Rehan, Waqas; Fischer, Stefan; Rehan, Maaz
2016-09-12
Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end, simulations are made using MATLAB, and the results show that the Extended version of NEAMCBTC algorithm (Ext-NEAMCBTC) outperforms the compared techniques in terms of channel quality and stability assessment. It also minimizes channel switching overheads (in terms of switching delays and energy consumption) for accommodating stream-based communication in multichannel WSNs.
Rehan, Waqas; Fischer, Stefan; Rehan, Maaz
2016-01-01
Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end, simulations are made using MATLAB, and the results show that the Extended version of NEAMCBTC algorithm (Ext-NEAMCBTC) outperforms the compared techniques in terms of channel quality and stability assessment. It also minimizes channel switching overheads (in terms of switching delays and energy consumption) for accommodating stream-based communication in multichannel WSNs. PMID:27626429
Bayesian sparse channel estimation
NASA Astrophysics Data System (ADS)
Chen, Chulong; Zoltowski, Michael D.
2012-05-01
In Orthogonal Frequency Division Multiplexing (OFDM) systems, the technique used to estimate and track the time-varying multipath channel is critical to ensure reliable, high data rate communications. It is recognized that wireless channels often exhibit a sparse structure, especially for wideband and ultra-wideband systems. In order to exploit this sparse structure to reduce the number of pilot tones and increase the channel estimation quality, the application of compressed sensing to channel estimation is proposed. In this article, to make the compressed channel estimation more feasible for practical applications, it is investigated from a perspective of Bayesian learning. Under the Bayesian learning framework, the large-scale compressed sensing problem, as well as large time delay for the estimation of the doubly selective channel over multiple consecutive OFDM symbols, can be avoided. Simulation studies show a significant improvement in channel estimation MSE and less computing time compared to the conventional compressed channel estimation techniques.
Simulation of devices mobility to estimate wireless channel quality metrics in 5G networks
NASA Astrophysics Data System (ADS)
Orlov, Yu.; Fedorov, S.; Samuylov, A.; Gaidamaka, Yu.; Molchanov, D.
2017-07-01
The problem of channel quality estimation for devices in a wireless 5G network is formulated. As a performance metrics of interest we choose the signal-to-interference-plus-noise ratio, which depends essentially on the distance between the communicating devices. A model with a plurality of moving devices in a bounded three-dimensional space and a simulation algorithm to determine the distances between the devices for a given motion model are devised.
Prioritized packet video transmission over time-varying wireless channel using proactive FEC
NASA Astrophysics Data System (ADS)
Kumwilaisak, Wuttipong; Kim, JongWon; Kuo, C.-C. Jay
2000-12-01
Quality of video transmitted over time-varying wireless channels relies heavily on the coordinated effort to cope with both channel and source variations dynamically. Given the priority of each source packet and the estimated channel condition, an adaptive protection scheme based on joint source-channel criteria is investigated via proactive forward error correction (FEC). With proactive FEC in Reed Solomon (RS)/Rate-compatible punctured convolutional (RCPC) codes, we study a practical algorithm to match the relative priority of source packets and instantaneous channel conditions. The channel condition is estimated to capture the long-term fading effect in terms of the averaged SNR over a preset window. Proactive protection is performed for each packet based on the joint source-channel criteria with special attention to the accuracy, time-scale match, and feedback delay of channel status estimation. The overall gain of the proposed protection mechanism is demonstrated in terms of the end-to-end wireless video performance.
Blind channel estimation and deconvolution in colored noise using higher-order cumulants
NASA Astrophysics Data System (ADS)
Tugnait, Jitendra K.; Gummadavelli, Uma
1994-10-01
Existing approaches to blind channel estimation and deconvolution (equalization) focus exclusively on channel or inverse-channel impulse response estimation. It is well-known that the quality of the deconvolved output depends crucially upon the noise statistics also. Typically it is assumed that the noise is white and the signal-to-noise ratio is known. In this paper we remove these restrictions. Both the channel impulse response and the noise model are estimated from the higher-order (fourth, e.g.) cumulant function and the (second-order) correlation function of the received data via a least-squares cumulant/correlation matching criterion. It is assumed that the noise higher-order cumulant function vanishes (e.g., Gaussian noise, as is the case for digital communications). Consistency of the proposed approach is established under certain mild sufficient conditions. The approach is illustrated via simulation examples involving blind equalization of digital communications signals.
Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.
2016-01-01
Abstract. The use of a channelization mechanism on model observers not only makes mimicking human visual behavior possible, but also reduces the amount of image data needed to estimate the model observer parameters. The channelized Hotelling observer (CHO) and channelized scanning linear observer (CSLO) have recently been used to assess CT image quality for detection tasks and combined detection/estimation tasks, respectively. Although the use of channels substantially reduces the amount of data required to compute image quality, the number of scans required for CT imaging is still not practical for routine use. It is our desire to further reduce the number of scans required to make CHO or CSLO an image quality tool for routine and frequent system validations and evaluations. This work explores different data-reduction schemes and designs an approach that requires only a few CT scans. Three different kinds of approaches are included in this study: a conventional CHO/CSLO technique with a large sample size, a conventional CHO/CSLO technique with fewer samples, and an approach that we will show requires fewer samples to mimic conventional performance with a large sample size. The mean value and standard deviation of areas under ROC/EROC curve were estimated using the well-validated shuffle approach. The results indicate that an 80% data reduction can be achieved without loss of accuracy. This substantial data reduction is a step toward a practical tool for routine-task-based QA/QC CT system assessment. PMID:27493982
Temporal water quality response in an urban river: a case study in peninsular Malaysia
NASA Astrophysics Data System (ADS)
VishnuRadhan, Renjith; Zainudin, Zaki; Sreekanth, G. B.; Dhiman, Ravinder; Salleh, Mohd. Noor; Vethamony, P.
2017-05-01
Ambient water quality is a prerequisite for the health and self-purification capacity of riverine ecosystems. To understand the general water quality situation, the time series data of selected water quality parameters were analyzed in an urban river in Peninsular Malaysia. In this regard, the stations were selected from the main stem of the river as well as from the side channel. The stations located at the main stem of the river are less polluted than that in the side channel. Water Quality Index scores indicated that the side channel station is the most polluted, breaching the Class IV water quality criteria threshold during the monitoring period, followed by stations at the river mouth and the main channel. The effect of immediate anthropogenic waste input is also evident at the side channel station. The Organic Pollution Index of side channel station is (14.99) 3 times higher than at stations at river mouth (4.11) and 6 times higher than at the main channel (2.57). The two-way ANOVA showed significant difference among different stations. Further, the factor analysis on water quality parameters yielded two significant factors. They discriminated the stations into two groups. The land-use land cover classification of the study area shows that the region near the sampling sites is dominated by urban settlements (33.23 %) and this can contribute significantly to the deterioration of ambient river water quality. The present study estimated the water quality condition and response in the river and the study can be an immediate yardstick for base lining river water quality, and a basis for future water quality modeling studies in the region.
Rizo-Decelis, L D; Pardo-Igúzquiza, E; Andreo, B
2017-12-15
In order to treat and evaluate the available data of water quality and fully exploit monitoring results (e.g. characterize regional patterns, optimize monitoring networks, infer conditions at unmonitored locations, etc.), it is crucial to develop improved and efficient methodologies. Accordingly, estimation of water quality along fluvial ecosystems is a frequent task in environment studies. In this work, a particular case of this problem is examined, namely, the estimation of water quality along a main stem of a large basin (where most anthropic activity takes place), from observational data measured along this river channel. We adapted topological kriging to this case, where each watershed contains all the watersheds of the upstream observed data ("nested support effect"). Data analysis was additionally extended by taking into account the upstream distance to the closest contamination hotspot as an external drift. We propose choosing the best estimation method by cross-validation. The methodological approach in spatial variability modeling may be used for optimizing the water quality monitoring of a given watercourse. The methodology presented is applied to 28 water quality variables measured along the Santiago River in Western Mexico. Copyright © 2017 Elsevier B.V. All rights reserved.
Method of estimation of scanning system quality
NASA Astrophysics Data System (ADS)
Larkin, Eugene; Kotov, Vladislav; Kotova, Natalya; Privalov, Alexander
2018-04-01
Estimation of scanner parameters is an important part in developing electronic document management system. This paper suggests considering the scanner as a system that contains two main channels: a photoelectric conversion channel and a channel for measuring spatial coordinates of objects. Although both of channels consist of the same elements, the testing of their parameters should be executed separately. The special structure of the two-dimensional reference signal is offered for this purpose. In this structure, the fields for testing various parameters of the scanner are sp atially separated. Characteristics of the scanner are associated with the loss of information when a document is digitized. The methods to test grayscale transmitting ability, resolution and aberrations level are offered.
IDMA-Based MAC Protocol for Satellite Networks with Consideration on Channel Quality
2014-01-01
In order to overcome the shortcomings of existing medium access control (MAC) protocols based on TDMA or CDMA in satellite networks, interleave division multiple access (IDMA) technique is introduced into satellite communication networks. Therefore, a novel wide-band IDMA MAC protocol based on channel quality is proposed in this paper, consisting of a dynamic power allocation algorithm, a rate adaptation algorithm, and a call admission control (CAC) scheme. Firstly, the power allocation algorithm combining the technique of IDMA SINR-evolution and channel quality prediction is developed to guarantee high power efficiency even in terrible channel conditions. Secondly, the effective rate adaptation algorithm, based on accurate channel information per timeslot and by the means of rate degradation, can be realized. What is more, based on channel quality prediction, the CAC scheme, combining the new power allocation algorithm, rate scheduling, and buffering strategies together, is proposed for the emerging IDMA systems, which can support a variety of traffic types, and offering quality of service (QoS) requirements corresponding to different priority levels. Simulation results show that the new wide-band IDMA MAC protocol can make accurate estimation of available resource considering the effect of multiuser detection (MUD) and QoS requirements of multimedia traffic, leading to low outage probability as well as high overall system throughput. PMID:25126592
Hunt, Pamela K.B.; Runkle, Donna L.
1985-01-01
The purpose of this investigation was to determine the availability, quantity and quality of groundwater from three principal aquifers in West-Central Iowa, the alluvial, buried channel, Basal Pleistocene and the Dakota aquifers. Specific objectives were to: (1) determine the location, extent and the nature of these aquifers; (2) evaluate the occurrence and movement of groundwater, including the sources of recharge and discharge; (3) estimate the quantities of water stored in the aquifers; (4) estimate the potential yields of wells tapping the aquifers; (5) estimate the water use; and (6) describe the chemical quality of the groundwater. This report is the compilation of the data collected during the investigation and has the purpose of providing a reference for an interpretive report describing groundwater resources and a bedrock topography map of the study area.
Jung, Youngkyoo; Samsonov, Alexey A; Bydder, Mark; Block, Walter F
2011-04-01
To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast three-dimensional MRI data acquisition. Copyright © 2011 Wiley-Liss, Inc.
Jung, Youngkyoo; Samsonov, Alexey A; Bydder, Mark; Block, Walter F.
2011-01-01
Purpose To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. Materials and Methods Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in-vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. Results Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. Conclusion The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast 3D MRI data acquisition. PMID:21448967
Design of a practical model-observer-based image quality assessment method for CT imaging systems
NASA Astrophysics Data System (ADS)
Tseng, Hsin-Wu; Fan, Jiahua; Cao, Guangzhi; Kupinski, Matthew A.; Sainath, Paavana
2014-03-01
The channelized Hotelling observer (CHO) is a powerful method for quantitative image quality evaluations of CT systems and their image reconstruction algorithms. It has recently been used to validate the dose reduction capability of iterative image-reconstruction algorithms implemented on CT imaging systems. The use of the CHO for routine and frequent system evaluations is desirable both for quality assurance evaluations as well as further system optimizations. The use of channels substantially reduces the amount of data required to achieve accurate estimates of observer performance. However, the number of scans required is still large even with the use of channels. This work explores different data reduction schemes and designs a new approach that requires only a few CT scans of a phantom. For this work, the leave-one-out likelihood (LOOL) method developed by Hoffbeck and Landgrebe is studied as an efficient method of estimating the covariance matrices needed to compute CHO performance. Three different kinds of approaches are included in the study: a conventional CHO estimation technique with a large sample size, a conventional technique with fewer samples, and the new LOOL-based approach with fewer samples. The mean value and standard deviation of area under ROC curve (AUC) is estimated by shuffle method. Both simulation and real data results indicate that an 80% data reduction can be achieved without loss of accuracy. This data reduction makes the proposed approach a practical tool for routine CT system assessment.
Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leire; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco
2015-02-05
One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption.
NASA Astrophysics Data System (ADS)
Jacak, Monika; Melniczuk, Damian; Jacak, Janusz; Jóźwiak, Ireneusz; Gruber, Jacek; Jóźwiak, Piotr
2015-02-01
In order to assess the susceptibility of the quantum key distribution (QKD) systems to the hacking attack including simultaneous and frequent system self-decalibrations, we analyze the stability of the QKD transmission organized in two commercially available systems. The first one employs non-entangled photons as flying qubits in the dark quantum channel for communication whereas the second one utilizes the entangled photon pairs to secretly share the cryptographic key. Applying standard methods of the statistical data analysis to the characteristic indicators of the quality of the QKD communication (the raw key exchange rate [RKER] and the quantum bit error rate [QBER]), we have estimated the pace of the self-decalibration of both systems and the repeatability rate in the case of controlled worsening of the dark channel quality.
The EPA Office of Water’s National Coastal Condition Assessment (NCCA) helps satisfy the assessment and antidegradation provisions of the Clean Water Actby estimating water, sediment, and benthic quality conditions in the Great Lakes nearshore on a five-year cycle starting ...
Mountaintop removal and valley fill (MTR/VF) coal mining recountours the Appalachian landscape, buries headwater stream channels, and degrades downstream water quality. The goal of this study was to compare benthic community production estimates, based on seasonal insect emergen...
Data-aided adaptive weighted channel equalizer for coherent optical OFDM.
Mousa-Pasandi, Mohammad E; Plant, David V
2010-02-15
We report an adaptive weighted channel equalizer (AWCE) for orthogonal frequency division multiplexing (OFDM) and study its performance for long-haul coherent optical OFDM (CO-OFDM) transmission systems. This equalizer updates the equalization parameters on a symbol-by-symbol basis thus can track slight drifts of the optical channel. This is suitable to combat polarization mode dispersion (PMD) degradation while increasing the periodicity of pilot symbols which can be translated into a significant overhead reduction. Furthermore, AWCE can increase the precision of RF-pilot enabled phase noise estimation in the presence of noise, using data-aided phase noise estimation. Simulation results corroborate the capability of AWCE in both overhead reduction and improving the quality of the phase noise compensation (PNC).
Retinex based low-light image enhancement using guided filtering and variational framework
NASA Astrophysics Data System (ADS)
Zhang, Shi; Tang, Gui-jin; Liu, Xiao-hua; Luo, Su-huai; Wang, Da-dong
2018-03-01
A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV color space to get the V channel. Next, the illuminations are respectively estimated by the guided filtering and the variational framework on the V channel and combined into a new illumination by average gradient. The new reflectance is calculated using V channel and the new illumination. Then a new V channel obtained by multiplying the new illumination and reflectance is processed with contrast limited adaptive histogram equalization (CLAHE). Finally, the new image in HSV space is converted back to RGB space to obtain the enhanced image. Experimental results show that the proposed method has better subjective quality and objective quality than existing methods.
Quality assessment of color images based on the measure of just noticeable color difference
NASA Astrophysics Data System (ADS)
Chou, Chun-Hsien; Hsu, Yun-Hsiang
2014-01-01
Accurate assessment on the quality of color images is an important step to many image processing systems that convey visual information of the reproduced images. An accurate objective image quality assessment (IQA) method is expected to give the assessment result highly agreeing with the subjective assessment. To assess the quality of color images, many approaches simply apply the metric for assessing the quality of gray scale images to each of three color channels of the color image, neglecting the correlation among three color channels. In this paper, a metric for assessing color images' quality is proposed, in which the model of variable just-noticeable color difference (VJNCD) is employed to estimate the visibility thresholds of distortion inherent in each color pixel. With the estimated visibility thresholds of distortion, the proposed metric measures the average perceptible distortion in terms of the quantized distortion according to the perceptual error map similar to that defined by National Bureau of Standards (NBS) for converting the color difference enumerated by CIEDE2000 to the objective score of perceptual quality assessment. The perceptual error map in this case is designed for each pixel according to the visibility threshold estimated by the VJNCD model. The performance of the proposed metric is verified by assessing the test images in the LIVE database, and is compared with those of many well-know IQA metrics. Experimental results indicate that the proposed metric is an effective IQA method that can accurately predict the image quality of color images in terms of the correlation between objective scores and subjective evaluation.
Side-information-dependent correlation channel estimation in hash-based distributed video coding.
Deligiannis, Nikos; Barbarien, Joeri; Jacobs, Marc; Munteanu, Adrian; Skodras, Athanassios; Schelkens, Peter
2012-04-01
In the context of low-cost video encoding, distributed video coding (DVC) has recently emerged as a potential candidate for uplink-oriented applications. This paper builds on a concept of correlation channel (CC) modeling, which expresses the correlation noise as being statistically dependent on the side information (SI). Compared with classical side-information-independent (SII) noise modeling adopted in current DVC solutions, it is theoretically proven that side-information-dependent (SID) modeling improves the Wyner-Ziv coding performance. Anchored in this finding, this paper proposes a novel algorithm for online estimation of the SID CC parameters based on already decoded information. The proposed algorithm enables bit-plane-by-bit-plane successive refinement of the channel estimation leading to progressively improved accuracy. Additionally, the proposed algorithm is included in a novel DVC architecture that employs a competitive hash-based motion estimation technique to generate high-quality SI at the decoder. Experimental results corroborate our theoretical gains and validate the accuracy of the channel estimation algorithm. The performance assessment of the proposed architecture shows remarkable and consistent coding gains over a germane group of state-of-the-art distributed and standard video codecs, even under strenuous conditions, i.e., large groups of pictures and highly irregular motion content.
Distributed Compressive CSIT Estimation and Feedback for FDD Multi-User Massive MIMO Systems
NASA Astrophysics Data System (ADS)
Rao, Xiongbin; Lau, Vincent K. N.
2014-06-01
To fully utilize the spatial multiplexing gains or array gains of massive MIMO, the channel state information must be obtained at the transmitter side (CSIT). However, conventional CSIT estimation approaches are not suitable for FDD massive MIMO systems because of the overwhelming training and feedback overhead. In this paper, we consider multi-user massive MIMO systems and deploy the compressive sensing (CS) technique to reduce the training as well as the feedback overhead in the CSIT estimation. The multi-user massive MIMO systems exhibits a hidden joint sparsity structure in the user channel matrices due to the shared local scatterers in the physical propagation environment. As such, instead of naively applying the conventional CS to the CSIT estimation, we propose a distributed compressive CSIT estimation scheme so that the compressed measurements are observed at the users locally, while the CSIT recovery is performed at the base station jointly. A joint orthogonal matching pursuit recovery algorithm is proposed to perform the CSIT recovery, with the capability of exploiting the hidden joint sparsity in the user channel matrices. We analyze the obtained CSIT quality in terms of the normalized mean absolute error, and through the closed-form expressions, we obtain simple insights into how the joint channel sparsity can be exploited to improve the CSIT recovery performance.
Corradini, Fabio; Nájera, Francisco; Casanova, Manuel; Tapia, Yasna; Singh, Ranvir; do Salazar, Osval
2015-11-01
There are concerns about the impact of maize cultivation with high applications of nitrogen (N) and phosphorus (P) on water quality in surface waters in Mediterranean Central Chile. This study estimated the contribution of N and P from maize fields to nearby drainage channels and evaluated the effects in water quality. An N and P budget was drawn up for three fields managed with a maize-fallow system, El Maitén (20.7 ha), El Naranjal (14.9 ha) and El Caleuche (4.2 ha), and water quality variables (pH, EC, dissolved oxygen, total solids, turbidity, NO3-N, NH4-N, PO4(3-), COD, total N, total P and sulphate) were monitored in nearby drainage channels. The N and P balances for the three fields indicated a high risk of N and P non-point source pollution, with fertiliser management, soil texture and climate factors determining the temporal variations in water quality parameters. Elevated levels of NH4-N and PO4(3-) in the drainage channels were usually observed during the winter period, while NO3- concentrations did not show a clear tendency. The results suggest that excessive slurry application during winter represents a very high risk of N and P runoff to drainage channels. Overall, great emphasis must be placed on good agronomic management of fields neighbouring drainage channels, including accurately calculating N and P fertiliser rates and establishing mitigation measures.
Aberration compensation of an ultrasound imaging instrument with a reduced number of channels.
Jiang, Wei; Astheimer, Jeffrey P; Waag, Robert C
2012-10-01
Focusing and imaging qualities of an ultrasound imaging system that uses aberration correction were experimentally investigated as functions of the number of parallel channels. Front-end electronics that consolidate signals from multiple physical elements can be used to lower hardware and computational costs by reducing the number of parallel channels. However, the signals from sparse arrays of synthetic elements yield poorer aberration estimates. In this study, aberration estimates derived from synthetic arrays of varying element sizes are evaluated by comparing compensated receive focuses, compensated transmit focuses, and compensated b-scan images of a point target and a cyst phantom. An array of 80 x 80 physical elements with a pitch of 0.6 x 0.6 mm was used for all of the experiments and the aberration was produced by a phantom selected to mimic propagation through abdominal wall. The results show that aberration correction derived from synthetic arrays with pitches that have a diagonal length smaller than 70% of the correlation length of the aberration yield focuses and images of approximately the same quality. This connection between correlation length of the aberration and synthetic element size provides a guideline for determining the number of parallel channels that are required when designing imaging systems that employ aberration correction.
NASA Astrophysics Data System (ADS)
Pieper, Michael
Accurate estimation or retrieval of surface emissivity spectra from long-wave infrared (LWIR) or Thermal Infrared (TIR) hyperspectral imaging data acquired by airborne or space-borne sensors is necessary for many scientific and defense applications. The at-aperture radiance measured by the sensor is a function of the ground emissivity and temperature, modified by the atmosphere. Thus the emissivity retrieval process consists of two interwoven steps: atmospheric compensation (AC) to retrieve the ground radiance from the measured at-aperture radiance and temperature-emissivity separation (TES) to separate the temperature and emissivity from the ground radiance. In-scene AC (ISAC) algorithms use blackbody-like materials in the scene, which have a linear relationship between their ground radiances and at-aperture radiances determined by the atmospheric transmission and upwelling radiance. Using a clear reference channel to estimate the ground radiance, a linear fitting of the at-aperture radiance and estimated ground radiance is done to estimate the atmospheric parameters. TES algorithms for hyperspectral imaging data assume that the emissivity spectra for solids are smooth compared to the sharp features added by the atmosphere. The ground temperature and emissivity are found by finding the temperature that provides the smoothest emissivity estimate. In this thesis we develop models to investigate the sensitivity of AC and TES to the basic assumptions enabling their performance. ISAC assumes that there are perfect blackbody pixels in a scene and that there is a clear channel, which is never the case. The developed ISAC model explains how the quality of blackbody-like pixels affect the shape of atmospheric estimates and the clear channel assumption affects their magnitude. Emissivity spectra for solids usually have some roughness. The TES model identifies four sources of error: the smoothing error of the emissivity spectrum, the emissivity error from using the incorrect temperature, and the errors caused by sensor noise and wavelength calibration. The ways these errors interact determines the overall TES performance. Since the AC and TES processes are interwoven, any errors in AC are transferred to TES and the final temperature and emissivity estimates. Combining the two models, shape errors caused by the blackbody assumption are transferred to the emissivity estimates, where magnitude errors from the clear channel assumption are compensated by TES temperature induced emissivity errors. The ability for the temperature induced error to compensate for such atmospheric errors makes it difficult to determine the correct atmospheric parameters for a scene. With these models we are able to determine the expected quality of estimated emissivity spectra based on the quality of blackbody-like materials on the ground, the emissivity of the materials being searched for, and the properties of the sensor. The quality of material emissivity spectra is a key factor in determining detection performance for a material in a scene.
Viumdal, Håkon; Mylvaganam, Saba
2017-01-01
In oil and gas and geothermal installations, open channels followed by sieves for removal of drill cuttings, are used to monitor the quality and quantity of the drilling fluids. Drilling fluid flow rate is difficult to measure due to the varying flow conditions (e.g., wavy, turbulent and irregular) and the presence of drilling cuttings and gas bubbles. Inclusion of a Venturi section in the open channel and an array of ultrasonic level sensors above it at locations in the vicinity of and above the Venturi constriction gives the varying levels of the drilling fluid in the channel. The time series of the levels from this array of ultrasonic level sensors are used to estimate the drilling fluid flow rate, which is compared with Coriolis meter measurements. Fuzzy logic, neural networks and support vector regression algorithms applied to the data from temporal and spatial ultrasonic level measurements of the drilling fluid in the open channel give estimates of its flow rate with sufficient reliability, repeatability and uncertainty, providing a novel soft sensing of an important process variable. Simulations, cross-validations and experimental results show that feedforward neural networks with the Bayesian regularization learning algorithm provide the best flow rate estimates. Finally, the benefits of using this soft sensing technique combined with Venturi constriction in open channels are discussed. PMID:29072595
Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings
NASA Technical Reports Server (NTRS)
SUsskind, Joel
2008-01-01
The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 pm C02 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 pm C02 observations are now used primarily in the generation of cloud cleared radiances Ri. This approach allows for the generation of accurate values of Ri and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by- channel error estimates for Ri. These error estimates are used for quality control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of quality control using the NASA GEOS-5 data assimilation system. Assimilation of quality controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done Operationally by ECMWF and NCEP. Forecasts resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.
Improved Atmospheric Soundings and Error Estimates from Analysis of AIRS/AMSU Data
NASA Technical Reports Server (NTRS)
Susskind, Joel
2007-01-01
The AIRS Science Team Version 5.0 retrieval algorithm became operational at the Goddard DAAC in July 2007 generating near real-time products from analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Three very significant developments of Version 5 are: 1) the development and implementation of an improved Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control; and 3) development of an accurate AIRS only cloud clearing and retrieval system. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions, without the need for microwave observations in the cloud clearing step as has been done previously. In this methodology, longwave C02 channel observations in the spectral region 700 cm-' to 750 cm-' are used exclusively for cloud clearing purposes, while shortwave C02 channels in the spectral region 2195 cm-' to 2395 cm-' are used for temperature sounding purposes. The new methodology for improved error estimates and their use in quality control is described briefly and results are shown indicative of their accuracy. Results are also shown of forecast impact experiments assimilating AIRS Version 5.0 retrieval products in the Goddard GEOS 5 Data Assimilation System using different quality control thresholds.
Rogala, James T.; Gray, Brian R.
2006-01-01
The Long Term Resource Monitoring Program (LTRMP) uses a stratified random sampling design to obtain water quality statistics within selected study reaches of the Upper Mississippi River System (UMRS). LTRMP sampling strata are based on aquatic area types generally found in large rivers (e.g., main channel, side channel, backwater, and impounded areas). For hydrologically well-mixed strata (i.e., main channel), variance associated with spatial scales smaller than the strata scale is a relatively minor issue for many water quality parameters. However, analysis of LTRMP water quality data has shown that within-strata variability at the strata scale is high in off-channel areas (i.e., backwaters). A portion of that variability may be associated with differences among individual backwater lakes (i.e., small and large backwater regions separated by channels) that cumulatively make up the backwater stratum. The objective of the statistical modeling presented here is to determine if differences among backwater lakes account for a large portion of the variance observed in the backwater stratum for selected parameters. If variance associated with backwater lakes is high, then inclusion of backwater lake effects within statistical models is warranted. Further, lakes themselves may represent natural experimental units where associations of interest to management may be estimated.
Miller, Kimberly F.; Faulkenburg, C.W.; Chambers, D.B.; Waldron, M.C.
1995-01-01
This report contains water-quality data for the Ohio River, collected during the summer and fall of 1992, from river mile 51.1 (3.3 miles upstream from New Cumberland Dam) to river mile 84.0 (0.2 miles upstream from Pike Island Dam). The data were collected to assess the effects of hydropower development on water quality. Water quality was determined by a combination of repeated synoptic field measurements and laboratory analyses. Synoptic measurements were made along a longitudinal transect with 18 mid-channel sampling sites; cross-sectional transects of water quality were measured at 5 of these sites. Water-quality measurements also were made at two sites located on the back-channel (Ohio) side of Browns Island. Water temperature, dissolved oxygen concentration, pH, and specific conductance were measured at each longitudinal-transect and back-channel sampling site. Longitudinal-transect and back-channel stations were sampled at three depths (about 3.3 feet below the surface of the water, middle of the water column, and near the bottom of the river). Cross-sectional transects consisted of three or four detailed vertical pro- files of the same characteristics. Water samples were collected from three depths at the mid-channel vertical profile in each cross-sectional transect and were analyzed for concentrations of phyto- plankton photosynthetic pigments chlorophyll a and chlorophyll b. Estimates of the depth of light penetration (Secchi disk transparency) were made at pigment-sampling locations whenever light and river-surface conditions were appropriate. Synoptic sampling usually was completed in 12 hours or less and was repeated seven times between June 25 and November 6, 1992.
Constrained motion estimation-based error resilient coding for HEVC
NASA Astrophysics Data System (ADS)
Guo, Weihan; Zhang, Yongfei; Li, Bo
2018-04-01
Unreliable communication channels might lead to packet losses and bit errors in the videos transmitted through it, which will cause severe video quality degradation. This is even worse for HEVC since more advanced and powerful motion estimation methods are introduced to further remove the inter-frame dependency and thus improve the coding efficiency. Once a Motion Vector (MV) is lost or corrupted, it will cause distortion in the decoded frame. More importantly, due to motion compensation, the error will propagate along the motion prediction path, accumulate over time, and significantly degrade the overall video presentation quality. To address this problem, we study the problem of encoder-sider error resilient coding for HEVC and propose a constrained motion estimation scheme to mitigate the problem of error propagation to subsequent frames. The approach is achieved by cutting off MV dependencies and limiting the block regions which are predicted by temporal motion vector. The experimental results show that the proposed method can effectively suppress the error propagation caused by bit errors of motion vector and can improve the robustness of the stream in the bit error channels. When the bit error probability is 10-5, an increase of the decoded video quality (PSNR) by up to1.310dB and on average 0.762 dB can be achieved, compared to the reference HEVC.
Complete identification and eventual prevention of urban/suburban water quality problems pose significant monitoring challenges. Uncontrolled growth of impervious surfaces (roads, buildings and parking) causes detrimental hydrologic changes, stream channel erosion, habitat degra...
Improving Forecast Skill by Assimilation of Quality Controlled AIRS Version 5 Temperature Soundings
NASA Technical Reports Server (NTRS)
Susskind, Joel; Reale, Oreste
2009-01-01
The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of cloud cleared radiances R(sub i). This approach allows for the generation of accurate values of R(sub i) and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel error estimates for R(sub i). These error estimates are used for Quality Control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of Quality Control using the NASA GEOS-5 data assimilation system. Assimilation of Quality Controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done operationally by ECMWF and NCEP. Forecast resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.
Sleep Quality Estimation based on Chaos Analysis for Heart Rate Variability
NASA Astrophysics Data System (ADS)
Fukuda, Toshio; Wakuda, Yuki; Hasegawa, Yasuhisa; Arai, Fumihito; Kawaguchi, Mitsuo; Noda, Akiko
In this paper, we propose an algorithm to estimate sleep quality based on a heart rate variability using chaos analysis. Polysomnography(PSG) is a conventional and reliable system to diagnose sleep disorder and to evaluate its severity and therapeatic effect, by estimating sleep quality based on multiple channels. However, a recording process requires a lot of time and a controlled environment for measurement and then an analyzing process of PSG data is hard work because the huge sensed data should be manually evaluated. On the other hand, it is focused that some people make a mistake or cause an accident due to lost of regular sleep and of homeostasis these days. Therefore a simple home system for checking own sleep is required and then the estimation algorithm for the system should be developed. Therefore we propose an algorithm to estimate sleep quality based only on a heart rate variability which can be measured by a simple sensor such as a pressure sensor and an infrared sensor in an uncontrolled environment, by experimentally finding the relationship between chaos indices and sleep quality. The system including the estimation algorithm can inform patterns and quality of own daily sleep to a user, and then the user can previously arranges his life schedule, pays more attention based on sleep results and consult with a doctor.
Holtschlag, David J.
2009-01-01
Two-dimensional hydrodynamic and transport models were applied to a 34-mile reach of the Ohio River from Cincinnati, Ohio, upstream to Meldahl Dam near Neville, Ohio. The hydrodynamic model was based on the generalized finite-element hydrodynamic code RMA2 to simulate depth-averaged velocities and flow depths. The generalized water-quality transport code RMA4 was applied to simulate the transport of vertically mixed, water-soluble constituents that have a density similar to that of water. Boundary conditions for hydrodynamic simulations included water levels at the U.S. Geological Survey water-level gaging station near Cincinnati, Ohio, and flow estimates based on a gate rating at Meldahl Dam. Flows estimated on the basis of the gate rating were adjusted with limited flow-measurement data to more nearly reflect current conditions. An initial calibration of the hydrodynamic model was based on data from acoustic Doppler current profiler surveys and water-level information. These data provided flows, horizontal water velocities, water levels, and flow depths needed to estimate hydrodynamic parameters related to channel resistance to flow and eddy viscosity. Similarly, dye concentration measurements from two dye-injection sites on each side of the river were used to develop initial estimates of transport parameters describing mixing and dye-decay characteristics needed for the transport model. A nonlinear regression-based approach was used to estimate parameters in the hydrodynamic and transport models. Parameters describing channel resistance to flow (Manning’s “n”) were estimated in areas of deep and shallow flows as 0.0234, and 0.0275, respectively. The estimated RMA2 Peclet number, which is used to dynamically compute eddy-viscosity coefficients, was 38.3, which is in the range of 15 to 40 that is typically considered appropriate. Resulting hydrodynamic simulations explained 98.8 percent of the variability in depth-averaged flows, 90.0 percent of the variability in water levels, 93.5 percent of the variability in flow depths, and 92.5 percent of the variability in velocities. Estimates of the water-quality-transport-model parameters describing turbulent mixing characteristics converged to different values for the two dye-injection reaches. For the Big Indian Creek dye-injection study, an RMA4 Peclet number of 37.2 was estimated, which was within the recommended range of 15 to 40, and similar to the RMA2 Peclet number. The estimated dye-decay coefficient was 0.323. Simulated dye concentrations explained 90.2 percent of the variations in measured dye concentrations for the Big Indian Creek injection study. For the dye-injection reach starting downstream from Twelvemile Creek, however, an RMA4 Peclet number of 173 was estimated, which is far outside the recommended range. Simulated dye concentrations were similar to measured concentration distributions at the first four transects downstream from the dye-injection site that were considered vertically mixed. Farther downstream, however, simulated concentrations did not match the attenuation of maximum concentrations or cross-channel transport of dye that were measured. The difficulty of determining a consistent RMA4 Peclet was related to the two-dimension model assumption that velocity distributions are closely approximated by their depth-averaged values. Analysis of velocity data showed significant variations in velocity direction with depth in channel reaches with curvature. Channel irregularities (including curvatures, depth irregularities, and shoreline variations) apparently produce transverse currents that affect the distribution of constituents, but are not fully accounted for in a two-dimensional model. The two-dimensional flow model, using channel resistance to flow parameters of 0.0234 and 0.0275 for deep and shallow areas, respectively, and an RMA2 Peclet number of 38.3, and the RMA4 transport model with a Peclet number of 37.2, may have utility for emergency-planning purposes. Emergency-response efforts would be enhanced by continuous streamgaging records downstream from Meldahl Dam, real-time water-quality monitoring, and three-dimensional modeling. Decay coefficients are constituent specific.
Warren, Kristen M; Harvey, Joshua R; Chon, Ki H; Mendelson, Yitzhak
2016-03-07
Photoplethysmographic (PPG) waveforms are used to acquire pulse rate (PR) measurements from pulsatile arterial blood volume. PPG waveforms are highly susceptible to motion artifacts (MA), limiting the implementation of PR measurements in mobile physiological monitoring devices. Previous studies have shown that multichannel photoplethysmograms can successfully acquire diverse signal information during simple, repetitive motion, leading to differences in motion tolerance across channels. In this paper, we investigate the performance of a custom-built multichannel forehead-mounted photoplethysmographic sensor under a variety of intense motion artifacts. We introduce an advanced multichannel template-matching algorithm that chooses the channel with the least motion artifact to calculate PR for each time instant. We show that for a wide variety of random motion, channels respond differently to motion artifacts, and the multichannel estimate outperforms single-channel estimates in terms of motion tolerance, signal quality, and PR errors. We have acquired 31 data sets consisting of PPG waveforms corrupted by random motion and show that the accuracy of PR measurements achieved was increased by up to 2.7 bpm when the multichannel-switching algorithm was compared to individual channels. The percentage of PR measurements with error ≤ 5 bpm during motion increased by 18.9% when the multichannel switching algorithm was compared to the mean PR from all channels. Moreover, our algorithm enables automatic selection of the best signal fidelity channel at each time point among the multichannel PPG data.
Perceptually tuned low-bit-rate video codec for ATM networks
NASA Astrophysics Data System (ADS)
Chou, Chun-Hsien
1996-02-01
In order to maintain high visual quality in transmitting low bit-rate video signals over asynchronous transfer mode (ATM) networks, a layered coding scheme that incorporates the human visual system (HVS), motion compensation (MC), and conditional replenishment (CR) is presented in this paper. An empirical perceptual model is proposed to estimate the spatio- temporal just-noticeable distortion (STJND) profile for each frame, by which perceptually important (PI) prediction-error signals can be located. Because of the limited channel capacity of the base layer, only coded data of motion vectors, the PI signals within a small strip of the prediction-error image and, if there are remaining bits, the PI signals outside the strip are transmitted by the cells of the base-layer channel. The rest of the coded data are transmitted by the second-layer cells which may be lost due to channel error or network congestion. Simulation results show that visual quality of the reconstructed CIF sequence is acceptable when the capacity of the base-layer channel is allocated with 2 multiplied by 64 kbps and the cells of the second layer are all lost.
TESTING STRATEGIES TO ESTIMATE NEUROTOXIC RISK FOR CUMULATIVE EXPOSURE TO PYRETHROID MIXTURES.
The Food Quality Protection Act requires EPA to consider the cumulative risk of pesticides with
a common mechanism-of-toxicity. Evidence supports a mechanistic commonality for pyrethroid
insecticides: these chemicals all act on neuronal sodium channels. The lack of ...
Estimates of the Lightning NOx Profile in the Vicinity of the North Alabama Lightning Mapping Array
NASA Technical Reports Server (NTRS)
Koshak, William J.; Peterson, Harold
2010-01-01
The NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama Lightning Mapping Array (LMA) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning nitrogen oxides, NOx = NO + NO 2 . This is part of a larger effort aimed at building a more realistic lightning NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Data from the National Lightning Detection Network TM (NLDN) is also employed. Overall, special attention is given to several important lightning variables including: the frequency and geographical distribution of lightning in the vicinity of the LMA network, lightning type (ground or cloud flash), lightning channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting raw NOx profiles are discussed.
Estimates of the Lightning NOx Profile in the Vicinity of the North Alabama Lightning Mapping Array
NASA Technical Reports Server (NTRS)
Koshak, William J.; Peterson, Harold S.; McCaul, Eugene W.; Blazar, Arastoo
2010-01-01
The NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama Lightning Mapping Array (NALMA) data to estimate the (unmixed and otherwise environmentally unmodified) vertical source profile of lightning nitrogen oxides, NOx = NO + NO2. Data from the National Lightning Detection Network (Trademark) (NLDN) is also employed. This is part of a larger effort aimed at building a more realistic lightning NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Overall, special attention is given to several important lightning variables including: the frequency and geographical distribution of lightning in the vicinity of the NALMA network, lightning type (ground or cloud flash), lightning channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting lightning NOx source profiles are discussed.
Underwater image enhancement through depth estimation based on random forest
NASA Astrophysics Data System (ADS)
Tai, Shen-Chuan; Tsai, Ting-Chou; Huang, Jyun-Han
2017-11-01
Light absorption and scattering in underwater environments can result in low-contrast images with a distinct color cast. This paper proposes a systematic framework for the enhancement of underwater images. Light transmission is estimated using the random forest algorithm. RGB values, luminance, color difference, blurriness, and the dark channel are treated as features in training and estimation. Transmission is calculated using an ensemble machine learning algorithm to deal with a variety of conditions encountered in underwater environments. A color compensation and contrast enhancement algorithm based on depth information was also developed with the aim of improving the visual quality of underwater images. Experimental results demonstrate that the proposed scheme outperforms existing methods with regard to subjective visual quality as well as objective measurements.
Data Assimilation Experiments Using Quality Controlled AIRS Version 5 Temperature Soundings
NASA Technical Reports Server (NTRS)
Susskind, Joel
2009-01-01
The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains a number of significant improvements over Version 4. Two very significant improvements are described briefly below. 1) The AIRS Science Team Radiative Transfer Algorithm (RTA) has now been upgraded to accurately account for effects of non-local thermodynamic equilibrium on the AIRS observations. This allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval algorithm during both day and night. Following theoretical considerations, tropospheric temperature profile information is obtained almost exclusively from clear column radiances in the 4.3 micron CO2 band in the AIRS Version 5 temperature profile retrieval step. These clear column radiances are a derived product that are indicative of radiances AIRS channels would have seen if the field of view were completely clear. Clear column radiances for all channels are determined using tropospheric sounding 15 micron CO2 observations. This approach allows for the generation of accurate values of clear column radiances and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel clear column radiances. These error estimates are used for quality control of the retrieved products. Based on error estimate thresholds, each temperature profiles is assigned a characteristic pressure, pg, down to which the profile is characterized as good for use for data assimilation purposes. We have conducted forecast impact experiments assimilating AIRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM, at a spatial resolution of 0.5 deg by 0.5 deg. Assimilation of Quality Controlled AIRS temperature profiles down to pg resulted in significantly improved forecast skill compared to that obtained from experiments when all data used operationally by NCEP, except for AIRS data, is assimilated. These forecasts were also significantly better than to those obtained when AIRS radiances (rather than temperature profiles) are assimilated, which is the way AIRS data is used operationally by NCEP and ECMWF.
The EPA Office of Water’s National Coastal Condition Assessment (NCCA) helps satisfy the assessment and antidegradation provisions of the Clean Water Act by estimating water, sediment, and benthic quality conditions in the Great Lakes nearshore on a five-year cycle starting...
Miller, K.F.; Messinger, Terence; Waldron, M.C.; Faulkenburg, C.W.
1996-01-01
This report contains water-quality data for the Ohio River from river mile 51.1 (3.3 miles upstream from New Cumberland Dam) to river mile 84.0 (0.2 miles upstream from Pike Island Dam) that were collected during the summer and fall of 1993. The data were collected to establish the water quality of the Ohio River and to use in assessing the proposed effects of hydropower development on the water quality of the Ohio River. Water quality was determined by a combination of repeated synoptic field measurements, continuous-record monitoring, and laboratory analyses. Synoptic measurements were made along a longitudinal transect with 18 mid-channel sampling sites; cross-sectional transects of water-quality measurements were made at 5 of these sites. Water-quality measurements also were made at two sites located on the back-channel (Ohio) side of Browns Island. At each longitudinal-transect and back-channel sampling site, measurements were made of specific conductance, pH, water temperature, and dissolved oxygen conentration. Longitudinal-transect and back-channel stations were sampled at four depths (at the surface, about 3.3 feet below the surface, middle of the water column, and near the bottom of the river). Cross-sectional transects consisted of three to four detailed vertical profiles of the same characteristics. Water samples were collected from three depths at the mid-channel vertical profile in each cross-sectional transect and were analyzed for concentrations of phytoplankton photosynthetic pigments chlorophyll a and chlorophyll b. Estimates of the depth of light penetration (Secchi-disk transparency) were made at pigment-sampling locations whenever light and river-surface conditions were appropriate. Synoptic sampling usually was completed in 12 hours or less and was repeated 10 times from May through October 1993. Continuous-record monitoring of water quality consisted of hourly measurements of specific conductance, pH, water temperature, and dissolved oxygen concentration, made at a depth of 6.6 feet upstream and downstream of New Cumberland Dam. Continuous monitors were operated from May through October 1993.
NASA Astrophysics Data System (ADS)
Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu
2017-08-01
Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.
NASA Technical Reports Server (NTRS)
Peterson, Harold; Koshak, William J.
2009-01-01
An algorithm has been developed to estimate the altitude distribution of one-meter lightning channel segments. The algorithm is required as part of a broader objective that involves improving the lightning NOx emission inventories of both regional air quality and global chemistry/climate models. The algorithm was tested and applied to VHF signals detected by the North Alabama Lightning Mapping Array (NALMA). The accuracy of the algorithm was characterized by comparing algorithm output to the plots of individual discharges whose lengths were computed by hand; VHF source amplitude thresholding and smoothing were applied to optimize results. Several thousands of lightning flashes within 120 km of the NALMA network centroid were gathered from all four seasons, and were analyzed by the algorithm. The mean, standard deviation, and median statistics were obtained for all the flashes, the ground flashes, and the cloud flashes. One-meter channel segment altitude distributions were also obtained for the different seasons.
NASA Astrophysics Data System (ADS)
Li, Husheng; Betz, Sharon M.; Poor, H. Vincent
2007-05-01
This paper examines the performance of decision feedback based iterative channel estimation and multiuser detection in channel coded aperiodic DS-CDMA systems operating over multipath fading channels. First, explicit expressions describing the performance of channel estimation and parallel interference cancellation based multiuser detection are developed. These results are then combined to characterize the evolution of the performance of a system that iterates among channel estimation, multiuser detection and channel decoding. Sufficient conditions for convergence of this system to a unique fixed point are developed.
SU-F-207-16: CT Protocols Optimization Using Model Observer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, H; Fan, J; Kupinski, M
2015-06-15
Purpose: To quantitatively evaluate the performance of different CT protocols using task-based measures of image quality. This work studies the task of size and the contrast estimation of different iodine concentration rods inserted in head- and body-sized phantoms using different imaging protocols. These protocols are designed to have the same dose level (CTDIvol) but using different X-ray tube voltage settings (kVp). Methods: Different concentrations of iodine objects inserted in a head size phantom and a body size phantom are imaged on a 64-slice commercial CT scanner. Scanning protocols with various tube voltages (80, 100, and 120 kVp) and current settingsmore » are selected, which output the same absorbed dose level (CTDIvol). Because the phantom design (size of the iodine objects, the air gap between the inserted objects and the phantom) is not ideal for a model observer study, the acquired CT images are used to generate simulation images with four different sizes and five different contracts iodine objects. For each type of the objects, 500 images (100 x 100 pixels) are generated for the observer study. The observer selected in this study is the channelized scanning linear observer which could be applied to estimate the size and the contrast. The figure of merit used is the correct estimation ratio. The mean and the variance are estimated by the shuffle method. Results: The results indicate that the protocols with 100 kVp tube voltage setting provides the best performance for iodine insert size and contrast estimation for both head and body phantom cases. Conclusion: This work presents a practical and robust quantitative approach using channelized scanning linear observer to study contrast and size estimation performance from different CT protocols. Different protocols at same CTDIvol setting could Result in different image quality performance. The relationship between the absorbed dose and the diagnostic image quality is not linear.« less
The Lightning Nitrogen Oxides Model (LNOM): Status and Recent Applications
NASA Technical Reports Server (NTRS)
Koshak, William; Khan, Maudood; Peterson, Harold
2011-01-01
Improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) are discussed. Recent results from an August 2006 run of the Community Multiscale Air Quality (CMAQ) modeling system that employs LNOM lightning NOx (= NO + NO2) estimates are provided. The LNOM analyzes Lightning Mapping Array (LMA) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NOx. The latest LNOM estimates of (a) lightning channel length distributions, (b) lightning 1-m segment altitude distributions, and (c) the vertical profile of NOx are presented. The impact of including LNOM-estimates of lightning NOx on CMAQ output is discussed.
Bhattarai, Gandhi; Srivastava, Puneet; Marzen, Luke; Hite, Diane; Hatch, Upton
2008-07-01
The objective of this study is to assess the economic and water quality impact of land use change in a small watershed in the Wiregrass region of Alabama. The study compares changes in water quality and revenue from agricultural and timber production due to changes in land use between years 1992 and 2001. The study was completed in two stages. In the first stage, a biophysical model was used to estimate the effect of land use change on nitrogen and phosphorus runoff and sediment deposition in the main channel; in the second stage, farm enterprise budgeting tools were used to estimate the economic returns for the changes in land use condition. Both biophysical and economic results are discussed, and a case for complex optimization to develop a decision support system is presented.
Duan, Hanjun; Wu, Haifeng; Zeng, Yu; Chen, Yuebin
2016-03-26
In a passive ultra-high frequency (UHF) radio-frequency identification (RFID) system, tag collision is generally resolved on a medium access control (MAC) layer. However, some of collided tag signals could be recovered on a physical (PHY) layer and, thus, enhance the identification efficiency of the RFID system. For the recovery on the PHY layer, channel estimation is a critical issue. Good channel estimation will help to recover the collided signals. Existing channel estimates work well for two collided tags. When the number of collided tags is beyond two, however, the existing estimates have more estimation errors. In this paper, we propose a novel channel estimate for the UHF RFID system. It adopts an orthogonal matrix based on the information of preambles which is known for a reader and applies a minimum-mean-square-error (MMSE) criterion to estimate channels. From the estimated channel, we could accurately separate the collided signals and recover them. By means of numerical results, we show that the proposed estimate has lower estimation errors and higher separation efficiency than the existing estimates.
Energy efficiency in wireless communication systems
Caffrey, Michael Paul; Palmer, Joseph McRae
2012-12-11
Wireless communication systems and methods utilize one or more remote terminals, one or more base terminals, and a communication channel between the remote terminal(s) and base terminal(s). The remote terminal applies a direct sequence spreading code to a data signal at a spreading factor to provide a direct sequence spread spectrum (DSSS) signal. The DSSS signal is transmitted over the communication channel to the base terminal which can be configured to despread the received DSSS signal by a spreading factor matching the spreading factor utilized to spread the data signal. The remote terminal and base terminal can dynamically vary the matching spreading factors to adjust the data rate based on an estimation of operating quality over time between the remote terminal and base terminal such that the amount of data being transmitted is substantially maximized while providing a specified quality of service.
NASA Astrophysics Data System (ADS)
Sugiyama, Hiroki; Kosugi, Toshihiko; Yokoyama, Haruki; Murata, Koichi; Yamane, Yasuro; Tokumitsu, Masami; Enoki, Takatomo
2008-04-01
This paper reports InGaAs/InP composite-channel (CC) high electron mobility transistors (HEMTs) grown by metal-organic vapor-phase epitaxy (MOVPE) with excellent breakdown and high-speed characteristics. Atomic force microscopy (AFM) reveals high-quality heterointerfaces between In(Ga,Al)As and In(Al)P. Fabricated 80-nm-gate CC HEMTs exhibit on- and off-state breakdown (burnout) voltages estimated at higher than 3 and 8 V. An excellent current-gain cutoff frequency ( fT) of 186 GHz is also obtained in the CC HEMTs. The on-wafer uniformity of CC-HEMT characteristics is comparable to those of our mature 100-nm-gate InGaAs single-channel HEMTs. Bias-stress aging tests reveals that the lifetime of CC HEMTs is expected to be comparable to that of our conventional InGaAs single-channel HEMTs.
Multi-offset GPR methods for hyporheic zone investigations
Brosten, T.R.; Bradford, J.H.; McNamara, J.P.; Gooseff, M.N.; Zarnetske, J.P.; Bowden, W.B.; Johnston, M.E.
2009-01-01
Porosity of stream sediments has a direct effect on hyporheic exchange patterns and rates. Improved estimates of porosity heterogeneity will yield enhanced simulation of hyporheic exchange processes. Ground-penetrating radar (GPR) velocity measurements are strongly controlled by water content thus accurate measures of GPR velocity in saturated sediments provides estimates of porosity beneath stream channels using petrophysical relationships. Imaging the substream system using surface based reflection measurements is particularly challenging due to large velocity gradients that occur at the transition from open water to saturated sediments. The continuous multi-offset method improves the quality of subsurface images through stacking and provides measurements of vertical and lateral velocity distributions. We applied the continuous multi-offset method to stream sites on the North Slope, Alaska and the Sawtooth Mountains near Boise, Idaho, USA. From the continuous multi-offset data, we measure velocity using reflection tomography then estimate water content and porosity using the Topp equation. These values provide detailed measurements for improved stream channel hydraulic and thermal modelling. ?? 2009 European Association of Geoscientists & Engineers.
Miller, K.F.
1996-01-01
This report contains water-quality data for the Ohio River from river mile 160.6 (1.1 mile upstream from Willow Island Dam) to river mile 203.6 (0.3 mile upstream from Belleville Dam) that were collected during the summer and fall of 1993. The data were collected to establish the water quality of the Ohio River and to use in assessing the proposed effects of hydropower development on the water quality of the Ohio River. Water quality was monitored by a combination of synoptic field measurements, laboratory analyses, and continuous- record monitoring. Field measurements of water- quality characteristics were made along a longitudinal transect with 24 mid-channel sampling sites; cross-sectional transects of water-quality measurements were made at six of these sites. Water-quality measurements also were made at six sites located on the back-channel (West Virginia) sides of Marietta, Muskingum, and Blennerhassett Islands. At each longitudinal-transect and back- channel sampling site, measurements of specific conductance, pH, water temperature, and dissolved oxygen concentration were made at three depths (about 3.3 feet below the surface of the water, middle of the water column, and near the bottom of the river). Cross-sectional transects consisted of three to four detailed vertical profiles of the same characteristics. Water samples were collected at three depths in the mid-channel vertical profile in each cross-sectional transect and were analyzed for concentrations of phytoplankton chlorophyll a and chlorophyll b. Estimates of the depth of light penetration (Secchi disk transparency) were made at phytoplankton- pigment-sampling locations whenever light and river-surface conditions were appropriate. Each synoptic sampling event was completed in 2 days or less. The entire network was sampled 10 times from May 24 to October 27, 1993. Continuous-record monitoring of water quality consisted of hourly measurments of specific conductance, pH, water temperature, and dissolved oxygen concentration that were made at a depth of 6.6 feet at the ends of the upstream and downstream wingwalls at Willow Island Dam. Continuous-record monitors were operated from May through October 1993.
A Channelization-Based DOA Estimation Method for Wideband Signals
Guo, Rui; Zhang, Yue; Lin, Qianqiang; Chen, Zengping
2016-01-01
In this paper, we propose a novel direction of arrival (DOA) estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM) and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS) are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR) using direct wideband radio frequency (RF) digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method. PMID:27384566
Adaptive channel estimation for soft decision decoding over non-Gaussian optical channel
NASA Astrophysics Data System (ADS)
Xiang, Jing-song; Miao, Tao-tao; Huang, Sheng; Liu, Huan-lin
2016-10-01
An adaptive priori likelihood ratio (LLR) estimation method is proposed over non-Gaussian channel in the intensity modulation/direct detection (IM/DD) optical communication systems. Using the nonparametric histogram and the weighted least square linear fitting in the tail regions, the LLR is estimated and used for the soft decision decoding of the low-density parity-check (LDPC) codes. This method can adapt well to the three main kinds of intensity modulation/direct detection (IM/DD) optical channel, i.e., the chi-square channel, the Webb-Gaussian channel and the additive white Gaussian noise (AWGN) channel. The performance penalty of channel estimation is neglected.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky
2009-01-01
This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.
Lightning NOx Statistics Derived by NASA Lightning Nitrogen Oxides Model (LNOM) Data Analyses
NASA Technical Reports Server (NTRS)
Koshak, William; Peterson, Harold
2013-01-01
What is the LNOM? The NASA Marshall Space Flight Center (MSFC) Lightning Nitrogen Oxides Model (LNOM) [Koshak et al., 2009, 2010, 2011; Koshak and Peterson 2011, 2013] analyzes VHF Lightning Mapping Array (LMA) and National Lightning Detection Network(TradeMark) (NLDN) data to estimate the lightning nitrogen oxides (LNOx) produced by individual flashes. Figure 1 provides an overview of LNOM functionality. Benefits of LNOM: (1) Does away with unrealistic "vertical stick" lightning channel models for estimating LNOx; (2) Uses ground-based VHF data that maps out the true channel in space and time to < 100 m accuracy; (3) Therefore, true channel segment height (ambient air density) is used to compute LNOx; (4) True channel length is used! (typically tens of kilometers since channel has many branches and "wiggles"); (5) Distinction between ground and cloud flashes are made; (6) For ground flashes, actual peak current from NLDN used to compute NOx from lightning return stroke; (7) NOx computed for several other lightning discharge processes (based on Cooray et al., 2009 theory): (a) Hot core of stepped leaders and dart leaders, (b) Corona sheath of stepped leader, (c) K-change, (d) Continuing Currents, and (e) M-components; and (8) LNOM statistics (see later) can be used to parameterize LNOx production for regional air quality models (like CMAQ), and for global chemical transport models (like GEOS-Chem).
Regional interpretation of water-quality monitoring data
Smith, Richard A.; Schwarz, Gregory E.; Alexander, Richard B.
1997-01-01
We describe a method for using spatially referenced regressions of contaminant transport on watershed attributes (SPARROW) in regional water-quality assessment. The method is designed to reduce the problems of data interpretation caused by sparse sampling, network bias, and basin heterogeneity. The regression equation relates measured transport rates in streams to spatially referenced descriptors of pollution sources and land-surface and stream-channel characteristics. Regression models of total phosphorus (TP) and total nitrogen (TN) transport are constructed for a region defined as the nontidal conterminous United States. Observed TN and TP transport rates are derived from water-quality records for 414 stations in the National Stream Quality Accounting Network. Nutrient sources identified in the equations include point sources, applied fertilizer, livestock waste, nonagricultural land, and atmospheric deposition (TN only). Surface characteristics found to be significant predictors of land-water delivery include soil permeability, stream density, and temperature (TN only). Estimated instream decay coefficients for the two contaminants decrease monotonically with increasing stream size. TP transport is found to be significantly reduced by reservoir retention. Spatial referencing of basin attributes in relation to the stream channel network greatly increases their statistical significance and model accuracy. The method is used to estimate the proportion of watersheds in the conterminous United States (i.e., hydrologic cataloging units) with outflow TP concentrations less than the criterion of 0.1 mg/L, and to classify cataloging units according to local TN yield (kg/km2/yr).
Reduced-rank technique for joint channel estimation in TD-SCDMA systems
NASA Astrophysics Data System (ADS)
Kamil Marzook, Ali; Ismail, Alyani; Mohd Ali, Borhanuddin; Sali, Adawati; Khatun, Sabira
2013-02-01
In time division-synchronous code division multiple access systems, increasing the system capacity by exploiting the inserting of the largest number of users in one time slot (TS) requires adding more estimation processes to estimate the joint channel matrix for the whole system. The increase in the number of channel parameters due the increase in the number of users in one TS directly affects the precision of the estimator's performance. This article presents a novel channel estimation with low complexity, which relies on reducing the rank order of the total channel matrix H. The proposed method exploits the rank deficiency of H to reduce the number of parameters that characterise this matrix. The adopted reduced-rank technique is based on truncated singular value decomposition algorithm. The algorithms for reduced-rank joint channel estimation (JCE) are derived and compared against traditional full-rank JCEs: least squares (LS) or Steiner and enhanced (LS or MMSE) algorithms. Simulation results of the normalised mean square error showed the superiority of reduced-rank estimators. In addition, the channel impulse responses founded by reduced-rank estimator for all active users offers considerable performance improvement over the conventional estimator along the channel window length.
Monitoring inter-channel nonlinearity based on differential pilot
NASA Astrophysics Data System (ADS)
Wang, Wanli; Yang, Aiying; Guo, Peng; Lu, Yueming; Qiao, Yaojun
2018-06-01
We modify and simplify the inter-channel nonlinearity (NL) estimation method by using differential pilot. Compared to previous works, the inter-channel NL estimation method we propose has much lower complexity and does not need modification of the transmitter. The performance of inter-channel NL monitoring with different launch power is tested. For both QPSK and 16QAM systems with 9 channels, the estimation error of inter-channel NL is lower than 1 dB when the total launch power is bigger than 12 dBm after 1000 km optical transmission. At last, we compare our inter-channel NL estimation method with other methods.
The NASA Lightning Nitrogen Oxides Model (LNOM): Application to Air Quality Modeling
NASA Technical Reports Server (NTRS)
Koshak, William; Peterson, Harold; Khan, Maudood; Biazar, Arastoo; Wang, Lihua
2011-01-01
Recent improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) and its application to the Community Multiscale Air Quality (CMAQ) modeling system are discussed. The LNOM analyzes Lightning Mapping Array (LMA) and National Lightning Detection Network(TradeMark)(NLDN) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NO(x) (= NO + NO2). The latest LNOM estimates of lightning channel length distributions, lightning 1-m segment altitude distributions, and the vertical profile of lightning NO(x) are presented. The primary improvement to the LNOM is the inclusion of non-return stroke lightning NOx production due to: (1) hot core stepped and dart leaders, (2) stepped leader corona sheath, K-changes, continuing currents, and M-components. The impact of including LNOM-estimates of lightning NO(x) for an August 2006 run of CMAQ is discussed.
NASA Astrophysics Data System (ADS)
Vahidi, Vahid; Saberinia, Ebrahim; Regentova, Emma E.
2017-10-01
A channel estimation (CE) method based on compressed sensing (CS) is proposed to estimate the sparse and doubly selective (DS) channel for hyperspectral image transmission from unmanned aircraft vehicles to ground stations. The proposed method contains three steps: (1) the priori estimate of the channel by orthogonal matching pursuit (OMP), (2) calculation of the linear minimum mean square error (LMMSE) estimate of the received pilots given the estimated channel, and (3) estimate of the complex amplitudes and Doppler shifts of the channel using the enhanced received pilot data applying a second round of a CS algorithm. The proposed method is named DS-LMMSE-OMP, and its performance is evaluated by simulating transmission of AVIRIS hyperspectral data via the communication channel and assessing their fidelity for the automated analysis after demodulation. The performance of the DS-LMMSE-OMP approach is compared with that of two other state-of-the-art CE methods. The simulation results exhibit up to 8-dB figure of merit in the bit error rate and 50% improvement in the hyperspectral image classification accuracy.
Transportation and Hydrology Studies of the U.S. Geological Survey in New England
Lombard, Pamela J.
2016-03-23
In New England, the USGS is conducting investigations to improve flood flow estimation techniques, to define channel characteristics at bankfull discharge, and to document storm tide as a result of major coastal storms. Current locally focused investigations include examination of flow frequency in rural, urban, and small watersheds; documentation of extreme inland floods along with flood-frequency updates; examination of the effects of roadway blasting on groundwater quality; and determinations of the effects of road salting on the quality of runoff and receiving waters.
Using LiDAR to Estimate Surface Erosion Volumes within the Post-storm 2012 Bagley Fire
NASA Astrophysics Data System (ADS)
Mikulovsky, R. P.; De La Fuente, J. A.; Mondry, Z. J.
2014-12-01
The total post-storm 2012 Bagley fire sediment budget of the Squaw Creek watershed in the Shasta-Trinity National Forest was estimated using many methods. A portion of the budget was quantitatively estimated using LiDAR. Simple workflows were designed to estimate the eroded volume's of debris slides, fill failures, gullies, altered channels and streams. LiDAR was also used to estimate depositional volumes. Thorough manual mapping of large erosional features using the ArcGIS 10.1 Geographic Information System was required as these mapped features determined the eroded volume boundaries in 3D space. The 3D pre-erosional surface for each mapped feature was interpolated based on the boundary elevations. A surface difference calculation was run using the estimated pre-erosional surfaces and LiDAR surfaces to determine volume of sediment potentially delivered into the stream system. In addition, cross sections of altered channels and streams were taken using stratified random selection based on channel gradient and stream order respectively. The original pre-storm surfaces of channel features were estimated using the cross sections and erosion depth criteria. Open source software Inkscape was used to estimate cross sectional areas for randomly selected channel features and then averaged for each channel gradient and stream order classes. The average areas were then multiplied by the length of each class to estimate total eroded altered channel and stream volume. Finally, reservoir and in-channel depositional volumes were estimated by mapping channel forms and generating specific reservoir elevation zones associated with depositional events. The in-channel areas and zones within the reservoir were multiplied by estimated and field observed sediment thicknesses to attain a best guess sediment volume. In channel estimates included re-occupying stream channel cross sections established before the fire. Once volumes were calculated, other erosion processes of the Bagley sedimentation study, such as surface soil erosion were combined to estimate the total fire and storm sediment budget for the Squaw Creek watershed. The LiDAR-based measurement workflows can be easily applied to other sediment budget studies using one high resolution LiDAR dataset.
Channel Estimation for Filter Bank Multicarrier Systems in Low SNR Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driggs, Jonathan; Sibbett, Taylor; Moradiy, Hussein
Channel estimation techniques are crucial for reliable communications. This paper is concerned with channel estimation in a filter bank multicarrier spread spectrum (FBMCSS) system. We explore two channel estimator options: (i) a method that makes use of a periodic preamble and mimics the channel estimation techniques that are widely used in OFDM-based systems; and (ii) a method that stays within the traditional realm of filter bank signal processing. For the case where the channel noise is white, both methods are analyzed in detail and their performance is compared against their respective Cramer-Rao Lower Bounds (CRLB). Advantages and disadvantages of themore » two methods under different channel conditions are given to provide insight to the reader as to when one will outperform the other.« less
Islam, M T; Trevorah, R M; Appadoo, D R T; Best, S P; Chantler, C T
2017-04-15
We present methodology for the first FTIR measurements of ferrocene using dilute wax solutions for dispersion and to preserve non-crystallinity; a new method for removal of channel spectra interference for high quality data; and a consistent approach for the robust estimation of a defined uncertainty for advanced structural χ r 2 analysis and mathematical hypothesis testing. While some of these issues have been investigated previously, the combination of novel approaches gives markedly improved results. Methods for addressing these in the presence of a modest signal and how to quantify the quality of the data irrespective of preprocessing for subsequent hypothesis testing are applied to the FTIR spectra of Ferrocene (Fc) and deuterated ferrocene (dFc, Fc-d 10 ) collected at the THz/Far-IR beam-line of the Australian Synchrotron at operating temperatures of 7K through 353K. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Islam, M. T.; Trevorah, R. M.; Appadoo, D. R. T.; Best, S. P.; Chantler, C. T.
2017-04-01
We present methodology for the first FTIR measurements of ferrocene using dilute wax solutions for dispersion and to preserve non-crystallinity; a new method for removal of channel spectra interference for high quality data; and a consistent approach for the robust estimation of a defined uncertainty for advanced structural χr2 analysis and mathematical hypothesis testing. While some of these issues have been investigated previously, the combination of novel approaches gives markedly improved results. Methods for addressing these in the presence of a modest signal and how to quantify the quality of the data irrespective of preprocessing for subsequent hypothesis testing are applied to the FTIR spectra of Ferrocene (Fc) and deuterated ferrocene (dFc, Fc-d10) collected at the THz/Far-IR beam-line of the Australian Synchrotron at operating temperatures of 7 K through 353 K.
An improved dehazing algorithm of aerial high-definition image
NASA Astrophysics Data System (ADS)
Jiang, Wentao; Ji, Ming; Huang, Xiying; Wang, Chao; Yang, Yizhou; Li, Tao; Wang, Jiaoying; Zhang, Ying
2016-01-01
For unmanned aerial vehicle(UAV) images, the sensor can not get high quality images due to fog and haze weather. To solve this problem, An improved dehazing algorithm of aerial high-definition image is proposed. Based on the model of dark channel prior, the new algorithm firstly extracts the edges from crude estimated transmission map and expands the extracted edges. Then according to the expended edges, the algorithm sets a threshold value to divide the crude estimated transmission map into different areas and makes different guided filter on the different areas compute the optimized transmission map. The experimental results demonstrate that the performance of the proposed algorithm is substantially the same as the one based on dark channel prior and guided filter. The average computation time of the new algorithm is around 40% of the one as well as the detection ability of UAV image is improved effectively in fog and haze weather.
RLS Channel Estimation with Adaptive Forgetting Factor for DS-CDMA Frequency-Domain Equalization
NASA Astrophysics Data System (ADS)
Kojima, Yohei; Tomeba, Hiromichi; Takeda, Kazuaki; Adachi, Fumiyuki
Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can increase the downlink bit error rate (BER) performance of DS-CDMA beyond that possible with conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. Recently, we proposed a pilot-assisted channel estimation (CE) based on the MMSE criterion. Using MMSE-CE, the channel estimation accuracy is almost insensitive to the pilot chip sequence, and a good BER performance is achieved. In this paper, we propose a channel estimation scheme using one-tap recursive least square (RLS) algorithm, where the forgetting factor is adapted to the changing channel condition by the least mean square (LMS)algorithm, for DS-CDMA with FDE. We evaluate the BER performance using RLS-CE with adaptive forgetting factor in a frequency-selective fast Rayleigh fading channel by computer simulation.
Enhanced Handoff Scheme for Downlink-Uplink Asymmetric Channels in Cellular Systems
2013-01-01
In the latest cellular networks, data services like SNS and UCC can create asymmetric packet generation rates over the downlink and uplink channels. This asymmetry can lead to a downlink-uplink asymmetric channel condition being experienced by cell edge users. This paper proposes a handoff scheme to cope effectively with downlink-uplink asymmetric channels. The proposed handoff scheme exploits the uplink channel quality as well as the downlink channel quality to determine the appropriate timing and direction of handoff. We first introduce downlink and uplink channel models that consider the intercell interference, to verify the downlink-uplink channel asymmetry. Based on these results, we propose an enhanced handoff scheme that exploits both the uplink and downlink channel qualities to reduce the handoff-call dropping probability and the service interruption time. The simulation results show that the proposed handoff scheme reduces the handoff-call dropping probability about 30% and increases the satisfaction of the service interruption time requirement about 7% under high-offered load, compared to conventional mobile-assisted handoff. Especially, the proposed handoff scheme is more efficient when the uplink QoS requirement is much stricter than the downlink QoS requirement or uplink channel quality is worse than downlink channel quality. PMID:24501576
Spatially Controlled Relay Beamforming
NASA Astrophysics Data System (ADS)
Kalogerias, Dionysios
This thesis is about fusion of optimal stochastic motion control and physical layer communications. Distributed, networked communication systems, such as relay beamforming networks (e.g., Amplify & Forward (AF)), are typically designed without explicitly considering how the positions of the respective nodes might affect the quality of the communication. Optimum placement of network nodes, which could potentially improve the quality of the communication, is not typically considered. However, in most practical settings in physical layer communications, such as relay beamforming, the Channel State Information (CSI) observed by each node, per channel use, although it might be (modeled as) random, it is both spatially and temporally correlated. It is, therefore, reasonable to ask if and how the performance of the system could be improved by (predictively) controlling the positions of the network nodes (e.g., the relays), based on causal side (CSI) information, and exploitting the spatiotemporal dependencies of the wireless medium. In this work, we address this problem in the context of AF relay beamforming networks. This novel, cyber-physical system approach to relay beamforming is termed as "Spatially Controlled Relay Beamforming". First, we discuss wireless channel modeling, however, in a rigorous, Bayesian framework. Experimentally accurate and, at the same time, technically precise channel modeling is absolutely essential for designing and analyzing spatially controlled communication systems. In this work, we are interested in two distinct spatiotemporal statistical models, for describing the behavior of the log-scale magnitude of the wireless channel: 1. Stationary Gaussian Fields: In this case, the channel is assumed to evolve as a stationary, Gaussian stochastic field in continuous space and discrete time (say, for instance, time slots). Under such assumptions, spatial and temporal statistical interactions are determined by a set of time and space invariant parameters, which completely determine the mean and covariance of the underlying Gaussian measure. This model is relatively simple to describe, and can be sufficiently characterized, at least for our purposes, both statistically and topologically. Additionally, the model is rather versatile and there is existing experimental evidence, supporting its practical applicability. Our contributions are summarized in properly formulating the whole spatiotemporal model in a completely rigorous mathematical setting, under a convenient measure theoretic framework. Such framework greatly facilitates formulation of meaningful stochastic control problems, where the wireless channel field (or a function of it) can be regarded as a stochastic optimization surface.. 2. Conditionally Gaussian Fields, when conditioned on a Markovian channel state: This is a completely novel approach to wireless channel modeling. In this approach, the communication medium is assumed to behave as a partially observable (or hidden) system, where a hidden, global, temporally varying underlying stochastic process, called the channel state, affects the spatial interactions of the actual channel magnitude, evaluated at any set of locations in the plane. More specifically, we assume that, conditioned on the channel state, the wireless channel constitutes an observable, conditionally Gaussian stochastic process. The channel state evolves in time according to a known, possibly non stationary, non Gaussian, low dimensional Markov kernel. Recognizing the intractability of general nonlinear state estimation, we advocate the use of grid based approximate nonlinear filters as an effective and robust means for recursive tracking of the channel state. We also propose a sequential spatiotemporal predictor for tracking the channel gains at any point in time and space, providing real time sequential estimates for the respective channel gain map. In this context, our contributions are multifold. Except for the introduction of the layered channel model previously described, this line of research has resulted in a number of general, asymptotic convergence results, advancing the theory of grid-based approximate nonlinear stochastic filtering. In particular, sufficient conditions, ensuring asymptotic optimality are relaxed, and, at the same time, the mode of convergence is strengthened. Although the need for such results initiated as an attempt to theoretically characterize the performance of the proposed approximate methods for statistical inference, in regard to the proposed channel modeling approach, they turn out to be of fundamental importance in the areas of nonlinear estimation and stochastic control. The experimental validation of the proposed channel model, as well as the related parameter estimation problem, termed as "Markovian Channel Profiling (MCP)", fundamentally important for any practical deployment, are subject of current, ongoing research. Second, adopting the first of the two aforementioned channel modeling approaches, we consider the spatially controlled relay beamforming problem for an AF network with a single source, a single destination, and multiple, controlled at will, relay nodes. (Abstract shortened by ProQuest.).
Ground-water flow and quality near the Upper Great Lakes connecting channels, Michigan
Gillespie, J.L.; Dumouchelle, D.H.
1989-01-01
The Upper Great Lakes connecting channels are the St. Marys, St. Clair and Detroit Rivers, and Lake St. Clair. The effect of ground water on the connecting channels is largely unknown, and the controls on its movement and quality are undefined. Geologic, hydrologic, and environmental conditions near the channels have been examined.for this investigation. Included in the study area is a 50-mile reach of channel beginning at Whitefish Bay and extending to Neebish Island, and a 90-mile reach of channel between Port Huron and Pointe Mouillee in Lake Erie. Glacial deposits, which transmit most ground water to the channels, range from less than 100 feet in thickness in the southern part of the St. Clair-Detroit River area to more than 250 feet in thickness in the northern part. Marine seismic surveys were used at some locations to determine the thickness of deposits. Glacial deposits in the St. Marys River area range from less than 10 feet to more than 300 feet in thickness. Permeable bedrock in the southern reach of the Detroit River area and throughout most of the St. Marys River area may contribute substantial amounts of water to the channels. Total ground-water discharge to the channels, by area, is estimated as follows! St. Marys area, 76 cubic feet per second; St. Clair area, 11 cubic feet per second; Lake St. Clair area, 46 cubic feet per second; and Detroit area, 54 cubic feet per second. Analyses of water from 31 wells, 25 of which were installed by the U.S. Geological Survey, were made for organic compounds, trace metals, and other substances. Volatile hydrocarbons, and base neutral, acid extractable, and chlorinated neutral compounds were not detectable in water at most locations. Concentrations of trace metals, however, were higher than common in natural waters at some locations.
NASA Astrophysics Data System (ADS)
Levy, Robert Carroll
Aerosols are major components of the Earth's global climate system, affecting the radiation budget and cloud processes of the atmosphere. When located near the surface, high concentrations lead to lowered visibility, increased health problems and generally reduced quality of life for the human population. Over the United States mid-Atlantic region, aerosol pollution is a problem mainly during the summer. Satellites, such as the MODerate Imaging Spectrometer (MODIS), from their vantage point above the atmosphere, provide unprecedented coverage of global and regional aerosols over land. During MODIS' eight-year operation, exhaustive data validation and analyses have shown how the algorithm should be improved. This dissertation describes the development of the 'second-generation' operational algorithm for retrieval of global tropospheric aerosol properties over dark land surfaces, from MODIS-observed spectral reflectance. New understanding about global aerosol properties, land surface reflectance characteristics, and radiative transfer properties were learned in the process. This new operational algorithm performs a simultaneous inversion of reflectance in two visible channels (0.47 and 0.66 mum) and one shortwave infrared channel (2.12 mum), thereby having increased sensitivity to coarse aerosol. Inversion of the three channels retrieves the aerosol optical depth (tau) at 0.55 mum, the percentage of non-dust (fine model) aerosol (eta) and the surface reflectance. This algorithm is applied globally, and retrieves tau that is highly correlated (y = 0.02 + 1.0x, R=0.9) with ground-based sunphotometer measurements. The new algorithm estimates the global, over-land, long-term averaged tau ˜ 0.21, a 25% reduction from previous MODIS estimates. This leads to reducing estimates of global, non-desert, over-land aerosol direct radiative effect (all aerosols) by 1.7 W·m-2 (0.5 W·m-2 over the entire globe), which significantly impacts assessment of aerosol direct radiative forcing (contribution from anthropogenic aerosols only). Over the U.S. mid-Atlantic region, validated retrievals of tau (an integrated column property) can help to estimate surface PM2.5 concentration, a monitored criteria air quality property. The 3-dimensional aerosol loading in the region is characterized using aircraft measurements and the Community Multi-scale Air Quality Model (CMAQ) model, leading to some convergence of observed quantities and modeled processes.
Impact of advanced technology microwave sounder data in the NCMRWF 4D-VAR data assimilation system
NASA Astrophysics Data System (ADS)
Rani, S. Indira; Srinivas, D.; Mallick, Swapan; George, John P.
2016-05-01
This study demonstrates the added benefits of assimilating the Advanced Technology Microwave Sounder (ATMS) radiances from the Suomi-NPP satellite in the NCMRWF Unified Model (NCUM). ATMS is a cross-track scanning microwave radiometer inherited the legacy of two very successful instrument namely, Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Humidity Sounder (MHS). ATMS has 22 channels: 11 temperature sounding channels around 50-60 GHz oxygen band and 6 moisture sounding channels around the 183GHz water vapour band in addition to 5 channels sensitive to the surface in clear conditions, or to water vapour, rain, and cloud when conditions are not clear (at 23, 31, 50, 51 and 89 GHz). Before operational assimilation of any new observation by NWP centres it is standard practice to assess data quality with respect to NWP model background (short-forecast) fields. Quality of all channels is estimated against the model background and the biases are computed and compared against that from the similar observations. The impact of the ATMS data on global analyses and forecasts is tested by adding the ATMS data in the NCUM Observation Processing system (OPS) and 4D-Var variational assimilation (VAR) system. This paper also discusses the pre-operational numerical experiments conducted to assess the impact of ATMS radiances in the NCUM assimilation system. It is noted that the performance of ATMS is stable and it contributes to the performance of the model, complimenting observations from other instruments.
Channel estimation in few mode fiber mode division multiplexing transmission system
NASA Astrophysics Data System (ADS)
Hei, Yongqiang; Li, Li; Li, Wentao; Li, Xiaohui; Shi, Guangming
2018-03-01
It is abundantly clear that obtaining the channel state information (CSI) is of great importance for the equalization and detection in coherence receivers. However, to the best of the authors' knowledge, in most of the existing literatures, CSI is assumed to be perfectly known at the receiver. So far, few literature discusses the effects of imperfect CSI on MDM system performance caused by channel estimation. Motivated by that, in this paper, the channel estimation in few mode fiber (FMF) mode division multiplexing (MDM) system is investigated, in which two classical channel estimation methods, i.e., least square (LS) method and minimum mean square error (MMSE) method, are discussed with the assumption of the spatially white noise lumped at the receiver side of MDM system. Both the capacity and BER performance of MDM system affected by mode-dependent gain or loss (MDL) with different channel estimation errors have been studied. Simulation results show that the capacity and BER performance can be further deteriorated in MDM system by the channel estimation, and an 1e-3 variance of channel estimation error is acceptable in MDM system with 0-6 dB MDL values.
A burst-mode photon counting receiver with automatic channel estimation and bit rate detection
NASA Astrophysics Data System (ADS)
Rao, Hemonth G.; DeVoe, Catherine E.; Fletcher, Andrew S.; Gaschits, Igor D.; Hakimi, Farhad; Hamilton, Scott A.; Hardy, Nicholas D.; Ingwersen, John G.; Kaminsky, Richard D.; Moores, John D.; Scheinbart, Marvin S.; Yarnall, Timothy M.
2016-04-01
We demonstrate a multi-rate burst-mode photon-counting receiver for undersea communication at data rates up to 10.416 Mb/s over a 30-foot water channel. To the best of our knowledge, this is the first demonstration of burst-mode photon-counting communication. With added attenuation, the maximum link loss is 97.1 dB at λ=517 nm. In clear ocean water, this equates to link distances up to 148 meters. For λ=470 nm, the achievable link distance in clear ocean water is 450 meters. The receiver incorporates soft-decision forward error correction (FEC) based on a product code of an inner LDPC code and an outer BCH code. The FEC supports multiple code rates to achieve error-free performance. We have selected a burst-mode receiver architecture to provide robust performance with respect to unpredictable channel obstructions. The receiver is capable of on-the-fly data rate detection and adapts to changing levels of signal and background light. The receiver updates its phase alignment and channel estimates every 1.6 ms, allowing for rapid changes in water quality as well as motion between transmitter and receiver. We demonstrate on-the-fly rate detection, channel BER within 0.2 dB of theory across all data rates, and error-free performance within 1.82 dB of soft-decision capacity across all tested code rates. All signal processing is done in FPGAs and runs continuously in real time.
MIMO channel estimation and evaluation for airborne traffic surveillance in cellular networks
NASA Astrophysics Data System (ADS)
Vahidi, Vahid; Saberinia, Ebrahim
2018-01-01
A channel estimation (CE) procedure based on compressed sensing is proposed to estimate the multiple-input multiple-output sparse channel for traffic data transmission from drones to ground stations. The proposed procedure consists of an offline phase and a real-time phase. In the offline phase, a pilot arrangement method, which considers the interblock and block mutual coherence simultaneously, is proposed. The real-time phase contains three steps. At the first step, it obtains the priori estimate of the channel by block orthogonal matching pursuit; afterward, it utilizes that estimated channel to calculate the linear minimum mean square error of the received pilots. Finally, the block compressive sampling matching pursuit utilizes the enhanced received pilots to estimate the channel more accurately. The performance of the CE procedure is evaluated by simulating the transmission of traffic data through the communication channel and evaluating its fidelity for car detection after demodulation. Simulation results indicate that the proposed CE technique enhances the performance of the car detection in a traffic image considerably.
2010-02-01
channels, so the channel gain is known on each realization and used in a coherent matched filter; and (c) Rayleigh channels with noncoherent matched...gain is known on each realization and used in a coherent matched filter (channel model 1A); and (c) Rayleigh channels with noncoherent matched filters...filters, averaged over Rayleigh channel realizations (channel model 1A). (b) Noncoherent matched filters with Rayleigh fading (channel model 3). MSEs are
Channel Training for Analog FDD Repeaters: Optimal Estimators and Cramér-Rao Bounds
NASA Astrophysics Data System (ADS)
Wesemann, Stefan; Marzetta, Thomas L.
2017-12-01
For frequency division duplex channels, a simple pilot loop-back procedure has been proposed that allows the estimation of the UL & DL channels at an antenna array without relying on any digital signal processing at the terminal side. For this scheme, we derive the maximum likelihood (ML) estimators for the UL & DL channel subspaces, formulate the corresponding Cram\\'er-Rao bounds and show the asymptotic efficiency of both (SVD-based) estimators by means of Monte Carlo simulations. In addition, we illustrate how to compute the underlying (rank-1) SVD with quadratic time complexity by employing the power iteration method. To enable power control for the data transmission, knowledge of the channel gains is needed. Assuming that the UL & DL channels have on average the same gain, we formulate the ML estimator for the channel norm, and illustrate its robustness against strong noise by means of simulations.
Wang, Shau-Chun; Chen, Hsiao-Ping; Lee, Chia-Yu; Yeo, Leslie Y
2005-04-15
In capillary electrophoresis, effective optical signal quality improvement is obtained when high frequency (>100 Hz) external pulse fields modulate analyte velocities with synchronous lock-in detection. However, the pulse frequency is constrained under a critical value corresponding to the time required for the bulk viscous flow, which arises due to viscous momentum diffusion from the electro-osmotic slip in the Debye layer, to reach steady-state. By solving the momentum diffusion equation for transient bulk flow in the micro-channel, we show that this set-in time to steady-state and hence, the upper limit for the pulse frequency is dependent on the characteristic diffusion length scale and therefore the channel geometry; for cylindrical capillaries, the set-in time is approximately one half of that for rectangular slot channels. From our estimation of the set-in time and hence the upper frequency modulation limit, we propose that the half width of planar channels does not exceed 100 microm and that the radii of cylindrical channels be limited to 140 microm such that there is a finite working bandwidth range above 100 Hz and below the upper limit in order for flicker noise to be effectively suppressed.
NASA Technical Reports Server (NTRS)
Wolf, Michael
2012-01-01
A document describes an algorithm created to estimate the mass placed on a sample verification sensor (SVS) designed for lunar or planetary robotic sample return missions. A novel SVS measures the capacitance between a rigid bottom plate and an elastic top membrane in seven locations. As additional sample material (soil and/or small rocks) is placed on the top membrane, the deformation of the membrane increases the capacitance. The mass estimation algorithm addresses both the calibration of each SVS channel, and also addresses how to combine the capacitances read from each of the seven channels into a single mass estimate. The probabilistic approach combines the channels according to the variance observed during the training phase, and provides not only the mass estimate, but also a value for the certainty of the estimate. SVS capacitance data is collected for known masses under a wide variety of possible loading scenarios, though in all cases, the distribution of sample within the canister is expected to be approximately uniform. A capacitance-vs-mass curve is fitted to this data, and is subsequently used to determine the mass estimate for the single channel s capacitance reading during the measurement phase. This results in seven different mass estimates, one for each SVS channel. Moreover, the variance of the calibration data is used to place a Gaussian probability distribution function (pdf) around this mass estimate. To blend these seven estimates, the seven pdfs are combined into a single Gaussian distribution function, providing the final mean and variance of the estimate. This blending technique essentially takes the final estimate as an average of the estimates of the seven channels, weighted by the inverse of the channel s variance.
NASA Astrophysics Data System (ADS)
Goodrich, D. C.; Tan, J.; Petersen, W. A.; Unkrich, C. C.; Demaria, E. M.; Hazenberg, P.; Lakshmi, V.
2017-12-01
Precipitation profiles from the GPM Core Observatory Dual-frequency Precipitation Radar (DPR) form part of the a priori database used in GPM Goddard Profiling (GPROF) algorithm passive microwave radiometer retrievals of rainfall. The GPROF retrievals are in turn used as high quality precipitation estimates in gridded products such as IMERG. Due to the variability in and high surface emissivity of land surfaces, GPROF performs precipitation retrievals as a function of surface classes. As such, different surface types may possess different error characteristics, especially over arid regions where high quality ground measurements are often lacking. Importantly, the emissive properties of land also result in GPROF rainfall estimates being driven primarily by the higher frequency radiometer channels (e.g., > 89 GHz) where precipitation signals are most sensitive to coupling between the ice-phase and rainfall production. In this study, we evaluate the rainfall estimates from the Ku channel of the DPR as well as GPROF estimates from various passive microwave sensors. Our evaluation is conducted at the level of individual satellite pixels (5 to 15 km in diameter), against a dense network of weighing rain gauges (90 in 150 km2) in the USDA-ARS Walnut Gulch Experimental Watershed and Long-Term Agroecosystem Research (LTAR) site in southeastern Arizona. The multiple gauges in each satellite pixel and precise accumulation about the overpass time allow a spatially and temporally representative comparison between the satellite estimates and ground reference. Over Walnut Gulch, both the Ku and GPROF estimates are challenged to delineate between rain and no-rain. Probabilities of detection are relatively high, but false alarm ratios are also high. The rain intensities possess a negative bias across nearly all sensors. It is likely that storm types, arid conditions and the highly variable precipitation regime present a challenge to both rainfall retrieval algorithms. An array of ground-based sensors is being deployed during the 2017 monsoon season to better understand possible reasons for this discrepancy.
NASA Astrophysics Data System (ADS)
Patel, D.; Ein-Mozaffari, F.; Mehrvar, M.
2013-05-01
The identification of non-ideal flows in a continuous-flow mixing of non-Newtonian fluids is a challenging task for various chemical industries: plastic manufacturing, water and wastewater treatment, and pulp and paper manufacturing. Non-ideal flows such as channelling, recirculation, and dead zones significantly affect the performance of continuous-flow mixing systems. Therefore, the main objective of this paper was to develop an identification protocol to measure non-ideal flows in the continuous-flow mixing system. The extent of non-ideal flows was quantified using a dynamic model that incorporated channelling, recirculation, and dead volume in the mixing vessel. To estimate the dynamic model parameters, the system was excited using a frequency-modulated random binary input by injecting the saline solution (as a tracer) into the fresh feed stream prior to being pumped into the mixing vessel. The injection of the tracer was controlled by a computer-controlled on-off solenoid valve. Using the trace technique, the extent of channelling and the effective mixed volume were successfully determined and used as mixing quality criteria. Such identification procedures can be applied at various areas of chemical engineering in order to improve the mixing quality.
NASA Astrophysics Data System (ADS)
Pandey, Praveen; De Ridder, Koen; van Looy, Stijn; van Lipzig, Nicole
2010-05-01
Clouds play an important role in Earth's climate system. As they affect radiation hence photolysis rate coefficients (ozone formation),they also affect the air quality at the surface of the earth. Thus, a satellite remote sensing technique is used to retrieve the cloud properties for air quality research. The geostationary satellite, Meteosat Second Generation (MSG) has onboard, the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The channels in the wavelength 0.6 µm and 1.64 µm are used to retrieve cloud optical thickness (COT). The study domain is over Europe covering a region between 35°N-70°N and 5°W-30°E, centred over Belgium. The steps involved in pre-processing the EUMETSAT level 1.5 images are described, which includes, acquisition of digital count number, radiometric conversion using offsets and slopes, estimation of radiance and calculation of reflectance. The Sun-earth-satellite geometry also plays an important role. A semi-analytical cloud retrieval algorithm (Kokhanovsky et al., 2003) is implemented for the estimation of COT. This approach doesn't involve the conventional look-up table approach, hence it makes the retrieval independent of numerical radiative transfer solutions. The semi-analytical algorithm is implemented on a monthly dataset of SEVIRI level 1.5 images. Minimum reflectance in the visible channel, at each pixel, during the month is accounted as the surface albedo of the pixel. Thus, monthly variation of COT over the study domain is prepared. The result so obtained, is compared with the COT products of Satellite Application Facility on Climate Monitoring (CM SAF). Henceforth, an approach to assimilate the COT for air quality research is presented. Address of corresponding author: Praveen Pandey, VITO- Flemish Institute for Technological Research, Boeretang 200, B 2400, Mol, Belgium E-mail: praveen.pandey@vito.be
Fuzzy-Estimation Control for Improvement Microwave Connection for Iraq Electrical Grid
NASA Astrophysics Data System (ADS)
Hoomod, Haider K.; Radi, Mohammed
2018-05-01
The demand for broadband wireless services is increasing day by day (as internet or radio broadcast and TV etc.) for this reason and optimal exploiting for this bandwidth may be other reasons indeed be there is problem in the communication channels. it’s necessary that exploiting the good part form this bandwidth. In this paper, we propose to use estimation technique for estimate channel availability in that moment and next one to know the error in the bandwidth channel for controlling the possibility data transferring through the channel. The proposed estimation based on the combination of the least Minimum square (LMS), Standard Kalman filter, and Modified Kalman filter. The error estimation in channel use as control parameter in fuzzy rules to adjusted the rate and size sending data through the network channel, and rearrangement the priorities of the buffered data (workstation control parameters, Texts, phone call, images, and camera video) for the worst cases of error in channel. The propose system is designed to management data communications through the channels connect among the Iraqi electrical grid stations. The proposed results show that the modified Kalman filter have a best result in time and noise estimation (0.1109 for 5% noise estimation to 0.3211 for 90% noise estimation) and the packets loss rate is reduced with ratio from (35% to 385%).
A channel estimation scheme for MIMO-OFDM systems
NASA Astrophysics Data System (ADS)
He, Chunlong; Tian, Chu; Li, Xingquan; Zhang, Ce; Zhang, Shiqi; Liu, Chaowen
2017-08-01
In view of the contradiction of the time-domain least squares (LS) channel estimation performance and the practical realization complexity, a reduced complexity channel estimation method for multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) based on pilot is obtained. This approach can transform the complexity of MIMO-OFDM channel estimation problem into a simple single input single output-orthogonal frequency division multiplexing (SISO-OFDM) channel estimation problem and therefore there is no need for large matrix pseudo-inverse, which greatly reduces the complexity of algorithms. Simulation results show that the bit error rate (BER) performance of the obtained method with time orthogonal training sequences and linear minimum mean square error (LMMSE) criteria is better than that of time-domain LS estimator and nearly optimal performance.
Concurrent signal combining and channel estimation in digital communications
Ormesher, Richard C [Albuquerque, NM; Mason, John J [Albuquerque, NM
2011-08-30
In the reception of digital information transmitted on a communication channel, a characteristic exhibited by the communication channel during transmission of the digital information is estimated based on a communication signal that represents the digital information and has been received via the communication channel. Concurrently with the estimating, the communication signal is used to decide what digital information was transmitted.
Young, Laura K; Smithson, Hannah E
2014-01-01
There is evidence that letter identification is mediated by only a narrow band of spatial frequencies and that the center frequency of the neural channel thought to underlie this selectivity is related to the size of the letters. When letters are spatially filtered (at a fixed size) the channel tuning characteristics change according to the properties of the spatial filter (Majaj et al., 2002). Optical aberrations in the eye act to spatially filter the image formed on the retina-their effect is generally to attenuate high frequencies more than low frequencies but often in a non-monotonic way. We might expect the change in the spatial frequency spectrum caused by the aberration to predict the shift in channel tuning observed for aberrated letters. We show that this is not the case. We used critical-band masking to estimate channel-tuning in the presence of three types of aberration-defocus, coma and secondary astigmatism. We found that the maximum masking was shifted to lower frequencies in the presence of an aberration and that this result was not simply predicted by the spatial-frequency-dependent degradation in image quality, assessed via metrics that have previously been shown to correlate well with performance loss in the presence of an aberration. We show that if image quality effects are taken into account (using visual Strehl metrics), the neural channel required to model the data is shifted to lower frequencies compared to the control (no-aberration) condition. Additionally, we show that when spurious resolution (caused by π phase shifts in the optical transfer function) in the image is masked, the channel tuning properties for aberrated letters are affected, suggesting that there may be interference between visual channels. Even in the presence of simulated aberrations, whose properties change from trial-to-trial, observers exhibit flexibility in selecting the spatial frequencies that support letter identification.
Dynamical noise filter and conditional entropy analysis in chaos synchronization.
Wang, Jiao; Lai, C-H
2006-06-01
It is shown that, in a chaotic synchronization system whose driving signal is exposed to channel noise, the estimation of the drive system states can be greatly improved by applying the dynamical noise filtering to the response system states. If the noise is bounded in a certain range, the estimation errors, i.e., the difference between the filtered responding states and the driving states, can be made arbitrarily small. This property can be used in designing an alternative digital communication scheme. An analysis based on the conditional entropy justifies the application of dynamical noise filtering in generating quality synchronization.
A Comparative Study of Co-Channel Interference Suppression Techniques
NASA Technical Reports Server (NTRS)
Hamkins, Jon; Satorius, Ed; Paparisto, Gent; Polydoros, Andreas
1997-01-01
We describe three methods of combatting co-channel interference (CCI): a cross-coupled phase-locked loop (CCPLL); a phase-tracking circuit (PTC), and joint Viterbi estimation based on the maximum likelihood principle. In the case of co-channel FM-modulated voice signals, the CCPLL and PTC methods typically outperform the maximum likelihood estimators when the modulation parameters are dissimilar. However, as the modulation parameters become identical, joint Viterbi estimation provides for a more robust estimate of the co-channel signals and does not suffer as much from "signal switching" which especially plagues the CCPLL approach. Good performance for the PTC requires both dissimilar modulation parameters and a priori knowledge of the co-channel signal amplitudes. The CCPLL and joint Viterbi estimators, on the other hand, incorporate accurate amplitude estimates. In addition, application of the joint Viterbi algorithm to demodulating co-channel digital (BPSK) signals in a multipath environment is also discussed. It is shown in this case that if the interference is sufficiently small, a single trellis model is most effective in demodulating the co-channel signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovsky, J.E.
1998-05-01
In this report, several lightning-channel parameters are calculated with the aid of an electrodynamic model of lightning. The electrodynamic model describes dart leaders and return strokes as electromagnetic waves that are guided along conducting lightning channels. According to the model, electrostatic energy is delivered to the channel by a leader, where it is stored around the outside of the channel; subsequently, the return stroke dissipates this locally stored energy. In this report this lightning-energy-flow scenario is developed further. Then the energy dissipated per unit length in lightning channels is calculated, where this quantity is now related to the linear chargemore » density on the channel, not to the cloud-to-ground electrostatic potential difference. Energy conservation is then used to calculate the radii of lightning channels: their initial radii at the onset of return strokes and their final radii after the channels have pressure expanded. Finally, the risetimes for channel heating during return strokes are calculated by defining an energy-storage radius around the channel and by estimating the radial velocity of energy flow toward the channel during a return stroke. In three appendices, values for the linear charge densities on lightning channels are calculated, estimates of the total length of branch channels are obtained, and values for the cloud-to-ground electrostatic potential difference are estimated. {copyright} 1998 American Geophysical Union« less
Simulations of Beam Optics and Bremsstrahlung for High Intensity and Brightness Channeling Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyun, J.; Piot, P.; Sen, T.
2018-04-12
This paper presents X-ray spectra of channeling radiation expected at the FAST (Fermi Accelerator Science and Technology) facility in Fermilab. Our purpose is to produce high brightness quasi-monochromatic X-rays in an energy range from 40 keV to 110 keV. We will use a diamond crystal and low emittance electrons with an energy of around 43 MeV. The quality of emitted X-rays depends on parameters of the electron beam at the crystal. We present simulations of the beam optics for high brightness and high yield operations for a range of bunch charges. We estimate the X-ray spectra including bremsstrahlung background. Wemore » discuss how the electron beam distributions after the diamond crystal are affected by channeling. We discuss an X-ray detector system to avoid pile-up effects during high charge operations.« less
Dual Channel S-Band Frequency Modulated Continuous Wave Through-Wall Radar Imaging
Oh, Daegun; Kim, Sunwoo; Chong, Jong-Wha
2018-01-01
This article deals with the development of a dual channel S-Band frequency-modulated continuous wave (FMCW) system for a through-the-wall imaging (TWRI) system. Most existing TWRI systems using FMCW were developed for synthetic aperture radar (SAR) which has many drawbacks such as the need for several antenna elements and movement of the system. Our implemented TWRI system comprises a transmitting antenna and two receiving antennas, resulting in a significant reduction of the number of antenna elements. Moreover, a proposed algorithm for range-angle-Doppler 3D estimation based on a 3D shift invariant structure is utilized in our implemented dual channel S-band FMCW TWRI system. Indoor and outdoor experiments were conducted to image the scene beyond a wall for water targets and person targets, respectively. The experimental results demonstrate that high-quality imaging can be achieved under both experimental scenarios. PMID:29361777
Simulations of Beam Optics and Bremsstrahlung for High Intensity and Brightness Channeling Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyun, J.; Piot, P.; Sen, T.
This paper presents X-ray spectra of channeling radiation expected at the FAST (Fermi Accelerator Science and Technology) facility in Fermilab. Our purpose is to produce high brightness quasi-monochromatic X-rays in an energy range from 40 keV to 110 keV. We will use a diamond crystal and low emittance electrons with an energy of around 43 MeV. The quality of emitted X-rays depends on parameters of the electron beam at the crystal. We present simulations of the beam optics for high brightness and high yield operations for a range of bunch charges. We estimate the X-ray spectra including bremsstrahlung background. Wemore » discuss how the electron beam distributions after the diamond crystal are affected by channeling. Here, we discuss an X-ray detector system to avoid pile-up effects during high charge operations.« less
Simulations of Beam Optics and Bremsstrahlung for High Intensity and Brightness Channeling Radiation
Hyun, J.; Piot, P.; Sen, T.
2018-06-14
This paper presents X-ray spectra of channeling radiation expected at the FAST (Fermi Accelerator Science and Technology) facility in Fermilab. Our purpose is to produce high brightness quasi-monochromatic X-rays in an energy range from 40 keV to 110 keV. We will use a diamond crystal and low emittance electrons with an energy of around 43 MeV. The quality of emitted X-rays depends on parameters of the electron beam at the crystal. We present simulations of the beam optics for high brightness and high yield operations for a range of bunch charges. We estimate the X-ray spectra including bremsstrahlung background. Wemore » discuss how the electron beam distributions after the diamond crystal are affected by channeling. Here, we discuss an X-ray detector system to avoid pile-up effects during high charge operations.« less
NASA Astrophysics Data System (ADS)
Lv, ZhuoKai; Yang, Tiejun; Zhu, Chunhua
2018-03-01
Through utilizing the technology of compressive sensing (CS), the channel estimation methods can achieve the purpose of reducing pilots and improving spectrum efficiency. The channel estimation and pilot design scheme are explored during the correspondence under the help of block-structured CS in massive MIMO systems. The block coherence property of the aggregate system matrix can be minimized so that the pilot design scheme based on stochastic search is proposed. Moreover, the block sparsity adaptive matching pursuit (BSAMP) algorithm under the common sparsity model is proposed so that the channel estimation can be caught precisely. Simulation results are to be proved the proposed design algorithm with superimposed pilots design and the BSAMP algorithm can provide better channel estimation than existing methods.
Analysis of temperature profiles for investigating stream losses beneath ephemeral channels
Constantz, Jim; Stewart, Amy E.; Niswonger, Richard G.; Sarma, Lisa
2002-01-01
Continuous estimates of streamflow are challenging in ephemeral channels. The extremely transient nature of ephemeral streamflows results in shifting channel geometry and degradation in the calibration of streamflow stations. Earlier work suggests that analysis of streambed temperature profiles is a promising technique for estimating streamflow patterns in ephemeral channels. The present work provides a detailed examination of the basis for using heat as a tracer of stream/groundwater exchanges, followed by a description of an appropriate heat and water transport simulation code for ephemeral channels, as well as discussion of several types of temperature analysis techniques to determine streambed percolation rates. Temperature‐based percolation rates for three ephemeral stream sites are compared with available surface water estimates of channel loss for these sites. These results are combined with published results to develop conclusions regarding the accuracy of using vertical temperature profiles in estimating channel losses. Comparisons of temperature‐based streambed percolation rates with surface water‐based channel losses indicate that percolation rates represented 30% to 50% of the total channel loss. The difference is reasonable since channel losses include both vertical and nonvertical component of channel loss as well as potential evapotranspiration losses. The most significant advantage of the use of sediment‐temperature profiles is their robust and continuous nature, leading to a long‐term record of the timing and duration of channel losses and continuous estimates of streambed percolation. The primary disadvantage is that temperature profiles represent the continuous percolation rate at a single point in an ephemeral channel rather than an average seepage loss from the entire channel.
Model observer design for multi-signal detection in the presence of anatomical noise
NASA Astrophysics Data System (ADS)
Wen, Gezheng; Markey, Mia K.; Park, Subok
2017-02-01
As psychophysical studies are resource-intensive to conduct, model observers are commonly used to assess and optimize medical imaging quality. Model observers are typically designed to detect at most one signal. However, in clinical practice, there may be multiple abnormalities in a single image set (e.g. multifocal multicentric (MFMC) breast cancer), which can impact treatment planning. Prevalence of signals can be different across anatomical regions, and human observers do not know the number or location of signals a priori. As new imaging techniques have the potential to improve multiple-signal detection (e.g. digital breast tomosynthesis may be more effective for diagnosis of MFMC than mammography), image quality assessment approaches addressing such tasks are needed. In this study, we present a model observer to detect multiple signals in an image dataset. A novel implementation of partial least squares (PLS) was developed to estimate different sets of efficient channels directly from the images. The PLS channels are adaptive to the characteristics of signals and the background, and they capture the interactions among signal locations. Corresponding linear decision templates are employed to generate both image-level and location-specific scores on the presence of signals. Our results show that: (1) the model observer can achieve high performance with a reasonably small number of channels; (2) the model observer with PLS channels outperforms that with benchmark modified Laguerre-Gauss channels, especially when realistic signal shapes and complex background statistics are involved; (3) the tasks of clinical interest, and other constraints such as sample size would alter the optimal design of the model observer.
Beghi, Roberto; Giovenzana, Valentina; Tugnolo, Alessio; Guidetti, Riccardo
2018-05-01
The market for fruits and vegetables is mainly controlled by the mass distribution channel (MDC). MDC buyers do not have useful instruments to rapidly evaluate the quality of the products. Decisions by the buyers are driven primarily by pricing strategies rather than product quality. Simple, rapid and easy-to-use methods for objectively evaluating the quality of postharvest products are needed. The present study aimed to use visible and near-infrared (vis/NIR) spectroscopy to estimate some qualitative parameters of two low-price products (carrots and tomatoes) of various brands, as well as evaluate the applicability of this technique for use in stores. A non-destructive optical system (vis/NIR spectrophotometer with a reflection probe, spectral range 450-1650 nm) was tested. The differences in quality among carrots and tomatoes purchased from 13 stores on various dates were examined. The reference quality parameters (firmness, water content, soluble solids content, pH and colour) were correlated with the spectral readings. The models derived from the optical data gave positive results, in particular for the prediction of the soluble solids content and the colour, with better results for tomatoes than for carrots. The application of optical techniques may help MDC buyers to monitor the quality of postharvest products, leading to an effective optimization of the entire supply chain. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Besser, John M.; Giesy, John P.; Kubitz, Jody A.; Verbrugge, David A.; Coon, Thomas G.; Braselton, W. Emmett
1996-01-01
The “sediment quality triad” approach was used to assess the effects of dredging on the sediment quality of a new marina in the Trenton Channel of the Detroit River, and to evaluate spatial and temporal variation in sediment quality in the Trenton Channel. Samples were collected in November of 1993 (10 months after dredging) and characterized by chemical analysis, sediment bioassays, and assessment of benthic invertebrate communities. The three study components indicated little difference in sediment quality at dredged sites in the marina relative to nearby areas in the Trenton Channel, and little change in sediment quality of Trenton Channel sites relative to conditions reported in the mid-1980s. These results suggest that improvement in sediment quality in the Trenton Channel, due to dredging or natural processes, will depend on elimination of sediment “hot spots” and other upstream contaminant sources. Concentrations of chemical contaminants, especially metals and polycyclic aromatic hydrocarbons, exceeded concentrations associated with effects on biota and were significantly correlated with results of sediment bioassays and characteristics of benthic communities. Laboratory sediment bioassays with Hyalella azteca andChironomus tentans produced better discrimination among sites with differing degrees of contamination than did characterization of benthic communities, which were dominated by oligochaetes at all sites in the marina and the Trenton Channel.
A joint source-channel distortion model for JPEG compressed images.
Sabir, Muhammad F; Sheikh, Hamid Rahim; Heath, Robert W; Bovik, Alan C
2006-06-01
The need for efficient joint source-channel coding (JSCC) is growing as new multimedia services are introduced in commercial wireless communication systems. An important component of practical JSCC schemes is a distortion model that can predict the quality of compressed digital multimedia such as images and videos. The usual approach in the JSCC literature for quantifying the distortion due to quantization and channel errors is to estimate it for each image using the statistics of the image for a given signal-to-noise ratio (SNR). This is not an efficient approach in the design of real-time systems because of the computational complexity. A more useful and practical approach would be to design JSCC techniques that minimize average distortion for a large set of images based on some distortion model rather than carrying out per-image optimizations. However, models for estimating average distortion due to quantization and channel bit errors in a combined fashion for a large set of images are not available for practical image or video coding standards employing entropy coding and differential coding. This paper presents a statistical model for estimating the distortion introduced in progressive JPEG compressed images due to quantization and channel bit errors in a joint manner. Statistical modeling of important compression techniques such as Huffman coding, differential pulse-coding modulation, and run-length coding are included in the model. Examples show that the distortion in terms of peak signal-to-noise ratio (PSNR) can be predicted within a 2-dB maximum error over a variety of compression ratios and bit-error rates. To illustrate the utility of the proposed model, we present an unequal power allocation scheme as a simple application of our model. Results show that it gives a PSNR gain of around 6.5 dB at low SNRs, as compared to equal power allocation.
Joint Source-Channel Decoding of Variable-Length Codes with Soft Information: A Survey
NASA Astrophysics Data System (ADS)
Guillemot, Christine; Siohan, Pierre
2005-12-01
Multimedia transmission over time-varying wireless channels presents a number of challenges beyond existing capabilities conceived so far for third-generation networks. Efficient quality-of-service (QoS) provisioning for multimedia on these channels may in particular require a loosening and a rethinking of the layer separation principle. In that context, joint source-channel decoding (JSCD) strategies have gained attention as viable alternatives to separate decoding of source and channel codes. A statistical framework based on hidden Markov models (HMM) capturing dependencies between the source and channel coding components sets the foundation for optimal design of techniques of joint decoding of source and channel codes. The problem has been largely addressed in the research community, by considering both fixed-length codes (FLC) and variable-length source codes (VLC) widely used in compression standards. Joint source-channel decoding of VLC raises specific difficulties due to the fact that the segmentation of the received bitstream into source symbols is random. This paper makes a survey of recent theoretical and practical advances in the area of JSCD with soft information of VLC-encoded sources. It first describes the main paths followed for designing efficient estimators for VLC-encoded sources, the key component of the JSCD iterative structure. It then presents the main issues involved in the application of the turbo principle to JSCD of VLC-encoded sources as well as the main approaches to source-controlled channel decoding. This survey terminates by performance illustrations with real image and video decoding systems.
Channel estimation based on quantized MMP for FDD massive MIMO downlink
NASA Astrophysics Data System (ADS)
Guo, Yao-ting; Wang, Bing-he; Qu, Yi; Cai, Hua-jie
2016-10-01
In this paper, we consider channel estimation for Massive MIMO systems operating in frequency division duplexing mode. By exploiting the sparsity of propagation paths in Massive MIMO channel, we develop a compressed sensing(CS) based channel estimator which can reduce the pilot overhead. As compared with the conventional least squares (LS) and linear minimum mean square error(LMMSE) estimation, the proposed algorithm is based on the quantized multipath matching pursuit - MMP - reduced the pilot overhead and performs better than other CS algorithms. The simulation results demonstrate the advantage of the proposed algorithm over various existing methods including the LS, LMMSE, CoSaMP and conventional MMP estimators.
Eash, D.A.
1993-01-01
Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates. The drainage-basin regression equations are applicable to unregulated rural drainage areas less than 1,060 square miles, and the channel-geometry regression equations are applicable to unregulated rural streams in Iowa with stabilized channels.
Omang, R.J.; Parrett, Charles; Hull, J.A.
1983-01-01
Equations using channel-geometry measurements were developed for estimating mean runoff and peak flows of ungaged streams in southeastern Montana. Two separate sets of esitmating equations were developed for determining mean annual runoff: one for perennial streams and one for ephemeral and intermittent streams. Data from 29 gaged sites on perennial streams and 21 gaged sites on ephemeral and intermittent streams were used in these analyses. Data from 78 gaged sites were used in the peak-flow analyses. Southeastern Montana was divided into three regions and separate multiple-regression equations for each region were developed that relate channel dimensions to peak discharge having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Channel-geometery relations were developed using measurements of the active-channel width and bankfull width. Active-channel width and bankfull width were the most significant channel features for estimating mean annual runoff for al types of streams. Use of this method requires that onsite measurements be made of channel width. The standard error of estimate for predicting mean annual runoff ranged from about 38 to 79 percent. The standard error of estimate relating active-channel width or bankfull width to peak flow ranged from about 37 to 115 percent. (USGS)
Spatially Common Sparsity Based Adaptive Channel Estimation and Feedback for FDD Massive MIMO
NASA Astrophysics Data System (ADS)
Gao, Zhen; Dai, Linglong; Wang, Zhaocheng; Chen, Sheng
2015-12-01
This paper proposes a spatially common sparsity based adaptive channel estimation and feedback scheme for frequency division duplex based massive multi-input multi-output (MIMO) systems, which adapts training overhead and pilot design to reliably estimate and feed back the downlink channel state information (CSI) with significantly reduced overhead. Specifically, a non-orthogonal downlink pilot design is first proposed, which is very different from standard orthogonal pilots. By exploiting the spatially common sparsity of massive MIMO channels, a compressive sensing (CS) based adaptive CSI acquisition scheme is proposed, where the consumed time slot overhead only adaptively depends on the sparsity level of the channels. Additionally, a distributed sparsity adaptive matching pursuit algorithm is proposed to jointly estimate the channels of multiple subcarriers. Furthermore, by exploiting the temporal channel correlation, a closed-loop channel tracking scheme is provided, which adaptively designs the non-orthogonal pilot according to the previous channel estimation to achieve an enhanced CSI acquisition. Finally, we generalize the results of the multiple-measurement-vectors case in CS and derive the Cramer-Rao lower bound of the proposed scheme, which enlightens us to design the non-orthogonal pilot signals for the improved performance. Simulation results demonstrate that the proposed scheme outperforms its counterparts, and it is capable of approaching the performance bound.
Shanafield, Margaret; Niswonger, Richard G.; Prudic, David E.; Pohll, Greg; Susfalk, Richard; Panday, Sorab
2014-01-01
Infiltration along ephemeral channels plays an important role in groundwater recharge in arid regions. A model is presented for estimating spatial variability of seepage due to streambed heterogeneity along channels based on measurements of streamflow-front velocities in initially dry channels. The diffusion-wave approximation to the Saint-Venant equations, coupled with Philip's equation for infiltration, is connected to the groundwater model MODFLOW and is calibrated by adjusting the saturated hydraulic conductivity of the channel bed. The model is applied to portions of two large water delivery canals, which serve as proxies for natural ephemeral streams. Estimated seepage rates compare well with previously published values. Possible sources of error stem from uncertainty in Manning's roughness coefficients, soil hydraulic properties and channel geometry. Model performance would be most improved through more frequent longitudinal estimates of channel geometry and thalweg elevation, and with measurements of stream stage over time to constrain wave timing and shape. This model is a potentially valuable tool for estimating spatial variability in longitudinal seepage along intermittent and ephemeral channels over a wide range of bed slopes and the influence of seepage rates on groundwater levels.
Revised techniques for estimating peak discharges from channel width in Montana
Parrett, Charles; Hull, J.A.; Omang, R.J.
1987-01-01
This study was conducted to develop new estimating equations based on channel width and the updated flood frequency curves of previous investigations. Simple regression equations for estimating peak discharges with recurrence intervals of 2, 5, 10 , 25, 50, and 100 years were developed for seven regions in Montana. The standard errors of estimates for the equations that use active channel width as the independent variables ranged from 30% to 87%. The standard errors of estimate for the equations that use bankfull width as the independent variable ranged from 34% to 92%. The smallest standard errors generally occurred in the prediction equations for the 2-yr flood, 5-yr flood, and 10-yr flood, and the largest standard errors occurred in the prediction equations for the 100-yr flood. The equations that use active channel width and the equations that use bankfull width were determined to be about equally reliable in five regions. In the West Region, the equations that use bankfull width were slightly more reliable than those based on active channel width, whereas in the East-Central Region the equations that use active channel width were slightly more reliable than those based on bankfull width. Compared with similar equations previously developed, the standard errors of estimate for the new equations are substantially smaller in three regions and substantially larger in two regions. Limitations on the use of the estimating equations include: (1) The equations are based on stable conditions of channel geometry and prevailing water and sediment discharge; (2) The measurement of channel width requires a site visit, preferably by a person with experience in the method, and involves appreciable measurement errors; (3) Reliability of results from the equations for channel widths beyond the range of definition is unknown. In spite of the limitations, the estimating equations derived in this study are considered to be as reliable as estimating equations based on basin and climatic variables. Because the two types of estimating equations are independent, results from each can be weighted inversely proportional to their variances, and averaged. The weighted average estimate has a variance less than either individual estimate. (Author 's abstract)
Park, Subok; Clarkson, Eric
2010-01-01
The Bayesian ideal observer is optimal among all observers and sets an absolute upper bound for the performance of any observer in classification tasks [Van Trees, Detection, Estimation, and Modulation Theory, Part I (Academic, 1968).]. Therefore, the ideal observer should be used for objective image quality assessment whenever possible. However, computation of ideal-observer performance is difficult in practice because this observer requires the full description of unknown, statistical properties of high-dimensional, complex data arising in real life problems. Previously, Markov-chain Monte Carlo (MCMC) methods were developed by Kupinski et al. [J. Opt. Soc. Am. A 20, 430(2003) ] and by Park et al. [J. Opt. Soc. Am. A 24, B136 (2007) and IEEE Trans. Med. Imaging 28, 657 (2009) ] to estimate the performance of the ideal observer and the channelized ideal observer (CIO), respectively, in classification tasks involving non-Gaussian random backgrounds. However, both algorithms had the disadvantage of long computation times. We propose a fast MCMC for real-time estimation of the likelihood ratio for the CIO. Our simulation results show that our method has the potential to speed up ideal-observer performance in tasks involving complex data when efficient channels are used for the CIO. PMID:19884916
1980-09-01
Needs 75 DEVELOPMENT OF DREDGING COST ESTIMATES 76 IMPLEMENTATION OF SELECTED PLAN 77 EVALUATION OF SELECTED PLAN 78 NATIONAL ECONOMIC DEVELOPMENT EFFECTS ...78 ENVIRONMENTAL QUALITY EFFECTS 78 TABLE OF CONTENTS (CONT) ITEM PAGE RECOMM*ENDATIONS 79 THE DREDGE WILLIAM A. THOMPSON 79 MECHANICAL DREDGING...and cost effective for implementing a recommended channel maintenance plan. 3. Suggesting which types of equipment and techniques are best suited for
Matrix structure for information-driven polarimeter design
NASA Astrophysics Data System (ADS)
Alenin, Andrey S.
Estimating the polarization of light has been shown to have merit in a wide variety of applications between UV and LWIR wavelengths. These tasks include target identification, estimation of atmospheric aerosol properties, biomedical and other applications. In all of these applications, polarization sensing has been shown to assist in discrimination ability; however, due to the nature of many phenomena, it is difficult to add polarization sensing everywhere. The goal of this dissertation is to decrease the associated penalties of using polarimetry, and thereby broaden its applicability to other areas. First, the class of channeled polarimeter systems is generalized to relate the Fourier domains of applied modulations to the resulting information channels. The quality of reconstruction is maximized by virtue of using linear system manipulations rather than arithmetic derived by hand, while revealing system properties that allow for immediate performance estimation. Besides identifying optimal systems in terms of equally weighted variance (EWV), a way to redistribute the error between all the information channels is presented. The result of this development often leads to superficial changes that can improve signal-to-noise-ration (SNR) by up to a factor of three compared to existing designs in the literature. Second, the class of partial Mueller maitrx polarimeters (pMMPs) is inspected in regards to their capacity to match the level of discrimination performance achieved by full systems. The concepts of structured decomposition and the reconstructables matrix are developed to provide insight into Mueller subspace coverage of pMMPs, while yielding a pMMP basis that allows the formation of ten classes of pMMP systems. A method for evaluating such systems while considering a multi-objective optimization of noise resilience and space coverage is provided. An example is presented for which the number of measurements was reduced to half. Third, the novel developments intended for channeled and partial systems are combined to form a previously undiscussed class of channeled partial Mueller matrix polarimeters (c-pMMPs). These systems leverage the gained understanding in manipulating the structure of the measurement to design modulations such that the desired pieces of information are mapped into channels with favorable reconstruction characteristics.
Joint channel estimation and multi-user detection for multipath fading channels in DS-CDMA systems
NASA Astrophysics Data System (ADS)
Wu, Sau-Hsuan; Kuo, C.-C. Jay
2002-11-01
The technique of joint blind channel estimation and multiple access interference (MAI) suppression for an asynchronous code-division multiple-access (CDMA) system is investigated in this research. To identify and track dispersive time-varying fading channels and to avoid the phase ambiguity that come with the second-order statistic approaches, a sliding-window scheme using the expectation maximization (EM) algorithm is proposed. The complexity of joint channel equalization and symbol detection for all users increases exponentially with system loading and the channel memory. The situation is exacerbated if strong inter-symbol interference (ISI) exists. To reduce the complexity and the number of samples required for channel estimation, a blind multiuser detector is developed. Together with multi-stage interference cancellation using soft outputs provided by this detector, our algorithm can track fading channels with no phase ambiguity even when channel gains attenuate close to zero.
Parrett, Charles; Omang, R.J.; Hull, J.A.
1983-01-01
Equations for estimating mean annual runoff and peak discharge from measurements of channel geometry were developed for western and northeastern Montana. The study area was divided into two regions for the mean annual runoff analysis, and separate multiple-regression equations were developed for each region. The active-channel width was determined to be the most important independent variable in each region. The standard error of estimate for the estimating equation using active-channel width was 61 percent in the Northeast Region and 38 percent in the West region. The study area was divided into six regions for the peak discharge analysis, and multiple regression equations relating channel geometry and basin characteristics to peak discharges having recurrence intervals of 2, 5, 10, 25, 50 and 100 years were developed for each region. The standard errors of estimate for the regression equations using only channel width as an independent variable ranged from 35 to 105 percent. The standard errors improved in four regions as basin characteristics were added to the estimating equations. (USGS)
NASA Astrophysics Data System (ADS)
Shima, Tomoyuki; Tomeba, Hiromichi; Adachi, Fumiyuki
Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of time-domain spreading and orthogonal frequency division multiplexing (OFDM). In orthogonal MC DS-CDMA, the frequency diversity gain can be obtained by applying frequency-domain equalization (FDE) based on minimum mean square error (MMSE) criterion to a block of OFDM symbols and can improve the bit error rate (BER) performance in a severe frequency-selective fading channel. FDE requires an accurate estimate of the channel gain. The channel gain can be estimated by removing the pilot modulation in the frequency domain. In this paper, we propose a pilot-assisted channel estimation suitable for orthogonal MC DS-CDMA with FDE and evaluate, by computer simulation, the BER performance in a frequency-selective Rayleigh fading channel.
Development of a multichannel hyperspectral imaging probe for food property and quality assessment
NASA Astrophysics Data System (ADS)
Huang, Yuping; Lu, Renfu; Chen, Kunjie
2017-05-01
This paper reports on the development, calibration and evaluation of a new multipurpose, multichannel hyperspectral imaging probe for property and quality assessment of food products. The new multichannel probe consists of a 910 μm fiber as a point light source and 30 light receiving fibers of three sizes (i.e., 50 μm, 105 μm and 200 μm) arranged in a special pattern to enhance signal acquisitions over the spatial distances of up to 36 mm. The multichannel probe allows simultaneous acquisition of 30 spatially-resolved reflectance spectra of food samples with either flat or curved surface over the spectral region of 550-1,650 nm. The measured reflectance spectra can be used for estimating the optical scattering and absorption properties of food samples, as well as for assessing the tissues of the samples at different depths. Several calibration procedures that are unique to this probe were carried out; they included linearity calibrations for each channel of the hyperspectral imaging system to ensure consistent linear responses of individual channels, and spectral response calibrations of individual channels for each fiber size group and between the three groups of different size fibers. Finally, applications of this new multichannel probe were demonstrated through the optical property measurement of liquid model samples and tomatoes of different maturity levels. The multichannel probe offers new capabilities for optical property measurement and quality detection of food and agricultural products.
Assimilation of Precipitation Measurement Missions Microwave Radiance Observations With GEOS-5
NASA Technical Reports Server (NTRS)
Jin, Jianjun; Kim, Min-Jeong; McCarty, Will; Akella, Santha; Gu, Wei
2015-01-01
The Global Precipitation Mission (GPM) Core Observatory satellite was launched in February, 2014. The GPM Microwave Imager (GMI) is a conically scanning radiometer measuring 13 channels ranging from 10 to 183 GHz and sampling between 65 S 65 N. This instrument is a successor to the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI), which has observed 9 channels at frequencies ranging 10 to 85 GHz between 40 S 40 N since 1997. This presentation outlines the base procedures developed to assimilate GMI and TMI radiances in clear-sky conditions, including quality control methods, thinning decisions, and the estimation of, observation errors. This presentation also shows the impact of these observations when they are incorporated into the GEOS-5 atmospheric data assimilation system.
Ferré, Jean-Christophe; Petr, Jan; Bannier, Elise; Barillot, Christian; Gauvrit, Jean-Yves
2012-05-01
To compare 12-channel and 32-channel phased-array coils and to determine the optimal parallel imaging (PI) technique and factor for brain perfusion imaging using Pulsed Arterial Spin labeling (PASL) at 3 Tesla (T). Twenty-seven healthy volunteers underwent 10 different PASL perfusion PICORE Q2TIPS scans at 3T using 12-channel and 32-channel coils without PI and with GRAPPA or mSENSE using factor 2. PI with factor 3 and 4 were used only with the 32-channel coil. Visual quality was assessed using four parameters. Quantitative analyses were performed using temporal noise, contrast-to-noise and signal-to-noise ratios (CNR, SNR). Compared with 12-channel acquisition, the scores for 32-channel acquisition were significantly higher for overall visual quality, lower for noise and higher for SNR and CNR. With the 32-channel coil, artifact compromise achieved the best score with PI factor 2. Noise increased, SNR and CNR decreased with PI factor. However mSENSE 2 scores were not always significantly different from acquisition without PI. For PASL at 3T, the 32-channel coil at 3T provided better quality than the 12-channel coil. With the 32-channel coil, mSENSE 2 seemed to offer the best compromise for decreasing artifacts without significantly reducing SNR, CNR. Copyright © 2012 Wiley Periodicals, Inc.
Assessment of CT image quality using a Bayesian approach
NASA Astrophysics Data System (ADS)
Reginatto, M.; Anton, M.; Elster, C.
2017-08-01
One of the most promising approaches for evaluating CT image quality is task-specific quality assessment. This involves a simplified version of a clinical task, e.g. deciding whether an image belongs to the class of images that contain the signature of a lesion or not. Task-specific quality assessment can be done by model observers, which are mathematical procedures that carry out the classification task. The most widely used figure of merit for CT image quality is the area under the ROC curve (AUC), a quantity which characterizes the performance of a given model observer. In order to estimate AUC from a finite sample of images, different approaches from classical statistics have been suggested. The goal of this paper is to introduce task-specific quality assessment of CT images to metrology and to propose a novel Bayesian estimation of AUC for the channelized Hotelling observer (CHO) applied to the task of detecting a lesion at a known image location. It is assumed that signal-present and signal-absent images follow multivariate normal distributions with the same covariance matrix. The Bayesian approach results in a posterior distribution for the AUC of the CHO which provides in addition a complete characterization of the uncertainty of this figure of merit. The approach is illustrated by its application to both simulated and experimental data.
Parikh, P T; Sandhu, G S; Blackham, K A; Coffey, M D; Hsu, D; Liu, K; Jesberger, J; Griswold, M; Sunshine, J L
2011-02-01
Multichannel phased-array head coils are undergoing exponential escalation of coil element numbers. While previous technical studies have found gains in SNR and spatial resolution with the addition of element coils, it remains to be determined how these gains affect clinical reading. The purpose of this clinical study was to determine if the SNR and spatial resolution characteristics of a 32-channel head coil result in improvements in perceived image quality and lesion evaluation. Twenty-one patients underwent MR imaging of the brain at 1.5T sequentially with both a 12-channel and a 32-channel receive-only phased-array head coil. Axial T2WIs, T1WIs, FLAIR images, and DWIs were acquired. Anonymized images were compared side-by-side and by sequence for image quality, lesion evaluation, and artifacts by 3 neuroradiologists. Results of the comparison were analyzed for the preference for a specific head coil. FLAIR and DWI images acquired with the 32-channel coil showed significant improvement in image quality in several parameters. T2WIs also improved significantly with acquisition by the 32-channel coil, while T1WIs improved in a limited number of parameters. While lesion evaluation also improved with acquisition of images by the 32-channel coil, there was no apparent improvement in diagnostic quality. There was no difference in artifacts between the 2 coils. Improvements in SNR and spatial resolution attributed to image acquisition with a 32-channel head coil are paralleled by perceived improvements in image quality.
NASA Astrophysics Data System (ADS)
Qiu, Xiang; Dai, Ming; Yin, Chuan-li
2017-09-01
Unmanned aerial vehicle (UAV) remote imaging is affected by the bad weather, and the obtained images have the disadvantages of low contrast, complex texture and blurring. In this paper, we propose a blind deconvolution model based on multiple scattering atmosphere point spread function (APSF) estimation to recovery the remote sensing image. According to Narasimhan analytical theory, a new multiple scattering restoration model is established based on the improved dichromatic model. Then using the L0 norm sparse priors of gradient and dark channel to estimate APSF blur kernel, the fast Fourier transform is used to recover the original clear image by Wiener filtering. By comparing with other state-of-the-art methods, the proposed method can correctly estimate blur kernel, effectively remove the atmospheric degradation phenomena, preserve image detail information and increase the quality evaluation indexes.
Estimating discharge in rivers using remotely sensed hydraulic information
Bjerklie, D.M.; Moller, D.; Smith, L.C.; Dingman, S.L.
2005-01-01
A methodology to estimate in-bank river discharge exclusively from remotely sensed hydraulic data is developed. Water-surface width and maximum channel width measured from 26 aerial and digital orthophotos of 17 single channel rivers and 41 SAR images of three braided rivers were coupled with channel slope data obtained from topographic maps to estimate the discharge. The standard error of the discharge estimates were within a factor of 1.5-2 (50-100%) of the observed, with the mean estimate accuracy within 10%. This level of accuracy was achieved using calibration functions developed from observed discharge. The calibration functions use reach specific geomorphic variables, the maximum channel width and the channel slope, to predict a correction factor. The calibration functions are related to channel type. Surface velocity and width information, obtained from a single C-band image obtained by the Jet Propulsion Laboratory's (JPL's) AirSAR was also used to estimate discharge for a reach of the Missouri River. Without using a calibration function, the estimate accuracy was +72% of the observed discharge, which is within the expected range of uncertainty for the method. However, using the observed velocity to calibrate the initial estimate improved the estimate accuracy to within +10% of the observed. Remotely sensed discharge estimates with accuracies reported in this paper could be useful for regional or continental scale hydrologic studies, or in regions where ground-based data is lacking. ?? 2004 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Avis, L. M.; Green, R. N.; Suttles, J. T.; Gupta, S. K.
1984-01-01
Computer simulations of a least squares estimator operating on the ERBE scanning channels are discussed. The estimator is designed to minimize the errors produced by nonideal spectral response to spectrally varying and uncertain radiant input. The three ERBE scanning channels cover a shortwave band a longwave band and a ""total'' band from which the pseudo inverse spectral filter estimates the radiance components in the shortwave band and a longwave band. The radiance estimator draws on instantaneous field of view (IFOV) scene type information supplied by another algorithm of the ERBE software, and on a priori probabilistic models of the responses of the scanning channels to the IFOV scene types for given Sun scene spacecraft geometry. It is found that the pseudoinverse spectral filter is stable, tolerant of errors in scene identification and in channel response modeling, and, in the absence of such errors, yields minimum variance and essentially unbiased radiance estimates.
Channel Simulation in Quantum Metrology
NASA Astrophysics Data System (ADS)
Laurenza, Riccardo; Lupo, Cosmo; Spedalieri, Gaetana; Braunstein, Samuel L.; Pirandola, Stefano
2018-04-01
In this review we discuss how channel simulation can be used to simplify the most general protocols of quantum parameter estimation, where unlimited entanglement and adaptive joint operations may be employed. Whenever the unknown parameter encoded in a quantum channel is completely transferred in an environmental program state simulating the channel, the optimal adaptive estimation cannot beat the standard quantum limit. In this setting, we elucidate the crucial role of quantum teleportation as a primitive operation which allows one to completely reduce adaptive protocols over suitable teleportation-covariant channels and derive matching upper and lower bounds for parameter estimation. For these channels,wemay express the quantum Cramér Rao bound directly in terms of their Choi matrices. Our review considers both discrete- and continuous-variable systems, also presenting some new results for bosonic Gaussian channels using an alternative sub-optimal simulation. It is an open problem to design simulations for quantum channels that achieve the Heisenberg limit.
Towards sparse characterisation of on-body ultra-wideband wireless channels.
Yang, Xiaodong; Ren, Aifeng; Zhang, Zhiya; Ur Rehman, Masood; Abbasi, Qammer Hussain; Alomainy, Akram
2015-06-01
With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling devices.
Towards sparse characterisation of on-body ultra-wideband wireless channels
Ren, Aifeng; Zhang, Zhiya; Ur Rehman, Masood; Abbasi, Qammer Hussain; Alomainy, Akram
2015-01-01
With the aim of reducing cost and power consumption of the receiving terminal, compressive sensing (CS) framework is applied to on-body ultra-wideband (UWB) channel estimation. It is demonstrated in this Letter that the sparse on-body UWB channel impulse response recovered by the CS framework fits the original sparse channel well; thus, on-body channel estimation can be achieved using low-speed sampling devices. PMID:26609409
NASA Astrophysics Data System (ADS)
Khobragade, P.; Fan, Jiahua; Rupcich, Franco; Crotty, Dominic J.; Gilat Schmidt, Taly
2016-03-01
This study quantitatively evaluated the performance of the exponential transformation of the free-response operating characteristic curve (EFROC) metric, with the Channelized Hotelling Observer (CHO) as a reference. The CHO has been used for image quality assessment of reconstruction algorithms and imaging systems and often it is applied to study the signal-location-known cases. The CHO also requires a large set of images to estimate the covariance matrix. In terms of clinical applications, this assumption and requirement may be unrealistic. The newly developed location-unknown EFROC detectability metric is estimated from the confidence scores reported by a model observer. Unlike the CHO, EFROC does not require a channelization step and is a non-parametric detectability metric. There are few quantitative studies available on application of the EFROC metric, most of which are based on simulation data. This study investigated the EFROC metric using experimental CT data. A phantom with four low contrast objects: 3mm (14 HU), 5mm (7HU), 7mm (5 HU) and 10 mm (3 HU) was scanned at dose levels ranging from 25 mAs to 270 mAs and reconstructed using filtered backprojection. The area under the curve values for CHO (AUC) and EFROC (AFE) were plotted with respect to different dose levels. The number of images required to estimate the non-parametric AFE metric was calculated for varying tasks and found to be less than the number of images required for parametric CHO estimation. The AFE metric was found to be more sensitive to changes in dose than the CHO metric. This increased sensitivity and the assumption of unknown signal location may be useful for investigating and optimizing CT imaging methods. Future work is required to validate the AFE metric against human observers.
Juracek, Kyle E.
2010-01-01
A combination of available bathymetric-survey information, bottom-sediment coring, and historical streamgage information was used to investigate sedimentation, sediment quality, and upstream channel stability for John Redmond Reservoir, east-central Kansas. Ongoing sedimentation is reducing the ability of the reservoir to serve several purposes including flood control, water supply, and recreation. The total estimated volume and mass of bottom sediment deposited between 1964 and 2009 in the conservation pool of the reservoir was 1.46 billion cubic feet and 55.8 billion pounds, respectively. The estimated sediment volume occupied about 41 percent of the conservation-pool, water-storage capacity of the reservoir. Water-storage capacity in the conservation pool has been lost to sedimentation at a rate of about 1 percent annually. Mean annual net sediment deposition since 1964 in the conservation pool of the reservoir was estimated to be 1.24 billion pounds per year. Mean annual net sediment yield from the reservoir basin was estimated to be 411,000 pounds per square mile per year Information from sediment cores shows that throughout the history of John Redmond Reservoir, total nitrogen concentrations in the deposited sediment generally were uniform indicating consistent nitrogen inputs to the reservoir. Total phosphorus concentrations in the deposited sediment were more variable than total nitrogen indicating the possibility of changing phosphorus inputs to the reservoir. As the principal limiting factor for primary production in most freshwater environments, phosphorus is of particular importance because increased inputs can contribute to accelerated reservoir eutrophication and the production of algal toxins and taste-and-odor compounds. The mean annual net loads of total nitrogen and total phosphorus deposited in the bottom sediment of the reservoir were estimated to be 2,350,000 pounds per year and 1,030,000 pounds per year, respectively. The estimated mean annual net yields of total nitrogen and total phosphorus from the reservoir basin were 779 pounds per square mile per year and 342 pounds per square mile per year, respectively. Trace element concentrations in the bottom sediment of John Redmond Reservoir generally were uniform over time. As is typical for eastern Kansas reservoirs, arsenic, chromium, and nickel concentrations typically exceeded the threshold-effects guidelines, which represent the concentrations above which toxic biological effects occasionally occur. Trace element concentrations did not exceed the probable-effects guidelines (available for eight trace elements), which represent the concentrations above which toxic biological effects usually or frequently occur. Organochlorine compounds either were not detected or were detected at concentrations that were less than the threshold-effects guidelines. Stream channel banks, compared to channel beds, likely are a more important source of sediment to John Redmond Reservoir from the upstream basin. Other sediment sources include surface-soil erosion in the basin and shoreline erosion in the reservoir.
Adaptive UEP and Packet Size Assignment for Scalable Video Transmission over Burst-Error Channels
NASA Astrophysics Data System (ADS)
Lee, Chen-Wei; Yang, Chu-Sing; Su, Yih-Ching
2006-12-01
This work proposes an adaptive unequal error protection (UEP) and packet size assignment scheme for scalable video transmission over a burst-error channel. An analytic model is developed to evaluate the impact of channel bit error rate on the quality of streaming scalable video. A video transmission scheme, which combines the adaptive assignment of packet size with unequal error protection to increase the end-to-end video quality, is proposed. Several distinct scalable video transmission schemes over burst-error channel have been compared, and the simulation results reveal that the proposed transmission schemes can react to varying channel conditions with less and smoother quality degradation.
Kim, Bongseok; Kim, Sangdong; Lee, Jonghun
2018-01-01
We propose a novel discrete Fourier transform (DFT)-based direction of arrival (DOA) estimation by a virtual array extension using simple multiplications for frequency modulated continuous wave (FMCW) radar. DFT-based DOA estimation is usually employed in radar systems because it provides the advantage of low complexity for real-time signal processing. In order to enhance the resolution of DOA estimation or to decrease the missing detection probability, it is essential to have a considerable number of channel signals. However, due to constraints of space and cost, it is not easy to increase the number of channel signals. In order to address this issue, we increase the number of effective channel signals by generating virtual channel signals using simple multiplications of the given channel signals. The increase in channel signals allows the proposed scheme to detect DOA more accurately than the conventional scheme while using the same number of channel signals. Simulation results show that the proposed scheme achieves improved DOA estimation compared to the conventional DFT-based method. Furthermore, the effectiveness of the proposed scheme in a practical environment is verified through the experiment. PMID:29758016
Multiuser TOA Estimation Algorithm in DS-CDMA Sparse Channel for Radiolocation
NASA Astrophysics Data System (ADS)
Kim, Sunwoo
This letter considers multiuser time delay estimation in a sparse channel environment for radiolocation. The generalized successive interference cancellation (GSIC) algorithm is used to eliminate the multiple access interference (MAI). To adapt GSIC to sparse channels the alternating maximization (AM) algorithm is considered, and the continuous time delay of each path is estimated without requiring a priori known data sequences.
Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications
NASA Astrophysics Data System (ADS)
Qian, Xuewen; Deng, Honggui; He, Hailang
2017-10-01
Due to wide modulation bandwidth in optical communication, multipath channels may be non-sparse and deteriorate communication performance heavily. Traditional compressive sensing-based channel estimation algorithm cannot be employed in this kind of situation. In this paper, we propose a practical parametric channel estimation algorithm for orthogonal frequency division multiplexing (OFDM)-based visual light communication (VLC) systems based on modified zero correlation code (ZCC) pair that has the impulse-like correlation property. Simulation results show that the proposed algorithm achieves better performances than existing least squares (LS)-based algorithm in both bit error ratio (BER) and frequency response estimation.
Sediment sources in an urbanizing, mixed land-use watershed
NASA Astrophysics Data System (ADS)
Nelson, Erin J.; Booth, Derek B.
2002-07-01
The Issaquah Creek watershed is a rapidly urbanizing watershed of 144 km 2 in western Washington, where sediment aggradation of the main channel and delivery of fine sediment into a large downstream lake have raised increasingly frequent concerns over flooding, loss of fish habitat, and degraded water quality. A watershed-scale sediment budget was evaluated to determine the relative effects of land-use practices, including urbanization, on sediment supply and delivery, and to guide management responses towards the most effective source-reduction strategies. Human activity in the watershed, particularly urban development, has caused an increase of nearly 50% in the annual sediment yield, now estimated to be 44 tonnes km -2 yr -1. The main sources of sediment in the watershed are landslides (50%), channel-bank erosion (20%), and road-surface erosion (15%). This assessment characterizes the role of human activity in mixed-use watersheds such as this, and it demonstrates some of the key processes, particularly enhanced stream-channel erosion, by which urban development alters sediment loads.
A coupled channel study of HN2 unimolecular decay based on a global ab initio potential surface
NASA Technical Reports Server (NTRS)
Koizumi, Hiroyasu; Schatz, George C.; Walch, Stephen P.
1991-01-01
The unimolecular decay lifetimes of several vibrational states of HN2 are determined on the basis of an accurate coupled channel dynamics study using a global analytical potential surface. The surface reproduces the ab initio points with an rms error of 0.08 kcal/mol for energies below 20 kcal/mol. Modifications to the potential that describe the effect of improving the basis set in the ab initio calculations are provided. Converged coupled channel calculations are performed for the ground rotational state of HN2 to determine the lifetimes of the lowest ten vibrational states. Only the ground vibrational state (000) and first excited bend (001) are found to have lifetimes longer than 1 ps. The lifetimes of these states are estimated at 3 x 10 to the -9th and 2 x 10 to the -10th s, respectively. Variation of these results with quality of the ab initio calculations is not more than a factor of 5.
Stolovy, Tali; Lev-Wiesel, Rachel; Witztum, Eliezer
2015-06-01
This study aimed to explore the relationship between traumatic history, dissociative phenomena, absorption and quality of life among a population of channelers, in comparison with a population of non-channelers with similar traumatic history. The study sample included 150 women. The measures included Traumatic Experiences Scale, Dissociative Experience Scale, Absorption Scale, Brief Symptom Inventory and Quality of Life (QOL) Assessment. Channelers presented significantly higher levels of dissociation, absorption and psychological health compared to the other group. Dissociation and absorption were trauma-related only among the comparison group. Hence, dissociation has different qualities among different people, and spiritual practice contributes to QOL.
Estimation of saturated pixel values in digital color imaging
Zhang, Xuemei; Brainard, David H.
2007-01-01
Pixel saturation, where the incident light at a pixel causes one of the color channels of the camera sensor to respond at its maximum value, can produce undesirable artifacts in digital color images. We present a Bayesian algorithm that estimates what the saturated channel's value would have been in the absence of saturation. The algorithm uses the non-saturated responses from the other color channels, together with a multivariate Normal prior that captures the correlation in response across color channels. The appropriate parameters for the prior may be estimated directly from the image data, since most image pixels are not saturated. Given the prior, the responses of the non-saturated channels, and the fact that the true response of the saturated channel is known to be greater than the saturation level, the algorithm returns the optimal expected mean square estimate for the true response. Extensions of the algorithm to the case where more than one channel is saturated are also discussed. Both simulations and examples with real images are presented to show that the algorithm is effective. PMID:15603065
Weather, Climate, and Society: New Demands on Science and Services
NASA Technical Reports Server (NTRS)
2010-01-01
A new algorithm has been constructed to estimate the path length of lightning channels for the purpose of improving the model predictions of lightning NOx in both regional air quality and global chemistry/climate models. This algorithm was tested and applied to VHF signals detected by the North Alabama Lightning Mapping Array (NALMA). The accuracy of the algorithm was characterized by comparing algorithm output to the plots of individual discharges whose lengths were computed by hand. Several thousands of lightning flashes within 120 km of the NALMA network centroid were gathered from all four seasons, and were analyzed by the algorithm. The mean, standard deviation, and median statistics were obtained for all the flashes, the ground flashes, and the cloud flashes. Channel length distributions were also obtained for the different seasons.
Design of k-Space Channel Combination Kernels and Integration with Parallel Imaging
Beatty, Philip J.; Chang, Shaorong; Holmes, James H.; Wang, Kang; Brau, Anja C. S.; Reeder, Scott B.; Brittain, Jean H.
2014-01-01
Purpose In this work, a new method is described for producing local k-space channel combination kernels using a small amount of low-resolution multichannel calibration data. Additionally, this work describes how these channel combination kernels can be combined with local k-space unaliasing kernels produced by the calibration phase of parallel imaging methods such as GRAPPA, PARS and ARC. Methods Experiments were conducted to evaluate both the image quality and computational efficiency of the proposed method compared to a channel-by-channel parallel imaging approach with image-space sum-of-squares channel combination. Results Results indicate comparable image quality overall, with some very minor differences seen in reduced field-of-view imaging. It was demonstrated that this method enables a speed up in computation time on the order of 3–16X for 32-channel data sets. Conclusion The proposed method enables high quality channel combination to occur earlier in the reconstruction pipeline, reducing computational and memory requirements for image reconstruction. PMID:23943602
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B; Southern Medical University, Guangzhou, Guangdong; Shen, C
Purpose: Multi-energy computed tomography (MECT) is an emerging application in medical imaging due to its ability of material differentiation and potential for molecular imaging. In MECT, image correlations at different spatial and channels exist. It is desirable to incorporate these correlations in reconstruction to improve image quality. For this purpose, this study proposes a MECT reconstruction technique that employes spatial spectral non-local means (ssNLM) regularization. Methods: We consider a kVp-switching scanning method in which source energy is rapidly switched during data acquisition. For each energy channel, this yields projection data acquired at a number of angles, whereas projection angles amongmore » channels are different. We formulate the reconstruction task as an optimziation problem. A least square term enfores data fidelity. A ssNLM term is used as regularization to encourage similarities among image patches at different spatial locations and channels. When comparing image patches at different channels, intensity difference were corrected by a transformation estimated via histogram equalization during the reconstruction process. Results: We tested our method in a simulation study with a NCAT phantom and an experimental study with a Gammex phantom. For comparison purpose, we also performed reconstructions using conjugate-gradient least square (CGLS) method and conventional NLM method that only considers spatial correlation in an image. ssNLM is able to better suppress streak artifacts. The streaks are along different projection directions in images at different channels. ssNLM discourages this dissimilarity and hence removes them. True image structures are preserved in this process. Measurements in regions of interests yield 1.1 to 3.2 and 1.5 to 1.8 times higher contrast to noise ratio than the NLM approach. Improvements over CGLS is even more profound due to lack of regularization in the CGLS method and hence amplified noise. Conclusion: The proposed ssNLM method for kVp-switching MECT reconstruction can achieve high quality MECT images.« less
NASA Astrophysics Data System (ADS)
Sherwood, M. N.; O'Connor, M.; Pennington, R.
2007-12-01
Erosion and sedimentation have been identified as processes significantly affecting water quality in northern California Coast Range watersheds. These watersheds, including the Gualala River watershed in northwestern Sonoma County, have been designated as having water quality impaired by sediment under provisions of the Clean Water Act Section 303(d). A study was performed to estimate potential increases in erosion rates resulting from proposed vineyard development of ridge top forestland in the Gualala River watershed. The study area has an extensive history of logging, with substantial ground disturbance from tractors. The study area is characterized by flat ridge tops with steeply incised drainages shaped by debris slides, rock slides and earth flows. Jurassic age sedimentary and meta-sedimentary rocks of the coastal and central belt Franciscan formation comprise the underlying bedrock. Channel head development and advancement has long been understood to play a key role in sediment delivery and is possibly the most sensitive to changes in the external factors such as changes in climate or land use (Dietrich and Dunne 1993). Quantifying the amount of sediment contributed by potential channel head incision and/or initiation is an objective of environmental analysis for the project. Field surveys were performed during the field seasons of 2005 and 2006 to acquire measurements of channel head locations and slope, channel dimensions and substrate associated with the proposed development sites. Analysis of this field data, including the use of ArcGIS, allowed us to examine the local relationships between variables that influence channel initiation. Variables considered include drainage area, slope, soil type, geology and vegetation. An initial analysis of a selection of area-slope data failed to produce an inverse area-slope relationship as has been found in previous studies by Montgomery and Dietrich (1988). A more complete evaluation of the entire data set is presented here.
A parsimonious dynamic model for river water quality assessment.
Mannina, Giorgio; Viviani, Gaspare
2010-01-01
Water quality modelling is of crucial importance for the assessment of physical, chemical, and biological changes in water bodies. Mathematical approaches to water modelling have become more prevalent over recent years. Different model types ranging from detailed physical models to simplified conceptual models are available. Actually, a possible middle ground between detailed and simplified models may be parsimonious models that represent the simplest approach that fits the application. The appropriate modelling approach depends on the research goal as well as on data available for correct model application. When there is inadequate data, it is mandatory to focus on a simple river water quality model rather than detailed ones. The study presents a parsimonious river water quality model to evaluate the propagation of pollutants in natural rivers. The model is made up of two sub-models: a quantity one and a quality one. The model employs a river schematisation that considers different stretches according to the geometric characteristics and to the gradient of the river bed. Each stretch is represented with a conceptual model of a series of linear channels and reservoirs. The channels determine the delay in the pollution wave and the reservoirs cause its dispersion. To assess the river water quality, the model employs four state variables: DO, BOD, NH(4), and NO. The model was applied to the Savena River (Italy), which is the focus of a European-financed project in which quantity and quality data were gathered. A sensitivity analysis of the model output to the model input or parameters was done based on the Generalised Likelihood Uncertainty Estimation methodology. The results demonstrate the suitability of such a model as a tool for river water quality management.
NASA Astrophysics Data System (ADS)
Fan, Tong-liang; Wen, Yu-cang; Kadri, Chaibou
Orthogonal frequency-division multiplexing (OFDM) is robust against frequency selective fading because of the increase of the symbol duration. However, the time-varying nature of the channel causes inter-carrier interference (ICI) which destroys the orthogonal of sub-carriers and degrades the system performance severely. To alleviate the detrimental effect of ICI, there is a need for ICI mitigation within one OFDM symbol. We propose an iterative Inter-Carrier Interference (ICI) estimation and cancellation technique for OFDM systems based on regularized constrained total least squares. In the proposed scheme, ICI aren't treated as additional additive white Gaussian noise (AWGN). The effect of Inter-Carrier Interference (ICI) and inter-symbol interference (ISI) on channel estimation is regarded as perturbation of channel. We propose a novel algorithm for channel estimation o based on regularized constrained total least squares. Computer simulations show that significant improvement can be obtained by the proposed scheme in fast fading channels.
Semiblind channel estimation for MIMO-OFDM systems
NASA Astrophysics Data System (ADS)
Chen, Yi-Sheng; Song, Jyu-Han
2012-12-01
This article proposes a semiblind channel estimation method for multiple-input multiple-output orthogonal frequency-division multiplexing systems based on circular precoding. Relying on the precoding scheme at the transmitters, the autocorrelation matrix of the received data induces a structure relating the outer product of the channel frequency response matrix and precoding coefficients. This structure makes it possible to extract information about channel product matrices, which can be used to form a Hermitian matrix whose positive eigenvalues and corresponding eigenvectors yield the channel impulse response matrix. This article also tests the resistance of the precoding design to finite-sample estimation errors, and explores the effects of the precoding scheme on channel equalization by performing pairwise error probability analysis. The proposed method is immune to channel zero locations, and is reasonably robust to channel order overestimation. The proposed method is applicable to the scenarios in which the number of transmitters exceeds that of the receivers. Simulation results demonstrate the performance of the proposed method and compare it with some existing methods.
Quantifying fluid and bed dynamics for characterizing benthic physical habitat in large rivers
Gaeuman, D.; Jacobson, R.B.
2007-01-01
Sturgeon use benthic habitats in and adjacent to main channels where environmental conditions can include bedload sediment transport and high near-bed flow velocities. Bed velocity measurements obtained with acoustic Doppler instruments provide a means to assess the concentration and velocity of sediment moving near the streambed, and are thus indicative of the bedload sediment transport rate, the near-bed flow velocity, and the stability of the substrate. Acoustic assessments of benthic conditions in the Missouri River were conducted at scales ranging from the stream reach to individual bedforms. Reach-scale results show that spatially-averaged bed velocities in excess of 0.5 m s-1 frequently occur in the navigation channel. At the local scale, bed velocities are highest near bedform crests, and lowest in the troughs. Low-velocity zones can persist in areas with extremely high mean bed velocities. Use of these low-velocity zones may allow sturgeon to make use of portions of the channel where the average conditions near the bed are severe. To obtain bed velocity measurements of the highest possible quality, it is necessary to extract bottom-track and GPS velocity information from the raw ADCP data files on a ping-by-ping basis. However, bed velocity measured from a point can also be estimated using a simplified method that is more easily implemented in the context of routine monitoring. The method requires only the transect distance and direction data displayed in standard ADCP data-logging software. Bed velocity estimates obtained using this method are usually within 5-10% of estimates obtained from ping-by-ping processing. ?? 2007 Blackwell Verlag.
UWB channel estimation using new generating TR transceivers
Nekoogar, Faranak [San Ramon, CA; Dowla, Farid U [Castro Valley, CA; Spiridon, Alex [Palo Alto, CA; Haugen, Peter C [Livermore, CA; Benzel, Dave M [Livermore, CA
2011-06-28
The present invention presents a simple and novel channel estimation scheme for UWB communication systems. As disclosed herein, the present invention maximizes the extraction of information by incorporating a new generation of transmitted-reference (Tr) transceivers that utilize a single reference pulse(s) or a preamble of reference pulses to provide improved channel estimation while offering higher Bit Error Rate (BER) performance and data rates without diluting the transmitter power.
NASA Technical Reports Server (NTRS)
Bruning, Eric C.; Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Carey, Larry D.; Koshak, William; Peterson, Harold; MacGorman, Donald R.
2013-01-01
We will use VHF Lightning Mapping Array data to estimate NOx per flash and per unit channel length, including the vertical distribution of channel length. What s the best way to find channel length from VHF sources? This paper presents the rationale for the fractal method, which is closely related to the box-covering method.
WATER QUALITY CHANGES IN HYPORHEIC FLOW AT THE AQUATIC-TERRESTRIAL INTERFACE OF A LARGER RIVER
Exchange between river water and groundwater in hyporheic flow at the aquatic-terrestrial interface can importantly affect water quality and aquatic habitat in the main channel of large rivers and at off-channel sites that include flowing and stagnant side channels. With tracer ...
Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki
2014-01-01
Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics.
Gui, Guan; Chen, Zhang-xin; Xu, Li; Wan, Qun; Huang, Jiyan; Adachi, Fumiyuki
2014-01-01
Channel estimation problem is one of the key technical issues in sparse frequency-selective fading multiple-input multiple-output (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) scheme. To estimate sparse MIMO channels, sparse invariable step-size normalized least mean square (ISS-NLMS) algorithms were applied to adaptive sparse channel estimation (ACSE). It is well known that step-size is a critical parameter which controls three aspects: algorithm stability, estimation performance, and computational cost. However, traditional methods are vulnerable to cause estimation performance loss because ISS cannot balance the three aspects simultaneously. In this paper, we propose two stable sparse variable step-size NLMS (VSS-NLMS) algorithms to improve the accuracy of MIMO channel estimators. First, ASCE is formulated in MIMO-OFDM systems. Second, different sparse penalties are introduced to VSS-NLMS algorithm for ASCE. In addition, difference between sparse ISS-NLMS algorithms and sparse VSS-NLMS ones is explained and their lower bounds are also derived. At last, to verify the effectiveness of the proposed algorithms for ASCE, several selected simulation results are shown to prove that the proposed sparse VSS-NLMS algorithms can achieve better estimation performance than the conventional methods via mean square error (MSE) and bit error rate (BER) metrics. PMID:25089286
Moyer, Douglas; Bennett, Mark
2007-01-01
The U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (USEPA), Chesapeake Bay Program (CBP), Interstate Commission for the Potomac River Basin (ICPRB), Maryland Department of the Environment (MDE), Virginia Department of Conservation and Recreation (VADCR), and University of Maryland (UMD) are collaborating to improve the resolution of the Chesapeake Bay Regional Watershed Model (CBRWM). This watershed model uses the Hydrologic Simulation Program-Fortran (HSPF) to simulate the fate and transport of nutrients and sediment throughout the Chesapeake Bay watershed and extended areas of Virginia, Maryland, and Delaware. Information from the CBRWM is used by the CBP and other watershed managers to assess the effectiveness of water-quality improvement efforts as well as guide future management activities. A critical step in the improvement of the CBRWM framework was the development of an HSPF function table (FTABLE) for each represented stream channel. The FTABLE is used to relate stage (water depth) in a particular stream channel to associated channel surface area, channel volume, and discharge (streamflow). The primary tool used to generate an FTABLE for each stream channel is the XSECT program, a computer program that requires nine input variables used to represent channel morphology. These input variables are reach length, upstream and downstream elevation, channel bottom width, channel bankfull width, channel bankfull stage, slope of the floodplain, and Manning's roughness coefficient for the channel and floodplain. For the purpose of this study, the nine input variables were grouped into three categories: channel geometry, Manning's roughness coefficient, and channel and floodplain slope. Values of channel geometry for every stream segment represented in CBRWM were obtained by first developing regional regression models that relate basin drainage area to observed values of bankfull width, bankfull depth, and bottom width at each of the 290 USGS streamflow-gaging stations included in the areal extent of the model. These regression models were developed on the basis of data from stations in four physiographic provinces (Appalachian Plateaus, Valley and Ridge, Piedmont, and Coastal Plain) and were used to predict channel geometry for all 738 stream segments in the modeled area from associated basin drainage area. Manning's roughness coefficient for the channel and floodplain was represented in the XSECT program in two forms. First, all available field-estimated values of roughness were compiled for gaging stations in each physiographic province. The median of field-estimated values of channel and floodplain roughness for each physiographic province was applied to all respective stream segments. The second representation of Manning's roughness coefficient was to allow roughness to vary with channel depth. Roughness was estimated at each gaging station for each 1-foot depth interval. Median values of roughness were calculated for each 1-foot depth interval for all stations in each physiographic province. Channel and floodplain slope were determined for every stream segment in CBRWM using the USGS National Elevation Dataset. Function tables were generated by the XSECT program using values of channel geometry, channel and floodplain roughness, and channel and floodplain slope. The FTABLEs for each of the 290 USGS streamflow-gaging stations were evaluated by comparing observed discharge to the XSECT-derived discharge. Function table stream discharge derived using depth-varying roughness was found to be more representative of and statistically indistinguishable from values of observed stream discharge. Additionally, results of regression analysis showed that XSECT-derived discharge accounted for approximately 90 percent of the variability associated with observed discharge in each of the four physiographic provinces. The results of this study indicate that the methodology developed to generate FTABLEs for every s
Nutrient processes at the stream-lake interface for a channelized versus unmodified stream mouth
Niswonger, Richard G.; Naranjo, Ramon C.; Smith, David; Constantz, James E.; Allander, Kip K.; Rosenberry, Donald O.; Neilson, Bethany; Rosen, Michael R.; Stonestrom, David A.
2017-01-01
Inorganic forms of nitrogen and phosphorous impact freshwater lakes by stimulating primary production and affecting water quality and ecosystem health. Communities around the world are motivated to sustain and restore freshwater resources and are interested in processes controlling nutrient inputs. We studied the environment where streams flow into lakes, referred to as the stream-lake interface (SLI), for a channelized and unmodified stream outlet. Channelization is done to protect infrastructure or recreational beach areas. We collected hydraulic and nutrient data for surface water and shallow groundwater in two SLIs to develop conceptual models that describe characteristics that are representative of these hydrologic features. Water, heat, and solute transport models were used to evaluate hydrologic conceptualizations and estimate mean residence times of water in the sediment. A nutrient mass balance model is developed to estimate net rates of adsorption and desorption, mineralization, and nitrification along subsurface flow paths. Results indicate that SLIs are dynamic sources of nutrients to lakes and that the common practice of channelizing the stream at the SLI decreases nutrient concentrations in pore water discharging along the lakeshore. This is in contrast to the unmodified SLI that forms a barrier beach that disconnects the stream from the lake and results in higher nutrient concentrations in pore water discharging to the lake. These results are significant because nutrient delivery through pore water seepage at the lakebed from the natural SLI contributes to nearshore algal communities and produces elevated concentrations of inorganic nutrients in the benthic zone where attached algae grow.
A NASA Lightning Parameterization for CMAQ
NASA Technical Reports Server (NTRS)
Koshak, William; Khan, Maudood; Biazar, Arastoo; Newchurch, Mike; McNider, Richard
2009-01-01
Many state and local air quality agencies use the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system to determine compliance with the National Ambient Air Quality Standards (NAAQS). Because emission reduction scenarios are tested using CMAQ with an aim of determining the most efficient and cost effective strategies for attaining the NAAQS, it is very important that trace gas concentrations derived by CMAQ are accurate. Overestimating concentrations can literally translate into billions of dollars lost by commercial and government industries forced to comply with the standards. Costly health, environmental and socioeconomic problems can result from concentration underestimates. Unfortunately, lightning modeling for CMAQ is highly oversimplified. This leads to very poor estimates of lightning-produced nitrogen oxides "NOx" (= NO + NO2) which directly reduces the accuracy of the concentrations of important CMAQ trace gases linked to NOx concentrations such as ozone and methane. Today it is known that lightning is the most important NOx source in the upper troposphere with a global production rate estimated to vary between 2-20 Tg(N)/yr. In addition, NOx indirectly influences our climate since it controls the concentration of ozone and hydroxyl radicals (OH) in the atmosphere. Ozone is an important greenhouse gas and OH controls the oxidation of various greenhouse gases. We describe a robust NASA lightning model, called the Lightning Nitrogen Oxides Model (LNOM) that combines state-of-the-art lightning measurements, empirical results from field studies, and beneficial laboratory results to arrive at a realistic representation of lightning NOx production for CMAQ. NASA satellite lightning data is used in conjunction with ground-based lightning detection systems to assure that the best representation of lightning frequency, geographic location, channel length, channel altitude, strength (i.e., channel peak current), and number of strokes per flash are accounted for. LNOM combines all of these factors in a straightforward approach that is easily implemented into CMAQ. We anticipate that future applications of LNOM will produce significant and important changes in CMAQ trace gas concentrations for various regions and times. We also anticipate that these changes will have a direct impact on decision makers responsible for NAAQS attainment.
Doppler-shift estimation of flat underwater channel using data-aided least-square approach
NASA Astrophysics Data System (ADS)
Pan, Weiqiang; Liu, Ping; Chen, Fangjiong; Ji, Fei; Feng, Jing
2015-06-01
In this paper we proposed a dada-aided Doppler estimation method for underwater acoustic communication. The training sequence is non-dedicate, hence it can be designed for Doppler estimation as well as channel equalization. We assume the channel has been equalized and consider only flat-fading channel. First, based on the training symbols the theoretical received sequence is composed. Next the least square principle is applied to build the objective function, which minimizes the error between the composed and the actual received signal. Then an iterative approach is applied to solve the least square problem. The proposed approach involves an outer loop and inner loop, which resolve the channel gain and Doppler coefficient, respectively. The theoretical performance bound, i.e. the Cramer-Rao Lower Bound (CRLB) of estimation is also derived. Computer simulations results show that the proposed algorithm achieves the CRLB in medium to high SNR cases.
A simple parametric model observer for quality assurance in computer tomography
NASA Astrophysics Data System (ADS)
Anton, M.; Khanin, A.; Kretz, T.; Reginatto, M.; Elster, C.
2018-04-01
Model observers are mathematical classifiers that are used for the quality assessment of imaging systems such as computer tomography. The quality of the imaging system is quantified by means of the performance of a selected model observer. For binary classification tasks, the performance of the model observer is defined by the area under its ROC curve (AUC). Typically, the AUC is estimated by applying the model observer to a large set of training and test data. However, the recording of these large data sets is not always practical for routine quality assurance. In this paper we propose as an alternative a parametric model observer that is based on a simple phantom, and we provide a Bayesian estimation of its AUC. It is shown that a limited number of repeatedly recorded images (10–15) is already sufficient to obtain results suitable for the quality assessment of an imaging system. A MATLAB® function is provided for the calculation of the results. The performance of the proposed model observer is compared to that of the established channelized Hotelling observer and the nonprewhitening matched filter for simulated images as well as for images obtained from a low-contrast phantom on an x-ray tomography scanner. The results suggest that the proposed parametric model observer, along with its Bayesian treatment, can provide an efficient, practical alternative for the quality assessment of CT imaging systems.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Blaisdell, John; Iredell, Lena
2010-01-01
AIRS was launched on EOS Aqua on May 4, 2002 together with ASMU-A and HSB to form a next generation polar orbiting infrared and microwave atmosphere sounding system (Pagano et al 2003). The theoretical approach used to analyze AIRS/AMSU/HSB data in the presence of clouds in the AIRS Science Team Version 3 at-launch algorithm, and that used in the Version 4 post-launch algorithm, have been published previously. Significant theoretical and practical improvements have been made in the analysis of AIRS/AMSU data since the Version 4 algorithm. Most of these have already been incorporated in the AIRS Science Team Version 5 algorithm (Susskind et al 2010), now being used operationally at the Goddard DISC. The AIRS Version 5 retrieval algorithm contains three significant improvements over Version 4. Improved physics in Version 5 allowed for use of AIRS clear column radiances (R(sub i)) in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations were used primarily in the generation of clear column radiances (R(sub i)) for all channels. This new approach allowed for the generation of accurate Quality Controlled values of R(sub i) and T(p) under more stressing cloud conditions. Secondly, Version 5 contained a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 contained for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Susskind et al 2010 shows that Version 5 AIRS Only sounding are only slightly degraded from the AIRS/AMSU soundings, even at large fractional cloud cover.
Favazza, Christopher P; Fetterly, Kenneth A; Hangiandreou, Nicholas J; Leng, Shuai; Schueler, Beth A
2015-01-01
Evaluation of flat-panel angiography equipment through conventional image quality metrics is limited by the scope of standard spatial-domain image quality metric(s), such as contrast-to-noise ratio and spatial resolution, or by restricted access to appropriate data to calculate Fourier domain measurements, such as modulation transfer function, noise power spectrum, and detective quantum efficiency. Observer models have been shown capable of overcoming these limitations and are able to comprehensively evaluate medical-imaging systems. We present a spatial domain-based channelized Hotelling observer model to calculate the detectability index (DI) of our different sized disks and compare the performance of different imaging conditions and angiography systems. When appropriate, changes in DIs were compared to expectations based on the classical Rose model of signal detection to assess linearity of the model with quantum signal-to-noise ratio (SNR) theory. For these experiments, the estimated uncertainty of the DIs was less than 3%, allowing for precise comparison of imaging systems or conditions. For most experimental variables, DI changes were linear with expectations based on quantum SNR theory. DIs calculated for the smallest objects demonstrated nonlinearity with quantum SNR theory due to system blur. Two angiography systems with different detector element sizes were shown to perform similarly across the majority of the detection tasks.
HealthTrust: a social network approach for retrieving online health videos.
Fernandez-Luque, Luis; Karlsen, Randi; Melton, Genevieve B
2012-01-31
Social media are becoming mainstream in the health domain. Despite the large volume of accurate and trustworthy health information available on social media platforms, finding good-quality health information can be difficult. Misleading health information can often be popular (eg, antivaccination videos) and therefore highly rated by general search engines. We believe that community wisdom about the quality of health information can be harnessed to help create tools for retrieving good-quality social media content. To explore approaches for extracting metrics about authoritativeness in online health communities and how these metrics positively correlate with the quality of the content. We designed a metric, called HealthTrust, that estimates the trustworthiness of social media content (eg, blog posts or videos) in a health community. The HealthTrust metric calculates reputation in an online health community based on link analysis. We used the metric to retrieve YouTube videos and channels about diabetes. In two different experiments, health consumers provided 427 ratings of 17 videos and professionals gave 162 ratings of 23 videos. In addition, two professionals reviewed 30 diabetes channels. HealthTrust may be used for retrieving online videos on diabetes, since it performed better than YouTube Search in most cases. Overall, of 20 potential channels, HealthTrust's filtering allowed only 3 bad channels (15%) versus 8 (40%) on the YouTube list. Misleading and graphic videos (eg, featuring amputations) were more commonly found by YouTube Search than by searches based on HealthTrust. However, some videos from trusted sources had low HealthTrust scores, mostly from general health content providers, and therefore not highly connected in the diabetes community. When comparing video ratings from our reviewers, we found that HealthTrust achieved a positive and statistically significant correlation with professionals (Pearson r₁₀ = .65, P = .02) and a trend toward significance with health consumers (r₇ = .65, P = .06) with videos on hemoglobinA(1c), but it did not perform as well with diabetic foot videos. The trust-based metric HealthTrust showed promising results when used to retrieve diabetes content from YouTube. Our research indicates that social network analysis may be used to identify trustworthy social media in health communities.
A method for estimating mean and low flows of streams in national forests of Montana
Parrett, Charles; Hull, J.A.
1985-01-01
Equations were developed for estimating mean annual discharge, 80-percent exceedance discharge, and 95-percent exceedance discharge for streams on national forest lands in Montana. The equations for mean annual discharge used active-channel width, drainage area and mean annual precipitation as independent variables, with active-channel width being most significant. The equations for 80-percent exceedance discharge and 95-percent exceedance discharge used only active-channel width as an independent variable. The standard error or estimate for the best equation for estimating mean annual discharge was 27 percent. The standard errors of estimate for the equations were 67 percent for estimating 80-percent exceedance discharge and 75 percent for estimating 95-percent exceedance discharge. (USGS)
Radial magnetic resonance imaging (MRI) using a rotating radiofrequency (RF) coil at 9.4 T.
Li, Mingyan; Weber, Ewald; Jin, Jin; Hugger, Thimo; Tesiram, Yasvir; Ullmann, Peter; Stark, Simon; Fuentes, Miguel; Junge, Sven; Liu, Feng; Crozier, Stuart
2018-02-01
The rotating radiofrequency coil (RRFC) has been developed recently as an alternative approach to multi-channel phased-array coils. The single-element RRFC avoids inter-channel coupling and allows a larger coil element with better B 1 field penetration when compared with an array counterpart. However, dedicated image reconstruction algorithms require accurate estimation of temporally varying coil sensitivities to remove artefacts caused by coil rotation. Various methods have been developed to estimate unknown sensitivity profiles from a few experimentally measured sensitivity maps, but these methods become problematic when the RRFC is used as a transceiver coil. In this work, a novel and practical radial encoding method is introduced for the RRFC to facilitate image reconstruction without the measurement or estimation of rotation-dependent sensitivity profiles. Theoretical analyses suggest that the rotation-dependent sensitivities of the RRFC can be used to create a uniform profile with careful choice of sampling positions and imaging parameters. To test this new imaging method, dedicated electronics were designed and built to control the RRFC speed and hence positions in synchrony with imaging parameters. High-quality phantom and animal images acquired on a 9.4 T pre-clinical scanner demonstrate the feasibility and potential of this new RRFC method. Copyright © 2017 John Wiley & Sons, Ltd.
Iturri, Peio López; Nazábal, Juan Antonio; Azpilicueta, Leire; Rodriguez, Pablo; Beruete, Miguel; Fernández-Valdivielso, Carlos; Falcone, Francisco
2012-01-01
In this work, the impact of radiofrequency radiation leakage from microwave ovens and its effect on 802.15.4 ZigBee-compliant wireless sensor networks operating in the 2.4 GHz Industrial Scientific Medical (ISM) band is analyzed. By means of a novel radioplanning approach, based on electromagnetic field simulation of a microwave oven and determination of equivalent radiation sources applied to an in-house developed 3D ray launching algorithm, estimation of the microwave oven's power leakage is obtained for the complete volume of an indoor scenario. The magnitude and the variable nature of the interference is analyzed and the impact in the radio link quality in operating wireless sensors is estimated and compared with radio channel measurements as well as packet measurements. The measurement results reveal the importance of selecting an adequate 802.15.4 channel, as well as the Wireless Sensor Network deployment strategy within this type of environment, in order to optimize energy consumption and increase the overall network performance. The proposed method enables one to estimate potential interference effects in devices operating within the 2.4 GHz band in the complete scenario, prior to wireless sensor network deployment, which can aid in achieving the most optimal network topology. PMID:23202228
FDD Massive MIMO Channel Estimation With Arbitrary 2D-Array Geometry
NASA Astrophysics Data System (ADS)
Dai, Jisheng; Liu, An; Lau, Vincent K. N.
2018-05-01
This paper addresses the problem of downlink channel estimation in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems. The existing methods usually exploit hidden sparsity under a discrete Fourier transform (DFT) basis to estimate the cdownlink channel. However, there are at least two shortcomings of these DFT-based methods: 1) they are applicable to uniform linear arrays (ULAs) only, since the DFT basis requires a special structure of ULAs, and 2) they always suffer from a performance loss due to the leakage of energy over some DFT bins. To deal with the above shortcomings, we introduce an off-grid model for downlink channel sparse representation with arbitrary 2D-array antenna geometry, and propose an efficient sparse Bayesian learning (SBL) approach for the sparse channel recovery and off-grid refinement. The main idea of the proposed off-grid method is to consider the sampled grid points as adjustable parameters. Utilizing an in-exact block majorization-minimization (MM) algorithm, the grid points are refined iteratively to minimize the off-grid gap. Finally, we further extend the solution to uplink-aided channel estimation by exploiting the angular reciprocity between downlink and uplink channels, which brings enhanced recovery performance.
UPmag: MATLAB software for viewing and processing u channel or other pass-through paleomagnetic data
NASA Astrophysics Data System (ADS)
Xuan, Chuang; Channell, James E. T.
2009-10-01
With the development of pass-through cryogenic magnetometers and the u channel sampling method, large volumes of paleomagnetic data can be accumulated within a short time period. It is often critical to visualize and process these data in "real time" as measurements proceed, so that the measurement plan can be dictated accordingly. We introduce new MATLAB™ software (UPmag) that is designed for easy and rapid analysis of natural remanent magnetization (NRM) and laboratory-induced remanent magnetization data for u channel samples or core sections. UPmag comprises three MATLAB™ graphic user interfaces: UVIEW, UDIR, and UINT. UVIEW allows users to open and check through measurement data from the magnetometer as well as to correct detected flux jumps in the data, and to export files for further treatment. UDIR reads the *.dir file generated by UVIEW, automatically calculates component directions using selectable demagnetization range(s) with anchored or free origin, and displays vector component plots and stepwise intensity plots for any position along the u channel sample. UDIR can also display data on equal area stereographic projections and draw virtual geomagnetic poles on various map projections. UINT provides a convenient platform to evaluate relative paleointensity (RPI) estimates using the *.int files that can be exported from UVIEW. Two methods are used for RPI estimation: the calculated slopes of the best fit line between the NRM and the respective normalizer (using paired demagnetization data for both parameters) and the averages of the NRM/normalizer ratios. Linear correlation coefficients (of slopes) and standard deviations (of ratios) can be calculated simultaneously to monitor the quality of the RPI estimates. All resulting data and plots from UPmag can be exported into various file formats. UPmag software, data format files, and test data can be downloaded from http://earthref.org/cgi-bin/er.cgi?s=erda.cgi?n=985.
NASA Astrophysics Data System (ADS)
Chen, Yi
2018-03-01
The comprehensive water quality identification index method is able to assess the general water quality situation comprehensively and represent the water quality classification; water environment functional zone achieves pollution level and standard objectively and systematically. This paper selects 3 representative zones along deep-water channel of Guangzhou port and applies comprehensive water quality identification index method to calculate sea water quality monitoring data for different selected zones from year 2006 to 2014, in order to investigate the temporal variation of water quality along deep-water channel of Guangzhou port. The comprehensive water quality level from north to south presents an increased trend, and the water quality of the three zones in 2014 is much better than in 2006. This paper puts forward environmental protection measurements and suggestions for Pearl River Estuary, provides data support and theoretical basis for studied sea area pollution prevention and control.
NASA Astrophysics Data System (ADS)
Smith, Hugh G.; Dragovich, Deirdre
2008-11-01
Slope-channel coupling and in-channel sediment storage can be important factors that influence sediment delivery through catchments. Sediment budgets offer an appropriate means to assess the role of these factors by quantifying the various components in the catchment sediment transfer system. In this study a fine (< 63 µm) sediment budget was developed for a 1.64-km 2 gullied upland catchment in southeastern Australia. A process-based approach was adopted that involved detailed monitoring of hillslope and bank erosion, channel change, and suspended sediment output in conjunction with USLE-based hillslope erosion estimation and sediment source tracing using 137Cs and 210Pb ex. The sediment budget developed from these datasets indicated channel banks accounted for an estimated 80% of total sediment inputs. Valley floor and in-channel sediment storage accounted for 53% of inputs, with the remaining 47% being discharged from the catchment outlet. Estimated hillslope sediment input to channels was low (5.7 t) for the study period compared to channel bank input (41.6 t). However an estimated 56% of eroded hillslope sediment reached channels, suggesting a greater level of coupling between the two subsystems than was apparent from comparison of sediment source inputs. Evidently the interpretation of variability in catchment sediment yield is largely dependent on the dynamics of sediment supply and storage in channels in response to patterns of rainfall and discharge. This was reflected in the sediment delivery ratios (SDR) for individual measurement intervals, which ranged from 1 to 153%. Bank sediment supply during low rainfall periods was reduced but ongoing from subaerial processes delivering sediment to channels, resulting in net accumulation on the channel bed with insufficient flow to transport this material to the catchment outlet. Following the higher flow period in spring of the first year of monitoring, the sediment supplied to channels during this interval was removed as well as an estimated 72% of the sediment accumulated on the channel bed since the start of the study period. Given the seasonal and drought-dependent variability in storage and delivery, the period of monitoring may have an important influence on the overall SDR. On the basis of these findings, this study highlights the potential importance of sediment dynamics in channels for determining contemporary sediment yields from small gullied upland catchments in southeastern Australia.
Self-Noise of the STS-2 and sensitivity of its computation to errors in alignment of sensors
NASA Astrophysics Data System (ADS)
Gerner, Andreas; Sleeman, Reinoud; Grasemann, Bernhard; Lenhardt, Wolfgang
2016-04-01
The assessment of a seismometer's self-noise is an important part of establishing its health, quality, and suitability. A spectral coherence technique proposed by Sleeman et al. (2006) using synchronously recorded data of triples of collocated and co-aligned seismometers has shown to be a very robust and reliable way to estimate the self-noise of modern broadband seismic sensors. It has been demonstrated in previous works that the resulting self-noise spectra, primarily in the frequency range of Earth's microseisms, are considerably affected by small errors in the alignment of sensors. Further, due to the sensitivity of the 3-channel correlation technique to misalignment, numerical rotation of the recorded traces prior to self-noise computation can be performed to find best possible alignment by searching for minimum self-noise values. In this study we focus on the sensitivity of the 3-channel correlation technique to misalignment, and investigate the possibility of complete removal of the microseism signal from self-noise estimates for the sensors' three components separately. Data from a long-term installation of four STS-2 sensors, specifically intended for self-noise studies, at the Conrad Observatory (Austria) in a collaboration between the KNMI (Netherlands) and the ZAMG (Austria) provides a reliable basis for an accurate sensitivity analysis and self-noise assessment. Our work resulted in undisturbed self-noise estimates for the vertical components, and our current focus is on improving alignment of horizontal axes, and verification of the manufacturer's specification regarding orthogonality of all three components. The tools and methods developed within this research can help to quickly establish consistent self-noise models, including estimates of orthogonality and alignment, which facilitates comparison of different models and provides us with a means to test quality and accuracy of a seismic sensor over its life span.
NASA Astrophysics Data System (ADS)
Hazwan, M. H. M.; Shayfull, Z.; Sharif, S.; Nasir, S. M.; Zainal, N.
2017-09-01
In injection moulding process, quality and productivity are notably important and must be controlled for each product type produced. Quality is measured as the extent of warpage of moulded parts while productivity is measured as a duration of moulding cycle time. To control the quality, many researchers have introduced various of optimisation approaches which have been proven enhanced the quality of the moulded part produced. In order to improve the productivity of injection moulding process, some of researches have proposed the application of conformal cooling channels which have been proven reduced the duration of moulding cycle time. Therefore, this paper presents an application of alternative optimisation approach which is Response Surface Methodology (RSM) with Glowworm Swarm Optimisation (GSO) on the moulded part with straight-drilled and conformal cooling channels mould. This study examined the warpage condition of the moulded parts before and after optimisation work applied for both cooling channels. A front panel housing have been selected as a specimen and the performance of proposed optimisation approach have been analysed on the conventional straight-drilled cooling channels compared to the Milled Groove Square Shape (MGSS) conformal cooling channels by simulation analysis using Autodesk Moldflow Insight (AMI) 2013. Based on the results, melt temperature is the most significant factor contribute to the warpage condition and warpage have optimised by 39.1% after optimisation for straight-drilled cooling channels and cooling time is the most significant factor contribute to the warpage condition and warpage have optimised by 38.7% after optimisation for MGSS conformal cooling channels. In addition, the finding shows that the application of optimisation work on the conformal cooling channels offers the better quality and productivity of the moulded part produced.
Estimation of channel parameters and background irradiance for free-space optical link.
Khatoon, Afsana; Cowley, William G; Letzepis, Nick; Giggenbach, Dirk
2013-05-10
Free-space optical communication can experience severe fading due to optical scintillation in long-range links. Channel estimation is also corrupted by background and electrical noise. Accurate estimation of channel parameters and scintillation index (SI) depends on perfect removal of background irradiance. In this paper, we propose three different methods, the minimum-value (MV), mean-power (MP), and maximum-likelihood (ML) based methods, to remove the background irradiance from channel samples. The MV and MP methods do not require knowledge of the scintillation distribution. While the ML-based method assumes gamma-gamma scintillation, it can be easily modified to accommodate other distributions. Each estimator's performance is compared using simulation data as well as experimental measurements. The estimators' performance are evaluated from low- to high-SI areas using simulation data as well as experimental trials. The MV and MP methods have much lower complexity than the ML-based method. However, the ML-based method shows better SI and background-irradiance estimation performance.
Joint channel/frequency offset estimation and correction for coherent optical FBMC/OQAM system
NASA Astrophysics Data System (ADS)
Wang, Daobin; Yuan, Lihua; Lei, Jingli; wu, Gang; Li, Suoping; Ding, Runqi; Wang, Dongye
2017-12-01
In this paper, we focus on analysis of the preamble-based joint estimation for channel and laser-frequency offset (LFO) in coherent optical filter bank multicarrier systems with offset quadrature amplitude modulation (CO-FBMC/OQAM). In order to reduce the noise impact on the estimation accuracy, we proposed an estimation method based on inter-frame averaging. This method averages the cross-correlation function of real-valued pilots within multiple FBMC frames. The laser-frequency offset is estimated according to the phase of this average. After correcting LFO, the final channel response is also acquired by averaging channel estimation results within multiple frames. The principle of the proposed method is analyzed theoretically, and the preamble structure is thoroughly designed and optimized to suppress the impact of inherent imaginary interference (IMI). The effectiveness of our method is demonstrated numerically using different fiber and LFO values. The obtained results show that the proposed method can improve transmission performance significantly.
NASA Astrophysics Data System (ADS)
Hansen, Scott K.; Vesselinov, Velimir V.
2016-10-01
We develop empirically-grounded error envelopes for localization of a point contamination release event in the saturated zone of a previously uncharacterized heterogeneous aquifer into which a number of plume-intercepting wells have been drilled. We assume that flow direction in the aquifer is known exactly and velocity is known to within a factor of two of our best guess from well observations prior to source identification. Other aquifer and source parameters must be estimated by interpretation of well breakthrough data via the advection-dispersion equation. We employ high performance computing to generate numerous random realizations of aquifer parameters and well locations, simulate well breakthrough data, and then employ unsupervised machine optimization techniques to estimate the most likely spatial (or space-time) location of the source. Tabulating the accuracy of these estimates from the multiple realizations, we relate the size of 90% and 95% confidence envelopes to the data quantity (number of wells) and model quality (fidelity of ADE interpretation model to actual concentrations in a heterogeneous aquifer with channelized flow). We find that for purely spatial localization of the contaminant source, increased data quantities can make up for reduced model quality. For space-time localization, we find similar qualitative behavior, but significantly degraded spatial localization reliability and less improvement from extra data collection. Since the space-time source localization problem is much more challenging, we also tried a multiple-initial-guess optimization strategy. This greatly enhanced performance, but gains from additional data collection remained limited.
Low-Complexity Polynomial Channel Estimation in Large-Scale MIMO With Arbitrary Statistics
NASA Astrophysics Data System (ADS)
Shariati, Nafiseh; Bjornson, Emil; Bengtsson, Mats; Debbah, Merouane
2014-10-01
This paper considers pilot-based channel estimation in large-scale multiple-input multiple-output (MIMO) communication systems, also known as massive MIMO, where there are hundreds of antennas at one side of the link. Motivated by the fact that computational complexity is one of the main challenges in such systems, a set of low-complexity Bayesian channel estimators, coined Polynomial ExpAnsion CHannel (PEACH) estimators, are introduced for arbitrary channel and interference statistics. While the conventional minimum mean square error (MMSE) estimator has cubic complexity in the dimension of the covariance matrices, due to an inversion operation, our proposed estimators significantly reduce this to square complexity by approximating the inverse by a L-degree matrix polynomial. The coefficients of the polynomial are optimized to minimize the mean square error (MSE) of the estimate. We show numerically that near-optimal MSEs are achieved with low polynomial degrees. We also derive the exact computational complexity of the proposed estimators, in terms of the floating-point operations (FLOPs), by which we prove that the proposed estimators outperform the conventional estimators in large-scale MIMO systems of practical dimensions while providing a reasonable MSEs. Moreover, we show that L needs not scale with the system dimensions to maintain a certain normalized MSE. By analyzing different interference scenarios, we observe that the relative MSE loss of using the low-complexity PEACH estimators is smaller in realistic scenarios with pilot contamination. On the other hand, PEACH estimators are not well suited for noise-limited scenarios with high pilot power; therefore, we also introduce the low-complexity diagonalized estimator that performs well in this regime. Finally, we ...
Modeling, Real-Time Estimation, and Identification of UWB Indoor Wireless Channels
Olama, Mohammed M.; Djouadi, Seddik M.; Li, Yanyan; ...
2013-01-01
Stochastic differential equations (SDEs) are used to model ultrawideband (UWB) indoor wireless channels. We show that the impulse responses for time-varying indoor wireless channels can be approximated in a mean-square sense as close as desired by impulse responses that can be realized by SDEs. The state variables represent the inphase and quadrature components of the UWB channel. The expected maximization and extended Kalman filter are employed to recursively identify and estimate the channel parameters and states, respectively, from online received signal strength measured data. Both resolvable and nonresolvable multipath received signals are considered and represented as small-scaled Nakagami fading. Themore » proposed models together with the estimation algorithm are tested using UWB indoor measurement data demonstrating the method’s viability and the results are presented.« less
USDA-ARS?s Scientific Manuscript database
The objective of this study was to evaluate the effects of egg quality of stripped eggs from channel catfish (Ictalurus punctatus) and method of incubation of fertilized hybrid catfish eggs on hatching success. Stripped eggs from 17 channel catfish females were evaluated in a 2 x 2 factorial...
Chargé, Pascal; Bazzi, Oussama; Ding, Yuehua
2018-01-01
A parametric scheme for spatially correlated sparse multiple-input multiple-output (MIMO) channel path delay estimation in scattering environments is presented in this paper. In MIMO outdoor communication scenarios, channel impulse responses (CIRs) of different transmit–receive antenna pairs are often supposed to be sparse due to a few significant scatterers, and share a common sparse pattern, such that path delays are assumed to be equal for every transmit–receive antenna pair. In some existing works, an exact common support condition is exploited, where the path delays are considered equal for every transmit–receive antenna pair, meanwhile ignoring the influence of scattering. A more realistic channel model is proposed in this paper, where due to scatterers in the environment, the received signals are modeled as clusters of multi-rays around a nominal or mean time delay at different antenna elements, resulting in a non-strictly exact common support phenomenon. A method for estimating the channel mean path delays is then derived based on the subspace approach, and the tracking of the effective dimension of the signal subspace that changes due to the wireless environment. The proposed method shows an improved channel mean path delays estimation performance in comparison with the conventional estimation methods. PMID:29734797
Mohydeen, Ali; Chargé, Pascal; Wang, Yide; Bazzi, Oussama; Ding, Yuehua
2018-05-06
A parametric scheme for spatially correlated sparse multiple-input multiple-output (MIMO) channel path delay estimation in scattering environments is presented in this paper. In MIMO outdoor communication scenarios, channel impulse responses (CIRs) of different transmit⁻receive antenna pairs are often supposed to be sparse due to a few significant scatterers, and share a common sparse pattern, such that path delays are assumed to be equal for every transmit⁻receive antenna pair. In some existing works, an exact common support condition is exploited, where the path delays are considered equal for every transmit⁻receive antenna pair, meanwhile ignoring the influence of scattering. A more realistic channel model is proposed in this paper, where due to scatterers in the environment, the received signals are modeled as clusters of multi-rays around a nominal or mean time delay at different antenna elements, resulting in a non-strictly exact common support phenomenon. A method for estimating the channel mean path delays is then derived based on the subspace approach, and the tracking of the effective dimension of the signal subspace that changes due to the wireless environment. The proposed method shows an improved channel mean path delays estimation performance in comparison with the conventional estimation methods.
Jiang, Geng-Ming; Li, Zhao-Liang
2008-11-10
This work intercompared two Bi-directional Reflectance Distribution Function (BRDF) models, the modified Minnaert's model and the RossThick-LiSparse-R model, in the estimation of the directional emissivity in Middle Infra-Red (MIR) channel from the data acquired by the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) onboard the first Meteosat Second Generation (MSG1). The bi-directional reflectances in SEVIRI channel 4 (3.9 microm) were estimated from the combined MIR and Thermal Infra-Red (TIR) data and then were used to estimate the directional emissivity in this channel with aid of the BRDF models. The results show that: (1) Both models can relatively well describe the non-Lambertian reflective behavior of land surfaces in SEVIRI channel 4; (2) The RossThick-LiSparse-R model is better than the modified Minnaert's model in modeling the bi-directional reflectances, and the directional emissivities modeled by the modified Minnaert's model are always lower than the ones obtained by the RossThick-LiSparse-R model with averaged emissivity differences of approximately 0.01 and approximately 0.04 over the vegetated and bare areas, respectively. The use of the RossThick-LiSparse-R model in the estimation of the directional emissivity in MIR channel is recommended.
Coded DS-CDMA Systems with Iterative Channel Estimation and no Pilot Symbols
2010-08-01
ar X iv :1 00 8. 31 96 v1 [ cs .I T ] 1 9 A ug 2 01 0 1 Coded DS - CDMA Systems with Iterative Channel Estimation and no Pilot Symbols Don...sequence code-division multiple-access ( DS - CDMA ) systems with quadriphase-shift keying in which channel estimation, coherent demodulation, and decoding...amplitude, phase, and the interference power spectral density (PSD) due to the combined interference and thermal noise is proposed for DS - CDMA systems
Silva Dos Santos, Eldo; Pinheiro Lopes, Paula Patrícia; da Silva Pereira, Hyrla Herondina; de Oliveira Nascimento, Otávio; Rennie, Colin David; da Silveira Lobo O'Reilly Sternberg, Leonel; Cavalcanti da Cunha, Alan
2018-05-15
Due to progressive erosion of the new Urucurituba Channel, the Amazon River has recently captured almost all discharge from the lower Araguari River (Amapá-AP, Brazil), which previously flowed directly to the Atlantic Ocean. These recent geomorphological changes have caused strong impacts on the landscape and hydrodynamic patterns near the Araguari River mouth, especially the alteration of the riverine drainage system and its water quality. Landsat images were used to assess the estuarine landscape morphodynamic, particularly the expansion of the Urucurituba Channel, 80km from the Araguari River mouth, chronicling its connection to the Amazon River. The results suggest that the Urucurituba developed by headward migration across the Amazon delta; this is perhaps the first observation of estuarine distributary network development by headward channel erosion. The rate of Urucurituba Channel width increase has been ≈5m/month since 2011, increasing drainage capacity of the channel. We also collected in situ hydrodynamic measurements and analyzed 17 water quality parameters. Having 2011 as baseline, the flowrate of Araguari River has been diverted by up to 98% through Urucurituba Channel, with substantial changes in net discharge recorded at 3 monitoring stations. Statistically significant differences in water quality (p<0.05) were observed between 2011 and 2015, associated with the change in the flow pattern. Estuarine salinity and solids concentrations have increased. Overall, we demonstrate changes in landscape, hydrodynamics and water quality of the lower Araguari River. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Richardson, R.; Legleiter, C. J.; Harrison, L.
2015-12-01
Salmonids are threatened with extinction across the world from the fragmentation of riverine ecosystems from dams and diversions. In California, efforts to expand the range of spawnable habitat for native salmon by transporting fish around reservoirs is a potentially species saving idea. But, strong scientific evidence of the amount of high quality habitat is required to make these difficult management decisions. Remote sensing has long been used in fluvial settings to identify physical parameters that drive the quality of aquatic habitat; however, the true strength of remote sensing to cover large spatial extents has not been applied with the resolution that is relevant to salmonids. This project utilizes hyperspectral data of over 250 km of the Tuolumne and Merced Rivers to extract depth and bed slope from the wetted channel and NIR LiDAR for the surrounding topography. The Optimal Band Ratio Analysis (OBRA) has proven as an effective tool to create bathymetric maps of river channels in ideal settings with clear water, high amounts of bottom reflectance, and less than 3 meters deep over short distances. Results from this study show that OBRA can be applied over larger riverscapes at high resolutions (0.5 m). The depth and bed slope estimations are used to classify habitat units that are crucial to quantifying the quality and amount of habitat in these river that once produced large populations of native salmonids. As more managers look to expand habitat for these threatened species the tools developed here will be cost effective over the large extents that salmon migrate to spawn.
Load-adaptive practical multi-channel communications in wireless sensor networks.
Islam, Md Shariful; Alam, Muhammad Mahbub; Hong, Choong Seon; Lee, Sungwon
2010-01-01
In recent years, a significant number of sensor node prototypes have been designed that provide communications in multiple channels. This multi-channel feature can be effectively exploited to increase the overall capacity and performance of wireless sensor networks (WSNs). In this paper, we present a multi-channel communications system for WSNs that is referred to as load-adaptive practical multi-channel communications (LPMC). LPMC estimates the active load of a channel at the sink since it has a more comprehensive view of the network behavior, and dynamically adds or removes channels based on the estimated load. LPMC updates the routing path to balance the loads of the channels. The nodes in a path use the same channel; therefore, they do not need to switch channels to receive or forward packets. LPMC has been evaluated through extensive simulations, and the results demonstrate that it can effectively increase the delivery ratio, network throughput, and channel utilization, and that it can decrease the end-to-end delay and energy consumption.
Receiver Diversity Combining Using Evolutionary Algorithms in Rayleigh Fading Channel
Akbari, Mohsen; Manesh, Mohsen Riahi
2014-01-01
In diversity combining at the receiver, the output signal-to-noise ratio (SNR) is often maximized by using the maximal ratio combining (MRC) provided that the channel is perfectly estimated at the receiver. However, channel estimation is rarely perfect in practice, which results in deteriorating the system performance. In this paper, an imperialistic competitive algorithm (ICA) is proposed and compared with two other evolutionary based algorithms, namely, particle swarm optimization (PSO) and genetic algorithm (GA), for diversity combining of signals travelling across the imperfect channels. The proposed algorithm adjusts the combiner weights of the received signal components in such a way that maximizes the SNR and minimizes the bit error rate (BER). The results indicate that the proposed method eliminates the need of channel estimation and can outperform the conventional diversity combining methods. PMID:25045725
Witnessing effective entanglement over a 2 km fiber channel.
Wittmann, Christoffer; Fürst, Josef; Wiechers, Carlos; Elser, Dominique; Häseler, Hauke; Lütkenhaus, Norbert; Leuchs, Gerd
2010-03-01
We present a fiber-based continuous-variable quantum key distribution system. In the scheme, a quantum signal of two non-orthogonal weak optical coherent states is sent through a fiber-based quantum channel. The receiver simultaneously measures conjugate quadratures of the light using two homodyne detectors. From the measured Q-function of the transmitted signal, we estimate the attenuation and the excess noise caused by the channel. The estimated excess noise originating from the channel and the channel attenuation including the quantum efficiency of the detection setup is investigated with respect to the detection of effective entanglement. The local oscillator is considered in the verification. We witness effective entanglement with a channel length of up to 2 km.
NASA Astrophysics Data System (ADS)
He, Jing; Shi, Jin; Deng, Rui; Chen, Lin
2017-08-01
Recently, visible light communication (VLC) based on light-emitting diodes (LEDs) is considered as a candidate technology for fifth-generation (5G) communications, VLC is free of electromagnetic interference and it can simplify the integration of VLC into heterogeneous wireless networks. Due to the data rates of VLC system limited by the low pumping efficiency, small output power and narrow modulation bandwidth, visible laser light communication (VLLC) system with laser diode (LD) has paid more attention. In addition, orthogonal frequency division multiplexing/offset quadrature amplitude modulation (OFDM/OQAM) is currently attracting attention in optical communications. Due to the non-requirement of cyclic prefix (CP) and time-frequency domain well-localized pulse shapes, it can achieve high spectral efficiency. Moreover, OFDM/OQAM has lower out-of-band power leakage so that it increases the system robustness against inter-carrier interference (ICI) and frequency offset. In this paper, a Discrete Fourier Transform (DFT)-based channel estimation scheme combined with the interference approximation method (IAM) is proposed and experimentally demonstrated for VLLC OFDM/OQAM system. The performance of VLLC OFDM/OQAM system with and without DFT-based channel estimation is investigated. Moreover, the proposed DFT-based channel estimation scheme and the intra-symbol frequency-domain averaging (ISFA)-based method are also compared for the VLLC OFDM/OQAM system. The experimental results show that, the performance of EVM using the DFT-based channel estimation scheme is improved about 3dB compared with the conventional IAM method. In addition, the DFT-based channel estimation scheme can resist the channel noise effectively than that of the ISFA-based method.
Preisig, James C
2005-07-01
Equations are derived for analyzing the performance of channel estimate based equalizers. The performance is characterized in terms of the mean squared soft decision error (sigma2(s)) of each equalizer. This error is decomposed into two components. These are the minimum achievable error (sigma2(0)) and the excess error (sigma2(e)). The former is the soft decision error that would be realized by the equalizer if the filter coefficient calculation were based upon perfect knowledge of the channel impulse response and statistics of the interfering noise field. The latter is the additional soft decision error that is realized due to errors in the estimates of these channel parameters. These expressions accurately predict the equalizer errors observed in the processing of experimental data by a channel estimate based decision feedback equalizer (DFE) and a passive time-reversal equalizer. Further expressions are presented that allow equalizer performance to be predicted given the scattering function of the acoustic channel. The analysis using these expressions yields insights into the features of surface scattering that most significantly impact equalizer performance in shallow water environments and motivates the implementation of a DFE that is robust with respect to channel estimation errors.
Channel degradation and restoration of an Alpine river and related morphological changes
NASA Astrophysics Data System (ADS)
Campana, Daniela; Marchese, Enrico; Theule, Joshua I.; Comiti, Francesco
2014-09-01
River degradation and thus necessity for restoration are major issues worldwide. However, adequate methodologies to assess morphological variations linked to these actions and the morphological success of restoration interventions are still to be determined. The Ahr River (South Tyrol, Italian Alps) was characterized until the mid-twentieth century by an anabranching and meandering pattern, but starting from the 1960s it underwent intense channel degradation in terms of narrowing, incision, and floodplain disconnection. In the period 2003-2011, several reaches of the Ahr River were restored by widening and raising the channel bed. The planimetric changes that occurred historically in the Ahr River were determined by the interpretation of 10 maps and aerial photos covering the period 1820-2011. The estimation of the incision that occurred during the degradation phase was assessed by the difference in elevation between gravel surfaces, whereas the changes introduced by restoration interventions in two reaches were evaluated through the comparison of topographic cross sections surveyed in year 2000 and a high-resolution bathymetric LiDAR survey flown in late 2012. The MQI (Morphological Quality Index) was applied to different reaches in order to test how assessment methodologies respond to degradation and restoration actions. The combined analysis of planform and vertical changes indicates that gravel mining has been the largest pressure for the river, but a change in sediment/flow regimes probably led to the channel adjustments that occurred during the early twentieth century. The restoration measures have locally increased channel width, elevation, and morphometrical diversity compared to the unrestored reaches, as well as the morphological quality assessed by MQI. However, the extent of the modifications brought about by restoration works differs between the two restored reaches, pointing out the need for a quantitative analysis of the historical evolution of each river reach before designing and implementing restoration actions and to the necessity to monitor the subsequent morphological adjustments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiser, I; Lu, Z
2014-06-01
Purpose: Recently, task-based assessment of diagnostic CT systems has attracted much attention. Detection task performance can be estimated using human observers, or mathematical observer models. While most models are well established, considerable bias can be introduced when performance is estimated from a limited number of image samples. Thus, the purpose of this work was to assess the effect of sample size on bias and uncertainty of two channelized Hotelling observers and a template-matching observer. Methods: The image data used for this study consisted of 100 signal-present and 100 signal-absent regions-of-interest, which were extracted from CT slices. The experimental conditions includedmore » two signal sizes and five different x-ray beam current settings (mAs). Human observer performance for these images was determined in 2-alternative forced choice experiments. These data were provided by the Mayo clinic in Rochester, MN. Detection performance was estimated from three observer models, including channelized Hotelling observers (CHO) with Gabor or Laguerre-Gauss (LG) channels, and a template-matching observer (TM). Different sample sizes were generated by randomly selecting a subset of image pairs, (N=20,40,60,80). Observer performance was quantified as proportion of correct responses (PC). Bias was quantified as the relative difference of PC for 20 and 80 image pairs. Results: For n=100, all observer models predicted human performance across mAs and signal sizes. Bias was 23% for CHO (Gabor), 7% for CHO (LG), and 3% for TM. The relative standard deviation, σ(PC)/PC at N=20 was highest for the TM observer (11%) and lowest for the CHO (Gabor) observer (5%). Conclusion: In order to make image quality assessment feasible in the clinical practice, a statistically efficient observer model, that can predict performance from few samples, is needed. Our results identified two observer models that may be suited for this task.« less
2014-01-01
We propose a smooth approximation l 0-norm constrained affine projection algorithm (SL0-APA) to improve the convergence speed and the steady-state error of affine projection algorithm (APA) for sparse channel estimation. The proposed algorithm ensures improved performance in terms of the convergence speed and the steady-state error via the combination of a smooth approximation l 0-norm (SL0) penalty on the coefficients into the standard APA cost function, which gives rise to a zero attractor that promotes the sparsity of the channel taps in the channel estimation and hence accelerates the convergence speed and reduces the steady-state error when the channel is sparse. The simulation results demonstrate that our proposed SL0-APA is superior to the standard APA and its sparsity-aware algorithms in terms of both the convergence speed and the steady-state behavior in a designated sparse channel. Furthermore, SL0-APA is shown to have smaller steady-state error than the previously proposed sparsity-aware algorithms when the number of nonzero taps in the sparse channel increases. PMID:24790588
A Study on Coexistence Capability Evaluations of the Enhanced Channel Hopping Mechanism in WBANs
Wei, Zhongcheng; Sun, Yongmei; Ji, Yuefeng
2017-01-01
As an important coexistence technology, channel hopping can reduce the interference among Wireless Body Area Networks (WBANs). However, it simultaneously brings some issues, such as energy waste, long latency and communication interruptions, etc. In this paper, we propose an enhanced channel hopping mechanism that allows multiple WBANs coexisted in the same channel. In order to evaluate the coexistence performance, some critical metrics are designed to reflect the possibility of channel conflict. Furthermore, by taking the queuing and non-queuing behaviors into consideration, we present a set of analysis approaches to evaluate the coexistence capability. On the one hand, we present both service-dependent and service-independent analysis models to estimate the number of coexisting WBANs. On the other hand, based on the uniform distribution assumption and the additive property of Possion-stream, we put forward two approximate methods to compute the number of occupied channels. Extensive simulation results demonstrate that our estimation approaches can provide an effective solution for coexistence capability estimation. Moreover, the enhanced channel hopping mechanism can significantly improve the coexistence capability and support a larger arrival rate of WBANs. PMID:28098818
Verbist, Bie; Clement, Lieven; Reumers, Joke; Thys, Kim; Vapirev, Alexander; Talloen, Willem; Wetzels, Yves; Meys, Joris; Aerssens, Jeroen; Bijnens, Luc; Thas, Olivier
2015-02-22
Deep-sequencing allows for an in-depth characterization of sequence variation in complex populations. However, technology associated errors may impede a powerful assessment of low-frequency mutations. Fortunately, base calls are complemented with quality scores which are derived from a quadruplet of intensities, one channel for each nucleotide type for Illumina sequencing. The highest intensity of the four channels determines the base that is called. Mismatch bases can often be corrected by the second best base, i.e. the base with the second highest intensity in the quadruplet. A virus variant model-based clustering method, ViVaMBC, is presented that explores quality scores and second best base calls for identifying and quantifying viral variants. ViVaMBC is optimized to call variants at the codon level (nucleotide triplets) which enables immediate biological interpretation of the variants with respect to their antiviral drug responses. Using mixtures of HCV plasmids we show that our method accurately estimates frequencies down to 0.5%. The estimates are unbiased when average coverages of 25,000 are reached. A comparison with the SNP-callers V-Phaser2, ShoRAH, and LoFreq shows that ViVaMBC has a superb sensitivity and specificity for variants with frequencies above 0.4%. Unlike the competitors, ViVaMBC reports a higher number of false-positive findings with frequencies below 0.4% which might partially originate from picking up artificial variants introduced by errors in the sample and library preparation step. ViVaMBC is the first method to call viral variants directly at the codon level. The strength of the approach lies in modeling the error probabilities based on the quality scores. Although the use of second best base calls appeared very promising in our data exploration phase, their utility was limited. They provided a slight increase in sensitivity, which however does not warrant the additional computational cost of running the offline base caller. Apparently a lot of information is already contained in the quality scores enabling the model based clustering procedure to adjust the majority of the sequencing errors. Overall the sensitivity of ViVaMBC is such that technical constraints like PCR errors start to form the bottleneck for low frequency variant detection.
A study of methods to estimate debris flow velocity
Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.
2008-01-01
Debris flow velocities are commonly back-calculated from superelevation events which require subjective estimates of radii of curvature of bends in the debris flow channel or predicted using flow equations that require the selection of appropriate rheological models and material property inputs. This research investigated difficulties associated with the use of these conventional velocity estimation methods. Radii of curvature estimates were found to vary with the extent of the channel investigated and with the scale of the media used, and back-calculated velocities varied among different investigated locations along a channel. Distinct populations of Bingham properties were found to exist between those measured by laboratory tests and those back-calculated from field data; thus, laboratory-obtained values would not be representative of field-scale debris flow behavior. To avoid these difficulties with conventional methods, a new preliminary velocity estimation method is presented that statistically relates flow velocity to the channel slope and the flow depth. This method presents ranges of reasonable velocity predictions based on 30 previously measured velocities. ?? 2008 Springer-Verlag.
Quality control and quality assurance plan for bridge channel-stability assessments in Massachusetts
Parker, Gene W.; Pinson, Harlow
1993-01-01
A quality control and quality assurance plan has been implemented as part of the Massachusetts bridge scour and channel-stability assessment program. This program is being conducted by the U.S. Geological Survey, Massachusetts-Rhode Island District, in cooperation with the Massachusetts Highway Department. Project personnel training, data-integrity verification, and new data-management technologies are being utilized in the channel-stability assessment process to improve current data-collection and management techniques. An automated data-collection procedure has been implemented to standardize channel-stability assessments on a regular basis within the State. An object-oriented data structure and new image management tools are used to produce a data base enabling management of multiple data object classes. Data will be reviewed by assessors and data base managers before being merged into a master bridge-scour data base, which includes automated data-verification routines.
USDA-ARS?s Scientific Manuscript database
Variable egg quality is one of the most important constrains to the development of aquaculture. The quality of eggs that are manually stripped from channel catfish are affected by variation in parental genetics, maturity, type and dose of hormone, age and pre-spawning stress of female fish. Furthe...
Estimation of color filter array data from JPEG images for improved demosaicking
NASA Astrophysics Data System (ADS)
Feng, Wei; Reeves, Stanley J.
2006-02-01
On-camera demosaicking algorithms are necessarily simple and therefore do not yield the best possible images. However, off-camera demosaicking algorithms face the additional challenge that the data has been compressed and therefore corrupted by quantization noise. We propose a method to estimate the original color filter array (CFA) data from JPEG-compressed images so that more sophisticated (and better) demosaicking schemes can be applied to get higher-quality images. The JPEG image formation process, including simple demosaicking, color space transformation, chrominance channel decimation and DCT, is modeled as a series of matrix operations followed by quantization on the CFA data, which is estimated by least squares. An iterative method is used to conserve memory and speed computation. Our experiments show that the mean square error (MSE) with respect to the original CFA data is reduced significantly using our algorithm, compared to that of unprocessed JPEG and deblocked JPEG data.
Designing ecological flows to gravely braided rivers in alpine environments
NASA Astrophysics Data System (ADS)
Egozi, R.; Ashmore, P.
2009-04-01
Designing ecological flows in gravelly braided streams requires estimating the channel forming discharge in order to maintain the braided reach physical (allocation of flow and bed load) and ecological (maintaining the habitat diversity) functions. At present, compared to single meander streams, there are fewer guiding principles for river practitioners that can be used to manage braided streams. Insight into braiding morphodynamics using braiding intensity indices allows estimation of channel forming discharge. We assess variation in braiding intensity by mapping the total number of channels (BIT) and the number of active (transporting bed load) channels (BIA) at different stages of typical diurnal melt-water hydrographs in a pro-glacial braided river, Sunwapta River, Canada. Results show that both BIA and BIT vary with flow stage but over a limited range of values. Furthermore, maximum BIT occurs below peak discharge. At this stage there is a balance between channel merging from inundation and occupation of new channels as the stage rises. This stage is the channel forming discharge because above this stage the existing braided pattern cannot discharge the volume of water without causing morphological changes (e.g., destruction of bifurcations, channel avulsion). Estimation of the channel forming discharge requires a set of braiding intensity measurements over a range of flow stages. The design of ecological flows must take into consideration flow regime characteristics rather than just the channel forming discharge magnitude.
Hydrologic reconnaissance of western Arctic Alaska, 1976 and 1977
Childers, Joseph M.; Kernodle, Donald R.; Loeffler, Robert M.
1979-01-01
Reconnaissance water-resource investigations were conducted on the western Alaskan Arctic Slope during April 1976 and August 1977; these months are times of winter and summer low flow. The information gathered is important for coordinated development in the area. Such development has been spurred by oil and gas discoveries on the North Slope, most notably at Prudhoe Bay. Little water resources information is currently available. The study area extended from the Colville River to the vicinity of Kotzebue. It included the western Arctic Slope and the western foothills of the Brooks Range. Nine springs, nine lakes and eleven rivers were sampled during the April 1976 reconnaissance trip. Its purpose was to locate winter flow and describe its quantity and quality. Field water-quality measurements made at these sites were: ice thickness, water depth, discharge (spring and streams), specific conductance, water temperature, dissolved oxygen, alkalinity (bicarbonate, HOC3), and pH. A followup summer trip was made in August 1977 to determine flood characteristics of twenty selected streams. Bankfull and maximum evident flood-peak discharges were determined by measuring channel geometry and estimating channel roughness. Aquatic invertebrate samples were collected at springs and flood survey sites visited during both reconnaissance trips. (Woodard-USGS)
Visual and Auditory Components in the Perception of Asynchronous Audiovisual Speech
Alcalá-Quintana, Rocío
2015-01-01
Research on asynchronous audiovisual speech perception manipulates experimental conditions to observe their effects on synchrony judgments. Probabilistic models establish a link between the sensory and decisional processes underlying such judgments and the observed data, via interpretable parameters that allow testing hypotheses and making inferences about how experimental manipulations affect such processes. Two models of this type have recently been proposed, one based on independent channels and the other using a Bayesian approach. Both models are fitted here to a common data set, with a subsequent analysis of the interpretation they provide about how experimental manipulations affected the processes underlying perceived synchrony. The data consist of synchrony judgments as a function of audiovisual offset in a speech stimulus, under four within-subjects manipulations of the quality of the visual component. The Bayesian model could not accommodate asymmetric data, was rejected by goodness-of-fit statistics for 8/16 observers, and was found to be nonidentifiable, which renders uninterpretable parameter estimates. The independent-channels model captured asymmetric data, was rejected for only 1/16 observers, and identified how sensory and decisional processes mediating asynchronous audiovisual speech perception are affected by manipulations that only alter the quality of the visual component of the speech signal. PMID:27551361
NASA Astrophysics Data System (ADS)
Ling, Jun
Achieving reliable underwater acoustic communications (UAC) has long been recognized as a challenging problem owing to the scarce bandwidth available and the reverberant spread in both time and frequency domains. To pursue high data rates, we consider a multi-input multi-output (MIMO) UAC system, and our focus is placed on two main issues regarding a MIMO UAC system: (1) channel estimation, which involves the design of the training sequences and the development of a reliable channel estimation algorithm, and (2) symbol detection, which requires interference cancelation schemes due to simultaneous transmission from multiple transducers. To enhance channel estimation performance, we present a cyclic approach for designing training sequences with good auto- and cross-correlation properties, and a channel estimation algorithm called the iterative adaptive approach (IAA). Sparse channel estimates can be obtained by combining IAA with the Bayesian information criterion (BIC). Moreover, we present sparse learning via iterative minimization (SLIM) and demonstrate that SLIM gives similar performance to IAA but at a much lower computational cost. Furthermore, an extension of the SLIM algorithm is introduced to estimate the sparse and frequency modulated acoustic channels. The extended algorithm is referred to as generalization of SLIM (GoSLIM). Regarding symbol detection, a linear minimum mean-squared error based detection scheme, called RELAX-BLAST, which is a combination of vertical Bell Labs layered space-time (V-BLAST) algorithm and the cyclic principle of the RELAX algorithm, is presented and it is shown that RELAX-BLAST outperforms V-BLAST. We show that RELAX-BLAST can be implemented efficiently by making use of the conjugate gradient method and diagonalization properties of circulant matrices. This fast implementation approach requires only simple fast Fourier transform operations and facilitates parallel implementations. The effectiveness of the proposed MIMO schemes is verified by both computer simulations and experimental results obtained by analyzing the measurements acquired in multiple in-water experiments.
Favazza, Christopher P.; Fetterly, Kenneth A.; Hangiandreou, Nicholas J.; Leng, Shuai; Schueler, Beth A.
2015-01-01
Abstract. Evaluation of flat-panel angiography equipment through conventional image quality metrics is limited by the scope of standard spatial-domain image quality metric(s), such as contrast-to-noise ratio and spatial resolution, or by restricted access to appropriate data to calculate Fourier domain measurements, such as modulation transfer function, noise power spectrum, and detective quantum efficiency. Observer models have been shown capable of overcoming these limitations and are able to comprehensively evaluate medical-imaging systems. We present a spatial domain-based channelized Hotelling observer model to calculate the detectability index (DI) of our different sized disks and compare the performance of different imaging conditions and angiography systems. When appropriate, changes in DIs were compared to expectations based on the classical Rose model of signal detection to assess linearity of the model with quantum signal-to-noise ratio (SNR) theory. For these experiments, the estimated uncertainty of the DIs was less than 3%, allowing for precise comparison of imaging systems or conditions. For most experimental variables, DI changes were linear with expectations based on quantum SNR theory. DIs calculated for the smallest objects demonstrated nonlinearity with quantum SNR theory due to system blur. Two angiography systems with different detector element sizes were shown to perform similarly across the majority of the detection tasks. PMID:26158086
The 'INMARSAT' international maritime satellite communication system
NASA Astrophysics Data System (ADS)
Atserov, Iu. S.
1982-12-01
The history, design, operating characteristics, achievements, and prospects of INMARSAT are discussed. More than 1300 ships are presently equipped to operate within the system, and this number is expected to rise to about 5000 by 1986. The principle of operation involves single coordinating earth stations allocating telephone channels in their zones between other earth stations. The messages reach a common signalling channel with which all ship stations keep in touch. The ship stations are connected to the international telex network. The INMARSAT system enables ships in the automated mode of operation to establish telephone and telegraph comunication with any subscriber on the shore of any country. The quality of the communication is practically independent of the distance between ship and shore at any time of year and under any meteorological conditions. Estimates indicate that the use of satellite communication with ships reduces losses from accidents by 10 percent per year.
Location and Navigation with Ultra-Wideband Signals
2012-06-07
Coherent vs. Noncoherent Combination 26 F Ranging with Multi-Band UWB Signals: Random Phase Ratation 29 F.1 MB-OFDM System Model...adopted to combine the channel information from subbands: the coherent combining and the noncoherent combining. For the coherent combining, estimates of...channel frequency response coefficients for all subbands are jointly used to estimate the time domain channel with Eq. (33). For the noncoherent
Joint Symbol Timing and CFO Estimation for OFDM/OQAM Systems in Multipath Channels
NASA Astrophysics Data System (ADS)
Fusco, Tilde; Petrella, Angelo; Tanda, Mario
2009-12-01
The problem of data-aided synchronization for orthogonal frequency division multiplexing (OFDM) systems based on offset quadrature amplitude modulation (OQAM) in multipath channels is considered. In particular, the joint maximum-likelihood (ML) estimator for carrier-frequency offset (CFO), amplitudes, phases, and delays, exploiting a short known preamble, is derived. The ML estimators for phases and amplitudes are in closed form. Moreover, under the assumption that the CFO is sufficiently small, a closed form approximate ML (AML) CFO estimator is obtained. By exploiting the obtained closed form solutions a cost function whose peaks provide an estimate of the delays is derived. In particular, the symbol timing (i.e., the delay of the first multipath component) is obtained by considering the smallest estimated delay. The performance of the proposed joint AML estimator is assessed via computer simulations and compared with that achieved by the joint AML estimator designed for AWGN channel and that achieved by a previously derived joint estimator for OFDM systems.
Streamflow characteristics related to channel geometry of streams in western United States
Hedman, E.R.; Osterkamp, W.R.
1982-01-01
Assessment of surface-mining and reclamation activities generally requires extensive hydrologic data. Adequate streamflow data from instrumented gaging stations rarely are available, and estimates of surface- water discharge based on rainfall-runoff models, drainage area, and basin characteristics sometimes have proven unreliable. Channel-geometry measurements offer an alternative method of quickly and inexpensively estimating stream-flow characteristics for ungaged streams. The method uses the empirical development of equations to yield a discharge value from channel-geometry and channel-material data. The equations are developed by collecting data at numerous streamflow-gaging sites and statistically relating those data to selected discharge characteristics. Mean annual runoff and flood discharges with selected recurrence intervals can be estimated for perennial, intermittent, and ephemeral streams. The equations were developed from data collected in the western one-half of the conterminous United States. The effect of the channel-material and runoff characteristics are accounted for with the equations.
An Optical Flow-Based Full Reference Video Quality Assessment Algorithm.
K, Manasa; Channappayya, Sumohana S
2016-06-01
We present a simple yet effective optical flow-based full-reference video quality assessment (FR-VQA) algorithm for assessing the perceptual quality of natural videos. Our algorithm is based on the premise that local optical flow statistics are affected by distortions and the deviation from pristine flow statistics is proportional to the amount of distortion. We characterize the local flow statistics using the mean, the standard deviation, the coefficient of variation (CV), and the minimum eigenvalue ( λ min ) of the local flow patches. Temporal distortion is estimated as the change in the CV of the distorted flow with respect to the reference flow, and the correlation between λ min of the reference and of the distorted patches. We rely on the robust multi-scale structural similarity index for spatial quality estimation. The computed temporal and spatial distortions, thus, are then pooled using a perceptually motivated heuristic to generate a spatio-temporal quality score. The proposed method is shown to be competitive with the state-of-the-art when evaluated on the LIVE SD database, the EPFL Polimi SD database, and the LIVE Mobile HD database. The distortions considered in these databases include those due to compression, packet-loss, wireless channel errors, and rate-adaptation. Our algorithm is flexible enough to allow for any robust FR spatial distortion metric for spatial distortion estimation. In addition, the proposed method is not only parameter-free but also independent of the choice of the optical flow algorithm. Finally, we show that the replacement of the optical flow vectors in our proposed method with the much coarser block motion vectors also results in an acceptable FR-VQA algorithm. Our algorithm is called the flow similarity index.
NASA Astrophysics Data System (ADS)
Kojima, Yohei; Takeda, Kazuaki; Adachi, Fumiyuki
Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can provide better downlink bit error rate (BER) performance of direct sequence code division multiple access (DS-CDMA) than the conventional rake combining in a frequency-selective fading channel. FDE requires accurate channel estimation. In this paper, we propose a new 2-step maximum likelihood channel estimation (MLCE) for DS-CDMA with FDE in a very slow frequency-selective fading environment. The 1st step uses the conventional pilot-assisted MMSE-CE and the 2nd step carries out the MLCE using decision feedback from the 1st step. The BER performance improvement achieved by 2-step MLCE over pilot assisted MMSE-CE is confirmed by computer simulation.
PAD-MAC: Primary User Activity-Aware Distributed MAC for Multi-Channel Cognitive Radio Networks
Ali, Amjad; Piran, Md. Jalil; Kim, Hansoo; Yun, Jihyeok; Suh, Doug Young
2015-01-01
Cognitive radio (CR) has emerged as a promising technology to solve problems related to spectrum scarcity and provides a ubiquitous wireless access environment. CR-enabled secondary users (SUs) exploit spectrum white spaces opportunistically and immediately vacate the acquired licensed channels as primary users (PUs) arrive. Accessing the licensed channels without the prior knowledge of PU traffic patterns causes severe throughput degradation due to excessive channel switching and PU-to-SU collisions. Therefore, it is significantly important to design a PU activity-aware medium access control (MAC) protocol for cognitive radio networks (CRNs). In this paper, we first propose a licensed channel usage pattern identification scheme, based on a two-state Markov model, and then estimate the future idle slots using previous observations of the channels. Furthermore, based on these past observations, we compute the rank of each available licensed channel that gives SU transmission success assessment during the estimated idle slot. Secondly, we propose a PU activity-aware distributed MAC (PAD-MAC) protocol for heterogeneous multi-channel CRNs that selects the best channel for each SU to enhance its throughput. PAD-MAC controls SU activities by allowing them to exploit the licensed channels only for the duration of estimated idle slots and enables predictive and fast channel switching. To evaluate the performance of the proposed PAD-MAC, we compare it with the distributed QoS-aware MAC (QC-MAC) and listen-before-talk MAC schemes. Extensive numerical results show the significant improvements of the PAD-MAC in terms of the SU throughput, SU channel switching rate and PU-to-SU collision rate. PMID:25831084
Finite-error metrological bounds on multiparameter Hamiltonian estimation
NASA Astrophysics Data System (ADS)
Kura, Naoto; Ueda, Masahito
2018-01-01
Estimation of multiple parameters in an unknown Hamiltonian is investigated. We present upper and lower bounds on the time required to complete the estimation within a prescribed error tolerance δ . The lower bound is given on the basis of the Cramér-Rao inequality, where the quantum Fisher information is bounded by the squared evolution time. The upper bound is obtained by an explicit construction of estimation procedures. By comparing the cases with different numbers of Hamiltonian channels, we also find that the few-channel procedure with adaptive feedback and the many-channel procedure with entanglement are equivalent in the sense that they require the same amount of time resource up to a constant factor.
Bes, Romy Evelien; van den Berg, Bernard
2013-01-01
Healthcare quality information is crucial for the system of managed competition. Within a system of managed competition, health insurers can selectively contract care providers and are allowed to channel patients towards contracted providers. The idea is that insurers have a stronger bargaining position compared to care providers when they are able to channel patients. In the Dutch system of managed competition that was implemented in 2006, channelling patients to preferred providers has not yet been very successful. Empirical knowledge of which sources of hospital quality information they find important may help us to understand how to channel patients to preferred providers. The objective of this survey was to measure how patients rank various sources of information when they compare hospital quality in a system of managed competition. A written survey was conducted among clients of a large Dutch health insurance company. These clients underwent orthopedic surgery on the hip or knee no longer than 12 months ago. Two major players within a system of managed competition-health insurers and the government-were not seen as important sources of hospital quality information. In contrast, own experience and general practitioners (GPs) were seen as the most important sources of hospital quality information within the Dutch system of managed competition. Health insurers should take the main finding-that GPs are the most important source of hospital quality information-into account when they contract care providers and develop strategies for channeling patients towards preferred providers. A well-functioning system of managed competition will benefit patients, as it involves incentives for care providers to increase healthcare quality and to produce at the lowest cost per unit of quality.
Hansen, Scott K.; Vesselinov, Velimir Valentinov
2016-10-01
We develop empirically-grounded error envelopes for localization of a point contamination release event in the saturated zone of a previously uncharacterized heterogeneous aquifer into which a number of plume-intercepting wells have been drilled. We assume that flow direction in the aquifer is known exactly and velocity is known to within a factor of two of our best guess from well observations prior to source identification. Other aquifer and source parameters must be estimated by interpretation of well breakthrough data via the advection-dispersion equation. We employ high performance computing to generate numerous random realizations of aquifer parameters and well locations, simulatemore » well breakthrough data, and then employ unsupervised machine optimization techniques to estimate the most likely spatial (or space-time) location of the source. Tabulating the accuracy of these estimates from the multiple realizations, we relate the size of 90% and 95% confidence envelopes to the data quantity (number of wells) and model quality (fidelity of ADE interpretation model to actual concentrations in a heterogeneous aquifer with channelized flow). We find that for purely spatial localization of the contaminant source, increased data quantities can make up for reduced model quality. For space-time localization, we find similar qualitative behavior, but significantly degraded spatial localization reliability and less improvement from extra data collection. Since the space-time source localization problem is much more challenging, we also tried a multiple-initial-guess optimization strategy. Furthermore, this greatly enhanced performance, but gains from additional data collection remained limited.« less
Selbig, William R.
2017-01-01
Collection of water-quality samples that accurately characterize average particle concentrations and distributions in channels can be complicated by large sources of variability. The U.S. Geological Survey (USGS) developed a fully automated Depth-Integrated Sample Arm (DISA) as a way to reduce bias and improve accuracy in water-quality concentration data. The DISA was designed to integrate with existing autosampler configurations commonly used for the collection of water-quality samples in vertical profile thereby providing a better representation of average suspended sediment and sediment-associated pollutant concentrations and distributions than traditional fixed-point samplers. In controlled laboratory experiments, known concentrations of suspended sediment ranging from 596 to 1,189 mg/L were injected into a 3 foot diameter closed channel (circular pipe) with regulated flows ranging from 1.4 to 27.8 ft3 /s. Median suspended sediment concentrations in water-quality samples collected using the DISA were within 7 percent of the known, injected value compared to 96 percent for traditional fixed-point samplers. Field evaluation of this technology in open channel fluvial systems showed median differences between paired DISA and fixed-point samples to be within 3 percent. The range of particle size measured in the open channel was generally that of clay and silt. Differences between the concentration and distribution measured between the two sampler configurations could potentially be much larger in open channels that transport larger particles, such as sand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgartner, S.; Bieli, R.; Bergmann, U. C.
2012-07-01
An overview is given of existing CPR design criteria and the methods used in BWR reload analysis to evaluate the impact of channel bow on CPR margins. Potential weaknesses in today's methodologies are discussed. Westinghouse in collaboration with KKL and Axpo - operator and owner of the Leibstadt NPP - has developed an optimized CPR methodology based on a new criterion to protect against dryout during normal operation and with a more rigorous treatment of channel bow. The new steady-state criterion is expressed in terms of an upper limit of 0.01 for the dryout failure probability per year. This ismore » considered a meaningful and appropriate criterion that can be directly related to the probabilistic criteria set-up for the analyses of Anticipated Operation Occurrences (AOOs) and accidents. In the Monte Carlo approach a statistical modeling of channel bow and an accurate evaluation of CPR response functions allow the associated CPR penalties to be included directly in the plant SLMCPR and OLMCPR in a best-estimate manner. In this way, the treatment of channel bow is equivalent to all other uncertainties affecting CPR. Emphasis is put on quantifying the statistical distribution of channel bow throughout the core using measurement data. The optimized CPR methodology has been implemented in the Westinghouse Monte Carlo code, McSLAP. The methodology improves the quality of dryout safety assessments by supplying more valuable information and better control of conservatisms in establishing operational limits for CPR. The methodology is demonstrated with application examples from the introduction at KKL. (authors)« less
Single- and multi-channel underwater acoustic communication channel capacity: a computational study.
Hayward, Thomas J; Yang, T C
2007-09-01
Acoustic communication channel capacity determines the maximum data rate that can be supported by an acoustic channel for a given source power and source/receiver configuration. In this paper, broadband acoustic propagation modeling is applied to estimate the channel capacity for a time-invariant shallow-water waveguide for a single source-receiver pair and for vertical source and receiver arrays. Without bandwidth constraints, estimated single-input, single-output (SISO) capacities approach 10 megabitss at 1 km range, but beyond 2 km range they decay at a rate consistent with previous estimates by Peloquin and Leinhos (unpublished, 1997), which were based on a sonar equation calculation. Channel capacities subject to source bandwidth constraints are approximately 30-90% lower than for the unconstrained case, and exhibit a significant wind speed dependence. Channel capacity is investigated for single-input, multi-output (SIMO) and multi-input, multi-output (MIMO) systems, both for finite arrays and in the limit of a dense array spanning the entire water column. The limiting values of the SIMO and MIMO channel capacities for the modeled environment are found to be about four times higher and up to 200-400 times higher, respectively, than for the SISO case. Implications for underwater acoustic communication systems are discussed.
HealthTrust: A Social Network Approach for Retrieving Online Health Videos
Karlsen, Randi; Melton, Genevieve B
2012-01-01
Background Social media are becoming mainstream in the health domain. Despite the large volume of accurate and trustworthy health information available on social media platforms, finding good-quality health information can be difficult. Misleading health information can often be popular (eg, antivaccination videos) and therefore highly rated by general search engines. We believe that community wisdom about the quality of health information can be harnessed to help create tools for retrieving good-quality social media content. Objectives To explore approaches for extracting metrics about authoritativeness in online health communities and how these metrics positively correlate with the quality of the content. Methods We designed a metric, called HealthTrust, that estimates the trustworthiness of social media content (eg, blog posts or videos) in a health community. The HealthTrust metric calculates reputation in an online health community based on link analysis. We used the metric to retrieve YouTube videos and channels about diabetes. In two different experiments, health consumers provided 427 ratings of 17 videos and professionals gave 162 ratings of 23 videos. In addition, two professionals reviewed 30 diabetes channels. Results HealthTrust may be used for retrieving online videos on diabetes, since it performed better than YouTube Search in most cases. Overall, of 20 potential channels, HealthTrust’s filtering allowed only 3 bad channels (15%) versus 8 (40%) on the YouTube list. Misleading and graphic videos (eg, featuring amputations) were more commonly found by YouTube Search than by searches based on HealthTrust. However, some videos from trusted sources had low HealthTrust scores, mostly from general health content providers, and therefore not highly connected in the diabetes community. When comparing video ratings from our reviewers, we found that HealthTrust achieved a positive and statistically significant correlation with professionals (Pearson r 10 = .65, P = .02) and a trend toward significance with health consumers (r 7 = .65, P = .06) with videos on hemoglobinA1 c, but it did not perform as well with diabetic foot videos. Conclusions The trust-based metric HealthTrust showed promising results when used to retrieve diabetes content from YouTube. Our research indicates that social network analysis may be used to identify trustworthy social media in health communities. PMID:22356723
Improving PERSIANN-CCS rain estimation using probabilistic approach and multi-sensors information
NASA Astrophysics Data System (ADS)
Karbalaee, N.; Hsu, K. L.; Sorooshian, S.; Kirstetter, P.; Hong, Y.
2016-12-01
This presentation discusses the recent implemented approaches to improve the rainfall estimation from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network-Cloud Classification System (PERSIANN-CCS). PERSIANN-CCS is an infrared (IR) based algorithm being integrated in the IMERG (Integrated Multi-Satellite Retrievals for the Global Precipitation Mission GPM) to create a precipitation product in 0.1x0.1degree resolution over the chosen domain 50N to 50S every 30 minutes. Although PERSIANN-CCS has a high spatial and temporal resolution, it overestimates or underestimates due to some limitations.PERSIANN-CCS can estimate rainfall based on the extracted information from IR channels at three different temperature threshold levels (220, 235, and 253k). This algorithm relies only on infrared data to estimate rainfall indirectly from this channel which cause missing the rainfall from warm clouds and false estimation for no precipitating cold clouds. In this research the effectiveness of using other channels of GOES satellites such as visible and water vapors has been investigated. By using multi-sensors the precipitation can be estimated based on the extracted information from multiple channels. Also, instead of using the exponential function for estimating rainfall from cloud top temperature, the probabilistic method has been used. Using probability distributions of precipitation rates instead of deterministic values has improved the rainfall estimation for different type of clouds.
The NASA Lightning Nitrogen Oxides Model (LNOM): Recent Updates and Applications
NASA Technical Reports Server (NTRS)
Koshak, William; Peterson, Harold; Biazar, Arastoo; Khan, Maudood; Wang, Lihua; Park, Yee-Hun
2011-01-01
Improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) and its application to the Community Multiscale Air Quality (CMAQ) modeling system are presented. The LNOM analyzes Lightning Mapping Array (LMA) and National Lightning Detection Network(tm) (NLDN) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NOx (= NO + NO2). Lightning channel length distributions and lightning 10-m segment altitude distributions are also provided. In addition to NOx production from lightning return strokes, the LNOM now includes non-return stroke lightning NOx production due to: hot core stepped and dart leaders, stepped leader corona sheath, K-changes, continuing currents, and M-components. The impact of including LNOM-estimates of lightning NOx for an August 2006 run of CMAQ is discussed.
Adaptive noise canceling of electrocardiogram artifacts in single channel electroencephalogram.
Cho, Sung Pil; Song, Mi Hye; Park, Young Cheol; Choi, Ho Seon; Lee, Kyoung Joung
2007-01-01
A new method for estimating and eliminating electrocardiogram (ECG) artifacts from single channel scalp electroencephalogram (EEG) is proposed. The proposed method consists of emphasis of QRS complex from EEG using least squares acceleration (LSA) filter, generation of synchronized pulse with R-peak and ECG artifacts estimation and elimination using adaptive filter. The performance of the proposed method was evaluated using simulated and real EEG recordings, we found that the ECG artifacts were successfully estimated and eliminated in comparison with the conventional multi-channel techniques, which are independent component analysis (ICA) and ensemble average (EA) method. From this we can conclude that the proposed method is useful for the detecting and eliminating the ECG artifacts from single channel EEG and simple to use for ambulatory/portable EEG monitoring system.
Studies on the InAlN/InGaN/InAlN/InGaN double channel heterostructures with low sheet resistance
NASA Astrophysics Data System (ADS)
Zhang, Yachao; Wang, Zhizhe; Xu, Shengrui; Chen, Dazheng; Bao, Weimin; Zhang, Jinfeng; Zhang, Jincheng; Hao, Yue
2017-11-01
High quality InAlN/InGaN/InAlN/InGaN double channel heterostructures were proposed and grown by metal organic chemical vapor deposition. Benefiting from the adoption of the pulsed growth method and Two-Step AlN interlayer, the material quality and interface characteristics of the double channel heterostructures are satisfactory. The results of the temperature-dependent Hall effect measurement indicated that the transport properties of the double channel heterostructures were superior to those of the traditional single channel heterostructures in the whole test temperature range. Meanwhile, the sheet resistance of the double channel heterostructures reached 218.5 Ω/□ at 300 K, which is the record of InGaN-based heterostructures. The good transport properties of the InGaN double channel heterostructures are beneficial to improve the performance of the microwave power devices based on nitride semiconductors.
Juracek, Kyle E.; Ziegler, Andrew C.
2007-01-01
In Kansas and nationally, stream and lake sediment is a primary concern as related to several important issues including water quality and reservoir water-storage capacity. The ability to achieve meaningful decreases in sediment loads to reservoirs requires a determination of the relative importance of sediment sources within the contributing basins. To investigate sources of sediment within the Perry Lake and Lake Wabaunsee Basins of northeast Kansas, representative samples of channel-bank sources, surface-soil sources (cropland and grassland), and reservoir bottom sediment were collected, analyzed, and compared. Subbasins sampled within the Perry Lake Basin included Atchison County Lake, Banner Creek Reservoir, Gregg Creek, Mission Lake, and Walnut Creek. The samples were sieved to isolate the less than 63-micron fraction (that is, the silt and clay) and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclide cesium-137 (137Cs). To determine which of the 30 constituents provided the best ability to discriminate between channel-bank and surface-soil sources in the two basins, four selection criteria were used. To be selected, it was required that the candidate constituent (1) was detectable, (2) had concentrations or activities that varied substantially and consistently between the sources, (3) had concentration or activity ranges that did not overlap between the sources, and (4) had concentration or activity differences between the sources that were statistically significant. On the basis of the four selection criteria, total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), and 137Cs were selected. Of the four selected constituents, 137Cs likely is the most reliable indicator of sediment source because it is known to be conservative in the environment. Trace elements were not selected because concentrations in the channel-bank and surface-soil sources generally were similar or did not vary in a consistent manner. To further account for differences in particle-size composition between the sources and the reservoir bottom sediment prior to the sediment-source estimations, constituent ratio and clay-normalization techniques were used. Computed ratios included the ratio of TOC to TN, TOC to TP, and TN to TP. Constituent concentrations (TN, TP, TOC) and activities (137Cs) were normalized by dividing by the percentage of clay. Thus, the sediment-source estimations involved the use of seven sediment-source indicators (that is, three constituent ratios and the clay-normalized concentration or activity for four constituents). Sediment-source estimation for each reservoir was based on a comparison between the reservoir bottom sediment and the end member channel-bank and surface-soil sources. Within the Perry Lake Basin, the seven-indicator consensus indicated that both channel-bank and surface-soil sources were important contributors of the sediment deposited in Atchison County Lake and Banner Creek Reservoir, whereas channel-bank sources were the dominant source of sediment for Mission Lake. On the sole basis of 137Cs activity, surface-soil sources contributed the most sediment to Atchison County Lake, and channel-bank sources contributed the most sediment to Banner Creek Reservoir and Mission Lake. For Perry Lake, both the seven-indicator consensus and 137Cs indicated that channel-bank sources were dominant and that channel-bank sources increased in importance with distance downstream in the Perry Lake Basin. For Lake Wabaunsee, the seven-indicator consensus and 137Cs indicated that both channel-bank and surface-soil sources were important. Given that the relative contribution of sediment from channel-bank and surface-soil sources can vary within and between basins and over time, basin-specific strategies for sediment management and monitoring are appropriate.
Link performance model for filter bank based multicarrier systems
NASA Astrophysics Data System (ADS)
Petrov, Dmitry; Oborina, Alexandra; Giupponi, Lorenza; Stitz, Tobias Hidalgo
2014-12-01
This paper presents a complete link level abstraction model for link quality estimation on the system level of filter bank multicarrier (FBMC)-based networks. The application of mean mutual information per coded bit (MMIB) approach is validated for the FBMC systems. The considered quality measure of the resource element for the FBMC transmission is the received signal-to-noise-plus-distortion ratio (SNDR). Simulation results of the proposed link abstraction model show that the proposed approach is capable of estimating the block error rate (BLER) accurately, even when the signal is propagated through the channels with deep and frequent fades, as it is the case for the 3GPP Hilly Terrain (3GPP-HT) and Enhanced Typical Urban (ETU) models. The FBMC-related results of link level simulations are compared with cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) analogs. Simulation results are also validated through the comparison to reference publicly available results. Finally, the steps of link level abstraction algorithm for FBMC are formulated and its application for system level simulation of a professional mobile radio (PMR) network is discussed.
Investigating the spatial distribution of water levels in the Mackenzie Delta using airborne LiDAR
Hopkinson, C.; Crasto, N.; Marsh, P.; Forbes, D.; Lesack, L.
2011-01-01
Airborne light detection and ranging (LiDAR) data were used to map water level (WL) and hydraulic gradients (??H/??x) in the Mackenzie Delta. The LiDAR WL data were validated against eight independent hydrometric gauge measurements and demonstrated mean offsets from - 0??22 to + 0??04 m (??< 0??11). LiDAR-based WL gradients could be estimated with confidence over channel lengths exceeding 5-10 km where the WL change exceeded local noise levels in the LiDAR data. For the entire Delta, the LiDAR sample coverage indicated a rate of change in longitudinal gradient (??2H/??x) of 5??5 ?? 10-10 m m-2; therefore offering a potential means to estimate average flood stage hydraulic gradient for areas of the Delta not sampled or monitored. In the Outer Delta, within-channel and terrain gradient measurements all returned a consistent estimate of - 1 ?? 10-5 m m-1, suggesting that this is a typical hydraulic gradient for the downstream end of the Delta. For short reaches (<10 km) of the Peel and Middle Channels in the middle of the Delta, significant and consistent hydraulic gradient estimates of - 5 ?? 10-5 m m-1 were observed. Evidence that hydraulic gradients can vary over short distances, however, was observed in the Peel Channel immediately upstream of Aklavik. A positive elevation anomaly (bulge) of > 0??1 m was observed at a channel constriction entering a meander bend, suggesting a localized modification of the channel hydraulics. Furthermore, water levels in the anabranch channels of the Peel River were almost 1 m higher than in Middle Channel of the Mackenzie River. This suggests: (i) the channels are elevated and have shallower bank heights in this part of the delta, leading to increased cross-delta and along-channel hydraulic gradients; and/or (ii) a proportion of the Peel River flow is lost to Middle Channel due to drainage across the delta through anastamosing channels. This study has demonstrated that airborne LiDAR data contain valuable information describing Arctic river delta water surface and hydraulic attributes that would be challenging to acquire by other means. ?? 2011 John Wiley & Sons, Ltd.
Sloat, Matthew R; Reeves, Gordon H; Christiansen, Kelly R
2017-02-01
In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid- and late-21st-century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural, and ecosystem services these fish provide. We combined field measurements and model simulations to estimate the potential influence of future flood disturbance on geomorphic processes controlling the quality and extent of coho, chum, and pink salmon spawning habitat in over 800 southeast Alaska watersheds. Spawning habitat responses varied widely across watersheds and among salmon species. Little variation among watersheds in potential spawning habitat change was explained by predicted increases in mean annual flood size. Watershed response diversity was mediated primarily by topographic controls on stream channel confinement, reach-scale geomorphic associations with spawning habitat preferences, and complexity in the pace and mode of geomorphic channel responses to altered flood size. Potential spawning habitat loss was highest for coho salmon, which spawn over a wide range of geomorphic settings, including steeper, confined stream reaches that are more susceptible to streambed scour during high flows. We estimated that 9-10% and 13-16% of the spawning habitat for coho salmon could be lost by the 2040s and 2080s, respectively, with losses occurring primarily in confined, higher-gradient streams that provide only moderate-quality habitat. Estimated effects were lower for pink and chum salmon, which primarily spawn in unconfined floodplain streams. Our results illustrate the importance of accounting for valley and reach-scale geomorphic features in watershed assessments of climate vulnerability, especially in topographically complex regions. Failure to consider the geomorphic context of stream networks will hamper efforts to understand and mitigate the vulnerability of anadromous fish habitat to climate-induced hydrologic change. © 2016 John Wiley & Sons Ltd.
Methods for estimating streamflow at mountain fronts in southern New Mexico
Waltemeyer, S.D.
1994-01-01
The infiltration of streamflow is potential recharge to alluvial-basin aquifers at or near mountain fronts in southern New Mexico. Data for 13 streamflow-gaging stations were used to determine a relation between mean annual stream- flow and basin and climatic conditions. Regression analysis was used to develop an equation that can be used to estimate mean annual streamflow on the basis of drainage areas and mean annual precipi- tation. The average standard error of estimate for this equation is 46 percent. Regression analysis also was used to develop an equation to estimate mean annual streamflow on the basis of active- channel width. Measurements of the width of active channels were determined for 6 of the 13 gaging stations. The average standard error of estimate for this relation is 29 percent. Stream- flow estimates made using a regression equation based on channel geometry are considered more reliable than estimates made from an equation based on regional relations of basin and climatic conditions. The sample size used to develop these relations was small, however, and the reported standard error of estimate may not represent that of the entire population. Active-channel-width measurements were made at 23 ungaged sites along the Rio Grande upstream from Elephant Butte Reservoir. Data for additional sites would be needed for a more comprehensive assessment of mean annual streamflow in southern New Mexico.
Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval
NASA Technical Reports Server (NTRS)
Gat, Ilana
2012-01-01
The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.J. Miller; S.A. Mizell; R.H. French
2005-10-01
Transmission losses along ephemeral channels are an important, yet poorly understood, aspect of rainfall-runoff prediction. Losses occur as flow infiltrates channel bed, banks, and floodplains. Estimating transmission losses in arid environments is difficult because of the variability of surficial geomorphic characteristics and infiltration capacities of soils and near-surface low-permeability geologic layers (e.g., calcrete). Transmission losses in ephemeral channels are nonlinear functions of discharge and time (Lane, 1972), and vary spatially along the channel reach and with soil antecedent moisture conditions (Sharma and Murthy, 1994). Rainfall-runoff models used to estimate peak discharge and runoff volume for flood hazard assessment are notmore » designed specifically for ephemeral channels, where transmission loss can be significant because of the available storage volume in channel soils. Accuracy of the flow routing and rainfall-runoff models is dependent on the transmission loss estimate. Transmission loss rate is the most uncertain parameter in flow routing through ephemeral channels. This research, sponsored by the U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) and conducted at the Nevada Test Site (NTS), is designed to improve understanding of the impact of transmission loss on ephemeral flood modeling and compare various methodologies for predicting runoff from rainfall events. Various applications of this research to DOE projects include more site-specific accuracy in runoff prediction; possible reduction in size of flood mitigation structures at the NTS; and a better understanding of expected infiltration from runoff losses into landfill covers. Two channel transmission loss field experiments were performed on the NTS between 2001 and 2003: the first was conducted in the ER-5-3 channel (Miller et al., 2003), between March and June 2001, and the second was conducted in the Cambric Ditch (Mizell et al., 2005), between April and July 2003. Both studies used water discharged from unrelated drilling activities during well development and aquifer pump tests. Discharge measurements at several flumes located along the channels were used to directly measure transmission losses. Flume locations were chosen in relation to geomorphic surface types and ages, vegetative cover and types, subsurface indurated layers (calcrete), channel slopes, etc. Transmission losses were quantified using three different analysis methods. Method 1 uses Lane's Method (Lane, 1983) for estimating flood magnitude in ephemeral channels. Method 2 uses heat as a subsurface tracer for infiltration. Numerical modeling, using HYDRUS-2D (Simunek et al., 1999), a finite-element-based flow and transport code, was applied to estimate infiltration from soil temperature data. Method 3 uses hydraulic gradient and water content in a Darcy's Law approach (Freeze and Cherry, 1979) to calculate one-dimensional flow rates. Heat dissipation and water content data were collected for this analysis.« less
Classification and simulation of stereoscopic artifacts in mobile 3DTV content
NASA Astrophysics Data System (ADS)
Boev, Atanas; Hollosi, Danilo; Gotchev, Atanas; Egiazarian, Karen
2009-02-01
We identify, categorize and simulate artifacts which might occur during delivery stereoscopic video to mobile devices. We consider the stages of 3D video delivery dataflow: content creation, conversion to the desired format (multiview or source-plus-depth), coding/decoding, transmission, and visualization on 3D display. Human 3D vision works by assessing various depth cues - accommodation, binocular depth cues, pictorial cues and motion parallax. As a consequence any artifact which modifies these cues impairs the quality of a 3D scene. The perceptibility of each artifact can be estimated through subjective tests. The material for such tests needs to contain various artifacts with different amounts of impairment. We present a system for simulation of these artifacts. The artifacts are organized in groups with similar origins, and each group is simulated by a block in a simulation channel. The channel introduces the following groups of artifacts: sensor limitations, geometric distortions caused by camera optics, spatial and temporal misalignments between video channels, spatial and temporal artifacts caused by coding, transmission losses, and visualization artifacts. For the case of source-plus-depth representation, artifacts caused by format conversion are added as well.
A complex valued radial basis function network for equalization of fast time varying channels.
Gan, Q; Saratchandran, P; Sundararajan, N; Subramanian, K R
1999-01-01
This paper presents a complex valued radial basis function (RBF) network for equalization of fast time varying channels. A new method for calculating the centers of the RBF network is given. The method allows fixing the number of RBF centers even as the equalizer order is increased so that a good performance is obtained by a high-order RBF equalizer with small number of centers. Simulations are performed on time varying channels using a Rayleigh fading channel model to compare the performance of our RBF with an adaptive maximum-likelihood sequence estimator (MLSE) consisting of a channel estimator and a MLSE implemented by the Viterbi algorithm. The results show that the RBF equalizer produces superior performance with less computational complexity.
Larson, James H.; Bartsch, Michelle; Gutreuter, Steve; Knights, Brent C.; Bartsch, Lynn; Richardson, William B.; Vallazza, Jonathan M.; Arts, Michael T.
2015-01-01
Large river systems are often thought to contain a mosaic of patches with different habitat characteristics driven by differences in flow and mixing environments. Off-channel habitats (e.g., backwater areas, secondary channels) can become semi-isolated from main-channel water inputs, leading to the development of distinct biogeochemical environments. Observations of adult bluegill (Lepomis macrochirus) in the main channel of the Mississippi River led to speculation that the main channel offered superior food resources relative to off-channel areas. One important aspect of food quality is the quantity and composition of polyunsaturated fatty acids (PUFA). We sampled consumers from main-channel and backwater habitats to determine whether they differed in PUFA content. Main-channel individuals for relatively immobile species (young-of-year bluegill, zebra mussels [Dreissena polymorpha], and plain pocketbook mussels [Lampsilis cardium]) had significantly greater PUFA content than off-channel individuals. No difference in PUFA was observed for the more mobile gizzard shad (Dorsoma cepedianum), which may move between main-channel and off-channel habitats even at early life-history stages. As off-channel habitats become isolated from main-channel waters, flow and water column nitrogen decrease, potentially improving conditions for nitrogen-fixing cyanobacteria and vascular plants that, in turn, have low PUFA content. We conclude that main-channel food webs of the upper Mississippi River provide higher quality food resources for some riverine consumers as compared to food webs in off-channel habitats.
Dasgupta, Nilanjan; Carin, Lawrence
2005-04-01
Time-reversal imaging (TRI) is analogous to matched-field processing, although TRI is typically very wideband and is appropriate for subsequent target classification (in addition to localization). Time-reversal techniques, as applied to acoustic target classification, are highly sensitive to channel mismatch. Hence, it is crucial to estimate the channel parameters before time-reversal imaging is performed. The channel-parameter statistics are estimated here by applying a geoacoustic inversion technique based on Gibbs sampling. The maximum a posteriori (MAP) estimate of the channel parameters are then used to perform time-reversal imaging. Time-reversal implementation requires a fast forward model, implemented here by a normal-mode framework. In addition to imaging, extraction of features from the time-reversed images is explored, with these applied to subsequent target classification. The classification of time-reversed signatures is performed by the relevance vector machine (RVM). The efficacy of the technique is analyzed on simulated in-channel data generated by a free-field finite element method (FEM) code, in conjunction with a channel propagation model, wherein the final classification performance is demonstrated to be relatively insensitive to the associated channel parameters. The underlying theory of Gibbs sampling and TRI are presented along with the feature extraction and target classification via the RVM.
Estimation and Mitigation of Channel Non-Reciprocity in Massive MIMO
NASA Astrophysics Data System (ADS)
Raeesi, Orod; Gokceoglu, Ahmet; Valkama, Mikko
2018-05-01
Time-division duplex (TDD) based massive MIMO systems rely on the reciprocity of the wireless propagation channels when calculating the downlink precoders based on uplink pilots. However, the effective uplink and downlink channels incorporating the analog radio front-ends of the base station (BS) and user equipments (UEs) exhibit non-reciprocity due to non-identical behavior of the individual transmit and receive chains. When downlink precoder is not aware of such channel non-reciprocity (NRC), system performance can be significantly degraded due to NRC induced interference terms. In this work, we consider a general TDD-based massive MIMO system where frequency-response mismatches at both the BS and UEs, as well as the mutual coupling mismatch at the BS large-array system all coexist and induce channel NRC. Based on the NRC-impaired signal models, we first propose a novel iterative estimation method for acquiring both the BS and UE side NRC matrices and then also propose a novel NRC-aware downlink precoder design which utilizes the obtained estimates. Furthermore, an efficient pilot signaling scheme between the BS and UEs is introduced in order to facilitate executing the proposed estimation method and the NRC-aware precoding technique in practical systems. Comprehensive numerical results indicate substantially improved spectral efficiency performance when the proposed NRC estimation and NRC-aware precoding methods are adopted, compared to the existing state-of-the-art methods.
Large-pitch steerable synthetic transmit aperture imaging (LPSSTA)
NASA Astrophysics Data System (ADS)
Li, Ying; Kolios, Michael C.; Xu, Yuan
2016-04-01
A linear ultrasound array system usually has a larger pitch and is less costly than a phased array system, but loses the ability to fully steer the ultrasound beam. In this paper, we propose a system whose hardware is similar to a large-pitch linear array system, but whose ability to steer the beam is similar to a phased array system. The motivation is to reduce the total number of measurement channels M (the product of the number of transmissions, nT, and the number of the receive channels in each transmission, nR), while maintaining reasonable image quality. We combined adjacent elements (with proper delays introduced) into groups that would be used in both the transmit and receive processes of synthetic transmit aperture imaging. After the M channels of RF data were acquired, a pseudo-inversion was applied to estimate the equivalent signal in traditional STA to reconstruct a STA image. Even with the similar M, different choices of nT and nR will produce different image quality. The images produced with M=N2/15 in the selected regions of interest (ROI) were demonstrated to be comparable with a full phased array, where N is the number of the array elements. The disadvantage of the proposed system is that its field of view in one delay-configuration is smaller than a standard full phased array. However, by adjusting the delay for each element within each group, the beam can be steered to cover the same field of view as the standard fully-filled phased array. The LPSSTA system might be useful for 3D ultrasound imaging.
DeVries, Lindsay; Scheperle, Rachel; Bierer, Julie Arenberg
2016-06-01
Variability in speech perception scores among cochlear implant listeners may largely reflect the variable efficacy of implant electrodes to convey stimulus information to the auditory nerve. In the present study, three metrics were applied to assess the quality of the electrode-neuron interface of individual cochlear implant channels: the electrically evoked compound action potential (ECAP), the estimation of electrode position using computerized tomography (CT), and behavioral thresholds using focused stimulation. The primary motivation of this approach is to evaluate the ECAP as a site-specific measure of the electrode-neuron interface in the context of two peripheral factors that likely contribute to degraded perception: large electrode-to-modiolus distance and reduced neural density. Ten unilaterally implanted adults with Advanced Bionics HiRes90k devices participated. ECAPs were elicited with monopolar stimulation within a forward-masking paradigm to construct channel interaction functions (CIF), behavioral thresholds were obtained with quadrupolar (sQP) stimulation, and data from imaging provided estimates of electrode-to-modiolus distance and scalar location (scala tympani (ST), intermediate, or scala vestibuli (SV)) for each electrode. The width of the ECAP CIF was positively correlated with electrode-to-modiolus distance; both of these measures were also influenced by scalar position. The ECAP peak amplitude was negatively correlated with behavioral thresholds. Moreover, subjects with low behavioral thresholds and large ECAP amplitudes, averaged across electrodes, tended to have higher speech perception scores. These results suggest a potential clinical role for the ECAP in the objective assessment of individual cochlear implant channels, with the potential to improve speech perception outcomes.
Parks, David R.; Khettabi, Faysal El; Chase, Eric; Hoffman, Robert A.; Perfetto, Stephen P.; Spidlen, Josef; Wood, James C.S.; Moore, Wayne A.; Brinkman, Ryan R.
2017-01-01
We developed a fully automated procedure for analyzing data from LED pulses and multi-level bead sets to evaluate backgrounds and photoelectron scales of cytometer fluorescence channels. The method improves on previous formulations by fitting a full quadratic model with appropriate weighting and by providing standard errors and peak residuals as well as the fitted parameters themselves. Here we describe the details of the methods and procedures involved and present a set of illustrations and test cases that demonstrate the consistency and reliability of the results. The automated analysis and fitting procedure is generally quite successful in providing good estimates of the Spe (statistical photoelectron) scales and backgrounds for all of the fluorescence channels on instruments with good linearity. The precision of the results obtained from LED data is almost always better than for multi-level bead data, but the bead procedure is easy to carry out and provides results good enough for most purposes. Including standard errors on the fitted parameters is important for understanding the uncertainty in the values of interest. The weighted residuals give information about how well the data fits the model, and particularly high residuals indicate bad data points. Known photoelectron scales and measurement channel backgrounds make it possible to estimate the precision of measurements at different signal levels and the effects of compensated spectral overlap on measurement quality. Combining this information with measurements of standard samples carrying dyes of biological interest, we can make accurate comparisons of dye sensitivity among different instruments. Our method is freely available through the R/Bioconductor package flowQB. PMID:28160404
NASA Astrophysics Data System (ADS)
Durand, Michael; Andreadis, Konstantinos M.; Alsdorf, Douglas E.; Lettenmaier, Dennis P.; Moller, Delwyn; Wilson, Matthew
2008-10-01
The proposed Surface Water and Ocean Topography (SWOT) mission would provide measurements of water surface elevation (WSE) for characterization of storage change and discharge. River channel bathymetry is a significant source of uncertainty in estimating discharge from WSE measurements, however. In this paper, we demonstrate an ensemble-based data assimilation (DA) methodology for estimating bathymetric depth and slope from WSE measurements and the LISFLOOD-FP hydrodynamic model. We performed two proof-of-concept experiments using synthetically generated SWOT measurements. The experiments demonstrated that bathymetric depth and slope can be estimated to within 3.0 microradians or 50 cm, respectively, using SWOT WSE measurements, within the context of our DA and modeling framework. We found that channel bathymetry estimation accuracy is relatively insensitive to SWOT measurement error, because uncertainty in LISFLOOD-FP inputs (such as channel roughness and upstream boundary conditions) is likely to be of greater magnitude than measurement error.
An adaptive detector and channel estimator for deep space optical communications
NASA Technical Reports Server (NTRS)
Mukai, R.; Arabshahi, P.; Yan, T. Y.
2001-01-01
This paper will discuss the design and testing of both the channel parameter identification system, and the adaptive threshold system, and illustrate their advantages and performance under simulated channel degradation conditions.
HOW WELL CAN YOU ESTIMATE LOW FLOW AND BANKFULL DISCHARGE FROM STREAM CHANNEL HABITAT DATA?
Modeled estimates of stream discharge are becoming more important because of reductions in the number of gauging stations and increases in flow alteration from land development and climate change. Field measurements of channel morphology are available at thousands of streams and...
NASA Astrophysics Data System (ADS)
Yun, Lingtong; Zhao, Hongzhong; Du, Mengyuan
2018-04-01
Quadrature and multi-channel amplitude-phase error have to be compensated in the I/Q quadrature sampling and signal through multi-channel. A new method that it doesn't need filter and standard signal is presented in this paper. And it can combined estimate quadrature and multi-channel amplitude-phase error. The method uses cross-correlation and amplitude ratio between the signal to estimate the two amplitude-phase errors simply and effectively. And the advantages of this method are verified by computer simulation. Finally, the superiority of the method is also verified by measure data of outfield experiments.
NASA Astrophysics Data System (ADS)
Liu, Xin; Sanner, Nicolas; Sentis, Marc; Stoian, Razvan; Zhao, Wei; Cheng, Guanghua; Utéza, Olivier
2018-02-01
Single-shot Gaussian-Bessel laser beams of 1 ps pulse duration and of 0.9 μm core size and 60 μm depth of focus are used for drilling micro-channels on front side of fused silica in ambient condition. Channels ablated at different pulse energies are fully characterized by AFM and post-processing polishing procedures. We identify experimental energy conditions (typically 1.5 µJ) suitable to fabricate non-tapered channels with mean diameter of 1.2 µm and length of 40 μm while maintaining an utmost quality of the front opening of the channels. In addition, by further applying accurate post-polishing procedure, channels with high surface quality and moderate aspect ratio down to a few units are accessible, which would find interest in the surface micro-structuring of materials, with perspective of further scalability to meta-material specifications.
2016-05-11
new physically -based prediction models for all-weather path attenuation estimation at Ka, V and W band from multi- channel microwave radiometric data...of new physically -based prediction models for all-weather path attenuation estimation at Ka, V and W band from multi- channel microwave radiometric...the medium behavior at these frequency bands from both a physical and a statistical point of view (e.g., [5]-[7]). However, these campaigns are
Hardware Implementation of a MIMO Decoder Using Matrix Factorization Based Channel Estimation
NASA Astrophysics Data System (ADS)
Islam, Mohammad Tariqul; Numan, Mostafa Wasiuddin; Misran, Norbahiah; Ali, Mohd Alauddin Mohd; Singh, Mandeep
2011-05-01
This paper presents an efficient hardware realization of multiple-input multiple-output (MIMO) wireless communication decoder that utilizes the available resources by adopting the technique of parallelism. The hardware is designed and implemented on Xilinx Virtex™-4 XC4VLX60 field programmable gate arrays (FPGA) device in a modular approach which simplifies and eases hardware update, and facilitates testing of the various modules independently. The decoder involves a proficient channel estimation module that employs matrix factorization on least squares (LS) estimation to reduce a full rank matrix into a simpler form in order to eliminate matrix inversion. This results in performance improvement and complexity reduction of the MIMO system. Performance evaluation of the proposed method is validated through MATLAB simulations which indicate 2 dB improvement in terms of SNR compared to LS estimation. Moreover complexity comparison is performed in terms of mathematical operations, which shows that the proposed approach appreciably outperforms LS estimation at a lower complexity and represents a good solution for channel estimation technique.
16-channel DWDM based on 1D defect mode nonlinear photonic crystal
NASA Astrophysics Data System (ADS)
Kalhan, Abhishek; Sharma, Sanjeev; Kumar, Arun
2018-05-01
We propose a sixteen-channel Dense Wavelength Division Multiplexer (DWDM), using the 1-D defect mode nonlinear photonic crystal which is a function of intensity as well as wavelength. Here, we consider an alternate layer of two semiconductor materials in which we found the bandgap of materials when defect layer is introduced then 16-channel dense wavelength division multiplexer is obtained within bandgap. From the theoretical analysis, we can achieve average quality factor of 7800.4, the uniform spectral line-width of 0.2 nm, crosstalk of -31.4 dB, central wavelength changes 0.07 nm/(1GW/cm2) and 100% transmission efficiency. Thus, Sixteen-channel DWDM has very high quality factor, low crosstalk, near 100% power transmission efficiency and small channel spacing (1.44 nm).
NASA Astrophysics Data System (ADS)
Pei, Yong; Modestino, James W.
2007-12-01
We describe a multilayered video transport scheme for wireless channels capable of adapting to channel conditions in order to maximize end-to-end quality of service (QoS). This scheme combines a scalable H.263+ video source coder with unequal error protection (UEP) across layers. The UEP is achieved by employing different channel codes together with a multiresolution modulation approach to transport the different priority layers. Adaptivity to channel conditions is provided through a joint source-channel coding (JSCC) approach which attempts to jointly optimize the source and channel coding rates together with the modulation parameters to obtain the maximum achievable end-to-end QoS for the prevailing channel conditions. In this work, we model the wireless links as slow-fading Rician channel where the channel conditions can be described in terms of the channel signal-to-noise ratio (SNR) and the ratio of specular-to-diffuse energy[InlineEquation not available: see fulltext.]. The multiresolution modulation/coding scheme consists of binary rate-compatible punctured convolutional (RCPC) codes used together with nonuniform phase-shift keyed (PSK) signaling constellations. Results indicate that this adaptive JSCC scheme employing scalable video encoding together with a multiresolution modulation/coding approach leads to significant improvements in delivered video quality for specified channel conditions. In particular, the approach results in considerably improved graceful degradation properties for decreasing channel SNR.
Kelly, Todd; Romero, Orlando; Jimenez, Mike
2006-01-01
Urbanization has dramatically increased precipitation runoff to the system of drainage channels and natural stream channels in the Albuquerque, New Mexico, metropolitan area. Rainfall and runoff data are important for planning and designing future storm-water conveyance channels in newly developing areas. Storm-water quality also is monitored in accordance with the National Pollutant Discharge Elimination System mandated by the U.S. Environmental Protection Agency. The Albuquerque Metropolitan Arroyo Flood Control Authority, the City of Albuquerque, and the U.S. Geological Survey began a cooperative program to collect hydrologic data to assist in assessing the quality and quantity of surface-water resources in the Albuquerque area. This report presents water-quality, streamflow, and rainfall data collected from October 1, 2003, to September 30, 2004 (water year 2004). Also provided is a station analysis for each of the 18 streamflow-gaging sites and 39 rainfall-gaging sites, which includes a description of monitoring equipment, problems associated with data collection during the year, and other information used to compute streamflow discharges or rainfall records. A hydrographic comparison shows the effects that the largest drainage channel in the metropolitan area, the North Floodway Channel, has on total flow in the Rio Grande.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jake, T.R.
1987-09-01
Evaluations were made of sedimentation patterns and depositional environments from approximately 450 core logs and 225 surface exposures in the Upper Potomac coalfield. The relationships between the clastic depositional facies and the distribution and quality of the Bakerstown and upper Freeport coals were also investigated. Data from 61 Bakerstown and 35 upper Freeport coal samples from selected cores indicate a change from uniform coal quality to highly variable coal quality when moving from related interchannel and bay-fill facies to channel, channel-fill, levee, and crevasse-splay facies. Areas of uniform coal quality range from 20-26% ash and 55-62% fixed carbon (weight percent,more » dry basis), whereas areas of highly variable coal quality range from 26-54% ash and 33-55% fixed carbon. The channel and related facies represent areas where increased fresh water was introduced into the topogenous swamp system, causing increased microbial degradation and the concentration of authigenic minerals within the peat material. These conditions, combined with the introduction of detrital minerals, resulted in areas of lower quality coal.« less
Capacity estimation and verification of quantum channels with arbitrarily correlated errors.
Pfister, Corsin; Rol, M Adriaan; Mantri, Atul; Tomamichel, Marco; Wehner, Stephanie
2018-01-02
The central figure of merit for quantum memories and quantum communication devices is their capacity to store and transmit quantum information. Here, we present a protocol that estimates a lower bound on a channel's quantum capacity, even when there are arbitrarily correlated errors. One application of these protocols is to test the performance of quantum repeaters for transmitting quantum information. Our protocol is easy to implement and comes in two versions. The first estimates the one-shot quantum capacity by preparing and measuring in two different bases, where all involved qubits are used as test qubits. The second verifies on-the-fly that a channel's one-shot quantum capacity exceeds a minimal tolerated value while storing or communicating data. We discuss the performance using simple examples, such as the dephasing channel for which our method is asymptotically optimal. Finally, we apply our method to a superconducting qubit in experiment.
3D Reconstruction of the Source and Scale of Buried Young Flood Channels on Mars
NASA Astrophysics Data System (ADS)
Morgan, Gareth A.; Campbell, Bruce A.; Carter, Lynn M.; Plaut, Jeffrey J.; Phillips, Roger J.
2013-05-01
Outflow channels on Mars are interpreted as the product of gigantic floods due to the catastrophic eruption of groundwater that may also have initiated episodes of climate change. Marte Vallis, the largest of the young martian outflow channels (<500 million years old), is embayed by lava flows that hinder detailed studies and comparisons with older channel systems. Understanding Marte Vallis is essential to our assessment of recent Mars hydrologic activity during a period otherwise considered to be cold and dry. Using data from the Shallow Radar sounder on the Mars Reconnaissance Orbiter, we present a three-dimensional (3D) reconstruction of buried channels on Mars and provide estimates of paleohydrologic parameters. Our work shows that Cerberus Fossae provided the waters that carved Marte Vallis, and it extended an additional 180 kilometers to the east before the emplacement of the younger lava flows. We identified two stages of channel incision and determined that channel depths were more than twice those of previous estimates.
3D reconstruction of the source and scale of buried young flood channels on Mars.
Morgan, Gareth A; Campbell, Bruce A; Carter, Lynn M; Plaut, Jeffrey J; Phillips, Roger J
2013-05-03
Outflow channels on Mars are interpreted as the product of gigantic floods due to the catastrophic eruption of groundwater that may also have initiated episodes of climate change. Marte Vallis, the largest of the young martian outflow channels (<500 million years old), is embayed by lava flows that hinder detailed studies and comparisons with older channel systems. Understanding Marte Vallis is essential to our assessment of recent Mars hydrologic activity during a period otherwise considered to be cold and dry. Using data from the Shallow Radar sounder on the Mars Reconnaissance Orbiter, we present a three-dimensional (3D) reconstruction of buried channels on Mars and provide estimates of paleohydrologic parameters. Our work shows that Cerberus Fossae provided the waters that carved Marte Vallis, and it extended an additional 180 kilometers to the east before the emplacement of the younger lava flows. We identified two stages of channel incision and determined that channel depths were more than twice those of previous estimates.
Mak, D O; Webb, W W
1997-03-01
A Green's function approach is developed from first principles to evaluate the power spectral density of conductance fluctuations caused by ion concentration fluctuations via diffusion in an electrolyte system. This is applied to simple geometric models of transmembrane ion channels to obtain an estimate of the magnitude of ion concentration fluctuation noise in the channel current. Pure polypeptide alamethicin forms stable ion channels with multiple conductance states in artificial phospholipid bilayers isolated onto tips of micropipettes with gigaohm seals. In the single-channel current recorded by voltage-clamp techniques, excess noise was found after the background instrumental noise and the intrinsic Johnson and shot noises were removed. The noise que to ion concentration fluctuations via diffusion was isolated by the dependence of the excess current noise on buffer ion concentration. The magnitude of the concentration fluctuation noise derived from experimental data lies within limits estimated using our simple geometric channel models. Variation of the noise magnitude for alamethicin channels in various conductance states agrees with theoretical prediction.
MOLE 2.0: advanced approach for analysis of biomacromolecular channels
2013-01-01
Background Channels and pores in biomacromolecules (proteins, nucleic acids and their complexes) play significant biological roles, e.g., in molecular recognition and enzyme substrate specificity. Results We present an advanced software tool entitled MOLE 2.0, which has been designed to analyze molecular channels and pores. Benchmark tests against other available software tools showed that MOLE 2.0 is by comparison quicker, more robust and more versatile. As a new feature, MOLE 2.0 estimates physicochemical properties of the identified channels, i.e., hydropathy, hydrophobicity, polarity, charge, and mutability. We also assessed the variability in physicochemical properties of eighty X-ray structures of two members of the cytochrome P450 superfamily. Conclusion Estimated physicochemical properties of the identified channels in the selected biomacromolecules corresponded well with the known functions of the respective channels. Thus, the predicted physicochemical properties may provide useful information about the potential functions of identified channels. The MOLE 2.0 software is available at http://mole.chemi.muni.cz. PMID:23953065
Croghan, Naomi B H; Arehart, Kathryn H; Kates, James M
2014-01-01
Current knowledge of how to design and fit hearing aids to optimize music listening is limited. Many hearing-aid users listen to recorded music, which often undergoes compression limiting (CL) in the music industry. Therefore, hearing-aid users may experience twofold effects of compression when listening to recorded music: music-industry CL and hearing-aid wide dynamic-range compression (WDRC). The goal of this study was to examine the roles of input-signal properties, hearing-aid processing, and individual variability in the perception of recorded music, with a focus on the effects of dynamic-range compression. A group of 18 experienced hearing-aid users made paired-comparison preference judgments for classical and rock music samples using simulated hearing aids. Music samples were either unprocessed before hearing-aid input or had different levels of music-industry CL. Hearing-aid conditions included linear gain and individually fitted WDRC. Combinations of four WDRC parameters were included: fast release time (50 msec), slow release time (1,000 msec), three channels, and 18 channels. Listeners also completed several psychophysical tasks. Acoustic analyses showed that CL and WDRC reduced temporal envelope contrasts, changed amplitude distributions across the acoustic spectrum, and smoothed the peaks of the modulation spectrum. Listener judgments revealed that fast WDRC was least preferred for both genres of music. For classical music, linear processing and slow WDRC were equally preferred, and the main effect of number of channels was not significant. For rock music, linear processing was preferred over slow WDRC, and three channels were preferred to 18 channels. Heavy CL was least preferred for classical music, but the amount of CL did not change the patterns of WDRC preferences for either genre. Auditory filter bandwidth as estimated from psychophysical tuning curves was associated with variability in listeners' preferences for classical music. Fast, multichannel WDRC often leads to poor music quality, whereas linear processing or slow WDRC are generally preferred. Furthermore, the effect of WDRC is more important for music preferences than music-industry CL applied to signals before the hearing-aid input stage. Variability in hearing-aid users' perceptions of music quality may be partially explained by frequency resolution abilities.
Livo, K. Eric; Watson, Ken
2002-01-01
Sand and soils southwest of Greeley, Colorado, were characterized for mineral composition and industrial quality. Radi-ance data from the thermal channels of the MASTER simulator were calibrated using estimated atmospheric parameters. Chan-nel emissivities were approximated using an estimated ground temperature. Subsequently, a decorrelation algorithm was used to calculate inverse wave emissivity images. Six soil classes, one vegetation class, water, and several small classes were defined using an unsupervised classification algorithm. Ground covered by each of the derived emissivity spectral classes was studied using color-infrared air photos, color-infrared composite MAS-TER data, geologic maps, NASA/JPL Airborne Visible and Infra-red Imaging Spectrometer (AVIRIS) data, and field examination. Spectral classes were characterized by their responses and related to their mineral content through field examination. Classes with a minimum at channel 44, and having a similar spectral shape to quartz, field checked as containing abundant quartz. Classes with a minimum at channel 45, and having a spectral shape similar to the sheet minerals, were found in the field to contain abundant mica and clay. Sandy soil was found to have a positive slope at the longer wavelengths; the more clay rich soils had a negative slope. Spectra with a strong downturn at channel 50 generally indicated low vegetation cover, whereas an upturn indicated more vegetation cover. Mapping revealed a range of classified soils with varying amounts of quartz, silt, clay, and plant humus. Sand and gravel operations along the St. Vrain River, gravel lots, and some fields spectrally classified as quartz-rich sands were confirmed through field examination. Other fields mapped as sandy soils, ranging from quartz-rich sandy soil to quartz-rich silt-sand soil with clay. Flood plains mapped as sandy-silty-organic-rich clay. The city of Greeley contained all classes of materials, with the sand classes mapping as various types of asphalt. Abundant quartz gravel was apparent within the asphalt during field check-ing. The clay classes mapped silt-clay soils in areas of irrigated grass landscaping, some fields, and roofing materials.
Design of a robust baseband LPC coder for speech transmission over 9.6 kbit/s noisy channels
NASA Astrophysics Data System (ADS)
Viswanathan, V. R.; Russell, W. H.; Higgins, A. L.
1982-04-01
This paper describes the design of a baseband Linear Predictive Coder (LPC) which transmits speech over 9.6 kbit/sec synchronous channels with random bit errors of up to 1%. Presented are the results of our investigation of a number of aspects of the baseband LPC coder with the goal of maximizing the quality of the transmitted speech. Important among these aspects are: bandwidth of the baseband, coding of the baseband residual, high-frequency regeneration, and error protection of important transmission parameters. The paper discusses these and other issues, presents the results of speech-quality tests conducted during the various stages of optimization, and describes the details of the optimized speech coder. This optimized speech coding algorithm has been implemented as a real-time full-duplex system on an array processor. Informal listening tests of the real-time coder have shown that the coder produces good speech quality in the absence of channel bit errors and introduces only a slight degradation in quality for channel bit error rates of up to 1%.
Information theoretical assessment of visual communication with subband coding
NASA Astrophysics Data System (ADS)
Rahman, Zia-ur; Fales, Carl L.; Huck, Friedrich O.
1994-09-01
A well-designed visual communication channel is one which transmits the most information about a radiance field with the fewest artifacts. The role of image processing, encoding and restoration is to improve the quality of visual communication channels by minimizing the error in the transmitted data. Conventionally this role has been analyzed strictly in the digital domain neglecting the effects of image-gathering and image-display devices on the quality of the image. This results in the design of a visual communication channel which is `suboptimal.' We propose an end-to-end assessment of the imaging process which incorporates the influences of these devices in the design of the encoder and the restoration process. This assessment combines Shannon's communication theory with Wiener's restoration filter and with the critical design factors of the image gathering and display devices, thus providing the metrics needed to quantify and optimize the end-to-end performance of the visual communication channel. Results show that the design of the image-gathering device plays a significant role in determining the quality of the visual communication channel and in designing the analysis filters for subband encoding.
Estimation of potential maximum biomass of trout in Wyoming streams to assist management decisions
Hubert, W.A.; Marwitz, T.D.; Gerow, K.G.; Binns, N.A.; Wiley, R.W.
1996-01-01
Fishery managers can benefit from knowledge of the potential maximum biomass (PMB) of trout in streams when making decisions on the allocation of resources to improve fisheries. Resources are most likely to he expended on streams with high PMB and with large differences between PMB and currently measured biomass. We developed and tested a model that uses four easily measured habitat variables to estimate PMB (upper 90th percentile of predicted mean bid mass) of trout (Oncorhynchus spp., Salmo trutta, and Salvelinus fontinalis) in Wyoming streams. The habitat variables were proportion of cover, elevation, wetted width, and channel gradient. The PMB model was constructed from data on 166 stream reaches throughout Wyoming and validated on an independent data set of 50 stream reaches. Prediction of PMB in combination with estimation of current biomass and information on habitat quality can provide managers with insight into the extent to which management actions may enhance trout biomass.
Information geometry of Gaussian channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monras, Alex; CNR-INFM Coherentia, Napoli; CNISM Unita di Salerno
2010-06-15
We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated by distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desirablemore » properties like stability and covariance. As a by-product, we also obtain some general results in Gaussian channel estimation that are the continuous-variable analogs of previously known results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental and computational implications. It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging algorithm for its computation. We provide explicit formulas for computing the multiparametric quantum Fisher information for dissipative channels probed with arbitrary Gaussian states and provide the optimal observables for the estimation of the channel parameters (e.g., bath couplings, squeezing, and temperature).« less
Debris-flow runout predictions based on the average channel slope (ACS)
Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.
2008-01-01
Prediction of the runout distance of a debris flow is an important element in the delineation of potentially hazardous areas on alluvial fans and for the siting of mitigation structures. Existing runout estimation methods rely on input parameters that are often difficult to estimate, including volume, velocity, and frictional factors. In order to provide a simple method for preliminary estimates of debris-flow runout distances, we developed a model that provides runout predictions based on the average channel slope (ACS model) for non-volcanic debris flows that emanate from confined channels and deposit on well-defined alluvial fans. This model was developed from 20 debris-flow events in the western United States and British Columbia. Based on a runout estimation method developed for snow avalanches, this model predicts debris-flow runout as an angle of reach from a fixed point in the drainage channel to the end of the runout zone. The best fixed point was found to be the mid-point elevation of the drainage channel, measured from the apex of the alluvial fan to the top of the drainage basin. Predicted runout lengths were more consistent than those obtained from existing angle-of-reach estimation methods. Results of the model compared well with those of laboratory flume tests performed using the same range of channel slopes. The robustness of this model was tested by applying it to three debris-flow events not used in its development: predicted runout ranged from 82 to 131% of the actual runout for these three events. Prediction interval multipliers were also developed so that the user may calculate predicted runout within specified confidence limits. ?? 2008 Elsevier B.V. All rights reserved.
Wireless Computing Architecture III
2013-09-01
MIMO Multiple-Input and Multiple-Output MIMO /CON MIMO with concurrent hannel access and estimation MU- MIMO Multiuser MIMO OFDM Orthogonal...compressive sensing \\; a design for concurrent channel estimation in scalable multiuser MIMO networking; and novel networking protocols based on machine...Network, Antenna Arrays, UAV networking, Angle of Arrival, Localization MIMO , Access Point, Channel State Information, Compressive Sensing 16
Photographic guidance for selecting flow resistance coefficients in high-gradient channels
Steven E. Yochum; Francesco Comiti; Ellen Wohl; Gabrielle C. L. David; Luca Mao
2014-01-01
Photographic guidance is presented to assist with the estimation of Manning’s n and Darcy-Weisbach f in high-gradient plane-bed, step-pool, and cascade channels. Reaches both with and without instream wood are included. These coefficients are necessary for the estimation of reachaverage velocity, energy loss, and...
NASA Astrophysics Data System (ADS)
Schwendel, Arved; Aalto, Rolf; Nicholas, Andrew
2014-05-01
Lowland floodplains in subsiding basins form major depocentres responsible for the storage and cycling of large quantities of fine sediment and associated nutrients and contaminants. Obtaining reliable estimates of sediment storage in such environments is problematic due to the high degree of spatial and temporal variability exhibited by overbank sediment accumulation rates, combined with the logistical difficulties inherent in sampling locations far away from the channel. Further complexity is added by the high channel mobility, which recycles sediment and reconfigures the relationships between channel and floodplain morphology, sediment transport and overbank sedimentation. Estimates of floodplain accretion can be derived using a range of numerical sedimentation models of varying complexity. However, data required for model calibration are rarely available for the vast floodplains associated with tropical rivers. We present results from a study of channel-floodplain sediment exchange fluxes on the Rio Beni, a highly dynamic, tropical sand-bed tributary of the Amazon in northern Bolivia. The Beni transports high concentrations of suspended sediment, generated in the river's Andean headwaters, and disperses this material across an extensive floodplain wetland that experiences annual inundation over an area of up to 40000 km2. We utilise estimates of overbank sedimentation rates over the past century derived from 210Pb analysis of floodplain sediment cores collected along a 375 km length of channel, including sampling a range of channel-floodplain configurations within the channel belt and on the distal floodplain (up to 60 km from the channel). These data are used to investigate spatial and temporal variations in rates of floodplain sediment accumulation for a range of grain sizes. Specifically, we examine relationships between sedimentation rate and distance from the channel, and characterise within channel belt variability in sedimentation linked to patterns of channel migration and associated levee reworking. Field data are used to inform a hydrodynamically-driven model of overbank sedimentation and to derive uncertainty-bounded estimates of total floodplain sediment accumulation. Sediment exchange due to planform channel mobility is quantified using a numerical model of meander migration, calibrated using analysis of remote sensing imagery to determine rates and geometry of channel migration. Our combined data and model analysis allows the construction of a mean annual sediment budget for the Beni, which suggests channel-sediment exchange fluxes in the order of 100 Mt a-1, equivalent to 10% of the sediment load of the mainstem Amazon.
A spectral reflectance estimation technique using multispectral data from the Viking lander camera
NASA Technical Reports Server (NTRS)
Park, S. K.; Huck, F. O.
1976-01-01
A technique is formulated for constructing spectral reflectance curve estimates from multispectral data obtained with the Viking lander camera. The multispectral data are limited to six spectral channels in the wavelength range from 0.4 to 1.1 micrometers and most of these channels exhibit appreciable out-of-band response. The output of each channel is expressed as a linear (integral) function of the (known) solar irradiance, atmospheric transmittance, and camera spectral responsivity and the (unknown) spectral responsivity and the (unknown) spectral reflectance. This produces six equations which are used to determine the coefficients in a representation of the spectral reflectance as a linear combination of known basis functions. Natural cubic spline reflectance estimates are produced for a variety of materials that can be reasonably expected to occur on Mars. In each case the dominant reflectance features are accurately reproduced, but small period features are lost due to the limited number of channels. This technique may be a valuable aid in selecting the number of spectral channels and their responsivity shapes when designing a multispectral imaging system.
Channel-parameter estimation for satellite-to-submarine continuous-variable quantum key distribution
NASA Astrophysics Data System (ADS)
Guo, Ying; Xie, Cailang; Huang, Peng; Li, Jiawei; Zhang, Ling; Huang, Duan; Zeng, Guihua
2018-05-01
This paper deals with a channel-parameter estimation for continuous-variable quantum key distribution (CV-QKD) over a satellite-to-submarine link. In particular, we focus on the channel transmittances and the excess noise which are affected by atmospheric turbulence, surface roughness, zenith angle of the satellite, wind speed, submarine depth, etc. The estimation method is based on proposed algorithms and is applied to low-Earth orbits using the Monte Carlo approach. For light at 550 nm with a repetition frequency of 1 MHz, the effects of the estimated parameters on the performance of the CV-QKD system are assessed by a simulation by comparing the secret key bit rate in the daytime and at night. Our results show the feasibility of satellite-to-submarine CV-QKD, providing an unconditionally secure approach to achieve global networks for underwater communications.
NASA Astrophysics Data System (ADS)
Smith, R. A.; Alexander, R. B.; Schwarz, G. E.
2003-12-01
Determining the effects of land use change (e.g. urbanization, deforestation) on water quality at large spatial scales has been difficult because water quality measurements in large rivers with heterogeneous basins show the integrated effects of multiple factors. Moreover, the observed effects of land use changes on water quality in small homogeneous stream basins may not be indicative of downstream effects (including effects on such ecologically relevant characteristics as nutrient levels and elemental ratios) because of loss processes occurring during downstream transport in river channels. In this study we used the USGS SPARROW (Spatially-Referenced Regression on Watersheds) models of total nitrogen (TN) and total phosphorus (TP) in streams and rivers of the conterminous US to examine the effects of various aspects of land use change on nutrient concentrations and flux from the pre-development era to the present. The models were calibrated with data from 370 long-term monitoring stations representing a wide range of basin sizes, land use/cover classes, climates, and physiographies. The non-linear formulation for each model includes 20+ statistically estimated parameters relating to land use/cover characteristics and other environmental variables such as temperature, soil conditions, hill slope, and the hydraulic characteristics of 2200 large lakes and reservoirs. Model predictions are available for 62,000 river/stream channel nodes. Model predictions of pre-development water quality compare favorably with nutrient data from 63 undeveloped (reference) sites. Error statistics are available for predictions at all nodes. Model simulations were chosen to compare the effects of selected aspects of land use change on nutrient levels at large and small basin scales, lacustrine and coastal receiving waters, and among the major US geographic regions.
NASA Astrophysics Data System (ADS)
Stelian, Carmen
2015-02-01
Lorentz force velocimetry is a new technique in electromagnetic flow measurements based on exposing an electrical conducting metal to a static magnetic field and measuring the force acting on the magnet system. The calibration procedure of a Lorentz force flowmeter used in industrial open-channel flow measurements is difficult because of the fluctuating liquid level in the channel. In this paper, the application of Manning's formula to estimate the depth of a liquid metal flowing in an open channel is analyzed by using the numerical modeling. Estimations of Manning's n parameter for aluminum show higher values as compared with water flowing in artificial channels. Saint-Venant equations are solved in order to analyze the wave propagation at the free surface of the liquid. Numerical results show a significant damping of waves at the surface of liquid metals as compared with water. Therefore, the Manning formula can be used to correlate the liquid depth and the flow rate in LFF numerical calibration procedure. These results show that the classical formulas, used exclusively to study the water flow in open channels, can be also applied for the liquid metals. The application of Manning's formulas requires experimental measurements of the parameter n, which depends on the channel bed roughness and also on the physical properties of the liquid flowing in channel.
Granato, Gregory E.
2012-01-01
A nationwide study to better define triangular-hydrograph statistics for use with runoff-quality and flood-flow studies was done by the U.S. Geological Survey (USGS) in cooperation with the Federal Highway Administration. Although the triangular hydrograph is a simple linear approximation, the cumulative distribution of stormflow with a triangular hydrograph is a curvilinear S-curve that closely approximates the cumulative distribution of stormflows from measured data. The temporal distribution of flow within a runoff event can be estimated using the basin lagtime, (which is the time from the centroid of rainfall excess to the centroid of the corresponding runoff hydrograph) and the hydrograph recession ratio (which is the ratio of the duration of the falling limb to the rising limb of the hydrograph). This report documents results of the study, methods used to estimate the variables, and electronic files that facilitate calculation of variables. Ten viable multiple-linear regression equations were developed to estimate basin lagtimes from readily determined drainage basin properties using data published in 37 stormflow studies. Regression equations using the basin lag factor (BLF, which is a variable calculated as the main-channel length, in miles, divided by the square root of the main-channel slope in feet per mile) and two variables describing development in the drainage basin were selected as the best candidates, because each equation explains about 70 percent of the variability in the data. The variables describing development are the USGS basin development factor (BDF, which is a function of the amount of channel modifications, storm sewers, and curb-and-gutter streets in a basin) and the total impervious area variable (IMPERV) in the basin. Two datasets were used to develop regression equations. The primary dataset included data from 493 sites that have values for the BLF, BDF, and IMPERV variables. This dataset was used to develop the best-fit regression equation using the BLF and BDF variables. The secondary dataset included data from 896 sites that have values for the BLF and IMPERV variables. This dataset was used to develop the best-fit regression equation using the BLF and IMPERV variables. Analysis of hydrograph recession ratios and basin characteristics for 41 sites indicated that recession ratios are random variables. Thus, recession ratios cannot be estimated quantitatively using multiple linear regression equations developed using the data available for these sites. The minimums of recession ratios for different streamgages are well characterized by a value of one. The most probable values and maximum values of recession ratios for different streamgages are, however, more variable than the minimums. The most probable values of recession ratios for the 41 streamgages analyzed ranged from 1.0 to 3.52 and had a median of 1.85. The maximum values ranged from 2.66 to 11.3 and had a median of 4.36.
Performance of concatenated Reed-Solomon trellis-coded modulation over Rician fading channels
NASA Technical Reports Server (NTRS)
Moher, Michael L.; Lodge, John H.
1990-01-01
A concatenated coding scheme for providing very reliable data over mobile-satellite channels at power levels similar to those used for vocoded speech is described. The outer code is a shorter Reed-Solomon code which provides error detection as well as error correction capabilities. The inner code is a 1-D 8-state trellis code applied independently to both the inphase and quadrature channels. To achieve the full error correction potential of this inner code, the code symbols are multiplexed with a pilot sequence which is used to provide dynamic channel estimation and coherent detection. The implementation structure of this scheme is discussed and its performance is estimated.
USDA-ARS?s Scientific Manuscript database
As the channel x blue hybrid catfish is stocked by an increasing number of catfish farmers, it is important to quantify the production response of this fish to dissolved oxygen management strategies. The purpose of this study was to compare the production and water quality responses of the channel x...
Concurrent Transmission Based on Channel Quality in Ad Hoc Networks: A Game Theoretic Approach
NASA Astrophysics Data System (ADS)
Chen, Chen; Gao, Xinbo; Li, Xiaoji; Pei, Qingqi
In this paper, a decentralized concurrent transmission strategy in shared channel in Ad Hoc networks is proposed based on game theory. Firstly, a static concurrent transmissions game is used to determine the candidates for transmitting by channel quality threshold and to maximize the overall throughput with consideration of channel quality variation. To achieve NES (Nash Equilibrium Solution), the selfish behaviors of node to attempt to improve the channel gain unilaterally are evaluated. Therefore, this game allows each node to be distributed and to decide whether to transmit concurrently with others or not depending on NES. Secondly, as there are always some nodes with lower channel gain than NES, which are defined as hunger nodes in this paper, a hunger suppression scheme is proposed by adjusting the price function with interferences reservation and forward relay, to fairly give hunger nodes transmission opportunities. Finally, inspired by stock trading, a dynamic concurrent transmission threshold determination scheme is implemented to make the static game practical. Numerical results show that the proposed scheme is feasible to increase concurrent transmission opportunities for active nodes, and at the same time, the number of hunger nodes is greatly reduced with the least increase of threshold by interferences reservation. Also, the good performance on network goodput of the proposed model can be seen from the results.
Food marketing to children on U.S. Spanish-language television.
Kunkel, Dale; Mastro, Dana; Ortiz, Michelle; McKinley, Christopher
2013-01-01
Latino children in particular are at risk of childhood obesity. Because exposure to televised food marketing is a contributor to childhood obesity, it is important to examine the nutritional quality of foods advertised on Spanish-language children's programming. The authors analyzed a sample of 158 Spanish-language children's television programs for its advertising content and compared them with an equivalent sample of English-language advertising. The authors evaluated nutritional quality of each advertised product using a food rating system from the U.S. Department of Health and Human Services. In addition, the authors assessed compliance with industry self-regulatory pledges. The authors found that amount of food advertising on Spanish-language channels (M = 2.2 ads/hour) was lower than on English-language programs, but the nutritional quality of food products on Spanish-language channels was substantially poorer than on English channels. Industry self-regulation was less effective on Spanish-language channels. The study provides clear evidence of significant disparities. Food advertising targeted at Spanish-speaking children is more likely to promote nutritionally poor food products than advertising on English-language channels. Industry self-regulation is less effective on Spanish-language television channels. Given the disproportionately high rate of childhood obesity among Latinos, the study's findings hold important implications for public health policy.
Jiang, Wenwen; Larson, Peder E Z; Lustig, Michael
2018-03-09
To correct gradient timing delays in non-Cartesian MRI while simultaneously recovering corruption-free auto-calibration data for parallel imaging, without additional calibration scans. The calibration matrix constructed from multi-channel k-space data should be inherently low-rank. This property is used to construct reconstruction kernels or sensitivity maps. Delays between the gradient hardware across different axes and RF receive chain, which are relatively benign in Cartesian MRI (excluding EPI), lead to trajectory deviations and hence data inconsistencies for non-Cartesian trajectories. These in turn lead to higher rank and corrupted calibration information which hampers the reconstruction. Here, a method named Simultaneous Auto-calibration and Gradient delays Estimation (SAGE) is proposed that estimates the actual k-space trajectory while simultaneously recovering the uncorrupted auto-calibration data. This is done by estimating the gradient delays that result in the lowest rank of the calibration matrix. The Gauss-Newton method is used to solve the non-linear problem. The method is validated in simulations using center-out radial, projection reconstruction and spiral trajectories. Feasibility is demonstrated on phantom and in vivo scans with center-out radial and projection reconstruction trajectories. SAGE is able to estimate gradient timing delays with high accuracy at a signal to noise ratio level as low as 5. The method is able to effectively remove artifacts resulting from gradient timing delays and restore image quality in center-out radial, projection reconstruction, and spiral trajectories. The low-rank based method introduced simultaneously estimates gradient timing delays and provides accurate auto-calibration data for improved image quality, without any additional calibration scans. © 2018 International Society for Magnetic Resonance in Medicine.
Stream channel responses to streamflow diversion on small streams of the Snake River drainage, Idaho
Carolyn C. Bohn; John G. King
2000-01-01
The effects on channels of small, low-head seasonal water diversions in the Snake River drainage were investigated. Channels below small diversions were compared to the channels immediately above the same diversions to determine if differences in flow conveyance, substrate sediment size distribution, or streamside vegetation density were present. Estimates of flow...
Molecular Dynamics Simulation of the Antiamoebin Ion Channel: Linking Structure and Conductance
NASA Technical Reports Server (NTRS)
Wilson, Michael A.; Wei, Chenyu; Bjelkmar, Paer; Wallace, B. A.; Pohorille, Andrew
2011-01-01
Molecular dynamics simulations were carried out in order to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistant with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive.The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be non-conducting. The conductance of the hexamer was estimated to be 115+/-34 pS and 74+/-20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K(+) and Cl(-) with their first solvation shells intact. The free energy barrier encountered by K(+) is only 2.2 kcal/mol whereas Cl(-) encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics. keywords: ion channels, peptaibols, channel conductance, molecular dynamics
Compressive Channel Estimation and Tracking for Large Arrays in mm Wave Picocells
2014-01-01
abling sophisticated adaptation, including frequency-selective spatiotemporal processing (e.g., per subcarrier beamforming in OFDM systems). This approach...subarrays are certainly required for more advanced functionalities such as multiuser MIMO [17], spatial multiplexing [18], [19], [20], [21], [22], and...case, a regu- larly spaced 2D array), an estimate of the N2t,1D × N2r,1D MIMO channel matrix H can be efficiently arrived at by estimating the spatial
Least squares restoration of multichannel images
NASA Technical Reports Server (NTRS)
Galatsanos, Nikolas P.; Katsaggelos, Aggelos K.; Chin, Roland T.; Hillery, Allen D.
1991-01-01
Multichannel restoration using both within- and between-channel deterministic information is considered. A multichannel image is a set of image planes that exhibit cross-plane similarity. Existing optimal restoration filters for single-plane images yield suboptimal results when applied to multichannel images, since between-channel information is not utilized. Multichannel least squares restoration filters are developed using the set theoretic and the constrained optimization approaches. A geometric interpretation of the estimates of both filters is given. Color images (three-channel imagery with red, green, and blue components) are considered. Constraints that capture the within- and between-channel properties of color images are developed. Issues associated with the computation of the two estimates are addressed. A spatially adaptive, multichannel least squares filter that utilizes local within- and between-channel image properties is proposed. Experiments using color images are described.
Design of a digital voice data compression technique for orbiter voice channels
NASA Technical Reports Server (NTRS)
1975-01-01
Candidate techniques were investigated for digital voice compression to a transmission rate of 8 kbps. Good voice quality, speaker recognition, and robustness in the presence of error bursts were considered. The technique of delayed-decision adaptive predictive coding is described and compared with conventional adaptive predictive coding. Results include a set of experimental simulations recorded on analog tape. The two FM broadcast segments produced show the delayed-decision technique to be virtually undegraded or minimally degraded at .001 and .01 Viterbi decoder bit error rates. Preliminary estimates of the hardware complexity of this technique indicate potential for implementation in space shuttle orbiters.
Adaptive Quadrature Detection for Multicarrier Continuous-Variable Quantum Key Distribution
NASA Astrophysics Data System (ADS)
Gyongyosi, Laszlo; Imre, Sandor
2015-03-01
We propose the adaptive quadrature detection for multicarrier continuous-variable quantum key distribution (CVQKD). A multicarrier CVQKD scheme uses Gaussian subcarrier continuous variables for the information conveying and Gaussian sub-channels for the transmission. The proposed multicarrier detection scheme dynamically adapts to the sub-channel conditions using a corresponding statistics which is provided by our sophisticated sub-channel estimation procedure. The sub-channel estimation phase determines the transmittance coefficients of the sub-channels, which information are used further in the adaptive quadrature decoding process. We define the technique called subcarrier spreading to estimate the transmittance conditions of the sub-channels with a theoretical error-minimum in the presence of a Gaussian noise. We introduce the terms of single and collective adaptive quadrature detection. We also extend the results for a multiuser multicarrier CVQKD scenario. We prove the achievable error probabilities, the signal-to-noise ratios, and quantify the attributes of the framework. The adaptive detection scheme allows to utilize the extra resources of multicarrier CVQKD and to maximize the amount of transmittable information. This work was partially supported by the GOP-1.1.1-11-2012-0092 (Secure quantum key distribution between two units on optical fiber network) project sponsored by the EU and European Structural Fund, and by the COST Action MP1006.
Estimation of Channel-Forming Discharge and Large-Event Geomorphic Response Using HEC-RAS
NASA Astrophysics Data System (ADS)
Hamilton, P.; Strom, K.; Hosseiny, S. M. H.
2015-12-01
The goal of the present work was to consider the functionality and applicability of HEC-RAS sediment transport simulations in two situations. The first was as a mode for obtaining quick estimates of the effective discharge, one measure of channel-forming discharge, and the second was as a mode to quickly estimate sediment transport and the commensurate potential erosion and deposition during large flood events. Though there are many other sediment transport and morphodynamic models available, e.g., CCHE1D, Nays2DH, we were interested in using HEC-RAS since this is the model of choice for many regulatory bodies, e.g., FEMA, cities, and counties. This makes using the sediment transport capability of HEC-RAS a natural extension of models that already otherwise exist and are well calibrated. In first looking at the utility of these models, we wanted to estimate the effective discharge of streams. Effective discharge is one way of defining the channel-forming discharge for a stream and is therefore an important parameter in natural channel design and restoration efforts. By running this range of floods, one can easily obtain an estimate for recurrence interval most responsible for moving the majority of sediment over a long time period. Results were compared to data collected within our research group on the Brazos River (TX). Effective discharge is an important estimate, particularly in understanding the equilibrium channel condition. Nevertheless, large floods are contemporaneously catastrophic and understanding their potential effects is desirable. Finally, we performed some sensitivity analysis to better understand the underlying assumptions of the various sediment transport model options and how they might affect the outcome of the aforementioned computations.
Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen; González-López, Antonio
2018-03-01
To provide a multi-stage model to calculate uncertainty in radiochromic film dosimetry with Monte-Carlo techniques. This new approach is applied to single-channel and multichannel algorithms. Two lots of Gafchromic EBT3 are exposed in two different Varian linacs. They are read with an EPSON V800 flatbed scanner. The Monte-Carlo techniques in uncertainty analysis provide a numerical representation of the probability density functions of the output magnitudes. From this numerical representation, traditional parameters of uncertainty analysis as the standard deviations and bias are calculated. Moreover, these numerical representations are used to investigate the shape of the probability density functions of the output magnitudes. Also, another calibration film is read in four EPSON scanners (two V800 and two 10000XL) and the uncertainty analysis is carried out with the four images. The dose estimates of single-channel and multichannel algorithms show a Gaussian behavior and low bias. The multichannel algorithms lead to less uncertainty in the final dose estimates when the EPSON V800 is employed as reading device. In the case of the EPSON 10000XL, the single-channel algorithms provide less uncertainty in the dose estimates for doses higher than four Gy. A multi-stage model has been presented. With the aid of this model and the use of the Monte-Carlo techniques, the uncertainty of dose estimates for single-channel and multichannel algorithms are estimated. The application of the model together with Monte-Carlo techniques leads to a complete characterization of the uncertainties in radiochromic film dosimetry. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Kratochvíla, Jiří; Jiřík, Radovan; Bartoš, Michal; Standara, Michal; Starčuk, Zenon; Taxt, Torfinn
2016-03-01
One of the main challenges in quantitative dynamic contrast-enhanced (DCE) MRI is estimation of the arterial input function (AIF). Usually, the signal from a single artery (ignoring contrast dispersion, partial volume effects and flow artifacts) or a population average of such signals (also ignoring variability between patients) is used. Multi-channel blind deconvolution is an alternative approach avoiding most of these problems. The AIF is estimated directly from the measured tracer concentration curves in several tissues. This contribution extends the published methods of multi-channel blind deconvolution by applying a more realistic model of the impulse residue function, the distributed capillary adiabatic tissue homogeneity model (DCATH). In addition, an alternative AIF model is used and several AIF-scaling methods are tested. The proposed method is evaluated on synthetic data with respect to the number of tissue regions and to the signal-to-noise ratio. Evaluation on clinical data (renal cell carcinoma patients before and after the beginning of the treatment) gave consistent results. An initial evaluation on clinical data indicates more reliable and less noise sensitive perfusion parameter estimates. Blind multi-channel deconvolution using the DCATH model might be a method of choice for AIF estimation in a clinical setup. © 2015 Wiley Periodicals, Inc.
Ramesh, S; Seshasayanan, R
2016-01-01
In this study, a baseband OFDM-MIMO framework with channel timing and estimation synchronization is composed and executed utilizing the FPGA innovation. The framework is prototyped in light of the IEEE 802.11a standard and the signals transmitted and received utilizing a data transmission of 20 MHz. With the assistance of the QPSK tweak, the framework can accomplish a throughput of 24 Mbps. Besides, the LS formula is executed and the estimation of a frequency-specific fading channel is illustrated. For the rough estimation of timing, MNC plan is examined and actualized. Above all else, the whole framework is demonstrated in MATLAB and a drifting point model is set up. At that point, the altered point model is made with the assistance of Simulink and Xilinx's System Generator for DSP. In this way, the framework is incorporated and actualized inside of Xilinx's ISE tools and focused to Xilinx Virtex 5 board. In addition, an equipment co-simulation is contrived to decrease the preparing time while figuring the BER of the fixed point model. The work concentrates on above all else venture for further examination of planning creative channel estimation strategies towards applications in the fourth era (4G) mobile correspondence frameworks.
An enhanced multi-channel bacterial foraging optimization algorithm for MIMO communication system
NASA Astrophysics Data System (ADS)
Palanimuthu, Senthilkumar Jayalakshmi; Muthial, Chandrasekaran
2017-04-01
Channel estimation and optimisation are the main challenging tasks in Multi Input Multi Output (MIMO) wireless communication systems. In this work, a Multi-Channel Bacterial Foraging Optimization Algorithm approach is proposed for the selection of antenna in a transmission area. The main advantage of this method is, it reduces the loss of bandwidth during data transmission effectively. Here, we considered the channel estimation and optimisation for improving the transmission speed and reducing the unused bandwidth. Initially, the message is given to the input of the communication system. Then, the symbol mapping process is performed for converting the message into signals. It will be encoded based on the space-time encoding technique. Here, the single signal is divided into multiple signals and it will be given to the input of space-time precoder. Hence, the multiplexing is applied to transmission channel estimation. In this paper, the Rayleigh channel is selected based on the bandwidth range. This is the Gaussian distribution type channel. Then, the demultiplexing is applied on the obtained signal that is the reverse function of multiplexing, which splits the combined signal arriving from a medium into the original information signal. Furthermore, the long-term evolution technique is used for scheduling the time to channels during transmission. Here, the hidden Markov model technique is employed to predict the status information of the channel. Finally, the signals are decoded and the reconstructed signal is obtained after performing the scheduling process. The experimental results evaluate the performance of the proposed MIMO communication system in terms of bit error rate, mean squared error, average throughput, outage capacity and signal to interference noise ratio.
NASA Astrophysics Data System (ADS)
O'Connor, J. E.; Wallick, R.; Mangano, J.; Anderson, S. W.; Jones, K. L.; Keith, M. K.
2012-12-01
The rivers of western Oregon have channel beds ranging from fully alluvial to bedrock. A local history of in-stream gravel mining in conjunction with ongoing permitting concerns with respect to future extraction have prompted a series of investigations of bed-material production, transport and channel morphology across this spectrum of channel types. In western Oregon, it appears that the distribution of alluvial and bedrock channels (and many aspects of river morphology and behavior) are largely controlled by regional lithologies and the downstream consequences of different rates of bed-material supply and clast comminution. In particular, the Klamath Terrane has elevated erosion rates, steep slopes, and rock types resistant to abrasion, resulting in gravel-bed alluvial channels with high bed-material transport rates. By contrast, Coast Range drainages underlain by large areas of soft sedimentary rocks have bedrock channels owing to exceptionally rapid rates of bed-material attrition during transport. The resulting spatially distributed network controls on the distribution of alluvial and non-alluvial channels likely complicate linkages between rock uplift, bedrock incision, bed-material grain size, and profile concavity. Additionally, the alluvial channels have distinct morphologic characteristics, some of which relate strongly to transport rates. In particular, bar area correlates with estimates of bed-material flux, and this correlation is an upper bound for bar-area observations for non-alluvial reaches. Similarly, an index for transport capacity scaled by bed-material grain size correlates with estimated bed-material flux for alluvial rivers, but not for the non-alluvial rivers. Bedrock and mixed-bed channels in western Oregon have few evident broad-scale patterns or relations among reach-scale morphologic measurements or with estimated transport rates, perhaps indicating that very local lithologic, hydraulic and bed-material supply conditions exert more control on channel morphology.
González-López, Antonio; Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen
2016-05-01
This note studies the statistical relationships between color channels in radiochromic film readings with flatbed scanners. The same relationships are studied for noise. Finally, their implications for multichannel film dosimetry are discussed. Radiochromic films exposed to wedged fields of 6 MV energy were read in a flatbed scanner. The joint histograms of pairs of color channels were used to obtain the joint and conditional probability density functions between channels. Then, the conditional expectations and variances of one channel given another channel were obtained. Noise was extracted from film readings by means of a multiresolution analysis. Two different dose ranges were analyzed, the first one ranging from 112 to 473 cGy and the second one from 52 to 1290 cGy. For the smallest dose range, the conditional expectations of one channel given another channel can be approximated by linear functions, while the conditional variances are fairly constant. The slopes of the linear relationships between channels can be used to simplify the expression that estimates the dose by means of the multichannel method. The slopes of the linear relationships between each channel and the red one can also be interpreted as weights in the final contribution to dose estimation. However, for the largest dose range, the conditional expectations of one channel given another channel are no longer linear functions. Finally, noises in different channels were found to correlate weakly. Signals present in different channels of radiochromic film readings show a strong statistical dependence. By contrast, noise correlates weakly between channels. For the smallest dose range analyzed, the linear behavior between the conditional expectation of one channel given another channel can be used to simplify calculations in multichannel film dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-López, Antonio, E-mail: antonio.gonzalez7@carm.es; Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen
Purpose: This note studies the statistical relationships between color channels in radiochromic film readings with flatbed scanners. The same relationships are studied for noise. Finally, their implications for multichannel film dosimetry are discussed. Methods: Radiochromic films exposed to wedged fields of 6 MV energy were read in a flatbed scanner. The joint histograms of pairs of color channels were used to obtain the joint and conditional probability density functions between channels. Then, the conditional expectations and variances of one channel given another channel were obtained. Noise was extracted from film readings by means of a multiresolution analysis. Two different dosemore » ranges were analyzed, the first one ranging from 112 to 473 cGy and the second one from 52 to 1290 cGy. Results: For the smallest dose range, the conditional expectations of one channel given another channel can be approximated by linear functions, while the conditional variances are fairly constant. The slopes of the linear relationships between channels can be used to simplify the expression that estimates the dose by means of the multichannel method. The slopes of the linear relationships between each channel and the red one can also be interpreted as weights in the final contribution to dose estimation. However, for the largest dose range, the conditional expectations of one channel given another channel are no longer linear functions. Finally, noises in different channels were found to correlate weakly. Conclusions: Signals present in different channels of radiochromic film readings show a strong statistical dependence. By contrast, noise correlates weakly between channels. For the smallest dose range analyzed, the linear behavior between the conditional expectation of one channel given another channel can be used to simplify calculations in multichannel film dosimetry.« less
Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream
NASA Astrophysics Data System (ADS)
Hupp, Cliff R.; Noe, Gregory B.; Schenk, Edward R.; Benthem, Adam J.
2013-01-01
Suspended sediment is one of the major concerns regarding the quality of water entering the Chesapeake Bay. Some of the highest suspended-sediment concentrations occur on Piedmont streams, including Difficult Run, a tributary of the Potomac River draining urban and suburban parts of northern Virginia. Accurate information on catchment level sediment budgets is rare and difficult to determine. Further, the sediment trapping portion of sediment budget represents an important ecosystem service that profoundly affects downstream water quality. Our objectives, with special reference to human alterations to the landscape, include the documentation and estimation of floodplain sediment trapping (present and historic) and bank erosion along an urbanized Piedmont stream, the construction of a preliminary sediment balance, and the estimation of legacy sediment and recent development impacts. We used white feldspar markers to measure floodplain sedimentation rates and steel pins to measure erosion rates on floodplains and banks, respectively. Additional data were collected for/from legacy sediment thickness and characteristics, mill pond impacts, stream gaging station records, topographic surveying, and sediment density, texture, and organic content. Data were analyzed using GIS and various statistical programs. Results are interpreted relative to stream equilibrium affected by both post-colonial bottomland sedimentation (legacy) and modern watershed hardening associated with urbanization. Six floodplain/channel sites, from high to low in the watershed, were selected for intensive study. Bank erosion ranges from 0 to 470 kg/m/y and floodplain sedimentation ranges from 18 to 1369 kg/m/y (m refers to meters of stream reach). Upstream reaches are net erosional, while downstream reaches have a distinctly net depositional flux providing a watershed sediment balance of 2184 kg/m/y trapped within the system. The amounts of both deposition and erosion are large and suggest nonequilibrium channel conditions. Both peak discharge and number of peaks above base have substantially increased since the mid-1960s when urbanization of the watershed began. Deposition patterns are most closely correlated with channel gradient, sinuosity, and channel width/floodplain width for recent and historic periods. The substantial amounts of fine grained sediment deposited on the floodplain over the past two centuries or so do not appear to be closely related to historic mill pond presence or location. The floodplain continues to provide the critical ecosystem service of sediment trapping in the face of multiple human alterations. Trends in sediment deposition/erosion may react rapidly to land use practices within the watershed and offer a valuable barometer of the effects of management actions.
Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream
Hupp, Cliff R.; Noe, Gregory B.; Schenk, Edward R.; Bentham, Adam J.
2012-01-01
Suspended sediment is one of the major concerns regarding the quality of water entering the Chesapeake Bay. Some of the highest suspended-sediment concentrations occur on Piedmont streams, including Difficult Run, a tributary of the Potomac River draining urban and suburban parts of northern Virginia. Accurate information on catchment level sediment budgets is rare and difficult to determine. Further, the sediment trapping portion of sediment budget represents an important ecosystem service that profoundly affects downstream water quality. Our objectives, with special reference to human alterations to the landscape, include the documentation and estimation of floodplain sediment trapping (present and historic) and bank erosion along an urbanized Piedmont stream, the construction of a preliminary sediment balance, and the estimation of legacy sediment and recent development impacts. We used white feldspar markers to measure floodplain sedimentation rates and steel pins to measure erosion rates on floodplains and banks, respectively. Additional data were collected for/from legacy sediment thickness and characteristics, mill pond impacts, stream gaging station records, topographic surveying, and sediment density, texture, and organic content. Data were analyzed using GIS and various statistical programs. Results are interpreted relative to stream equilibrium affected by both post-colonial bottomland sedimentation (legacy) and modern watershed hardening associated with urbanization. Six floodplain/channel sites, from high to low in the watershed, were selected for intensive study. Bank erosion ranges from 0 to 470 kg/m/y and floodplain sedimentation ranges from 18 to 1369 kg/m/y (m refers to meters of stream reach). Upstream reaches are net erosional, while downstream reaches have a distinctly net depositional flux providing a watershed sediment balance of 2184 kg/m/y trapped within the system. The amounts of both deposition and erosion are large and suggest nonequilibrium channel conditions. Both peak discharge and number of peaks above base have substantially increased since the mid-1960s when urbanization of the watershed began. Deposition patterns are most closely correlated with channel gradient, sinuosity, and channel width/floodplain width for recent and historic periods. The substantial amounts of fine grained sediment deposited on the floodplain over the past two centuries or so do not appear to be closely related to historic mill pond presence or location. The floodplain continues to provide the critical ecosystem service of sediment trapping in the face of multiple human alterations. Trends in sediment deposition/erosion may react rapidly to land use practices within the watershed and offer a valuable barometer of the effects of management actions.
Investigation of Variations in the Equivalent Number of Looks for Polarimetric Channels
NASA Astrophysics Data System (ADS)
Hu, Dingsheng; Anfinsen, Stian Normann; Tao, Ding; Qiu, Xiaolan
2015-04-01
Current estimators of equivalent number of looks (ENL) have already been able to adapt the full-polarimetric SAR data and work in an unsupervised way. However, for some complex SAR scenes, the existing unsupervised estimation procedure would underestimate the ENL value, as the influence of inhomogeneous factor surpasses the allowance. Before determining further solution, this paper first investigates deviations in the estimated ENL that are observed when processing polarimetric synthetic aperture radar images of ocean surfaces. Even for surface that appears to be homogeneous, the estimated ENL is significantly different in cross-polarimetric (cross-pol) and co-polarimetric (co-pol) channels. We have formulated two hypotheses for the cause of this. Both hypotheses reflect that the mixtures are different in each channel, which leads us to question the validity of using the polarimetric information as a whole to eliminate mixture influence, in terms of accuracy and rationality. In the paper, we proposes a new unsupervised estimation procedure to avoid the mixture influence and with robust capability to obtain accurate ENL estimation even for some complex SAR scene.
Parks, David R; El Khettabi, Faysal; Chase, Eric; Hoffman, Robert A; Perfetto, Stephen P; Spidlen, Josef; Wood, James C S; Moore, Wayne A; Brinkman, Ryan R
2017-03-01
We developed a fully automated procedure for analyzing data from LED pulses and multilevel bead sets to evaluate backgrounds and photoelectron scales of cytometer fluorescence channels. The method improves on previous formulations by fitting a full quadratic model with appropriate weighting and by providing standard errors and peak residuals as well as the fitted parameters themselves. Here we describe the details of the methods and procedures involved and present a set of illustrations and test cases that demonstrate the consistency and reliability of the results. The automated analysis and fitting procedure is generally quite successful in providing good estimates of the Spe (statistical photoelectron) scales and backgrounds for all the fluorescence channels on instruments with good linearity. The precision of the results obtained from LED data is almost always better than that from multilevel bead data, but the bead procedure is easy to carry out and provides results good enough for most purposes. Including standard errors on the fitted parameters is important for understanding the uncertainty in the values of interest. The weighted residuals give information about how well the data fits the model, and particularly high residuals indicate bad data points. Known photoelectron scales and measurement channel backgrounds make it possible to estimate the precision of measurements at different signal levels and the effects of compensated spectral overlap on measurement quality. Combining this information with measurements of standard samples carrying dyes of biological interest, we can make accurate comparisons of dye sensitivity among different instruments. Our method is freely available through the R/Bioconductor package flowQB. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data
NASA Astrophysics Data System (ADS)
Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina
2015-04-01
Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE
Supply of large woody debris in a stream channel
Diehl, Timothy H.; Bryan, Bradley A.
1993-01-01
The amount of large woody debris that potentially could be transported to bridge sites was assessed in the basin of the West Harpeth River in Tennessee in the fall of 1992. The assessment was based on inspections of study sites at 12 bridges and examination of channel reaches between bridges. It involved estimating the amount of woody material at least 1.5 meters long, stored in the channel, and not rooted in soil. Study of multiple sites allowed estimation of the amount, characteristics, and sources of debris stored in the channel, and identification of geomorphic features of the channel associated with debris production. Woody debris is plentiful in the channel network, and much of the debris could be transported by a large flood. Tree trunks with attached root masses are the dominant large debris type. Death of these trees is primarily the result of bank erosion. Bank instability seems to be the basin characteristic most useful in identifying basins with a high potential for abundant production of debris.
Carrier frequency offset estimation for an acoustic-electric channel using 16 QAM modulation
NASA Astrophysics Data System (ADS)
Cunningham, Michael T.; Anderson, Leonard A.; Wilt, Kyle R.; Chakraborty, Soumya; Saulnier, Gary J.; Scarton, Henry A.
2016-05-01
Acoustic-electric channels can be used to send data through metallic barriers, enabling communications where electromagnetic signals are ineffective. This paper considers an acoustic-electric channel that is formed by mounting piezoelectric transducers on metallic barriers that are separated by a thin water layer. The transducers are coupled to the barriers using epoxy and the barriers are positioned to axially-align the PZTs, maximizing energy transfer efficiency. The electrical signals are converted by the transmitting transducers into acoustic waves, which propagate through the elastic walls and water medium to the receiving transducers. The reverberation of the acoustic signals in these channels can produce multipath distortion with a significant delay spread that introduces inter-symbol interference (ISI) into the received signal. While the multipath effects can be severe, the channel does not change rapidly which makes equalization easier. Here we implement a 16-QAM system on this channel, including a method for obtaining accurate carrier frequency offset (CFO) estimates in the presence of the quasi-static multipath propagation. A raised-power approach is considered but found to suffer from excessive data noise resulting from the ISI. An alternative approach that utilizes a pilot tone burst at the start of a data packet is used for CFO estimation and found to be effective. The autocorrelation method is used to estimate the frequency of the received burst. A real-time prototype of the 16 QAM system that uses a Texas Instruments MSP430 microcontroller-based transmitter and a personal computer-based receiver is presented along with performance results.
Information theoretical assessment of visual communication with wavelet coding
NASA Astrophysics Data System (ADS)
Rahman, Zia-ur
1995-06-01
A visual communication channel can be characterized by the efficiency with which it conveys information, and the quality of the images restored from the transmitted data. Efficient data representation requires the use of constraints of the visual communication channel. Our information theoretic analysis combines the design of the wavelet compression algorithm with the design of the visual communication channel. Shannon's communication theory, Wiener's restoration filter, and the critical design factors of image gathering and display are combined to provide metrics for measuring the efficiency of data transmission, and for quantitatively assessing the visual quality of the restored image. These metrics are: a) the mutual information (Eta) between the radiance the radiance field and the restored image, and b) the efficiency of the channel which can be roughly measured by as the ratio (Eta) /H, where H is the average number of bits being used to transmit the data. Huck, et al. (Journal of Visual Communication and Image Representation, Vol. 4, No. 2, 1993) have shown that channels desinged to maximize (Eta) , also maximize. Our assessment provides a framework for designing channels which provide the highest possible visual quality for a given amount of data under the critical design limitations of the image gathering and display devices. Results show that a trade-off exists between the maximum realizable information of the channel and its efficiency: an increase in one leads to a decrease in the other. The final selection of which of these quantities to maximize is, of course, application dependent.
Latest Holocene evolution and human disturbance of a channel segment in the Hudson River Estuary
Klingbeil, A.D.; Sommerfield, C.K.
2005-01-01
The latest Holocene sedimentary record of a cohesive channel and subtidal shoal in the lower Hudson River Estuary was examined to elucidate natural (sea-level rise, sediment transport) and anthropogenic (bulkheading, dredging) influences on the recent morphodynamic evolution of the system. To characterize the seafloor and shallow subbottom, ??? 100 km of high-resolution seismic reflection profiles (chirp) were collected within a 20-km reach of the estuary and correlated with sediment lithologies provided by eight vibracores recovered along seismic lines. Sediment geochronology with 137Cs and 14C was used to estimate intermediate and long-term sedimentation rates, respectively, and historical bathymetric data were analyzed to identify regional patterns of accretion and erosion, and to quantify changes in channel geometry and sediment volume. The shoal lithosome originated around 4 ka presumably with decelerating eustatic sea level rise during the latest Holocene. Long-term sedimentation rates on the shoal (2.3-2.6 mm/yr) are higher than in the channel (2 mm/yr) owing to hydrodynamic conditions that preferentially sequester suspended sediment on the western side of the estuary. As a result, the shoal accretes oblique to the principal axis of tidal transport, and more rapidly than the channel to produce an asymmetric cross-section. Shoal deposits consist of tidally bedded muds and are stratified by minor erosion surfaces that seismic profiles reveal to extend for 10s of meters to kilometers. The frequency and continuity of these surfaces suggest that the surficial shoal is catastrophically stripped on decadal-centennial time scales by elevated tidal flows; tidal erosion maintains the shoal at a uniform depth below sea level and prevents it from transitioning to an intertidal environment. Consequently, the long-term sedimentation rate approximates the rate of sea-level rise in the lower estuary (1-3 mm/yr). After the mid 1800s, the natural geometry of the lower Hudson River Estuary changed rapidly in response to engineering works that forced the channel to self-deepen. Analysis of historical bathymetric data indicates that the channel lost an estimated 3 ?? 106 tons of sediment between ca. 1939 and 2002 (50,000 tons/yr average) by subaqueous erosion, increasing in depth by as much as 4 m in places. Erosion appears to have been concurrent with systematic bulkheading of the shoreline after ca. 1865, which decreased the estuary surface area by ??? 19% overall. Evidently, self-deepening of the channel is a morphodynamic adjustment to reestablish equilibrium cross-sectional area, yet the state of this change locally and elsewhere in the estuary is unknown. Subaqueous erosion documented in this study is a significant source of sediment with implications to the sediment budget and environmental quality of the Hudson River Estuary. ?? 2005 Elsevier B.V. All rights reserved.
On Frequency Offset Estimation Using the iNET Preamble in Frequency Selective Fading Channels
2014-03-01
ASM fields; (bottom) the relationship between the indexes of the received samples r(n), the signal samples s(n), the preamble samples p (n) and the short...frequency offset estimators for SOQPSK-TG equipped with the iNET preamble and operating in ISI channels. Four of the five estimators exam - ined here are...sync marker ( ASM ), and data bits (an LDPC codeword). The availability of a preamble introduces the possibility of data-aided synchro- nization in
Methods for improved forewarning of critical events across multiple data channels
Hively, Lee M [Philadelphia, TN
2007-04-24
This disclosed invention concerns improvements in forewarning of critical events via phase-space dissimilarity analysis of data from mechanical devices, electrical devices, biomedical data, and other physical processes. First, a single channel of process-indicative data is selected that can be used in place of multiple data channels without sacrificing consistent forewarning of critical events. Second, the method discards data of inadequate quality via statistical analysis of the raw data, because the analysis of poor quality data always yields inferior results. Third, two separate filtering operations are used in sequence to remove both high-frequency and low-frequency artifacts using a zero-phase quadratic filter. Fourth, the method constructs phase-space dissimilarity measures (PSDM) by combining of multi-channel time-serial data into a multi-channel time-delay phase-space reconstruction. Fifth, the method uses a composite measure of dissimilarity (C.sub.i) to provide a forewarning of failure and an indicator of failure onset.
A Spectrum Access Based on Quality of Service (QoS) in Cognitive Radio Networks.
Zhai, Linbo; Wang, Hua; Gao, Chuangen
2016-01-01
The quality of service (QoS) is important issue for cognitive radio networks. In the cognitive radio system, the licensed users, also called primary users (PUs), are authorized to utilize the wireless spectrum, while unlicensed users, also called secondary users (SUs), are not authorized to use the wireless spectrum. SUs access the wireless spectrum opportunistically when the spectrum is idle. While SUs use an idle channel, the instance that PUs come back makes SUs terminate their communications and leave the current channel. Therefore, quality of service (QoS) is difficult to be ensured for SUs. In this paper, we first propose an analysis model to obtain QoS for cognitive radio networks such as blocking probability, completed traffic and termination probability of SUs. When the primary users use the channels frequently, QoS of SUs is difficult to be ensured, especially the termination probability. Then, we propose a channel reservation scheme to improve QoS of SUs. The scheme makes the terminated SUs move to the reserved channels and keep on communications. Simulation results show that our scheme can improve QoS of SUs especially the termination probability with a little cost of blocking probability in dynamic environment.
Piégay, H.; Hupp, C.R.; Citterio, A.; Dufour, S.; Moulin, B.; Walling, D.E.
2008-01-01
Floodplain development is associated with lateral accretion along stable channel geometry. Along shifting rivers, the floodplain sedimentation is more complex because of changes in channel position but also cutoff channel presence, which exhibit specific overflow patterns. In this contribution, the spatial and temporal variability of sedimentation rates in cutoff channel infill deposits is related to channel changes of a shifting gravel bed river (Ain River, France). The sedimentation rates estimated from dendrogeomorphic analysis are compared between and within 14 cutoff channel infills. Detailed analyses along a single channel infill are performed to assess changes in the sedimentation rates through time by analyzing activity profiles of the fallout radionuclides 137Cs and unsupported 210Pb. Sedimentation rates are also compared within the channel infills with rates in other plots located in the adjacent floodplain. Sedimentation rates range between 0.65 and 2.4 cm a−1 over a period of 10 to 40 years. The data provide additional information on the role of distance from the bank, overbank flow frequency, and channel geometry in controlling the sedimentation rate. Channel infills, lower than adjacent floodplains, exhibit higher sedimentation rates and convey overbank sediment farther away within the floodplain. Additionally, channel degradation, aggradation, and bank erosion, which reduce or increase the distance between the main channel and the cutoff channel aquatic zone, affect local overbank flow magnitude and frequency and therefore sedimentation rates, thereby creating a complex mosaic of sedimentation zones within the floodplain and along the cutoff channel infills. Last, the dendrogeomorphic and 137Cs approaches are cross validated for estimating the sedimentation rate within a channel infill.
Stratification and loading of fecal indicator bacteria (FIB) in a tidally muted urban salt marsh.
Johnston, Karina K; Dorsey, John H; Saez, Jose A
2015-03-01
Stratification and loading of fecal indicator bacteria (FIB) were assessed in the main tidal channel of the Ballona Wetlands, an urban salt marsh receiving muted tidal flows, to (1) determine FIB concentration versus loading within the water column at differing tidal flows, (2) identify associations of FIB with other water quality parameters, and (3) compare wetland FIB concentrations to the adjacent estuary. Sampling was conducted four times during spring-tide events; samples were analyzed for FIB and turbidity (NTU) four times over a tidal cycle at pre-allocated depths, depending on the water level. Additional water quality parameters measured included temperature, salinity, oxygen, and pH. Loadings were calculated by integrating the stratified FIB concentrations with water column cross-sectional volumes corresponding to each depth. Enterococci and Escherichia coli were stratified both by concentration and loading, although these variables portrayed different patterns over a tidal cycle. Greatest concentrations occurred in surface to mid-strata levels, during flood tides when contaminated water flowed in from the estuary, and during ebb flows when sediments were suspended. Loading was greatest during flood flows and diminished during low tide periods. FIB concentrations within the estuary often were significantly greater than those within the wetland tide channel, supporting previous studies that the wetlands act as a sink for FIB. For public health water quality monitoring, these results indicate that more accurate estimates of FIB concentrations would be obtained by sampling a number of points within a water column rather than relying only on single surface samples.
Adaptive Pre-FFT Equalizer with High-Precision Channel Estimator for ISI Channels
NASA Astrophysics Data System (ADS)
Yoshida, Makoto
We present an attractive approach for OFDM transmission using an adaptive pre-FFT equalizer, which can select ICI reduction mode according to channel condition, and a degenerated-inverse-matrix-based channel estimator (DIME), which uses a cyclic sinc-function matrix uniquely determined by transmitted subcarriers. In addition to simulation results, the proposed system with an adaptive pre-FFT equalizer and DIME has been laboratory tested by using a software defined radio (SDR)-based test bed. The simulation and experimental results demonstrated that the system at a rate of more than 100Mbps can provide a bit error rate of less than 10-3 for a fast multi-path fading channel that has a moving velocity of more than 200km/h with a delay spread of 1.9µs (a maximum delay path of 7.3µs) in the 5-GHz band.
Entanglement-enhanced quantum metrology in a noisy environment
NASA Astrophysics Data System (ADS)
Wang, Kunkun; Wang, Xiaoping; Zhan, Xiang; Bian, Zhihao; Li, Jian; Sanders, Barry C.; Xue, Peng
2018-04-01
Quantum metrology overcomes standard precision limits and plays a central role in science and technology. Practically, it is vulnerable to imperfections such as decoherence. Here we demonstrate quantum metrology for noisy channels such that entanglement with ancillary qubits enhances the quantum Fisher information for phase estimation but not otherwise. Our photonic experiment covers a range of noise for various types of channels, including for two randomly alternating channels such that assisted entanglement fails for each noisy channel individually. We simulate noisy channels by implementing space-multiplexed dual interferometers with quantum photonic inputs. We demonstrate the advantage of entanglement-assisted protocols in a phase estimation experiment run with either a single-probe or multiprobe approach. These results establish that entanglement with ancillae is a valuable approach for delivering quantum-enhanced metrology. Our approach to entanglement-assisted quantum metrology via a simple linear-optical interferometric network with easy-to-prepare photonic inputs provides a path towards practical quantum metrology.
Channel Temperature Estimates for Microwave AlGaN/GaN Power HEMTS on SiC and Sapphire
NASA Technical Reports Server (NTRS)
Freeman, Jon C.
2003-01-01
A simple technique to estimate the channel temperature of a generic AlGaN/GaN HEMTs on SiC or Sapphire, while incorporating temperature dependence of the thermal conductivity is presented. The procedure is validated b y comparing it's predictions with the experimentally measured temperatures in devices presented in three recently published articles.
On Searching Available Channels with Asynchronous MAC-Layer Spectrum Sensing
NASA Astrophysics Data System (ADS)
Jiang, Chunxiao; Ma, Xin; Chen, Canfeng; Ma, Jian; Ren, Yong
Dynamic spectrum access has become a focal issue recently, in which identifying the available spectrum plays a rather important role. Lots of work has been done concerning secondary user (SU) synchronously accessing primary user's (PU's) network. However, on one hand, SU may have no idea about PU's communication protocols; on the other, it is possible that communications among PU are not based on synchronous scheme at all. In order to address such problems, this paper advances a strategy for SU to search available spectrums with asynchronous MAC-layer sensing. With this method, SUs need not know the communication mechanisms in PU's network when dynamically accessing. We will focus on four aspects: 1) strategy for searching available channels; 2) vacating strategy when PUs come back; 3) estimation of channel parameters; 4) impact of SUs' interference on PU's data rate. The simulations show that our search strategy not only can achieve nearly 50% less interference probability than equal allocation of total search time, but also well adapts to time-varying channels. Moreover, access by our strategies can attain 150% more access time than random access. The moment matching estimator shows good performance in estimating and tracing time-varying channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Q; Stanford University School of Medicine, Stanford, CA; Liu, H
Purpose: Spectral CT enabled by an energy-resolved photon-counting detector outperforms conventional CT in terms of material discrimination, contrast resolution, etc. One reconstruction method for spectral CT is to generate a color image from a reconstructed component in each energy channel. However, given the radiation dose, the number of photons in each channel is limited, which will result in strong noise in each channel and affect the final color reconstruction. Here we propose a novel dictionary learning method for spectral CT that combines dictionary-based sparse representation method and the patch based low-rank constraint to simultaneously improve the reconstruction in each channelmore » and to address the inter-channel correlations to further improve the reconstruction. Methods: The proposed method has two important features: (1) guarantee of the patch based sparsity in each energy channel, which is the result of the dictionary based sparse representation constraint; (2) the explicit consideration of the correlations among different energy channels, which is realized by patch-by-patch nuclear norm-based low-rank constraint. For each channel, the dictionary consists of two sub-dictionaries. One is learned from the average of the images in all energy channels, and the other is learned from the average of the images in all energy channels except the current channel. With average operation to reduce noise, these two dictionaries can effectively preserve the structural details and get rid of artifacts caused by noise. Combining them together can express all structural information in current channel. Results: Dictionary learning based methods can obtain better results than FBP and the TV-based method. With low-rank constraint, the image quality can be further improved in the channel with more noise. The final color result by the proposed method has the best visual quality. Conclusion: The proposed method can effectively improve the image quality of low-dose spectral CT. This work is partially supported by the National Natural Science Foundation of China (No. 61302136), and the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2014JQ8317).« less
NASA Astrophysics Data System (ADS)
Pandey, P.; De Ridder, K.; van Lipzig, N.
2009-04-01
Clouds play a very important role in the Earth's climate system, as they form an intermediate layer between Sun and the Earth. Satellite remote sensing systems are the only means to provide information about clouds on large scales. The geostationary satellite, Meteosat Second Generation (MSG) has onboard an imaging radiometer, the Spinning Enhanced Visible and Infrared Imager (SEVIRI). SEVIRI is a 12 channel imager, with 11 channels observing the earth's full disk with a temporal resolution of 15 min and spatial resolution of 3 km at nadir, and a high resolution visible (HRV) channel. The visible channels (0.6 µm and 0.81 µm) and near infrared channel (1.6µm) of SEVIRI are being used to retrieve the cloud optical thickness (COT). The study domain is over Europe covering the region between 35°N - 70°N and 10°W - 30°E. SEVIRI level 1.5 images over this domain are being acquired from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) archive. The processing of this imagery, involves a number of steps before estimating the COT. The steps involved in pre-processing are as follows. First, the digital count number is acquired from the imagery. Image geo-coding is performed in order to relate the pixel positions to the corresponding longitude and latitude. Solar zenith angle is determined as a function of latitude and time. The radiometric conversion is done using the values of offsets and slopes of each band. The values of radiance obtained are then used to calculate the reflectance for channels in the visible spectrum using the information of solar zenith angle. An attempt is made to estimate the COT from the observed radiances. A semi analytical algorithm [Kokhanovsky et al., 2003] is implemented for the estimation of cloud optical thickness from the visible spectrum of light intensity reflected from clouds. The asymptotical solution of the radiative transfer equation, for clouds with large optical thickness, is the basis of this algorithm. The two visible channels of SEVIRI are used to find the COT and the near infra red channel to estimate the effective radius of droplets. Estimation of COT using a semi analytical scheme, which doesn't involve the conventional look-up table approach, is the aim of this work and henceforth, vertically integrated liquid water (w) or ice water content will be retrieved. The COT estimated and w obtained, will be compared with the values obtained from other approaches and will be validated with in situ measurements. Corresponding author address: Praveen Pandey, VITO - Flemish Institute for Technological Research, Boeretang 200, B 2400, Mol, Belgium. E-mail: praveen.pandey@vito.be
Destiny-yield relationship for channel catfish reared in a biofloc technology production system
USDA-ARS?s Scientific Manuscript database
The effect of stocking density on yield of stocker channel catfish and water quality in a biofloc technology production system was studied in this completely randomized design experiment. Fingerling channel catfish (Ictalurus punctatus; 48.0 g/fish, 17.8 cm/fish) were stocked into nine continuously ...
Evaluation of habitat quality for selected wildlife species associated with back channels.
Anderson, James T.; Zadnik, Andrew K.; Wood, Petra Bohall; Bledsoe, Kerry
2013-01-01
The islands and associated back channels on the Ohio River, USA, are believed to provide critical habitat features for several wildlife species. However, few studies have quantitatively evaluated habitat quality in these areas. Our main objective was to evaluate the habitat quality of back and main channel areas for several species using habitat suitability index (HSI) models. To test the effectiveness of these models, we attempted to relate HSI scores and the variables measured for each model with measures of relative abundance for the model species. The mean belted kingfisher (Ceryle alcyon) HSI was greater on the main than back channel. However, the model failed to predict kingfisher abundance. The mean reproduction component of the great blue heron (Ardea herodias) HSI, total common muskrat (Ondatra zibethicus) HSI, winter cover component of the snapping turtle (Chelydra serpentina) HSI, and brood-rearing component of the wood duck (Aix sponsa) HSI were all greater on the back than main channel, and were positively related with the relative abundance of each species. We found that island back channels provide characteristics not found elsewhere on the Ohio River and warrant conservation as important riparian wildlife habitat. The effectiveness of using HSI models to predict species abundance on the river was mixed. Modifications to several of the models are needed to improve their use on the Ohio River and, likely, other large rivers.
Singh, Sanil D; Chuturgoon, Anil A
2017-10-06
Dry pelleted dog food in the South African market is available via supermarkets, pet stores (standard brands [SBs]) and veterinary channels (premium brands [PBs]). For the purpose of this study, the supermarket channel included the cheaper quality foods and PBs were sold via the veterinary channel (n = 20). These feeds were analysed for four main mycotoxins (aflatoxins [AF], fumonisin [FB], ochratoxin A [OTA] and zearalenone [ZEA]) using standard welldescribed extraction, characterisation and quantitation processes. Irrespective of the brand or marketing channel, all foods were contaminated with fungi (mainly Aspergillus flavus, Aspergillus fumigatus and Aspergillus parasiticus) and mycotoxins (most prevalent being aflatoxins and fumonisins). This was observed in all 20 samples irrespective of the marketing channel or perceived quality. Also, many samples within each marketing channel failed the 10 ppb limit for aflatoxin set by regulations in South Africa. Although fumonisin was detected in all samples, a single sample failed the Food and Drug Administration (FDA) limit of 100 ppb. Both OTA and ZEA were found at low concentrations and were absent in some samples. This study suggested that higher priced dog food does not ensure superior quality or that it is free from contamination with fungi or mycotoxins. However, analysis of the more expensive PBs did reveal contamination concentrations lower than those of the SBs.
Reducing the number of reconstructions needed for estimating channelized observer performance
NASA Astrophysics Data System (ADS)
Pineda, Angel R.; Miedema, Hope; Brenner, Melissa; Altaf, Sana
2018-03-01
A challenge for task-based optimization is the time required for each reconstructed image in applications where reconstructions are time consuming. Our goal is to reduce the number of reconstructions needed to estimate the area under the receiver operating characteristic curve (AUC) of the infinitely-trained optimal channelized linear observer. We explore the use of classifiers which either do not invert the channel covariance matrix or do feature selection. We also study the assumption that multiple low contrast signals in the same image of a non-linear reconstruction do not significantly change the estimate of the AUC. We compared the AUC of several classifiers (Hotelling, logistic regression, logistic regression using Firth bias reduction and the least absolute shrinkage and selection operator (LASSO)) with a small number of observations both for normal simulated data and images from a total variation reconstruction in magnetic resonance imaging (MRI). We used 10 Laguerre-Gauss channels and the Mann-Whitney estimator for AUC. For this data, our results show that at small sample sizes feature selection using the LASSO technique can decrease bias of the AUC estimation with increased variance and that for large sample sizes the difference between these classifiers is small. We also compared the use of multiple signals in a single reconstructed image to reduce the number of reconstructions in a total variation reconstruction for accelerated imaging in MRI. We found that AUC estimation using multiple low contrast signals in the same image resulted in similar AUC estimates as doing a single reconstruction per signal leading to a 13x reduction in the number of reconstructions needed.
Applying the J-optimal channelized quadratic observer to SPECT myocardial perfusion defect detection
NASA Astrophysics Data System (ADS)
Kupinski, Meredith K.; Clarkson, Eric; Ghaly, Michael; Frey, Eric C.
2016-03-01
To evaluate performance on a perfusion defect detection task from 540 image pairs of myocardial perfusion SPECT image data we apply the J-optimal channelized quadratic observer (J-CQO). We compare AUC values of the linear Hotelling observer and J-CQO when the defect location is fixed and when it occurs in one of two locations. As expected, when the location is fixed a single channels maximizes AUC; location variability requires multiple channels to maximize the AUC. The AUC is estimated from both the projection data and reconstructed images. J-CQO is quadratic since it uses the first- and second- order statistics of the image data from both classes. The linear data reduction by the channels is described by an L x M channel matrix and in prior work we introduced an iterative gradient-based method for calculating the channel matrix. The dimensionality reduction from M measurements to L channels yields better estimates of these sample statistics from smaller sample sizes, and since the channelized covariance matrix is L x L instead of M x M, the matrix inverse is easier to compute. The novelty of our approach is the use of Jeffrey's divergence (J) as the figure of merit (FOM) for optimizing the channel matrix. We previously showed that the J-optimal channels are also the optimum channels for the AUC and the Bhattacharyya distance when the channel outputs are Gaussian distributed with equal means. This work evaluates the use of J as a surrogate FOM (SFOM) for AUC when these statistical conditions are not satisfied.
Performance Analysis for Channel Estimation With 1-Bit ADC and Unknown Quantization Threshold
NASA Astrophysics Data System (ADS)
Stein, Manuel S.; Bar, Shahar; Nossek, Josef A.; Tabrikian, Joseph
2018-05-01
In this work, the problem of signal parameter estimation from measurements acquired by a low-complexity analog-to-digital converter (ADC) with $1$-bit output resolution and an unknown quantization threshold is considered. Single-comparator ADCs are energy-efficient and can be operated at ultra-high sampling rates. For analysis of such systems, a fixed and known quantization threshold is usually assumed. In the symmetric case, i.e., zero hard-limiting offset, it is known that in the low signal-to-noise ratio (SNR) regime the signal processing performance degrades moderately by ${2}/{\\pi}$ ($-1.96$ dB) when comparing to an ideal $\\infty$-bit converter. Due to hardware imperfections, low-complexity $1$-bit ADCs will in practice exhibit an unknown threshold different from zero. Therefore, we study the accuracy which can be obtained with receive data processed by a hard-limiter with unknown quantization level by using asymptotically optimal channel estimation algorithms. To characterize the estimation performance of these nonlinear algorithms, we employ analytic error expressions for different setups while modeling the offset as a nuisance parameter. In the low SNR regime, we establish the necessary condition for a vanishing loss due to missing offset knowledge at the receiver. As an application, we consider the estimation of single-input single-output wireless channels with inter-symbol interference and validate our analysis by comparing the analytic and experimental performance of the studied estimation algorithms. Finally, we comment on the extension to multiple-input multiple-output channel models.
Nonlinear Algorithms for Channel Equalization and Map Symbol Detection.
NASA Astrophysics Data System (ADS)
Giridhar, K.
The transfer of information through a communication medium invariably results in various kinds of distortion to the transmitted signal. In this dissertation, a feed -forward neural network-based equalizer, and a family of maximum a posteriori (MAP) symbol detectors are proposed for signal recovery in the presence of intersymbol interference (ISI) and additive white Gaussian noise. The proposed neural network-based equalizer employs a novel bit-mapping strategy to handle multilevel data signals in an equivalent bipolar representation. It uses a training procedure to learn the channel characteristics, and at the end of training, the multilevel symbols are recovered from the corresponding inverse bit-mapping. When the channel characteristics are unknown and no training sequences are available, blind estimation of the channel (or its inverse) and simultaneous data recovery is required. Convergence properties of several existing Bussgang-type blind equalization algorithms are studied through computer simulations, and a unique gain independent approach is used to obtain a fair comparison of their rates of convergence. Although simple to implement, the slow convergence of these Bussgang-type blind equalizers make them unsuitable for many high data-rate applications. Rapidly converging blind algorithms based on the principle of MAP symbol-by -symbol detection are proposed, which adaptively estimate the channel impulse response (CIR) and simultaneously decode the received data sequence. Assuming a linear and Gaussian measurement model, the near-optimal blind MAP symbol detector (MAPSD) consists of a parallel bank of conditional Kalman channel estimators, where the conditioning is done on each possible data subsequence that can convolve with the CIR. This algorithm is also extended to the recovery of convolutionally encoded waveforms in the presence of ISI. Since the complexity of the MAPSD algorithm increases exponentially with the length of the assumed CIR, a suboptimal decision-feedback mechanism is introduced to truncate the channel memory "seen" by the MAPSD section. Also, simpler gradient-based updates for the channel estimates, and a metric pruning technique are used to further reduce the MAPSD complexity. Spatial diversity MAP combiners are developed to enhance the error rate performance and combat channel fading. As a first application of the MAPSD algorithm, dual-mode recovery techniques for TDMA (time-division multiple access) mobile radio signals are presented. Combined estimation of the symbol timing and the multipath parameters is proposed, using an auxiliary extended Kalman filter during the training cycle, and then tracking of the fading parameters is performed during the data cycle using the blind MAPSD algorithm. For the second application, a single-input receiver is employed to jointly recover cochannel narrowband signals. Assuming known channels, this two-stage joint MAPSD (JMAPSD) algorithm is compared to the optimal joint maximum likelihood sequence estimator, and to the joint decision-feedback detector. A blind MAPSD algorithm for the joint recovery of cochannel signals is also presented. Computer simulation results are provided to quantify the performance of the various algorithms proposed in this dissertation.
The direct assimilation of cloud-affected satellite infrared radiance in the NCEP 3D-Hybrid system
NASA Astrophysics Data System (ADS)
Zhang, X.
2016-12-01
A function has been developed in NCEP 3D-Hybrid system to make use of Infrared radiances from Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat-10(MSG-10) satellite in overcast cloudy conditions where effective cloud fractions were greater than 0.9. These cloudy radiances provide new information that currently assimilated in clear-sky condition from SEVIRI MSG-10. The model state vector is locally extended at observation locations, to include cloud top pressure as cloud parameters. This parameter describing a single-layer cloud are simultaneously estimated together with temperature and humidity inside the main analysis. Assimilation experiments have been run with the new scheme in which overcast radiance from SEVIRI MSG-10 are used in addition to the available clear-sky data. Two water vapor channels ( 6.2 and 7.3μm) and window channels (8.5, 11.2, 12.3 and 13.3μm) from SEVIRI MSG-10 are assimilated in the experiments. The overcast data locations typically represent 10% or less of the total due to the application of stringent quality control. However, The extra data that are used give rise to modified increments (largest for temperature and humidity) at and above the diagnosed cloud top. Also it improves the analysis fit to independent radiosonde observations and results in some small, but statistically significant, improvements in forecast quality.
Ivanov, Julian M.; Johnson, Carole D.; Lane, John W.; Miller, Richard D.; Clemens, Drew
2009-01-01
A limited seismic investigation of Ball Mountain Dam, an earthen dam near Jamaica, Vermont, was conducted using multiple seismic methods including multi‐channel analysis of surface waves (MASW), refraction tomography, and vertical seismic profiling (VSP). The refraction and MASW data were efficiently collected in one survey using a towed land streamer containing vertical‐displacement geophones and two seismic sources, a 9‐kg hammer at the beginning of the spread and a 40‐kg accelerated weight drop one spread length from the geophones, to obtain near‐ and far‐offset data sets. The quality of the seismic data for the purposes of both refraction and MASW analyses was good for near offsets, decreasing in quality at farther offsets, thus limiting the depth of investigation to about 12 m. Refraction tomography and MASW analyses provided 2D compressional (Vp) and shear‐wave (Vs) velocity sections along the dam crest and access road, which are consistent with the corresponding VSP seismic velocity estimates from nearby wells. The velocity sections helped identify zonal variations in both Vp and Vs (rigidity) properties, indicative of material heterogeneity or dynamic processes (e.g. differential settlement) at specific areas of the dam. The results indicate that refraction tomography and MASW methods are tools with significant potential for economical, non‐invasive characterization of construction materials at earthen dam sites.
The Performance Analysis Based on SAR Sample Covariance Matrix
Erten, Esra
2012-01-01
Multi-channel systems appear in several fields of application in science. In the Synthetic Aperture Radar (SAR) context, multi-channel systems may refer to different domains, as multi-polarization, multi-interferometric or multi-temporal data, or even a combination of them. Due to the inherent speckle phenomenon present in SAR images, the statistical description of the data is almost mandatory for its utilization. The complex images acquired over natural media present in general zero-mean circular Gaussian characteristics. In this case, second order statistics as the multi-channel covariance matrix fully describe the data. For practical situations however, the covariance matrix has to be estimated using a limited number of samples, and this sample covariance matrix follow the complex Wishart distribution. In this context, the eigendecomposition of the multi-channel covariance matrix has been shown in different areas of high relevance regarding the physical properties of the imaged scene. Specifically, the maximum eigenvalue of the covariance matrix has been frequently used in different applications as target or change detection, estimation of the dominant scattering mechanism in polarimetric data, moving target indication, etc. In this paper, the statistical behavior of the maximum eigenvalue derived from the eigendecomposition of the sample multi-channel covariance matrix in terms of multi-channel SAR images is simplified for SAR community. Validation is performed against simulated data and examples of estimation and detection problems using the analytical expressions are as well given. PMID:22736976
Reaeration equations derived from U.S. geological survey database
Melching, C.S.; Flores, H.E.
1999-01-01
Accurate estimation of the reaeration-rate coefficient (K2) is extremely important for waste-load allocation. Currently, available K2 estimation equations generally yield poor estimates when applied to stream conditions different from those for which the equations were derived because they were derived from small databases composed of potentially highly inaccurate measurements. A large data set of K2 measurements made with tracer-gas methods was compiled from U.S. Geological Survey studies. This compilation included 493 reaches on 166 streams in 23 states. Careful screening to detect and eliminate erroneous measurements reduced the date set to 371 measurements. These measurements were divided into four subgroups on the basis of flow regime (channel control or pool and riffle) and stream scale (discharge greater than or less than 0.556 m3/s). Multiple linear regression in logarithms was applied to relate K2 to 12 stream hydraulic and water-quality characteristics. The resulting best-estimation equations had the form of semiempirical equations that included the rate of energy dissipation and discharge or depth and width as variables. For equation verification, a data set of K2 measurements made with tracer-gas procedures by other agencies was compiled from the literature. This compilation included 127 reaches on at least 24 streams in at least seven states. The standard error of estimate obtained when applying the developed equations to the U.S. Geological Survey data set ranged from 44 to 61%, whereas the standard error of estimate was 78% when applied to the verification data set.Accurate estimation of the reaeration-rate coefficient (K2) is extremely important for waste-load allocation. Currently, available K2 estimation equations generally yield poor estimates when applied to stream conditions different from those for which the equations were derived because they were derived from small databases composed of potentially highly inaccurate measurements. A large data set of K2 measurements made with tracer-gas methods was compiled from U.S. Geological Survey studies. This compilation included 493 reaches on 166 streams in 23 states. Careful screening to detect and eliminate erroneous measurements reduced the data set to 371 measurements. These measurements were divided into four subgroups on the basis of flow regime (channel control or pool and riffle) and stream scale (discharge greater than or less than 0.556 m3/s). Multiple linear regression in logarithms was applied to relate K2 to 12 stream hydraulic and water-quality characteristics. The resulting best-estimation equations had the form of semiempirical equations that included the rate of energy dissipation and discharge or depth and width as variables. For equation verification, a data set of K2 measurements made with tracer-gas procedures by other agencies was compiled from the literature. This compilation included 127 reaches on at least 24 streams in at least seven states. The standard error of estimate obtained when applying the developed equations to the U.S. Geological Survey data set ranged from 44 to 61%, whereas the standard error of estimate was 78% when applied to the verification data set.
Efficient method for assessing channel instability near bridges
Robinson, Bret A.; Thompson, R.E.
1993-01-01
Efficient methods for data collection and processing are required to complete channel-instability assessments at 5,600 bridge sites in Indiana at an affordable cost and within a reasonable time frame while maintaining the quality of the assessments. To provide this needed efficiency and quality control, a data-collection form was developed that specifies the data to be collected and the order of data collection. This form represents a modification of previous forms that grouped variables according to type rather than by order of collection. Assessments completed during two field seasons showed that greater efficiency was achieved by using a fill-in-the-blank form that organizes the data to be recorded in a specified order: in the vehicle, from the roadway, in the upstream channel, under the bridge, and in the downstream channel.
Measuring Balance Across Multiple Radar Receiver Channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerry, Armin W.; Bickel, Douglas L.
When radar receivers employ multiple channels, the general intent is for the receive channels to be as alike as possible, if not as ideal as possible. This is usually done via prudent hardware design, supplemented by system calibration. Towards this end, we require a quality metric for ascertaining the goodness of a radar channel, and the degree of match to sibling channels. We propose a relevant and useable metric to do just that. Acknowledgements This report was the result of an unfunded research and development activity.
Seasonal Dynamics of River Corridor Exchange Across the Continental United States
NASA Astrophysics Data System (ADS)
Gomez-Velez, J. D.; Harvey, J. W.; Scott, D.; Boyer, E. W.; Schmadel, N. M.
2017-12-01
River corridors store and convey mass and energy from landscapes to the ocean, altering water quality and ecosystem functioning at the local, reach, and watershed scales. As water moves through river corridors from headwaters streams to coastal estuaries, dynamic exchange between the river channel and its adjacent riparian, floodplain, and hyporheic zones, combined with ponded waters such as lakes and reservoirs, results in the emergence of hot spots and moments for biogeochemical transformations. In this work, we used the model Networks with EXchange and Subsurface Storage (NEXSS) to estimate seasonal variations in river corridor exchange fluxes and residence times along the continental United States. Using a simple routing scheme, we translate these estimates into a cumulative measure of river corridor connectivity at the watershed scale, differentiating the contributions of hyporheic zones, floodplains, and ponded waters. We find that the relative role of these exchange subsystems changes seasonally, driven by the intra-seasonal variability of discharge. In addition, we find that seasonal variations in discharge and the biogeochemical potential of hyporheic zones are out of phase. This behavior results in a significant reduction in hyporheic water quality functions during high flows and emphasizes the potential importance of reconnecting floodplains for managing water quality during seasonal high flows. Physical parameterizations of river corridor processes are critical to model and predict water quality and to sustainably manage water resources under present and future socio-economic and climatic conditions. Parsimonious models like NEXSS can play a key role in the design, implementation, and evaluation of sustainable management practices that target both water quantity and quality at the scale of the nation. This research is a product of the John Wesley Powell Center River Corridor Working Group.
... Testing Epstein-Barr Virus (EBV) Antibody Tests Erythrocyte Sedimentation Rate (ESR) Erythropoietin Estimated Glomerular Filtration Rate (eGFR) ... Available online at http://health.lifestyle.yahoo.ca/channel_section_details.asp?text_id=1364&channel_id= ...
Sperm quality assessment via separation and sedimentation in a microfluidic device.
Chen, Chang-Yu; Chiang, Tsun-Chao; Lin, Cheng-Ming; Lin, Shu-Sheng; Jong, De-Shien; Tsai, Vincent F-S; Hsieh, Ju-Ton; Wo, Andrew M
2013-09-07
A major reason for infertility is due to male factors, including the quality of spermatozoa, which is a primary factor and often difficult to assess, particularly the total sperm concentration and its motile percentage. This work presents a simple microfluidic device to assess sperm quality by quantifying both total and motile sperm counts. The key design feature of the microfluidic device is two channels separated by a permeative phase-guide structure, where one channel is filled with raw semen and the other with pure buffer. The semen sample was allowed to reach equilibrium in both chambers, whereas non-motile sperms remained in the original channel, and roughly half of the motile sperms would swim across the phase-guide barrier into the buffer channel. Sperms in each channel agglomerated into pellets after centrifugation, with the corresponding area representing total and motile sperm concentrations. Total sperm concentration up to 10(8) sperms per ml and motile percentage in the range of 10-70% were tested, encompassing the cutoff value of 40% stated by World Health Organization standards. Results from patient samples show compact and robust pellets after centrifugation. Comparison of total sperm concentration between the microfluidic device and the Makler chamber reveal they agree within 5% and show strong correlation, with a coefficient of determination of R(2) = 0.97. Motile sperm count between the microfluidic device and the Makler chamber agrees within 5%, with a coefficient of determination of R(2) = 0.84. Comparison of results from the Makler Chamber, sperm quality analyzer, and the microfluidic device revealed that results from the microfluidic device agree well with the Makler chamber. The sperm microfluidic chip analyzes both total and motile sperm concentrations in one spin, is accurate and easy to use, and should enable sperm quality analysis with ease.
A Space-Time Signal Decomposition Algorithm for Downlink MIMO DS-CDMA Receivers
NASA Astrophysics Data System (ADS)
Wang, Yung-Yi; Fang, Wen-Hsien; Chen, Jiunn-Tsair
We propose a dimension reduction algorithm for the receiver of the downlink of direct-sequence code-division multiple access (DS-CDMA) systems in which both the transmitters and the receivers employ antenna arrays of multiple elements. To estimate the high order channel parameters, we develop a layered architecture using dimension-reduced parameter estimation algorithms to estimate the frequency-selective multipath channels. In the proposed architecture, to exploit the space-time geometric characteristics of multipath channels, spatial beamformers and constrained (or unconstrained) temporal filters are adopted for clustered-multipath grouping and path isolation. In conjunction with the multiple access interference (MAI) suppression techniques, the proposed architecture jointly estimates the direction of arrivals, propagation delays, and fading amplitudes of the downlink fading multipaths. With the outputs of the proposed architecture, the signals of interest can then be naturally detected by using path-wise maximum ratio combining. Compared to the traditional techniques, such as the Joint-Angle-and-Delay-Estimation (JADE) algorithm for DOA-delay joint estimation and the space-time minimum mean square error (ST-MMSE) algorithm for signal detection, computer simulations show that the proposed algorithm substantially mitigate the computational complexity at the expense of only slight performance degradation.
Moderate Image Spectrometer (MODIS) Fire Radiative Energy: Physics and Applications
NASA Technical Reports Server (NTRS)
Kaufman, Y.
2004-01-01
MODIS fire channel does not saturate in the presence of fires. The fire channel therefore is used to estimate the fire radiative energy, a measure of the rate of biomass consumption in the fire. We found correlation between the fire radiative energy, the rate of formation of burn scars and the rate of emission of aerosol from the fires. Others found correlations between the fire radiative energy and the rate of biomass consumption. This relationships can be used to estimates the emissions from the fires and to estimate the fire hazards.
Precision of channel catfish catch estimates using hoop nets in larger Oklahoma reservoirs
Stewart, David R.; Long, James M.
2012-01-01
Hoop nets are rapidly becoming the preferred gear type used to sample channel catfish Ictalurus punctatus, and many managers have reported that hoop nets effectively sample channel catfish in small impoundments (<200 ha). However, the utility and precision of this approach in larger impoundments have not been tested. We sought to determine how the number of tandem hoop net series affected the catch of channel catfish and the time involved in using 16 tandem hoop net series in larger impoundments (>200 ha). Hoop net series were fished once, set for 3 d; then we used Monte Carlo bootstrapping techniques that allowed us to estimate the number of net series required to achieve two levels of precision (relative standard errors [RSEs] of 15 and 25) at two levels of confidence (80% and 95%). Sixteen hoop net series were effective at obtaining an RSE of 25 with 80% and 95% confidence in all but one reservoir. Achieving an RSE of 15 was often less effective and required 18-96 hoop net series given the desired level of confidence. We estimated that an hour was needed, on average, to deploy and retrieve three hoop net series, which meant that 16 hoop net series per reservoir could be "set" and "retrieved" within a day, respectively. The estimated number of net series to achieve an RSE of 25 or 15 was positively associated with the coefficient of variation (CV) of the sample but not with reservoir surface area or relative abundance. Our results suggest that hoop nets are capable of providing reasonably precise estimates of channel catfish relative abundance and that the relationship with the CV of the sample reported herein can be used to determine the sampling effort for a desired level of precision.
Van Dun, Bram; Wouters, Jan; Moonen, Marc
2009-07-01
Auditory steady-state responses (ASSRs) are used for hearing threshold estimation at audiometric frequencies. Hearing impaired newborns, in particular, benefit from this technique as it allows for a more precise diagnosis than traditional techniques, and a hearing aid can be better fitted at an early age. However, measurement duration of current single-channel techniques is still too long for clinical widespread use. This paper evaluates the practical performance of a multi-channel electroencephalogram (EEG) processing strategy based on a detection theory approach. A minimum electrode set is determined for ASSRs with frequencies between 80 and 110 Hz using eight-channel EEG measurements of ten normal-hearing adults. This set provides a near-optimal hearing threshold estimate for all subjects and improves response detection significantly for EEG data with numerous artifacts. Multi-channel processing does not significantly improve response detection for EEG data with few artifacts. In this case, best response detection is obtained when noise-weighted averaging is applied on single-channel data. The same test setup (eight channels, ten normal-hearing subjects) is also used to determine a minimum electrode setup for 10-Hz ASSRs. This configuration allows to record near-optimal signal-to-noise ratios for 80% of subjects.
Analysis and Modeling of Realistic Compound Channels in Transparent Relay Transmissions
Kanjirathumkal, Cibile K.; Mohammed, Sameer S.
2014-01-01
Analytical approaches for the characterisation of the compound channels in transparent multihop relay transmissions over independent fading channels are considered in this paper. Compound channels with homogeneous links are considered first. Using Mellin transform technique, exact expressions are derived for the moments of cascaded Weibull distributions. Subsequently, two performance metrics, namely, coefficient of variation and amount of fade, are derived using the computed moments. These metrics quantify the possible variations in the channel gain and signal to noise ratio from their respective average values and can be used to characterise the achievable receiver performance. This approach is suitable for analysing more realistic compound channel models for scattering density variations of the environment, experienced in multihop relay transmissions. The performance metrics for such heterogeneous compound channels having distinct distribution in each hop are computed and compared with those having identical constituent component distributions. The moments and the coefficient of variation computed are then used to develop computationally efficient estimators for the distribution parameters and the optimal hop count. The metrics and estimators proposed are complemented with numerical and simulation results to demonstrate the impact of the accuracy of the approaches. PMID:24701175
Single-channel mixed signal blind source separation algorithm based on multiple ICA processing
NASA Astrophysics Data System (ADS)
Cheng, Xiefeng; Li, Ji
2017-01-01
Take separating the fetal heart sound signal from the mixed signal that get from the electronic stethoscope as the research background, the paper puts forward a single-channel mixed signal blind source separation algorithm based on multiple ICA processing. Firstly, according to the empirical mode decomposition (EMD), the single-channel mixed signal get multiple orthogonal signal components which are processed by ICA. The multiple independent signal components are called independent sub component of the mixed signal. Then by combining with the multiple independent sub component into single-channel mixed signal, the single-channel signal is expanded to multipath signals, which turns the under-determined blind source separation problem into a well-posed blind source separation problem. Further, the estimate signal of source signal is get by doing the ICA processing. Finally, if the separation effect is not very ideal, combined with the last time's separation effect to the single-channel mixed signal, and keep doing the ICA processing for more times until the desired estimated signal of source signal is get. The simulation results show that the algorithm has good separation effect for the single-channel mixed physiological signals.
USDA-ARS?s Scientific Manuscript database
This book chapter provides a comprehensive overview of channel catfish aquaculture. Sections include fish biology; commercial culture; culture facilities; production practices; water quality management; nutrition, feeding and feed formulation; infectious diseases; harvesting and processing; and the...
Stonestrom, David A.; Prudic, David E.; Laczniak, Randell J.; Akstin, Katherine C.; Boyd, Robert A.; Henkelman, Katherine K.
2003-01-01
The presence and approximate rates of deep percolation beneath areas of native vegetation, irrigated fields, and the Amargosa-River channel in the Amargosa Desert of southern Nevada were evaluated using the chloride mass-balance method and inferred downward velocities of chloride and nitrate peaks. Estimates of deep-percolation rates in the Amargosa Desert are needed for the analysis of regional ground-water flow and transport. An understanding of regional flow patterns is important because ground water originating on the Nevada Test Site may pass through the area before discharging from springs at lower elevations in the Amargosa Desert and in Death Valley. Nine boreholes 10 to 16 meters deep were cored nearly continuously using a hollow-stem auger designed for gravelly sediments. Two boreholes were drilled in each of three irrigated fields in the Amargosa-Farms area, two in the Amargosa-River channel, and one in an undisturbed area of native vegetation. Data from previously cored boreholes beneath undisturbed, native vegetation were compared with the new data to further assess deep percolation under current climatic conditions and provide information on spatial variability.The profiles beneath native vegetation were characterized by large amounts of accumulated chloride just below the root zone with almost no further accumulation at greater depths. This pattern is typical of profiles beneath interfluvial areas in arid alluvial basins of the southwestern United States, where salts have been accumulating since the end of the Pleistocene. The profiles beneath irrigated fields and the Amargosa-River channel contained more than twice the volume of water compared to profiles beneath native vegetation, consistent with active deep percolation beneath these sites. Chloride profiles beneath two older fields (cultivated since the 1960’s) as well as the upstream Amargosa-River site were indicative of long-term, quasi-steady deep percolation. Chloride profiles beneath the newest field (cultivated since 1993), the downstream Amargosa-River site, and the edge of an older field were indicative of recently active deep percolation moving previously accumulated salts from the upper profile to greater depths.Results clearly indicate that deep percolation and ground-water recharge occur not only beneath areas of irrigation but also beneath ephemeral stream channels, despite the arid climate and infrequency of runoff. Rates of deep percolation beneath irrigated fields ranged from 0.1 to 0.5 m/yr. Estimated rates of deep percolation beneath the Amargosa-River channel ranged from 0.02 to 0.15 m/yr. Only a few decades are needed for excess irrigation water to move through the unsaturated zone and recharge ground water. Assuming vertical, one-dimensional flow, the estimated time for irrigation-return flow to reach the water table beneath the irrigated fields ranged from about 10 to 70 years. In contrast, infiltration from present-day runoff takes centuries to move through the unsaturated zone and reach the water table. The estimated time for water to reach the water table beneath the channel ranged from 140 to 1000 years. These values represent minimum times, as they do not take lateral flow into account. The estimated fraction of irrigation water becoming deep percolation averaged 8 to 16 percent. Similar fractions of infiltration from ephemeral flow events were estimated to become deep percolation beneath the normally dry Amargosa-River channel. In areas where flood-induced channel migration occurs at sub-centennial frequencies, residence times in the unsaturated zone beneath the Amargosa channel could be longer. Estimates of deep percolation presented herein provide a basis for evaluating the importance of recharge from irrigation and channel infiltration in models of ground-water flow from the Nevada Test Site.
Sheng, Li; Wang, Zidong; Tian, Engang; Alsaadi, Fuad E
2016-12-01
This paper deals with the H ∞ state estimation problem for a class of discrete-time neural networks with stochastic delays subject to state- and disturbance-dependent noises (also called (x,v)-dependent noises) and fading channels. The time-varying stochastic delay takes values on certain intervals with known probability distributions. The system measurement is transmitted through fading channels described by the Rice fading model. The aim of the addressed problem is to design a state estimator such that the estimation performance is guaranteed in the mean-square sense against admissible stochastic time-delays, stochastic noises as well as stochastic fading signals. By employing the stochastic analysis approach combined with the Kronecker product, several delay-distribution-dependent conditions are derived to ensure that the error dynamics of the neuron states is stochastically stable with prescribed H ∞ performance. Finally, a numerical example is provided to illustrate the effectiveness of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reliable video transmission over fading channels via channel state estimation
NASA Astrophysics Data System (ADS)
Kumwilaisak, Wuttipong; Kim, JongWon; Kuo, C.-C. Jay
2000-04-01
Transmission of continuous media such as video over time- varying wireless communication channels can benefit from the use of adaptation techniques in both source and channel coding. An adaptive feedback-based wireless video transmission scheme is investigated in this research with special emphasis on feedback-based adaptation. To be more specific, an interactive adaptive transmission scheme is developed by letting the receiver estimate the channel state information and send it back to the transmitter. By utilizing the feedback information, the transmitter is capable of adapting the level of protection by changing the flexible RCPC (rate-compatible punctured convolutional) code ratio depending on the instantaneous channel condition. The wireless channel is modeled as a fading channel, where the long-term and short- term fading effects are modeled as the log-normal fading and the Rayleigh flat fading, respectively. Then, its state (mainly the long term fading portion) is tracked and predicted by using an adaptive LMS (least mean squares) algorithm. By utilizing the delayed feedback on the channel condition, the adaptation performance of the proposed scheme is first evaluated in terms of the error probability and the throughput. It is then extended to incorporate variable size packets of ITU-T H.263+ video with the error resilience option. Finally, the end-to-end performance of wireless video transmission is compared against several non-adaptive protection schemes.
NASA Astrophysics Data System (ADS)
Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt
2018-01-01
This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.
USDA-ARS?s Scientific Manuscript database
Bankfull hydraulic geometry relationships are used to estimate channel dimensions for streamflow simulation models, which require channel geometry data as input parameters. Often, one nationwide curve is used across the entire United States (U.S.) (e.g., in Soil and Water Assessment Tool), even tho...
Compressive MIMO Beamforming of Data Collected in a Refractive Environment
NASA Astrophysics Data System (ADS)
Wagner, Mark; Nannuru, Santosh; Gerstoft, Peter
2017-12-01
The phenomenon of ducting is caused by abnormal atmospheric refractivity patterns and is known to allow electromagnetic waves to propagate over the horizon with unusually low propagation loss. It is unknown what effect ducting has on multiple input multiple output (MIMO) channels, particularly its effect on multipath propagation in MIMO channels. A high-accuracy angle-of-arrival and angle-of-departure estimation technique for MIMO communications, which we will refer to as compressive MIMO beamforming, was tested on simulated data then applied to experimental data taken from an over the horizon MIMO test bed located in a known ducting hot spot in Southern California. The multipath channel was estimated from the receiver data recorded over a period of 18 days, and an analysis was performed on the recorded data. The goal is to observe the evolution of the MIMO multipath channel as atmospheric ducts form and dissipate to gain some understanding of the behavior of channels in a refractive environment. This work is motivated by the idea that some multipath characteristics of MIMO channels within atmospheric ducts could yield important information about the duct.
Maurer, Jürgen
2009-05-01
Influenza is a serious disease, especially for older people, and incomplete vaccination take-up poses a major public health challenge. On both the side of physicians and patients, there could be promising channels for increasing immunization rates, but no attempt has yet been made to empirically unravel their respective influences. Using exclusion restrictions implied by an economic model of physician-patient interactions, our study quantifies the particular effects of supply and demand on influenza immunization. On the supply side, our estimates highlight the importance of physician agency and physician quality, while a patient's education and health behaviors are key demand side factors.
Stewart, Anne M.; Callegary, James B.; Smith, Christopher F.; Gupta, Hoshin V.; Leenhouts, James M.; Fritzinger, Robert A.
2012-01-01
The continuous slope-area (CSA) method is an innovative gaging method for indirect computation of complete-event discharge hydrographs that can be applied when direct measurement methods are unsafe, impractical, or impossible to apply. This paper reports on use of the method to produce event-specific discharge hydrographs in a network of sand-bedded ephemeral stream channels in southeast Arizona, USA, for water year 2008. The method provided satisfactory discharge estimates for flows that span channel banks, and for moderate to large flows, with about 10–16% uncertainty, respectively for total flow volume and peak flow, as compared to results obtained with an alternate method. Our results also suggest that the CSA method may be useful for estimating runoff of small flows, and during recessions, but with increased uncertainty.
Water quality of a coastal Louisiana swamp and how dredging is undermining restoration efforts
NASA Astrophysics Data System (ADS)
Lane, Robert R.; Huang, Haosheng; Day, John W.; Justic, Dubravko; DeLaune, Ronald D.
2015-01-01
The Bayou Boeuf Basin (BBB), a sub-basin of the Barataria Basin estuary in coastal Louisiana, consists of forested and floating wetlands receiving drainage from surrounding agricultural fields and urban watersheds. We characterized surface water quality in the BBB, and determined through hydrologic modeling if a series of levee breaks along major drainage channels would significantly improve water quality by allowing flow into surrounding wetlands. Surface water monitoring found surrounding sugarcane farm fields to be major sources of nutrient and sediment loading. Hydrological modeling indicated that levee breaks would increase N reduction from the current 21.4% to only 29.2%, which is much lower than the anticipated 90-100% removal rate. This was due to several factors, one them being dredging of main drainage channels to such a degree that water levels do not rise much above the surrounding wetland elevation even during severe storms, so only a very small fraction of the stormwater carried in the channel is exposed to wetlands. These unexpected results provide insight into an undoubtedly pervasive problem in human dominated wetland systems; that of decreased flooding during storm events due to channel deepening by dredging activities. Additional water quality management practices should be implemented at the farm field level, prior to water entering major drainage canals.
Bellmore, J. Ryan; Baxter, Colden V.; Martens, Kyle; Connolly, Patrick J.
2013-01-01
Although numerous studies have attempted to place species of interest within the context of food webs, such efforts have generally occurred at small scales or disregard potentially important spatial heterogeneity. If food web approaches are to be employed to manage species, studies are needed that evaluate the multiple habitats and associated webs of interactions in which these species participate. Here, we quantify the food webs that sustain rearing salmon and steelhead within a floodplain landscape of the Methow River, Washington, USA, a location where restoration has been proposed to restore side channels in an attempt to recover anadromous fishes. We combined year-long measures of production, food demand, and diet composition for the fish assemblage with estimates of invertebrate prey productivity to quantify food webs within the main channel and five different, intact, side channels; ranging from channels that remained connected to the main channel at low flow to those reduced to floodplain ponds. Although we found that habitats within the floodplain had similar invertebrate prey production, these habitats hosted different local food webs. In the main channel, 95% of total prey consumption flowed to fishes that are not the target of proposed restoration. These fishes consumed 64% and 47% of the prey resources that were found to be important to fueling chinook and steelhead production in the main channel, respectively. Conversely, in side channels, a greater proportion of prey was consumed by anadromous salmonids. As a result, carrying capacity estimates based on food were 251% higher, on average, for anadromous salmonids in side channels than the main channel. However, salmon and steelhead production was generally well below estimated capacity in both the main and side channels, suggesting these habitats are under-seeded with respect to food, and that much larger populations could be supported. Overall, this study demonstrates that floodplain heterogeneity is associated with the occurrence of a mosaic of food webs, all of which were utilized by anadromous salmonids, and all of which may be important to their recovery and persistence. In the long term, these and other fishes would likely benefit from restoring the processes that maintain floodplain complexity.
Soils Activity Mobility Study: Methodology and Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2014-09-29
This report presents a three-level approach for estimation of sediment transport to provide an assessment of potential erosion risk for sites at the Nevada National Security Site (NNSS) that are posted for radiological purposes and where migration is suspected or known to occur due to storm runoff. Based on the assessed risk, the appropriate level of effort can be determined for analysis of radiological surveys, field experiments to quantify erosion and transport rates, and long-term monitoring. The method is demonstrated at contaminated sites, including Plutonium Valley, Shasta, Smoky, and T-1. The Pacific Southwest Interagency Committee (PSIAC) procedure is selected asmore » the Level 1 analysis tool. The PSIAC method provides an estimation of the total annual sediment yield based on factors derived from the climatic and physical characteristics of a watershed. If the results indicate low risk, then further analysis is not warranted. If the Level 1 analysis indicates high risk or is deemed uncertain, a Level 2 analysis using the Modified Universal Soil Loss Equation (MUSLE) is proposed. In addition, if a sediment yield for a storm event rather than an annual sediment yield is needed, then the proposed Level 2 analysis should be performed. MUSLE only provides sheet and rill erosion estimates. The U.S. Army Corps of Engineers Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) provides storm peak runoff rate and storm volumes, the inputs necessary for MUSLE. Channel Sediment Transport (CHAN-SED) I and II models are proposed for estimating sediment deposition or erosion in a channel reach from a storm event. These models require storm hydrograph associated sediment concentration and bed load particle size distribution data. When the Level 2 analysis indicates high risk for sediment yield and associated contaminant migration or when there is high uncertainty in the Level 2 results, the sites can be further evaluated with a Level 3 analysis using more complex and labor- and data-intensive methods. For the watersheds analyzed in this report using the Level 1 PSIAC method, the risk of erosion is low. The field reconnaissance surveys of these watersheds confirm the conclusion that the sediment yield of undisturbed areas at the NNSS would be low. The climate, geology, soils, ground cover, land use, and runoff potential are similar among these watersheds. There are no well-defined ephemeral channels except at the Smoky and Plutonium Valley sites. Topography seems to have the strongest influence on sediment yields, as sediment yields are higher on the steeper hill slopes. Lack of measured sediment yield data at the NNSS does not allow for a direct evaluation of the yield estimates by the PSIAC method. Level 2 MUSLE estimates in all the analyzed watersheds except Shasta are a small percentage of the estimates from PSIAC because MUSLE is not inclusive of channel erosion. This indicates that channel erosion dominates the total sediment yield in these watersheds. Annual sediment yields for these watersheds are estimated using the CHAN-SEDI and CHAN-SEDII channel sediment transport models. Both transport models give similar results and exceed the estimates obtained from PSIAC and MUSLE. It is recommended that the total watershed sediment yield of watersheds at the NNSS with flow channels be obtained by adding the washload estimate (rill and inter-rill erosion) from MUSLE to that obtained from channel transport models (bed load and suspended sediment). PSIAC will give comparable results if factor scores for channel erosion are revised towards the high erosion level. Application of the Level 3 process-based models to estimate sediment yields at the NNSS cannot be recommended at this time. Increased model complexity alone will not improve the certainty of the sediment yield estimates. Models must be calibrated against measured data before model results are accepted as certain. Because no measurements of sediment yields at the NNSS are available, model validation cannot be performed. This is also true for the models used in the Level 2 analyses presented in this study. The need to calibrate MUSLE to local conditions has been discussed. Likewise, the transport equations of CHAN-SEDI and CHAN-SEDII need to be calibrated against local data to assess their applicability under semi-arid conditions and for the ephemeral channels at the NNSS. Before these validations and calibration exercises can be undertaken, a long-term measured sediment yield data set must be developed. Development of long-term measured sediment yield data cannot be overemphasized. Long-term monitoring is essential for accurate characterization of watershed processes. It is recommended that a long-term monitoring program be set up to measure watershed erosion rates and channel sediment transport rates.« less
Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.; Konrad, Christopher P.; Little, Rand
2010-01-01
Flow regulation, bank armoring, and floodplain alteration since the early 20th century have contributed to significant changes in the hydrologic regime and geomorphic processes of the Cedar River in Washington State. The Cedar River originates in the Cascade Range, provides drinking water to the Seattle metropolitan area, and supports several populations of anadromous salmonids. Flow regulation currently has limited influence on the magnitude, duration, and timing of high-flow events, which affect the incubation of salmonids as well as the production and maintenance of their habitat. Unlike structural changes to the channel and floodplain, flow regulation may be modified in the short-term to improve the viability of salmon populations. An understanding of the effects of flow regulation on those populations must be discerned over a range of scales from individual floods that affect the size of individual year classes to decadal high flow regime that influences the amount and quality of channel and off-channel habitat available for spawning and rearing. We present estimates of reach-scale sediment budgets and changes to channel morphology derived from historical orthoimagery, specific gage analyses at four long-term streamflow-gaging stations to quantify trends in aggradation, and hydrologic statistics of the magnitude and duration of peak streamflows. These data suggest a gradient of channel types from unconfined, sediment-rich segments to confined, sediment-poor segments that are likely to have distinct responses to high flows. Particle-size distribution data and longitudinal water surface and streambed profiles for the 56 km downstream of Chester Morse Lake measured in 2010 show the spatial extent of preferred salmonid habitat along the Cedar River. These historical and current data constitute a geomorphic framework to help assess different river management scenarios for salmonid habitat and population viability. PDF version of a presentation on changes to aquatic habitat at the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.
Gafchromic EBT3 film dosimetry in electron beams — energy dependence and improved film read‐out
Ojala, Jarkko; Kaijaluoto, Sampsa; Jokelainen, Ilkka; Kosunen, Antti
2016-01-01
For megavoltage photon radiation, the fundamental dosimetry characteristics of Gafchromic EBT3 film were determined in 60Co gamma ray beam with addition of experimental and Monte Carlo (MC)‐simulated energy dependence of the film for 6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams in water phantom. For the film read‐out, two phase correction of scanner sensitivity was applied: a matrix correction for scanning area and dose‐dependent correction by iterative procedure. With these corrections, the uniformity of response can be improved to be within ±50 pixel values (PVs). To improve the read‐out accuracy, a procedure with flipped film orientations was established. With the method, scanner uniformity can be improved further and dust particles, scratches and/or dirt on scanner glass can be detected and eliminated. Responses from red and green channels were averaged for read‐out, which decreased the effect of noise present in values from separate channels. Since the signal level with the blue channel is considerably lower than with other channels, the signal variation due to different perturbation effects increases the noise level so that the blue channel is not recommended to be used for dose determination. However, the blue channel can be used for the detection of emulsion thickness variations for film quality evaluations with unexposed films. With electron beams ranging from 6 MeV to 16 MeV and at reference measurement conditions in water, the energy dependence of the EBT3 film is uniform within 0.5%, with uncertainties close to 1.6% (k=2). Including 6 MV photon beam and the electron beams mentioned, the energy dependence is within 1.1%. No notable differences were found between the experimental and MC‐simulated responses, indicating negligible change in intrinsic energy dependence of the EBT3 film for 6 MV photon beam and 6 MeV–16 MeV electron beams. Based on the dosimetric characteristics of the EBT3 film, the read‐out procedure established, the nearly uniform energy dependence found and the estimated uncertainties, the EBT3 film was concluded to be a suitable 2D dosimeter for measuring electron or mixed photon/electron dose distributions in water phantom. Uncertainties of 3.7% (k=2) for absolute and 2.3% (k=2) for relative dose were estimated. PACS numbers: 87.53.Bn, 87.55.K‐, 87.55.Qr PMID:26894368
Improving Qubit Phase Estimation in Amplitude-damping Channel by Partial-collapse Measurement
NASA Astrophysics Data System (ADS)
Liao, Xiang-Ping; Zhou, Xin; Fang, Mao-Fa
2018-03-01
An efficient method is proposed to improve qubit phase estimation in amplitude-damping channel by partial-collapse measurement in this paper. It is shown that the quantum Fisher information (QFI) can be distinctly enhanced under amplitude-damping decoherence with partial-collapse measurement. Moreover, the optimal QFI is approximately close to the maximum value 1 regardless of the decoherence parameter by choosing the appropriate measurement strengths.
Stage-discharge relationship in tidal channels
NASA Astrophysics Data System (ADS)
Kearney, W. S.; Mariotti, G.; Deegan, L.; Fagherazzi, S.
2016-12-01
Long-term records of the flow of water through tidal channels are essential to constrain the budgets of sediments and biogeochemical compounds in salt marshes. Statistical models which relate discharge to water level allow the estimation of such records from more easily obtained records of water stage in the channel. While there is clearly structure in the stage-discharge relationship, nonlinearity and nonstationarity of the relationship complicates the construction of statistical stage-discharge models with adequate performance for discharge estimation and uncertainty quantification. Here we compare four different types of stage-discharge models, each of which is designed to capture different characteristics of the stage-discharge relationship. We estimate and validate each of these models on a two-month long time series of stage and discharge obtained with an Acoustic Doppler Current Profiler in a salt marsh channel. We find that the best performance is obtained by models which account for the nonlinear and time-varying nature of the stage-discharge relationship. Good performance can also be obtained from a simplified version of these models which approximates the fully nonlinear and time-varying models with a piecewise linear formulation.
Blodgett, J.C.; McConaughy, C.E.
1986-01-01
In volume 2, seven procedures now being used for design of rock riprap installations were evaluated using data from 26 field sites. Four basic types of riprap failures were identified: Particle erosion, translational slide, modified slump, and slump. Factors associated with riprap failure include stone size , bank side slope, size gradation, thickness, insufficient toe or endwall, failure of the bank material, overtopping during floods, and geomorphic changes in the channel. A review of field data and the design procedures suggests that estimates of hydraulic forces acting on the boundary based on flow velocity rather than shear stress are more reliable. Several adjustments for local conditions, such as channel curvature, superelevation, or boundary roughness, may be unwarranted in view of the difficulty in estimating critical hydraulic forces for which the riprap is to be designed. Success of the riprap is related not only to the appropriate procedure for selecting stone size, but also to the reliability of estimated hydraulic and channel factors applicable to the site. (See also W89-04910) (Author 's abstract)
Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil
Dunne, T.; Mertes, L.A.K.; Meade, R.H.; Richey, J.E.; Forsberg, B.R.
1998-01-01
Sediment transport through the Brazilian sector of the Amazon River valley, a distance of 2010 km, involves exchanges between the channel and the flood plain that in each direction exceed the annual flux of sediment out of the river at O??bidos (???1200 Mt yr-1). The exchanges occur through bank erosion, bar deposition, settling from diffuse overbank flow, and sedimentation in flood-plain channels. We estimated the magnitude of these exchanges for each of 10 reaches of the valley, and combined them with calculations of sediment transport into and out of the reaches based on sediment sampling and flow records to define a sediment budget for each reach. Residuals in the sediment budget of a reach include errors of estimation and erosion or deposition within the channel. The annual supply of sediment entering the channel from bank erosion was estimated to average 1570 Mt yr-1 (1.3 ?? the O??bidos flux) and the amount transferred from channel transport to the bars (380 Mt yr-1) and the flood plain (460 Mt yr-1 in channelized flow; 1230 Mt yr-1 in diffuse overbank flow) totaled 2070 Mt yr-1 (1.7 ?? the O??bidos flux). Thus, deposition on the bars and flood plain exceeded bank erosion by 500 Mt yr-1 over a 10-16 yr period. Sampling and calculation of sediment loads in the channel indicate a net accumulation in the valley floor of approximately 200 Mt yr-1 over 16 yr, crudely validating the process-based calculations of the sediment budget, which in turn illuminate the physical controls on each exchange process. Another 300-400 Mt yr-1 are deposited in a delta plain downstream of O??bidos. The components of the sediment budget reflect hydrologie characteristics of the valley floor and geomorphic characteristics of the channel and flood plain, which in turn are influenced by tectonic features of the Amazon structural trough.
An Embedded Sensor Node Microcontroller with Crypto-Processors.
Panić, Goran; Stecklina, Oliver; Stamenković, Zoran
2016-04-27
Wireless sensor network applications range from industrial automation and control, agricultural and environmental protection, to surveillance and medicine. In most applications, data are highly sensitive and must be protected from any type of attack and abuse. Security challenges in wireless sensor networks are mainly defined by the power and computing resources of sensor devices, memory size, quality of radio channels and susceptibility to physical capture. In this article, an embedded sensor node microcontroller designed to support sensor network applications with severe security demands is presented. It features a low power 16-bitprocessor core supported by a number of hardware accelerators designed to perform complex operations required by advanced crypto algorithms. The microcontroller integrates an embedded Flash and an 8-channel 12-bit analog-to-digital converter making it a good solution for low-power sensor nodes. The article discusses the most important security topics in wireless sensor networks and presents the architecture of the proposed hardware solution. Furthermore, it gives details on the chip implementation, verification and hardware evaluation. Finally, the chip power dissipation and performance figures are estimated and analyzed.
Compact disk error measurements
NASA Technical Reports Server (NTRS)
Howe, D.; Harriman, K.; Tehranchi, B.
1993-01-01
The objectives of this project are as follows: provide hardware and software that will perform simple, real-time, high resolution (single-byte) measurement of the error burst and good data gap statistics seen by a photoCD player read channel when recorded CD write-once discs of variable quality (i.e., condition) are being read; extend the above system to enable measurement of the hard decision (i.e., 1-bit error flags) and soft decision (i.e., 2-bit error flags) decoding information that is produced/used by the Cross Interleaved - Reed - Solomon - Code (CIRC) block decoder employed in the photoCD player read channel; construct a model that uses data obtained via the systems described above to produce meaningful estimates of output error rates (due to both uncorrected ECC words and misdecoded ECC words) when a CD disc having specific (measured) error statistics is read (completion date to be determined); and check the hypothesis that current adaptive CIRC block decoders are optimized for pressed (DAD/ROM) CD discs. If warranted, do a conceptual design of an adaptive CIRC decoder that is optimized for write-once CD discs.
An Embedded Sensor Node Microcontroller with Crypto-Processors
Panić, Goran; Stecklina, Oliver; Stamenković, Zoran
2016-01-01
Wireless sensor network applications range from industrial automation and control, agricultural and environmental protection, to surveillance and medicine. In most applications, data are highly sensitive and must be protected from any type of attack and abuse. Security challenges in wireless sensor networks are mainly defined by the power and computing resources of sensor devices, memory size, quality of radio channels and susceptibility to physical capture. In this article, an embedded sensor node microcontroller designed to support sensor network applications with severe security demands is presented. It features a low power 16-bitprocessor core supported by a number of hardware accelerators designed to perform complex operations required by advanced crypto algorithms. The microcontroller integrates an embedded Flash and an 8-channel 12-bit analog-to-digital converter making it a good solution for low-power sensor nodes. The article discusses the most important security topics in wireless sensor networks and presents the architecture of the proposed hardware solution. Furthermore, it gives details on the chip implementation, verification and hardware evaluation. Finally, the chip power dissipation and performance figures are estimated and analyzed. PMID:27128925
Gilbert, Jessica R.; Symmonds, Mkael; Hanna, Michael G.; Dolan, Raymond J.; Friston, Karl J.; Moran, Rosalyn J.
2016-01-01
Clinical assessments of brain function rely upon visual inspection of electroencephalographic waveform abnormalities in tandem with functional magnetic resonance imaging. However, no current technology proffers in vivo assessments of activity at synapses, receptors and ion-channels, the basis of neuronal communication. Using dynamic causal modeling we compared electrophysiological responses from two patients with distinct monogenic ion channelopathies and a large cohort of healthy controls to demonstrate the feasibility of assaying synaptic-level channel communication non-invasively. Synaptic channel abnormality was identified in both patients (100% sensitivity) with assay specificity above 89%, furnishing estimates of neurotransmitter and voltage-gated ion throughput of sodium, calcium, chloride and potassium. This performance indicates a potential novel application as an adjunct for clinical assessments in neurological and psychiatric settings. More broadly, these findings indicate that biophysical models of synaptic channels can be estimated non-invasively, having important implications for advancing human neuroimaging to the level of non-invasive ion channel assays. PMID:26342528
Atmospheric Science Data Center
2013-07-10
... channel due to uncertainty in the H2O spectroscopy in this spectral band Updated our estimation of the SAGE II water vapor channel filter location drift resulting in better agreement with more modern datasets ...
Estimating cognitive workload using wavelet entropy-based features during an arithmetic task.
Zarjam, Pega; Epps, Julien; Chen, Fang; Lovell, Nigel H
2013-12-01
Electroencephalography (EEG) has shown promise as an indicator of cognitive workload; however, precise workload estimation is an ongoing research challenge. In this investigation, seven levels of workload were induced using an arithmetic task, and the entropy of wavelet coefficients extracted from EEG signals is shown to distinguish all seven levels. For a subject-independent multi-channel classification scheme, the entropy features achieved high accuracy, up to 98% for channels from the frontal lobes, in the delta frequency band. This suggests that a smaller number of EEG channels in only one frequency band can be deployed for an effective EEG-based workload classification system. Together with analysis based on phase locking between channels, these results consistently suggest increased synchronization of neural responses for higher load levels. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yambe, Kiyoyuki; Saito, Hidetoshi
2017-12-01
When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.
Effective pore size and radius of capture for K(+) ions in K-channels.
Moldenhauer, Hans; Díaz-Franulic, Ignacio; González-Nilo, Fernando; Naranjo, David
2016-02-02
Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (r(E)) in several K-channel crystal structures. r(E) was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent r(E) estimates for MthK and Kv1.2/2.1 structures, with r(E) = 5.3-5.9 Å and r(E) = 4.5-5.2 Å, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (r(C)) for two electrophysiological counterparts, the large conductance calcium activated K-channel (r(C) = 2.2 Å) and the Shaker Kv-channel (r(C) = 0.8 Å), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between r(E) and r(C), produced consistent size radii of 3.1-3.7 Å and 3.6-4.4 Å for hydrated K(+) ions. These hydrated K(+) estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-06
...). During the POI, PD/TK/IK's U.S. sales were made through the following general channels of distribution... Act, we have applied the EP methodology for sales made through the first channel of distribution noted... purchaser in the United States prior to importation. Regarding the second channel of distribution noted...
QPatch: the missing link between HTS and ion channel drug discovery.
Mathes, Chris; Friis, Søren; Finley, Michael; Liu, Yi
2009-01-01
The conventional patch clamp has long been considered the best approach for studying ion channel function and pharmacology. However, its low throughput has been a major hurdle to overcome for ion channel drug discovery. The recent emergence of higher throughput, automated patch clamp technology begins to break this bottleneck by providing medicinal chemists with high-quality, information-rich data in a more timely fashion. As such, these technologies have the potential to bridge a critical missing link between high-throughput primary screening and meaningful ion channel drug discovery programs. One of these technologies, the QPatch automated patch clamp system developed by Sophion Bioscience, records whole-cell ion channel currents from 16 or 48 individual cells in a parallel fashion. Here, we review the general applicability of the QPatch to studying a wide variety of ion channel types (voltage-/ligand-gated cationic/anionic channels) in various expression systems. The success rate of gigaseals, formation of the whole-cell configuration and usable cells ranged from 40-80%, depending on a number of factors including the cell line used, ion channel expressed, assay development or optimization time and expression level in these studies. We present detailed analyses of the QPatch features and results in case studies in which secondary screening assays were successfully developed for a voltage-gated calcium channel and a ligand-gated TRP channel. The increase in throughput compared to conventional patch clamp with the same cells was approximately 10-fold. We conclude that the QPatch, combining high data quality and speed with user friendliness and suitability for a wide array of ion channels, resides on the cutting edge of automated patch clamp technology and plays a pivotal role in expediting ion channel drug discovery.
Changes in Channel Geometry through the Holocene in the Le Sueur River, South-Central Minnesota, USA
NASA Astrophysics Data System (ADS)
Targos, Courtney Ann
Paleochannels preserved on terraces via meander cutoffs during an incisional period record the channel geometry and thus discharge at distinct points in time throughout a river's history. We measured paleochannel geometry on terraces throughout the Le Sueur River in south-central Minnesota, to track how channel geometry has changed over the last 13,400 years. A rapid drop in base level 13,400 yr B.P. triggered knickpoint migration and valley incision that is ongoing today. Since the 1800's, the area has developed rapidly with an increase in agriculture and associated drainage, directly impacting river discharge by increasing water input to the river. Five paleochannels were identified on terraces along the Le Sueur River from 1m-resolution lidar data. Ground Penetrating Radar (GPR) was used to obtain a subsurface image across paleomeanders to estimate the geometry of paleochannels. Paleochannel geometry and estimated discharge were then compared to modern conditions to assess how much change has occurred. Three lines were run across each paleochannel perpendicular to the historic water flow. Each of the 15 lines were processed using the EKKO Project 2 software supplied by Sensors and Software to sharpen the images, making it easier to identify the paleochannel geometry. Paleodischarge was determined using the Law of the Wall and Manning's Equation, using modern slope and roughness conditions. OSL samples were collected from overbank deposits on terraces to determine the time of channel abandonment, and supplemented with terrace ages obtained from a numerical model of valley incision. Paleodischarge coupled with depositional ages provide a history of flow conditions on the Le Sueur River. Results show an increase in channel widths from the time paleochannels were occupied to modern channel dimensions from an average of 20 meters to 35 meters. The change was not constant through time, as all paleochannels analyzed on terraces had similar-sized channels. The best way to determine paleogeometry was using the 'best interpretation' of GPR data couple with coring data; and paleodischarge was best estimated using Manning's equation with an n value of 0.035. Results show an increase in discharge compared to paleochannels of a factor of two. Uncertainty estimates in GPR-based paleogeometry can change paleodischarge calculations by 50 %. Incremental flood frequency analyses, based on data obtained from the Red Jacket stream gage at the outlet of the Le Sueur, suggest a 1.5- and 2-year flood of 102 m3/s and 154 m3/s, respectively, which is comparable to estimations of bankfull based on current channel geometry at the Red Jacket gage, validating the methodology. Problems associated with paleogeometry estimations are primarily due to meander bend preservation in the subsurface, challenging GPR interpretation. The increase in channel geometry and discharge implies that the increase in flow associated with drainage and climate change since the area's development has greatly impacted the Le Sueur River. This resulted in a change in channel morphometry through increased erosion along the bluffs and banks, widening channels. This increase in erosion has directly impacted the amount of sediment delivered to the rivers from banks and bluffs, increasing the fine sediment load in this turbidity-impaired river system.
Silicon photonics WDM transmitter with single section semiconductor mode-locked laser
NASA Astrophysics Data System (ADS)
Müller, Juliana; Hauck, Johannes; Shen, Bin; Romero-García, Sebastian; Islamova, Elmira; Azadeh, Saeed Sharif; Joshi, Siddharth; Chimot, Nicolas; Moscoso-Mártir, Alvaro; Merget, Florian; Lelarge, François; Witzens, Jeremy
2015-04-01
We demonstrate a wavelength domain-multiplexed (WDM) optical link relying on a single section semiconductor mode-locked laser (SS-MLL) with quantum dash (Q-Dash) gain material to generate 25 optical carriers spaced by 60.8 GHz, as well as silicon photonics (SiP) resonant ring modulators (RRMs) to modulate individual optical channels. The link requires optical reamplification provided by an erbium-doped fiber amplifier (EDFA) in the system experiments reported here. Open eye diagrams with signal quality factors (Q-factors) above 7 are measured with a commercial receiver (Rx). For higher compactness and cost effectiveness, reamplification of the modulated channels with a semiconductor optical amplifier (SOA) operated in the linear regime is highly desirable. System and device characterization indicate compatibility with the latter. While we expect channel counts to be primarily limited by the saturation output power level of the SOA, we estimate a single SOA to support more than eight channels. Prior to describing the system experiments, component design and detailed characterization results are reported including design and characterization of RRMs, ring-based resonant optical add-drop multiplexers (RR-OADMs) and thermal tuners, S-parameters resulting from the interoperation of RRMs and RR-OADMs, and characterization of Q-Dash SS-MLLs reamplified with a commercial SOA. Particular emphasis is placed on peaking effects in the transfer functions of RRMs and RR-OADMs resulting from transient effects in the optical domain, as well as on the characterization of SS-MLLs in regard to relative intensity noise (RIN), stability of the modes of operation, and excess noise after reamplification.
Improved Surface Parameter Retrievals using AIRS/AMSU Data
NASA Technical Reports Server (NTRS)
Susskind, Joel; Blaisdell, John
2008-01-01
The AIRS Science Team Version 5.0 retrieval algorithm became operational at the Goddard DAAC in July 2007 generating near real-time products from analysis of AIRS/AMSU sounding data. This algorithm contains many significant theoretical advances over the AIRS Science Team Version 4.0 retrieval algorithm used previously. Two very significant developments of Version 5 are: 1) the development and implementation of an improved Radiative Transfer Algorithm (RTA) which allows for accurate treatment of non-Local Thermodynamic Equilibrium (non-LTE) effects on shortwave sounding channels; and 2) the development of methodology to obtain very accurate case by case product error estimates which are in turn used for quality control. These theoretical improvements taken together enabled a new methodology to be developed which further improves soundings in partially cloudy conditions. In this methodology, longwave C02 channel observations in the spectral region 700 cm(exp -1) to 750 cm(exp -1) are used exclusively for cloud clearing purposes, while shortwave C02 channels in the spectral region 2195 cm(exp -1) 2395 cm(exp -1) are used for temperature sounding purposes. This allows for accurate temperature soundings under more difficult cloud conditions. This paper further improves on the methodology used in Version 5 to derive surface skin temperature and surface spectral emissivity from AIRS/AMSU observations. Now, following the approach used to improve tropospheric temperature profiles, surface skin temperature is also derived using only shortwave window channels. This produces improved surface parameters, both day and night, compared to what was obtained in Version 5. These in turn result in improved boundary layer temperatures and retrieved total O3 burden.
Non-dystrophic myotonia: prospective study of objective and patient reported outcomes.
Trivedi, Jaya R; Bundy, Brian; Statland, Jeffrey; Salajegheh, Mohammad; Rayan, Dipa Raja; Venance, Shannon L; Wang, Yunxia; Fialho, Doreen; Matthews, Emma; Cleland, James; Gorham, Nina; Herbelin, Laura; Cannon, Stephen; Amato, Anthony; Griggs, Robert C; Hanna, Michael G; Barohn, Richard J
2013-07-01
Non-dystrophic myotonias are rare diseases caused by mutations in skeletal muscle chloride and sodium ion channels with considerable phenotypic overlap between diseases. Few prospective studies have evaluated the sensitivity of symptoms and signs of myotonia in a large cohort of patients. We performed a prospective observational study of 95 participants with definite or clinically suspected non-dystrophic myotonia recruited from six sites in the USA, UK and Canada between March 2006 and March 2009. We used the common infrastructure and data elements provided by the NIH-funded Rare Disease Clinical Research Network. Outcomes included a standardized symptom interview and physical exam; the Short Form-36 and the Individualized Neuromuscular Quality of Life instruments; electrophysiological short and prolonged exercise tests; manual muscle testing; and a modified get-up-and-go test. Thirty-two participants had chloride channel mutations, 34 had sodium channel mutations, nine had myotonic dystrophy type 2, one had myotonic dystrophy type 1, and 17 had no identified mutation. Phenotype comparisons were restricted to those with sodium channel mutations, chloride channel mutations, and myotonic dystrophy type 2. Muscle stiffness was the most prominent symptom overall, seen in 66.7% to 100% of participants. In comparison with chloride channel mutations, participants with sodium mutations had an earlier age of onset of stiffness (5 years versus 10 years), frequent eye closure myotonia (73.5% versus 25%), more impairment on the Individualized Neuromuscular Quality of Life summary score (20.0 versus 9.44), and paradoxical eye closure myotonia (50% versus 0%). Handgrip myotonia was seen in three-quarters of participants, with warm up of myotonia in 75% chloride channel mutations, but also 35.3% of sodium channel mutations. The short exercise test showed ≥10% decrement in the compound muscle action potential amplitude in 59.3% of chloride channel participants compared with 27.6% of sodium channel participants, which increased post-cooling to 57.6% in sodium channel mutations. In evaluation of patients with clinical and electrical myotonia, despite considerable phenotypic overlap, the presence of eye closure myotonia, paradoxical myotonia, and an increase in short exercise test sensitivity post-cooling suggest sodium channel mutations. Outcomes designed to measure stiffness or the electrophysiological correlates of stiffness may prove useful for future clinical trials, regardless of underlying mutation, and include patient-reported stiffness, bedside manoeuvres to evaluate myotonia, muscle specific quality of life instruments and short exercise testing.
Habitat Restoration and Monitoring in Urban Streams: The Case of Tryon Creek in Portland, OR
NASA Astrophysics Data System (ADS)
Rios Touma, B. P.; Prescott, C.; Axtell, S.; Kondolf, G. M.
2013-12-01
Habitat enhancement in urban streams can be important for threatened species but challenging, because of altered catchment hydrology and urban encroachment on floodplains and channel banks. In Portland (OR) restoration actions have been undertaken at the watershed scale (e.g.: storm water management, protection of sites with high watershed value) to improve water quality, and at reach scale, when water quality and quantity are adequate, to increase habitat heterogeneity and stabilize banks. To evaluate reach-scale restoration projects in the Tryon Creek watershed, we sampled benthic macroinvertebrates and conducted habitat quality surveys pre-project and over 4 years post- project. Species sensitive to pollution and diversity of trophic groups increased after restoration. Although taxonomical diversity increased after restoration, but was still low compared to reference streams. We found no significant changes in trait proportions and functional diversity. Functional diversity, proportion of shredders and semivoltine invertebrates were significantly higher in reference streams than the restored stream reaches. We hypothesized that inputs of coarse particulate organic matter and land use at watershed scale may explain the differences in biodiversity between restored and reference stream reaches. Variables such as substrate composition, canopy cover or large wood pieces did not change from pre- to post-project, so could not explain the changes in the community. This may have been partly attributable to insensitivity of the visual estimate methods used, but likely also reflects an importance influence of watershed variables on aquatic biota - suggesting watershed actions may be more effective for the ecological recovery of streams. For future projects, we recommend multihabitat benthic sampling supported by studies of channel geomorphology to better understand stream response to restoration actions.
The Distribution of Lightning Channel Lengths in Northern Alabama Thunderstorms
NASA Technical Reports Server (NTRS)
Peterson, H. S.; Koshak, W. J.
2010-01-01
Lightning is well known to be a major source of tropospheric NOx, and in most cases is the dominant natural source (Huntreiser et al 1998, Jourdain and Hauglustaine 2001). Production of NOx by a segment of a lightning channel is a function of channel segment energy density and channel segment altitude. A first estimate of NOx production by a lightning flash can be found by multiplying production per segment [typically 104 J/m; Hill (1979)] by the total length of the flash s channel. The purpose of this study is to determine average channel length for lightning flashes near NALMA in 2008, and to compare average channel length of ground flashes to the average channel length of cloud flashes.
Water quality of streams and springs, Green River Basin, Wyoming
DeLong, L.L.
1986-01-01
Data concerning salinity, phosphorus, and trace elements in streams and springs within the Green River Basin in Wyoming are summarized. Relative contributions of salinity are shown through estimates of annual loads and average concentrations at 11 water quality measurements sites for the 1970-77 water years. A hypothetical diversion of 20 cu ft/sec from the Big Sandy River was found to lower dissolved solids concentration in the Green River at Green River, Wyoming. This effect was greatest during the winter months, lowering dissolved solids concentration as much as 13%. Decrease in dissolved solids concentrations during the remainder of the year was generally less than 2%. Unlike the dilution effect that overland runoff has on perennial streams, runoff in ephemeral and intermittent streams within the basin was found to be enriched by the flushing of salts from normally dry channels and basin surfaces. Relative concentrations of sodium and sulfate in streams within the basin appear to be controlled by solubility. A downstream trend of increasing relative concentrations of sodium, sulfate, or both with increasing dissolved solids concentration was evident in all streams sampled. Estimates of total phosphorus concentration at water quality measurement sites indicate that phosphorus is removed from the Green River water as it passes through Fontenelle and Flaming Gorge Reservoirs. Total phosphorus concentration at some stream sites is directly or inversely related to streamflow, but at most sites a simple relation between concentration and streamflow is not discernable. (USGS)
Coherent communication with continuous quantum variables
NASA Astrophysics Data System (ADS)
Wilde, Mark M.; Krovi, Hari; Brun, Todd A.
2007-06-01
The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.
Juracek, Kyle E.
2011-01-01
Continuous streamflow and turbidity data collected from October 1, 2008, to September 30, 2010, at streamgage sites upstream and downstream from Kanopolis and Tuttle Creek Lakes, Kansas, were used to compute the total suspended-sediment load delivered to and released from each reservoir as well as the sediment trap efficiency for each reservoir. Ongoing sedimentation is decreasing the ability of the reservoirs to serve several purposes including flood control, water supply, and recreation. River channel stability upstream and downstream from the reservoirs was assessed using historical streamgage information. For Kanopolis Lake, the total 2-year inflow suspended-sediment load was computed to be 600 million pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 31 million pounds. Sediment trap efficiency for the reservoir was estimated to be 95 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 129,000 pounds per square mile per year. No pronounced changes in channel width were evident at five streamgage sites located upstream from the reservoir. At the Ellsworth streamgage site, located upstream from the reservoir, long-term channel-bed aggradation was followed by a period of stability. Current (2010) conditions at five streamgages located upstream from the reservoir were typified by channel-bed stability. At the Langley streamgage site, located immediately downstream from the reservoir, the channel bed degraded 6.15 feet from 1948 to 2010. For Tuttle Creek Lake, the total 2-year inflow suspended-sediment load was computed to be 13.3 billion pounds. Most of the suspended-sediment load was delivered during short-term, high-discharge periods. The total 2-year outflow suspended-sediment load was computed to be 327 million pounds. Sediment trap efficiency for the reservoir was estimated to be 98 percent. The mean annual suspended-sediment yield from the upstream basin was estimated to be 691,000 pounds per square mile per year. In general, no pronounced changes in channel width were evident at six streamgage sites located upstream from the reservoir. At the Barnes and Marysville streamgage sites, located upstream from the reservoir, long-term channel-bed degradation followed by stability was indicated. At the Frankfort streamgage site, located upstream from the reservoir, channel-bed aggradation of 1.65 feet from 1969 to 1989 followed by channel-bed degradation of 2.4 feet from 1989 to 2010 was indicated and may represent the passage of a sediment pulse caused by historical disturbances (for example, channelization) in the upstream basin. With the exception of the Frankfort streamgage site, current (2010) conditions at four streamgages located upstream from the reservoir were typified by channel-bed stability. At the Manhattan streamgage site, located downstream from the reservoir, high-flow releases associated with the 1993 flood widened the channel about 60 feet (30 percent). The channel bed at this site degraded 4.2 feet from 1960 to 1998 and since has been relatively stable. For the purpose of computing suspended-sediment concentration and load, the use of turbidity data in a regression model can provide more reliable and reproducible estimates than a regression model that uses discharge as the sole independent variable. Moreover, the use of discharge only to compute suspended-sediment concentration and load may result in overprediction. Stream channel banks, compared to channel beds, likely are a more important source of sediment to Kanopolis and Tuttle Creek Lakes from the upstream basins. Other sediment sources include surface-soil erosion in the basins and shoreline erosion in the reservoirs.
Improved Soundings and Error Estimates using AIRS/AMSU Data
NASA Technical Reports Server (NTRS)
Susskind, Joel
2006-01-01
AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1 K, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the at-launch algorithm, and a post-launch algorithm which differed only in the minor details from the at-launch algorithm, have been described previously. The post-launch algorithm, referred to as AIRS Version 4.0, has been used by the Goddard DAAC to analyze and distribute AIRS retrieval products. In this paper we show progress made toward the AIRS Version 5.0 algorithm which will be used by the Goddard DAAC starting late in 2006. A new methodology has been developed to provide accurate case by case error estimates for retrieved geophysical parameters and for the channel by channel cloud cleared radiances used to derive the geophysical parameters from the AIRS/AMSU observations. These error estimates are in turn used for quality control of the derived geophysical parameters and clear column radiances. Improvements made to the retrieval algorithm since Version 4.0 are described as well as results comparing Version 5.0 retrieval accuracy and spatial coverage with those obtained using Version 4.0.
HTS techniques for patch clamp-based ion channel screening - advances and economy.
Farre, Cecilia; Fertig, Niels
2012-06-01
Ten years ago, the first publication appeared showing patch clamp recordings performed on a planar glass chip instead of using a conventional patch clamp pipette. "Going planar" proved to revolutionize ion channel drug screening as we know it, by allowing high quality measurements of ion channels and their effectors at a higher throughput and at the same time de-skilling the highly laborious technique. Over the years, platforms evolved in response to user requirements regarding experimental features, data handling plus storage, and suitable target diversity. This article gives a snapshot image of patch clamp-based ion channel screening with focus on platforms developed to meet requirements of high-throughput screening environments. The commercially available platforms are described, along with their benefits and drawbacks in ion channel drug screening. Automated patch clamp (APC) platforms allow faster investigation of a larger number of ion channel active compounds or cell clones than previously possible. Since patch clamp is the only method allowing direct, real-time measurements of ion channel activity, APC holds the promise of picking up high quality leads, where they otherwise would have been overseen using indirect methods. In addition, drug candidate safety profiling can be performed earlier in the drug discovery process, avoiding late-phase compound withdrawal due to safety liability issues, which is highly costly and inefficient.
Amazon floodplain channels regulate channel-floodplain water exchange
NASA Astrophysics Data System (ADS)
Bates, P. D.; Baugh, C.; Trigg, M.
2017-12-01
We examine the role of floodplain channels in regulating the exchange of water between the Amazon main stem and its extensive floodplains using a combination of field survey, remote sensing and numerical modelling for a 30,000 km2 area around the confluence of the Solimões and Purus rivers. From Landsat imagery we identified 1762 individual floodplain channel reaches with total length of nearly 9300 line km that range in width from 900m to 20m. Using a boat survey we measured width and depth along 509 line km of floodplain channels in 45 separate reaches and used these data to develop geomorphic relationships between width and depth. This enabled reconstruction of the depth of all other channels in the Landsat survey to an RMSE of 2.5m. We then constructed a 2D hydraulic model of this site which included all 9300km of floodplain channels as sub-grid scale features using a recently developed version of the LISFLOOD-FP code. The DEM for the model was derived from a version of the SRTM Digital Elevation Model that was processed to remove vegetation artefacts. The model was run at 270m resolution over the entire 30,000 km2 domain for the period from 2002-2009. Simulations were run with and without floodplain channels to examine the impact of these features on floodplain flow dynamics and storage. Simulated floodplain channel hydraulics were validated against a combination of in-situ and remotely sensed data. Our results show that approximately 100 km3 of water is exchanged between the channel and the floodplain during a typical annual cycle, and 8.5±2.1% of mainstem flows is routed through the floodplain. The overall effect of floodplains channels was to increase the duration of connections between the Amazon River and the floodplain. Inclusion of floodplain channels in the model increased inundation volume by 7.3% - 11.3% at high water, and decreased it at low water by 4.0% - 16.6%, with the range in these estimates due to potential errors in floodplain channel geometry. Inundation extent in the model did not increase at high water, but low water flood extents declined by 8.8% - 29.7% due to increased connectivity between the floodplain and the mainstem. The wide range of flow decrease estimates demonstrates that the results are sensitive to errors in the estimation of floodplain channel geometries, particularly bed elevations.
An Algorithm For Climate-Quality Atmospheric Profiling Continuity From EOS Aqua To Suomi-NPP
NASA Astrophysics Data System (ADS)
Moncet, J. L.
2015-12-01
We will present results from an algorithm that is being developed to produce climate-quality atmospheric profiling earth system data records (ESDRs) for application to hyperspectral sounding instrument data from Suomi-NPP, EOS Aqua, and other spacecraft. The current focus is on data from the S-NPP Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) instruments as well as the Atmospheric InfraRed Sounder (AIRS) on EOS Aqua. The algorithm development at Atmospheric and Environmental Research (AER) has common heritage with the optimal estimation (OE) algorithm operationally processing S-NPP data in the Interface Data Processing Segment (IDPS), but the ESDR algorithm has a flexible, modular software structure to support experimentation and collaboration and has several features adapted to the climate orientation of ESDRs. Data record continuity benefits from the fact that the same algorithm can be applied to different sensors, simply by providing suitable configuration and data files. The radiative transfer component uses an enhanced version of optimal spectral sampling (OSS) with updated spectroscopy, treatment of emission that is not in local thermodynamic equilibrium (non-LTE), efficiency gains with "global" optimal sampling over all channels, and support for channel selection. The algorithm is designed for adaptive treatment of clouds, with capability to apply "cloud clearing" or simultaneous cloud parameter retrieval, depending on conditions. We will present retrieval results demonstrating the impact of a new capability to perform the retrievals on sigma or hybrid vertical grid (as opposed to a fixed pressure grid), which particularly affects profile accuracy over land with variable terrain height and with sharp vertical structure near the surface. In addition, we will show impacts of alternative treatments of regularization of the inversion. While OE algorithms typically implement regularization by using background estimates from climatological or numerical forecast data, those sources are problematic for climate applications due to the imprint of biases from past climate analyses or from model error.
Treatment for calcium channel blocker poisoning: A systematic review
Dubé, P.-A.; Gosselin, S.; Guimont, C.; Godwin, J.; Archambault, P. M.; Chauny, J.-M.; Frenette, A. J.; Darveau, M.; Le sage, N.; Poitras, J.; Provencher, J.; Juurlink, D. N.; Blais, R.
2014-01-01
Context Calcium channel blocker poisoning is a common and sometimes life-threatening ingestion. Objective To evaluate the reported effects of treatments for calcium channel blocker poisoning. The primary outcomes of interest were mortality and hemodynamic parameters. The secondary outcomes included length of stay in hospital, length of stay in intensive care unit, duration of vasopressor use, functional outcomes, and serum calcium channel blocker concentrations. Methods Medline/Ovid, PubMed, EMBASE, Cochrane Library, TOXLINE, International pharmaceutical abstracts, Google Scholar, and the gray literature up to December 31, 2013 were searched without time restriction to identify all types of studies that examined effects of various treatments for calcium channel blocker poisoning for the outcomes of interest. The search strategy included the following Keywords: [calcium channel blockers OR calcium channel antagonist OR calcium channel blocking agent OR (amlodipine or bencyclane or bepridil or cinnarizine or felodipine or fendiline or flunarizine or gallopamil or isradipine or lidoflazine or mibefradil or nicardipine or nifedipine or nimodipine or nisoldipine or nitrendipine or prenylamine or verapamil or diltiazem)] AND [overdose OR medication errors OR poisoning OR intoxication OR toxicity OR adverse effect]. Two reviewers independently selected studies and a group of reviewers abstracted all relevant data using a pilot-tested form. A second group analyzed the risk of bias and overall quality using the STROBE (STrengthening the Reporting of OBservational studies in Epidemiology) checklist and the Thomas tool for observational studies, the Institute of Health Economics tool for Quality of Case Series, the ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines, and the modified NRCNA (National Research Council for the National Academies) list for animal studies. Qualitative synthesis was used to summarize the evidence. Of 15,577 citations identified in the initial search, 216 were selected for analysis, including 117 case reports. The kappa on the quality analysis tools was greater than 0.80 for all study types. Results The only observational study in humans examined high-dose insulin and extracorporeal life support. The risk of bias across studies was high for all interventions and moderate to high for extracorporeal life support. High-dose insulin. High-dose insulin (bolus of 1 unit/kg followed by an infusion of 0.5–2.0 units/kg/h) was associated with improved hemodynamic parameters and lower mortality, at the risks of hypoglycemia and hypokalemia (low quality of evidence). Extracorporeal life support. Extracorporeal life support was associated with improved survival in patients with severe shock or cardiac arrest at the cost of limb ischemia, thrombosis, and bleeding (low quality of evidence). Calcium, dopamine, and norepinephrine. These agents improved hemodynamic parameters and survival without documented severe side effects (very low quality of evidence). 4-Aminopyridine. Use of 4-aminopyridine was associated with improved hemodynamic parameters and survival in animal studies, at the risk of seizures. Lipid emulsion therapy. Lipid emulsion was associated with improved hemodynamic parameters and survival in animal models of intravenous verapamil poisoning, but not in models of oral verapamil poisoning. Other studies. Studies on decontamination, atropine, glucagon, pacemakers, levosimendan, and plasma exchange reported variable results, and the methodologies used limit their interpretation. No trial was documented in humans poisoned with calcium channel blockers for Bay K8644, CGP 28932, digoxin, cyclodextrin, liposomes, bicarbonate, carnitine, fructose 1,6-diphosphate, PK 11195, or triiodothyronine. Case reports were only found for charcoal hemoperfusion, dialysis, intra-aortic balloon pump, Impella device and methylene blue. Conclusions The treatment for calcium channel blocker poisoning is supported by low-quality evidence drawn from a heterogeneous and heavily biased literature. High-dose insulin and extracorporeal life support were the interventions supported by the strongest evidence, although the evidence is of low quality. PMID:25283255
In-service communication channel sensing based on reflectometry for TWDM-PON systems
NASA Astrophysics Data System (ADS)
Iida, Daisuke; Kuwano, Shigeru; Terada, Jun
2014-05-01
Many base stations are accommodated in TWDM-PON based mobile backhaul and fronthaul networks for future radio access, and failed connections in an optical network unit (ONU) wavelength channel severely degrade system performance. A cost effective in-service ONU wavelength channel monitor is essential to ensure proper system operation without failed connections. To address this issue we propose a reflectometry-based remote sensing method that provides wavelength channel information with the optical line terminal (OLT)-ONU distance. The method realizes real-time monitoring of ONU wavelength channels without signal quality degradation. Experimental results show it achieves wavelength channel distinction with high distance resolution.
FPGA implementation of image dehazing algorithm for real time applications
NASA Astrophysics Data System (ADS)
Kumar, Rahul; Kaushik, Brajesh Kumar; Balasubramanian, R.
2017-09-01
Weather degradation such as haze, fog, mist, etc. severely reduces the effective range of visual surveillance. This degradation is a spatially varying phenomena, which makes this problem non trivial. Dehazing is an essential preprocessing stage in applications such as long range imaging, border security, intelligent transportation system, etc. However, these applications require low latency of the preprocessing block. In this work, single image dark channel prior algorithm is modified and implemented for fast processing with comparable visual quality of the restored image/video. Although conventional single image dark channel prior algorithm is computationally expensive, it yields impressive results. Moreover, a two stage image dehazing architecture is introduced, wherein, dark channel and airlight are estimated in the first stage. Whereas, transmission map and intensity restoration are computed in the next stages. The algorithm is implemented using Xilinx Vivado software and validated by using Xilinx zc702 development board, which contains an Artix7 equivalent Field Programmable Gate Array (FPGA) and ARM Cortex A9 dual core processor. Additionally, high definition multimedia interface (HDMI) has been incorporated for video feed and display purposes. The results show that the dehazing algorithm attains 29 frames per second for the image resolution of 1920x1080 which is suitable of real time applications. The design utilizes 9 18K_BRAM, 97 DSP_48, 6508 FFs and 8159 LUTs.
NASA Astrophysics Data System (ADS)
Swadley, S. D.; Baker, N.; Derber, J.; Collard, A.; Hilton, F.; Ruston, B.; Bell, W.; Candy, B.; Kleespies, T. J.
2009-12-01
The NPOESS atmospheric sounding functionality will be accomplished using two separate sensor suites, the combined infrared (IR) and microwave (MW) sensor suite (CrIMSS), and the Microwave Imager/Sounder (MIS) instrument. CrIMSS consists of the Cross Track Infrared Sounder (CrIS) and the cross track Advanced Technology Microwave Sounder (ATMS), and is scheduled to fly on the NPOESS Preparatory Project (NPP), and NPOESS operational flight units C1 and C3. The MIS is a conical scanning polarimetric imager and sounder patterned after the heritage WindSat, and DMSP Special Sensor Microwave Imagers and Sounders (SSMI and SSMIS), and is scheduled for flight units C2, C3 and C4. ATMS combines the current operational Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS), but with an additional channel in the 51.76 GHz oxygen absorption region and 3 additional channels in the 165.5 and 183 GHz water vapor absorption band. CrIS is a Fourier Transform Spectrometer and will provide 159 shortwave IR channels, 433 mid-range IR channels, and 713 longwave IR channels. The heritage sensors for CrIS are the NASA Advanced Infrared Sounder (AIRS) and the MetOp-A Infrared Atmospheric Sounding Interferometer (IASI). Both AIRS and IASI are high quality, high spectral resolution sounders which represent a significant improvement in the effective vertical resolution over previous IR sounders. This presentation will give an overview of preparations underway for day-1 monitoring of NPP/NPOESS radiances, and subsequent operational radiance assimilation. These preparations capitalize on experience gained during the pre-launch preparations, sensor calibration/validation and operational assimilation for the heritage sensors. One important step is to use pre-flight sensor channel specifications, noise estimates and knowledge of the antenna patterns, to generate and test proxy NPP/NPOESS sensor observations in existing assimilation systems. Other critical factors for successful radiance assimilation include low noise measurements, channel sets that span the vertical space defined within the NWP model, a fast and accurate radiative transfer model, and bias correction schemes designed to remove systematic biases in the departures between the observed versus calculated radiances.
NASA Astrophysics Data System (ADS)
Yuan, Chunhua; Wang, Jiang; Yi, Guosheng
2017-03-01
Estimation of ion channel parameters is crucial to spike initiation of neurons. The biophysical neuron models have numerous ion channel parameters, but only a few of them play key roles in the firing patterns of the models. So we choose three parameters featuring the adaptation in the Ermentrout neuron model to be estimated. However, the traditional particle swarm optimization (PSO) algorithm is still easy to fall into local optimum and has the premature convergence phenomenon in the study of some problems. In this paper, we propose an improved method that uses a concave function and dynamic logistic chaotic mapping mixed to adjust the inertia weights of the fitness value, effectively improve the global convergence ability of the algorithm. The perfect predicting firing trajectories of the rebuilt model using the estimated parameters prove that only estimating a few important ion channel parameters can establish the model well and the proposed algorithm is effective. Estimations using two classic PSO algorithms are also compared to the improved PSO to verify that the algorithm proposed in this paper can avoid local optimum and quickly converge to the optimal value. The results provide important theoretical foundations for building biologically realistic neuron models.
Lew, Virgilio L; Tiffert, Teresa; Etzion, Zipora; Perdomo, Deisy; Daw, Nuala; Macdonald, Lynn; Bookchin, Robert M
2005-01-01
The Ca(2+)-activated K+ channels of human red blood cells (RBCs) (Gardos channels, hIK1, hSK4) can mediate rapid cell dehydration, of particular relevance to the pathophysiology of sickle cell disease. Previous investigations gave widely discrepant estimates of the number of Gardos channels per RBC, from as few as 1 to 3 to as many as 300, with large cell-to-cell differences, suggesting that RBCs could differ extensively in their susceptibility to dehydration by elevated Ca2+. Here we investigated the distribution of dehydration rates induced by maximal and uniform Ca2+ loads in normal (AA) and sickle (SS) RBCs by measuring the time-dependent changes in osmotic fragility and RBC volume distributions. We found a remarkable conservation of osmotic lysis and volume distribution profiles during Ca(2+)-induced dehydration, indicating overall uniformity of dehydration rates among AA and SS RBCs. In light of these results, alternative interpretations were suggested for the previously proposed low estimates and heterogeneity of channel numbers per cell. The results support the view that stochastic Ca2+ permeabilization rather than Gardos-channel variation is the main determinant selecting which SS cells dehydrate through Gardos channels in each sickling episode.
Correlator data analysis for the array feed compensation system
NASA Technical Reports Server (NTRS)
Iijima, B.; Fort, D.; Vilnrotter, V.
1994-01-01
The real-time array feed compensation system is currently being evaluated at DSS 13. This system recovers signal-to-noise ratio (SNR) loss due to mechanical antenna deformations by using an array of seven Ka-band (33.7-GHz) horns to collect the defocused signal fields. The received signals are downconverted and digitized, in-phase and quadrature samples are generated, and combining weights are applied before the samples are recombined. It is shown that when optimum combining weights are employed, the SNR of the combined signal approaches the sum of the channel SNR's. The optimum combining weights are estimated directly from the signals in each channel by the Real-Time Block 2 (RTB2) correlator; since it was designed for very-long-baseline interferometer (VLBI) applications, it can process broadband signals as well as tones to extract the required weight estimates. The estimation algorithms for the optimum combining weights are described for tones and broadband sources. Data recorded in correlator output files can also be used off-line to estimate combiner performance by estimating the SNR in each channel, which was done for data taken during a Jupiter track at DSS 13.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
... the quality, utility, and clarity of the information collected; (d) ways to minimize the burden of the... kilometers of a TV channel 7 transmitter to ensure that the system does not cause interference to TV channel 7 viewers. Applicants shall serve a copy of the analysis to the licensee of the affected TV Channel...
NASA Astrophysics Data System (ADS)
Ya-Chao, Zhang; Xiao-Wei, Zhou; Sheng-Rui, Xu; Da-Zheng, Chen; Zhi-Zhe, Wang; Xing, Wang; Jin-Feng, Zhang; Jin-Cheng, Zhang; Yue, Hao
2016-01-01
Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free InGaN channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 × 1013 cm-2 is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cm2/V·s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that InGaN channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional GaN channel heterostructure. The gratifying results imply that InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61306017, 61334002, 61474086, and 11435010) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61306017).
Arispe, N; Rojas, E; Pollard, H B
1993-01-01
Amyloid beta protein (A beta P) is the 40- to 42-residue polypeptide implicated in the pathogenesis of Alzheimer disease. We have incorporated this peptide into phosphatidylserine liposomes and then fused the liposomes with a planar bilayer. When incorporated into bilayers the A beta P forms channels, which generate linear current-voltage relationships in symmetrical solutions. A permeability ratio, PK/PCl, of 11 for the open A beta P channel was estimated from the reversal potential of the channel current in asymmetrical KCl solutions. The permeability sequence for different cations, estimated from the reversal potential of the A beta P-channel current for each system of asymmetrical solutions, is Pcs > PLi > PCa > or = PK > PNa. A beta P-channel current (either CS+ or Ca2+ as charge carriers) is blocked reversibly by tromethamine (millimolar range) and irreversibly by Al3+ (micromolar range). The inhibition of the A beta P-channel current by these two substances depends on transmembrane potential, suggesting that the mechanism of blockade involves direct interaction between tromethamine (or Al3+) and sites within the A beta P channel. Hitherto, A beta P has been presumed to be neurotoxic. On the basis of the present data we suggest that the channel activity of the polypeptide may be responsible for some or all of its neurotoxic effects. We further propose that a useful strategy for drug discovery for treatment of Alzheimer disease may include screening compounds for their ability to block or otherwise modify A beta P channels. PMID:8380642
NASA Astrophysics Data System (ADS)
Xie, Yi-Yuan; Li, Jia-Chao; He, Chao; Zhang, Zhen-Dong; Song, Ting-Ting; Xu, Chang-Jun; Wang, Gui-Jin
2016-10-01
A novel long-distance multi-channel bidirectional chaos communication system over multiple paths based on two synchronized 1550 nm vertical-cavity surface-emitting lasers (VCSELs) is proposed and studied theoretically. These two responding VCSELs (R-VCSELs) can output similar chaotic signals served as chaotic carrier in two linear polarization (LP) modes with identical signal injection from a driving VCSEL (D-VCSEL), which is subject to optical feedback and optical injection, simultaneously. Through the numerical simulations, high quality chaos synchronization between the two R-VCSELs can be obtained. Besides, the effects of varied qualities of chaos synchronization on communication performances in 20 km single mode fiber (SMF) channels are investigated by regulating different internal parameters mismatch after adopting chaos masking (CMS) technique. With the decrease of the maximum cross correlation coefficient (Max-C) between the two R-VCSELs, the bit error rate (BER) of decoded message increase. Meanwhile, the BER can still be less than 10-9 when the Max-C degrades to 0.982. Based on high quality synchronization, when the dispersion compensating fiber (DCF) links are introduced, 4n messages of 10 Gbit/s can transmit in 180 km SMF channels over n coupling paths, bidirectionally and simultaneously. Thorough tests are carried out with detailed analysis, demonstrating long-distance, multi-channel, bidirectional chaos communication based on VCSELs with chaotic signal injection.
Raymond, K.L.; Vondracek, B.
2011-01-01
Cattle grazing in riparian areas can reduce water quality, alter stream channel characteristics, and alter fish and macroinvertebrate assemblage structure. The U.S. Department of Agriculture, Natural Resources Conservation Services has recommended Rotational Grazing (RG) as an alternative management method on livestock and dairy operations to protect riparian areas and water quality. We evaluated 13 stream channel characteristics, benthic macroinvertebrate larvae (BML), and chironomid pupal exuviae (CPE) from 18 sites in the Upper Midwest of the United States in relation to RG and conventional grazing (CG). A Biotic Composite Score comprised of several macroinvertebrate metrics was developed for both the BML assemblage and the CPE assemblage. Multi-Response Permutation Procedures (MRPP) indicated a significant difference in stream channel characteristics between RG and CG. Nonmetric Multidimensional Scaling indicated that RG sites were associated with more stable stream banks, higher quality aquatic habitat, lower soil compaction, and larger particles in the streambed. However, neither MRPP nor Mann-Whitney U tests demonstrated a difference in Biotic Composite Scores for BML or CPE along RG and CG sites. The BML and CPE metrics were significantly correlated, indicating that they were likely responding to similar variables among the study sites. Although stream channel characteristics appeared to respond to grazing management, BML and CPE may have responded to land use throughout the watershed, as well as local land use. ?? 2011 Springer Science+Business Media B.V. (outside the USA).
Coes, A.L.; Pool, D.R.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.
2007-01-01
The timing and location of streamflow in the San Pedro River are partially dependent on the aerial distribution of recharge in the Sierra Vista subwatershed. Previous investigators have assumed that recharge in the subwatershed occurs only along the mountain fronts by way of stream-channel infiltration near the contact between low-permeability rocks of the mountains and the basin fill. Recent studies in other alluvial basins of the Southwestern United States, however, have shown that significant recharge can occur through the sediments of ephemeral stream channels at locations several kilometers distant from the mountains. The purpose of this study was to characterize the spatial distribution of infiltration and subsequent recharge through the ephemeral channels in the Sierra Vista subwatershed.Infiltration fluxes in ephemeral channels and through the basin floor of the subwatershed were estimated by using several methods. Data collected during the drilling and coring of 16 boreholes included physical, thermal, and hydraulic properties of sediments; chloride concentrations of sediments; and pore-water stable-isotope values and tritium activity. Surface and subsurface sediment temperatures were continuously measured at each borehole.Twelve boreholes were drilled in five ephemeral stream channels to estimate infiltration within ephemeral channels. Active infiltration was verified to at least 20 meters at 11 of the 12 borehole sites on the basis of low sediment-chloride concentrations, high soil-water contents, and pore-water tritium activity similar to present-day precipitation. Consolidated sediments at the twelfth site prevented core recovery and estimation of infiltration. Analytical and numerical methods were applied to determine the surface infiltration flux required to produce the observed sediment-temperature fluctuations at six sites. Infiltration fluxes were determined for summer ephemeral flow events only because no winter flows were recorded at the sites during the monitoring period.Four boreholes were drilled in the basin floor to estimate infiltration in areas between ephemeral channels. Infiltration fluxes through the basin floor ranged from less than 1 centimeter to 6 centimeters per year. At a site in semiconsolidated to consolidated basin-fill conglomerate, the long-term infiltration fluxes were very low (less than 1 centimeter per year). Chloride, tritium, and stable-isotope data indicate long periods of no net deep downward percolation flux beneath the basin floor. At a site in unconsolidated to semiconsolidated basin-fill sand and gravel, infiltration fluxes were high (2 to 6 centimeters per year). Chloride, tritium, and stable-isotope data indicate active infiltration to 8 meters, and a decrease in infiltration below 8 meters. The change in the infiltration rate below 8 meters is controlled by an increase in the silt and clay content of the sediment.Ephemeral-channel recharge for the entire subwatershed was estimated by upscaling the calculated infiltration fluxes and weighting the fluxes by streamflow duration, evaporation, and transpiration. In contrast to previous assumptions, recharge from ephemeral-streamflow infiltration occurs not only near the mountain fronts, but also along significant lengths of ephemeral channels. Although most of the ephemeral streams in the subwatershed flow less than a few days per year, the available streamflow quickly infiltrates past depths where it is available for evapotranspiration. This water likely stays in the unsaturated zone until it is vertically displaced by infiltrated water from subsequent streamflows and eventually recharges the regional aquifer. Ephemeral-channel infiltration during 2001 and 2002 was estimated to account for about 12 to 19 percent of the estimated average annual recharge in the Sierra Vista subwatershed.
An adaptive threshold detector and channel parameter estimator for deep space optical communications
NASA Technical Reports Server (NTRS)
Arabshahi, P.; Mukai, R.; Yan, T. -Y.
2001-01-01
This paper presents a method for optimal adaptive setting of ulse-position-modulation pulse detection thresholds, which minimizes the total probability of error for the dynamically fading optical fee space channel.
Niswonger, R.G.; Prudic, David E.; Fogg, G.E.; Stonestrom, David A.; Buckland, E.M.
2008-01-01
A method is presented for estimating seepage loss and streambed hydraulic conductivity along intermittent and ephemeral streams using streamflow front velocities in initially dry channels. The method uses the kinematic wave equation for routing streamflow in channels coupled to Philip's equation for infiltration. The coupled model considers variations in seepage loss both across and along the channel. Water redistribution in the unsaturated zone is also represented in the model. Sensitivity of the streamflow front velocity to parameters used for calculating seepage loss and for routing streamflow shows that the streambed hydraulic conductivity has the greatest sensitivity for moderate to large seepage loss rates. Channel roughness, geometry, and slope are most important for low seepage loss rates; however, streambed hydraulic conductivity is still important for values greater than 0.008 m/d. Two example applications are presented to demonstrate the utility of the method.
New Generation VLBI: Intraday UT1 Estimations
NASA Astrophysics Data System (ADS)
Ipatov, Alexander; Ivanov, Dmitriy; Ilin, Gennadiy; Smolentsev, Sergei; Gayazov, Iskander; Mardyshkin, Vyacheslav; Fedotov, Leonid; Stempkovski, Victor; Vytnov, Alexander; Salnikov, Alexander; Surkis, Igor; Mikhailov, Andrey; Marshalov, Dmitriy; Bezrukov, Ilya; Melnikov, Alexey; Ken, Voytsekh; Kurdubov, Sergei
2016-12-01
IAA finished work on the creation of the new generation radio interferometer with two VGOS antennas co-located at Badary and Zelenchukskaya. 48 single baseline one-hour VLBI sessions (up to four sessions per day) were performed from 04 Nov to 18 Nov 2015. Observations were carried out using wideband S/X receivers, three X-band and one S-band 512 MHz channels at one or two circular polarizations. Sessions consisted of about 60 scans with a 22-second minimum scan duration. The stations' broadband acquisition systems generated 1.5-3 TB data per session, which were transferred via Internet to the IAA FX correlator. The accuracy of the group delay in a single channel was 10-20 ps, which allows the use of every single channel's observations for geodetic analysis without synthesis. 156 single channel NGS-cards were obtained in total. The RMS of the differences between UT1-UTC estimates and IERS finals values is 19 μs.
NASA Technical Reports Server (NTRS)
Freeman, Jon C.
2004-01-01
A key parameter in the design trade-offs made during AlGaN/GaN HEMTs development for microwave power amplifiers is the channel temperature. An accurate determination can, in general, only be found using detailed software; however, a quick estimate is always helpful, as it speeds up the design cycle. This paper gives a simple technique to estimate the channel temperature of a generic microwave AlGaN/GaN HEMT on SiC or Sapphire, while incorporating the temperature dependence of the thermal conductivity. The procedure is validated by comparing its predictions with the experimentally measured temperatures in microwave devices presented in three recently published articles. The model predicts the temperature to within 5 to 10 percent of the true average channel temperature. The calculation strategy is extended to determine device temperature in power combining MMICs for solid-state power amplifiers (SSPAs).
Large woody debris budgets in the Caspar Creek Experimental Watersheds
Sue Hilton
2012-01-01
Monitoring of large woody debris (LWD) in the two mainstem channels of the Caspar Creek Experimental Watersheds since 1998, combined with older data from other work in the watersheds, gives estimates of channel wood input rates, survival, and outputs in intermediate-sized channels in coastal redwood forests. Input rates from standing trees for the two reaches over a 15...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akushichi, T., E-mail: taiju.aku7@isl.titech.ac.jp; Shuto, Y.; Sugahara, S., E-mail: sugahara@isl.titech.ac.jp
We investigate spin injection into Si channels using three-terminal spin-accumulation (3T-SA) devices with high-quality CoFe/MgO/n-Si and CoFe/AlO{sub x}/n-Si tunnel spin-injectors whose tunnel barriers are formed by radical oxidation of Mg and Al thin films deposited on Si(100) substrates and successive annealing under radical-oxygen exposure. When the MgO and AlO{sub x} barriers are not treated by the radical-oxygen annealing, the Hanle-effect signals obtained from the 3T-SA devices are closely fitted by a single Lorentz function representing a signal due to trap spins. On the other hand, when the tunnel barriers are annealed under radical-oxygen exposure, the Hanle-effect signals can be accuratelymore » fitted by the superposition of a Lorentz function and a non-Lorentz function representing a signal due to accumulated spins in the Si channel. These results suggest that the quality improvement of tunnel barriers treated by radical-oxygen annealing is highly effective for spin-injection into Si channels.« less
EOS MLS Level 1B Data Processing Software. Version 3
NASA Technical Reports Server (NTRS)
Perun, Vincent S.; Jarnot, Robert F.; Wagner, Paul A.; Cofield, Richard E., IV; Nguyen, Honghanh T.; Vuu, Christina
2011-01-01
This software is an improvement on Version 2, which was described in EOS MLS Level 1B Data Processing, Version 2.2, NASA Tech Briefs, Vol. 33, No. 5 (May 2009), p. 34. It accepts the EOS MLS Level 0 science/engineering data, and the EOS Aura spacecraft ephemeris/attitude data, and produces calibrated instrument radiances and associated engineering and diagnostic data. This version makes the code more robust, improves calibration, provides more diagnostics outputs, defines the Galactic core more finely, and fixes the equator crossing. The Level 1 processing software manages several different tasks. It qualifies each data quantity using instrument configuration and checksum data, as well as data transmission quality flags. Statistical tests are applied for data quality and reasonableness. The instrument engineering data (e.g., voltages, currents, temperatures, and encoder angles) is calibrated by the software, and the filter channel space reference measurements are interpolated onto the times of each limb measurement with the interpolates being differenced from the measurements. Filter channel calibration target measurements are interpolated onto the times of each limb measurement, and are used to compute radiometric gain. The total signal power is determined and analyzed by each digital autocorrelator spectrometer (DACS) during each data integration. The software converts each DACS data integration from an autocorrelation measurement in the time domain into a spectral measurement in the frequency domain, and estimates separately the spectrally, smoothly varying and spectrally averaged components of the limb port signal arising from antenna emission and scattering effects. Limb radiances are also calibrated.
Wang, Zhirui; Xu, Jia; Huang, Zuzhen; Zhang, Xudong; Xia, Xiang-Gen; Long, Teng; Bao, Qian
2016-03-16
To detect and estimate ground slowly moving targets in airborne single-channel synthetic aperture radar (SAR), a road-aided ground moving target indication (GMTI) algorithm is proposed in this paper. First, the road area is extracted from a focused SAR image based on radar vision. Second, after stationary clutter suppression in the range-Doppler domain, a moving target is detected and located in the image domain via the watershed method. The target's position on the road as well as its radial velocity can be determined according to the target's offset distance and traffic rules. Furthermore, the target's azimuth velocity is estimated based on the road slope obtained via polynomial fitting. Compared with the traditional algorithms, the proposed method can effectively cope with slowly moving targets partly submerged in a stationary clutter spectrum. In addition, the proposed method can be easily extended to a multi-channel system to further improve the performance of clutter suppression and motion estimation. Finally, the results of numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm.
Berezhkovskii, Alexander M; Bezrukov, Sergey M
2017-08-28
Ligand- or voltage-driven stochastic gating-the structural rearrangements by which the channel switches between its open and closed states-is a fundamental property of biological membrane channels. Gating underlies the channel's ability to respond to different stimuli and, therefore, to be functionally regulated by the changing environment. The accepted understanding of the gating effect on the solute flux through the channel is that the mean flux is the product of the flux through the open channel and the probability of finding the channel in the open state. Here, using a diffusion model of channel-facilitated transport, we show that this is true only when the gating is much slower than the dynamics of solute translocation through the channel. If this condition breaks, the mean flux could differ from this simple estimate by orders of magnitude.
NASA Astrophysics Data System (ADS)
Berezhkovskii, Alexander M.; Bezrukov, Sergey M.
2017-08-01
Ligand- or voltage-driven stochastic gating—the structural rearrangements by which the channel switches between its open and closed states—is a fundamental property of biological membrane channels. Gating underlies the channel's ability to respond to different stimuli and, therefore, to be functionally regulated by the changing environment. The accepted understanding of the gating effect on the solute flux through the channel is that the mean flux is the product of the flux through the open channel and the probability of finding the channel in the open state. Here, using a diffusion model of channel-facilitated transport, we show that this is true only when the gating is much slower than the dynamics of solute translocation through the channel. If this condition breaks, the mean flux could differ from this simple estimate by orders of magnitude.
Enabling vendor independent photoacoustic imaging systems with asynchronous laser source
NASA Astrophysics Data System (ADS)
Wu, Yixuan; Zhang, Haichong K.; Boctor, Emad M.
2018-02-01
Channel data acquisition, and synchronization between laser excitation and PA signal acquisition, are two fundamental hardware requirements for photoacoustic (PA) imaging. Unfortunately, however, neither is equipped by most clinical ultrasound scanners. Therefore, less economical specialized research platforms are used in general, which hinders a smooth clinical transition of PA imaging. In previous studies, we have proposed an algorithm to achieve PA imaging using ultrasound post-beamformed (USPB) RF data instead of channel data. This work focuses on enabling clinical ultrasound scanners to implement PA imaging, without requiring synchronization between the laser excitation and PA signal acquisition. Laser synchronization is inherently consisted of two aspects: frequency and phase information. We synchronize without communicating the laser and the ultrasound scanner by investigating USPB images of a point-target phantom in two steps. First, frequency information is estimated by solving a nonlinear optimization problem, under the assumption that the segmented wave-front can only be beamformed into a single spot when synchronization is achieved. Second, after making frequencies of two systems identical, phase delay is estimated by optimizing the image quality while varying phase value. The proposed method is validated through simulation, by manually adding both frequency and phase errors, then applying the proposed algorithm to correct errors and reconstruct PA images. Compared with the ground truth, simulation results indicate that the remaining errors in frequency correction and phase correction are 0.28% and 2.34%, respectively, which affirm the potential of overcoming hardware barriers on PA imaging through software solution.
Where's the beef? Retail channel choice and beef preferences in Argentina.
Colella, Florencia; Ortega, David L
2017-11-01
Argentinean beef is recognized and demanded internationally. Locally, consumers are often unable to afford certified beef products, and may rely on external cues to determine beef quality. Uncovering demand for beef attributes and marketing them accordingly, may require an understanding of consumers' product purchasing strategies, which involves retailer choice. We develop a framework utilizing latent class analysis to identify consumer groups with different retailer preferences, and separately estimate their demand for beef product attributes. This framework accounts for the interrelationship between consumers' choice of retail outlets and beef product preferences. Our analysis of data from the city of Buenos Aires identifies two groups of consumers, a convenience- (67%) and a service- (33%) oriented group. We find significant differences in demand for beef attributes across these groups, and find that the service oriented group, while not willing to pay for credence attributes, relies on a service-providing retailer-namely a butcher-as a source of product quality assurance. Copyright © 2017. Published by Elsevier Ltd.
The role of multispectral scanners as data sources for EPA hydrologic models
NASA Technical Reports Server (NTRS)
Slack, R.; Hill, D.
1982-01-01
An estimated cost savings of 30% to 50% was realized from using LANDSAT-derived data as input into a program which simulates hydrologic and water quality processes in natural and man-made water systems. Data from the satellite were used in conjunction with EPA's 11-channel multispectral scanner to obtain maps for characterizing the distribution of turbidity plumes in Flathead Lake and to predict the effect of increasing urbanization in Montana's Flathead River Basin on the lake's trophic state. Multispectral data are also being studied as a possible source of the parameters needed to model the buffering capability of lakes in an effort to evaluate the effect of acid rain in the Adirondacks. Water quality in Lake Champlain, Vermont is being classified using data from the LANDSAT and the EPA MSS. Both contact-sensed and MSS data are being used with multivariate statistical analysis to classify the trophic status of 145 lakes in Illinois and to identify water sampling sites in Appalachicola Bay where contaminants threaten Florida's shellfish.
Effective pore size and radius of capture for K+ ions in K-channels
Moldenhauer, Hans; Díaz-Franulic, Ignacio; González-Nilo, Fernando; Naranjo, David
2016-01-01
Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (rE) in several K-channel crystal structures. rE was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent rE estimates for MthK and Kv1.2/2.1 structures, with rE = 5.3–5.9 Å and rE = 4.5–5.2 Å, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (rC) for two electrophysiological counterparts, the large conductance calcium activated K-channel (rC = 2.2 Å) and the Shaker Kv-channel (rC = 0.8 Å), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between rE and rC, produced consistent size radii of 3.1–3.7 Å and 3.6–4.4 Å for hydrated K+ ions. These hydrated K+ estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively. PMID:26831782
Blind ICA detection based on second-order cone programming for MC-CDMA systems
NASA Astrophysics Data System (ADS)
Jen, Chih-Wei; Jou, Shyh-Jye
2014-12-01
The multicarrier code division multiple access (MC-CDMA) technique has received considerable interest for its potential application to future wireless communication systems due to its high data rate. A common problem regarding the blind multiuser detectors used in MC-CDMA systems is that they are extremely sensitive to the complex channel environment. Besides, the perturbation of colored noise may negatively affect the performance of the system. In this paper, a new coherent detection method will be proposed, which utilizes the modified fast independent component analysis (FastICA) algorithm, based on approximate negentropy maximization that is subject to the second-order cone programming (SOCP) constraint. The aim of the proposed coherent detection is to provide robustness against small-to-medium channel estimation mismatch (CEM) that may arise from channel frequency response estimation error in the MC-CDMA system, which is modulated by downlink binary phase-shift keying (BPSK) under colored noise. Noncoherent demodulation schemes are preferable to coherent demodulation schemes, as the latter are difficult to implement over time-varying fading channels. Differential phase-shift keying (DPSK) is therefore the natural choice for an alternative modulation scheme. Furthermore, the new blind differential SOCP-based ICA (SOCP-ICA) detection without channel estimation and compensation will be proposed to combat Doppler spread caused by time-varying fading channels in the DPSK-modulated MC-CDMA system under colored noise. In this paper, numerical simulations are used to illustrate the robustness of the proposed blind coherent SOCP-ICA detector against small-to-medium CEM and to emphasize the advantage of the blind differential SOCP-ICA detector in overcoming Doppler spread.
Mousa-Pasandi, Mohammad E; Plant, David V
2010-09-27
We report and investigate the feasibility of zero-overhead laser phase noise compensation (PNC) for long-haul coherent optical orthogonal frequency division multiplexing (CO-OFDM) transmission systems, using the decision-directed phase equalizer (DDPE). DDPE updates the equalization parameters on a symbol-by-symbol basis after an initial decision making stage and retrieves an estimation of the phase noise value by extracting and averaging the phase drift of all OFDM sub-channels. Subsequently, a second equalization is performed by using the estimated phase noise value which is followed by a final decision making stage. We numerically compare the performance of DDPE and the CO-OFDM conventional equalizer (CE) for different laser linewidth values after transmission over 2000 km of uncompensated single-mode fiber (SMF) at 40 Gb/s and investigate the effect of fiber nonlinearity and amplified spontaneous emission (ASE) noise on the received signal quality. Furthermore, we analytically analyze the complexity of DDPE versus CE in terms of the number of required complex multiplications per bit.
Reflectance of vegetation, soil, and water
NASA Technical Reports Server (NTRS)
Wiegand, C. L. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The ability to read the 24-channel MSS CCT tapes, select specified agricultural land use areas from the CCT, and perform multivariate statistical and pattern recognition analyses has been demonstrated. The 5 optimum channels chosen for classifying an agricultural scene were, in the order of their selection the far red visible, short reflective IR, visible blue, thermal infrared, and ultraviolet portions of the electromagnetic spectrum, respectively. Although chosen by a training set containing only vegetal categories, the optimum 4 channels discriminated pavement, water, bare soil, and building roofs, as well as the vegetal categories. Among the vegetal categories, sugar cane and cotton had distinctive signatures that distinguished them from grass and citrus. Acreages estimated spectrally by the computer for the test scene were acceptably close to acreages estimated from aerial photographs for cotton, sugar cane, and water. Many nonfarmable land resolution elements representing drainage ditch, field road, and highway right-of-way as well as farm headquarters area fell into the grass, bare soil plus weeds, and citrus categories and lessened the accuracy of the farmable acreage estimates in these categories. The expertise developed using the 24-channel data will be applied to the ERTS-1 data.
Callegary, J.B.; Leenhouts, J.M.; Paretti, N.V.; Jones, Christopher A.
2007-01-01
To classify recharge potential (RCP) in ephemeral-stream channels, a method was developed that incorporates information about channel geometry, vegetation characteristics, and bed-sediment apparent electrical conductivity (??a). Recharge potential is not independently measurable, but is instead formulated as a site-specific, qualitative parameter. We used data from 259 transects across two ephemeral-stream channels near Sierra Vista, Arizona, a location with a semiarid climate. Seven data types were collected: ??a averaged over two depth intervals (0-3 m, and 0-6 m), channel incision depth and width, diameter-at-breast-height of the largest tree, woody-plant and grass density. A two-tiered system was used to classify a transect's RCP. In the first tier, transects were categorized by estimates of near-surface-sediment hydraulic permeability as low, moderate, or high using measurements of 0-3 m-depth ??a. Each of these categories was subdivided into low, medium, or high RCP classes using the remaining six data types, thus yielding a total of nine RCP designations. Six sites in the study area were used to compare RCP and ??a with previously measured surrogates for hydraulic permeability. Borehole-averaged percent fines showed a moderate correlation with both shallow and deep ??a measurements, however, correlation of point measurements of saturated hydraulic conductivity, percent fines, and cylinder infiltrometer measurements with ??a and RCP was generally poor. The poor correlation was probably caused by the relatively large measurement volume and spatial averaging of ??a compared with the spatially-limited point measurements. Because of the comparatively large spatial extent of measurement transects and variety of data types collected, RCP estimates can give a more complete picture of the major factors affecting recharge at a site than is possible through point or borehole-averaged estimates of hydraulic permeability alone. ?? 2007 Elsevier B.V. All rights reserved.
Crowd counting via region based multi-channel convolution neural network
NASA Astrophysics Data System (ADS)
Cao, Xiaoguang; Gao, Siqi; Bai, Xiangzhi
2017-11-01
This paper proposed a novel region based multi-channel convolution neural network architecture for crowd counting. In order to effectively solve the perspective distortion in crowd datasets with a great diversity of scales, this work combines the main channel and three branch channels. These channels extract both the global and region features. And the results are used to estimate density map. Moreover, kernels with ladder-shaped sizes are designed across all the branch channels, which generate adaptive region features. Also, branch channels use relatively deep and shallow network to achieve more accurate detector. By using these strategies, the proposed architecture achieves state-of-the-art performance on ShanghaiTech datasets and competitive performance on UCF_CC_50 datasets.
NASA Astrophysics Data System (ADS)
Guegan, Loic; Murad, Nour Mohammad; Bonhommeau, Sylvain
2018-03-01
This paper deals with the modeling of the over sea radio channel and aims to establish sea turtles localization off the coast of Reunion Island, and also on Europa Island in the Mozambique Channel. In order to model this radio channel, a framework measurement protocol is proposed. The over sea measured channel is integrated to the localization algorithm to estimate the turtle trajectory based on Power of Arrival (PoA) technique compared to GPS localization. Moreover, cross correlation tool is used to characterize the over sea propagation channel. First measurement of the radio channel on the Reunion Island coast combine to the POA algorithm show an error of 18 m for 45% of the approximated points.
A novel time of arrival estimation algorithm using an energy detector receiver in MMW systems
NASA Astrophysics Data System (ADS)
Liang, Xiaolin; Zhang, Hao; Lyu, Tingting; Xiao, Han; Gulliver, T. Aaron
2017-12-01
This paper presents a new time of arrival (TOA) estimation technique using an improved energy detection (ED) receiver based on the empirical mode decomposition (EMD) in an impulse radio (IR) 60 GHz millimeter wave (MMW) system. A threshold is employed via analyzing the characteristics of the received energy values with an extreme learning machine (ELM). The effect of the channel and integration period on the TOA estimation is evaluated. Several well-known ED-based TOA algorithms are used to compare with the proposed technique. It is shown that this ELM-based technique has lower TOA estimation error compared to other approaches and provides robust performance with the IEEE 802.15.3c channel models.
Robust Synchronization Schemes for Dynamic Channel Environments
NASA Technical Reports Server (NTRS)
Xiong, Fugin
2003-01-01
Professor Xiong will investigate robust synchronization schemes for dynamic channel environment. A sliding window will be investigated for symbol timing synchronizer and an open loop carrier estimator for carrier synchronization. Matlab/Simulink will be used for modeling and simulations.
Robust Models for Operator Workload Estimation
2015-03-01
piloted aircraft (RPA) simultaneously, a vast improvement in resource utilization compared to existing operations that require several operators per...into distinct cognitive channels (visual, auditory, spatial, etc.) based on our ability to multitask effectively as long as no one channel is
Optical Design of the WFIRST Phase-A Integral Field Channel
NASA Technical Reports Server (NTRS)
Gao, Guangjun; Pasquale, Bert A.; Marx, Catherine T.; Chambers, Victor
2017-01-01
WFIRST is one of NASA's Decadal Survey Missions and is currently in Phase-A development. The optical design of the WFIRST Integral Field Channel (IFC), one of three main optical channels of WFIRST, is presented, and the evolution of the IFC channel since Mission Concept Review (MCR, end of Pre-Phase A) is discussed. The IFC has two sub-channels: Supernova (IFC-S) and Galaxy (IFC-G) channels, with Fields of View of 3"x4.5" and 4.2"x9" respectively, and approximately R 75 spectral analysis over waveband 0.42 approximately 2.0 micrometers. The Phase-A IFC optical design meets image quality requirements over the FOV areas while balancing cost and volume constraints.
An Off-Grid Turbo Channel Estimation Algorithm for Millimeter Wave Communications.
Han, Lingyi; Peng, Yuexing; Wang, Peng; Li, Yonghui
2016-09-22
The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave) frequency spectrum for future communication networks. To compensate for the severe propagation attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter and receiver to provide large array gains via directional beamforming. To achieve such array gains, channel estimation (CE) with high resolution and low latency is of great importance for mmWave communications. However, classic super-resolution subspace CE methods such as multiple signal classification (MUSIC) and estimation of signal parameters via rotation invariant technique (ESPRIT) cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids with high probability, and it results in power leakage and severe reduction of the CE performance. A new model is first proposed to formulate the off-grid problem. The new model divides the continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo CE (IOTCE) algorithm is proposed to renew and upgrade the CE between the integral grid part and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed sensing (CS) method called improved turbo compressed channel sensing (ITCCS). It iteratively updates the soft information between the linear minimum mean square error (LMMSE) estimator and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of the proposed method, and the results show that it enhances the angle detection resolution greatly.
An in-mold packaging process for plastic fluidic devices.
Yoo, Y E; Lee, K H; Je, T J; Choi, D S; Kim, S K
2011-01-01
Micro or nanofluidic devices have many channel shapes to deliver chemical solutions, body fluids or any fluids. The channels in these devices should be covered to prevent the fluids from overflowing or leaking. A typical method to fabricate an enclosed channel is to bond or weld a cover plate to a channel plate. This solid-to-solid bonding process, however, takes a considerable amount of time for mass production. In this study, a new process for molding a cover layer that can enclose open micro or nanochannels without solid-to-solid bonding is proposed and its feasibility is estimated. First, based on the design of a model microchannel, a brass microchannel master core was machined and a plastic microchannel platform was injection-molded. Using this molded platform, a series of experiments was performed for four process or mold design parameters. Some feasible conditions were successfully found to enclosed channels without filling the microchannels for the injection molding of a cover layer over the plastic microchannel platform. In addition, the bond strength and seal performance were estimated in a comparison with those done by conventional bonding or welding processes.
Advective and diapycnal diffusive oceanic flux in Tenerife - La Gomera Channel
NASA Astrophysics Data System (ADS)
Marrero-Díaz, A.; Rodriguez-Santana, A.; Hernández-Arencibia, M.; Machín, F.; García-Weil, L.
2012-04-01
During the year 2008, using the commercial passenger ship Volcán de Tauce of the Naviera Armas company several months, it was possible to obtain vertical profiles of temperature from expandable bathythermograph probes in eight stations across the Tenerife - La Gomera channel. With these data of temperature we have been estimated vertical sections of potential density and geostrophic transport with high spatial and temporal resolution (5 nm between stations, and one- two months between cruises). The seasonal variability obtained for the geostrophic transport in this channel shows important differences with others Canary Islands channels. From potential density and geostrophic velocity data we estimated the vertical diffusion coefficients and diapycnal diffusive fluxes, using a parameterization that depends of Richardson gradient number. In the center of the channel and close to La Gomera Island, we found higher values for these diffusive fluxes. Convergence and divergence of these fluxes requires further study so that we can draw conclusions about its impact on the distribution of nutrients in the study area and its impact in marine ecosystems. This work is being used in research projects TRAMIC and PROMECA.
Yajuan, Xiao; Xin, Liang; Zhiyuan, Li
2012-01-01
The patch clamp technique is commonly used in electrophysiological experiments and offers direct insight into ion channel properties through the characterization of ion channel activity. This technique can be used to elucidate the interaction between a drug and a specific ion channel at different conformational states to understand the ion channel modulators’ mechanisms. The patch clamp technique is regarded as a gold standard for ion channel research; however, it suffers from low throughput and high personnel costs. In the last decade, the development of several automated electrophysiology platforms has greatly increased the screen throughput of whole cell electrophysiological recordings. New advancements in the automated patch clamp systems have aimed to provide high data quality, high content, and high throughput. However, due to the limitations noted above, automated patch clamp systems are not capable of replacing manual patch clamp systems in ion channel research. While automated patch clamp systems are useful for screening large amounts of compounds in cell lines that stably express high levels of ion channels, the manual patch clamp technique is still necessary for studying ion channel properties in some research areas and for specific cell types, including primary cells that have mixed cell types and differentiated cells that derive from induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs). Therefore, further improvements in flexibility with regard to cell types and data quality will broaden the applications of the automated patch clamp systems in both academia and industry. PMID:23346269
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yachao; Zhou, Xiaowei; Xu, Shengrui
Pulsed metal organic chemical vapor deposition (P-MOCVD) is introduced into the growth of high quality InGaN channel heterostructures. The effects of InGaN channel growth temperature on the structural and transport properties of the heterostructures are investigated in detail. High resolution x-ray diffraction (HRXRD) and Photoluminescence (PL) spectra indicate that the quality of InGaN channel strongly depends on the growth temperature. Meanwhile, the atomic force microscopy (AFM) results show that the interface morphology between the InGaN channel and the barrier layer also relies on the growth temperature. Since the variation of material properties of InGaN channel has a significant influence onmore » the electrical properties of InAlN/InGaN heterostructures, the optimal transport properties can be achieved by adjusting the growth temperature. A very high two dimension electron gas (2DEG) density of 1.92 × 10{sup 13} cm{sup −2} and Hall electron mobility of 1025 cm{sup 2}/(V⋅s) at room temperature are obtained at the optimal growth temperature around 740 °C. The excellent transport properties in our work indicate that the heterostructure with InGaN channel is a promising candidate for the microwave power devices, and the results in this paper will be instructive for further study of the InGaN channel heterostructures.« less
Josso, Nicolas F; Ioana, Cornel; Mars, Jérôme I; Gervaise, Cédric
2010-12-01
Acoustic channel properties in a shallow water environment with moving source and receiver are difficult to investigate. In fact, when the source-receiver relative position changes, the underwater environment causes multipath and Doppler scale changes on the transmitted signal over low-to-medium frequencies (300 Hz-20 kHz). This is the result of a combination of multiple paths propagation, source and receiver motions, as well as sea surface motion or water column fast changes. This paper investigates underwater acoustic channel properties in a shallow water (up to 150 m depth) and moving source-receiver conditions using extracted time-scale features of the propagation channel model for low-to-medium frequencies. An average impulse response of one transmission is estimated using the physical characteristics of propagation and the wideband ambiguity plane. Since a different Doppler scale should be considered for each propagating signal, a time-warping filtering method is proposed to estimate the channel time delay and Doppler scale attributes for each propagating path. The proposed method enables the estimation of motion-compensated impulse responses, where different Doppler scaling factors are considered for the different time delays. It was validated for channel profiles using real data from the BASE'07 experiment conducted by the North Atlantic Treaty Organization Undersea Research Center in the shallow water environment of the Malta Plateau, South Sicily. This paper provides a contribution to many field applications including passive ocean tomography with unknown natural sources position and movement. Another example is active ocean tomography where sources motion enables to rapidly cover one operational area for rapid environmental assessment and hydrophones may be drifting in order to avoid additional flow noise.
Channel unit use by Smallmouth Bass: Do land-use constraints or quantity of habitat matter?
Brewer, Shannon K.
2013-01-01
I examined how land use influenced the distribution of Smallmouth Bass Micropterus dolomieu in channel units (discrete morphological features—e.g., pools) of streams in the Midwestern USA. Stream segments (n = 36), from four clusters of different soil and runoff conditions, were identified that had the highest percent of forest (n = 12), pasture (n = 12), and urban land use (n = 12) within each cluster. Channel units within each stream were delineated and independently sampled once using multiple gears in summer 2006. Data were analyzed using a generalized linear mixed model procedure with a binomial distribution and odds ratio statistics. Land use and channel unit were strong predictors of age-0, age-1, and age->1 Smallmouth Bass presence. Each age-class was more likely to be present in streams within watersheds dominated by forest land use than in those with pasture or urban land uses. The interaction between land use and channel unit was not significant in any of the models, indicating channel unit use by Smallmouth Bass did not depend on watershed land use. Each of the three age-classes was more likely to use pools than other channel units. However, streams with high densities of Smallmouth Bass age >1 had lower proportions of pools suggesting a variety of channel units is important even though habitat needs exist at the channel-unit scale. Management may benefit from future research addressing the significance of channel-unit quality as a possible mechanism for how land use impacts Smallmouth Bass populations. Further, management efforts aimed at improving stream habitat would likely be more beneficial if focused at the stream segment or landscape scale, where a variety of quality habitats might be supported.
Channel Capacity Calculation at Large SNR and Small Dispersion within Path-Integral Approach
NASA Astrophysics Data System (ADS)
Reznichenko, A. V.; Terekhov, I. S.
2018-04-01
We consider the optical fiber channel modelled by the nonlinear Shrödinger equation with additive white Gaussian noise. Using Feynman path-integral approach for the model with small dispersion we find the first nonzero corrections to the conditional probability density function and the channel capacity estimations at large signal-to-noise ratio. We demonstrate that the correction to the channel capacity in small dimensionless dispersion parameter is quadratic and positive therefore increasing the earlier calculated capacity for a nondispersive nonlinear optical fiber channel in the intermediate power region. Also for small dispersion case we find the analytical expressions for simple correlators of the output signals in our noisy channel.
Liu, Yanchi; Wang, Xue; Liu, Youda; Cui, Sujin
2016-06-27
Power quality analysis issues, especially the measurement of harmonic and interharmonic in cyber-physical energy systems, are addressed in this paper. As new situations are introduced to the power system, the impact of electric vehicles, distributed generation and renewable energy has introduced extra demands to distributed sensors, waveform-level information and power quality data analytics. Harmonics and interharmonics, as the most significant disturbances, require carefully designed detection methods for an accurate measurement of electric loads whose information is crucial to subsequent analyzing and control. This paper gives a detailed description of the power quality analysis framework in networked environment and presents a fast and resolution-enhanced method for harmonic and interharmonic measurement. The proposed method first extracts harmonic and interharmonic components efficiently using the single-channel version of Robust Independent Component Analysis (RobustICA), then estimates the high-resolution frequency from three discrete Fourier transform (DFT) samples with little additional computation, and finally computes the amplitudes and phases with the adaptive linear neuron network. The experiments show that the proposed method is time-efficient and leads to a better accuracy of the simulated and experimental signals in the presence of noise and fundamental frequency deviation, thus providing a deeper insight into the (inter)harmonic sources or even the whole system.
Liu, Yanchi; Wang, Xue; Liu, Youda; Cui, Sujin
2016-01-01
Power quality analysis issues, especially the measurement of harmonic and interharmonic in cyber-physical energy systems, are addressed in this paper. As new situations are introduced to the power system, the impact of electric vehicles, distributed generation and renewable energy has introduced extra demands to distributed sensors, waveform-level information and power quality data analytics. Harmonics and interharmonics, as the most significant disturbances, require carefully designed detection methods for an accurate measurement of electric loads whose information is crucial to subsequent analyzing and control. This paper gives a detailed description of the power quality analysis framework in networked environment and presents a fast and resolution-enhanced method for harmonic and interharmonic measurement. The proposed method first extracts harmonic and interharmonic components efficiently using the single-channel version of Robust Independent Component Analysis (RobustICA), then estimates the high-resolution frequency from three discrete Fourier transform (DFT) samples with little additional computation, and finally computes the amplitudes and phases with the adaptive linear neuron network. The experiments show that the proposed method is time-efficient and leads to a better accuracy of the simulated and experimental signals in the presence of noise and fundamental frequency deviation, thus providing a deeper insight into the (inter)harmonic sources or even the whole system. PMID:27355946
Channel MAC Protocol for Opportunistic Communication in Ad Hoc Wireless Networks
NASA Astrophysics Data System (ADS)
Ashraf, Manzur; Jayasuriya, Aruna; Perreau, Sylvie
2008-12-01
Despite significant research effort, the performance of distributed medium access control methods has failed to meet theoretical expectations. This paper proposes a protocol named "Channel MAC" performing a fully distributed medium access control based on opportunistic communication principles. In this protocol, nodes access the channel when the channel quality increases beyond a threshold, while neighbouring nodes are deemed to be silent. Once a node starts transmitting, it will keep transmitting until the channel becomes "bad." We derive an analytical throughput limit for Channel MAC in a shared multiple access environment. Furthermore, three performance metrics of Channel MAC—throughput, fairness, and delay—are analysed in single hop and multihop scenarios using NS2 simulations. The simulation results show throughput performance improvement of up to 130% with Channel MAC over IEEE 802.11. We also show that the severe resource starvation problem (unfairness) of IEEE 802.11 in some network scenarios is reduced by the Channel MAC mechanism.
Walton, Maureen A. L.; Gulick, Sean P. S.; Reece, Robert S.; Barth, Ginger A.; Christeson, Gail L.; VanAvendonk, Harm J.
2014-01-01
The Baranof Fan is one of three large deep-sea fans in the Gulf of Alaska, and is a key component in understanding large-scale erosion and sedimentation patterns for southeast Alaska and western Canada. We integrate new and existing seismic reflection profiles to provide new constraints on the Baranof Fan area, geometry, volume, and channel development. We estimate the fan’s area and total sediment volume to be ∼323,000 km2 and ∼301,000 km3, respectively, making it among the largest deep-sea fans in the world. We show that the Baranof Fan consists of channel-levee deposits from at least three distinct aggradational channel systems: the currently active Horizon and Mukluk channels, and the waning system we call the Baranof channel. The oldest sedimentary deposits are in the northern fan, and the youngest deposits at the fan’s southern extent; in addition, the channels seem to avulse southward consistently through time. We suggest that Baranof Fan sediment is sourced from the Coast Mountains in southeastern Alaska, transported offshore most recently via fjord to glacial sea valley conduits. Because of the translation of the Pacific plate northwest past sediment sources on the North American plate along the Queen Charlotte strike-slip fault, we suggest that new channel formation, channel beheadings, and southward-migrating channel avulsions have been influenced by regional tectonics. Using a simplified tectonic reconstruction assuming a constant Pacific plate motion of 4.4 cm/yr, we estimate that Baranof Fan deposition initiated ca. 7 Ma.
Channel-morphology data for the Tongue River and selected tributaries, southeastern Montana, 2001-02
Chase, Katherine J.
2004-01-01
Coal-bed methane exploration and production have begun within the Tongue River watershed in southeastern Montana. The development of coal-bed methane requires production of large volumes of ground water, some of which may be discharged to streams, potentially increasing stream discharge and sediment load. Changes in stream discharge or sediment load may result in changes to channel morphology through changes in erosion and vegetation. These changes might be subtle and difficult to detect without baseline data that indicate stream-channel conditions before extensive coal-bed methane development began. In order to provide this baseline channel-morphology data, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, collected channel-morphology data in 2001-02 to document baseline conditions for several reaches along the Tongue River and selected tributaries. This report presents channel-morphology data for five sites on the mainstem Tongue River and four sites on its tributaries. Bankfull, water-surface, and thalweg elevations, channel sections, and streambed-particle sizes were measured along reaches near streamflow-gaging stations. At each site, the channel was classified using methods described by Rosgen. For six sites, bankfull discharge was determined from the stage- discharge relation at the gage for the stage corresponding to the bankfull elevation. For three sites, the step-backwater computer model HEC-RAS was used to estimate bankfull discharge. Recurrence intervals for the bankfull discharge also were estimated for eight of the nine sites. Channel-morphology data for each site are presented in maps, tables, graphs, and photographs.
Banerjee, Kinshuk; Das, Biswajit; Gangopadhyay, Gautam
2013-04-28
In this paper, we have explored generic criteria of cooperative behavior in ion channel kinetics treating it on the same footing with multistate receptor-ligand binding in a compact theoretical framework. We have shown that the characterization of cooperativity of ion channels in terms of the Hill coefficient violates the standard Hill criteria defined for allosteric cooperativity of ligand binding. To resolve the issue, an alternative measure of cooperativity is proposed here in terms of the cooperativity index that sets a unified criteria for both the systems. More importantly, for ion channel this index can be very useful to describe the cooperative kinetics as it can be readily determined from the experimentally measured ionic current combined with theoretical modelling. We have analyzed the correlation between the voltage value and slope of the voltage-activation curve at the half-activation point and consequently determined the standard free energy of activation of the ion channel using two well-established mechanisms of cooperativity, namely, Koshland-Nemethy-Filmer (KNF) and Monod-Wyman-Changeux (MWC) models. Comparison of the theoretical results for both the models with appropriate experimental data of mutational perturbation of Shaker K(+) channel supports the experimental fact that the KNF model is more suitable to describe the cooperative behavior of this class of ion channels, whereas the performance of the MWC model is unsatisfactory. We have also estimated the mechanistic performance through standard free energy of channel activation for both the models and proposed a possible functional disadvantage in the MWC scheme.
Blind estimation of blur in hyperspectral images
NASA Astrophysics Data System (ADS)
Zhang, Mo; Vozel, Benoit; Chehdi, Kacem; Uss, Mykhail; Abramov, Sergey; Lukin, Vladimir
2017-10-01
Hyperspectral images acquired by remote sensing systems are generally degraded by noise and can be sometimes more severely degraded by blur. When no knowledge is available about the degradations present on the original image, blind restoration methods can only be considered. By blind, we mean absolutely no knowledge neither of the blur point spread function (PSF) nor the original latent channel and the noise level. In this study, we address the blind restoration of the degraded channels component-wise, according to a sequential scheme. For each degraded channel, the sequential scheme estimates the blur point spread function (PSF) in a first stage and deconvolves the degraded channel in a second and final stage by means of using the PSF previously estimated. We propose a new component-wise blind method for estimating effectively and accurately the blur point spread function. This method follows recent approaches suggesting the detection, selection and use of sufficiently salient edges in the current processed channel for supporting the regularized blur PSF estimation. Several modifications are beneficially introduced in our work. A new selection of salient edges through thresholding adequately the cumulative distribution of their corresponding gradient magnitudes is introduced. Besides, quasi-automatic and spatially adaptive tuning of the involved regularization parameters is considered. To prove applicability and higher efficiency of the proposed method, we compare it against the method it originates from and four representative edge-sparsifying regularized methods of the literature already assessed in a previous work. Our attention is mainly paid to the objective analysis (via ݈l1-norm) of the blur PSF error estimation accuracy. The tests are performed on a synthetic hyperspectral image. This synthetic hyperspectral image has been built from various samples from classified areas of a real-life hyperspectral image, in order to benefit from realistic spatial distribution of reference spectral signatures to recover after synthetic degradation. The synthetic hyperspectral image has been successively degraded with eight real blurs taken from the literature, each of a different support size. Conclusions, practical recommendations and perspectives are drawn from the results experimentally obtained.
Estimation of roughness coefficients for natural stream channels with vegetated banks
Coon, William F.
1998-01-01
Roughness coefficients for 21 stream sites in New York state are presented. The site-specific relation between roughness coefficent and flow depth varies in a predictable manner, depending on energy gradient, relative smoothness (Rd50), and channel-vegetation density. The percentage of wetted perimeter that is vegetated is a useful indicator of when streambank vegetation can affect the roughness coefficient. To estimate the magnitude of this effect requires evaluation of the density and percent of submergence of vegetation.
Measuring Paleolandscape Relief in Alluvial River Systems from the Stratigraphic Record
NASA Astrophysics Data System (ADS)
Hajek, E. A.; Trampush, S. M.; Chamberlin, E.; Greenberg, E.
2017-12-01
Aggradational alluvial river systems sometimes generate relief in the vicinity of their channel belts (i.e. alluvial ridges) and it has been proposed that this process may define important thresholds in river avulsion. The compensation scale can be used to estimate the maximum relief across a landscape and can be connected to the maximum scale of autogenic organization in experimental and numerical systems. Here we use the compensation scale - measured from outcrops of Upper Cretaceous and Paleogene fluvial deposits - to estimate the maximum relief that characterized ancient fluvial landscapes. In some cases, the compensation scale significantly exceeds the maximum channel depth observed in a deposit, suggesting that aggradational alluvial systems organize to sustain more relief than might be expected by looking only in the immediate vicinity of the active channel belt. Instead, these results indicate that in some systems, positive topographic relief generated by multiple alluvial ridge complexes and/or large-scale fan features may be associated with landscape-scale autogenic organization of channel networks that spans multiple cycles of channel avulsion. We compare channel and floodplain sedimentation patterns among the studied ancient fluvial systems in an effort to determine whether avulsion style, channel migration, or floodplain conditions influenced the maximum autogenic relief of ancient landscapes. Our results emphasize that alluvial channel networks may be organized at much larger spatial and temporal scales than previously realized and provide an avenue for understanding which types of river systems are likely to exhibit the largest range of autogenic dynamics.
Introduction to Regional Curves including; regressions relating bankfull channelcharacteristics to drainage area, providing estimates of bankfull discharge and channel geometry, validating the selection of the bankfull channel as determined in the field
Stratigraphy and paleohydrology of delta channel deposits, Jezero crater, Mars
NASA Astrophysics Data System (ADS)
Goudge, Timothy A.; Mohrig, David; Cardenas, Benjamin T.; Hughes, Cory M.; Fassett, Caleb I.
2018-02-01
The Jezero crater open-basin lake contains two well-exposed fluvial sedimentary deposits formed early in martian history. Here, we examine the geometry and architecture of the Jezero western delta fluvial stratigraphy using high-resolution orbital images and digital elevation models (DEMs). The goal of this analysis is to reconstruct the evolution of the delta and associated shoreline position. The delta outcrop contains three distinct classes of fluvial stratigraphy that we interpret, from oldest to youngest, as: (1) point bar strata deposited by repeated flood events in meandering channels; (2) inverted channel-filling deposits formed by avulsive distributary channels; and (3) a valley that incises the deposit. We use DEMs to quantify the geometry of the channel deposits and estimate flow depths of ∼7 m for the meandering channels and ∼2 m for the avulsive distributary channels. Using these estimates, we employ a novel approach for assessing paleohydrology of the formative channels in relative terms. This analysis indicates that the shift from meandering to avulsive distributary channels was associated with an approximately four-fold decrease in the water to sediment discharge ratio. We use observations of the fluvial stratigraphy and channel paleohydrology to propose a model for the evolution of the Jezero western delta. The delta stratigraphy records lake level rise and shoreline transgression associated with approximately continuous filling of the basin, followed by outlet breaching, and eventual erosion of the delta. Our results imply a martian surface environment during the period of delta formation that supplied sufficient surface runoff to fill the Jezero basin without major drops in lake level, but also with discrete flooding events at non-orbital (e.g., annual to decadal) timescales.
Czuba, Christiana R.; Randle, Timothy J.; Bountry, Jennifer A.; Magirl, Christopher S.; Czuba, Jonathan A.; Curran, Christopher A.; Konrad, Christopher P.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.
2011-01-01
During and after the planned incremental removal of two large, century-old concrete dams between 2011 and 2014, the sediment-transport regime in the lower Elwha River of western Washington will initially spike above background levels and then return to pre-dam conditions some years after complete dam removal. Measurements indicate the upper reaches of the steep-gradient Elwha River, draining the northeast section of the Olympic Mountains, carries between an estimated 120,000 and 290,000 cubic meters of sediment annually. This large load has deposited an estimated 19 million cubic meters of sediment within the two reservoirs formed by the Elwha and Glines Canyon Dams. It is anticipated that from 7 to 8 million cubic meters of this trapped sediment will mobilize and transport downstream during and after dam decommissioning, restoring the downstream sections of the sediment-starved river and nearshore marine environments. Downstream transport of sediment from the dam sites will have significant effects on channel morphology, water quality, and aquatic habitat during and after dam removal. Sediment concentrations are expected to be between 200 and 1,000 milligrams per liter during and just after dam removal and could rise to as much as 50,000 milligrams per liter during high flows. Downstream sedimentation in the river channel and flood plain will be potentially large, particularly in the lower Elwha River, an alluvial reach with a wide flood plain. Overall aggradation could be as much as one to several meters. Not all reservoir sediment, however, will be released to the river. Some material will remain on hill slopes and flood plains within the drained reservoirs in quantities that will depend on the hydrology, precipitation, and mechanics of the incising channel. Eventually, vegetation will stabilize this remaining reservoir sediment, and the overall sediment load in the restored river will return to pre-dam levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fetterly, K; Favazza, C
2015-06-15
Purpose: Mathematical model observers provide a figure of merit that simultaneously considers a test object and the contrast, noise, and spatial resolution properties of an imaging system. The purpose of this work was to investigate the utility of a channelized Hotelling model observer (CHO) to assess system performance over a large range of angiographic exposure conditions. Methods: A 4 mm diameter disk shaped, iodine contrast test object was placed on a 20 cm thick Lucite phantom and 1204 image frames were acquired using fixed x-ray beam quality and for several detector target dose (DTD) values in the range 6 tomore » 240 nGy. The CHO was implemented in the spatial domain utilizing 96 Gabor functions as channels. Detectability index (DI) estimates were calculated using the “resubstitution” and “holdout” methods to train the CHO. Also, DI values calculated using discrete subsets of the data were used to estimate a minimally biased DI as might be expected from an infinitely large dataset. The relationship between DI, independently measured CNR, and changes in results expected assuming a quantum limited detector were assessed over the DTD range. Results: CNR measurements demonstrated that the angiography system is not quantum limited due to relatively increasing contamination from electronic noise that reduces CNR for low DTD. Direct comparison of DI versus CNR indicates that the CHO relatively overestimates DI for low DTD and/or underestimates DI values for high DTD. The relative magnitude of the apparent bias error in the DI values was ∼20% over the 40x DTD range investigated. Conclusion: For the angiography system investigated, the CHO can provide a minimally biased figure of merit if implemented over a restricted exposure range. However, bias leads to overestimates of DI for low exposures. This work emphasizes the need to verify CHO model performance during real-world application.« less
Benke, Timothy A; Lüthi, Andreas; Palmer, Mary J; Wikström, Martin A; Anderson, William W; Isaac, John T R; Collingridge, Graham L
2001-01-01
The molecular properties of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors are an important factor determining excitatory synaptic transmission in the brain. Changes in the number (N) or single-channel conductance (γ) of functional AMPA receptors may underlie synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD). These parameters have been estimated using non-stationary fluctuation analysis (NSFA). The validity of NSFA for studying the channel properties of synaptic AMPA receptors was assessed using a cable model with dendritic spines and a microscopic kinetic description of AMPA receptors. Electrotonic, geometric and kinetic parameters were altered in order to determine their effects on estimates of the underlying γ. Estimates of γ were very sensitive to the access resistance of the recording (RA) and the mean open time of AMPA channels. Estimates of γ were less sensitive to the distance between the electrode and the synaptic site, the electrotonic properties of dendritic structures, recording electrode capacitance and background noise. Estimates of γ were insensitive to changes in spine morphology, synaptic glutamate concentration and the peak open probability (Po) of AMPA receptors. The results obtained using the model agree with biological data, obtained from 91 dendritic recordings from rat CA1 pyramidal cells. A correlation analysis showed that RA resulted in a slowing of the decay time constant of excitatory postsynaptic currents (EPSCs) by approximately 150 %, from an estimated value of 3.1 ms. RA also greatly attenuated the absolute estimate of γ by approximately 50-70 %. When other parameters remain constant, the model demonstrates that NSFA of dendritic recordings can readily discriminate between changes in γvs. changes in N or Po. Neither background noise nor asynchronous activation of multiple synapses prevented reliable discrimination between changes in γ and changes in either N or Po. The model (available online) can be used to predict how changes in the different properties of AMPA receptors may influence synaptic transmission and plasticity. PMID:11731574
Methods for accurate estimation of net discharge in a tidal channel
Simpson, M.R.; Bland, R.
2000-01-01
Accurate estimates of net residual discharge in tidally affected rivers and estuaries are possible because of recently developed ultrasonic discharge measurement techniques. Previous discharge estimates using conventional mechanical current meters and methods based on stage/discharge relations or water slope measurements often yielded errors that were as great as or greater than the computed residual discharge. Ultrasonic measurement methods consist of: 1) the use of ultrasonic instruments for the measurement of a representative 'index' velocity used for in situ estimation of mean water velocity and 2) the use of the acoustic Doppler current discharge measurement system to calibrate the index velocity measurement data. Methods used to calibrate (rate) the index velocity to the channel velocity measured using the Acoustic Doppler Current Profiler are the most critical factors affecting the accuracy of net discharge estimation. The index velocity first must be related to mean channel velocity and then used to calculate instantaneous channel discharge. Finally, discharge is low-pass filtered to remove the effects of the tides. An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin Rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. Two sets of data were collected during a spring tide (monthly maximum tidal current) and one of data collected during a neap tide (monthly minimum tidal current). The relative magnitude of instrumental errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was found to be the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three sets of calibration data differed by less than an average of 4 cubic meters per second, or less than 0.5% of a typical peak tidal discharge rate of 750 cubic meters per second.
Unravelling the relative contribution of bed and suspended sediment load on a large alluvial river
NASA Astrophysics Data System (ADS)
Darby, S. E.; Hackney, C. R.; Parsons, D. R.; Leyland, J.; Aalto, R. E.; Nicholas, A. P.; Best, J.
2017-12-01
The world's largest rivers transport 19 billion tonnes of sediment to the coastal zone annually, often supporting large deltas that rely on this sediment load to maintain their elevation in the face of rising sea level, and to sustain high levels of agricultural productivity and biodiversity. However, the majority of estimates of sediment delivery to coastal regions pertain solely to the suspended fraction of the sediment load, with the bedload fraction often being neglected due to the difficulty in estimating bedload flux and the assumption that bedload contributes a minor (<10%) fraction of the total sediment load. In large rivers, capturing accurate estimates of the suspended- and bed- load fractions is difficult given the large channel widths and depths and the intrusive nature of typical methodologies. Yet, for the successful implementation of sustainable river, and delta, management plans, improved estimates of all fractions of the sediment load are essential. Recent advances in non-intrusive, high-resolution, technology have begun to enable more accurate estimates of bedload transport rates. However, the characterisation of the holistic sediment transport regime of large alluvial rivers is still lacking. Here, we develop a sediment transport rating curve, combining both suspended- and bed- load sediment fractions, for the Lower Mekong River. We define suspended sediment rating curves using the inversion of acoustic return data from a series of acoustic Doppler current profiler surveys conducted through the Lower Mekong River in Cambodia, and into the bifurcating channels of the Mekong delta in Vietnam. Additionally, we detail estimates of bed-load sediment transport determined using repeat multibeam echo sounder surveys of the channel bed. By combining estimates of both fractions of the sediment load, we show the spatial and temporal contribution of bedload to the total sediment load of the Mekong and refine estimates of sediment transport to the Mekong delta. Our results indicate that the time-averaged suspended load transport rates for the Mekong River are 87 MT/yr, whilst bedload transport forms c. < 5% of the total sediment load within the Mekong River. Such estimates are integral to future channel management within this highly threatened river basin.
Greenwood, M J; Hunt, G L
1995-04-01
The authors use Standard Metropolitan Statistical Area (SMSA) data constructed from 1980 census microdata files and other sources to estimate a structural model of native/foreign-born labor demand and labor supply which distinguishes the effects upon real wages of each type of labor and on the employment of natives. The authors specify, econometrically estimate, and simulate the structural model which incorporates not only a production structure channel through which immigrants influence area real wages and employment, but also demand and native labor supply channels. It is noted that while these are not the only channels through which immigrants may affect native workers, the model nonetheless constitutes a step in the direction of a general equilibrium approach. In the production structure channel, immigrants and natives are found to be substitutes in production. Immigration lowers foreign-born wage rates and leads to lower wages for natives. The negative effects of the production channel usually are ameliorated through the demand channel. Further, immigrants add to local demand through their earnings and potentially through non-labor income, while also lowering unit costs and local prices which enhances real incomes and potentially net exports, and thus the demands for local output and area labor. The author discusses findings of interest from the simulation results based upon an analysis of all areas.
TOXAPHENE: CHRONIC TOXICITY TO FATHEAD MINNOWS AND CHANNEL CATFISH
Fathead minnows (Pimephales promelas) and channel catfish (Ictalurus punctatus) were continuously exposed to several toxaphene concentrations (13-630 ng) in flow-through diluter systems for 8 to 10 months. Growth and backbone quality of adult fathead minnows were decreased at 97 ...
Atlantic water flow through the Faroese Channels
NASA Astrophysics Data System (ADS)
Hansen, Bogi; Poulsen, Turið; Margretha Húsgarð Larsen, Karin; Hátún, Hjálmar; Østerhus, Svein; Darelius, Elin; Berx, Barbara; Quadfasel, Detlef; Jochumsen, Kerstin
2017-11-01
Through the Faroese Channels - the collective name for a system of channels linking the Faroe-Shetland Channel, Wyville Thomson Basin, and Faroe Bank Channel - there is a deep flow of cold waters from Arctic regions that exit the system as overflow through the Faroe Bank Channel and across the Wyville Thomson Ridge. The upper layers, in contrast, are dominated by warm, saline water masses from the southwest, termed Atlantic water. In spite of intensive research over more than a century, there are still open questions on the passage of these waters through the system with conflicting views in recent literature. Of special note is the suggestion that there is a flow of Atlantic water from the Faroe-Shetland Channel through the Faroe Bank Channel, which circles the Faroes over the slope region in a clockwise direction. Here, we combine the observational evidence from ship-borne hydrography, moored current measurements, surface drifter tracks, and satellite altimetry to address these questions and propose a general scheme for the Atlantic water flow through this channel system. We find no evidence for a continuous flow of Atlantic water from the Faroe-Shetland Channel to the Faroe Bank Channel over the Faroese slope. Rather, the southwestward-flowing water over the Faroese slope of the Faroe-Shetland Channel is totally recirculated within the combined area of the Faroe-Shetland Channel and Wyville Thomson Basin, except possibly for a small release in the form of eddies. This does not exclude a possible westward flow over the southern tip of the Faroe Shelf, but even including that, we estimate that the average volume transport of a Circum-Faroe Current does not exceed 0.5 Sv (1 Sv = 106 m3 s-1). Also, there seems to be a persistent flow of Atlantic water from the western part of the Faroe Bank Channel into the Faroe-Shetland Channel that joins the Slope Current over the Scottish slope. These conclusions will affect potential impacts from offshore activities in the region and they imply that recently published observational estimates of the transport of warm water towards the Arctic obtained by different methods are incompatible.
LIDAR Remote Sensing of Particulate Matter Emissions from On-Road Vehicles
NASA Astrophysics Data System (ADS)
Keislar, R. E.; Kuhns, H.; Mazzoleni, C.; Moosmuller, H.; Watson, J.
2002-12-01
DRI has developed a remote sensing method for on-road particulate matter emissions from gasoline-powered and diesel-powered vehicles called the Vehicle Emissions Remote Sensing System (VERSS). Remote sensing of gaseous pollutants in vehicle exhaust is a well-established, economical way to determine on-road emissions for thousands of vehicles per day. The VERSS adds a particulate matter channel to complement gaseous pollutant measurements. The VERSS uses 266-nm ultraviolet laser light to achieve greater sensitivity than visible light to sub-micrometer particles, where the greatest mass fraction has been reported. The VERSS system integrates the lidar channel with a commercial remote sensing device (RSD) for gaseous pollutants, and the RSD CO2 measurement can be used to estimate fuel-based particle mass emissions. We describe the interpretation and processing of lidar returns from field measurements taken by the combined VERSS during the Southern Nevada Air Quality Study (SNAQS), conducted in the Las Vegas area. With suitable assumptions regarding size distribution and particle composition, the lidar backscatter signal and the RSD yield three basic measurements of particulate matter in the exhaust plume. For each passing vehicle, these three channels are: 1) Columnar extinction in the infrared (IR at 3.9 micrometers) 2) Columnar extinction in the ultraviolet (UV at 266 nm) 3) Range-resolved backscatter at 266 nm (horizontal spatial resolution of 20-25 cm) The 3.9-micrometer channel is a good surrogate for absorption by elemental carbon (EC) in tailpipe emissions and has been utilized in previous studies. Opacity measurements at 266 nm provide optical extinction due to scattering from tailpipe organic carbon (OC) and EC emissions.
NASA Astrophysics Data System (ADS)
Eck, Brendan; Fahmi, Rachid; Brown, Kevin M.; Raihani, Nilgoun; Wilson, David L.
2014-03-01
Model observers were created and compared to human observers for the detection of low contrast targets in computed tomography (CT) images reconstructed with an advanced, knowledge-based, iterative image reconstruction method for low x-ray dose imaging. A 5-channel Laguerre-Gauss Hotelling Observer (CHO) was used with internal noise added to the decision variable (DV) and/or channel outputs (CO). Models were defined by parameters: (k1) DV-noise with standard deviation (std) proportional to DV std; (k2) DV-noise with constant std; (k3) CO-noise with constant std across channels; and (k4) CO-noise in each channel with std proportional to CO variance. Four-alternative forced choice (4AFC) human observer studies were performed on sub-images extracted from phantom images with and without a "pin" target. Model parameters were estimated using maximum likelihood comparison to human probability correct (PC) data. PC in human and all model observers increased with dose, contrast, and size, and was much higher for advanced iterative reconstruction (IMR) as compared to filtered back projection (FBP). Detection in IMR was better than FPB at 1/3 dose, suggesting significant dose savings. Model(k1,k2,k3,k4) gave the best overall fit to humans across independent variables (dose, size, contrast, and reconstruction) at fixed display window. However Model(k1) performed better when considering model complexity using the Akaike information criterion. Model(k1) fit the extraordinary detectability difference between IMR and FBP, despite the different noise quality. It is anticipated that the model observer will predict results from iterative reconstruction methods having similar noise characteristics, enabling rapid comparison of methods.
Rainfall Estimates from the TMI and the SSM/I
NASA Technical Reports Server (NTRS)
Hong, Ye; Kummerow, Christian D.; Olson, William S.; Viltard, Nicolas
1999-01-01
The Tropical Rainfall Measuring Mission (TRMM), which is a joint Japan-U.S. Earth observing satellite, has been successfully launched from Japan on November 27, 1997. The main purpose of the TRMM is to measure quantitatively rainfall over the tropics for the research of climate and weather. One of three rainfall measuring instruments abroad the TRMM is the high resolution TRMM Microwave Imager (TMI). The TMI instrument is essentially the copy of the SSM/I with a dual-polarized pair of 10.7 GHz channels added to increase the dynamic range of rainfall estimates. In addition, the 21.3 GHz water vapor absorption channel is designed in the TMI as opposed to the 22.235 GHz in the SSM/I to avoid saturation in the tropics. This paper will present instantaneous rain rates estimated from the coincident TMI and SSM/I observations. The algorithm for estimating instantaneous rainfall rates from both sensors is the Goddard Profiling algorithm (Gprof). The Gprof algorithm is a physically based, multichannel rainfall retrieval algorithm, The algorithm is very portable and can be used for various sensors with different channels and resolutions. The comparison of rain rates estimated from TMI and SSM/I on the same rain regions will be performed. The results from the comparison and the insight of tile retrieval algorithm will be given.
Faithful qubit transmission in a quantum communication network with heterogeneous channels
NASA Astrophysics Data System (ADS)
Chen, Na; Zhang, Lin Xi; Pei, Chang Xing
2018-04-01
Quantum communication networks enable long-distance qubit transmission and distributed quantum computation. In this paper, a quantum communication network with heterogeneous quantum channels is constructed. A faithful qubit transmission scheme is presented. Detailed calculations and performance analyses show that even in a low-quality quantum channel with serious decoherence, only modest number of locally prepared target qubits are required to achieve near-deterministic qubit transmission.
Use of planar array electrophysiology for the development of robust ion channel cell lines.
Clare, Jeffrey J; Chen, Mao Xiang; Downie, David L; Trezise, Derek J; Powell, Andrew J
2009-01-01
The tractability of ion channels as drug targets has been significantly improved by the advent of planar array electrophysiology platforms which have dramatically increased the capacity for electrophysiological profiling of lead series compounds. However, the data quality and through-put obtained with these platforms is critically dependent on the robustness of the expression reagent being used. The generation of high quality, recombinant cell lines is therefore a key step in the early phase of ion channel drug discovery and this can present significant challenges due to the diversity and organisational complexity of many channel types. This article focuses on several complex and difficult to express ion channels and illustrates how improved stable cell lines can be obtained by integration of planar array electrophysiology systems into the cell line generation process per se. By embedding this approach at multiple stages (e.g., during development of the expression strategy, during screening and validation of clonal lines, and during characterisation of the final cell line), the cycle time and success rate in obtaining robust expression of complex multi-subunit channels can be significantly improved. We also review how recent advances in this technology (e.g., population patch clamp) have further widened the versatility and applicability of this approach.
Automated Filtering of Common Mode Artifacts in Multi-Channel Physiological Recordings
Kelly, John W.; Siewiorek, Daniel P.; Smailagic, Asim; Wang, Wei
2014-01-01
The removal of spatially correlated noise is an important step in processing multi-channel recordings. Here, a technique termed the adaptive common average reference (ACAR) is presented as an effective and simple method for removing this noise. The ACAR is based on a combination of the well-known common average reference (CAR) and an adaptive noise canceling (ANC) filter. In a convergent process, the CAR provides a reference to an ANC filter, which in turn provides feedback to enhance the CAR. This method was effective on both simulated and real data, outperforming the standard CAR when the amplitude or polarity of the noise changes across channels. In many cases the ACAR even outperformed independent component analysis (ICA). On 16 channels of simulated data the ACAR was able to attenuate up to approximately 290 dB of noise and could improve signal quality if the original SNR was as high as 5 dB. With an original SNR of 0 dB, the ACAR improved signal quality with only two data channels and performance improved as the number of channels increased. It also performed well under many different conditions for the structure of the noise and signals. Analysis of contaminated electrocorticographic (ECoG) recordings further showed the effectiveness of the ACAR. PMID:23708770
Systematic void fraction studies with RELAP5, FRANCESCA and HECHAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stosic, Z.; Preusche, G.
1996-08-01
In enhancing the scope of standard thermal-hydraulic codes applications beyond its capabilities, i.e. coupling with a one and/or three-dimensional kinetics core model, the void fraction, transferred from thermal-hydraulics to the core model, plays a determining role in normal operating range and high core flow, as the generated heat and axial power profiles are direct functions of void distribution in the core. Hence, it is very important to know if the void quality models in the programs which have to be coupled are compatible to allow the interactive exchange of data which are based on these constitutive void-quality relations. The presentedmore » void fraction study is performed in order to give the basis for the conclusion whether a transient core simulation using the RELAP5 void fractions can calculate the axial power shapes adequately. Because of that, the void fractions calculated with RELAP5 are compared with those calculated by BWR safety code for licensing--FRANCESCA and the best estimate model for pre- and post-dryout calculation in BWR heated channel--HECHAN. In addition, a comparison with standard experimental void-quality benchmark tube data is performed for the HECHAN code.« less
Motion-related resource allocation in dynamic wireless visual sensor network environments.
Katsenou, Angeliki V; Kondi, Lisimachos P; Parsopoulos, Konstantinos E
2014-01-01
This paper investigates quality-driven cross-layer optimization for resource allocation in direct sequence code division multiple access wireless visual sensor networks. We consider a single-hop network topology, where each sensor transmits directly to a centralized control unit (CCU) that manages the available network resources. Our aim is to enable the CCU to jointly allocate the transmission power and source-channel coding rates for each node, under four different quality-driven criteria that take into consideration the varying motion characteristics of each recorded video. For this purpose, we studied two approaches with a different tradeoff of quality and complexity. The first one allocates the resources individually for each sensor, whereas the second clusters them according to the recorded level of motion. In order to address the dynamic nature of the recorded scenery and re-allocate the resources whenever it is dictated by the changes in the amount of motion in the scenery, we propose a mechanism based on the particle swarm optimization algorithm, combined with two restarting schemes that either exploit the previously determined resource allocation or conduct a rough estimation of it. Experimental simulations demonstrate the efficiency of the proposed approaches.
Chambers, D.B.; Miller, K.F.; Waldron, M.C.; Falkenburg, C.W.
1994-01-01
This report contains water-quality data for the Ohio River from river mile 160.6 (1.1 mi upstream from Willow Island Dam) to river mile 203.6 (0.3 mi upstream from Belleville Dam) during the summer of 1991. Water quality was determined by a combi- nation of synoptic field measurements and laboratory analyses. Synoptic sampling consisted of 8 cross-sectional transects and a longitudinal transect with 28 mid-channel stations. Each cross- sectional transect included five vertical profiles of water temperature, dissolved oxygen concen- tration, pH, and specific conductance. Longi- tudinal transect stations were sampled at three depths (near the surface, middle of the water column, and at or near the bottom) for the same characteristics. Sampling was completed in 3 days or less, and was repeated approximately every 2 weeks from June through October 1991. Beginning in August 1991, water samples were collected at selected locations and analyzed for chlorophyll-a and pheophytin concentrations, as measures of phytoplankton biomass and phytoplankton-degradation products, respectively. The depth of light penetration was estimated at all pigment-sampling locations.
A channel differential EZW coding scheme for EEG data compression.
Dehkordi, Vahid R; Daou, Hoda; Labeau, Fabrice
2011-11-01
In this paper, a method is proposed to compress multichannel electroencephalographic (EEG) signals in a scalable fashion. Correlation between EEG channels is exploited through clustering using a k-means method. Representative channels for each of the clusters are encoded individually while other channels are encoded differentially, i.e., with respect to their respective cluster representatives. The compression is performed using the embedded zero-tree wavelet encoding adapted to 1-D signals. Simulations show that the scalable features of the scheme lead to a flexible quality/rate tradeoff, without requiring detailed EEG signal modeling.
A source-channel coding approach to digital image protection and self-recovery.
Sarreshtedari, Saeed; Akhaee, Mohammad Ali
2015-07-01
Watermarking algorithms have been widely applied to the field of image forensics recently. One of these very forensic applications is the protection of images against tampering. For this purpose, we need to design a watermarking algorithm fulfilling two purposes in case of image tampering: 1) detecting the tampered area of the received image and 2) recovering the lost information in the tampered zones. State-of-the-art techniques accomplish these tasks using watermarks consisting of check bits and reference bits. Check bits are used for tampering detection, whereas reference bits carry information about the whole image. The problem of recovering the lost reference bits still stands. This paper is aimed at showing that having the tampering location known, image tampering can be modeled and dealt with as an erasure error. Therefore, an appropriate design of channel code can protect the reference bits against tampering. In the present proposed method, the total watermark bit-budget is dedicated to three groups: 1) source encoder output bits; 2) channel code parity bits; and 3) check bits. In watermark embedding phase, the original image is source coded and the output bit stream is protected using appropriate channel encoder. For image recovery, erasure locations detected by check bits help channel erasure decoder to retrieve the original source encoded image. Experimental results show that our proposed scheme significantly outperforms recent techniques in terms of image quality for both watermarked and recovered image. The watermarked image quality gain is achieved through spending less bit-budget on watermark, while image recovery quality is considerably improved as a consequence of consistent performance of designed source and channel codes.
NASA Astrophysics Data System (ADS)
Bankura, Arindam; Klein, Michael L.; Carnevale, Vincenzo
2013-08-01
Ab initio molecular dynamics calculations have been used to compare and contrast the deprotonation reaction of a histidine residue in aqueous solution with the situation arising in a histidine-tryptophan cluster. The latter is used as a model of the proton storage unit present in the pore of the M2 proton conducting ion channel. We compute potentials of mean force for the dissociation of a proton from the Nδ and Nɛ positions of the imidazole group to estimate the pKas. Anticipating our results, we will see that the estimated pKa for the first protonation event of the M2 channel is in good agreement with experimental estimates. Surprisingly, despite the fact that the histidine is partially desolvated in the M2 channel, the affinity for protons is similar to that of a histidine in aqueous solution. Importantly, the electrostatic environment provided by the indoles is responsible for the stabilization of the charged imidazolium.
NASA Astrophysics Data System (ADS)
Khamukhin, A. A.
2017-02-01
Simple navigation algorithms are needed for small autonomous unmanned aerial vehicles (UAVs). These algorithms can be implemented in a small microprocessor with low power consumption. This will help to reduce the weight of the UAVs computing equipment and to increase the flight range. The proposed algorithm uses only the number of opaque channels (ommatidia in bees) through which a target can be seen by moving an observer from location 1 to 2 toward the target. The distance estimation is given relative to the distance between locations 1 and 2. The simple scheme of an appositional compound eye to develop calculation formula is proposed. The distance estimation error analysis shows that it decreases with an increase of the total number of opaque channels to a certain limit. An acceptable error of about 2 % is achieved with the angle of view from 3 to 10° when the total number of opaque channels is 21600.
NASA Astrophysics Data System (ADS)
Valderrama, Joaquin T.; de la Torre, Angel; Van Dun, Bram
2018-02-01
Objective. Artifact reduction in electroencephalogram (EEG) signals is usually necessary to carry out data analysis appropriately. Despite the large amount of denoising techniques available with a multichannel setup, there is a lack of efficient algorithms that remove (not only detect) blink-artifacts from a single channel EEG, which is of interest in many clinical and research applications. This paper describes and evaluates the iterative template matching and suppression (ITMS), a new method proposed for detecting and suppressing the artifact associated with the blink activity from a single channel EEG. Approach. The approach of ITMS consists of (a) an iterative process in which blink-events are detected and the blink-artifact waveform of the analyzed subject is estimated, (b) generation of a signal modeling the blink-artifact, and (c) suppression of this signal from the raw EEG. The performance of ITMS is compared with the multi-window summation of derivatives within a window (MSDW) technique using both synthesized and real EEG data. Main results. Results suggest that ITMS presents an adequate performance in detecting and suppressing blink-artifacts from a single channel EEG. When applied to the analysis of cortical auditory evoked potentials (CAEPs), ITMS provides a significant quality improvement in the resulting responses, i.e. in a cohort of 30 adults, the mean correlation coefficient improved from 0.37 to 0.65 when the blink-artifacts were detected and suppressed by ITMS. Significance. ITMS is an efficient solution to the problem of denoising blink-artifacts in single-channel EEG applications, both in clinical and research fields. The proposed ITMS algorithm is stable; automatic, since it does not require human intervention; low-invasive, because the EEG segments not contaminated by blink-artifacts remain unaltered; and easy to implement, as can be observed in the Matlab script implemeting the algorithm provided as supporting material.
Enhancing the performance of coherent OTDR systems with polarization diversity complementary codes.
Dorize, Christian; Awwad, Elie
2018-05-14
Monitoring the optical phase change in a fiber enables a wide range of applications where fast phase variations are induced by acoustic signals or by vibrations in general. However, the quality of the estimated fiber response strongly depends on the method used to modulate the light sent to the fiber and capture the variations of the optical field. In this paper, we show that distributed optical fiber sensing systems can advantageously exploit techniques from the telecommunication domain, as those used in coherent optical transmission, to enhance their performance in detecting mechanical events, while jointly offering a simpler setup than widespread pulse-cloning or spectral-sweep based schemes with acousto-optic modulators. We periodically capture an overall fiber Jones matrix estimate thanks to a novel probing technique using two mutually orthogonal complementary (Golay) pairs of binary sequences applied simultaneously in phase and quadrature on two orthogonal polarization states. A perfect channel response estimation of the sensor array is achieved, subject to conditions detailed in the paper, thus enhancing the sensitivity and bandwidth of coherent ϕ-OTDR systems. High sensitivity, linear response, and bandwidth coverage up to 18 kHz are demonstrated with a sensor array composed of 10 fiber Bragg gratings (FBGs).
Enhancing the performance of coherent OTDR systems with polarization diversity complementary codes
NASA Astrophysics Data System (ADS)
Dorize, Christian; Awwad, Elie
2018-05-01
Monitoring the optical phase change in a fiber enables a wide range of applications where fast phase variations are induced by acoustic signals or vibrations in general. However, the quality of the estimated fiber response strongly depends on the method used to modulate the light sent to the fiber and capture the variations of the optical field. In this paper, we show that distributed optical fiber sensing systems can advantageously exploit techniques from the telecommunication domain, as those used in coherent optical transmission, to enhance their performance in detecting mechanical events, while jointly offering a simpler setup than widespread pulse-cloning or spectral-sweep based schemes with acousto-optic modulators. We periodically capture an overall fiber Jones matrix estimate thanks to a novel probing technique using two mutually orthogonal complementary (Golay) pairs of binary sequences applied simultaneously in phase and quadrature on two orthogonal polarization states. A perfect channel response estimation of the sensor array is achieved, subject to conditions detailed in the paper, thus enhancing the sensitivity and bandwidth of coherent phase-OTDR systems. High sensitivity, linear response, and bandwidth coverage up to 18 kHz are demonstrated with a sensor array composed of 10 fiber Bragg gratings (FBGs).
Conductance of Ion Channels - Theory vs. Experiment
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan
2013-01-01
Transmembrane ion channels mediate a number of essential physiological processes in a cell ranging from regulating osmotic pressure to transmission of neural signals. Kinetics and selectivity of ion transport is of critical importance to a cell and, not surprisingly, it is a subject of numerous experimental and theoretical studies. In this presentation we will analyze in detail computer simulations of two simple channels from fungi - antiamoebin and trichotoxin. Each of these channels is made of an alpha-helical bundle of small, nongenomically synthesized peptides containing a number of rare amino acids and exhibits strong antimicrobial activity. We will focus on calculating ionic conductance defined as the ratio of ionic current through the channel to applied voltage. From molecular dynamics simulations, conductance can be calculated in at least two ways, each involving different approximations. Specifically, the current, given as the number of charges transferred through the channel per unit of time, can be obtained from the number of events in which ions cross the channel during the simulation. This method works well for large currents (high conductance values and/or applied voltages). If the number of crossing events is small, reliable estimates of current are difficult to achieve. Alternatively, conductance can be estimated assuming that ion transport can be well approximated as diffusion in the external potential given by the free energy profile. Then, the current can be calculated by solving the one-dimensional diffusion equation in this external potential and applied voltage (the generalized Nernst-Planck equation). To do so three ingredients are needed: the free energy profile, the position-dependent diffusion coefficient and the diffusive flux of ions into the channel. All these quantities can be obtained from molecular dynamics simulations. An important advantage of this method is that it can be used equally well to estimating large and small currents. In addition, once the free energy profile becomes available the full current-voltage dependence can be readily obtained. For both channels we carried out calculations using both approaches. We also tested the main assumptions underlying the diffusive model, such as uncorrelated nature of individual crossing events and Fickian diffusion. The accuracy and consistency of different methods will be discussed. Finally we will discuss how comparisons between calculated and measured ionic conductance and selectivity of transport can be used for determining structural models of the channels.
18 CFR 415.41 - Special permits.
Code of Federal Regulations, 2011 CFR
2011-04-01
... delineated floodway or channel. (5) Increase significantly the rate of local runoff, erosion, or sedimentation. (6) Degrade significantly the quality of surface water or the quality or quantity of ground water...
18 CFR 415.41 - Special permits.
Code of Federal Regulations, 2010 CFR
2010-04-01
... delineated floodway or channel. (5) Increase significantly the rate of local runoff, erosion, or sedimentation. (6) Degrade significantly the quality of surface water or the quality or quantity of ground water...
Almost all quantum channels are equidistant
NASA Astrophysics Data System (ADS)
Nechita, Ion; Puchała, Zbigniew; Pawela, Łukasz; Życzkowski, Karol
2018-05-01
In this work, we analyze properties of generic quantum channels in the case of large system size. We use random matrix theory and free probability to show that the distance between two independent random channels converges to a constant value as the dimension of the system grows larger. As a measure of the distance we use the diamond norm. In the case of a flat Hilbert-Schmidt distribution on quantum channels, we obtain that the distance converges to 1/2 +2/π , giving also an estimate for the maximum success probability for distinguishing the channels. We also consider the problem of distinguishing two random unitary rotations.
Robust Transceiver Design for Multiuser MIMO Downlink with Channel Uncertainties
NASA Astrophysics Data System (ADS)
Miao, Wei; Li, Yunzhou; Chen, Xiang; Zhou, Shidong; Wang, Jing
This letter addresses the problem of robust transceiver design for the multiuser multiple-input-multiple-output (MIMO) downlink where the channel state information at the base station (BS) is imperfect. A stochastic approach which minimizes the expectation of the total mean square error (MSE) of the downlink conditioned on the channel estimates under a total transmit power constraint is adopted. The iterative algorithm reported in [2] is improved to handle the proposed robust optimization problem. Simulation results show that our proposed robust scheme effectively reduces the performance loss due to channel uncertainties and outperforms existing methods, especially when the channel errors of the users are different.
Receiver IQ mismatch estimation in PDM CO-OFDM system using training symbol
NASA Astrophysics Data System (ADS)
Peng, Dandan; Ma, Xiurong; Yao, Xin; Zhang, Haoyuan
2017-07-01
Receiver in-phase/quadrature (IQ) mismatch is hard to mitigate at the receiver via using conventional method in polarization division multiplexed (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. In this paper, a novel training symbol structure is proposed to estimate IQ mismatch and channel distortion. Combined this structure with Gram Schmidt orthogonalization procedure (GSOP) algorithm, we can get lower bit error rate (BER). Meanwhile, based on this structure one estimation method is deduced in frequency domain which can achieve the estimation of IQ mismatch and channel distortion independently and improve the system performance obviously. Numerical simulation shows that the proposed two methods have better performance than compared method at 100 Gb/s after 480 km fiber transmission. Besides, the calculation complexity is also analyzed.
Effects of Channel Modification on Detection and Dating of Fault Scarps
NASA Astrophysics Data System (ADS)
Sare, R.; Hilley, G. E.
2016-12-01
Template matching of scarp-like features could potentially generate morphologic age estimates for individual scarps over entire regions, but data noise and scarp modification limits detection of fault scarps by this method. Template functions based on diffusion in the cross-scarp direction may fail to accurately date scarps near channel boundaries. Where channels reduce scarp amplitudes, or where cross-scarp noise is significant, signal-to-noise ratios decrease and the scarp may be poorly resolved. In this contribution, we explore the bias in morphologic age of a complex scarp produced by systematic changes in fault scarp curvature. For example, fault scarps may be modified by encroaching channel banks and mass failure, lateral diffusion of material into a channel, or undercutting parallel to the base of a scarp. We quantify such biases on morphologic age estimates using a block offset model subject to two-dimensional linear diffusion. We carry out a synthetic study of the effects of two-dimensional transport on morphologic age calculated using a profile model, and compare these results to a well- studied and constrained site along the San Andreas Fault at Wallace Creek, CA. This study serves as a first step towards defining regions of high confidence in template matching results based on scarp length, channel geometry, and near-scarp topography.
Heo, Joon; Duc, Trinh Anh; Cho, Hyung-Sik; Choi, Sung-Uk
2009-05-01
This study focused on the prediction of a 22 km meandering channel migration of the Sabine River between the states of Texas and Louisiana. The meander characteristics of 12 bends, identified from seven orthophotos taken between 1974 and 2004, were acquired in a GIS environment. Based on that earlier years' data acquisition, channel prediction was performed for the two years 1996 and 2004 using least squares estimation and linear extrapolations, yielding a satisfactory agreement with the observations (the median predicted and observed migration rates were 3.1 and 3.6 [m/year], respectively). The best-predicted migration rate was found to be associated with the longest orthophoto-recorded interval. The study confirmed that channel migration is strongly correlated with bend curvature and that the maximum migration rate of the bend corresponded to a radius of curvature [bend radius (R(C))/channel width (W(C))] of 2.5. In tight bends of a smaller radius of curvature than 1.6, secondary flow scouring near the bend apex increases bend curvature. The stability index of the dimensionless bend radius was determined to be 2.45. Overall, this study proves the effectiveness of least squares estimation with historical orthophotography for characterization of meandering channel migration.
On the estimation of the worst-case implant-induced RF-heating in multi-channel MRI.
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2017-06-21
The increasing use of multiple radiofrequency (RF) transmit channels in magnetic resonance imaging (MRI) systems makes it necessary to rigorously assess the risk of RF-induced heating. This risk is especially aggravated with inclusions of medical implants within the body. The worst-case RF-heating scenario is achieved when the local tissue deposition in the at-risk region (generally in the vicinity of the implant electrodes) reaches its maximum value while MRI exposure is compliant with predefined general specific absorption rate (SAR) limits or power requirements. This work first reviews the common approach to estimate the worst-case RF-induced heating in multi-channel MRI environment, based on the maximization of the ratio of two Hermitian forms by solving a generalized eigenvalue problem. It is then shown that the common approach is not rigorous and may lead to an underestimation of the worst-case RF-heating scenario when there is a large number of RF transmit channels and there exist multiple SAR or power constraints to be satisfied. Finally, this work derives a rigorous SAR-based formulation to estimate a preferable worst-case scenario, which is solved by casting a semidefinite programming relaxation of this original non-convex problem, whose solution closely approximates the true worst-case including all SAR constraints. Numerical results for 2, 4, 8, 16, and 32 RF channels in a 3T-MRI volume coil for a patient with a deep-brain stimulator under a head imaging exposure are provided as illustrative examples.
On the estimation of the worst-case implant-induced RF-heating in multi-channel MRI
NASA Astrophysics Data System (ADS)
Córcoles, Juan; Zastrow, Earl; Kuster, Niels
2017-06-01
The increasing use of multiple radiofrequency (RF) transmit channels in magnetic resonance imaging (MRI) systems makes it necessary to rigorously assess the risk of RF-induced heating. This risk is especially aggravated with inclusions of medical implants within the body. The worst-case RF-heating scenario is achieved when the local tissue deposition in the at-risk region (generally in the vicinity of the implant electrodes) reaches its maximum value while MRI exposure is compliant with predefined general specific absorption rate (SAR) limits or power requirements. This work first reviews the common approach to estimate the worst-case RF-induced heating in multi-channel MRI environment, based on the maximization of the ratio of two Hermitian forms by solving a generalized eigenvalue problem. It is then shown that the common approach is not rigorous and may lead to an underestimation of the worst-case RF-heating scenario when there is a large number of RF transmit channels and there exist multiple SAR or power constraints to be satisfied. Finally, this work derives a rigorous SAR-based formulation to estimate a preferable worst-case scenario, which is solved by casting a semidefinite programming relaxation of this original non-convex problem, whose solution closely approximates the true worst-case including all SAR constraints. Numerical results for 2, 4, 8, 16, and 32 RF channels in a 3T-MRI volume coil for a patient with a deep-brain stimulator under a head imaging exposure are provided as illustrative examples.
NASA Astrophysics Data System (ADS)
Choi, Junil; Love, David J.; Bidigare, Patrick
2014-10-01
The concept of deploying a large number of antennas at the base station, often called massive multiple-input multiple-output (MIMO), has drawn considerable interest because of its potential ability to revolutionize current wireless communication systems. Most literature on massive MIMO systems assumes time division duplexing (TDD), although frequency division duplexing (FDD) dominates current cellular systems. Due to the large number of transmit antennas at the base station, currently standardized approaches would require a large percentage of the precious downlink and uplink resources in FDD massive MIMO be used for training signal transmissions and channel state information (CSI) feedback. To reduce the overhead of the downlink training phase, we propose practical open-loop and closed-loop training frameworks in this paper. We assume the base station and the user share a common set of training signals in advance. In open-loop training, the base station transmits training signals in a round-robin manner, and the user successively estimates the current channel using long-term channel statistics such as temporal and spatial correlations and previous channel estimates. In closed-loop training, the user feeds back the best training signal to be sent in the future based on channel prediction and the previously received training signals. With a small amount of feedback from the user to the base station, closed-loop training offers better performance in the data communication phase, especially when the signal-to-noise ratio is low, the number of transmit antennas is large, or prior channel estimates are not accurate at the beginning of the communication setup, all of which would be mostly beneficial for massive MIMO systems.
Temperature-profile methods for estimating percolation rates in arid environments
Constantz, Jim; Tyler, Scott W.; Kwicklis, Edward
2003-01-01
Percolation rates are estimated using vertical temperature profiles from sequentially deeper vadose environments, progressing from sediments beneath stream channels, to expansive basin-fill materials, and finally to deep fractured bedrock underlying mountainous terrain. Beneath stream channels, vertical temperature profiles vary over time in response to downward heat transport, which is generally controlled by conductive heat transport during dry periods, or by advective transport during channel infiltration. During periods of stream-channel infiltration, two relatively simple approaches are possible: a heat-pulse technique, or a heat and liquid-water transport simulation code. Focused percolation rates beneath stream channels are examined for perennial, seasonal, and ephemeral channels in central New Mexico, with estimated percolation rates ranging from 100 to 2100 mm d−1 Deep within basin-fill and underlying mountainous terrain, vertical temperature gradients are dominated by the local geothermal gradient, which creates a profile with decreasing temperatures toward the surface. If simplifying assumptions are employed regarding stratigraphy and vapor fluxes, an analytical solution to the heat transport problem can be used to generate temperature profiles at specified percolation rates for comparison to the observed geothermal gradient. Comparisons to an observed temperature profile in the basin-fill sediments beneath Frenchman Flat, Nevada, yielded water fluxes near zero, with absolute values <10 mm yr−1 For the deep vadose environment beneath Yucca Mountain, Nevada, the complexities of stratigraphy and vapor movement are incorporated into a more elaborate heat and water transport model to compare simulated and observed temperature profiles for a pair of deep boreholes. Best matches resulted in a percolation rate near zero for one borehole and 11 mm yr−1 for the second borehole.
NASA Astrophysics Data System (ADS)
Jacobsen, Robert E.; Burr, Devon M.
2018-03-01
Changes in Martian fluvial geomorphology with time-stratigraphic age, including decreases in paleochannel widths, suggest waning paleodischarges through time. Where fluvial landforms do not preserve paleochannel widths (e.g., meander deposits), other landform dimensions (i.e., radius of curvature) may be used to estimate paleodischarges. In the Aeolis Dorsa region, topographically inverted and stacked fluvial deposits - wide meander point bars overlain by thin channel fills - preserve ostensible evidence of decreasing paleodischarges through time. However, a robust paleohydraulic analysis of these distinct deposits requires knowledge of the accuracy of a terrestrial-based empirical relationship that estimates channel width from point-bar radius of curvature. We assess the accuracy of this radius-width relationship by applying it to a well-studied terrestrial analog, the Quinn River, Nevada. We find that radii of curvature from the Quinn River exceed the values predicted from the empirical relationship. These anomalously high radii are associated with greater resistance in the channel cut banks, indicating that bank strength is a confounding factor in the radius-width relationship. Some deposits in the Aeolis Dorsa include irregular meander morphologies, suggesting variably resistant channel banks and overestimates of both paleochannel widths and paleodischarges. Furthermore, the morphometry of the overlying thin channel fills suggests their widths have been eroded, such that their paleodischarges are underestimates. These overestimates and underestimates, when considered together, suggest little change in paleodischarge during the stratigraphic transition from meander deposits to channel fills. This work demonstrates the importance of terrestrial analog studies for revealing confounding factors in Martian fluvial systems and cautions against simplistic interpretations of Martian fluvial history. The discovered inaccuracies of paleodischarge estimates expose sources of uncertainty in the extant paleodischarge data that bias inferences toward waning hydrologic activity through time.
Analyzing Hydro-Geomorphic Responses in Post-Fire Stream Channels with Terrestrial LiDAR
NASA Astrophysics Data System (ADS)
Nourbakhshbeidokhti, S.; Kinoshita, A. M.; Chin, A.
2015-12-01
Wildfires have potential to significantly alter soil properties and vegetation within watersheds. These alterations often contribute to accelerated erosion, runoff, and sediment transport in stream channels and hillslopes. This research applies repeated Terrestrial Laser Scanning (TLS) Light Detection and Ranging (LiDAR) to stream reaches within the Pike National Forest in Colorado following the 2012 Waldo Canyon Fire. These scans allow investigation of the relationship between sediment delivery and environmental characteristics such as precipitation, soil burn severity, and vegetation. Post-fire LiDAR images provide high resolution information of stream channel changes in eight reaches for three years (2012-2014). All images are processed with RiSCAN PRO to remove vegetation and triangulated and smoothed to create a Digital Elevation Model (DEM) with 0.1 m resolution. Study reaches with two or more successive DEM images are compared using a differencing method to estimate the volume of sediment erosion and deposition. Preliminary analysis of four channel reaches within Williams Canyon and Camp Creek yielded erosion estimates between 0.035 and 0.618 m3 per unit area. Deposition was estimated as 0.365 to 1.67 m3 per unit area. Reaches that experienced higher soil burn severity or larger rainfall events produced the greatest geomorphic changes. Results from LiDAR analyses can be incorporated into post-fire hydrologic models to improve estimates of runoff and sediment yield. These models will, in turn, provide guidance for water resources management and downstream hazards mitigation.
Carcagno, G J; Kemper, P
1988-04-01
The channeling demonstration sought to substitute community care for nursing home care to reduce long-term care costs and improve the quality of life of elderly clients and the family members and friends who care for them. Two interventions were tested, each in five sites; both had comprehensive case management at their core. One model added a small amount of additional funding for direct community services to fill the gaps in the existing system; the other substantially expanded coverage of community services regardless of categorical eligibility under existing programs. The demonstration was evaluated using a randomized experimental design to test the effects of channeling on use of community care, nursing homes, hospitals, and informal caregiving, and on measures of the quality of life of clients and their informal caregivers. Data were obtained from interviews with clients and informal caregivers; service use and cost records came from Medicare, Medicaid, channeling, and providers; and death records for an 18-month follow-up period were examined.
Physical integrity: the missing link in biological monitoring and TMDLs.
Asmus, Brenda; Magner, Joseph A; Vondracek, Bruce; Perry, Jim
2009-12-01
The Clean Water Act mandates that the chemical, physical, and biological integrity of our nation's waters be maintained and restored. Physical integrity has often been defined as physical habitat integrity, and as such, data collected during biological monitoring programs focus primarily on habitat quality. However, we argue that channel stability is a more appropriate measure of physical integrity and that channel stability is a foundational element of physical habitat integrity in low-gradient alluvial streams. We highlight assessment tools that could supplement stream assessments and the Total Maximum Daily Load stressor identification process: field surveys of bankfull cross-sections; longitudinal thalweg profiles; particle size distribution; and regionally calibrated, visual, stream stability assessments. Benefits of measuring channel stability include a more informed selection of reference or best attainable stream condition for an Index of Biotic Integrity, establishment of a baseline for monitoring changes in present and future condition, and indication of channel stability for investigations of chemical and biological impairments associated with sediment discontinuity and loss of habitat quality.
NASA Astrophysics Data System (ADS)
O'Connor, M.; McDavitt, W.
2002-05-01
Erosion, sedimentation and peak flow increases caused by forest management for commercial timber production may negatively affect aquatic habitat of endangered anadromous fish such as coho salmon ({\\ it O. kisutch}). This paper summarizes a portion of a Watershed Analysis study performed for Pacific Lumber Company, Scotia, CA, focusing on erosion and sedimentation processes and rates and downstream sediment routing and water quality in the Freshwater Creek watershed in northwest California. Hillslope, road and bank erosion, channel sedimentation and sediment rates were quantified using field surveys, aerial photo interpretation, and empirical modeling approaches for different elements of the study. Sediment transport rates for bedload were modeled, and sediment transport rates for suspended sediment were estimated based on size distribution of sediment inputs in relation to sizes transported in suspension. The resulting sediment budget was validated through comparison using recent short-term, high-quality estimates of suspended sediment yield collected by a community watershed group at a downstream monitoring site with technical assistance from the US Forest Service. Another check on the sediment budget was provided by bedload yield data from an adjacent watershed, Jacoby Creek. The sediment budget techniques and bedload routing models used for this study provide sediment yield estimates that are in good agreement with available data. These results suggest that sediment budget techniques that require moderate levels of fieldwork can be used to provide relatively accurate technical assessments for use in the TMDL process. The sediment budget also identifies the most significant sediment sources and suggests a framework within which effective erosion control strategies can be developed.
Information transmission over an amplitude damping channel with an arbitrary degree of memory
NASA Astrophysics Data System (ADS)
D'Arrigo, Antonio; Benenti, Giuliano; Falci, Giuseppe; Macchiavello, Chiara
2015-12-01
We study the performance of a partially correlated amplitude damping channel acting on two qubits. We derive lower bounds for the single-shot classical capacity by studying two kinds of quantum ensembles, one which allows us to maximize the Holevo quantity for the memoryless channel and the other allowing the same task but for the full-memory channel. In these two cases we also show the amount of entanglement which is involved in achieving the maximum of the Holevo quantity. For the single-shot quantum capacity we discuss both a lower and an upper bound, achieving a good estimate for high values of the channel transmissivity. We finally compute the entanglement-assisted classical channel capacity.
NASA Astrophysics Data System (ADS)
Wilson, C.; Goodbred, S. L., Jr.; Sams, S.; Small, C.
2015-12-01
The tidal channel network in southwest Bangladesh has been undergoing major adjustment in response to anthropogenic modification over the past few decades. Densely inhabited, agricultural islands that have been embanked to protect against inundation by tides, river flooding, and storm surges (i.e., polders) preclude tidal exchange and sedimentation. Studies reveal this results in elevation deficits relative to mean high water, endangering local communities when embankment failures occur (e.g., during storms, lateral channel erosion). In addition, many studies suggest that the decrease in tidal prism and associated change in hydrodynamics from poldering causes shoaling in remaining tidal channels, which can cause a disruption in transportation. The widespread closure and conversion of tidal channel areas to profitable shrimp aquaculture is also prevalent in this region. In this study, we quantify the direct closure of tidal channels due to poldering and shrimp aquaculture using historical Landsat and Google Earth imagery, and analyze the morphologic adjustment of the tidal channel network due to these perturbations. In the natural Sundarbans mangrove forest, the tidal channel network has remained relatively constant since the 1970s. In contrast, construction of polders removed >1000 km of primary tidal creeks and >90 km2 has been reclaimed outside of polders through infilling and closure of formerly-active, higher order conduit channels now used for shrimp aquaculture. Field validation confirm tidal restriction by large sluice gates is prevalent, favoring local channel siltation at rates up to 20cm/yr. With the impoundment of primary creeks and closure of 30-60% of conduit channels in the study area, an estimated 1,400 x 106 m3 of water has been removed from the tidal prism and potentially redirected within remaining channels. This has significant implications for tidal amplification in this region. Further, we estimate that 12.3 x 106 MT of sediment annually infills remaining channels, which amounts to ~12% of the total annual sediment load supplied to the tidal deltaplain. This suggests that significant sediment is available in the system for elevation remediation of polders, however the hydrodynamic feasibility of reopening clogged channels and effective sediment dispersal is questionable
Wave-current induced erosion of cohesive riverbanks in northern Manitoba, Canada
NASA Astrophysics Data System (ADS)
Kimiaghalam, N.; Clark, S.; Ahmari, H.; Hunt, J.
2015-03-01
The field of cohesive soil erosion is still not fully understood, in large part due to the many soil parameters that affect cohesive soil erodibility. This study is focused on two channels, 2-Mile and 8-Mile channels in northern Manitoba, Canada, that were built to connect Lake Winnipeg with Playgreen Lake and Playgreen Lake with Kiskikittogisu Lake, respectively. The banks of the channels consist of clay rich soils and alluvial deposits of layered clay, silts and sands. The study of erosion at the sites is further complicated because the flow-induced erosion is combined with the effects of significant wave action due to the large fetch length on the adjacent lakes, particularly Lake Winnipeg that is the seventh largest lake in North America. The study included three main components: field measurements, laboratory experiments and numerical modelling. Field measurements consisted of soil sampling from the banks and bed of the channels, current measurements and water sampling. Grab soil samples were used to measure the essential physical and electrochemical properties of the riverbanks, and standard ASTM Shelby tube samples were used to estimate the critical shear stress and erodibility of the soil samples using an erosion measurement device (EMD). Water samples were taken to estimate the sediment concentration profile and also to monitor changes in sediment concentration along the channels over time. An Acoustic Doppler Current Profiler (ADCP) was used to collect bathymetry and current data, and two water level gauges have been installed to record water levels at the entrance and outlet of the channels. The MIKE 21 NSW model was used to simulate waves using historical winds and measured bathymetry of the channels and lakes. Finally, results from the wave numerical model, laboratory tests and current measurement were used to estimate the effect of each component on erodibility of the cohesive banks.
NASA Astrophysics Data System (ADS)
Alawadi, Wisam; Al-Rekabi, Wisam S.; Al-Aboodi, Ali H.
2018-03-01
The Shiono and Knight Method (SKM) is widely used to predict the lateral distribution of depth-averaged velocity and boundary shear stress for flows in compound channels. Three calibrating coefficients need to be estimated for applying the SKM, namely eddy viscosity coefficient ( λ), friction factor ( f) and secondary flow coefficient ( k). There are several tested methods which can satisfactorily be used to estimate λ, f. However, the calibration of secondary flow coefficients k to account for secondary flow effects correctly is still problematic. In this paper, the calibration of secondary flow coefficients is established by employing two approaches to estimate correct values of k for simulating asymmetric compound channel with different side slopes of the internal wall. The first approach is based on Abril and Knight (2004) who suggest fixed values for main channel and floodplain regions. In the second approach, the equations developed by Devi and Khatua (2017) that relate the variation of the secondary flow coefficients with the relative depth ( β) and width ratio ( α) are used. The results indicate that the calibration method developed by Devi and Khatua (2017) is a better choice for calibrating the secondary flow coefficients than using the first approach which assumes a fixed value of k for different flow depths. The results also indicate that the boundary condition based on the shear force continuity can successfully be used for simulating rectangular compound channels, while the continuity of depth-averaged velocity and its gradient is accepted boundary condition in simulations of trapezoidal compound channels. However, the SKM performance for predicting the boundary shear stress over the shear layer region may not be improved by only imposing the suitable calibrated values of secondary flow coefficients. This is because difficulties of modelling the complex interaction that develops between the flows in the main channel and on the floodplain in this region.
Comparison of in-situ and optical current-meter estimates of rip-current circulation
NASA Astrophysics Data System (ADS)
Moulton, M.; Chickadel, C. C.; Elgar, S.; Raubenheimer, B.
2016-12-01
Rip currents are fast, narrow, seaward flows that transport material from the shoreline to the shelf. Spatially and temporally complex rip current circulation patterns are difficult to resolve with in-situ instrument arrays. Here, high spatial-resolution estimates of rip current circulation from remotely sensed optical images of the sea surface are compared with in-situ estimates of currents in and near channels ( 1- to 2-m deep and 30-m wide) dredged across the surf zone. Alongshore flows are estimated using the optical current-meter method, and cross-shore flows are derived with the assumption of continuity. The observations span a range of wave conditions, tidal elevations, and flow patterns, including meandering alongshore currents near and in the channel, and 0.5 m/s alongshore flows converging at a 0.8 m/s rip jet in the channel. In addition, the remotely sensed velocities are used to investigate features of the spatially complex flow patterns not resolved by the spatially sparse in-situ sensors, including the spatial extent of feeder current zones and the width, alongshore position, and cross-shore extent of rip current jets. Funded by ASD(R&E) and NSF.
Main-channel slopes of selected streams in Iowa for estimation of flood-frequency discharges.
DOT National Transportation Integrated Search
2003-01-01
This report describes a statewide study : conducted to develop main-channel slope (MCS) : curves for 138 selected streams in Iowa with : drainage areas greater than 100 square miles. : MCS values determined from the curves can be : used in regression...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potter, David Charles; Taylor, Craig Michael; Coons, James Elmer
The percent void of the Fort Saint Vrain (FSV) material is estimated to be 21.1% based on the volume of the gap at the top of the drums, the volume of the coolant channels in the FSV fuel element, and the volume of the fuel handling channel in the FSV fuel element.
NASA Astrophysics Data System (ADS)
Derkach, Ivan D.; Peuntinger, Christian; Ruppert, László; Heim, Bettina; Gunthner, Kevin; Usenko, Vladyslav C.; Elser, Dominique; Marquardt, Christoph; Filip, Radim; Leuchs, Gerd
2016-10-01
Continuous-variable quantum key distribution is a practical application of quantum information theory that is aimed at generation of secret cryptographic key between two remote trusted parties and that uses multi-photon quantum states as carriers of key bits. Remote parties share the secret key via a quantum channel, that presumably is under control of of an eavesdropper, and which properties must be taken into account in the security analysis. Well-studied fiber-optical quantum channels commonly possess stable transmittance and low noise levels, while free-space channels represent a simpler, less demanding and more flexible alternative, but suffer from atmospheric effects such as turbulence that in particular causes a non-uniform transmittance distribution referred to as fading. Nonetheless free-space channels, providing an unobstructed line-of-sight, are more apt for short, mid-range and potentially long-range (using satellites) communication and will play an important role in the future development and implementation of QKD networks. It was previously theoretically shown that coherent-state CV QKD should be in principle possible to implement over a free-space fading channel, but strong transmittance fluctuations result in the significant modulation-dependent channel excess noise. In this regime the post-selection of highly transmitting sub-channels may be needed, which can even restore the security of the protocol in the strongly turbulent channels. We now report the first proof-of-principle experimental test of coherent state CV QKD protocol using different levels Gaussian modulation over a mid-range (1.6-kilometer long) free-space atmospheric quantum channel. The transmittance of the link was characterized using intensity measurements for the reference but channel estimation using the modulated coherent states was also studied. We consider security against Gaussian collective attacks, that were shown to be optimal against CV QKD protocols . We assumed a general entangling cloner collective attack (modeled using data obtained from the state measurement results on both trusted sides of the protocol), that allows to purify the noise added in the quantum channel . Our security analysis of coherent-state protocol also took into account the effect of imperfect channel estimation, limited post-processing efficiency and finite data ensemble size on the performance of the protocol. In this regime we observe the positive key rate even without the need of applying post-selection. We show the positive improvement of the key rate with increase of the modulation variance, still remaining low enough to tolerate the transmittance fluctuations. The obtained results show that coherent-state CV QKD protocol that uses real free-space atmospheric channel can withstand negative influence of transmittance fluctuations, limited post-processing efficiency, imperfect channel estimation and other finite-size effects, and be successfully implemented. Our result paves the way to the full-scale implementation of the CV QKD in real free-space channels at mid-range distances.
Optimized retrievals of precipitable water from the VAS 'split window'
NASA Technical Reports Server (NTRS)
Chesters, Dennis; Robinson, Wayne D.; Uccellini, Louis W.
1987-01-01
Precipitable water fields have been retrieved from the VISSR Atmospheric Sounder (VAS) using a radiation transfer model for the differential water vapor absorption between the 11- and 12-micron 'split window' channels. Previous moisture retrievals using only the split window channels provided very good space-time continuity but poor absolute accuracy. This note describes how retrieval errors can be significantly reduced from plus or minus 0.9 to plus or minus 0.6 gm/sq cm by empirically optimizing the effective air temperature and absorption coefficients used in the two-channel model. The differential absorption between the VAS 11- and 12-micron channels, empirically estimated from 135 colocated VAS-RAOB observations, is found to be approximately 50 percent smaller than the theoretical estimates. Similar discrepancies have been noted previously between theoretical and empirical absorption coefficients applied to the retrieval of sea surface temperatures using radiances observed by VAS and polar-orbiting satellites. These discrepancies indicate that radiation transfer models for the 11-micron window appear to be less accurate than the satellite observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Joonseok; Kim, Howon; Ju, Honglyoul, E-mail: tesl@yonsei.ac.kr
2016-03-28
The characteristics of onset voltages and conduction channel temperatures in the metal-insulator transition (MIT) of vanadium dioxide (VO{sub 2}) devices are investigated as a function of dimensions and ambient temperature. The MIT onset voltage varies from 18 V to 199 V as the device length increases from 5 to 80 μm at a fixed width of 100 μm. The estimated temperature at local conduction channel increases from 110 to 370 °C, which is higher than the MIT temperature (67 °C) of VO{sub 2}. A simple Joule-heating model is employed to explain voltage-induced MIT as well as to estimate temperatures of conduction channel appearing after MIT inmore » various-sized devices. Our findings on VO{sub 2} can be applied to micro- to nano-size tunable heating devices, e.g., microscale scanning thermal cantilevers and gas sensors.« less
Permeability of cork to gases.
Faria, David P; Fonseca, Ana L; Pereira, Helen; Teodoro, Orlando M N D
2011-04-27
The permeability of gases through uncompressed cork was investigated. More than 100 samples were assessed from different plank qualities to provide a picture of the permeability distribution. A novel technique based on a mass spectrometer leak detector was used to directly measure the helium flow through the central area of small disks 10 mm in diameter and 2 mm thick. The permeability for nitrogen, oxygen, and other gases was measured by the pressure rise technique. Boiled and nonboiled cork samples from different sections were evaluated. An asymmetric frequency distribution ranging 3 orders of magnitude (roughly from 1 to 1000 μmol/(cm·atm·day)) for selected samples without macroscopic defects was found, having a peak below 100 μmol/(cm·atm·day). Correlation was found between density and permeability: higher density samples tend to show lower permeability. However, boiled cork showed a mean lower permeability despite having a lower density. The transport mechanism of gases through cork was also examined. Calculations suggest that gases permeate uncompressed cork mainly through small channels between cells under a molecular flow regime. The diameter of such channels was estimated to be in the range of 100 nm, in agreement with the plasmodesmata size in the cork cell walls.
Lee, H W; Schmidt, M A; Russell, R F; Joly, N Y; Tyagi, H K; Uebel, P; Russell, P St J
2011-06-20
We report a novel splicing-based pressure-assisted melt-filling technique for creating metallic nanowires in hollow channels in microstructured silica fibers. Wires with diameters as small as 120 nm (typical aspect ration 50:1) could be realized at a filling pressure of 300 bar. As an example we investigate a conventional single-mode step-index fiber with a parallel gold nanowire (wire diameter 510 nm) running next to the core. Optical transmission spectra show dips at wavelengths where guided surface plasmon modes on the nanowire phase match to the glass core mode. By monitoring the side-scattered light at narrow breaks in the nanowire, the loss could be estimated. Values as low as 0.7 dB/mm were measured at resonance, corresponding to those of an ultra-long-range eigenmode of the glass-core/nanowire system. By thermal treatment the hollow channel could be collapsed controllably, permitting creation of a conical gold nanowire, the optical properties of which could be monitored by side-scattering. The reproducibility of the technique and the high optical quality of the wires suggest applications in fields such as nonlinear plasmonics, near-field scanning optical microscope tips, cylindrical polarizers, optical sensing and telecommunications.
NASA Astrophysics Data System (ADS)
Moyce, William; Mangeya, Pride; Owen, Richard; Love, David
The Mzingwane River is a sand filled channel, with extensive alluvial aquifers distributed along its banks and bed in the lower catchment. LandSat TM imagery was used to identify alluvial deposits for potential groundwater resources for irrigation development. On the false colour composite band 3, band 4 and band 5 (FCC 345) the alluvial deposits stand out as white and dense actively growing vegetation stands out as green making it possible to mark out the lateral extent of the saturated alluvial plain deposits using the riverine fringe and vegetation . The alluvial aquifers form ribbon shaped aquifers extending along the channel and reaching over 20 km in length in some localities and are enhanced at lithological boundaries. These alluvial aquifers extend laterally outside the active channel, and individual alluvial aquifers have been measured with area ranging from 45 ha to 723 ha in the channels and 75 ha to 2196 ha on the plains. The alluvial aquifers are more pronounced in the Lower Mzingwane, where the slopes are gentler and allow for more sediment accumulation. Estimated water resources potential ranges between 175,000 m 3 and 5,430,000 m 3 in the channels and between 80,000 m 3 and 6,920,000 m 3 in the plains. Such a water resource potential can support irrigation ranging from 18 ha to 543 ha for channels alluvial aquifers and 8 ha to 692 ha for plain alluvial aquifers. Currently, some of these aquifers are being used to provide water for domestic use, livestock watering and dip tanks, commercial irrigation and market gardening. The water quality of the aquifers in general is fairly good due to regular recharge and flushing out of the aquifers by annual river flows and floodwater. Water salinity was found to increase significantly in the end of the dry season, and this effect was more pronounced in water abstracted from wells on the alluvial plains. During drought years, recharge is expected to be less and if the drought is extended water levels in the aquifers may drop substantially, increasing salinity problems.
Automatic pickup of arrival time of channel wave based on multi-channel constraints
NASA Astrophysics Data System (ADS)
Wang, Bao-Li
2018-03-01
Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.
Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise
O'Donnell, Cian; van Rossum, Mark C. W.
2014-01-01
Electrical signaling in neurons is mediated by the opening and closing of large numbers of individual ion channels. The ion channels' state transitions are stochastic and introduce fluctuations in the macroscopic current through ion channel populations. This creates an unavoidable source of intrinsic electrical noise for the neuron, leading to fluctuations in the membrane potential and spontaneous spikes. While this effect is well known, the impact of channel noise on single neuron dynamics remains poorly understood. Most results are based on numerical simulations. There is no agreement, even in theoretical studies, on which ion channel type is the dominant noise source, nor how inclusion of additional ion channel types affects voltage noise. Here we describe a framework to calculate voltage noise directly from an arbitrary set of ion channel models, and discuss how this can be use to estimate spontaneous spike rates. PMID:25360105
Verification of otolith identity used by fisheries scientists for aging channel catfish
Long, James M.; Stewart, David R.
2010-01-01
Previously published studies of the age estimation of channel catfish Ictalurus punctatus based on otoliths have reported using the sagittae, whereas it is likely they were actually using the lapilli. This confusion may have resulted because in catfishes (ostariophyseans) the lapilli are the largest of the three otoliths, whereas in nonostariophysean fish the sagittae are the largest. Based on (1) scanning electron microscope microphotographs of channel catfish otoliths, (2) X-ray computed tomography scans of a channel catfish head, (3) descriptions of techniques used to removed otoliths from channel catfish reported in the literature, and (4) a sample of channel catfish otoliths received from fisheries biologists from around the country, it is clear that lapilli are most often used for channel catfish aging studies, not sagittae, as has been previously reported. Fisheries scientists who obtain otoliths from channel catfish can use the information in this paper to correctly identify otolith age.
Vorticity and Vertical Motions Diagnosed from Satellite Deep-Layer Temperatures. Revised
NASA Technical Reports Server (NTRS)
Spencer, Roy W.; Lapenta, William M.; Robertson, Franklin R.
1994-01-01
Spatial fields of satellite-measured deep-layer temperatures are examined in the context of quasigeostrophic theory. It is found that midtropospheric geostrophic vorticity and quasigeostrophic vertical motions can be diagnosed from microwave temperature measurements of only two deep layers. The lower- ( 1000-400 hPa) and upper- (400-50 hPa) layer temperatures are estimated from limb-corrected TIROS-N Microwave Sounding Units (MSU) channel 2 and 3 data, spatial fields of which can be used to estimate the midtropospheric thermal wind and geostrophic vorticity fields. Together with Trenberth's simplification of the quasigeostrophic omega equation, these two quantities can be then used to estimate the geostrophic vorticity advection by the thermal wind, which is related to the quasigeostrophic vertical velocity in the midtroposphere. Critical to the technique is the observation that geostrophic vorticity fields calculated from the channel 3 temperature features are very similar to those calculated from traditional, 'bottom-up' integrated height fields from radiosonde data. This suggests a lack of cyclone-scale height features near the top of the channel 3 weighting function, making the channel 3 cyclone-scale 'thickness' features approximately the same as height features near the bottom of the weighting function. Thus, the MSU data provide observational validation of the LID (level of insignificant dynamics) assumption of Hirshberg and Fritsch.
Estimating surface reflectance from Himawari-8/AHI reflectance channels Using 6SV
NASA Astrophysics Data System (ADS)
Lee, Kyeong-sang; Choi, Sungwon; Seo, Minji; Seong, Noh-hun; Han, Kyung-soo
2017-04-01
TOA (Top Of Atmospheric) reflectance observed by satellite is modified by the influence of atmosphere such as absorbing and scattering by molecular and gasses. Removing TOA reflectance attenuation which is caused by the atmospheric is essential. surface reflectance with compensated atmospheric effects used as important input data for land product such as Normalized Difference Vegetation Index (NDVI), Land Surface Albedo (LSA) and etc. In this study, we Second Simulation of a Satellite Signal in the Solar Spectrum Vector (6SV) Radiative Transfer Model (RTM) for atmospheric correction and estimating surface reflectance from Himawari-8/Advanced Himawari Imager (AHI) reflectance channels. 6SV has the advantage that it has high accuracy by performing the atmospheric correction by dividing the width of the satellite channel by 2.5 nm, but it is slow to use in the operation. So, we use LUT approach to reduce the computation time and avoid the intensive calculation required for retrieving surface reflectance. Estimated surface reflectance data were compared with PROBA-V S1 data to evaluate the accuracy. As a result Root Mean Square Error (RMSE) and bias were about 0.05 and -0.02. It is considered that this error is due to the difference of angle component and Spectral Response Function (SRF) of each channel.
Zhang, Xiaotong; Schmitter, Sebastian; Van de Moortel, Pierre-François; Liu, Jiaen
2014-01-01
Elevated Specific Absorption Rate (SAR) associated with increased main magnetic field strength remains as a major safety concern in ultra-high-field (UHF) Magnetic Resonance Imaging (MRI) applications. The calculation of local SAR requires the knowledge of the electric field induced by radiofrequency (RF) excitation, and the local electrical properties of tissues. Since electric field distribution cannot be directly mapped in conventional MR measurements, SAR estimation is usually performed using numerical model-based electromagnetic simulations which, however, are highly time consuming and cannot account for the specific anatomy and tissue properties of the subject undergoing a scan. In the present study, starting from the measurable RF magnetic fields (B1) in MRI, we conducted a series of mathematical deduction to estimate the local, voxel-wise and subject-specific SAR for each single coil element using a multi-channel transceiver array coil. We first evaluated the feasibility of this approach in numerical simulations including two different human head models. We further conducted experimental study in a physical phantom and in two human subjects at 7T using a multi-channel transceiver head coil. Accuracy of the results is discussed in the context of predicting local SAR in the human brain at UHF MRI using multi-channel RF transmission. PMID:23508259
High-throughput electrophysiological assays for voltage gated ion channels using SyncroPatch 768PE.
Li, Tianbo; Lu, Gang; Chiang, Eugene Y; Chernov-Rogan, Tania; Grogan, Jane L; Chen, Jun
2017-01-01
Ion channels regulate a variety of physiological processes and represent an important class of drug target. Among the many methods of studying ion channel function, patch clamp electrophysiology is considered the gold standard by providing the ultimate precision and flexibility. However, its utility in ion channel drug discovery is impeded by low throughput. Additionally, characterization of endogenous ion channels in primary cells remains technical challenging. In recent years, many automated patch clamp (APC) platforms have been developed to overcome these challenges, albeit with varying throughput, data quality and success rate. In this study, we utilized SyncroPatch 768PE, one of the latest generation APC platforms which conducts parallel recording from two-384 modules with giga-seal data quality, to push these 2 boundaries. By optimizing various cell patching parameters and a two-step voltage protocol, we developed a high throughput APC assay for the voltage-gated sodium channel Nav1.7. By testing a group of Nav1.7 reference compounds' IC50, this assay was proved to be highly consistent with manual patch clamp (R > 0.9). In a pilot screening of 10,000 compounds, the success rate, defined by > 500 MΩ seal resistance and >500 pA peak current, was 79%. The assay was robust with daily throughput ~ 6,000 data points and Z' factor 0.72. Using the same platform, we also successfully recorded endogenous voltage-gated potassium channel Kv1.3 in primary T cells. Together, our data suggest that SyncroPatch 768PE provides a powerful platform for ion channel research and drug discovery.
Hartmann, Daniel M; Nevill, J Tanner; Pettigrew, Kenneth I; Votaw, Gregory; Kung, Pang-Jen; Crenshaw, Hugh C
2008-04-01
Microfluidic chips require connections to larger macroscopic components, such as light sources, light detectors, and reagent reservoirs. In this article, we present novel methods for integrating capillaries, optical fibers, and wires with the channels of microfluidic chips. The method consists of forming planar interconnect channels in microfluidic chips and inserting capillaries, optical fibers, or wires into these channels. UV light is manually directed onto the ends of the interconnects using a microscope. UV-curable glue is then allowed to wick to the end of the capillaries, fibers, or wires, where it is cured to form rigid, liquid-tight connections. In a variant of this technique, used with light-guiding capillaries and optical fibers, the UV light is directed into the capillaries or fibers, and the UV-glue is cured by the cone of light emerging from the end of each capillary or fiber. This technique is fully self-aligned, greatly improves both the quality and the manufacturability of the interconnects, and has the potential to enable the fabrication of interconnects in a fully automated fashion. Using these methods, including a semi-automated implementation of the second technique, over 10,000 interconnects have been formed in almost 2000 microfluidic chips made of a variety of rigid materials. The resulting interconnects withstand pressures up to at least 800psi, have unswept volumes estimated to be less than 10 femtoliters, and have dead volumes defined only by the length of the capillary.
A comparison of resampling schemes for estimating model observer performance with small ensembles
NASA Astrophysics Data System (ADS)
Elshahaby, Fatma E. A.; Jha, Abhinav K.; Ghaly, Michael; Frey, Eric C.
2017-09-01
In objective assessment of image quality, an ensemble of images is used to compute the 1st and 2nd order statistics of the data. Often, only a finite number of images is available, leading to the issue of statistical variability in numerical observer performance. Resampling-based strategies can help overcome this issue. In this paper, we compared different combinations of resampling schemes (the leave-one-out (LOO) and the half-train/half-test (HT/HT)) and model observers (the conventional channelized Hotelling observer (CHO), channelized linear discriminant (CLD) and channelized quadratic discriminant). Observer performance was quantified by the area under the ROC curve (AUC). For a binary classification task and for each observer, the AUC value for an ensemble size of 2000 samples per class served as a gold standard for that observer. Results indicated that each observer yielded a different performance depending on the ensemble size and the resampling scheme. For a small ensemble size, the combination [CHO, HT/HT] had more accurate rankings than the combination [CHO, LOO]. Using the LOO scheme, the CLD and CHO had similar performance for large ensembles. However, the CLD outperformed the CHO and gave more accurate rankings for smaller ensembles. As the ensemble size decreased, the performance of the [CHO, LOO] combination seriously deteriorated as opposed to the [CLD, LOO] combination. Thus, it might be desirable to use the CLD with the LOO scheme when smaller ensemble size is available.
Sherwood, J.M.
1986-01-01
Methods are presented for estimating peak discharges, flood volumes and hydrograph shapes of small (less than 5 sq mi) urban streams in Ohio. Examples of how to use the various regression equations and estimating techniques also are presented. Multiple-regression equations were developed for estimating peak discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. The significant independent variables affecting peak discharge are drainage area, main-channel slope, average basin-elevation index, and basin-development factor. Standard errors of regression and prediction for the peak discharge equations range from +/-37% to +/-41%. An equation also was developed to estimate the flood volume of a given peak discharge. Peak discharge, drainage area, main-channel slope, and basin-development factor were found to be the significant independent variables affecting flood volumes for given peak discharges. The standard error of regression for the volume equation is +/-52%. A technique is described for estimating the shape of a runoff hydrograph by applying a specific peak discharge and the estimated lagtime to a dimensionless hydrograph. An equation for estimating the lagtime of a basin was developed. Two variables--main-channel length divided by the square root of the main-channel slope and basin-development factor--have a significant effect on basin lagtime. The standard error of regression for the lagtime equation is +/-48%. The data base for the study was established by collecting rainfall-runoff data at 30 basins distributed throughout several metropolitan areas of Ohio. Five to eight years of data were collected at a 5-min record interval. The USGS rainfall-runoff model A634 was calibrated for each site. The calibrated models were used in conjunction with long-term rainfall records to generate a long-term streamflow record for each site. Each annual peak-discharge record was fitted to a Log-Pearson Type III frequency curve. Multiple-regression techniques were then used to analyze the peak discharge data as a function of the basin characteristics of the 30 sites. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Bratchikov, A. N.; Glukhov, I. P.
1991-03-01
The results are given of a statistical theory of the speckle generalized to interference channels used for the distribution of microwave signals using multimode fiber waveguides with step and graded refractive-index profiles. A method is described for estimating the mode noise level in the open and closed regimes with one longitudinal speckle. The influence of the degree of mode filtering, losses at microbends, and spectral properties of a laser source on the statistical properties and the mode noise level is demonstrated. Numerical estimates are obtained of the ratio of the powers of the signal and mode noise for interference channels with typical parameters of fiber waveguides and a qualitative description is given of the effect of the mode noise.
Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network
Lin, Kai; Wang, Di; Hu, Long
2016-01-01
With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC). The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S) evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods. PMID:27376302
Near infrared spectrometers determine stage maturity in channel catfish
USDA-ARS?s Scientific Manuscript database
Maturation is not synchronized in channel catfish and hence, individual fish are frequently handled and manually stage for maturation based on a selective subjective method. Fully matured fish are more responsive to hormone-induced spawning, and often result in better egg quality, higher relative f...
Hydrology, geomorphology, and flood profiles of Lemon Creek, Juneau, Alaska
Host, Randy H.; Neal, Edward G.
2005-01-01
Lemon Creek near Juneau, Alaska has a history of extensive gravel mining, which straightened and deepened the stream channel in the lower reaches of the study area. Gravel mining and channel excavation began in the 1940s and continued through the mid-1980s. Time sequential aerial photos and field investigations indicate that the channel morphology is reverting to pre-disturbance conditions through aggradation of sediment and re-establishment of braided channels, which may result in decreased channel conveyance and increased flooding potential. Time sequential surveys of selected channel cross sections were conducted in an attempt to determine rates of channel aggradation/degradation throughout three reaches of the study area. In order to assess flooding potential in the lower reaches of the study area the U.S. Army Corps of Engineers Hydrologic Engineering Center River Analysis System model was used to estimate the water-surface elevations for the 2-, 10-, 25-, 50-, and 100-year floods. A regionally based regression equation was used to estimate the magnitude of floods for the selected recurrence intervals. Forty-two cross sections were surveyed to define the hydraulic characteristics along a 1.7-mile reach of the stream. High-water marks from a peak flow of 1,820 cubic feet per second, or about a 5-year flood, were surveyed and used to calibrate the model throughout the study area. The stream channel at a bridge in the lower reach could not be simulated without violating assumptions of the model. A model without the lower bridge indicates flood potential is limited to a small area.
Behn, Katherine E.; Kennedy, Theodore A.; Hall, Robert O.
2010-01-01
Eight species of fish were native to the Colorado River before the closure of Glen Canyon Dam, but only four of these native species are currently present. A variety of factors are responsible for the loss of native fish species and the limited distribution and abundance of those that remain. These factors include cold and constant water temperatures, predation and competition with nonnative fish species, and food limitation. Backwaters are areas of stagnant flow in a return-current channel and are thought to be critical rearing habitat for juvenile native fish. Backwaters can be warmer than the main channel and may support higher rates of food production. Glen Canyon Dam is a peaking hydropower facility and, as a result, has subdaily variation in discharge because of changes in demand for power. Stable daily discharges may improve the quality of nearshore rearing habitats such as backwaters by increasing warming, stabilizing the substrate, and increasing food production. To evaluate whether backwaters have greater available food resources than main-channel habitats, and how resource availability in backwaters is affected by stable flow regimes, we quantified water-column and benthic food resources in backwaters seasonally for 1 year using both standing (organic matter concentration/density; chlorophyll a concentration/density; zooplankton concentration; benthic invertebrate density and biomass) and process measurements (chamber estimates of ecosystem metabolism). We compared backwater resource measurements with comparable data from main-channel habitats, and compared backwater data collected during stable discharge with data collected when there was subdaily variation in discharge. Rates of primary production in backwaters (mean gross primary production of 1.7 g O2/m2/d) and the main channel (mean gross primary production of 2.0 g O2/m2/d) were similar. Benthic organic matter standing stock (presented as ash-free dry mass-AFDM) was seven times higher in backwaters relative to main-channel habitats (median value of 210 g AFDM/m2 versus 27 g AFDM/m2); this likely reflects greater retention of tributary-derived organic matter in backwaters relative to main-channel habitats. Water-column and benthic organic matter were higher during periods of steady discharge relative to periods of fluctuating discharge. However, our steady-discharge data collection was confounded by tributary activity. Flooding tributaries contribute substantial quantities of sediment and organic matter to the Colorado River; there were two large tributary floods during our steady-discharge data collection but none during our fluctuating-discharge data collections. Although only preliminary data on invertebrate biomass are available at this time, invertebrate biomass in backwaters (range 2-27 mg AFDM/m2) appears low relative to previously published data from main-channel habitats (~100 mg AFDM/m2). The rate of water turnover in backwaters may be a master variable that affects both physical (for example, warming) and biological (for example, primary production) processes in backwaters. We used dye tracer studies to estimate turnover rates in backwaters across flow regimes. Turnover took considerably longer when discharge was stable compared to when there was subdaily variation in discharge (613 minutes versus 220 minutes). Our results indicate that backwaters may represent a sink for organic matter that enters from the main channel and that stable discharge, by lengthening water turnover times, will likely increase organic matter retention.
NASA Astrophysics Data System (ADS)
Hortos, William S.
1999-03-01
A hybrid neural network approach is presented to estimate radio propagation characteristics and multiuser interference and to evaluate their combined impact on throughput, latency and information loss in third-generation (3G) wireless networks. The latter three performance parameters influence the quality of service (QoS) for multimedia services under consideration for 3G networks. These networks, based on a hierarchical architecture of overlaying macrocells on top of micro- and picocells, are planned to operate in mobile urban and indoor environments with service demands emanating from circuit-switched, packet-switched and satellite-based traffic sources. Candidate radio interfaces for these networks employ a form of wideband CDMA in 5-MHz and wider-bandwidth channels, with possible asynchronous operation of the mobile subscribers. The proposed neural network (NN) architecture allocates network resources to optimize QoS metrics. Parameters of the radio propagation channel are estimated, followed by control of an adaptive antenna array at the base station to minimize interference, and then joint multiuser detection is performed at the base station receiver. These adaptive processing stages are implemented as a sequence of NN techniques that provide their estimates as inputs to a final- stage Kohonen self-organizing feature map (SOFM). The SOFM optimizes the allocation of available network resources to satisfy QoS requirements for variable-rate voice, data and video services. As the first stage of the sequence, a modified feed-forward multilayer perceptron NN is trained on the pilot signals of the mobile subscribers to estimate the parameters of shadowing, multipath fading and delays on the uplinks. A recurrent NN (RNN) forms the second stage to control base stations' adaptive antenna arrays to minimize intra-cell interference. The third stage is based on a Hopfield NN (HNN), modified to detect multiple users on the uplink radio channels to mitigate multiaccess interference, control carrier-sense multiple-access (CSMA) protocols, and refine call handoff procedures. In the final stage, the Kohonen SOFM, operating in a hybrid continuous and discrete space, adaptively allocates the resources of antenna-based cell sectorization, activity monitoring, variable-rate coding, power control, handoff and caller admission to meet user demands for various multimedia services at minimum QoS levels. The performance of the NN cascade is evaluated through simulation of a candidate 3G wireless network using W-CDMA parameters in a small-cell environment. The simulated network consists of a representative number of cells. Mobile users with typical movement patterns are assumed. QoS requirements for different classes of multimedia services are considered. The proposed method is shown to provide relatively low probability of new call blocking and handoff dropping, while maintaining efficient use of the network's radio resources.
NASA Astrophysics Data System (ADS)
Bell, R.; Labovitz, M. L.
1982-07-01
A Barnes field spectral reflectometer which collected information in 373 channels covering the region from 0.4 to 2.5 micrometers was assessed for signal utility. A band was judged unsatisfactory if the probability was 0.1 or greater than its signal to noise ratio was less than eight to one. For each of the bands the probability of a noisy observation was estimated under a binomial assumption from a set of field crop spectra covering an entire growing season. A 95% confidence interval was calculated about each estimate and bands whose lower confidence limits were greater than 0.1 were judged unacceptable. As a result, 283 channels were deemed statistically satisfactory. Excluded channels correspond to portions of the electromagnetic spectrum (EMS) where high atmospheric absorption and filter wheel overlap occur. In addition, the analyses uncovered intervals of unsatisfactory detection capability within the blue, red and far infrared regions of vegetation spectra. From the results of the analysis it was recommended that 90 channels monitored by the instrument under consideration be eliminated from future studies. These channels are tabulated and discussed.
Stereo sequence transmission via conventional transmission channel
NASA Astrophysics Data System (ADS)
Lee, Ho-Keun; Kim, Chul-Hwan; Han, Kyu-Phil; Ha, Yeong-Ho
2003-05-01
This paper proposes a new stereo sequence transmission technique using digital watermarking for compatibility with conventional 2D digital TV. We, generally, compress and transmit image sequence using temporal-spatial redundancy between stereo images. It is difficult for users with conventional digital TV to watch the transmitted 3D image sequence because many 3D image compression methods are different. To solve such a problem, in this paper, we perceive the concealment of new information of digital watermarking and conceal information of the other stereo image into three channels of the reference image. The main target of the technique presented is to let the people who have conventional DTV watch stereo movies at the same time. This goal is reached by considering the response of human eyes to color information and by using digital watermarking. To hide right images into left images effectively, bit-change in 3 color channels and disparity estimation according to the value of estimated disparity are performed. The proposed method assigns the displacement information of right image to each channel of YCbCr on DCT domain. Each LSB bit on YCbCr channels is changed according to the bits of disparity information. The performance of the presented methods is confirmed by several computer experiments.
Robust Rate Maximization for Heterogeneous Wireless Networks under Channel Uncertainties
Xu, Yongjun; Hu, Yuan; Li, Guoquan
2018-01-01
Heterogeneous wireless networks are a promising technology in next generation wireless communication networks, which has been shown to efficiently reduce the blind area of mobile communication and improve network coverage compared with the traditional wireless communication networks. In this paper, a robust power allocation problem for a two-tier heterogeneous wireless networks is formulated based on orthogonal frequency-division multiplexing technology. Under the consideration of imperfect channel state information (CSI), the robust sum-rate maximization problem is built while avoiding sever cross-tier interference to macrocell user and maintaining the minimum rate requirement of each femtocell user. To be practical, both of channel estimation errors from the femtocells to the macrocell and link uncertainties of each femtocell user are simultaneously considered in terms of outage probabilities of users. The optimization problem is analyzed under no CSI feedback with some cumulative distribution function and partial CSI with Gaussian distribution of channel estimation error. The robust optimization problem is converted into the convex optimization problem which is solved by using Lagrange dual theory and subgradient algorithm. Simulation results demonstrate the effectiveness of the proposed algorithm by the impact of channel uncertainties on the system performance. PMID:29466315
NASA Technical Reports Server (NTRS)
Bell, R.; Labovitz, M. L.
1982-01-01
A Barnes field spectral reflectometer which collected information in 373 channels covering the region from 0.4 to 2.5 micrometers was assessed for signal utility. A band was judged unsatisfactory if the probability was 0.1 or greater than its signal to noise ratio was less than eight to one. For each of the bands the probability of a noisy observation was estimated under a binomial assumption from a set of field crop spectra covering an entire growing season. A 95% confidence interval was calculated about each estimate and bands whose lower confidence limits were greater than 0.1 were judged unacceptable. As a result, 283 channels were deemed statistically satisfactory. Excluded channels correspond to portions of the electromagnetic spectrum (EMS) where high atmospheric absorption and filter wheel overlap occur. In addition, the analyses uncovered intervals of unsatisfactory detection capability within the blue, red and far infrared regions of vegetation spectra. From the results of the analysis it was recommended that 90 channels monitored by the instrument under consideration be eliminated from future studies. These channels are tabulated and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Gary E.; Ploskey, Gene R.; Sather, Nichole K.
We estimated seasonal residence times of acoustic-tagged juvenile salmonids in off-channel, tidal freshwater habitats of the Columbia River near the Sandy River delta (rkm 198; 2007, 2008, 2010, and 2011) and Cottonwood Island (rkm 112; 2012).
Enhanced propagation for relativistic laser pulses in inhomogeneous plasmas using hollow channels.
Fuchs, J; d'Humières, E; Sentoku, Y; Antici, P; Atzeni, S; Bandulet, H; Depierreux, S; Labaune, C; Schiavi, A
2010-11-26
The influence of long (several millimeters) and hollow channels, bored in inhomogeneous ionized plasma by using a long pulse laser beam, on the propagation of short, ultraintense laser pulses has been studied. Compared to the case without a channel, propagation in channels significantly improves beam transmission and maintains a beam quality close to propagation in vacuum. In addition, the growth of the forward-Raman instability is strongly reduced. These results are beneficial for the direct scheme of the fast ignitor concept of inertial confinement fusion as we demonstrate, in fast-ignition-relevant conditions, that with such channels laser energy can be carried through increasingly dense plasmas close to the fuel core with minimal losses.
Sanges, Remo; Cordero, Francesca; Calogero, Raffaele A
2007-12-15
OneChannelGUI is an add-on Bioconductor package providing a new set of functions extending the capability of the affylmGUI package. This library provides a graphical interface (GUI) for Bioconductor libraries to be used for quality control, normalization, filtering, statistical validation and data mining for single channel microarrays. Affymetrix 3' expression (IVT) arrays as well as the new whole transcript expression arrays, i.e. gene/exon 1.0 ST, are actually implemented. oneChannelGUI is available for most platforms on which R runs, i.e. Windows and Unix-like machines. http://www.bioconductor.org/packages/2.0/bioc/html/oneChannelGUI.html
Changes in water quality that occur as water flows along hyporheic flow paths may have important effects on surface water quality and aquatic habitat, yet very few studies have examined these hyporheic processes along large gravel bed rivers. To determine water quality changes as...