Channel MAC" performing a fully distributed medium access control based on opportunistic communication principles. In this protocol, nodes access the channel when the channel quality increases beyond a threshold, while neighbouring nodes are deemed to be silent. Once a node starts transmitting, it will keep transmitting until the channel becomes "bad." We derive an analytical throughput limit for Channel MAC in a shared multiple access environment. Furthermore, three performance metrics of Channel MAC—throughput, fairness, and delay—are analysed in single hop and multihop scenarios using NS2 simulations. The simulation results show throughput performance improvement of up to 130% with Channel MAC over IEEE 802.11. We also show that the severe resource starvation problem (unfairness) of IEEE 802.11 in some network scenarios is reduced by the Channel MAC mechanism.

  15. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.

    1988-01-01

    The geomorphology of Mars is discussed, focusing on the Martian channels. The great flood channels of Mars, the processes of channel erosion, and dendritic channel networks, are examined. The topography of the Channeled Scabland region of the northwestern U.S. is described and compared to the Martian channels. The importance of water in the evolution of the channel systems is considered.

  16. Human body and head characteristics as a communication medium for Body Area Network.

    PubMed

    Kifle, Yonatan; Hun-Seok Kim; Yoo, Jerald

    2015-01-01

    An in-depth investigation of the Body Channel Communication (BCC) under the environment set according to the IEEE 802.15.6 Body Area Network (BAN) standard is conducted to observe and characterize the human body as a communication medium. A thorough measurement of the human head as part of the human channel is also carried out. Human forehead, head to limb, and ear to ear channel is characterized. The channel gain of the human head follows the same bandpass profile of the human torso and limbs with the maximum channel gain occurring at 35MHz. The human body channel gain distribution histogram at given frequencies, while all the other parameters are held constant, exhibits a maximum variation of 2.2dB in the channel gain at the center frequency of the bandpass channel gain profile.

  17. A Beacon Transmission Power Control Algorithm Based on Wireless Channel Load Forecasting in VANETs.

    PubMed

    Mo, Yuanfu; Yu, Dexin; Song, Jun; Zheng, Kun; Guo, Yajuan

    2015-01-01

    In a vehicular ad hoc network (VANET), the periodic exchange of single-hop status information broadcasts (beacon frames) produces channel loading, which causes channel congestion and induces information conflict problems. To guarantee fairness in beacon transmissions from each node and maximum network connectivity, adjustment of the beacon transmission power is an effective method for reducing and preventing channel congestion. In this study, the primary factors that influence wireless channel loading are selected to construct the KF-BCLF, which is a channel load forecasting algorithm based on a recursive Kalman filter and employs multiple regression equation. By pre-adjusting the transmission power based on the forecasted channel load, the channel load was kept within a predefined range; therefore, channel congestion was prevented. Based on this method, the CLF-BTPC, which is a transmission power control algorithm, is proposed. To verify KF-BCLF algorithm, a traffic survey method that involved the collection of floating car data along a major traffic road in Changchun City is employed. By comparing this forecast with the measured channel loads, the proposed KF-BCLF algorithm was proven to be effective. In addition, the CLF-BTPC algorithm is verified by simulating a section of eight-lane highway and a signal-controlled urban intersection. The results of the two verification process indicate that this distributed CLF-BTPC algorithm can effectively control channel load, prevent channel congestion, and enhance the stability and robustness of wireless beacon transmission in a vehicular network.

  18. A Beacon Transmission Power Control Algorithm Based on Wireless Channel Load Forecasting in VANETs

    PubMed Central

    Mo, Yuanfu; Yu, Dexin; Song, Jun; Zheng, Kun; Guo, Yajuan

    2015-01-01

    In a vehicular ad hoc network (VANET), the periodic exchange of single-hop status information broadcasts (beacon frames) produces channel loading, which causes channel congestion and induces information conflict problems. To guarantee fairness in beacon transmissions from each node and maximum network connectivity, adjustment of the beacon transmission power is an effective method for reducing and preventing channel congestion. In this study, the primary factors that influence wireless channel loading are selected to construct the KF-BCLF, which is a channel load forecasting algorithm based on a recursive Kalman filter and employs multiple regression equation. By pre-adjusting the transmission power based on the forecasted channel load, the channel load was kept within a predefined range; therefore, channel congestion was prevented. Based on this method, the CLF-BTPC, which is a transmission power control algorithm, is proposed. To verify KF-BCLF algorithm, a traffic survey method that involved the collection of floating car data along a major traffic road in Changchun City is employed. By comparing this forecast with the measured channel loads, the proposed KF-BCLF algorithm was proven to be effective. In addition, the CLF-BTPC algorithm is verified by simulating a section of eight-lane highway and a signal-controlled urban intersection. The results of the two verification process indicate that this distributed CLF-BTPC algorithm can effectively control channel load, prevent channel congestion, and enhance the stability and robustness of wireless beacon transmission in a vehicular network. PMID:26571042

  19. Geometrical approach to neural net control of movements and posture

    NASA Technical Reports Server (NTRS)

    Pellionisz, A. J.; Ramos, C. F.

    1993-01-01

    In one approach to modeling brain function, sensorimotor integration is described as geometrical mapping among coordinates of non-orthogonal frames that are intrinsic to the system; in such a case sensors represent (covariant) afferents and motor effectors represent (contravariant) motor efferents. The neuronal networks that perform such a function are viewed as general tensor transformations among different expressions and metric tensors determining the geometry of neural functional spaces. Although the non-orthogonality of a coordinate system does not impose a specific geometry on the space, this "Tensor Network Theory of brain function" allows for the possibility that the geometry is non-Euclidean. It is suggested that investigation of the non-Euclidean nature of the geometry is the key to understanding brain function and to interpreting neuronal network function. This paper outlines three contemporary applications of such a theoretical modeling approach. The first is the analysis and interpretation of multi-electrode recordings. The internal geometries of neural networks controlling external behavior of the skeletomuscle system is experimentally determinable using such multi-unit recordings. The second application of this geometrical approach to brain theory is modeling the control of posture and movement. A preliminary simulation study has been conducted with the aim of understanding the control of balance in a standing human. The model appears to unify postural control strategies that have previously been considered to be independent of each other. Third, this paper emphasizes the importance of the geometrical approach for the design and fabrication of neurocomputers that could be used in functional neuromuscular stimulation (FNS) for replacing lost motor control.

  20. Software-defined network abstractions and configuration interfaces for building programmable quantum networks

    NASA Astrophysics Data System (ADS)

    Dasari, Venkat R.; Sadlier, Ronald J.; Geerhart, Billy E.; Snow, Nikolai A.; Williams, Brian P.; Humble, Travis S.

    2017-05-01

    Well-defined and stable quantum networks are essential to realize functional quantum communication applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. In this paper, we describe new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.

  1. A network architecture for International Business Satellite communications

    NASA Astrophysics Data System (ADS)

    Takahata, Fumio; Nohara, Mitsuo; Takeuchi, Yoshio

    Demand Assignment (DA) control is expected to be introduced in the International Business Satellte communications (IBS) network in order to cope with a growing international business traffic. The paper discusses the DA/IBS network from the viewpoints of network configuration, satellite channel configuration and DA control. The network configuration proposed here consists of one Central Station with network management function and several Network Coordination Stations with user management function. A satellite channel configuration is also presented along with a tradeoff study on transmission bit rate, high power amplifier output power requirement, and service quality. The DA control flow and protocol based on CCITT Signalling System No. 7 are also proposed.

  2. Development of Switchable Polarity Solvent Draw Solutes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Aaron D.

    Results of a computational fluid dynamic (CFD) study of flow and heat transfer in a printed circuit heat exchanger (PCHE) geometry are presented. CFD results obtained from a two-plate model are compared to corresponding experimental results for the validation. This process provides the basis for further application of the CFD code to PCHE design and performance analysis in a variety of internal flow geometries. As a part of the code verification and validation (V&V) process, CFD simulation of a single semicircular straight channel under laminar isothermal conditions was also performed and compared to theoretical results. This comparison yielded excellent agreementmore » with the theoretical values. The two-plate CFD model based on the experimental PCHE design overestimated the effectiveness and underestimated the pressure drop. However, it is found that the discrepancy between the CFD result and experimental data was mainly caused by the uncertainty in the geometry of heat exchanger during the fabrication. The CFD results obtained using a slightly smaller channel diameter yielded good agreement with the experimental data. A separate investigation revealed that the average channel diameter of the OSU PCHE after the diffusion-bonding was 1.93 mm on the cold fluid side and 1.90 mm on the hot fluid side which are both smaller than the nominal design value. Consequently, the CFD code was shown to have sufficient capability to evaluate the heat exchanger thermal-hydraulic performance.« less

  3. Efficient quantum transmission in multiple-source networks.

    PubMed

    Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-04-02

    A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency.

  4. Numerical investigation of the effects of channel geometry on platelet activation and blood damage.

    PubMed

    Wu, Jingshu; Yun, B Min; Fallon, Anna M; Hanson, Stephen R; Aidun, Cyrus K; Yoganathan, Ajit P

    2011-02-01

    Thromboembolic complications in Bileaflet mechanical heart valves (BMHVs) are believed to be due to the combination of high shear stresses and large recirculation regions. Relating blood damage to design geometry is therefore essential to ultimately optimize the design of BMHVs. The aim of this research is to quantitatively study the effect of 3D channel geometry on shear-induced platelet activation and aggregation, and to choose an appropriate blood damage index (BDI) model for future numerical simulations. The simulations in this study use a recently developed lattice-Boltzmann with external boundary force (LBM-EBF) method [Wu, J., and C. K. Aidun. Int. J. Numer. Method Fluids 62(7):765-783, 2010; Wu, J., and C. K. Aidun. Int. J. Multiphase flow 36:202-209, 2010]. The channel geometries and flow conditions are re-constructed from recent experiments by Fallon [The Development of a Novel in vitro Flow System to Evaluate Platelet Activation and Procoagulant Potential Induced by Bileaflet Mechanical Heart Valve Leakage Jets in School of Chemical and Biomolecular Engineering. Atlanta: Georgia Institute of Technology] and Fallon et al. [Ann. Biomed. Eng. 36(1):1]. The fluid flow is computed on a fixed regular 'lattice' using the LBM, and each platelet is mapped onto a Lagrangian frame moving continuously throughout the fluid domain. The two-way fluid-solid interactions are determined by the EBF method by enforcing a no-slip condition on the platelet surface. The motion and orientation of the platelet are obtained from Newtonian dynamics equations. The numerical results show that sharp corners or sudden shape transitions will increase blood damage. Fallon's experimental results were used as a basis for choosing the appropriate BDI model for use in future computational simulations of flow through BMHVs.

  5. Perspectives and limitations of QKD integration in metropolitan area networks.

    PubMed

    Aleksic, Slavisa; Hipp, Florian; Winkler, Dominic; Poppe, Andreas; Schrenk, Bernhard; Franzl, Gerald

    2015-04-20

    Quantum key distribution (QKD) systems have already reached a reasonable level of maturity. However, a smooth integration and a wide adoption of commercial QKD systems in metropolitan area networks has still remained challenging because of technical and economical obstacles. Mainly the need for dedicated fibers and the strong dependence of the secret key rate on both loss budget and background noise in the quantum channel hinder a practical, flexible and robust implementation of QKD in current and next-generation optical metro networks. In this paper, we discuss these obstacles and present approaches to share existing fiber infrastructures among quantum and classical channels. Particularly, a proposal for a smooth integration of QKD in optical metro networks, which implies removing spurious background photons caused by optical transmitters, amplifiers and nonlinear effects in fibers, is presented and discussed. We determine and characterize impairments on quantum channels caused by many classical telecom channels at practically used power levels coexisting within the same fiber. Extensive experimental results are presented and indicate that a practical integration of QKD in conventional optical metro networks is possible.

  6. Recognition of oolite-filled channels, Ste. Genevieve Formation, Illinois basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandy, W.F. Jr.

    1991-03-01

    Porous oolitic grainstones in the Ste. Genevieve Formation (Mississippian) of the Illinois basin have typically been viewed as bar-shaped reservoirs. However, a reservoir discovered in the Allendale Pool, southern Lawrence County, is an oolitic grainstone with a channel geometry. A similar, oolite-filled channel has been recognized in southern Lawrence field, approximately 4 miles north of the Allendale channel. This reservoir, previously thought to be a bar, was discovered over 80 years ago is much larger than the Allendale channel. Both reservoirs have proven prolific, with high initial and cumulative productions and relatively little water. In contrast to oolitic bars, whichmore » are convex downward, with relatively greater average thickness and porosities. Laterally, bars thin gradually, whereas channels may thin very abruptly. Similar, undiscovered channels probably occur elsewhere in the Illinois basin.« less

  7. Effect of Cross Sectional Geometry on PDMS Micro Peristaltic Pump Performance: Comparison of SU-8 Replica Molding vs. Micro Injection Molding

    PubMed Central

    Graf, Neil J.

    2013-01-01

    Two different fabrication methods were employed to fabricate micropumps with different cross-sectional channel geometries. The first was to fabricate rectangular cross-sectional microchannel geometries using the well known fabrication method of replica molding (REM).1 The second, and far less utilized fabrication technique, was to create microchannel molds using an in-house fabricated handheld micro injection molding apparatus. The injection mold apparatus was designed for use with elastomeric room temperature vulcanization (RTV) polymers, as opposed to most other injection molding machines, which are designed for use with thermoplastic polymers. The injection mold’s bottom plate was used as a microchannel molding template. The molding template was created by threading a small-diameter wire (150 μm or less) through the injection mold’s bottom plate, with subsequent adhesion and smoothing of a thin piece of aluminum foil over the wire-raised injection mold template. When molded against, the template produced a rounded/Gaussian-shaped PDMS microchannel. The design of the injection mold will be presented, along with a direct comparison for micropump performance metrics such as flow rate, valving characteristics, and maximum backpressures attainable for each of the respective micropump channel geometries. PMID:23917263

  8. Mesoscopic model for filament orientation in growing actin networks: the role of obstacle geometry

    NASA Astrophysics Data System (ADS)

    Weichsel, Julian; Schwarz, Ulrich S.

    2013-03-01

    Propulsion by growing actin networks is a universal mechanism used in many different biological systems, ranging from the sheet-like lamellipodium of crawling animal cells to the actin comet tails induced by certain bacteria and viruses in order to move within their host cells. Although the core molecular machinery for actin network growth is well preserved in all of these cases, the geometry of the propelled obstacle varies considerably. During recent years, filament orientation distribution has emerged as an important observable characterizing the structure and dynamical state of the growing network. Here we derive several continuum equations for the orientation distribution of filaments growing behind stiff obstacles of various shapes and validate the predicted steady state orientation patterns by stochastic computer simulations based on discrete filaments. We use an ordinary differential equation approach to demonstrate that for flat obstacles of finite size, two fundamentally different orientation patterns peaked at either ±35° or +70°/0°/ - 70° exhibit mutually exclusive stability, in agreement with earlier results for flat obstacles of very large lateral extension. We calculate and validate phase diagrams as a function of model parameters and show how this approach can be extended to obstacles with piecewise straight contours. For curved obstacles, we arrive at a partial differential equation in the continuum limit, which again is in good agreement with the computer simulations. In all cases, we can identify the same two fundamentally different orientation patterns, but only within an appropriate reference frame, which is adjusted to the local orientation of the obstacle contour. Our results suggest that two fundamentally different network architectures compete with each other in growing actin networks, irrespective of obstacle geometry, and clarify how simulated and electron tomography data have to be analyzed for non-flat obstacle geometries.

  9. Morphological adjustments in a meandering reach of the middle Yangtze River caused by severe human activities

    NASA Astrophysics Data System (ADS)

    Zhou, Meirong; Xia, Junqiang; Lu, Jinyou; Deng, Shanshan; Lin, Fenfen

    2017-05-01

    In the past 50 years, the Shishou reach in the middle Yangtze River underwent significant channel evolution owing to the implementation of an artificial cutoff, the construction of bank revetment works and the operation of the Three Gorges Project (TGP). Based on the measured hydrological data and topographic data, the processes of channel evolution in this reach were investigated mainly from the adjustments in planform and cross-sectional geometries. The variation in planform geometry obtained in this study indicates that (i) the artificial cutoff at Zhongzhouzi caused the river regime to adjust drastically, with the mean rate of thalweg migration at reach scale of 42.0 m/a over the period 1966-1975; (ii) then the effect of this artificial cutoff reduced gradually, with the mean migration rate decreasing to < 30 m/a in 1975-1993, while it increased to > 40 m/a owing to the occurrence of high water levels in 1993-1998; and (iii) the average annual rate of thalweg migration decreased to 29.3 m/a because of the impacts of various bank protection engineering and the TGP operation during the period 2002-2015. However, remarkable thalweg migration processes still occurred in local regions after the TGP operation, which resulted in significant bankline migration in local reaches of Beimenkou, Shijiatai, and Tiaoxiankou. In addition, the adjustments of bankfull channel geometry were investigated at section and reach scales after the TGP operation. Calculated results show that lateral channel migration in this reach was restricted by various river regulation works and that channel evolution was mainly characterized by an increase in bankfull depth and cross-sectional area. Empirical relationships were developed between the reach-scale bankfull dimensions (depth and area), the bankfull widths at specified sections, and the previous 5-year average fluvial erosion intensity during flood seasons, with high correlation degrees between them being obtained.

  10. Effects of Pin Detached Space on Heat Transfer in a Rib Roughened Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siw, Sin Chien; Chyu, Minking K.; Alvin, Mary Anne

    2012-11-08

    An experimental study is performed to investigate the heat transfer characteristics and frictional losses in a rib roughened channel combined with detached pin-fins. The overall channel geometry (W=76.2 mm, E=25.4 mm) simulates an internal cooling passage of wide aspect ratio (3:1) in a gas turbine airfoil. With a given pin diameter, D=6.35 mm=[1/4]E, three different pin-fin height-to-diameter ratios, H/D=4, 3, and 2, were examined. Each of these three cases corresponds to a specific pin array geometry of detachment spacing (C) between the pin-tip and one of the endwalls, i.e., C/O=0, 1, 2, respectively. The rib height-to-channel height ratio is 0.0625.more » Two newly proposed cross ribs, namely the broken rib and full rib are evaluated in this effort. The broken ribs are positioned in between two consecutive rows of pin-fins, while the full ribs are fully extended adjacent to the pin-fins. The Reynolds number, based on the hydraulic diameter of the unobstructed cross section and the mean bulk velocity, ranges from 10,000 to 25,000. The experiment employs a hybrid technique based on transient liquid crystal imaging to obtain distributions of the local heat transfer coefficient over all of the participating surfaces, including the endwalls and all pin elements. The presence of ribs enhances local heat transfer coefficient on the endwall substantially by approximately 20% to 50% as compared to the neighboring endwall. In addition, affected by the rib geometry, which is a relatively low profile as compared to the overall height of the channel, the pressure loss seems to be insensitive to the presence of the ribs. However, from the overall heat transfer enhancement standpoint, the baseline cases (without ribs) outperform cases with broken ribs or full ribs.« less

  11. Design considerations and emerging challenges for nanotube-, nanowire-, and negative capacitor-field effect transistors

    NASA Astrophysics Data System (ADS)

    Wahab, Md. Abdul

    As the era of classical planar metal-oxide-semiconductor field-effect transistors (MOSFETs) comes to an end, the semiconductor industry is beginning to adopt 3D device architectures, such as FinFETs, starting at the 22 nm technology node. Since physical limits such as short channel effect (SCE) and self-heating may dominate, it may be difficult to scale Si FinFET below 10 nm. In this regard, transistors with different materials, geometries, or operating principles may help. For example, gate has excellent electrostatic control over 2D thin film channel with planar geometry, and 1D nanowire (NW) channel with gate-all-around (GAA) geometry to reduce SCE. High carrier mobility of single wall carbon nanotube (SWNT) or III-V channels may reduce VDD to reduce power consumption. Therefore, as channel of transistor, 2D thin film of array SWNTs and 1D III-V multi NWs are promising for sub 10 nm technology nodes. In this thesis, we analyze the potential of these transistors from process, performance, and reliability perspectives. For SWNT FETs, we discuss a set of challenges (such as how to (i) characterize diameter distribution, (ii) remove metallic (m)-SWNTs, and (iii) avoid electrostatic cross-talk among the neighboring SWNTs), and demonstrate solution strategies both theoretically and experimentally. Regarding self-heating in these new class of devices (SWNT FET and GAA NW FET including state-of-the-art FinFET), higher thermal resistance from poor thermal conducting oxides results significant temperature rise, and reduces the IC life-time. For GAA NW FETs, we discuss accurate self-heating evaluation with good spatial, temporal, and thermal resolutions. The introduction of negative capacitor (NC), as gate dielectric stack of transistor, allows sub 60 mV/dec operation to reduce power consumption significantly. Taken together, our work provides a comprehensive perspective regarding the challenges and opportunities of sub 10 nm technology nodes.

  12. New Vocabulary: Araneiform and Lace Terrains

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    The south polar terrain on Mars contains landforms unlike any that we see on Earth, so much that a new vocabulary is required to describe them. The word 'araneiform' means 'spider-like.' There are radially organized channels on Mars that look spider-like, but we don't want to confuse anyone by talking about 'spiders' when we really mean 'channels,' not 'bugs.'

    The first subimage (figure 1) shows an example of 'connected araneiform topography,' terrain that is filled with spider-like channels whose arms branch and connect to each other. Gas flows through these channels until it encounters a vent, where is escapes out to the atmosphere, carrying dust along with it. The dark dust is blown around by the prevailing wind.

    The second subimage (figure 2) shows a different region of the same image where the channels are not radially organized. In this region they form a dense tangled network of tortuous strands. We refer to this as 'lace.'

    Observation Geometry Image PSP_002651_0930 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 18-Feb-2007. The complete image is centered at -86.9 degrees latitude, 97.2 degrees East longitude. The range to the target site was 268.7 km (167.9 miles). At this distance the image scale is 53.8 cm/pixel (with 2 x 2 binning) so objects 161 cm across are resolved. The image shown here has been map-projected to 50 cm/pixel . The image was taken at a local Mars time of 04:56 PM and the scene is illuminated from the west with a solar incidence angle of 86 degrees, thus the sun was about 4 degrees above the horizon. At a solar longitude of 186.4 degrees, the season on Mars is Northern Autumn.

  13. Polymer Coatings in 3D-Printed Fluidic Device Channels for Improved Cellular Adherence Prior to Electrical Lysis.

    PubMed

    Gross, Bethany C; Anderson, Kari B; Meisel, Jayda E; McNitt, Megan I; Spence, Dana M

    2015-06-16

    This paper describes the design and fabrication of a polyjet-based three-dimensional (3D)-printed fluidic device where poly(dimethylsiloxane) (PDMS) or polystyrene (PS) were used to coat the sides of a fluidic channel within the device to promote adhesion of an immobilized cell layer. The device was designed using computer-aided design software and converted into an .STL file prior to printing. The rigid, transparent material used in the printing process provides an optically transparent path to visualize endothelial cell adherence and supports integration of removable electrodes for electrical cell lysis in a specified portion of the channel (1 mm width × 0.8 mm height × 2 mm length). Through manipulation of channel geometry, a low-voltage power source (500 V max) was used to selectively lyse adhered endothelial cells in a tapered region of the channel. Cell viability was maintained on the device over a 5 day period (98% viable), though cell coverage decreased after day 4 with static media delivery. Optimal lysis potentials were obtained for the two fabricated device geometries, and selective cell clearance was achieved with cell lysis efficiencies of 94 and 96%. The bottleneck of unknown surface properties from proprietary resin use in fabricating 3D-printed materials is overcome through techniques to incorporate PDMS and PS.

  14. TOWARDS AN AUTOMATED TOOL FOR CHANNEL-NETWORK CHARACTERIZATIONS, MODELING, AND ASSESSMENT

    EPA Science Inventory

    Detailed characterization of channel networks for hydrologic and geomorphic models has traditionally been a difficult and expensive proposition, and lack of information has thus been a common limitation of modeling efforts. With the advent of datasets derived from high-resolutio...

  15. SIMULATING SUB-DECADAL CHANNEL MORPHOLOGIC CHANGE IN EPHEMERAL STREAM NETWORKS

    EPA Science Inventory

    A distributed watershed model was modified to simulate cumulative channel morphologic
    change from multiple runoff events in ephemeral stream networks. The model incorporates the general design of the event-based Kinematic Runoff and" Erosion Model (KINEROS), which describes t...

  16. Recent progress in n-channel organic thin-film transistors.

    PubMed

    Wen, Yugeng; Liu, Yunqi

    2010-03-26

    Particular attention has been focused on n-channel organic thin-film transistors (OTFTs) during the last few years, and the potentially cost-effective circuitry-based applications in flexible electronics, such as flexible radiofrequency identity tags, smart labels, and simple displays, will benefit from this fast development. This article reviews recent progress in performance and molecular design of n-channel semiconductors in the past five years, and limitations and practicable solutions for n-channel OTFTs are dealt with from the viewpoint of OTFT constitution and geometry, molecular design, and thin-film growth conditions. Strategy methodology is especially highlighted with an aim to investigate basic issues in this field.

  17. Determination of channel change for selected streams, Maricopa County, Arizona

    USGS Publications Warehouse

    Capesius, Joseph P.; Lehman, Ted W.

    2002-01-01

    In Maricopa County, Arizona, 10 sites on seven streams were studied to determine the lateral and vertical change of the channel. Channel change was studied over time scales ranging from individual floods to decades using cross-section surveys, discharge measurements, changes in the point of zero flow, and repeat photography. All of the channels showed some change in cross-section area or hydraulic radius over the time scales studied, but the direction and mag-nitude of change varied considerably from one flow, or series of flows, to another. The documentation of cross-section geometry for streams in Maricopa County for long-term monitoring was begun in this study.

  18. Determination of the functioning parameters in asymmetrical flow field-flow fractionation with an exponential channel.

    PubMed

    Déjardin, P

    2013-08-30

    The flow conditions in normal mode asymmetric flow field-flow fractionation are determined to approach the high retention limit with the requirement d≪l≪w, where d is the particle diameter, l the characteristic length of the sample exponential distribution and w the channel height. The optimal entrance velocity is determined from the solute characteristics, the channel geometry (exponential to rectangular) and the membrane properties, according to a model providing the velocity fields all over the cell length. In addition, a method is proposed for in situ determination of the channel height. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Emergence of Soft Communities from Geometric Preferential Attachment

    PubMed Central

    Zuev, Konstantin; Boguñá, Marián; Bianconi, Ginestra; Krioukov, Dmitri

    2015-01-01

    All real networks are different, but many have some structural properties in common. There seems to be no consensus on what the most common properties are, but scale-free degree distributions, strong clustering, and community structure are frequently mentioned without question. Surprisingly, there exists no simple generative mechanism explaining all the three properties at once in growing networks. Here we show how latent network geometry coupled with preferential attachment of nodes to this geometry fills this gap. We call this mechanism geometric preferential attachment (GPA), and validate it against the Internet. GPA gives rise to soft communities that provide a different perspective on the community structure in networks. The connections between GPA and cosmological models, including inflation, are also discussed. PMID:25923110

  20. Enhanced MicroChannel Heat Transfer in Macro-Geometry using Conventional Fabrication Approach

    NASA Astrophysics Data System (ADS)

    Ooi, KT; Goh, AL

    2016-09-01

    This paper presents studies on passive, single-phase, enhanced microchannel heat transfer in conventionally sized geometry. The intention is to allow economical, simple and readily available conventional fabrication techniques to be used for fabricating macro-scale heat exchangers with microchannel heat transfer capability. A concentric annular gap between a 20 mm diameter channel and an 19.4 mm diameter insert forms a microchannel where heat transfer occurs. Results show that the heat transfer coefficient of more than 50 kW/m·K can be obtained for Re≈4,000, at hydraulic diameter of 0.6 mm. The pressure drop values of the system are kept below 3.3 bars. The present study re-confirms the feasibility of fabricating macro-heat exchangers with microchannel heat transfer capability.

  1. Mega-geomorphology and neotectonics

    NASA Technical Reports Server (NTRS)

    Lattman, L. H.

    1985-01-01

    For several decades, subtle neotectonic effects involving several square kilometers have been studied in detail using remote sensing, primarily various types of stereo-aerial photographs at scales of 1:10,000 to 1:80,000. These subtle effects, especially local uplifts associated with growing structures of differential compaction, have been detected by the effect on drainage patterns, changes in hydraulic geometry of individuals channels or groups of channels, tonal halos (soil) and fracture patterns. The studies were extended with the advent of thermal IR imagery particularly in tonal analysis, and SLAR primarily in fracture pattern studies. Lately, quantitative efforts have begun attempting to link measured uplift over known structures with measured changes in hydraulic geometry and alluvial deposition. Thus, efforts are now underway attempting to quantify the relationship between neo- (micro-) tectonic changes and geomorphic parameters of drainage systems.

  2. Hydraulic geometry of the Platte River in south-central Nebraska

    USGS Publications Warehouse

    Eschner, T.R.

    1982-01-01

    At-a-station hydraulic-geometry of the Platte River in south-central Nebraska is complex. The range of exponents of simple power-function relations is large, both between different reaches of the river, and among different sections within a given reach. The at-a-station exponents plot in several fields of the b-f-m diagram, suggesting that morphologic and hydraulic changes with increasing discharge vary considerably. Systematic changes in the plotting positions of the exponents with time indicate that in general, the width exponent has decreased, although trends are not readily apparent in the other exponents. Plots of the hydraulic-geometry relations indicate that simple power functions are not the proper model in all instances. For these sections, breaks in the slopes of the hydraulic geometry relations serve to partition the data sets. Power functions fit separately to the partitioned data described the width-, depth-, and velocity-discharge relations more accurately than did a single power function. Plotting positions of the exponents from hydraulic geometry relations of partitioned data sets on b-f-m diagrams indicate that much of the apparent variations of plotting positions of single power functions results because the single power functions compromise both subsets of partitioned data. For several sections, the shape of the channel primarily accounts for the better fit of two-power functions to partitioned data than a single power function over the entire range of data. These non-log linear relations may have significance for channel maintenance. (USGS)

  3. Analysis of equivalent widths of alluvial channels and application for instream habitat in the Rio Grande

    Treesearch

    Claudia A. Leon

    2003-01-01

    Rivers are natural systems that adjust to variable water and sediment discharges. Channels with spatial variability in width that are managed to maintain constant widths over a period of time are able to transport the same water and sediment discharges by adjusting the bed slope. Methods developed to de ne equilibrium hydraulic geometry characteristics of alluvial...

  4. Downstream effects of stream flow diversion on channel characteristics and riparian vegetation in the Colorado Rocky Mountains, USA

    Treesearch

    Simeon T. Caskey; Tyanna S. Blaschak; Ellen Wohl; Elizabeth Schnackenberg; David M. Merritt; Kathleen A. Dwire

    2015-01-01

    Flow diversions are widespread and numerous throughout the semi-arid mountains of the western United States. Diversions vary greatly in their structure and ability to divert water, but can alter the magnitude and duration of base and peak flows, depending upon their size and management. Channel geometry and riparian plant communities have adapted to unique hydrologic...

  5. Theoretical Foundations of Wireless Networks

    DTIC Science & Technology

    2015-07-22

    Optimal transmission over a fading channel with imperfect channel state information,” in Global Telecommun. Conf., pp. 1–5, Houston TX , December 5-9...SECURITY CLASSIFICATION OF: The goal of this project is to develop a formal theory of wireless networks providing a scientific basis to understand...randomness and optimality. Randomness, in the form of fading, is a defining characteristic of wireless networks. Optimality is a suitable design

  6. On the Probability of Error and Stochastic Resonance in Discrete Memoryless Channels

    DTIC Science & Technology

    2013-12-01

    Information - Driven Doppler Shift Estimation and Compensation Methods for Underwater Wireless Sensor Networks ”, which is to analyze and develop... underwater wireless sensor networks . We formulated an analytic relationship that relates the average probability of error to the systems parameters, the...thesis, we studied the performance of Discrete Memoryless Channels (DMC), arising in the context of cooperative underwater wireless sensor networks

  7. Growth laws for sub-delta crevasses in the Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Yocum, T. A.; Georgiou, I. Y.; Straub, K. M.

    2017-12-01

    River deltas are threatened by environmental change, including subsidence, global sea level rise, reduced sediment inputs and other local factors. In the Mississippi River Delta (MRD) these impacts are exemplified, and have led to proposed solutions to build land that include sediment diversions to reinitiate the delta cycle. Deltas were studied extensively using numerical models, theoretical and conceptual frameworks, empirical scaling relationships, laboratory models and field observations. But predicting the future of deltas relies on field observations where for most deltas data are still lacking. Moreover, empirical and theoretical scaling laws may be influenced by the data used to develop them, while laboratory deltas may be influenced by scaling issues. Anthropogenic crevasses in the MRD are large enough to overcome limitations of laboratory deltas, and small enough to allow for rapid channel and wetland development, providing an ideal setting to investigate delta development mechanics. Here we assessed growth laws of sub-delta crevasses (SDC) in the MRD, in two experimental laboratory deltas (LD - weakly and strongly cohesive) and compared them to river dominated deltas worldwide. Channel and delta geometry metrics for each system were obtained using geospatial tools, bathymetric datasets, sediment size, and hydrodynamic observations. Results show that SDC follow growth laws similar to large river dominated deltas, with the exception of some that exhibit anomalous behavior with respect to the frequency and distance to a bifurcation and the fraction of wetted delta shoreline (allometry metrics). Most SDC exhibit a systematic decrease of non-dimensional channel geometries with increased bifurcation order, indicating that channels are adjusting to decreased flow after bifurcations occur, and exhibit linear trends for land allometry and width-depth ratio, although geometries decrease more rapidly per bifurcation order. Measured distance to bifurcations in SDC and LD appear longer compared to those predicted by power law metrics. With less channel splitting in some crevasses, channel extension creates wetted perimeter faster than or at the same rate as wetted area, which explains why some SDC displayed fractal growth of the wetted allometry.

  8. Anthropogenic changes to the tidal channel network, sediment rerouting, and social implications in southwest Bangladesh

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Goodbred, S. L., Jr.; Sams, S.; Small, C.

    2015-12-01

    The tidal channel network in southwest Bangladesh has been undergoing major adjustment in response to anthropogenic modification over the past few decades. Densely inhabited, agricultural islands that have been embanked to protect against inundation by tides, river flooding, and storm surges (i.e., polders) preclude tidal exchange and sedimentation. Studies reveal this results in elevation deficits relative to mean high water, endangering local communities when embankment failures occur (e.g., during storms, lateral channel erosion). In addition, many studies suggest that the decrease in tidal prism and associated change in hydrodynamics from poldering causes shoaling in remaining tidal channels, which can cause a disruption in transportation. The widespread closure and conversion of tidal channel areas to profitable shrimp aquaculture is also prevalent in this region. In this study, we quantify the direct closure of tidal channels due to poldering and shrimp aquaculture using historical Landsat and Google Earth imagery, and analyze the morphologic adjustment of the tidal channel network due to these perturbations. In the natural Sundarbans mangrove forest, the tidal channel network has remained relatively constant since the 1970s. In contrast, construction of polders removed >1000 km of primary tidal creeks and >90 km2 has been reclaimed outside of polders through infilling and closure of formerly-active, higher order conduit channels now used for shrimp aquaculture. Field validation confirm tidal restriction by large sluice gates is prevalent, favoring local channel siltation at rates up to 20cm/yr. With the impoundment of primary creeks and closure of 30-60% of conduit channels in the study area, an estimated 1,400 x 106 m3 of water has been removed from the tidal prism and potentially redirected within remaining channels. This has significant implications for tidal amplification in this region. Further, we estimate that 12.3 x 106 MT of sediment annually infills remaining channels, which amounts to ~12% of the total annual sediment load supplied to the tidal deltaplain. This suggests that significant sediment is available in the system for elevation remediation of polders, however the hydrodynamic feasibility of reopening clogged channels and effective sediment dispersal is questionable

  9. Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grudka, Andrzej; National Quantum Information Centre of Gdansk, PL-81-824 Sopot; Horodecki, Pawel

    2010-06-15

    We analyze quantum network primitives which are entanglement breaking. We show superadditivity of quantum and classical capacity regions for quantum multiple-access channels and the quantum butterfly network. Since the effects are especially visible at high noise they suggest that quantum information effects may be particularly helpful in the case of the networks with occasional high noise rates. The present effects provide a qualitative borderline between superadditivities of bipartite and multipartite systems.

  10. Influence of tools geometry and processing conditions on behavior of a difficult-to-work Al-Mg alloy during equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Comǎneci, Radu Ioachim; Nedelcu, Dumitru; Bujoreanu, Leandru Gheorghe

    2017-10-01

    Equal channel angular pressing (ECAP) is a well-established method for grain refinement in metallic materials by large shear plastic deformation, being the most promising and effective severe plastic deformation (SPD) technique. ECAP is a discontinuous process, so the billet removal implies a new development of the procedure: the new sample pushes out the previous sample. In resuming the process the head and the tail ends of the work piece which becomes strongly distorted and receiving different amount of strain have to be removed. Due to the path difference in material flow between upper and lower region of the outlet channel, a non-uniform strain and stress distribution across the width of the workpiece leaving the plastic deformation zone (PDZ) is achieved. A successful ECAP requires surpassing two obstacles: the necessary load level which directly affects tools and a favorable stress distribution so the material withstanding the accumulated strain of repeated deformation. Under back pressure (BP), materials have shown to be able to withstand more passes. As soon as the billet passes the PDZ along the bisector plane of the two channels, the compressive mean stress changes to tensile (leading to crack initiation), while in the presence of BP, a negative (compressive) stress is applied during the process. In this paper a comparative tridimensional finite element analysis (FEA) is performed to evaluate the behavior of a difficult-to-work Al-Mg alloy depending on tools geometry and process parameters. The results in terms of load level and strain distribution show the influence of the punch geometry and BP on the material behavior.

  11. Longitudinal pressure-driven flows between superhydrophobic grooved surfaces: Large effective slip in the narrow-channel limit

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Yariv, Ehud

    2017-07-01

    The gross amplification of the fluid velocity in pressure-driven flows due to the introduction of superhydrophobic walls is commonly quantified by an effective slip length. The canonical duct-flow geometry involves a periodic structure of longitudinal shear-free stripes at either one or both of the bounding walls, corresponding to flat-meniscus gas bubbles trapped within a periodic array of grooves. This grating configuration is characterized by two geometric parameters, namely the ratio κ of channel width to microstructure period and the areal fraction Δ of the shear-free stripes. For wide channels, κ ≫1 , this geometry is known to possess an approximate solution where the dimensionless slip length λ , normalized by the duct semiwidth, is small, indicating a weak superhydrophobic effect. We here address the other extreme of narrow channels, κ ≪1 , identifying large O (κ-2) values of λ for the symmetric configuration, where both bounding walls are superhydrophobic. This velocity enhancement is associated with an unconventional Poiseuille-like flow profile where the parabolic velocity variation takes place in a direction parallel (rather than perpendicular) to the boundaries. Use of matched asymptotic expansions and conformal-mapping techniques provides λ up to O (κ-1) , establishing the approximationλ ˜κ-2Δ/33 +κ-1Δ/2π ln4 +⋯, which is in excellent agreement with a semianalytic solution of the dual equations governing the respective coefficients of a Fourier-series representation of the fluid velocity. No similar singularity occurs in the corresponding asymmetric configuration, involving a single superhydrophobic wall; in that geometry, a Hele-Shaw approximation shows that λ =O (1 ) .

  12. Le Chatelier's principle with multiple relaxation channels

    NASA Astrophysics Data System (ADS)

    Gilmore, R.; Levine, R. D.

    1986-05-01

    Le Chatelier's principle is discussed within the constrained variational approach to thermodynamics. The formulation is general enough to encompass systems not in thermal (or chemical) equilibrium. Particular attention is given to systems with multiple constraints which can be relaxed. The moderation of the initial perturbation increases as additional constraints are removed. This result is studied in particular when the (coupled) relaxation channels have widely different time scales. A series of inequalities is derived which describes the successive moderation as each successive relaxation channel opens up. These inequalities are interpreted within the metric-geometry representation of thermodynamics.

  13. Exorcising Maxwell's Demon from Liboff's Three-Channel Conundrum

    NASA Astrophysics Data System (ADS)

    Opatrný, Tomáš; Mišáková, Zuzana

    2011-02-01

    We study a model proposed by Liboff (Found. Phys. Lett. 10:89, 1997) to violate the second law of thermodynamics. Discs are moving without friction in three connected channels inclined by π/3 with respect to each other. Based on the geometry considerations, it was argued that eventually all the discs end up in the middle channel regardless of their initial positions. This would mean a decrease of the entropy of the system and violation of the second law. We argue that no such anomalous behavior occurs in the system.

  14. A Pre-Emptive Horizontal Channel Borrowing and Vertical Traffic Overflowing Channel Allocation Scheme for Overlay Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Fang-Ming; Jiang, Ling-Ge; He, Chen

    In this paper, a channel allocation scheme is studied for overlay wireless networks to optimize connection-level QoS. The contributions of our work are threefold. First, a channel allocation strategy using both horizontal channel borrowing and vertical traffic overflowing (HCBVTO) is presented and analyzed. When all the channels in a given macrocell are used, high-mobility real-time handoff requests can borrow channels from adjacent homogeneous cells. In case that the borrowing requests fail, handoff requests may also be overflowed to heterogeneous cells, if possible. Second, high-mobility real-time service is prioritized by allowing it to preempt channels currently used by other services. And third, to meet the high QoS requirements of some services and increase the utilization of radio resources, certain services can be transformed between real-time services and non-real-time services as necessary. Simulation results demonstrate that the proposed schemes can improve system performance.

  15. From conformal blocks to path integrals in the Vaidya geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anous, Tarek; Hartman, Thomas; Rovai, Antonin

    Correlators in conformal field theory are naturally organized as a sum over conformal blocks. In holographic theories, this sum must reorganize into a path integral over bulk fields and geometries. We explore how these two sums are related in the case of a point particle moving in the background of a 3d collapsing black hole. The conformal block expansion is recast as a sum over paths of the first-quantized particle moving in the bulk geometry. Off-shell worldlines of the particle correspond to subdominant contributions in the Euclidean conformal block expansion, but these same operators must be included in order tomore » correctly reproduce complex saddles in the Lorentzian theory. During thermalization, a complex saddle dominates under certain circumstances; in this case, the CFT correlator is not given by the Virasoro identity block in any channel, but can be recovered by summing heavy operators. This effectively converts the conformal block expansion in CFT from a sum over intermediate states to a sum over channels that mimics the bulk path integral.« less

  16. From conformal blocks to path integrals in the Vaidya geometry

    DOE PAGES

    Anous, Tarek; Hartman, Thomas; Rovai, Antonin; ...

    2017-09-04

    Correlators in conformal field theory are naturally organized as a sum over conformal blocks. In holographic theories, this sum must reorganize into a path integral over bulk fields and geometries. We explore how these two sums are related in the case of a point particle moving in the background of a 3d collapsing black hole. The conformal block expansion is recast as a sum over paths of the first-quantized particle moving in the bulk geometry. Off-shell worldlines of the particle correspond to subdominant contributions in the Euclidean conformal block expansion, but these same operators must be included in order tomore » correctly reproduce complex saddles in the Lorentzian theory. During thermalization, a complex saddle dominates under certain circumstances; in this case, the CFT correlator is not given by the Virasoro identity block in any channel, but can be recovered by summing heavy operators. This effectively converts the conformal block expansion in CFT from a sum over intermediate states to a sum over channels that mimics the bulk path integral.« less

  17. Improved Scheduling Mechanisms for Synchronous Information and Energy Transmission.

    PubMed

    Qin, Danyang; Yang, Songxiang; Zhang, Yan; Ma, Jingya; Ding, Qun

    2017-06-09

    Wireless energy collecting technology can effectively reduce the network time overhead and prolong the wireless sensor network (WSN) lifetime. However, the traditional energy collecting technology cannot achieve the balance between ergodic channel capacity and average collected energy. In order to solve the problem of the network transmission efficiency and the limited energy of wireless devices, three improved scheduling mechanisms are proposed: improved signal noise ratio (SNR) scheduling mechanism (IS2M), improved N-SNR scheduling mechanism (INS2M) and an improved Equal Throughput scheduling mechanism (IETSM) for different channel conditions to improve the whole network performance. Meanwhile, the average collected energy of single users and the ergodic channel capacity of three scheduling mechanisms can be obtained through the order statistical theory in Rayleig, Ricean, Nakagami- m and Weibull fading channels. It is concluded that the proposed scheduling mechanisms can achieve better balance between energy collection and data transmission, so as to provide a new solution to realize synchronous information and energy transmission for WSNs.

  18. Improved Scheduling Mechanisms for Synchronous Information and Energy Transmission

    PubMed Central

    Qin, Danyang; Yang, Songxiang; Zhang, Yan; Ma, Jingya; Ding, Qun

    2017-01-01

    Wireless energy collecting technology can effectively reduce the network time overhead and prolong the wireless sensor network (WSN) lifetime. However, the traditional energy collecting technology cannot achieve the balance between ergodic channel capacity and average collected energy. In order to solve the problem of the network transmission efficiency and the limited energy of wireless devices, three improved scheduling mechanisms are proposed: improved signal noise ratio (SNR) scheduling mechanism (IS2M), improved N-SNR scheduling mechanism (INS2M) and an improved Equal Throughput scheduling mechanism (IETSM) for different channel conditions to improve the whole network performance. Meanwhile, the average collected energy of single users and the ergodic channel capacity of three scheduling mechanisms can be obtained through the order statistical theory in Rayleig, Ricean, Nakagami-m and Weibull fading channels. It is concluded that the proposed scheduling mechanisms can achieve better balance between energy collection and data transmission, so as to provide a new solution to realize synchronous information and energy transmission for WSNs. PMID:28598395

  19. The Electrophysiological MEMS Device with Micro Channel Array for Cellular Network Analysis

    NASA Astrophysics Data System (ADS)

    Tonomura, Wataru; Kurashima, Toshiaki; Takayama, Yuzo; Moriguchi, Hiroyuki; Jimbo, Yasuhiko; Konishi, Satoshi

    This paper describes a new type of MCA (Micro Channel Array) for simultaneous multipoint measurement of cellular network. Presented MCA employing the measurement principles of the patch-clamp technique is designed for advanced neural network analysis which has been studied by co-authors using 64ch MEA (Micro Electrode Arrays) system. First of all, sucking and clamping of cells through channels of developed MCA is expected to improve electrophysiological signal detections. Electrophysiological sensing electrodes integrated around individual channels of MCA by using MEMS (Micro Electro Mechanical System) technologies are electrically isolated for simultaneous multipoint measurement. In this study, we tested the developed MCA using the non-cultured rat's cerebral cortical slice and the hippocampal neurons. We could measure the spontaneous action potential of the slice simultaneously at multiple points and culture the neurons on developed MCA. Herein, we describe the experimental results together with the design and fabrication of the electrophysiological MEMS device with MCA for cellular network analysis.

  20. Quantum information to the home

    NASA Astrophysics Data System (ADS)

    Choi, Iris; Young, Robert J.; Townsend, Paul D.

    2011-06-01

    Information encoded on individual quanta will play an important role in our future lives, much as classically encoded digital information does today. Combining quantum information carried by single photons with classical signals encoded on strong laser pulses in modern fibre-to-the-home (FTTH) networks is a significant challenge, the solution to which will facilitate the global distribution of quantum information to the home and with it a quantum internet [1]. In real-world networks, spontaneous Raman scattering in the optical fibre would induce crosstalk between the high-power classical channels and a single-photon quantum channel, such that the latter is unable to operate. Here, we show that the integration of quantum and classical information on an FTTH network is possible by performing quantum key distribution (QKD) on a network while simultaneously transferring realistic levels of classical data. Our novel scheme involves synchronously interleaving a channel of quantum data with the Raman scattered photons from a classical channel, exploiting the periodic minima in the instantaneous crosstalk and thereby enabling secure QKD to be performed.

Top