Science.gov

Sample records for channel subunits sur2a

  1. Kir6.2 activation by sulfonylurea receptors: a different mechanism of action for SUR1 and SUR2A subunits via the same residues

    PubMed Central

    Principalli, Maria A; Dupuis, Julien P; Moreau, Christophe J; Vivaudou, Michel; Revilloud, Jean

    2015-01-01

    ATP-sensitive potassium channels (K-ATP channels) play a key role in adjusting the membrane potential to the metabolic state of cells. They result from the unique combination of two proteins: the sulfonylurea receptor (SUR), an ATP-binding cassette (ABC) protein, and the inward rectifier K+ channel Kir6.2. Both subunits associate to form a heterooctamer (4 SUR/4 Kir6.2). SUR modulates channel gating in response to the binding of nucleotides or drugs and Kir6.2 conducts potassium ions. The activity of K-ATP channels varies with their localization. In pancreatic β-cells, SUR1/Kir6.2 channels are partly active at rest while in cardiomyocytes SUR2A/Kir6.2 channels are mostly closed. This divergence of function could be related to differences in the interaction of SUR1 and SUR2A with Kir6.2. Three residues (E1305, I1310, L1313) located in the linker region between transmembrane domain 2 and nucleotide-binding domain 2 of SUR2A were previously found to be involved in the activation pathway linking binding of openers onto SUR2A and channel opening. To determine the role of the equivalent residues in the SUR1 isoform, we designed chimeras between SUR1 and the ABC transporter multidrug resistance-associated protein 1 (MRP1), and used patch clamp recordings on Xenopus oocytes to assess the functionality of SUR1/MRP1 chimeric K-ATP channels. Our results reveal that the same residues in SUR1 and SUR2A are involved in the functional association with Kir6.2, but they display unexpected side-chain specificities which could account for the contrasted properties of pancreatic and cardiac K-ATP channels. PMID:26416970

  2. Quaternary structure of K[ssubscript ATP] channel SUR2A nucleotide binding domains resolved by synchrotron radiation X-ray scattering

    SciTech Connect

    Park, Sungjo; Terzic, Andre

    2010-05-25

    Heterodimeric nucleotide binding domains NBD1/NBD2 distinguish the ATP-binding cassette protein SUR2A, a recognized regulatory subunit of cardiac ATP-sensitive K{sup +} (K{sub ATP}) channels. The tandem function of these core domains ensures metabolism-dependent gating of the Kir6.2 channel pore, yet their structural arrangement has not been resolved. Here, purified monodisperse and interference-free recombinant particles were subjected to synchrotron radiation small-angle X-ray scattering (SAXS) in solution. Intensity function analysis of SAXS profiles resolved NBD1 and NBD2 as octamers. Implemented by ab initio simulated annealing, shape determination prioritized an oblong envelope wrapping NBD1 and NBD2 with respective dimensions of 168 x 80 x 37 {angstrom}{sup 3} and 175 x 81 x 37 {angstrom}{sup 3} based on symmetry constraints, validated by atomic force microscopy. Docking crystal structure homology models against SAXS data reconstructed the NBD ensemble surrounding an inner cleft suitable for Kir6.2 insertion. Human heart disease-associated mutations introduced in silico verified the criticality of the mapped protein-protein interface. The resolved quaternary structure delineates thereby a macromolecular arrangement of K{sub ATP} channel SUR2A regulatory domains.

  3. Random assembly of SUR subunits in K(ATP) channel complexes.

    PubMed

    Cheng, Wayland W L; Tong, Ailing; Flagg, Thomas P; Nichols, Colin G

    2008-01-01

    Sulfonylurea receptors (SURs) associate with Kir6.x subunits to form tetradimeric K(ATP) channel complexes. SUR1 and SUR2 confer differential channel sensitivities to nucleotides and pharmacological agents, and are expressed in specific, but overlapping, tissues. This raises the question of whether these different SUR subtypes can assemble in the same channel complex and generate channels with hybrid properties. To test this, we engineered dimeric constructs of wild type or N160D mutant Kir6.2 fused to SUR1 or SUR2A. Dimeric fusions formed functional, ATP-sensitive, channels. Coexpression of weakly rectifying SUR1-Kir6.2 (WTF-1) with strongly rectifying SUR1-Kir6.2[N160D] (NDF-1) in COSm6 cells results in mixed subunit complexes that exhibit unique rectification properties. Coexpression of NDF-1 and SUR2A-Kir6.2 (WTF-2) results in similar complex rectification, reflecting the presence of SUR1- and SUR2A-containing dimers in the same channel. The data demonstrate clearly that SUR1 and SUR2A subunits associate randomly, and suggest that heteromeric channels will occur in native tissues. PMID:18690055

  4. Na+ Channel β Subunits: Overachievers of the Ion Channel Family

    PubMed Central

    Brackenbury, William J.; Isom, Lori L.

    2011-01-01

    Voltage-gated Na+ channels (VGSCs) in mammals contain a pore-forming α subunit and one or more β subunits. There are five mammalian β subunits in total: β1, β1B, β2, β3, and β4, encoded by four genes: SCN1B–SCN4B. With the exception of the SCN1B splice variant, β1B, the β subunits are type I topology transmembrane proteins. In contrast, β1B lacks a transmembrane domain and is a secreted protein. A growing body of work shows that VGSC β subunits are multifunctional. While they do not form the ion channel pore, β subunits alter gating, voltage-dependence, and kinetics of VGSCα subunits and thus regulate cellular excitability in vivo. In addition to their roles in channel modulation, β subunits are members of the immunoglobulin superfamily of cell adhesion molecules and regulate cell adhesion and migration. β subunits are also substrates for sequential proteolytic cleavage by secretases. An example of the multifunctional nature of β subunits is β1, encoded by SCN1B, that plays a critical role in neuronal migration and pathfinding during brain development, and whose function is dependent on Na+ current and γ-secretase activity. Functional deletion of SCN1B results in Dravet Syndrome, a severe and intractable pediatric epileptic encephalopathy. β subunits are emerging as key players in a wide variety of physiopathologies, including epilepsy, cardiac arrhythmia, multiple sclerosis, Huntington’s disease, neuropsychiatric disorders, neuropathic and inflammatory pain, and cancer. β subunits mediate multiple signaling pathways on different timescales, regulating electrical excitability, adhesion, migration, pathfinding, and transcription. Importantly, some β subunit functions may operate independently of α subunits. Thus, β subunits perform critical roles during development and disease. As such, they may prove useful in disease diagnosis and therapy. PMID:22007171

  5. Nicotinamide-rich diet protects the heart against ischaemia-reperfusion in mice: a crucial role for cardiac SUR2A.

    PubMed

    Sukhodub, Andriy; Du, Qingyou; Jovanović, Sofija; Jovanović, Aleksandar

    2010-06-01

    It is a consensus view that a strategy to increase heart resistance to ischaemia-reperfusion is a warranted. Here, based on our previous study, we have hypothesized that a nicotinamide-rich diet could increase myocardial resistance to ischaemia-reperfusion. Therefore, the purpose of this study was to determine whether nicotinamide-rich diet would increase heart resistance to ischaemia-reperfusion and what is the underlying mechanism. Experiments have been done on mice on control and nicotinamide-rich diet (mice were a week on nicotinamide-rich diet) as well as on transgenic mice overexpressing SUR2A (SUR2A mice), a regulatory subunit of cardioprotective ATP-sensitive K(+) (K(ATP)) channels and their littermate controls (WT). The levels of mRNA in heart tissue were measured by real-time RT-PCR, whole heart and single cell resistance to ischaemia-reperfusion and severe hypoxia was measured by TTC staining and laser confocal microscopy, respectively. Nicotinamide-rich diet significantly decreased the size of myocardial infarction induced by ischaemia-reperfusion (from 42.5+/-4.6% of the area at risk zone in mice on control diet to 26.8+/-1.8% in mice on nicotinamide-rich diet, n=6-12, P=0.031). The cardioprotective effect of nicotinamide-rich diet was associated with 11.46+/-1.22 times (n=6) increased mRNA levels of SUR2A in the heart. HMR1098, a selective inhibitor of the sarcolemmal K(ATP) channels opening, abolished cardioprotection afforded by nicotinamide-rich diet. Transgenic mice with a sole increase in SUR2A expression had also increased cardiac resistance to ischaemia-reperfusion. We conclude that nicotinamide-rich diet up-regulate SUR2A and increases heart resistance to ischaemia-reperfusion.

  6. Strong cooperativity between subunits in voltage-gated proton channels

    PubMed Central

    Gonzalez, Carlos; Koch, Hans P.; Drum, Ben M.; Larsson, H. Peter

    2010-01-01

    Voltage-activated proton (HV) channels are essential components in the innate immune response. HV channels are dimeric proteins with one proton permeation pathway per subunit. It is not known how HV channels are activated by voltage and whether there is any cooperativity between subunits during voltage activation. Using cysteine accessibility measurements and voltage clamp fluorometry, we show data that are consistent with that the fourth transmembrane segment S4 functions as the voltage sensor in HV channels from Ciona intestinalis. Surprisingly, in a dimeric HV channel, S4 in both subunits have to move to activate the two proton permeation pathways. In contrast, if HV subunits are prevented from dimerizing, then the movement of a single S4 is sufficient to activate the proton permeation pathway in a subunit. These results suggest a strong cooperativity between subunits in dimeric HV channels. PMID:20023639

  7. Emergence of ion channel modal gating from independent subunit kinetics.

    PubMed

    Bicknell, Brendan A; Goodhill, Geoffrey J

    2016-09-01

    Many ion channels exhibit a slow stochastic switching between distinct modes of gating activity. This feature of channel behavior has pronounced implications for the dynamics of ionic currents and the signaling pathways that they regulate. A canonical example is the inositol 1,4,5-trisphosphate receptor (IP3R) channel, whose regulation of intracellular Ca(2+) concentration is essential for numerous cellular processes. However, the underlying biophysical mechanisms that give rise to modal gating in this and most other channels remain unknown. Although ion channels are composed of protein subunits, previous mathematical models of modal gating are coarse grained at the level of whole-channel states, limiting further dialogue between theory and experiment. Here we propose an origin for modal gating, by modeling the kinetics of ligand binding and conformational change in the IP3R at the subunit level. We find good agreement with experimental data over a wide range of ligand concentrations, accounting for equilibrium channel properties, transient responses to changing ligand conditions, and modal gating statistics. We show how this can be understood within a simple analytical framework and confirm our results with stochastic simulations. The model assumes that channel subunits are independent, demonstrating that cooperative binding or concerted conformational changes are not required for modal gating. Moreover, the model embodies a generally applicable principle: If a timescale separation exists in the kinetics of individual subunits, then modal gating can arise as an emergent property of channel behavior. PMID:27551100

  8. The action of calcium channel blockers on recombinant L-type calcium channel α1-subunits

    PubMed Central

    Morel, Nicole; Buryi, Vitali; Feron, Olivier; Gomez, Jean-Pierre; Christen, Marie-Odile; Godfraind, Théophile

    1998-01-01

    CHO cells expressing the α1C-a subunit (cardiac isoform) and the α1C-b subunit (vascular isoform) of the voltage-dependent L-type Ca2+ channel were used to investigate whether tissue selectivity of Ca2+ channel blockers could be related to different affinities for α1C isoforms.Inward current evoked by the transfected α1 subunit was recorded by the patch-clamp technique in the whole-cell configuration.Neutral dihydropyridines (nifedipine, nisoldipine, (+)-PN200-110) were more potent inhibitors of α1C-b-subunit than of α1C-a-subunit. This difference was more marked at a holding potential of −100 mV than at −50 mV. SDZ 207-180 (an ionized dihydropyridine) exhibited the same potency on the two isoforms.Pinaverium (ionized non-dihydropyridine derivative) was 2 and 4 fold more potent on α1C-a than on α1C-b subunit at Vh of −100 mV and −50 mV, respectively. Effects of verapamil were identical on the two isoforms at both voltages.[3H]-(+)-PN 200-110 binding experiments showed that neutral dihydropyridines had a higher affinity for the α1C-b than for the α1C-a subunit. SDZ 207-180 had the same affinity for the two isoforms and pinaverium had a higher affinity for the α1C-a subunit than for the α1C-b subunit.These results indicate marked differences among Ca2+ channel blockers in their selectivity for the α1C-a and α1C-b subunits of the Ca2+ channel. PMID:9846638

  9. The action of calcium channel blockers on recombinant L-type calcium channel alpha1-subunits.

    PubMed

    Morel, N; Buryi, V; Feron, O; Gomez, J P; Christen, M O; Godfraind, T

    1998-11-01

    1. CHO cells expressing the alpha(1C-a) subunit (cardiac isoform) and the alpha(1C-b) subunit (vascular isoform) of the voltage-dependent L-type Ca2+ channel were used to investigate whether tissue selectivity of Ca2+ channel blockers could be related to different affinities for alpha1C isoforms. 2. Inward current evoked by the transfected alpha1 subunit was recorded by the patch-clamp technique in the whole-cell configuration. 3. Neutral dihydropyridines (nifedipine, nisoldipine, (+)-PN200-110) were more potent inhibitors of alpha(1C-)b-subunit than of alpha(1C-a)-subunit. This difference was more marked at a holding potential of -100 mV than at -50 mV. SDZ 207-180 (an ionized dihydropyridine) exhibited the same potency on the two isoforms. 4. Pinaverium (ionized non-dihydropyridine derivative) was 2 and 4 fold more potent on alpha(1C-a) than on alpha(1C-b) subunit at Vh of -100 mV and -50 mV, respectively. Effects of verapamil were identical on the two isoforms at both voltages. 5. [3H]-(+)-PN 200-110 binding experiments showed that neutral dihydropyridines had a higher affinity for the alpha(1C-b) than for the alpha(1C-a) subunit. SDZ 207-180 had the same affinity for the two isoforms and pinaverium had a higher affinity for the alpha(1C-a) subunit than for the alpha(1C-b) subunit. 6. These results indicate marked differences among Ca2+ channel blockers in their selectivity for the alpha(1C-a) and alpha(1C-b) subunits of the Ca2+ channel. PMID:9846638

  10. Colocalization of HCN Channel Subunits in Rat Retinal Ganglion Cells

    PubMed Central

    Stradleigh, Tyler W.; Ogata, Genki; Partida, Gloria J.; Oi, Hanako; Greenberg, Kenneth P.; Krempely, Kalen S.; Ishida, Andrew T.

    2011-01-01

    The current-passing pore of mammalian hyperpolarization-activated, cyclic nucleotide-gated ("HCN") channels is formed by subunit isoforms denoted HCN1-4. In various brain areas, antibodies directed against multiple isoforms bind to single neurons and the current ("Ih") passed during hyperpolarizations differs from that of heterologously expressed homomeric channels. By contrast, retinal rod, cone, and bipolar cells appear to use homomeric HCN channels. Here, we assess the generality of this pattern by examining HCN1 and HCN4 immunoreactivity in rat retinal ganglion cells, measuring Ih in dissociated cells, and testing whether HCN1 and HCN4 protein coimmunoprecipitate. Nearly half of the ganglion cells in whole-mounted retinae bound antibodies against both isoforms. Consistent with colocalization and physical association, 8-bromo-cAMP shifted the voltage-sensitivity of Ih less than that of HCN4 channels and more than that of HCN1 channels, and HCN1 coimmunoprecipitated with HCN4 from membrane fraction proteins. Lastly, the immunopositive somata ranged in diameter from the smallest to the largest in rat retina, the dendrites of immunopositive cells arborized at various levels of the inner plexiform layer and over fields of different diameters, and Ih activated with similar kinetics and proportions of fast and slow components in small, medium, and large somata. These results show that different HCN subunits colocalize in single retinal ganglion cells, identify a subunit that can reconcile native Ih properties with the previously reported presence of HCN4 in these cells, and indicate that Ih is biophysically similar in morphologically diverse retinal ganglion cells and differs from Ih in rods, cones, and bipolar cells. PMID:21456027

  11. Individual IKs channels at the surface of mammalian cells contain two KCNE1 accessory subunits

    PubMed Central

    Plant, Leigh D.; Xiong, Dazhi; Dai, Hui; Goldstein, Steve A. N.

    2014-01-01

    KCNE1 (E1) β-subunits assemble with KCNQ1 (Q1) voltage-gated K+ channel α-subunits to form IKslow (IKs) channels in the heart and ear. The number of E1 subunits in IKs channels has been an issue of ongoing debate. Here, we use single-molecule spectroscopy to demonstrate that surface IKs channels with human subunits contain two E1 and four Q1 subunits. This stoichiometry does not vary. Thus, IKs channels in cells with elevated levels of E1 carry no more than two E1 subunits. Cells with low levels of E1 produce IKs channels with two E1 subunits and Q1 channels with no E1 subunits—channels with one E1 do not appear to form or are restricted from surface expression. The plethora of models of cardiac function, transgenic animals, and drug screens based on variable E1 stoichiometry do not reflect physiology. PMID:24591645

  12. Modulation of BK Channel Function by Auxiliary Beta and Gamma Subunits

    PubMed Central

    Li, Q.; Yan, J.

    2016-01-01

    The large-conductance, Ca2+- and voltage-activated K+ (BK) channel is ubiquitously expressed in mammalian tissues and displays diverse biophysical or pharmacological characteristics. This diversity is in part conferred by channel modulation with different regulatory auxiliary subunits. To date, two distinct classes of BK channel auxiliary subunits have been identified: β subunits and γ subunits. Modulation of BK channels by the four auxiliary β (β1–β4) subunits has been well established and intensively investigated over the past two decades. The auxiliary γ subunits, however, were identified only very recently, which adds a new dimension to BK channel regulation and improves our understanding of the physiological functions of BK channels in various tissues and cell types. This chapter will review the current understanding of BK channel modulation by auxiliary β and γ subunits, especially the latest findings. PMID:27238261

  13. Fluorescence measurements reveal stoichiometry of K+ channels formed by modulatory and delayed rectifier alpha-subunits.

    PubMed

    Kerschensteiner, Daniel; Soto, Florentina; Stocker, Martin

    2005-04-26

    Modulatory alpha-subunits, which comprise one-fourth of all voltagegated K(+) channel (Kv) alpha-subunits, do not assemble into homomeric channels, but selectively associate with delayed rectifier Kv2 subunits to form heteromeric channels of unknown stoichiometry. Their distinct expression patterns and unique functional properties have made these channels candidate molecular correlates for a broad set of native K(+) currents. Here, we combine FRET and electrophysiological measurements to determine the stoichiometry and geometry of heteromeric channels composed of the delayed rectifier Kv2.1 subunit and the modulatory Kv9.3 alpha-subunit. Kv channel alpha-subunits were fused with GFP variants, and heteromerization of different combinations of tagged and untagged alpha-subunits was studied. FRET, evaluated by acceptor photobleaching, was only observed upon formation of functional channels. Our results, obtained from two independent experimental paradigms, suggest the formation of heteromeric Kv2.1/Kv9.3 channels of fixed stoichiometry consisting of three Kv2.1 subunits and one Kv9.3 subunit. Strikingly, despite this uneven stoichiometry, we find that heteromeric Kv2.1/Kv9.3 channels maintain a pseudosymmetric arrangement of subunits around the central pore. PMID:15827117

  14. Fluorescence measurements reveal stoichiometry of K+ channels formed by modulatory and delayed rectifier α-subunits

    PubMed Central

    Kerschensteiner, Daniel; Soto, Florentina; Stocker, Martin

    2005-01-01

    Modulatory α-subunits, which comprise one-fourth of all voltagegated K+ channel (Kv) α-subunits, do not assemble into homomeric channels, but selectively associate with delayed rectifier Kv2 subunits to form heteromeric channels of unknown stoichiometry. Their distinct expression patterns and unique functional properties have made these channels candidate molecular correlates for a broad set of native K+ currents. Here, we combine FRET and electrophysiological measurements to determine the stoichiometry and geometry of heteromeric channels composed of the delayed rectifier Kv2.1 subunit and the modulatory Kv9.3 α-subunit. Kv channel α-subunits were fused with GFP variants, and heteromerization of different combinations of tagged and untagged α-subunits was studied. FRET, evaluated by acceptor photobleaching, was only observed upon formation of functional channels. Our results, obtained from two independent experimental paradigms, suggest the formation of heteromeric Kv2.1/Kv9.3 channels of fixed stoichiometry consisting of three Kv2.1 subunits and one Kv9.3 subunit. Strikingly, despite this uneven stoichiometry, we find that heteromeric Kv2.1/Kv9.3 channels maintain a pseudosymmetric arrangement of subunits around the central pore. PMID:15827117

  15. Differential mechanisms of Cantú syndrome-associated gain of function mutations in the ABCC9 (SUR2) subunit of the KATP channel.

    PubMed

    Cooper, Paige E; Sala-Rabanal, Monica; Lee, Sun Joo; Nichols, Colin G

    2015-12-01

    Cantú syndrome (CS) is a rare disease characterized by congenital hypertrichosis, distinct facial features, osteochondrodysplasia, and cardiac defects. Recent genetic analysis has revealed that the majority of CS patients carry a missense mutation in ABCC9, which codes for the sulfonylurea receptor SUR2. SUR2 subunits couple with Kir6.x, inwardly rectifying potassium pore-forming subunits, to form adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channels, which link cell metabolism to membrane excitability in a variety of tissues including vascular smooth muscle, skeletal muscle, and the heart. The functional consequences of multiple uncharacterized CS mutations remain unclear. Here, we have focused on determining the functional consequences of three documented human CS-associated ABCC9 mutations: human P432L, A478V, and C1043Y. The mutations were engineered in the equivalent position in rat SUR2A (P429L, A475V, and C1039Y), and each was coexpressed with mouse Kir6.2. Using macroscopic rubidium ((86)Rb(+)) efflux assays, we show that K(ATP) channels formed with P429L, A475V, or C1039Y mutants enhance K(ATP) activity compared with wild-type (WT) channels. We used inside-out patch-clamp electrophysiology to measure channel sensitivity to ATP inhibition and to MgADP activation. For P429L and A475V mutants, sensitivity to ATP inhibition was comparable to WT channels, but activation by MgADP was significantly greater. C1039Y-dependent channels were significantly less sensitive to inhibition by ATP or by glibenclamide, but MgADP activation was comparable to WT. The results indicate that these three CS mutations all lead to overactive K(ATP) channels, but at least two mechanisms underlie the observed gain of function: decreased ATP inhibition and enhanced MgADP activation. PMID:26621776

  16. Differential mechanisms of Cantú syndrome–associated gain of function mutations in the ABCC9 (SUR2) subunit of the KATP channel

    PubMed Central

    Cooper, Paige E.; Sala-Rabanal, Monica; Lee, Sun Joo

    2015-01-01

    Cantú syndrome (CS) is a rare disease characterized by congenital hypertrichosis, distinct facial features, osteochondrodysplasia, and cardiac defects. Recent genetic analysis has revealed that the majority of CS patients carry a missense mutation in ABCC9, which codes for the sulfonylurea receptor SUR2. SUR2 subunits couple with Kir6.x, inwardly rectifying potassium pore-forming subunits, to form adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, which link cell metabolism to membrane excitability in a variety of tissues including vascular smooth muscle, skeletal muscle, and the heart. The functional consequences of multiple uncharacterized CS mutations remain unclear. Here, we have focused on determining the functional consequences of three documented human CS-associated ABCC9 mutations: human P432L, A478V, and C1043Y. The mutations were engineered in the equivalent position in rat SUR2A (P429L, A475V, and C1039Y), and each was coexpressed with mouse Kir6.2. Using macroscopic rubidium (86Rb+) efflux assays, we show that KATP channels formed with P429L, A475V, or C1039Y mutants enhance KATP activity compared with wild-type (WT) channels. We used inside-out patch-clamp electrophysiology to measure channel sensitivity to ATP inhibition and to MgADP activation. For P429L and A475V mutants, sensitivity to ATP inhibition was comparable to WT channels, but activation by MgADP was significantly greater. C1039Y-dependent channels were significantly less sensitive to inhibition by ATP or by glibenclamide, but MgADP activation was comparable to WT. The results indicate that these three CS mutations all lead to overactive KATP channels, but at least two mechanisms underlie the observed gain of function: decreased ATP inhibition and enhanced MgADP activation. PMID:26621776

  17. Deciphering the function of the CNGB1b subunit in olfactory CNG channels

    PubMed Central

    Nache, Vasilica; Wongsamitkul, Nisa; Kusch, Jana; Zimmer, Thomas; Schwede, Frank; Benndorf, Klaus

    2016-01-01

    Olfactory cyclic nucleotide-gated (CNG) ion channels are key players in the signal transduction cascade of olfactory sensory neurons. The second messengers cAMP and cGMP directly activate these channels, generating a depolarizing receptor potential. Olfactory CNG channels are composed of two CNGA2 subunits and two modulatory subunits, CNGA4, and CNGB1b. So far the exact role of the modulatory subunits for channel activation is not fully understood. By measuring ligand binding and channel activation simultaneously, we show that in functional heterotetrameric channels not only the CNGA2 subunits and the CNGA4 subunit but also the CNGB1b subunit binds cyclic nucleotides and, moreover, also alone translates this signal to open the pore. In addition, we show that the CNGB1b subunit is the most sensitive subunit in a heterotetrameric channel to cyclic nucleotides and that it accelerates deactivation to a similar extent as does the CNGA4 subunit. In conclusion, the CNGB1b subunit participates in ligand-gated activation of olfactory CNG channels and, particularly, contributes to rapid termination of odorant signal in an olfactory sensory neuron. PMID:27405959

  18. The Role of Auxiliary Subunits for the Functional Diversity of Voltage-Gated Calcium Channels

    PubMed Central

    Campiglio, Marta; Flucher, Bernhard E

    2015-01-01

    Voltage-gated calcium channels (VGCCs) represent the sole mechanism to convert membrane depolarization into cellular functions like secretion, contraction, or gene regulation. VGCCs consist of a pore-forming α1 subunit and several auxiliary channel subunits. These subunits come in multiple isoforms and splice-variants giving rise to a stunning molecular diversity of possible subunit combinations. It is generally believed that specific auxiliary subunits differentially regulate the channels and thereby contribute to the great functional diversity of VGCCs. If auxiliary subunits can associate and dissociate from pre-existing channel complexes, this would allow dynamic regulation of channel properties. However, most auxiliary subunits modulate current properties very similarly, and proof that any cellular calcium channel function is indeed modulated by the physiological exchange of auxiliary subunits is still lacking. In this review we summarize available information supporting a differential modulation of calcium channel functions by exchange of auxiliary subunits, as well as experimental evidence in support of alternative functions of the auxiliary subunits. At the heart of the discussion is the concept that, in their native environment, VGCCs function in the context of macromolecular signaling complexes and that the auxiliary subunits help to orchestrate the diverse protein–protein interactions found in these calcium channel signalosomes. Thus, in addition to a putative differential modulation of current properties, differential subcellular targeting properties and differential protein–protein interactions of the auxiliary subunits may explain the need for their vast molecular diversity. J. Cell. Physiol. 999: 00–00, 2015. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. J. Cell. Physiol. 230: 2019–2031, 2015. © 2015 Wiley Periodicals, Inc. PMID:25820299

  19. The first transmembrane domain (TM1) of β2-subunit binds to the transmembrane domain S1 of α-subunit in BK potassium channels

    PubMed Central

    Morera, Francisco J.; Alioua, Abderrahmane; Kundu, Pallob; Salazar, Marcelo; Gonzalez, Carlos; Martinez, Agustin D.; Stefani, Enrico; Toro, Ligia; Latorre, Ramon

    2012-01-01

    The BK channel is one of the most broadly expressed ion channels in mammals. In many tissues, the BK channel pore-forming α-subunit is associated to an auxiliary β-subunit that modulates the voltage- and Ca2+-dependent activation of the channel. Structural components present in β-subunits that are important for the physical association with the α-subunit are yet unknown. Here, we show through co-immunoprecipitation that the intracellular C-terminus, the second transmembrane domain (TM2) and the extracellular loop of the β2-subunit are dispensable for association with the α-subunit pointing transmembrane domain 1 (TM1) as responsible for the interaction. Indeed, the TOXCAT assay for transmembrane protein–protein interactions demonstrated for the first time that TM1 of the β2-subunit physically binds to the transmembrane S1 domain of the α-subunit. PMID:22710124

  20. Molecular mechanism for 3:1 subunit stoichiometry of rod cyclic nucleotide-gated ion channels

    PubMed Central

    Shuart, Noah G.; Haitin, Yoni; Camp, Stacey S.; Black, Kevin D.; Zagotta, William N.

    2011-01-01

    Molecular determinants of ion channel tetramerization are well characterized, but those involved in heteromeric channel assembly are less clearly understood. The heteromeric composition of native channels is often precisely controlled. Cyclic nucleotide-gated (CNG) channels from rod photoreceptors exhibit a 3:1 stoichiometry of CNGA1 and CNGB1 subunits that tunes the channels for their specialized role in phototransduction. Here we show, using electrophysiology, fluorescence, biochemistry, and X-ray crystallography, that the mechanism for this controlled assembly is the formation of a parallel 3-helix coiled-coil domain of the carboxy-terminal leucine zipper region of CNGA1 subunits, constraining the channel to contain three CNGA1 subunits, followed by preferential incorporation of a single CNGB1 subunit. Deletion of the carboxy-terminal leucine zipper domain relaxed the constraint and permitted multiple CNGB1 subunits in the channel. The X-ray crystal structures of the parallel 3-helix coiled-coil domains of CNGA1 and CNGA3 subunits were similar, suggesting that a similar mechanism controls the stoichiometry of cone CNG channels. PMID:21878911

  1. Developmental and Regulatory Functions of Na(+) Channel Non-pore-forming β Subunits.

    PubMed

    Winters, J J; Isom, L L

    2016-01-01

    Voltage-gated Na(+) channels (VGSCs) isolated from mammalian neurons are heterotrimeric complexes containing one pore-forming α subunit and two non-pore-forming β subunits. In excitable cells, VGSCs are responsible for the initiation of action potentials. VGSC β subunits are type I topology glycoproteins, containing an extracellular amino-terminal immunoglobulin (Ig) domain with homology to many neural cell adhesion molecules (CAMs), a single transmembrane segment, and an intracellular carboxyl-terminal domain. VGSC β subunits are encoded by a gene family that is distinct from the α subunits. While α subunits are expressed in prokaryotes, β subunit orthologs did not arise until after the emergence of vertebrates. β subunits regulate the cell surface expression, subcellular localization, and gating properties of their associated α subunits. In addition, like many other Ig-CAMs, β subunits are involved in cell migration, neurite outgrowth, and axon pathfinding and may function in these roles in the absence of associated α subunits. In sum, these multifunctional proteins are critical for both channel regulation and central nervous system development. PMID:27586289

  2. Kir3 channel ontogeny – the role of Gβγ subunits in channel assembly and trafficking

    PubMed Central

    Zylbergold, Peter; Sleno, Rory; Khan, Shahriar M.; Jacobi, Ashley M.; Belhke, Mark A.; Hébert, Terence E.

    2014-01-01

    The role of Gβγ subunits in Kir3 channel gating is well characterized. Here, we have studied the role of Gβγ dimers during their initial contact with Kir3 channels, prior to their insertion into the plasma membrane. We show that distinct Gβγ subunits play an important role in orchestrating and fine-tuning parts of the Kir3 channel life cycle. Gβ1γ2, apart from its role in channel opening that it shares with other Gβγ subunit combinations, may play a unique role in protecting maturing channels from degradation as they transit to the cell surface. Taken together, our data suggest that Gβ1γ2 prolongs the lifetime of the Kir3.1/Kir3.2 heterotetramer, although further studies would be required to shed more light on these early Gβγ effects on Kir3 maturation and trafficking. PMID:24782712

  3. Single Channel Recordings Reveal Differential β2 Subunit Modulations Between Mammalian and Drosophila BKCa(β2) Channels

    PubMed Central

    Zhong, Ling; Guo, Xiying; Weng, Anxi; Xiao, Feng; Zeng, Wenping; Zhang, Yan; Ding, Jiuping; Hou, Panpan

    2016-01-01

    Large-conductance Ca2+- and voltage-activated potassium (BK) channels are widely expressed in tissues. As a voltage and calcium sensor, BK channels play significant roles in regulating the action potential frequency, neurotransmitter release, and smooth muscle contraction. After associating with the auxiliary β2 subunit, mammalian BK(β2) channels (mouse or human Slo1/β2) exhibit enhanced activation and complete inactivation. However, how the β2 subunit modulates the Drosophila Slo1 channel remains elusive. In this study, by comparing the different functional effects on heterogeneous BK(β2) channel, we found that Drosophila Slo1/β2 channel exhibits “paralyzed”-like and incomplete inactivation as well as slow activation. Further, we determined three different modulations between mammalian and Drosophila BK(β2) channels: 1) dSlo1/β2 doesn’t have complete inactivation. 2) β2(K33,R34,K35) delays the dSlo1/Δ3-β2 channel activation. 3) dSlo1/β2 channel has enhanced pre-inactivation than mSlo1/β2 channel. The results in our study provide insights into the different modulations of β2 subunit between mammalian and Drosophila Slo1/β2 channels and structural basis underlie the activation and pre-inactivation of other BK(β) complexes. PMID:27755549

  4. Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels.

    PubMed

    Asanov, Alexander; Sampieri, Alicia; Moreno, Claudia; Pacheco, Jonathan; Salgado, Alfonso; Sherry, Ryan; Vaca, Luis

    2015-01-01

    Depletion of intracellular calcium ion stores initiates a rapid cascade of events culminating with the activation of the so-called Store-Operated Channels (SOC) at the plasma membrane. Calcium influx via SOC is essential in the initiation of calcium-dependent intracellular signaling and for the refilling of internal calcium stores, ensuring the regeneration of the signaling cascade. In spite of the significance of this evolutionary conserved mechanism, the molecular identity of SOC has been the center of a heated controversy spanning over the last 20 years. Initial studies positioned some members of the transient receptor potential canonical (TRPC) channel superfamily of channels (with the more robust evidence pointing to TRPC1) as a putative SOC. Recent evidence indicates that Stromal Interacting Molecule 1 (STIM1) activates some members from the TRPC family of channels. However, the exact subunit composition of TRPC channels remains undetermined to this date. To identify the subunit composition of STIM1-activated TRPC channels, we developed novel method, which combines single channel electrophysiological measurements based on the patch clamp technique with single molecule fluorescence imaging. We termed this method Single ion Channel Single Molecule Detection technique (SC-SMD). Using SC-SMD method, we have obtained direct evidence of the subunit composition of TRPC channels activated by STIM1. Furthermore, our electrophysiological-imaging SC-SMD method provides evidence at the molecular level of the mechanism by which STIM1 and calmodulin antagonize to modulate TRPC channel activity.

  5. Emerging evidence for specific neuronal functions of auxiliary calcium channel α2δ subunits

    PubMed Central

    Obermair, Gerald J.

    2015-01-01

    In nerve cells the ubiquitous second messenger calcium regulates a variety of vitally important functions including neurotransmitter release, gene regulation, and neuronal plasticity. The entry of calcium into cells is tightly regulated by voltage-gated calcium channels, which consist of a heteromultimeric complex of a pore forming α1, and the auxiliary β and α2δ subunits. Four genes (Cacna2d1-4) encode for the extracellular membrane-attached α2δ subunits (α2δ-1 to α2δ-4), out of which three isoforms (α2δ-1 to -3) are strongly expressed in the central nervous system. Over the years a wealth of studies has demonstrated the classical role of α2δ subunits in channel trafficking and calcium current modulation. Recent studies in specialized neuronal cell systems propose roles of α2δ subunits beyond the classical view and implicate α2δ subunits as important regulators of synapse formation. These findings are supported by the identification of novel human disease mutations associated with α2δ subunits and by the fact that α2δ subunits are the target of the anti-epileptic and anti-allodynic drugs gabapentin and pregabalin. Here we review the recently emerging evidence for specific as well as redundant neuronal roles of α2δ subunits and discuss the mechanisms for establishing and maintaining specificity. PMID:25504062

  6. Two classes of regulatory subunits coassemble in the same BK channel and independently regulate gating

    NASA Astrophysics Data System (ADS)

    Gonzalez-Perez, Vivian; Xia, Xiao-Ming; Lingle, Christopher J.

    2015-09-01

    High resolution proteomics increasingly reveals that most native ion channels are assembled in macromolecular complexes. However, whether different partners have additive or cooperative functional effects, or whether some combinations of proteins may preclude assembly of others are largely unexplored topics. The large conductance Ca2+-and-voltage activated potassium channel (BK) is well-suited to discern nuanced differences in regulation arising from combinations of subunits. Here we examine whether assembly of two different classes of regulatory proteins, β and γ, in BK channels is exclusive or independent. Our results show that both γ1 and up to four β2-subunits can coexist in the same functional BK complex, with the gating shift caused by β2-subunits largely additive with that produced by the γ1-subunit(s). The multiplicity of β:γ combinations that can participate in a BK complex therefore allow a range of BK channels with distinct functional properties tuned by the specific stoichiometry of the contributing subunits.

  7. L-type calcium channel β subunit modulates angiotensin II responses in cardiomyocytes.

    PubMed

    Hermosilla, Tamara; Moreno, Cristian; Itfinca, Mircea; Altier, Christophe; Armisén, Ricardo; Stutzin, Andres; Zamponi, Gerald W; Varela, Diego

    2011-01-01

    Angiotensin II regulation of L-type calcium currents in cardiac muscle is controversial and the underlying signaling events are not completely understood. Moreover, the possible role of auxiliary subunit composition of the channels in Angiotensin II modulation of L-type calcium channels has not yet been explored. In this work we study the role of Ca(v)β subunits and the intracellular signaling responsible for L-type calcium current modulation by Angiotensin II. In cardiomyocytes, Angiotensin II exposure induces rapid inhibition of L-type current with a magnitude that is correlated with the rate of current inactivation. Semi-quantitative PCR of cardiomyocytes at different days of culture reveals changes in the Ca(v)β subunits expression pattern that are correlated with the rate of current inactivation and with Angiotensin II effect. Over-expression of individual b subunits in heterologous systems reveals that the magnitude of Angiotensin II inhibition is dependent on the Ca(v)β subunit isoform, with Ca(v)β(1b) containing channels being more strongly regulated. Ca(v)β(2a) containing channels were insensitive to modulation and this effect was partially due to the N-terminal palmitoylation sites of this subunit. Moreover, PLC or diacylglycerol lipase inhibition prevents the Angiotensin II effect on L-type calcium channels, while PKC inhibition with chelerythrine does not, suggesting a role of arachidonic acid in this process. Finally, we show that in intact cardiomyocytes the magnitude of calcium transients on spontaneous beating cells is modulated by Angiotensin II in a Ca(v)β subunit-dependent manner. These data demonstrate that Ca(v)β subunits alter the magnitude of inhibition of L-type current by Angiotensin II. PMID:21525790

  8. Single Expressed Glycine Receptor Domains Reconstitute Functional Ion Channels without Subunit-specific Desensitization Behavior*

    PubMed Central

    Meiselbach, Heike; Vogel, Nico; Langlhofer, Georg; Stangl, Sabine; Schleyer, Barbara; Bahnassawy, Lamia'a; Sticht, Heinrich; Breitinger, Hans-Georg; Becker, Cord-Michael; Villmann, Carmen

    2014-01-01

    Cys loop receptors are pentameric arrangements of independent subunits that assemble into functional ion channels. Each subunit shows a domain architecture. Functional ion channels can be reconstituted even from independent, nonfunctional subunit domains, as shown previously for GlyRα1 receptors. Here, we demonstrate that this reconstitution is not restricted to α1 but can be transferred to other members of the Cys loop receptor family. A nonfunctional GlyR subunit, truncated at the intracellular TM3–4 loop by a premature stop codon, can be complemented by co-expression of the missing tail portion of the receptor. Compared with α1 subunits, rescue by domain complementation was less efficient when GlyRα3 or the GABAA/C subunit ρ1 was used. If truncation disrupted an alternative splicing cassette within the intracellular TM3–4 loop of α3 subunits, which also regulates receptor desensitization, functional rescue was not possible. When α3 receptors were restored by complementation using domains with and without the spliced insert, no difference in desensitization was found. In contrast, desensitization properties could even be transferred between α1/α3 receptor chimeras harboring or lacking the α3 splice cassette proving that functional rescue depends on the integrity of the alternative splicing cassette in α3. Thus, an intact α3 splicing cassette in the TM3–4 loop environment is indispensable for functional rescue, and the quality of receptor restoration can be assessed from desensitization properties. PMID:25143388

  9. Modulation of BK channel voltage gating by different auxiliary β subunits

    PubMed Central

    Contreras, Gustavo F.; Neely, Alan; Alvarez, Osvaldo; Gonzalez, Carlos; Latorre, Ramon

    2012-01-01

    Calcium- and voltage-activated potassium channels (BK) are regulated by a multiplicity of signals. The prevailing view is that different BK gating mechanisms converge to determine channel opening and that these gating mechanisms are allosterically coupled. In most instances the pore forming α subunit of BK is associated with one of four alternative β subunits that appear to target specific gating mechanisms to regulate the channel activity. In particular, β1 stabilizes the active configuration of the BK voltage sensor having a large effect on BK Ca2+ sensitivity. To determine the extent to which β subunits regulate the BK voltage sensor, we measured gating currents induced by the pore-forming BK α subunit alone and with the different β subunits expressed in Xenopus oocytes (β1, β2IR, β3b, and β4). We found that β1, β2, and β4 stabilize the BK voltage sensor in the active conformation. β3 has no effect on voltage sensor equilibrium. In addition, β4 decreases the apparent number of charges per voltage sensor. The decrease in the charge associated with the voltage sensor in α β4 channels explains most of their biophysical properties. For channels composed of the α subunit alone, gating charge increases slowly with pulse duration as expected if a significant fraction of this charge develops with a time course comparable to that of K+ current activation. In the presence of β1, β2, and β4 this slow component develops in advance of and much more rapidly than ion current activation, suggesting that BK channel opening proceeds in two steps. PMID:23112204

  10. Palmitoylation of the β4-subunit regulates surface expression of large conductance calcium-activated potassium channel splice variants.

    PubMed

    Chen, Lie; Bi, Danlei; Tian, Lijun; McClafferty, Heather; Steeb, Franziska; Ruth, Peter; Knaus, Hans Guenther; Shipston, Michael J

    2013-05-01

    Regulatory β-subunits of large conductance calcium- and voltage-activated potassium (BK) channels play an important role in generating functional diversity and control of cell surface expression of the pore forming α-subunits. However, in contrast to α-subunits, the role of reversible post-translational modification of intracellular residues on β-subunit function is largely unknown. Here we demonstrate that the human β4-subunit is S-acylated (palmitoylated) on a juxtamembrane cysteine residue (Cys-193) in the intracellular C terminus of the regulatory β-subunit. β4-Subunit palmitoylation is important for cell surface expression and endoplasmic reticulum (ER) exit of the β4-subunit alone. Importantly, palmitoylated β4-subunits promote the ER exit and surface expression of the pore-forming α-subunit, whereas β4-subunits that cannot be palmitoylated do not increase ER exit or surface expression of α-subunits. Strikingly, however, this palmitoylation- and β4-dependent enhancement of α-subunit surface expression was only observed in α-subunits that contain a putative trafficking motif (… REVEDEC) at the very C terminus of the α-subunit. Engineering this trafficking motif to other C-terminal α-subunit splice variants results in α-subunits with reduced surface expression that can be rescued by palmitoylated, but not depalmitoylated, β4-subunits. Our data reveal a novel mechanism by which palmitoylated β4-subunit controls surface expression of BK channels through masking of a trafficking motif in the C terminus of the α-subunit. As palmitoylation is dynamic, this mechanism would allow precise control of specific splice variants to the cell surface. Our data provide new insights into how complex interplay between the repertoire of post-transcriptional and post-translational mechanisms controls cell surface expression of BK channels.

  11. Use of a purified and functional recombinant calcium-channel beta4 subunit in surface-plasmon resonance studies.

    PubMed Central

    Geib, Sandrine; Sandoz, Guillaume; Mabrouk, Kamel; Matavel, Alessandra; Marchot, Pascale; Hoshi, Toshinori; Villaz, Michel; Ronjat, Michel; Miquelis, Raymond; Lévêque, Christian; de Waard, Michel

    2002-01-01

    Native high-voltage-gated calcium channels are multi-subunit complexes comprising a pore-forming subunit Ca(v) and at least two auxiliary subunits alpha(2)delta and beta. The beta subunit facilitates cell-surface expression of the channel and contributes significantly to its biophysical properties. In spite of its importance, detailed structural and functional studies are hampered by the limited availability of native beta subunit. Here, we report the purification of a recombinant calcium-channel beta(4) subunit from bacterial extracts by using a polyhistidine tag. The purified protein is fully functional since it binds on the alpha1 interaction domain, its main Ca(v)-binding site, and regulates the activity of P/Q calcium channel expressed in Xenopus oocytes in a similar way to the beta(4) subunit produced by cRNA injection. We took advantage of the functionality of the purified material to (i) develop an efficient surface-plasmon resonance assay of the interaction between two calcium channel subunits and (ii) measure, for the first time, the affinity of the recombinant His-beta(4) subunit for the full-length Ca(v)2.1 channel. The availability of this purified material and the development of a surface-plasmon resonance assay opens two immediate research perspectives: (i) drug screening programmes applied to the Ca(v)/beta interaction and (ii) crystallographic studies of the calcium-channel beta(4) subunit. PMID:11988102

  12. Functional roles of γ2, γ3 and γ4, three new Ca2+ channel subunits, in P/Q-type Ca2+ channel expressed in Xenopus oocytes

    PubMed Central

    Rousset, M; Cens, T; Restituito, S; Barrere, C; Black, J L; McEnery, M W; Charnet, P

    2001-01-01

    Stargazin or γ2, the product of the gene mutated in the stargazer mouse, is a homologue of the γ1 protein, an accessory subunit of the skeletal muscle L-type Ca2+ channel. γ2 is selectively expressed in the brain, and considered to be a putative neuronal Ca2+ channel subunit based mainly on homology to γ1. Two new members of the γ family expressed in the brain have recently been identified: γ3 and γ4. We have co-expressed, in Xenopus oocytes, the human γ2,γ3 and γ4 subunits with the P/Q-type (CaV2.1) Ca2+ channel and different regulatory subunits (α2-δ; β1, β2, β3 or β4). Subcellular distribution of the γ subunits confirmed their membrane localization. Ba2+ currents, recorded using two-electrode voltage clamp, showed that the effects of the γ subunits on the electrophysiological properties of the channel are, most of the time, minor. However, a fraction of the oocytes expressing β subunits displayed an unusual slow-inactivating Ba2+ current. Expression of both β and γ subunits increased the appearance of the slow-inactivating current. Our data support a role for the γ subunit as a brain Ca2+ channel modulatory subunit and suggest that β and γ subunits are involved in a switch between two regulatory modes of the P/Q-type channel inactivation. PMID:11313431

  13. Intracellular domains interactions and gated motions of IKS potassium channel subunits

    PubMed Central

    Haitin, Yoni; Wiener, Reuven; Shaham, Dana; Peretz, Asher; Cohen, Enbal Ben-Tal; Shamgar, Liora; Pongs, Olaf; Hirsch, Joel A; Attali, Bernard

    2009-01-01

    Voltage-gated K+ channels co-assemble with auxiliary β subunits to form macromolecular complexes. In heart, assembly of Kv7.1 pore-forming subunits with KCNE1 β subunits generates the repolarizing K+ current IKS. However, the detailed nature of their interface remains unknown. Mutations in either Kv7.1 or KCNE1 produce the life-threatening long or short QT syndromes. Here, we studied the interactions and voltage-dependent motions of IKS channel intracellular domains, using fluorescence resonance energy transfer combined with voltage-clamp recording and in vitro binding of purified proteins. The results indicate that the KCNE1 distal C-terminus interacts with the coiled-coil helix C of the Kv7.1 tetramerization domain. This association is important for IKS channel assembly rules as underscored by Kv7.1 current inhibition produced by a dominant-negative C-terminal domain. On channel opening, the C-termini of Kv7.1 and KCNE1 come close together. Co-expression of Kv7.1 with the KCNE1 long QT mutant D76N abolished the K+ currents and gated motions. Thus, during channel gating KCNE1 is not static. Instead, the C-termini of both subunits experience molecular motions, which are disrupted by the D76N causing disease mutation. PMID:19521339

  14. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology.

    PubMed

    Dolphin, Annette C

    2016-10-01

    Voltage-gated calcium channels are essential players in many physiological processes in excitable cells. There are three main subdivisions of calcium channel, defined by the pore-forming α1 subunit, the CaV 1, CaV 2 and CaV 3 channels. For all the subtypes of voltage-gated calcium channel, their gating properties are key for the precise control of neurotransmitter release, muscle contraction and cell excitability, among many other processes. For the CaV 1 and CaV 2 channels, their ability to reach their required destinations in the cell membrane, their activation and the fine tuning of their biophysical properties are all dramatically influenced by the auxiliary subunits that associate with them. Furthermore, there are many diseases, both genetic and acquired, involving voltage-gated calcium channels. This review will provide a general introduction and then concentrate particularly on the role of auxiliary α2 δ subunits in both physiological and pathological processes involving calcium channels, and as a therapeutic target. PMID:27273705

  15. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology.

    PubMed

    Dolphin, Annette C

    2016-10-01

    Voltage-gated calcium channels are essential players in many physiological processes in excitable cells. There are three main subdivisions of calcium channel, defined by the pore-forming α1 subunit, the CaV 1, CaV 2 and CaV 3 channels. For all the subtypes of voltage-gated calcium channel, their gating properties are key for the precise control of neurotransmitter release, muscle contraction and cell excitability, among many other processes. For the CaV 1 and CaV 2 channels, their ability to reach their required destinations in the cell membrane, their activation and the fine tuning of their biophysical properties are all dramatically influenced by the auxiliary subunits that associate with them. Furthermore, there are many diseases, both genetic and acquired, involving voltage-gated calcium channels. This review will provide a general introduction and then concentrate particularly on the role of auxiliary α2 δ subunits in both physiological and pathological processes involving calcium channels, and as a therapeutic target.

  16. Regulation of persistent Na current by interactions between β subunits of voltage-gated Na channels

    PubMed Central

    Aman, Teresa K.; Grieco-Calub, Tina M.; Chen, Chunling; Rusconi, Raffaella; Slat, Emily A.; Isom, Lori L.; Raman, Indira M.

    2009-01-01

    The β subunits of voltage-gated Na channels (Scnxb) regulate the gating of pore-forming α subunits, as well as their trafficking and localization. In heterologous expression systems, β1, β2, and β3 subunits influence inactivation and persistent current in different ways. To test how the β4 protein regulates Na channel gating, we transfected β4 into HEK cells stably expressing NaV1.1. Unlike a free peptide with a sequence from the β4 cytoplasmic domain, the full-length β4 protein did not block open channels. Instead, β4 expression favored open states by shifting activation curves negative, decreasing the slope of the inactivation curve, and increasing the percentage of non-inactivating current. Consequently, persistent current tripled in amplitude. Expression of β1 or chimeric subunits including the β1 extracellular domain, however, favored inactivation. Co-expressing NaV1.1 and β4 with β1 produced tiny persistent currents, indicating that β1 overcomes the effects of β4 in heterotrimeric channels. In contrast, β1C121W, which contains an extracellular epilepsy-associated mutation, did not counteract the destabilization of inactivation by β4, and also required unusually large depolarizations for channel opening. In cultured hippocampal neurons transfected with β4, persistent current was slightly but significantly increased. Moreover, in β4-expressing neurons from Scn1b and Scn1b/Scn2b null mice, entry into inactivated states was slowed. These data suggest that β1 and β4 have antagonistic roles, the former favoring inactivation and the latter favoring activation. Because increased Na channel availability may facilitate action potential firing, these results suggest a mechanism for seizure susceptibility of both mice and humans with disrupted β1 subunits. PMID:19228957

  17. Dynamic subunit stoichiometry confers a progressive continuum of pharmacological sensitivity by KCNQ potassium channels.

    PubMed

    Yu, Haibo; Lin, Zhihong; Mattmann, Margrith E; Zou, Beiyan; Terrenoire, Cecile; Zhang, Hongkang; Wu, Meng; McManus, Owen B; Kass, Robert S; Lindsley, Craig W; Hopkins, Corey R; Li, Min

    2013-05-21

    Voltage-gated KCNQ1 (Kv7.1) potassium channels are expressed abundantly in heart but they are also found in multiple other tissues. Differential coassembly with single transmembrane KCNE beta subunits in different cell types gives rise to a variety of biophysical properties, hence endowing distinct physiological roles for KCNQ1-KCNEx complexes. Mutations in either KCNQ1 or KCNE1 genes result in diseases in brain, heart, and the respiratory system. In addition to complexities arising from existence of five KCNE subunits, KCNE1 to KCNE5, recent studies in heterologous systems suggest unorthodox stoichiometric dynamics in subunit assembly is dependent on KCNE expression levels. The resultant KCNQ1-KCNE channel complexes may have a range of zero to two or even up to four KCNE subunits coassembling per KCNQ1 tetramer. These findings underscore the need to assess the selectivity of small-molecule KCNQ1 modulators on these different assemblies. Here we report a unique small-molecule gating modulator, ML277, that potentiates both homomultimeric KCNQ1 channels and unsaturated heteromultimeric (KCNQ1)4(KCNE1)n (n < 4) channels. Progressive increase of KCNE1 or KCNE3 expression reduces efficacy of ML277 and eventually abolishes ML277-mediated augmentation. In cardiomyocytes, the slowly activating delayed rectifier potassium current, or IKs, is believed to be a heteromultimeric combination of KCNQ1 and KCNE1, but it is not entirely clear whether IKs is mediated by KCNE-saturated KCNQ1 channels or by channels with intermediate stoichiometries. We found ML277 effectively augments IKs current of cultured human cardiomyocytes and shortens action potential duration. These data indicate that unsaturated heteromultimeric (KCNQ1)4(KCNE1)n channels are present as components of IKs and are pharmacologically distinct from KCNE-saturated KCNQ1-KCNE1 channels. PMID:23650380

  18. Inhibition of the interaction of G protein G(o) with calcium channels by the calcium channel beta-subunit in rat neurones.

    PubMed Central

    Campbell, V; Berrow, N S; Fitzgerald, E M; Brickley, K; Dolphin, A C

    1995-01-01

    1. The beta-subunit has marked effects on the biophysical and pharmacological properties of voltage-dependent calcium channels. In the present study we examined the ability of the GABAB agonist (-) -baclofen to inhibit calcium channel currents in cultured rat dorsal root ganglion neurones following depletion of beta-subunit immunoreactivity, 108-116 h after microinjection of a beta-subunit antisense oligonucleotide. 2.We observed that, although the calcium channel current was markedly reduced in amplitude following beta-subunit depletion, the residual current (comprising both N- and L-type calcium channel currents) showed an enhanced response to application of (-) -baclofen. Therefore, it is possible that there is normally competition between activated G protein G(o) and the calcium channel beta-subunit for binding to the calcium channel alpha 1-subunit; and this competition shifts in favour of the binding of activated G(o) following depletion of the beta-subunit, resulting in increased inhibition. 3. This hypothesis is supported by evidence that an antibody against the calcium channel beta-subunit completely abolishes stimulation of the GTPase activity of G(o) by the dihydropyridine agonist S-(-) -Bay K 8644 in brain membranes. This stimulation of GTPase is thought to result from an interaction of G(o) alpha-subunit (G alpha o) with its calcium channel effector which may operate as a GTPase-activating protein. 4. These data suggest that the calcium channel beta-subunit when complexed with the beta 1-subunit normally inhibits its association with activated G(o). It may function as a GTPase-activating protein to reduce the ability of activated G(o) to associate with the calcium channel, and thus limit the efficacy of agonists such as (-) -baclofen. Images Figure 1 PMID:7666364

  19. Human CLC-K Channels Require Palmitoylation of Their Accessory Subunit Barttin to Be Functional*

    PubMed Central

    Steinke, Kim Vanessa; Gorinski, Nataliya; Wojciechowski, Daniel; Todorov, Vladimir; Guseva, Daria; Ponimaskin, Evgeni; Fahlke, Christoph; Fischer, Martin

    2015-01-01

    CLC-K/barttin chloride channels are essential for NaCl re-absorption in Henle's loop and for potassium secretion by the stria vascularis in the inner ear. Here, we studied the posttranslational modification of such channels by palmitoylation of their accessory subunit barttin. We found that barttin is palmitoylated in vivo and in vitro and identified two conserved cysteine residues at positions 54 and 56 as palmitoylation sites. Point mutations at these two residues reduce the macroscopic current amplitudes in cells expressing CLC-K/barttin channels proportionally to the relative reduction in palmitoylated barttin. CLC-K/barttin expression, plasma membrane insertion, and single channel properties remain unaffected, indicating that these mutations decrease the number of active channels. R8W and G47R, two naturally occurring barttin mutations identified in patients with Bartter syndrome type IV, reduce barttin palmitoylation and CLC-K/barttin channel activity. Palmitoylation of the accessory subunit barttin might thus play a role in chloride channel dysfunction in certain variants of Bartter syndrome. We did not observe pronounced alteration of barttin palmitoylation upon increased salt and water intake or water deprivation, indicating that this posttranslational modification does not contribute to long term adaptation to variable water intake. Our results identify barttin palmitoylation as a novel posttranslational modification of CLC-K/barttin chloride channels. PMID:26013830

  20. The Evolution of the Four Subunits of Voltage-Gated Calcium Channels: Ancient Roots, Increasing Complexity, and Multiple Losses

    PubMed Central

    Moran, Yehu; Zakon, Harold H.

    2014-01-01

    The alpha subunits of voltage-gated calcium channels (Cavs) are large transmembrane proteins responsible for crucial physiological processes in excitable cells. They are assisted by three auxiliary subunits that can modulate their electrical behavior. Little is known about the evolution and roles of the various subunits of Cavs in nonbilaterian animals and in nonanimal lineages. For this reason, we mapped the phyletic distribution of the four channel subunits and reconstructed their phylogeny. Although alpha subunits have deep evolutionary roots as ancient as the split between plants and opistokonths, beta subunits appeared in the last common ancestor of animals and their close-relatives choanoflagellates, gamma subunits are a bilaterian novelty and alpha2/delta subunits appeared in the lineage of Placozoa, Cnidaria, and Bilateria. We note that gene losses were extremely common in the evolution of Cavs, with noticeable losses in multiple clades of subfamilies and also of whole Cav families. As in vertebrates, but not protostomes, Cav channel genes duplicated in Cnidaria. We characterized by in situ hybridization the tissue distribution of alpha subunits in the sea anemone Nematostella vectensis, a nonbilaterian animal possessing all three Cav subfamilies common to Bilateria. We find that some of the alpha subunit subtypes exhibit distinct spatiotemporal expression patterns. Further, all six sea anemone alpha subunit subtypes are conserved in stony corals, which separated from anemones 500 MA. This unexpected conservation together with the expression patterns strongly supports the notion that these subtypes carry unique functional roles. PMID:25146647

  1. Mice lacking sodium channel beta1 subunits display defects in neuronal excitability, sodium channel expression, and nodal architecture.

    PubMed

    Chen, Chunling; Westenbroek, Ruth E; Xu, Xiaorong; Edwards, Chris A; Sorenson, Dorothy R; Chen, Yuan; McEwen, Dyke P; O'Malley, Heather A; Bharucha, Vandana; Meadows, Laurence S; Knudsen, Gabriel A; Vilaythong, Alex; Noebels, Jeffrey L; Saunders, Thomas L; Scheuer, Todd; Shrager, Peter; Catterall, William A; Isom, Lori L

    2004-04-21

    Sodium channel beta1 subunits modulate alpha subunit gating and cell surface expression and participate in cell adhesive interactions in vitro. beta1-/- mice appear ataxic and display spontaneous generalized seizures. In the optic nerve, the fastest components of the compound action potential are slowed and the number of mature nodes of Ranvier is reduced, but Na(v)1.6, contactin, caspr 1, and K(v)1 channels are all localized normally at nodes. At the ultrastructural level, the paranodal septate-like junctions immediately adjacent to the node are missing in a subset of axons, suggesting that beta1 may participate in axo-glial communication at the periphery of the nodal gap. Sodium currents in dissociated hippocampal neurons are normal, but Na(v)1.1 expression is reduced and Na(v)1.3 expression is increased in a subset of pyramidal neurons in the CA2/CA3 region, suggesting a basis for the epileptic phenotype. Our results show that beta1 subunits play important roles in the regulation of sodium channel density and localization, are involved in axo-glial communication at nodes of Ranvier, and are required for normal action potential conduction and control of excitability in vivo. PMID:15102918

  2. The sigma receptor as a ligand-regulated auxiliary potassium channel subunit.

    PubMed

    Aydar, Ebru; Palmer, Christopher P; Klyachko, Vitaly A; Jackson, Meyer B

    2002-04-25

    The sigma receptor is a novel protein that mediates the modulation of ion channels by psychotropic drugs through a unique transduction mechanism depending neither on G proteins nor protein phosphorylation. The present study investigated sigma receptor signal transduction by reconstituting responses in Xenopus oocytes. Sigma receptors modulated voltage-gated K+ channels (Kv1.4 or Kv1.5) in different ways in the presence and absence of ligands. Association between Kv1.4 channels and sigma receptors was demonstrated by coimmunoprecipitation. These results indicate a novel mechanism of signal transduction dependent on protein-protein interactions. Domain accessibility experiments suggested a structure for the sigma receptor with two cytoplasmic termini and two membrane-spanning segments. The ligand-independent effects on channels suggest that sigma receptors serve as auxiliary subunits to voltage-gated K+ channels with distinct functional interactions, depending on the presence or absence of ligand.

  3. Altered KATP Channel Subunits Expression and Vascular Reactivity in Spontaneously Hypertensive Rats With Age

    PubMed Central

    Liu, Xiaojing; Duan, Peng; Hu, Xingxing; Li, Ruisheng

    2016-01-01

    Abstract: ATP-sensitive potassium (KATP) channels link membrane excitability to metabolic state to regulate a series of biological activities including the vascular tone. However, their ability to influence hypertension is controversial. Here we aim to investigate possible alteration of KATP channel in vascular smooth muscles (VSMs) during hypertension development process. In this study, we used 16-week-old spontaneously hypertensive rats (SHRs), 49-week-old SHRs, and their age-matched Wistar-Kyoto rats to study the expression of VSM KATP subunits at the mRNA and protein level and the function of VSM KATP by observing the relaxation reactivity of isolated aorta rings to KATP modulators. We found that the expression of VSM KATP subunits Kir6.1 and sulfonylurea receptor (SUR2B) decreased during hypertension. Moreover, the expression of SUR2B and Kir6.1 in 49-week-old SHRs decreased much more than that in 16-week-old SHRs. Furthermore, the aorta rings of 49-week-old SHRs showed lower reactivity to diazoxide than 16-week-old SHRs. This study suggests that KATP channels in VSM subunits Kir6.1 and SUR2B contribute to modify the functionality of this channel in hypertension with age. PMID:27035370

  4. Differential N termini in epithelial Na+ channel δ-subunit isoforms modulate channel trafficking to the membrane.

    PubMed

    Wesch, Diana; Althaus, Mike; Miranda, Pablo; Cruz-Muros, Ignacio; Fronius, Martin; González-Hernández, Tomás; Clauss, Wolfgang G; Alvarez de la Rosa, Diego; Giraldez, Teresa

    2012-03-15

    The epithelial Na(+) channel (ENaC) is a heteromultimeric ion channel that plays a key role in Na(+) reabsorption across tight epithelia. The canonical ENaC is formed by three analogous subunits, α, β, and γ. A fourth ENaC subunit, named δ, is expressed in the nervous system of primates, where its role is unknown. The human δ-ENaC gene generates at least two splice isoforms, δ(1) and δ(2) , differing in the N-terminal sequence. Neurons in diverse areas of the human and monkey brain differentially express either δ(1) or δ(2) , with few cells coexpressing both isoforms, which suggests that they may play specific physiological roles. Here we show that heterologous expression of δ(1) in Xenopus oocytes and HEK293 cells produces higher current levels than δ(2) . Patch-clamp experiments showed no differences in single channel current magnitude and open probability between isoforms. Steady-state plasma membrane abundance accounts for the dissimilarity in macroscopic current levels. Differential trafficking between isoforms is independent of β- and γ-subunits, PY-motif-mediated endocytosis, or the presence of additional lysine residues in δ(2)-N terminus. Analysis of δ(2)-N terminus identified two sequences that independently reduce channel abundance in the plasma membrane. The δ(1) higher abundance is consistent with an increased insertion rate into the membrane, since endocytosis rates of both isoforms are indistinguishable. Finally, we conclude that δ-ENaC undergoes dynamin-independent endocytosis as opposed to αβγ-channels. PMID:22159085

  5. Adaptation of the Mitochondrial Genome in Cephalopods: Enhancing Proton Translocation Channels and the Subunit Interactions

    PubMed Central

    Almeida, Daniela; Maldonado, Emanuel; Vasconcelos, Vitor; Antunes, Agostinho

    2015-01-01

    Mitochondrial protein-coding genes (mt genes) encode subunits forming complexes of crucial cellular pathways, including those involved in the vital process of oxidative phosphorylation (OXPHOS). Despite the vital role of the mitochondrial genome (mt genome) in the survival of organisms, little is known with respect to its adaptive implications within marine invertebrates. The molluscan Class Cephalopoda is represented by a marine group of species known to occupy contrasting environments ranging from the intertidal to the deep sea, having distinct metabolic requirements, varied body shapes and highly advanced visual and nervous systems that make them highly competitive and successful worldwide predators. Thus, cephalopods are valuable models for testing natural selection acting on their mitochondrial subunits (mt subunits). Here, we used concatenated mt genes from 17 fully sequenced mt genomes of diverse cephalopod species to generate a robust mitochondrial phylogeny for the Class Cephalopoda. We followed an integrative approach considering several branches of interest–covering cephalopods with distinct morphologies, metabolic rates and habitats–to identify sites under positive selection and localize them in the respective protein alignment and/or tridimensional structure of the mt subunits. Our results revealed significant adaptive variation in several mt subunits involved in the energy production pathway of cephalopods: ND5 and ND6 from Complex I, CYTB from Complex III, COX2 and COX3 from Complex IV, and in ATP8 from Complex V. Furthermore, we identified relevant sites involved in protein-interactions, lining proton translocation channels, as well as disease/deficiencies related sites in the aforementioned complexes. A particular case, revealed by this study, is the involvement of some positively selected sites, found in Octopoda lineage in lining proton translocation channels (site 74 from ND5) and in interactions between subunits (site 507 from ND5) of

  6. Adaptation of the Mitochondrial Genome in Cephalopods: Enhancing Proton Translocation Channels and the Subunit Interactions.

    PubMed

    Almeida, Daniela; Maldonado, Emanuel; Vasconcelos, Vitor; Antunes, Agostinho

    2015-01-01

    Mitochondrial protein-coding genes (mt genes) encode subunits forming complexes of crucial cellular pathways, including those involved in the vital process of oxidative phosphorylation (OXPHOS). Despite the vital role of the mitochondrial genome (mt genome) in the survival of organisms, little is known with respect to its adaptive implications within marine invertebrates. The molluscan Class Cephalopoda is represented by a marine group of species known to occupy contrasting environments ranging from the intertidal to the deep sea, having distinct metabolic requirements, varied body shapes and highly advanced visual and nervous systems that make them highly competitive and successful worldwide predators. Thus, cephalopods are valuable models for testing natural selection acting on their mitochondrial subunits (mt subunits). Here, we used concatenated mt genes from 17 fully sequenced mt genomes of diverse cephalopod species to generate a robust mitochondrial phylogeny for the Class Cephalopoda. We followed an integrative approach considering several branches of interest-covering cephalopods with distinct morphologies, metabolic rates and habitats-to identify sites under positive selection and localize them in the respective protein alignment and/or tridimensional structure of the mt subunits. Our results revealed significant adaptive variation in several mt subunits involved in the energy production pathway of cephalopods: ND5 and ND6 from Complex I, CYTB from Complex III, COX2 and COX3 from Complex IV, and in ATP8 from Complex V. Furthermore, we identified relevant sites involved in protein-interactions, lining proton translocation channels, as well as disease/deficiencies related sites in the aforementioned complexes. A particular case, revealed by this study, is the involvement of some positively selected sites, found in Octopoda lineage in lining proton translocation channels (site 74 from ND5) and in interactions between subunits (site 507 from ND5) of Complex I

  7. Adaptation of the Mitochondrial Genome in Cephalopods: Enhancing Proton Translocation Channels and the Subunit Interactions.

    PubMed

    Almeida, Daniela; Maldonado, Emanuel; Vasconcelos, Vitor; Antunes, Agostinho

    2015-01-01

    Mitochondrial protein-coding genes (mt genes) encode subunits forming complexes of crucial cellular pathways, including those involved in the vital process of oxidative phosphorylation (OXPHOS). Despite the vital role of the mitochondrial genome (mt genome) in the survival of organisms, little is known with respect to its adaptive implications within marine invertebrates. The molluscan Class Cephalopoda is represented by a marine group of species known to occupy contrasting environments ranging from the intertidal to the deep sea, having distinct metabolic requirements, varied body shapes and highly advanced visual and nervous systems that make them highly competitive and successful worldwide predators. Thus, cephalopods are valuable models for testing natural selection acting on their mitochondrial subunits (mt subunits). Here, we used concatenated mt genes from 17 fully sequenced mt genomes of diverse cephalopod species to generate a robust mitochondrial phylogeny for the Class Cephalopoda. We followed an integrative approach considering several branches of interest-covering cephalopods with distinct morphologies, metabolic rates and habitats-to identify sites under positive selection and localize them in the respective protein alignment and/or tridimensional structure of the mt subunits. Our results revealed significant adaptive variation in several mt subunits involved in the energy production pathway of cephalopods: ND5 and ND6 from Complex I, CYTB from Complex III, COX2 and COX3 from Complex IV, and in ATP8 from Complex V. Furthermore, we identified relevant sites involved in protein-interactions, lining proton translocation channels, as well as disease/deficiencies related sites in the aforementioned complexes. A particular case, revealed by this study, is the involvement of some positively selected sites, found in Octopoda lineage in lining proton translocation channels (site 74 from ND5) and in interactions between subunits (site 507 from ND5) of Complex I.

  8. Activation of the Caenorhabditis elegans Degenerin Channel by Shear Stress Requires the MEC-10 Subunit.

    PubMed

    Shi, Shujie; Luke, Cliff J; Miedel, Mark T; Silverman, Gary A; Kleyman, Thomas R

    2016-07-01

    Mechanotransduction in Caenorhabditis elegans touch receptor neurons is mediated by an ion channel formed by MEC-4, MEC-10, and accessory proteins. To define the role of these subunits in the channel's response to mechanical force, we expressed degenerin channels comprising MEC-4 and MEC-10 in Xenopus oocytes and examined their response to laminar shear stress (LSS). Shear stress evoked a rapid increase in whole cell currents in oocytes expressing degenerin channels as well as channels with a MEC-4 degenerin mutation (MEC-4d), suggesting that C. elegans degenerin channels are sensitive to LSS. MEC-10 is required for a robust LSS response as the response was largely blunted in oocytes expressing homomeric MEC-4 or MEC-4d channels. We examined a series of MEC-10/MEC-4 chimeras to identify specific domains (amino terminus, first transmembrane domain, and extracellular domain) and sites (residues 130-132 and 134-137) within MEC-10 that are required for a robust response to shear stress. In addition, the LSS response was largely abolished by MEC-10 mutations encoded by a touch-insensitive mec-10 allele, providing a correlation between the channel's responses to two different mechanical forces. Our findings suggest that MEC-10 has an important role in the channel's response to mechanical forces. PMID:27189943

  9. New inhibitors of the Kvβ2 subunit from mammalian Kv1 potassium channels.

    PubMed

    Alka, Kumari; Dolly, J Oliver; Ryan, Barry J; Henehan, Gary T M

    2014-10-01

    The role of the redox state of Kvβ subunits in the modulation of Kv1 potassium channels has been well documented over the past few years. It has been suggested that a molecule that binds to or inhibits the aldo-keto reductase activity of Kvβ might affect the modulation of channel properties. Previous studies of possible modulators of channel activity have shown that cortisone and some related compounds are able to physically dissociate the channel components by binding to a site at the interface between α and β subunits. Herein, we describe some new inhibitors of rat brain Kvβ2, identified using an assay based on multiple substrate turnover. This approach allows one to focus on molecules that specifically block NADPH oxidation. These studies showed that, at 0.5mM, 3,4-dihydroxphenylacetic acid (DOPAC) was an inhibitor of Kvβ2 turnover yielding a ∼ 40-50% reduction in the aldehyde reductase activity of this subunit. Other significant inhibitors include the bioflavinoid, rutin and the polyphenol resveratrol; some of the known cardioprotective effects of these molecules may be attributable to Kv1 channel modulation. Cortisone or catechol caused moderate inhibition of Kvβ2 turnover, and the aldo-keto reductases inhibitor valproate had an even smaller effect. Despite the importance of the Kv1 channels in a number of disease states, there have been few Kvβ2 inhibitors reported. While the ones identified in this study are only effective at high concentrations, they could serve as tools to decipher the role of Kvβ2 in vivo and, eventually, inform the development of novel therapeutics.

  10. Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels.

    PubMed Central

    Hugnot, J P; Salinas, M; Lesage, F; Guillemare, E; de Weille, J; Heurteaux, C; Mattéi, M G; Lazdunski, M

    1996-01-01

    Outward rectifier K+ channels have a characteristic structure with six transmembrane segments and one pore region. A new member of this family of transmembrane proteins has been cloned and called Kv8.1. Kv8.1 is essentially present in the brain where it is located mainly in layers II, IV and VI of the cerebral cortex, in hippocampus, in CA1-CA4 pyramidal cell layer as well in granule cells of the dentate gyrus, in the granule cell layer and in the Purkinje cell layer of the cerebellum. The Kv8.1 gene is in the 8q22.3-8q24.1 region of the human genome. Although Kv8.1 has the hallmarks of functional subunits of outward rectifier K+ channels, injection of its cRNA in Xenopus oocytes does not produce K+ currents. However Kv8.1 abolishes the functional expression of members of the Kv2 and Kv3 subfamilies, suggesting that the functional role of Kv8.1 might be to inhibit the function of a particular class of outward rectifier K+ channel types. Immunoprecipitation studies have demonstrated that inhibition occurs by formation of heteropolymeric channels, and results obtained with Kv8.1 chimeras have indicated that association of Kv8.1 with other types of subunits is via its N-terminal domain. Images PMID:8670833

  11. G-protein beta-subunit specificity in the fast membrane-delimited inhibition of Ca2+ channels.

    PubMed

    García, D E; Li, B; García-Ferreiro, R E; Hernández-Ochoa, E O; Yan, K; Gautam, N; Catterall, W A; Mackie, K; Hille, B

    1998-11-15

    We investigated which subtypes of G-protein beta subunits participate in voltage-dependent modulation of N-type calcium channels. Calcium currents were recorded from cultured rat superior cervical ganglion neurons injected intranuclearly with DNA encoding five different G-protein beta subunits. Gbeta1 and Gbeta2 strongly mimicked the fast voltage-dependent inhibition of calcium channels produced by many G-protein-coupled receptors. The Gbeta5 subunit produced much weaker effects than Gbeta1 and Gbeta2, whereas Gbeta3 and Gbeta4 were nearly inactive in these electrophysiological studies. The specificity implied by these results was confirmed and extended using the yeast two-hybrid system to test for protein-protein interactions. Here, Gbeta1 or Gbeta2 coupled to the GAL4-activation domain interacted strongly with a channel sequence corresponding to the intracellular loop connecting domains I and II of a alpha1 subunit of the class B calcium channel fused to the GAL4 DNA-binding domain. In this assay, the Gbeta5 subunit interacted weakly, and Gbeta3 and Gbeta4 failed to interact. Together, these results suggest that Gbeta1 and/or Gbeta2 subunits account for most of the voltage-dependent inhibition of N-type calcium channels and that the linker between domains I and II of the calcium channel alpha1 subunit is a principal receptor for this inhibition. PMID:9801356

  12. Regulation of Nav1.6 and Nav1.8 peripheral nerve Na+ channels by auxiliary β-subunits.

    PubMed

    Zhao, Juan; O'Leary, Michael E; Chahine, Mohamed

    2011-08-01

    Voltage-gated Na(+) (Na(v)) channels are composed of a pore-forming α-subunit and one or more auxiliary β-subunits. The present study investigated the regulation by the β-subunit of two Na(+) channels (Na(v)1.6 and Na(v)1.8) expressed in dorsal root ganglion (DRG) neurons. Single cell RT-PCR was used to show that Na(v)1.8, Na(v)1.6, and β(1)-β(3) subunits were widely expressed in individually harvested small-diameter DRG neurons. Coexpression experiments were used to assess the regulation of Na(v)1.6 and Na(v)1.8 by β-subunits. The β(1)-subunit induced a 2.3-fold increase in Na(+) current density and hyperpolarizing shifts in the activation (-4 mV) and steady-state inactivation (-4.7 mV) of heterologously expressed Na(v)1.8 channels. The β(4)-subunit caused more pronounced shifts in activation (-16.7 mV) and inactivation (-9.3 mV) but did not alter the current density of cells expressing Na(v)1.8 channels. The β(3)-subunit did not alter Na(v)1.8 gating but significantly reduced the current density by 31%. This contrasted with Na(v)1.6, where the β-subunits were relatively weak regulators of channel function. One notable exception was the β(4)-subunit, which induced a hyperpolarizing shift in activation (-7.6 mV) but no change in the inactivation or current density of Na(v)1.6. The β-subunits differentially regulated the expression and gating of Na(v)1.8 and Na(v)1.6. To further investigate the underlying regulatory mechanism, β-subunit chimeras containing portions of the strongly regulating β(1)-subunit and the weakly regulating β(2)-subunit were generated. Chimeras retaining the COOH-terminal domain of the β(1)-subunit produced hyperpolarizing shifts in gating and increased the current density of Na(v)1.8, similar to that observed for wild-type β(1)-subunits. The intracellular COOH-terminal domain of the β(1)-subunit appeared to play an essential role in the regulation of Na(v)1.8 expression and gating. PMID:21562192

  13. Adenosine Triphosphate-Sensitive Potassium Channel Kir Subunits Implicated in Cardioprotection by Diazoxide

    PubMed Central

    Henn, Matthew C; Janjua, M Burhan; Kanter, Evelyn M; Makepeace, Carol M; Schuessler, Richard B; Nichols, Colin G; Lawton, Jennifer S

    2015-01-01

    Background ATP-sensitive potassium (KATP) channel openers provide cardioprotection in multiple models. Ion flux at an unidentified mitochondrial KATP channel has been proposed as the mechanism. The renal outer medullary kidney potassium channel subunit, potassium inward rectifying (Kir)1.1, has been implicated as a mitochondrial channel pore-forming subunit. We hypothesized that subunit Kir1.1 is involved in cardioprotection (maintenance of volume homeostasis and contractility) of the KATP channel opener diazoxide (DZX) during stress (exposure to hyperkalemic cardioplegia [CPG]) at the myocyte and mitochondrial levels. Methods and Results Kir subunit inhibitor Tertiapin Q (TPN-Q) was utilized to evaluate response to stress. Mouse ventricular mitochondrial volume was measured in the following groups: isolation buffer; 200 μmol/L of ATP; 100 μmol/L of DZX+200 μmol/L of ATP; or 100 μmol/L of DZX+200 μmol/L of ATP+TPN-Q (500 or 100 nmol/L). Myocytes were exposed to Tyrode’s solution (5 minutes), test solution (Tyrode’s, cardioplegia [CPG], CPG+DZX, CPG+DZX+TPN-Q, Tyrode’s+TPN-Q, or CPG+TPN-Q), N=12 for all (10 minutes); followed by Tyrode’s (5 minutes). Volumes were compared. TPN-Q, with or without DZX, did not alter mitochondrial or myocyte volume. Stress (CPG) resulted in myocyte swelling and reduced contractility that was prevented by DZX. TPN-Q prevented the cardioprotection afforded by DZX (volume homeostasis and maintenance of contractility). Conclusions TPN-Q inhibited myocyte cardioprotection provided by DZX during stress; however, it did not alter mitochondrial volume. Because TPN-Q inhibits Kir1.1, Kir3.1, and Kir3.4, these data support that any of these Kir subunits could be involved in the cardioprotection afforded by diazoxide. However, these data suggest that mitochondrial swelling by diazoxide does not involve Kir1.1, 3.1, or 3.4. PMID:26304939

  14. Kainate receptor pore‐forming and auxiliary subunits regulate channel block by a novel mechanism

    PubMed Central

    Brown, Patricia M. G. E.; Aurousseau, Mark R. P.; Musgaard, Maria; Biggin, Philip C.

    2016-01-01

    Key points Kainate receptor heteromerization and auxiliary subunits, Neto1 and Neto2, attenuate polyamine ion‐channel block by facilitating blocker permeation.Relief of polyamine block in GluK2/GluK5 heteromers results from a key proline residue that produces architectural changes in the channel pore α‐helical region.Auxiliary subunits exert an additive effect to heteromerization, and thus relief of polyamine block is due to a different mechanism.Our findings have broad implications for work on polyamine block of other cation‐selective ion channels. Abstract Channel block and permeation by cytoplasmic polyamines is a common feature of many cation‐selective ion channels. Although the channel block mechanism has been studied extensively, polyamine permeation has been considered less significant as it occurs at extreme positive membrane potentials. Here, we show that kainate receptor (KAR) heteromerization and association with auxiliary proteins, Neto1 and Neto2, attenuate polyamine block by enhancing blocker permeation. Consequently, polyamine permeation and unblock occur at more negative and physiologically relevant membrane potentials. In GluK2/GluK5 heteromers, enhanced permeation is due to a single proline residue in GluK5 that alters the dynamics of the α‐helical region of the selectivity filter. The effect of auxiliary proteins is additive, and therefore the structural basis of polyamine permeation and unblock is through a different mechanism. As native receptors are thought to assemble as heteromers in complex with auxiliary proteins, our data identify an unappreciated impact of polyamine permeation in shaping the signalling properties of neuronal KARs and point to a structural mechanism that may be shared amongst other cation‐selective ion channels. PMID:26682513

  15. Mechano-electrical transduction in mice lacking the alpha-subunit of the epithelial sodium channel.

    PubMed

    Rüsch, A; Hummler, E

    1999-05-01

    Sensory hair cells of the vertebrate inner ear use mechanically gated transducer channels (MET) to perceive mechanical stimuli. The molecular nature of the MET channel is not known but several findings suggested that the amiloride-sensitive epithelial Na+ channel, ENaC, might be a candidate gene for this function. In order to test this hypothesis, we examined knockout mice deficient in the alpha-subunit of ENaC, and therefore in ENaC function. First, neonatal alphaENaC(-/-) mice exhibited vestibular reflexes not different from wildtype littermates thus indicating normal vestibular function. We used organotypic cultures of cochlear outer hair cells from newborns to rescue the hair cells from the perinatal death of alphaENaC(-/-) mice. When hair bundles of cochlear outer hair cells of alphaENaC(-/-) mice were mechanically stimulated by a fluid jet in whole cell voltage clamp experiments, transducer currents were elicited that were not significantly different from those of alphaENaC(+/-) or (+/+) cochlear outer hair cells. These results suggest that the vertebrate mechano-electrical transducer apparatus does not include the alpha-subunit of the epithelial Na+ channel. PMID:10355613

  16. Subunit stoichiometry and arrangement in a heteromeric glutamate-gated chloride channel

    PubMed Central

    Degani-Katzav, Nurit; Gortler, Revital; Gorodetzki, Lilach; Paas, Yoav

    2016-01-01

    The invertebrate glutamate-gated chloride-selective receptors (GluClRs) are ion channels serving as targets for ivermectin (IVM), a broad-spectrum anthelmintic drug used to treat human parasitic diseases like river blindness and lymphatic filariasis. The native GluClR is a heteropentamer consisting of α and β subunit types, with yet unknown subunit stoichiometry and arrangement. Based on the recent crystal structure of a homomeric GluClαR, we introduced mutations at the intersubunit interfaces where Glu (the neurotransmitter) binds. By electrophysiological characterization of these mutants, we found heteromeric assemblies with two equivalent Glu-binding sites at β/α intersubunit interfaces, where the GluClβ and GluClα subunits, respectively, contribute the “principal” and “complementary” components of the putative Glu-binding pockets. We identified a mutation in the IVM-binding site (far away from the Glu-binding sites), which significantly increased the sensitivity of the heteromeric mutant receptor to both Glu and IVM, and improved the receptor subunits’ cooperativity. We further characterized this heteromeric GluClR mutant as a receptor having a third Glu-binding site at an α/α intersubunit interface. Altogether, our data unveil heteromeric GluClR assemblies having three α and two β subunits arranged in a counterclockwise β-α-β-α-α fashion, as viewed from the extracellular side, with either two or three Glu-binding site interfaces. PMID:26792524

  17. Antisense oligonucleotides against the alpha-subunit of ENaC decrease lung epithelial cation-channel activity.

    PubMed

    Jain, L; Chen, X J; Malik, B; Al-Khalili, O; Eaton, D C

    1999-06-01

    Amiloride-sensitive Na+ transport by lung epithelia plays a critical role in maintaining alveolar Na+ and water balance. It has been generally assumed that Na+ transport is mediated by the amiloride-sensitive epithelial Na+ channel (ENaC) because molecular biology studies have confirmed the presence of ENaC subunits alpha, beta, and gamma in lung epithelia. However, the predominant Na+-transporting channel reported from electrophysiological studies by most laboratories is a nonselective, high-conductance channel that is very different from the highly selective, low-conductance ENaC reported in other tissues. In our laboratory, single-channel recordings from apical membrane patches from rat alveolar type II (ATII) cells in primary culture reveal a nonselective cation channel with a conductance of 20.6 +/- 1.1 pS and an Na+-to-K+ selectivity of 0.97 +/- 0.07. This channel is inhibited by submicromolar concentrations of amiloride. Thus there is some question about the relationship between the gene product observed with single-channel methods and the cloned ENaC subunits. We have employed antisense oligonucleotide methods to block the synthesis of individual ENaC subunit proteins (alpha, beta, and gamma) and determined the effect of a reduction in the subunit expression on the density of the nonselective cation channel observed in apical membrane patches on ATII cells. Treatment of ATII cells with antisense oligonucleotides inhibited the production of each subunit protein; however, single-channel recordings showed that only the antisense oligonucleotide targeting the alpha-subunit resulted in a significant decrease in the density of nonselective cation channels. Inhibition of the beta- and gamma-subunit proteins alone or together did not cause any changes in the observed channel density. There were no changes in open probability or other channel characteristics. These results support the hypothesis that the alpha-subunit of ENaC alone or in combination with some

  18. Cortisone Dissociates the Shaker Family K Channels from their Beta Subunit

    SciTech Connect

    Pan, Y.; Weng, J; Kabaleeswaran, V; Li, H; Cao, Y; Bholse, R; Zhou, M

    2008-01-01

    The Shaker family voltage-dependent potassium channels (Kv1) are expressed in a wide variety of cells and are essential for cellular excitability. In humans, loss-of-function mutations of Kv1 channels lead to hyperexcitability and are directly linked to episodic ataxia and atrial fibrillation. All Kv1 channels assemble with {Beta} subunits (Kv{Beta}s), and certain Kv{Beta}s, for example Kv{Beta}1, have an N-terminal segment that closes the channel by the N-type inactivation mechanism. In principle, dissociation of Kv{Beta}1, although never reported, should eliminate inactivation and thus potentiate Kv1 current. We found that cortisone increases rat Kv1 channel activity by binding to Kv{Beta}1. A crystal structure of the K{Beta}v-cortisone complex was solved to 1.82-{angstrom}resolution and revealed novel cortisone binding sites. Further studies demonstrated that cortisone promotes dissociation of Kv{Beta}. The new mode of channel modulation may be explored by native or synthetic ligands to fine-tune cellular excitability.

  19. An increased expression of Ca(2+) channel alpha(1A) subunit immunoreactivity in deep cerebellar neurons of rolling mouse Nagoya.

    PubMed

    Sawada, K; Sakata-Haga, H; Ando, M; Takeda, N; Fukui, Y

    2001-12-01

    Rolling mouse Nagoya (RMN) is an ataxic mutant and carries a mutation in the gene coding for the alpha(1A) subunit of the P/Q-type Ca(2+) channel. We examined the immunohistochemical expression of the alpha(1A) subunit in deep cerebellar nuclei of RMN. The antibody used recognized residues 865-883 of the mouse alpha(1A) subunit not overlapping the altered sequences in RMN. In RMN, many neurons exhibited definite alpha(1A) subunit-staining in the medial nucleus, interposed nucleus, and lateral nucleus of deep cerebellar nuclei. The number of positive neurons in these nuclei was significantly higher in RMN than in controls. Increased expression of the alpha(1A) subunit in deep cerebellar neurons might compensate for the altered function of the P/Q-type Ca(2+) channel of RMN.

  20. A novel auxiliary subunit critical to BK channel function in C. elegans

    PubMed Central

    Chen, Bojun; Ge, Qian; Xia, Xiao-Ming; Liu, Ping; Wang, Sijie J.; Zhan, Haiying; Eipper, Betty A.; Wang, Zhao-Wen

    2010-01-01

    The BK channel is a Ca2+- and voltage-gated potassium channel with many important physiological functions. To identify proteins important to its function in vivo, we screened for C. elegans mutants that suppressed a lethargic phenotype caused by expressing a gain-of-function (gf) isoform of the BK channel α-subunit SLO-1. BKIP-1, a small peptide with no significant homology to any previously characterized molecules was thus identified. BKIP-1 and SLO-1 showed similar expression and subcellular localization patterns, and appeared to interact physically through discrete domains. bkip-1 loss-of-function (lf) mutants phenocopied slo-1(lf) mutants in behavior and synaptic transmission, and suppressed the lethargy, egg-laying defect, and deficient neurotransmitter release caused by SLO-1(gf). In heterologous expression systems, BKIP-1 decreased the activation rate and shifted the conductance-voltage (G-V) relationship of SLO-1 in a Ca2+-dependent manner, and increased SLO-1 surface expression. Thus, BKIP-1 is a novel auxiliary subunit critical to SLO-1 function in vivo. PMID:21148004

  1. Redundancy of Cav2.1 channel accessory subunits in transmitter release at the mouse neuromuscular junction.

    PubMed

    Kaja, Simon; Todorov, Boyan; van de Ven, Rob C G; Ferrari, Michel D; Frants, Rune R; van den Maagdenberg, Arn M J M; Plomp, Jaap J

    2007-04-27

    Ca(v)2.1 (P/Q-type) channels possess a voltage-sensitive pore-forming alpha(1) subunit that can associate with the accessory subunits alpha(2)delta, beta and gamma. The primary role of Ca(v)2.1 channels is to mediate transmitter release from nerve terminals both in the central and peripheral nervous system. Whole-cell voltage-clamp studies in in vitro expression systems have indicated that accessory channel subunits can have diverse modulatory effects on membrane expression and biophysical properties of Ca(v)2.1 channels. However, there is only limited knowledge on whether similar modulation also occurs in the specific presynaptic environment in vivo and, hence, whether accessory subunits influence neurotransmitter release. Ducky, lethargic and stargazer are mutant mice that lack functional alpha(2)delta-2, beta(4) and gamma(2) accessory Ca(v) channel subunits, respectively. The neuromuscular junction (NMJ) is a peripheral synapse, where transmitter release is governed exclusively by Ca(v)2.1 channels, and which can be characterized electrophysiologically with relative experimental ease. In order to investigate a possible synaptic influence of accessory subunits in detail, we electrophysiologically measured acetylcholine (ACh) release at NMJs of these three mutants. Surprisingly, we did not find any changes compared to wild-type littermates, other than a small reduction (25%) of evoked ACh release at ducky NMJs. This effect is most likely due to the approximately 40% reduced synapse size, associated with the reduced size of ducky mice, rather than resulting directly from reduced Ca(v)2.1 channel function due to alpha(2)delta-2 absence. We conclude that alpha(2)delta-2, beta(4), and gamma(2) accessory subunits are redundant for the transmitter release-mediating function of presynaptic Ca(v)2.1 channels at the mouse NMJ.

  2. β1-subunit-induced structural rearrangements of the Ca2+- and voltage-activated K+ (BK) channel.

    PubMed

    Castillo, Juan P; Sánchez-Rodríguez, Jorge E; Hyde, H Clark; Zaelzer, Cristian A; Aguayo, Daniel; Sepúlveda, Romina V; Luk, Louis Y P; Kent, Stephen B H; Gonzalez-Nilo, Fernando D; Bezanilla, Francisco; Latorre, Ramón

    2016-06-01

    Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels are involved in a large variety of physiological processes. Regulatory β-subunits are one of the mechanisms responsible for creating BK channel diversity fundamental to the adequate function of many tissues. However, little is known about the structure of its voltage sensor domain. Here, we present the external architectural details of BK channels using lanthanide-based resonance energy transfer (LRET). We used a genetically encoded lanthanide-binding tag (LBT) to bind terbium as a LRET donor and a fluorophore-labeled iberiotoxin as the LRET acceptor for measurements of distances within the BK channel structure in a living cell. By introducing LBTs in the extracellular region of the α- or β1-subunit, we determined (i) a basic extracellular map of the BK channel, (ii) β1-subunit-induced rearrangements of the voltage sensor in α-subunits, and (iii) the relative position of the β1-subunit within the α/β1-subunit complex.

  3. Functional Expression Profile of Voltage-Gated K(+) Channel Subunits in Rat Small Mesenteric Arteries.

    PubMed

    Cox, Robert H; Fromme, Samantha

    2016-06-01

    Multiple K v channel complexes contribute to total K v current in numerous cell types and usually subserve different physiological functions. Identifying the complete compliment of functional K v channel subunits in cells is a prerequisite to understanding regulatory function. It was the goal of this work to determine the complete K v subunit compliment that contribute to functional K v currents in rat small mesenteric artery (SMA) myocytes as a prelude to studying channel regulation. Using RNA prepared from freshly dispersed myocytes, high levels of K v 1.2, 1.5, and 2.1 and lower levels of K v 7.4 α-subunit expressions were demonstrated by quantitative PCR and confirmed by Western blotting. Selective inhibitors correolide (K v 1; COR), stromatoxin (K v 2.1; ScTx), and linopirdine (K v 7.4; LINO) decreased K v current at +40 mV in SMA by 46 ± 4, 48 ± 4, and 6.5 ± 2 %, respectively, and K v current in SMA was insensitive to α-dendrotoxin. Contractions of SMA segments pretreated with 100 nmol/L phenylephrine were enhanced by 27 ± 3, 30 ± 8, and 7 ± 3 % of the response to 120 mmol/L KCl by COR, ScTX, and LINO, respectively. The presence of K v 6.1, 9.3, β1.1, and β1.2 was demonstrated by RT-PCR using myocyte RNA with expressions of K vβ1.2 and K v 9.3 about tenfold higher than K vβ1.1 and K v 6.1, respectively. Selective inhibitors of K v 1.3, 3.4, 4.1, and 4.3 channels also found at the RNA and/or protein level had no significant effect on K v current or contraction. These results suggest that K v current in rat SMA myocytes are dominated equally by two major components consisting of K v 1.2-1.5-β1.2 and K v 2.1-9.3 channels along with a smaller contribution from K v 7.4 channels but differences in voltage dependence of activation allows all three to provide significant contributions to SMA function at physiological voltages.

  4. Functional Expression Profile of Voltage-Gated K(+) Channel Subunits in Rat Small Mesenteric Arteries.

    PubMed

    Cox, Robert H; Fromme, Samantha

    2016-06-01

    Multiple K v channel complexes contribute to total K v current in numerous cell types and usually subserve different physiological functions. Identifying the complete compliment of functional K v channel subunits in cells is a prerequisite to understanding regulatory function. It was the goal of this work to determine the complete K v subunit compliment that contribute to functional K v currents in rat small mesenteric artery (SMA) myocytes as a prelude to studying channel regulation. Using RNA prepared from freshly dispersed myocytes, high levels of K v 1.2, 1.5, and 2.1 and lower levels of K v 7.4 α-subunit expressions were demonstrated by quantitative PCR and confirmed by Western blotting. Selective inhibitors correolide (K v 1; COR), stromatoxin (K v 2.1; ScTx), and linopirdine (K v 7.4; LINO) decreased K v current at +40 mV in SMA by 46 ± 4, 48 ± 4, and 6.5 ± 2 %, respectively, and K v current in SMA was insensitive to α-dendrotoxin. Contractions of SMA segments pretreated with 100 nmol/L phenylephrine were enhanced by 27 ± 3, 30 ± 8, and 7 ± 3 % of the response to 120 mmol/L KCl by COR, ScTX, and LINO, respectively. The presence of K v 6.1, 9.3, β1.1, and β1.2 was demonstrated by RT-PCR using myocyte RNA with expressions of K vβ1.2 and K v 9.3 about tenfold higher than K vβ1.1 and K v 6.1, respectively. Selective inhibitors of K v 1.3, 3.4, 4.1, and 4.3 channels also found at the RNA and/or protein level had no significant effect on K v current or contraction. These results suggest that K v current in rat SMA myocytes are dominated equally by two major components consisting of K v 1.2-1.5-β1.2 and K v 2.1-9.3 channels along with a smaller contribution from K v 7.4 channels but differences in voltage dependence of activation allows all three to provide significant contributions to SMA function at physiological voltages. PMID:27286858

  5. Molecular cloning of the alpha-1 subunit of an omega-conotoxin-sensitive calcium channel.

    PubMed Central

    Dubel, S J; Starr, T V; Hell, J; Ahlijanian, M K; Enyeart, J J; Catterall, W A; Snutch, T P

    1992-01-01

    Of the four major types of Ca channel described in vertebrate cells (designated T, L, N, and P), N-type Ca channels are unique in that they are found specifically in neurons, have been correlated with control of neurotransmitter release, and are blocked by omega-conotoxin, a neuropeptide toxin isolated from the marine snail Conus geographus. A set of overlapping cDNA clones were isolated and found to encode a Ca channel alpha-1 subunit, designated rbB-I. Polyclonal antiserum generated against a peptide from the rbB-I sequence selectively immunoprecipitates high-affinity 125I-labeled omega-conotoxin-binding sites from labeled rat forebrain membranes. PCR analysis shows that, like N-type Ca channels, expression of rbB-I is limited to the nervous system and neuronally derived cell lines. This brain Ca channel may mediate the omega-conotoxin-sensitive Ca influx required for neurotransmitter release at many synapses. Images PMID:1317580

  6. Fly DPP10 acts as a channel ancillary subunit and possesses peptidase activity

    PubMed Central

    Shiina, Yohei; Muto, Tomohiro; Zhang, Zhili; Baihaqie, Ahmad; Yoshizawa, Takamasa; Lee, Hye-in J.; Park, Eulsoon; Tsukiji, Shinya; Takimoto, Koichi

    2016-01-01

    Mammalian DPP6 (DPPX) and DPP10 (DPPY) belong to a family of dipeptidyl peptidases, but lack enzyme activity. Instead, these proteins form complexes with voltage-gated K+ channels in Kv4 family to control their gating and other properties. Here, we find that the fly DPP10 ortholog acts as an ancillary subunit of Kv4 channels and digests peptides. Similarly to mammalian DPP10, the fly ortholog tightly binds to rat Kv4.3 protein. The association causes negative shifts in voltage dependence of channel activation and steady state inactivation. It also results in faster inactivation and recovery from inactivation. In addition to its channel regulatory role, fly DPP10 exhibits significant dipeptidyl peptidase activity with Gly-Pro-MCA (glycyl-L-proline 4-methylcoumaryl-7-amide) as a substrate. Heterologously expressed Flag-tagged fly DPP10 and human DPP4 show similar Km values towards this substrate. However, fly DPP10 exhibits approximately a 6-times-lower relative kcat value normalized with anti-Flag immunoreactivity than human DPP4. These results demonstrate that fly DPP10 is a dual functional protein, controlling Kv4 channel gating and removing bioactive peptides. PMID:27198182

  7. Dihydropyridine-sensitive calcium channels in cardiac and skeletal muscle membranes: studies with antibodies against the. cap alpha. subunits

    SciTech Connect

    Takahashi, M.; Catterall, W.A.

    1987-08-25

    Polyclonal antibodies (PAC-2) against the purified skeletal muscle calcium channel were prepared and shown to be directed against ..cap alpha.. subunits of this protein by immunoblotting and immunoprecipitation. These polypeptides have an apparent molecular weight of 162,000 without reduction of disulfide bonds. Under conditions where the functional properties of the purified skeletal muscle calcium channel are retained, ..beta.. subunits (M/sub r/ 50,000) and lambda subunits (M/sub r/ 33,000) are coprecipitated, demonstrating specific noncovalent association of these three polypeptides in the purified skeletal muscle channel. PAC-2 immunoprecipitated cardiac calcium channels labeled with (/sup 3/H)isopropyl 4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-2,6-dimethyl-5-(methoxycarbonyl)pyridine-3-carboxylate ((/sup 3/H)PN200-110) at a 3-fold higher concentration than skeletal muscle channels. Preincubation with cardiac calcium channels blocked only 49% of the immunoreactivity of PAC-2 toward skeletal muscle channels, indicating that these two proteins have both homologous and distinct epitopes. The immunoreactive component of the cardiac calcium channel was identified by immunoprecipitation and polyacrylamide gel electrophoresis as a polypeptide with an apparent molecular weight of 170,000 before reduction of disulfide bonds and 141,000 after reduction, in close analogy with the properties of the ..cap alpha../sub 2/ subunits of the skeletal muscle channel. The calcium channels were radiolabeled with /sup 32/P and /sup 125/I. It is concluded that these two calcium channels have a homologous, but distinct, ..cap alpha.. subunit as a major polypeptide component.

  8. Asymmetric arrangement of auxiliary subunits of skeletal muscle voltage-gated l-type Ca(2+) channel.

    PubMed

    Murata, K; Odahara, N; Kuniyasu, A; Sato, Y; Nakayama, H; Nagayama, K

    2001-03-23

    Highly purified L-type Ca(2+) channel complexes containing all five subunits (alpha(1), alpha(2), beta, gamma, and delta) and complexes of alpha(1)-beta subunits were obtained from skeletal muscle triad membranes by three-step purification and by 1% Triton X-100 treatment, respectively. Their structures and the subunit arrangements were analyzed by electron microscopy. Projection images of negatively stained Ca(2+) channels and alpha(1)-beta complexes were aligned, classified and averaged. The alpha(1)-beta complex showed a hollow trapezoid shape of 12 nm height. In top view, four asymmetric domains surrounded a central depression predicted to form the channel pore. The complete Ca(2+) channel complex exhibited the cylindrical shape of 20 nm in height binding a spherical domain on one edge. Further image analysis of higher complexes of the Ca(2+) channel using a monoclonal antibody against the beta subunit showed that the alpha(1)-beta complex forms the non-decorated side of the cylinder, which can traverse the membrane from outside the cell to the cytoplasm. Based on these results, we propose that the Ca(2+) channel exhibits an asymmetric arrangement of auxiliary subunits.

  9. NR2 subunit-dependence of NMDA receptor channel block by external Mg2+

    PubMed Central

    Qian, Anqi; Buller, Amy L; Johnson, Jon W

    2005-01-01

    The vital roles played by NMDA receptors in CNS physiology depend critically on powerful voltage-dependent channel block by external Mg2+ (Mg2+o). NMDA receptor channel block by Mg2+o depends on receptor subunit composition: NR1/2A receptors (receptors composed of NR1 and NR2A subunits) and NR1/2B receptors are more strongly inhibited by Mg2+o than are NR1/2C or NR1/2D receptors. We investigated the effects of Mg2+o on single-channel and whole-cell currents recorded from recombinant NR1/2D and NR1/2A receptors expressed in HEK293 and 293T cells. The main conclusions are as follows: (1) Voltage-dependent inhibition by Mg2+o of whole-cell NR1/2D receptor responses was at least 4-fold weaker than inhibition of NR1/2A receptor responses at all voltages tested. (2) Channel block by Mg2+o reduced the duration of NR1/2D receptor single-channel openings; this reduction was used to estimate the apparent blocking rate of Mg2+o (k+,app). The k+,app for NR1/2D receptors was similar to but moderately slower than the k+,app obtained from cortical NMDA receptors composed of NR1, NR2A and NR2B subunits at all voltages tested. (3) Mg2+o blocking events induced an additional component in the closed-duration distribution; this component was used to estimate the apparent unblocking rate of Mg2+o (k−,app). The k−,app for NR1/2D receptors was much faster than the k−,app for cortical receptors at all voltages tested. The voltage-dependence of the k−,app of NR1/2D and cortical receptors differed in a manner that suggested that Mg2+o may permeate NR1/2D receptors more easily than cortical receptors. (4) Mg2+o inhibits NR1/2D receptors less effectively than cortical receptors chiefly because Mg2+o unbinds much more rapidly from NR1/2D receptors. PMID:15513936

  10. AMIGO is an auxiliary subunit of the Kv2.1 potassium channel

    PubMed Central

    Peltola, Marjaana A; Kuja-Panula, Juha; Lauri, Sari E; Taira, Tomi; Rauvala, Heikki

    2011-01-01

    Kv2.1 is a potassium channel α-subunit abundantly expressed throughout the brain. It is a main component of delayed rectifier current (IK) in several neuronal types and a regulator of excitability during high-frequency firing. Here we identify AMIGO (amphoterin-induced gene and ORF), a neuronal adhesion protein with leucine-rich repeat and immunoglobin domains, as an integral part of the Kv2.1 channel complex. AMIGO shows extensive spatial and temporal colocalization and association with Kv2.1 in the mouse brain. The colocalization of AMIGO and Kv2.1 is retained even during stimulus-induced changes in Kv2.1 localization. AMIGO increases Kv2.1 conductance in a voltage-dependent manner in HEK cells. Accordingly, inhibition of endogenous AMIGO suppresses neuronal IK at negative membrane voltages. In conclusion, our data indicate AMIGO as a function-modulating auxiliary subunit for Kv2.1 and thus provide new insights into regulation of neuronal excitability. PMID:22056818

  11. EXPRESSION AND DISTRIBUTION OF Kv4 POTASSIUM CHANNEL SUBUNITS AND POTASSIUM CHANNEL INTERACTING PROTEINS IN SUBPOPULATIONS OF INTERNEURONS IN THE BASOLATERAL AMYGDALA

    PubMed Central

    DABROWSKA, J.; RAINNIE, D. G.

    2010-01-01

    Kv4 potassium channel α subunits, Kv4.1, Kv4.2, and Kv4.3, determine some of the fundamental physiological properties of neurons in the CNS. Kv4 subunits are associated with auxiliary β-subunits, such as the potassium channel interacting proteins (KChIP1 – 4), which are thought to regulate the trafficking and gating of native Kv4 potassium channels. Intriguingly, KChIP1 is thought to show cell type-selective expression in GABA-ergic inhibitory interneurons, while other β-subunits (KChIP2–4) are associated with principal glutamatergic neurons. However, nothing is known about the expression of Kv4 family α- and β-subunits in specific interneurons populations in the BLA. Here, we have used immunofluorescence, co-immunoprecipitation, and Western Blotting to determine the relative expression of KChIP1 in the different interneuron subtypes within the BLA, and its co-localization with one or more of the Kv4 α subunits. We show that all three α-subunits of Kv4 potassium channel are found in rat BLA neurons, and that the immuno-reactivity of KChIP1 closely resembles that of Kv4.3. Indeed, Kv4.3 showed almost complete co-localization with KChIP1 in the soma and dendrites of a distinct subpopulation of BLA neurons. Dual-immunofluorescence studies revealed this to be in BLA interneurons immunoreactive for parvalbumin, cholecystokin-8, and somatostatin. Finally, co-immunoprecipitation studies showed that KChIP1 was associated with all three Kv4 α subunits. Together our results suggest that KChIP1 is selectively expressed in BLA interneurons where it may function to regulate the activity of A-type potassium channels. Hence, KChIP1 might be considered as a cell type-specific regulator of GABAergic inhibitory circuits in the BLA. PMID:20849929

  12. BK channel activation by tungstate requires the β1 subunit extracellular loop residues essential to modulate voltage sensor function and channel gating.

    PubMed

    Fernández-Mariño, Ana I; Valverde, Miguel A; Fernández-Fernández, José M

    2014-07-01

    Tungstate, a compound with antidiabetic, antiobesity, and antihypertensive properties, activates the large-conductance voltage- and Ca(2+)-dependent K(+) (BK) channel containing either β1 or β4 subunits. The BK activation by tungstate is Mg(2+)-dependent and promotes arterial vasodilation, but only in precontracted mouse arteries expressing β1. In this study, we further explored how the β1 subunit participates in tungstate activation of BK channels. Activation of heterologously expressed human BKαβ1 channels in inside-out patches is fully dependent on the Mg(2+) sensitivity of the BK α channel subunit even at high (10 μM) cytosolic Ca(2+) concentration. Alanine mutagenesis of β1 extracellular residues Y74 or S104, which destabilize the active voltage sensor, greatly decreased the tungstate-induced left-shift of the BKαβ1 G-V curves in either the absence or presence of physiologically relevant cytosolic Ca(2+) levels (10 μM). The weakened tungstate activation of the BKαβ1Y74A and BKαβ1S104A mutant channels was not related to decreased Mg(2+) sensitivity. These results, together with previously published reports, support the idea that the putative binding site for tungstate-mediated BK channel activation is located in the pore-forming α channel subunit, around the Mg(2+) binding site. The role of β1 in tungstate-induced channel activation seems to rely on its interaction with the BK α subunit to modulate channel activity. Loop residues that are essential for the regulation of voltage sensor activation and gating of the BK channel are also relevant for BK activation by tungstate.

  13. Subunit constituent of the porin trimers that form the permeability channels in the outer membrane of Salmonella typhimurium.

    PubMed Central

    Ishii, J; Nakae, T

    1980-01-01

    The polypeptide composition of the functional porin trimers that produced the permeability channels in the outer membrane of Salmonella typhimurium was examined on two-dimensional slab gels. The results suggested that the majority of porin trimers from strains producing mixed species of porin polypeptides consisted of homologous subunit polypeptides. The present results do not exclude the possibility that a small fraction of porin trimer is constructed from heterologous subunit polypeptides. Images PMID:6246065

  14. Differential expression of genes encoding neuronal ion-channel subunits in major depression, bipolar disorder and schizophrenia: implications for pathophysiology.

    PubMed

    Smolin, Bella; Karry, Rachel; Gal-Ben-Ari, Shunit; Ben-Shachar, Dorit

    2012-08-01

    Evidence concerning ion-channel abnormalities in the pathophysiology of common psychiatric disorders is still limited. Given the significance of ion channels in neuronal activity, neurotransmission and neuronal plasticity we hypothesized that the expression patterns of genes encoding different ion channels may be altered in schizophrenia, bipolar and unipolar disorders. Frozen samples of striatum including the nucleus accumbens (Str-NAc) and the lateral cerebellar hemisphere of 60 brains from depressed (MDD), bipolar (BD), schizophrenic and normal subjects, obtained from the Stanley Foundation Brain Collection, were assayed. mRNA of 72 different ion-channel subunits were determined by qRT-PCR and alteration in four genes were verified by immunoblotting. In the Str-NAc the prominent change was observed in the MDD group, in which there was a significant up-regulation in genes encoding voltage-gated potassium-channel subunits. However, in the lateral cerebellar hemisphere (cerebellum), the main change was observed in schizophrenia specimens, as multiple genes encoding various ion-channel subunits were significantly down-regulated. The impaired expression of genes encoding ion channels demonstrates a disease-related neuroanatomical pattern. The alterations observed in Str-NAc of MDD may imply electrical hypo-activity of this region that could be of relevance to MDD symptoms and treatment. The robust unidirectional alteration of both excitatory and inhibitory ion channels in the cerebellum may suggests cerebellar general hypo-transcriptional activity in schizophrenia.

  15. Transcriptional repression of the M channel subunit Kv7.2 in chronic nerve injury

    PubMed Central

    Rose, Kirstin; Ooi, Lezanne; Dalle, Carine; Robertson, Brian; Wood, Ian C.; Gamper, Nikita

    2011-01-01

    Neuropathic pain is a severe health problem for which there is a lack of effective therapy. A frequent underlying condition of neuropathic pain is a sustained overexcitability of pain-sensing (nociceptive) sensory fibres. Therefore, the identification of mechanisms for such abnormal neuronal excitability is of utmost importance for understanding neuropathic pain. Despite much effort, an inclusive model explaining peripheral overexcitability is missing. We investigated transcriptional regulation of the Kcnq2 gene, which encodes the Kv7.2 subunit of membrane potential-stabilizing M channel, in peripheral sensory neurons in a model of neuropathic pain—partial sciatic nerve ligation (PSNL). We show that Kcnq2 is the major Kcnq gene transcript in dorsal root ganglion (DRG); immunostaining and patch-clamp recordings from acute ganglionic slices verified functional expression of Kv7.2 in small-diameter nociceptive DRG neurons. Neuropathic injury induced substantial downregulation of Kv7.2 expression. Levels of repressor element 1–silencing transcription factor (REST), which is known to suppress Kcnq2 expression, were upregulated in response to neuropathic injury identifying the likely mechanism of Kcnq2 regulation. Behavioural experiments demonstrated that neuropathic hyperalgesia following PSNL developed faster than the downregulation of Kcnq2 expression could be detected, suggesting that this transcriptional mechanism may contribute to the maintenance rather than the initiation of neuropathic pain. Importantly, the decrease in the peripheral M channel abundance could be functionally compensated by peripherally applied M channel opener flupirtine, which alleviated neuropathic hyperalgesia. Our work suggests a novel mechanism for neuropathic overexcitability and brings focus on M channels and REST as peripheral targets for the treatment of neuropathic pain. Neuropathic injury induces transcriptional downregulation of the Kcnq2 potassium channel gene by the

  16. Localization of two potassium channel {beta} subunit genes, KCNA1B and KCNA2B

    SciTech Connect

    Schultz, D.; Smith, L.; Thayer, M.

    1996-02-01

    The gating properties and current amplitudes of mammalian voltage-activated Shaker potassium channels are modulated by at least two associated {beta} subunits (Kv{beta}1.1 and Kv{beta}1.2). The human Kv{beta}1.1 gene (KCNA1B) resides on chromosome 3, as indicated by somatic cell hybrid mapping. More precise localization of KCNA1B to 3q26.1 was obtained with fluorescence in situ hybridization (FISH) and was corroborated by PCR screening of the CEPH YAC library. The human Kv{beta}1.2 gene (KCNA2B) resides on chromosome 1, as indicated by somatic cell hybrid mapping, and has been localized by FISH to 1p36.3. 20 refs., 2 figs.

  17. The sodium channel auxiliary subunits beta1 and beta2 are differentially expressed in the spinal cord of neuropathic rats.

    PubMed

    Blackburn-Munro, G; Fleetwood-Walker, S M

    1999-04-01

    Neuropathic pain is thought to arise from ectopic discharges at the site of injury within the peripheral nervous system, and is manifest as a general increase in the level of neuronal excitability within primary afferent fibres and their synaptic contacts within the spinal cord. Voltage-activated Na+ channel blockers such as lamotrigine have been shown to be clinically effective in the treatment of neuropathic pain. Na+ channels are structurally diverse comprising a principal a subunit (of which there are variable isoforms) and two auxiliary subunits termed beta1 and beta2. Both beta subunits affect the rates of channel activation and inactivation, and can modify alpha subunit density within the plasma membrane. In addition, these subunits may interact with extracellular matrix molecules to affect growth and myelination of axons. Using in situ hybridization histochemistry we have shown that the expression of the beta1 and beta2 subunits within the dorsal horn of the spinal cord of neuropathic rats is differentially regulated by a chronic constrictive injury to the sciatic nerve. At days 12-15 post-neuropathy, beta1 messenger RNA levels had increased, whereas beta2 messenger RNA levels had decreased significantly within laminae I, II on the ipsilateral side of the cord relative to the contralateral side. Within laminae III-IV beta2 messenger RNA levels showed a small but significant decrease on the ipsilateral side relative to the contralateral side, whilst expression of beta1 messenger RNA remained unchanged. Thus, differential regulation of the individual beta subunit types may (through their distinct influences on Na+ channel function) contribute to altered excitability of central neurons after neuropathic injury.

  18. O2-sensitive K+ channels: role of the Kv1.2 -subunit in mediating the hypoxic response.

    PubMed

    Conforti, L; Bodi, I; Nisbet, J W; Millhorn, D E

    2000-05-01

    One of the early events in O2 chemoreception is inhibition of O2-sensitive K+ (KO2) channels. Characterization of the molecular composition of the native KO2 channels in chemosensitive cells is important to understand the mechanism(s) that couple O2 to the KO2 channels. The rat phaeochromocytoma PC12 clonal cell line expresses an O2-sensitive voltage-dependent K+ channel similar to that recorded in other chemosensitive cells. Here we examine the possibility that the Kv1.2 alpha-subunit comprises the KO2 channel in PC12 cells. Whole-cell voltage-clamp experiments showed that the KO2 current in PC12 cells is inhibited by charybdotoxin, a blocker of Kv1.2 channels. PC12 cells express the Kv1.2 alpha-subunit of K+ channels: Western blot analysis with affinity-purified anti-Kv1.2 antibody revealed a band at approximately 80 kDa. Specificity of this antibody was established in Western blot and immunohystochemical studies. Anti-Kv1.2 antibody selectively blocked Kv1.2 current expressed in the Xenopus oocyte, but had no effect on Kv2.1 current. Anti-Kv1.2 antibody dialysed through the patch pipette completely blocked the KO2 current, while the anti-Kv2.1 and irrelevant antibodies had no effect. The O2 sensitivity of recombinant Kv1.2 and Kv2.1 channels was studied in Xenopus oocytes. Hypoxia inhibited the Kv1.2 current only. These findings show that the KO2 channel in PC12 cells belongs to the Kv1 subfamily of K+ channels and that the Kv1.2 alpha-subunit is important in conferring O2 sensitivity to this channel. PMID:10790158

  19. O2-sensitive K+ channels: role of the Kv1.2 α-subunit in mediating the hypoxic response

    PubMed Central

    Conforti, Laura; Bodi, Ilona; Nisbet, John W; Millhorn, David E

    2000-01-01

    One of the early events in O2 chemoreception is inhibition of O2-sensitive K+ (KO2) channels. Characterization of the molecular composition of the native KO2 channels in chemosensitive cells is important to understand the mechanism(s) that couple O2 to the KO2 channels. The rat phaeochromocytoma PC12 clonal cell line expresses an O2-sensitive voltage-dependent K+ channel similar to that recorded in other chemosensitive cells. Here we examine the possibility that the Kv1.2 α-subunit comprises the KO2 channel in PC12 cells. Whole-cell voltage-clamp experiments showed that the KO2 current in PC12 cells is inhibited by charybdotoxin, a blocker of Kv1.2 channels. PC12 cells express the Kv1.2 α-subunit of K+ channels: Western blot analysis with affinity-purified anti-Kv1.2 antibody revealed a band at ≈80 kDa. Specificity of this antibody was established in Western blot and immunohystochemical studies. Anti-Kv1.2 antibody selectively blocked Kv1.2 current expressed in the Xenopus oocyte, but had no effect on Kv2.1 current. Anti-Kv1.2 antibody dialysed through the patch pipette completely blocked the KO2 current, while the anti-Kv2.1 and irrelevant antibodies had no effect. The O2 sensitivity of recombinant Kv1.2 and Kv2.1 channels was studied in Xenopus oocytes. Hypoxia inhibited the Kv1.2 current only. These findings show that the KO2 channel in PC12 cells belongs to the Kv1 subfamily of K+ channels and that the Kv1.2 α-subunit is important in conferring O2 sensitivity to this channel. PMID:10790158

  20. Kinetic interconversion of rat and bovine homologs of the alpha subunit of an amiloride-sensitive Na+ channel by C-terminal truncation of the bovine subunit.

    PubMed

    Fuller, C M; Ismailov, I I; Berdiev, B K; Shlyonsky, V G; Benos, D J

    1996-10-25

    We have recently cloned the alpha subunit of a bovine amiloride-sensitive Na+ channel (alphabENaC). This subunit shares extensive homology with both rat and human alphaENaC subunits but shows marked divergence at the C terminus beginning at amino acid 584 of the 697-residue sequence. When incorporated into planar lipid bilayers, alphabENaC almost exclusively exhibits a main transition to 39 picosiemens (pS) with very rare 13 pS step transitions to one of two subconductance states (26 and 13 pS). In contrast, the alpha subunit of the rat renal homolog of ENaC (alpharENaC) has a main transition step to 13 pS that is almost constituitively open, with a second stepwise transition of 26 to 39 pS. A deletion mutant of alphabENaC, encompassing the entire C-terminal region (R567X), converts the kinetic behavior of alphabENaC to that of alpharENaC, i. e. a transition to 13 pS followed by a second 26 pS transition to 39 pS. Chemical cross-linking of R567X restores the wild-type alphabENaC gating pattern, whereas treatment with the reducing agent dithiothreitol produced only 13 pS transitions. In contrast, an equivalent C-terminal truncation of alpharENaC (R613X) had no effect on the gating pattern of alpharENaC. These results are consistent with the hypothesis that interactions between the C termini of alphabENaC account for the different kinetic behavior of this member of the ENaC family of Na+ channels. PMID:8900133

  1. Subunit 2 (or beta) of retinal rod cGMP-gated cation channel is a component of the 240-kDa channel-associated protein and mediates Ca(2+)-calmodulin modulation.

    PubMed Central

    Chen, T Y; Illing, M; Molday, L L; Hsu, Y T; Yau, K W; Molday, R S

    1994-01-01

    The cGMP-gated cation channel mediating visual transduction in retinal rods was recently found to comprise at least two subunits, 1 and 2 (or alpha and beta). SDS gels of the purified channel show, in addition to a 63-kDa protein band (subunit 1), a 240-kDa protein band that binds Ca(2+)-calmodulin, a modulator of the channel. To examine any connection between subunit 2 and the 240-kDa protein, cGMP-gated channels formed from the expressed cloned subunits in human embryonic kidney (HEK) 293 cells were tested for Ca(2+)-calmodulin effect. Homooligomeric channels formed by subunit 1 alone showed no sensitivity to Ca(2+)-calmodulin, and neither did heterooligomeric channels formed by subunit 1 and the short alternatively spliced form of subunit 2 (2a). By contrast, the cGMP half-activation constant (K1/2) for heterooligomeric channels formed from subunit 1 and the long form of subunit 2 (2b) was increased 1.5- to 2-fold by Ca(2+)-calmodulin, similar to the increase observed for the native channel. In Western blots of rod outer segment membranes, a subunit 2-specific antibody also recognized the 240-kDa protein. Finally, amino acid sequences derived from peptide fragments of the bovine 240-kDa protein showed approximately 80% identity to regions of subunit 2b of the human channel. These results together suggest that subunit 2b of the rod channel is a component of the 240-kDa protein and that it mediates the Ca(2+)-calmodulin modulation of the channel. Images PMID:7526403

  2. SUR2 subtype (A and B)-dependent differential activation of the cloned ATP-sensitive K+ channels by pinacidil and nicorandil

    PubMed Central

    Shindo, Takashi; Yamada, Mitsuhiko; Isomoto, Shojiro; Horio, Yoshiyuki; Kurachi, Yoshihisa

    1998-01-01

    The classical ATP sensitive K+ (KATP) channels are composed of a sulphonylurea receptor (SUR) and an inward rectifying K+ channel subunit (BIR/Kir6.2). They are the targets of vasorelaxant agents called K+ channel openers, such as pinacidil and nicorandil.In order to examine the tissue selectivity of pinacidil and nicorandil, in vitro, we compared the effects of these agents on cardiac type (SUR2A/Kir6.2) and vascular smooth muscle type (SUR2B/Kir6.2) of the KATP channels heterologously expressed in HEK293T cells, a human embryonic kidney cell line, by using the patch-clamp method.In the cell-attached recordings (145 mM K+ in the pipette), pinacidil and nicorandil activated a weakly inwardly-rectifying, glibenclamide-sensitive 80 pS K+ channel in both the transfected cells.In the whole-cell configuration, pinacidil showed a similar potency in activating the SUR2B/Kir6.2 and SUR2A/Kir6.2 channels (EC50 of ∼2 and ∼10 μM, respectively). On the other hand, nicorandil activated the SUR2B/Kir6.2 channel >100 times more potently than the SUR2A/Kir6.2 (EC50 of ∼10 μM and >500 μM, respectively).Thus, nicorandil, but not pinacidil, preferentially activates the KATP channels containing SUR2B. Because SUR2A and SUR2B are diverse only in 42 amino acids at their C-terminal ends, it is strongly suggested that this short part of SUR2B may play a critical role in the action of nicorandil on the vascular type classical KATP channel. PMID:9692785

  3. Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus.

    PubMed

    Chameau, Pascal; Qin, Yongjun; Spijker, Sabine; Smit, August Benjamin; Smit, Guus; Joëls, Marian

    2007-01-01

    Previous studies have shown that corticosterone enhances whole cell calcium currents in CA1 pyramidal neurons, through a pathway involving binding of glucocorticoid receptor homodimers to the DNA. We examined whether glucocorticoids show selectivity for L- over N-type of calcium currents. Moreover, we addressed the putative gene targets that eventually lead to the enhanced calcium currents. Electrophysiological recordings were performed in nucleated patches that allow excellent voltage control. Calcium currents in these patches almost exclusively involve N- and L-type channels. We found that L- but not N-type calcium currents were largely enhanced after treatment with a high dose of corticosterone sufficient to activate glucocorticoid receptors. Voltage dependency and kinetic properties of the currents were unaffected by the hormone. Nonstationary noise analysis suggests that the increased current is not caused by a larger unitary conductance, but rather to a doubling of the number of functional channels. Quantitative real-time PCR revealed that transcripts of the Ca(v)1 subunits encoding for the N- or L-type calcium channels are not upregulated in the mouse CA1 area; instead, a strong, direct, and consistent upregulation of the beta4 subunit was observed. This indicates that the corticosteroid-induced increase in number of L-type calcium channels is not caused by a simple transcriptional regulation of the pore-forming subunit of the channels.

  4. Recessive Mutations in KCNJ13, Encoding an Inwardly Rectifying Potassium Channel Subunit, Cause Leber Congenital Amaurosis

    PubMed Central

    Sergouniotis, Panagiotis I.; Davidson, Alice E.; Mackay, Donna S.; Li, Zheng; Yang, Xu; Plagnol, Vincent; Moore, Anthony T.; Webster, Andrew R.

    2011-01-01

    Inherited retinal degenerations, including retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA), comprise a group of disorders showing high genetic and allelic heterogeneity. The determination of a full catalog of genes that can, when mutated, cause human retinal disease is a powerful means to understand the molecular physiology and pathology of the human retina. As more genes are found, remaining ones are likely to be rarer and/or unexpected candidates. Here, we identify a family in which all known RP/LCA-related genes are unlikely to be associated with their disorder. A combination of homozygosity mapping and exome sequencing identifies a homozygous nonsense mutation, c.496C>T (p.Arg166X), in a gene, KCNJ13, encoding a potassium channel subunit Kir7.1. A screen of a further 333 unrelated individuals with recessive retinal degeneration identified an additional proband, homozygous for a missense mutation, c.722T>C (p.Leu241Pro), in the same gene. The three affected members of the two families have been diagnosed with LCA. All have a distinct and unusual retinal appearance and a similar early onset of visual loss, suggesting both impaired retinal development and progressive retinal degeneration, involving both rod and cone pathways. Examination of heterozygotes revealed no ocular disease. This finding implicates Kir7.1 as having an important role in human retinal development and maintenance. This disorder adds to a small diverse group of diseases consequent upon loss or reduced function of inwardly rectifying potassium channels affecting various organs. The distinct retinal phenotype that results from biallelic mutations in KCNJ13 should facilitate the molecular diagnosis in further families. PMID:21763485

  5. Encephalitis and antibodies to DPPX, a subunit of Kv4.2 potassium channels

    PubMed Central

    Boronat, Anna; Gelfand, Jeffrey M.; Gresa-Arribas, Nuria; Jeong, Hyo-Young; Walsh, Michael; Roberts, Kirk; Martinez-Hernandez, Eugenia; Rosenfeld, Myrna R.; Balice-Gordon, Rita; Graus, Francesc; Rudy, Bernardo; Dalmau, Josep

    2012-01-01

    Objective To report a novel cell-surface autoantigen of encephalitis that is a critical regulatory subunit of the Kv4.2 potassium channels. Methods Four patients with encephalitis of unclear etiology and antibodies with a similar pattern of neuropil brain immunostaining were selected for autoantigen characterization. Techniques included immunoprecipitation, mass spectrometry, cell-base experiments with Kv4.2 and several dipeptidyl-peptidase-like protein-6 (DPPX) plasmid constructs, and comparative brain immunostaining of wild-type and DPPX-null mice. Results Immunoprecipitation studies identified DPPX as the target autoantigen. A cell based assay confirmed that all 4 patients, but not 210 controls, had DPPX antibodies. Symptoms included agitation, confusion, myoclonus, tremor, and seizures (one case with prominent startle response). All patients had pleocytosis, and three had severe prodromal diarrhea of unknown etiology. Given that DPPX “tunes up” the Kv4.2 potassium channels (involved in somatodendritic signal integration and attenuation of dendritic backpropagation of action potentials), we determined the epitope distribution in DPPX, DPP10 (a protein homologous to DPPX) and Kv4.2. Patients’ antibodies were found specific for DPPX, without reacting with DPP10 or Kv4.2. The unexplained diarrhea led to demonstrate a robust expression of DPPX in the myenteric plexus, which strongly reacted with patients’ antibodies. The course of neuropsychiatric symptoms was prolonged and often associated with relapses while decreasing immunotherapy. Long-term follow-up showed substantial improvement in 3 patients (1 is lost to follow-up). Interpretation Antibodies to DPPX associate with a protracted encephalitis characterized by CNS hyperexcitability (agitation, myoclonus, tremor, seizures), pleocytosis, and frequent diarrhea at symptom onset. The disorder is potentially treatable with immunotherapy. PMID:23225603

  6. Heterogeneity and Function of KATP Channels in Canine Hearts

    PubMed Central

    Zhang, Hai Xia; Silva, Jonathan R.; Lin, Yu-Wen; Verbsky, John W.; Lee, Urvi S.; Kanter, Evelyn M.; Yamada, Kathryn A.; Schuessler, Richard B.; Nichols, Colin G.

    2013-01-01

    Background The concept that pore-forming Kir6.2 and regulatory SUR2A subunits form cardiac ATP-sensitive potassium (KATP) channels is challenged by recent reports that SUR1 is predominant in mouse atrial KATP channels. Objective To assess SUR subunit composition of KATP channels and consequence of KATP activation for action potential duration (APD) in dog heart. Methods Patch-clamp techniques were used on isolated dog cardiomyocytes to investigate KATP channel properties. Dynamic current-clamp, by injection of a linear K+ conductance to simulate activation of the native current, was employed to study consequences of KATP activation on APD. Results Metabolic inhibitor (MI)-activated current was not significantly different from pinacidil (SUR2A-specific)-activated current, and both currents were larger than diazoxide (SUR1- specific)-activated current, in both atrium and ventricle. Mean KATP conductance (activated by MI) did not differ significantly between chambers although, within the ventricle, both MI-induced and pinacidil-induced currents tended to decrease from epicardium to endocardium. Dynamic current-clamp results indicate that myocytes with longer baseline APDs are more susceptible to injected “KATP” current, a result reproduced in silico using a canine AP model to simulate Epi and Endo (HRd). Conclusions Even a small fraction of KATP activation significantly shortens APD in a manner that depends on existing heterogeneity in KATP current and APD. PMID:23871704

  7. Sodium channel from rat brain: role of the. beta. 1 and. beta. 2 subunits in saxitoxin binding

    SciTech Connect

    Not Available

    1986-01-05

    Procedures are described for the selective removal of the ..beta..1 or the ..beta..2 subunits from the detergent-solubilized channel from rat brain, and the functional integrity of the resulting protein complex is examined. Treatment of the channel with 1.0 M MgCl/sub 2/ followed by sedimentation through sucrose gradients results in complete separation of ..beta..1 from the ..cap alpha..-..beta..2 complex and complete loss of (/sup 3/H)saxitoxin (STX) binding activity. At intermediate MgCl/sub 2/ concentrations, the loss of ..beta..1 and the loss of (/sup 3/H)STX binding activity are closely correlated. Tetrodotoxin (TTX) quantitatively stabilizes the solubilized complex against both the loss of ..beta..1 and the loss of (/sup 3/H)STX binding activity. This indicates that association of the ..cap alpha.. and ..beta..1 subunits is required to maintain the STX/TTX binding site in a conformation with high affinity for STX and TTX in the detergent-solubilized state. Treatment of the solubilized sodium channel with dithiothreitol in the presence of TTX causes specific release of the ..beta..2 subunit, without significantly removing ..beta..1. There is little or no correlation between the amount of ..beta..2 in the sodium channel complex and the ability of the preparation to bind (/sup 3/H)STX.

  8. Molecular Cloning and Characterization of Novel Glutamate-Gated Chloride Channel Subunits from Schistosoma mansoni

    PubMed Central

    Dufour, Vanessa; Beech, Robin N.; Wever, Claudia; Dent, Joseph A.; Geary, Timothy G.

    2013-01-01

    Cys-loop ligand-gated ion channels (LGICs) mediate fast ionotropic neurotransmission. They are proven drug targets in nematodes and arthropods, but are poorly characterized in flatworms. In this study, we characterized the anion-selective, non-acetylcholine-gated Cys-loop LGICs from Schistosoma mansoni. Full-length cDNAs were obtained for SmGluCl-1 (Smp_096480), SmGluCl-2 (Smp_015630) and SmGluCl-3 (Smp_104890). A partial cDNA was retrieved for SmGluCl-4 (Smp_099500/Smp_176730). Phylogenetic analyses suggest that SmGluCl-1, SmGluCl-2, SmGluCl-3 and SmGluCl-4 belong to a novel clade of flatworm glutamate-gated chloride channels (GluCl) that includes putative genes from trematodes and cestodes. The flatworm GluCl clade was distinct from the nematode-arthropod and mollusc GluCl clades, and from all GABA receptors. We found no evidence of GABA receptors in S. mansoni. SmGluCl-1, SmGluCl-2 and SmGluCl-3 subunits were characterized by two-electrode voltage clamp (TEVC) in Xenopus oocytes, and shown to encode Cl−-permeable channels gated by glutamate. SmGluCl-2 and SmGluCl-3 produced functional homomers, while SmGluCl-1 formed heteromers with SmGluCl-2. Concentration-response relationships revealed that the sensitivity of SmGluCl receptors to L-glutamate is among the highest reported for GluCl receptors, with EC50 values of 7–26 µM. Chloride selectivity was confirmed by current-voltage (I/V) relationships. SmGluCl receptors are insensitive to 1 µM ivermectin (IVM), indicating that they do not belong to the highly IVM-sensitive GluClα subtype group. SmGluCl receptors are also insensitive to 10 µM meclonazepam, a schistosomicidal benzodiazepine. These results provide the first molecular evidence showing the contribution of GluCl receptors to L-glutamate signaling in S. mansoni, an unprecedented finding in parasitic flatworms. Further work is needed to elucidate the roles of GluCl receptors in schistosomes and to explore their potential as drug targets. PMID:24009509

  9. cAMP sensitivity conferred to the epithelial Na+ channel by alpha-subunit cloned from guinea-pig colon.

    PubMed

    Schnizler, M; Mastroberardino, L; Reifarth, F; Weber, W M; Verrey, F; Clauss, W

    2000-03-01

    The rate of Na+ (re)absorption across tight epithelia such as in distal kidney nephron and colon is to a large extent controlled at the level of the epithelial Na+ channel (ENaC). In kidney, antidiuretic hormone (ADH, vasopressin) stimulates the expression/activity of this channel by a cAMP/protein-kinase-A- (PKA-) mediated pathway. However, a clear upregulation of ENaC function by cAMP could not be reproduced with cloned channel subunits in the Xenopus oocyte expression system, suggesting the hypothesis that an additional factor is missing. In contrast, we show here that membrane-permeant cAMP can activate ENaC expressed in Xenopus oocytes (3.8-fold) upon replacement of the rat alpha-subunit by a new alpha-subunit cloned from guinea-pig colon (gpalpha). This alpha-subunit is 76% identical with its rat orthologue originating from ADH-insensitive rat colon. The biophysical fingerprints of the hybrid ENaC formed by this guinea-pig alpha-subunit together with rat beta- and gamma-subunits are indistinguishable from those of rat ENaC (rENaC). Injection of the PKA inhibitor PKI-(6-22)-amide into the oocyte had no effect on the basal activity of rat ENaC but inhibited the activity of gpalpha-containing hybrid ENaC and greatly decreased its stimulation by cAMP. This suggests that, unlike for rat ENaC, tonic PKA activity is required for basal function of gpalpha-containing ENaC and that PKA mediates its cAMP-induced activation. This regulatory behaviour is not common to all ENaCs containing an alpha-subunit cloned from an ADH-responsive tissue since xENaC, which was cloned from the ADH-sensitive Xenopus laevis A6 epithelia, is, when expressed in oocytes, resistant to cAMP, similar to rat ENaC. This study demonstrates that the PKA sensitivity of ENaC can depend on the nature of the ENaC alpha-subunit and raises the possibility that cAMP can stimulate ENaCs by different mechanisms. PMID:10764218

  10. Molecular Basis of the Membrane Interaction of the β2e Subunit of Voltage-Gated Ca2+ Channels

    PubMed Central

    Kim, Dong-Il; Kang, Mooseok; Kim, Sangyeol; Lee, Juhwan; Park, Yongsoo; Chang, Iksoo; Suh, Byung-Chang

    2015-01-01

    The auxiliary β subunit plays an important role in the regulation of voltage-gated calcium (CaV) channels. Recently, it was revealed that β2e associates with the plasma membrane through an electrostatic interaction between N-terminal basic residues and anionic phospholipids. However, a molecular-level understanding of β-subunit membrane recruitment in structural detail has remained elusive. In this study, using a combination of site-directed mutagenesis, liposome-binding assays, and multiscale molecular-dynamics (MD) simulation, we developed a physical model of how the β2e subunit is recruited electrostatically to the plasma membrane. In a fluorescence resonance energy transfer assay with liposomes, binding of the N-terminal peptide (23 residues) to liposome was significantly increased in the presence of phosphatidylserine (PS) and phosphatidylinositol 4,5-bisphosphate (PIP2). A mutagenesis analysis suggested that two basic residues proximal to Met-1, Lys-2 (K2) and Trp-5 (W5), are more important for membrane binding of the β2e subunit than distal residues from the N-terminus. Our MD simulations revealed that a stretched binding mode of the N-terminus to PS is required for stable membrane attachment through polar and nonpolar interactions. This mode obtained from MD simulations is consistent with experimental results showing that K2A, W5A, and K2A/W5A mutants failed to be targeted to the plasma membrane. We also investigated the effects of a mutated β2e subunit on inactivation kinetics and regulation of CaV channels by PIP2. In experiments with voltage-sensing phosphatase (VSP), a double mutation in the N-terminus of β2e (K2A/W5A) increased the PIP2 sensitivity of CaV2.2 and CaV1.3 channels by ∼3-fold compared with wild-type β2e subunit. Together, our results suggest that membrane targeting of the β2e subunit is initiated from the nonspecific electrostatic insertion of N-terminal K2 and W5 residues into the membrane. The PS-β2e interaction observed here

  11. BK channel β1 and β4 auxiliary subunits exert opposite influences on escalated ethanol drinking in dependent mice.

    PubMed

    Kreifeldt, Max; Le, David; Treistman, Steven N; Koob, George F; Contet, Candice

    2013-01-01

    Large conductance calcium-activated potassium (BK) channels play a key role in the control of neuronal activity. Ethanol is a potent activator of BK channel gating, but how this action may impact ethanol drinking still remains poorly understood. Auxiliary β subunits are known to modulate ethanol-induced potentiation of BK currents. In the present study, we investigated whether BK β1 and β4 subunits influence voluntary ethanol consumption using knockout (KO) mice. In a first experiment, mice were first subjected to continuous two-bottle choice (2BC) and were then switched to intermittent 2BC, which progressively increased ethanol intake as previously described in wildtype mice. BK β1 or β4 subunit deficiency did not affect ethanol self-administration under either schedule of access. In a second experiment, mice were first trained to drink ethanol in a limited-access 2BC paradigm. BK β1 or β4 deletion did not affect baseline consumption. Weeks of 2BC were then alternated with weeks of chronic intermittent ethanol (CIE) or air inhalation. As expected, a gradual escalation of ethanol drinking was observed in dependent wildtype mice, while intake remained stable in non-dependent wildtype mice. However, CIE exposure only produced a mild augmentation of ethanol consumption in BK β4 KO mice. Conversely, ethanol drinking increased after fewer CIE cycles in BK β1 KO mice than in wildtype mice. In conclusion, BK β1 or β4 did not influence voluntary ethanol drinking in non-dependent mice, regardless of the pattern of access to ethanol. However, deletion of BK β4 attenuated, while deletion of BK β1 accelerated, the escalation of ethanol drinking during withdrawal from CIE. Our data suggest that BK β1 and β4 subunits have an opposite influence on the negative reinforcing properties of ethanol withdrawal. Modulating the expression, distribution or interactions of BK channel auxiliary subunits may therefore represent a novel avenue for the treatment of alcoholism

  12. BK channel β1 and β4 auxiliary subunits exert opposite influences on escalated ethanol drinking in dependent mice.

    PubMed

    Kreifeldt, Max; Le, David; Treistman, Steven N; Koob, George F; Contet, Candice

    2013-01-01

    Large conductance calcium-activated potassium (BK) channels play a key role in the control of neuronal activity. Ethanol is a potent activator of BK channel gating, but how this action may impact ethanol drinking still remains poorly understood. Auxiliary β subunits are known to modulate ethanol-induced potentiation of BK currents. In the present study, we investigated whether BK β1 and β4 subunits influence voluntary ethanol consumption using knockout (KO) mice. In a first experiment, mice were first subjected to continuous two-bottle choice (2BC) and were then switched to intermittent 2BC, which progressively increased ethanol intake as previously described in wildtype mice. BK β1 or β4 subunit deficiency did not affect ethanol self-administration under either schedule of access. In a second experiment, mice were first trained to drink ethanol in a limited-access 2BC paradigm. BK β1 or β4 deletion did not affect baseline consumption. Weeks of 2BC were then alternated with weeks of chronic intermittent ethanol (CIE) or air inhalation. As expected, a gradual escalation of ethanol drinking was observed in dependent wildtype mice, while intake remained stable in non-dependent wildtype mice. However, CIE exposure only produced a mild augmentation of ethanol consumption in BK β4 KO mice. Conversely, ethanol drinking increased after fewer CIE cycles in BK β1 KO mice than in wildtype mice. In conclusion, BK β1 or β4 did not influence voluntary ethanol drinking in non-dependent mice, regardless of the pattern of access to ethanol. However, deletion of BK β4 attenuated, while deletion of BK β1 accelerated, the escalation of ethanol drinking during withdrawal from CIE. Our data suggest that BK β1 and β4 subunits have an opposite influence on the negative reinforcing properties of ethanol withdrawal. Modulating the expression, distribution or interactions of BK channel auxiliary subunits may therefore represent a novel avenue for the treatment of alcoholism.

  13. Schedule of NMDA receptor subunit expression and functional channel formation in the course of in vitro-induced neurogenesis.

    PubMed

    Varju, P; Schlett, K; Eisel, U; Madarász, E

    2001-06-01

    NE-7C2 neuroectodermal cells derived from forebrain vesicles of p53-deficient mouse embryos (E9) produce neurons and astrocytes in vitro if induced by all-trans retinoic acid. The reproducible morphological stages of neurogenesis were correlated with the expression of various NMDA receptor subunits. RT-PCR studies revealed that GluRepsilon1 and GluRepsilon4 subunit mRNAs were transcribed by both non-induced and neuronally differentiated cells. GluRepsilon3 subunit mRNAs were not synthesized by NE-7C2 cells and increased numbers of messages from the GluRepsilon2 gene were detected only after neural network formation. The presence of the GluRzeta1 protein was detected throughout neural induction, whereas retinoic acid-induced neuron formation elevated the amount of exon 21 (C1)- and exon 22 (C2)-containing GluRzeta1 mRNAs and resulted in the appearance of exon 5 (N1)-containing transcripts. NMDA-elicited Ca(2+)-signals were detected only in cells displaying neuronal morphology, but preceding the appearance of synapsin-I immunoreactivity. Our findings demonstrated that, in spite of the presence of subunits necessary for channel formation, functional channels were formed by NE-7C2 cells no sooner than the time of neurite maturation. The data show that the cell line provides a suitable model to analyse the mechanisms involved in NMDA receptor gene expression before the appearance of synaptic communication.

  14. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels

    PubMed Central

    Neely, Alan; Hidalgo, Patricia

    2014-01-01

    Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels. PMID:24917826

  15. A potassium channel beta subunit related to the aldo-keto reductase superfamily is encoded by the Drosophila hyperkinetic locus.

    PubMed

    Chouinard, S W; Wilson, G F; Schlimgen, A K; Ganetzky, B

    1995-07-18

    Genetic and physiological studies of the Drosophila Hyperkinetic (Hk) mutant revealed defects in the function or regulation of K+ channels encoded by the Shaker (Sh) locus. The Hk polypeptide, determined from analysis of cDNA clones, is a homologue of mammalian K+ channel beta subunits (Kv beta). Coexpression of Hk with Sh in Xenopus oocytes increases current amplitudes and changes the voltage dependence and kinetics of activation and inactivation, consistent with predicted functions of Hk in vivo. Sequence alignments show that Hk, together with mammalian Kv beta, represents an additional branch of the aldo-keto reductase superfamily. These results are relevant to understanding the function and evolutionary origin of Kv beta.

  16. The structures of the human calcium channel {alpha}{sub 1} subunit (CACNL1A2) and {beta} subunit (CACNLB3) genes

    SciTech Connect

    Yamada, Yuichiro; Masuda, Kazuhiro; Li, Qing

    1995-05-20

    Calcium influx in pancreatic {beta}-cells is regulated mainly by L-type voltage-dependent calcium channels (VDCCs) and triggers insulin secretion. The {alpha}{sub 1} subunit (CACN4) and the {beta} subunit ({beta}{sub 3}) of VDCCs, both of which are expressed in pancreatic islets, are major components for the VDCC activity, and so they may play a critical role in the regulation of insulin secretion. The authors have determined the structures of the human CACN4 (CACNL1A2) and the human {beta}{sub 3} (CACNLB3) genes. The CACNL1A2 gene spans more than 155 kb and has 49 exons. Most of the positions interrupted by introns are well conserved between the CACNL1A2 gene and the previously reported L-type VDCC {alpha}{sub 1} subunit, CACNL1A1, gene. On the other hand, the CACNLB3 gene distributes in {approximately} 8 kb and comprises 13 exons, most of which are located together within {approximately} 5 kb. Comparisons of the genomic sequences of CACNL1A2 with the previously reported cDNA sequences indicate that there are a number of polymorphisms in the human CACNL1A2 gene. In addition, the PCR-SSCP procedure of exon 1 of CACNL1A2 revealed a change from 7 to 8 ATG trinucleotide repeats in a patient with noninsulin-dependent diabetes mellitus (NIDDM), resulting in an addition of methionine at the amino-terminus of CACN4. The determination of the structures of the human CACNL1A2 and CACNLB3 genes should facilitate study of the role of these genes in the development of NIDDM and also other genetic diseases such as long QT syndrome. 39 refs., 3 figs., 3 tabs.

  17. β1- and β3- voltage-gated sodium channel subunits modulate cell surface expression and glycosylation of Nav1.7 in HEK293 cells

    PubMed Central

    Laedermann, Cédric J.; Syam, Ninda; Pertin, Marie; Decosterd, Isabelle

    2013-01-01

    Voltage-gated sodium channels (Navs) are glycoproteins composed of a pore-forming α-subunit and associated β-subunits that regulate Nav α-subunit plasma membrane density and biophysical properties. Glycosylation of the Nav α-subunit also directly affects Navs gating. β-subunits and glycosylation thus comodulate Nav α-subunit gating. We hypothesized that β-subunits could directly influence α-subunit glycosylation. Whole-cell patch clamp of HEK293 cells revealed that both β1- and β3-subunits coexpression shifted V½ of steady-state activation and inactivation and increased Nav1.7-mediated INa density. Biotinylation of cell surface proteins, combined with the use of deglycosydases, confirmed that Nav1.7 α-subunits exist in multiple glycosylated states. The α-subunit intracellular fraction was found in a core-glycosylated state, migrating at ~250 kDa. At the plasma membrane, in addition to the core-glycosylated form, a fully glycosylated form of Nav1.7 (~280 kDa) was observed. This higher band shifted to an intermediate band (~260 kDa) when β1-subunits were coexpressed, suggesting that the β1-subunit promotes an alternative glycosylated form of Nav1.7. Furthermore, the β1-subunit increased the expression of this alternative glycosylated form and the β3-subunit increased the expression of the core-glycosylated form of Nav1.7. This study describes a novel role for β1- and β3-subunits in the modulation of Nav1.7 α-subunit glycosylation and cell surface expression. PMID:24009557

  18. Two Drosophila DEG/ENaC channel subunits have distinct functions in gustatory neurons that activate male courtship.

    PubMed

    Liu, Tong; Starostina, Elena; Vijayan, Vinoy; Pikielny, Claudio W

    2012-08-22

    Trimeric sodium channels of the DEG/ENaC family have important roles in neurons, but the specific functions of different subunits present in heteromeric channels are poorly understood. We previously reported that the Drosophila DEG/ENaC subunit Ppk25 is essential in a small subset of gustatory neurons for activation of male courtship behavior, likely through detection of female pheromones. Here we show that, like mutations in ppk25, mutations in another Drosophila DEG/ENaC subunit gene, nope, specifically impair male courtship of females. nope regulatory sequences drive reporter gene expression in gustatory neurons of the labellum wings, and legs, including all gustatory neurons in which ppk25 function is required for male courtship of females. In addition, gustatory-specific knockdown of nope impairs male courtship. Further, the impaired courtship response of nope mutant males to females is rescued by targeted expression of nope in the subset of gustatory neurons in which ppk25 functions. However, nope and ppk25 have nonredundant functions, as targeted expression of ppk25 does not compensate for the lack of nope and vice versa. Moreover, Nope and Ppk25 form specific complexes when coexpressed in cultured cells. Together, these data indicate that the Nope and Ppk25 polypeptides have specific, nonredundant functions in a subset of gustatory neurons required for activation of male courtship in response to females, and suggest the hypothesis that Nope and Ppk25 function as subunits of a heteromeric DEG/ENaC channel required for gustatory detection of female pheromones. PMID:22915128

  19. ALLOSTERY AND SUBSTRATE CHANNELING IN THE TRYPTOPHAN SYNTHASE BIENZYME COMPLEX: EVIDENCE FOR TWO SUBUNIT CONFORMATIONS AND FOUR QUATERNARY STATES

    PubMed Central

    Niks, Dimitri; Hilario, Eduardo; Dierkers, Adam; Ngo, Huu; Borchardt, Dan; Neubauer, Thomas J.; Fan, Li; Mueller, Leonard J.; Dunn, Michael F.

    2014-01-01

    The allosteric regulation of substrate channeling in tryptophan synthase involves ligand-mediated allosteric signaling that switches the α- and β-subunits between open (low activity) and closed (high activity) conformations. This switching prevents the escape of the common intermediate, indole, and synchronizes the α- and β-catalytic cycles. 19F NMR studies of bound α-site substrate analogues, N-(4’-trifluoromethoxybenzoyl)-2-aminoethyl phosphate (F6) and N-(4’-trifluoromethoxybenzenesulfonyl)-2-aminoethyl phosphate (F9), were found to be sensitive NMR probes of β-subunit conformation. Both the internal and external aldimine F6 complexes gave a single bound peak at the same chemical shift, while α-aminoacrylate and quinonoid F6 complexes all gave a different bound peak shifted by +1.07 ppm. The F9 complexes exhibited similar behavior, but with a corresponding shift of -0.12 ppm. X-ray crystal structures show the F6 and F9 CF3 groups located at the α-β subunit interface and report changes in both the ligand conformation and the surrounding protein microenvironment. Ab initio computational modeling suggests that the change in 19F chemical shift results primarily from changes in the α-site ligand conformation. Structures of α-aminoacrylate F6 and F9 complexes and quinonoid F6 and F9 complexes show the α- and β-subunits have closed conformations wherein access of ligands into the α- and β-sites from solution is blocked. Internal and external aldimine structures show the α- and β-subunits with closed and open global conformations, respectively. These results establish that β-subunits exist in two global conformation states, designated open, where the β-sites are freely accessible to substrates, and closed, where the β-site portal into solution is blocked. Switching between these conformations is critically important for the αβ-catalytic cycle. PMID:23952479

  20. THE PRESENCE OF A B SUBUNIT INCREASES SENSITIVITY OF SODIUM CHANNEL NAV1.3, BUT NOT NAV1.2, TO TYPE II PYRETHROIDS.

    EPA Science Inventory

    Voltage-sensitive sodium channels (VSSCs) are a primary target of pyrethroid insecticides. VSSCs are comprised of a pore-forming ¿ and auxillary ß subunits, and multiple isoforms of both subunit types exist. The sensitivity of different isoform combinations to pyrethroids has not...

  1. Subunit composition of G(o) proteins functionally coupling galanin receptors to voltage-gated calcium channels.

    PubMed Central

    Kalkbrenner, F; Degtiar, V E; Schenker, M; Brendel, S; Zobel, A; Heschler, J; Wittig, B; Schultz, G

    1995-01-01

    The neuropeptide galanin is widely expressed in the central nervous system and other tissues and induces different cellular reactions, e.g. hormone release from pituitary and inhibition of insulin release from pancreatic B cells. By microinjection of antisense oligonucleotides we studied the question as to which G proteins mediate the galanin-induced inhibition of voltage-gated Ca2+ channels in the rat pancreatic B-cell line RINm5F and in the rat pituitary cell line GH3. Injection of antisense oligonucleotides directed against alpha 01, beta 2, beta 3, gamma 2 and gamma 4 G protein subunits reduced the inhibition of Ca2+ channel current which was induced by galanin, whereas no change was seen after injection of cells with antisense oligonucleotides directed against alpha i, alpha q, alpha 11, alpha 14, alpha 15, beta 1, beta 4, gamma 1, gamma 3, gamma 5, or gamma 7 G protein subunits or with sense control oligonucleotides. In view of these data and of previous results, we conclude that the galanin receptors in GH3 and in RINm5F cells couple mainly to the G(0) protein consisting of alpha 01 beta 2 gamma 2 to inhibit Ca2+ channels and use alpha 01beta 3 gamma 4 less efficiently. The latter G protein composition was previously shown to be used by muscarinic M4 receptors to inhibit Ca2+ channels. Images PMID:7588602

  2. GIRK Channels Modulate Opioid-Induced Motor Activity in a Cell Type- and Subunit-Dependent Manner.

    PubMed

    Kotecki, Lydia; Hearing, Matthew; McCall, Nora M; Marron Fernandez de Velasco, Ezequiel; Pravetoni, Marco; Arora, Devinder; Victoria, Nicole C; Munoz, Michaelanne B; Xia, Zhilian; Slesinger, Paul A; Weaver, C David; Wickman, Kevin

    2015-05-01

    G-protein-gated inwardly rectifying K(+) (GIRK/Kir3) channel activation underlies key physiological effects of opioids, including analgesia and dependence. GIRK channel activation has also been implicated in the opioid-induced inhibition of midbrain GABA neurons and consequent disinhibition of dopamine (DA) neurons in the ventral tegmental area (VTA). Drug-induced disinhibition of VTA DA neurons has been linked to reward-related behaviors and underlies opioid-induced motor activation. Here, we demonstrate that mouse VTA GABA neurons express a GIRK channel formed by GIRK1 and GIRK2 subunits. Nevertheless, neither constitutive genetic ablation of Girk1 or Girk2, nor the selective ablation of GIRK channels in GABA neurons, diminished morphine-induced motor activity in mice. Moreover, direct activation of GIRK channels in midbrain GABA neurons did not enhance motor activity. In contrast, genetic manipulations that selectively enhanced or suppressed GIRK channel function in midbrain DA neurons correlated with decreased and increased sensitivity, respectively, to the motor-stimulatory effect of systemic morphine. Collectively, these data support the contention that the unique GIRK channel subtype in VTA DA neurons, the GIRK2/GIRK3 heteromer, regulates the sensitivity of the mouse mesolimbic DA system to drugs with addictive potential.

  3. GIRK Channels Modulate Opioid-Induced Motor Activity in a Cell Type- and Subunit-Dependent Manner

    PubMed Central

    Kotecki, Lydia; Hearing, Matthew; McCall, Nora M.; Marron Fernandez de Velasco, Ezequiel; Pravetoni, Marco; Arora, Devinder; Victoria, Nicole C.; Munoz, Michaelanne B.; Xia, Zhilian; Slesinger, Paul A.; Weaver, C. David

    2015-01-01

    G-protein-gated inwardly rectifying K+ (GIRK/Kir3) channel activation underlies key physiological effects of opioids, including analgesia and dependence. GIRK channel activation has also been implicated in the opioid-induced inhibition of midbrain GABA neurons and consequent disinhibition of dopamine (DA) neurons in the ventral tegmental area (VTA). Drug-induced disinhibition of VTA DA neurons has been linked to reward-related behaviors and underlies opioid-induced motor activation. Here, we demonstrate that mouse VTA GABA neurons express a GIRK channel formed by GIRK1 and GIRK2 subunits. Nevertheless, neither constitutive genetic ablation of Girk1 or Girk2, nor the selective ablation of GIRK channels in GABA neurons, diminished morphine-induced motor activity in mice. Moreover, direct activation of GIRK channels in midbrain GABA neurons did not enhance motor activity. In contrast, genetic manipulations that selectively enhanced or suppressed GIRK channel function in midbrain DA neurons correlated with decreased and increased sensitivity, respectively, to the motor-stimulatory effect of systemic morphine. Collectively, these data support the contention that the unique GIRK channel subtype in VTA DA neurons, the GIRK2/GIRK3 heteromer, regulates the sensitivity of the mouse mesolimbic DA system to drugs with addictive potential. PMID:25948263

  4. Hyperexcitability and reduced low threshold potassium currents in auditory neurons of mice lacking the channel subunit Kv1.1

    PubMed Central

    Brew, Helen M; Hallows, Janice L; Tempel, Bruce L

    2003-01-01

    A low voltage-activated potassium current, IKL, is found in auditory neuron types that have low excitability and precisely preserve the temporal pattern of activity present in their presynaptic inputs. The gene Kcnal codes for Kv1.1 potassium channel subunits, which combine in expression systems to produce channel tetramers with properties similar to those of IKL, including sensitivity to dendrotoxin (DTX). Kv1.1 is strongly expressed in neurons with IKL, including auditory neurons of the medial nucleus of the trapezoid body (MNTB). We therefore decided to investigate how the absence of Kv1.1 affected channel properties and function in MNTB neurons from mice lacking Kcnal. We used the whole cell version of the patch clamp technique to record from MNTB neurons in brainstem slices from Kcnal-null (−/−) mice and their wild-type (+/+) and heterozygous (+/−) littermates. There was an IKL in voltage-clamped −/− MNTB neurons, but it was about half the amplitude of the IKL in +/+ neurons, with otherwise similar properties. Consistent with this, −/− MNTB neurons were more excitable than their +/+ counterparts; they fired more than twice as many action potentials (APs) during current steps, and the threshold current amplitude required to generate an AP was roughly halved. +/− MNTB neurons had excitability and IKL amplitudes identical to the +/+ neurons. The IKL remaining in −/− neurons was blocked by DTX, suggesting the underlying channels contained subunits Kv1.2 and/or Kv1.6 (also DTX-sensitive). DTX increased excitability further in the already hyperexcitable −/− MNTB neurons, suggesting that −/−IKL limited excitability despite its reduced amplitude in the absence of Kv1.1 subunits. PMID:12611922

  5. Knockdown of ASIC1 and epithelial sodium channel subunits inhibits glioblastoma whole cell current and cell migration.

    PubMed

    Kapoor, Niren; Bartoszewski, Rafal; Qadri, Yawar J; Bebok, Zsuzsanna; Bubien, James K; Fuller, Catherine M; Benos, Dale J

    2009-09-01

    High grade gliomas such as glioblastoma multiforme express multiple members of the epithelial sodium channel (ENaC)/Degenerin family, characteristically displaying a basally active amiloride-sensitive cation current not seen in normal human astrocytes or lower grade gliomas. Using quantitative real time PCR, we have shown higher expression of ASIC1, alphaENaC, and gammaENaC in D54-MG human glioblastoma multiforme cells compared with primary human astrocytes. We hypothesize that this glioma current is mediated by a hybrid channel composed of a mixture of ENaC and acid-sensing ion channel (ASIC) subunits. To test this hypothesis we made dominant negative cDNAs for ASIC1, alphaENaC, gammaENaC, and deltaENaC. D54-MG cells transfected with the dominant negative constructs for ASIC1, alphaENaC, or gammaENaC showed reduced protein expression and a significant reduction in the amiloride-sensitive whole cell current as compared with untransfected D54-MG cells. Knocking down alphaENaC or gammaENaC also abolished the high P(K)(+)/P(Na)(+) of D54-MG cells. Knocking down deltaENaC in D54-MG cells reduced deltaENaC protein expression but had no effect on either the whole cell current or K(+) permeability. Using co-immunoprecipitation we show interactions between ASIC1, alphaENaC, and gammaENaC, consistent with these subunits interacting with each other to form an ion channel in glioma cells. We also found a significant inhibition of D54-MG cell migration after ASIC1, alphaENaC, or gammaENaC knockdown, consistent with the hypothesis that ENaC/Degenerin subunits play an important role in glioma cell biology. PMID:19561078

  6. Homomers of alpha 8 and alpha 7 subunits of nicotinic receptors exhibit similar channel but contrasting binding site properties.

    PubMed

    Gerzanich, V; Anand, R; Lindstrom, J

    1994-02-01

    alpha 8 subunits of alpha-bungarotoxin-sensitive chick neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes from cRNA are shown to form homomeric, acetylcholine-gated, rapidly desensitizing, inwardly rectifying, Ca(2+)-permeable cation channels similar to those of alpha 7 homomers. alpha 8 forms oligomers of several sizes, of which < 14% are expressed on the oocyte surface, which is less efficient than for alpha 7 homomers. alpha 8 homomers are more sensitive to agonists but less sensitive to antagonists than are alpha 7 homomers, and some agonists for alpha 8 homomers are partial agonists or antagonists for alpha 7 homomers. The pharmacological properties of homomers of alpha 8 and alpha 7 subunits generally reflect those of native alpha 8 and alpha 7 receptors.

  7. The molecular mechanisms of sodium metabisulfite on the expression of K ATP and L-Ca2+ channels in rat hearts.

    PubMed

    Zhang, Quanxi; Bai, Yunlong; Yang, Zhenhua; Tian, Jingjing; Meng, Ziqiang

    2015-08-01

    Sodium metabisulfite (SMB) is used as an antioxidant and antimicrobial agent in a variety of drugs and foods. However, there are few reported studies about its side effects. This study is to investigate the SMB effects on the expression of ATP-sensitive K(+) (KATP) and L-type calcium (L-Ca(2+)) channels in rat hearts. The results show that the mRNA and protein levels of the KATP channel subunits Kir6.2 and SUR2A were increased by SMB; on the contrary, SMB at 520 mg/kg significantly decreased the expression of the L-Ca(2+) channel subunits Cav1.2 and Cav1.3. This suggests that SMB can activate the expression of KATP channel by increasing the mRNA and protein levels of Kir6.2 and SUR2A, while it inhibits the expression of L-Ca(2+) channels by decreasing the mRNA and protein levels of Cav1.2 and Cav1.3 in rat hearts. Therefore, the molecular mechanism of the SMB effect on rat hearts might be related to the increased expression of KATP channels and the decreased expression of L-Ca(2+) channels.

  8. The molecular mechanisms of sodium metabisulfite on the expression of K ATP and L-Ca2+ channels in rat hearts.

    PubMed

    Zhang, Quanxi; Bai, Yunlong; Yang, Zhenhua; Tian, Jingjing; Meng, Ziqiang

    2015-08-01

    Sodium metabisulfite (SMB) is used as an antioxidant and antimicrobial agent in a variety of drugs and foods. However, there are few reported studies about its side effects. This study is to investigate the SMB effects on the expression of ATP-sensitive K(+) (KATP) and L-type calcium (L-Ca(2+)) channels in rat hearts. The results show that the mRNA and protein levels of the KATP channel subunits Kir6.2 and SUR2A were increased by SMB; on the contrary, SMB at 520 mg/kg significantly decreased the expression of the L-Ca(2+) channel subunits Cav1.2 and Cav1.3. This suggests that SMB can activate the expression of KATP channel by increasing the mRNA and protein levels of Kir6.2 and SUR2A, while it inhibits the expression of L-Ca(2+) channels by decreasing the mRNA and protein levels of Cav1.2 and Cav1.3 in rat hearts. Therefore, the molecular mechanism of the SMB effect on rat hearts might be related to the increased expression of KATP channels and the decreased expression of L-Ca(2+) channels. PMID:26015265

  9. A distinct three-helix centipede toxin SSD609 inhibits Iks channels by interacting with the KCNE1 auxiliary subunit

    PubMed Central

    Sun, Peibei; Wu, Fangming; Wen, Ming; Yang, Xingwang; Wang, Chenyang; Li, Yiming; He, Shufang; Zhang, Longhua; Zhang, Yun; Tian, Changlin

    2015-01-01

    KCNE1 is a single-span transmembrane auxiliary protein that modulates the voltage-gated potassium channel KCNQ1. The KCNQ1/KCNE1 complex in cardiomyocytes exhibited slow activated potassium (Iks) currents. Recently, a novel 47-residue polypeptide toxin SSD609 was purified from Scolopendra subspinipes dehaani venom and showed Iks current inhibition. Here, chemically synthesized SSD609 was shown to exert Iks inhibition in extracted guinea pig cardiomyocytes and KCNQ1/KCNE1 current attenuation in CHO cells. The K+ current attenuation of SSD609 showed decent selectivity among different auxiliary subunits. Solution nuclear magnetic resonance analysis of SSD609 revealed a distinctive three-helix conformation that was stabilized by a new disulfide bonding pattern as well as segregated surface charge distribution. Structure-activity studies demonstrated that negatively charged Glu19 in the amphipathic extracellular helix of KCNE1 was the key residue that interacted with SSD609. The distinctive three-helix centipede toxin SSD609 is known to be the first polypeptide toxin acting on channel auxiliary subunit KCNE1, which suggests a new type of pharmacological regulation for ion channels in cardiomyocytes. PMID:26307551

  10. Structural basis for calcium and magnesium regulation of a large conductance calcium-activated potassium channel with β1 subunits.

    PubMed

    Liu, Hao-Wen; Hou, Pan-Pan; Guo, Xi-Ying; Zhao, Zhi-Wen; Hu, Bin; Li, Xia; Wang, Lu-Yang; Ding, Jiu-Ping; Wang, Sheng

    2014-06-13

    Large conductance Ca(2+)- and voltage-activated potassium (BK) channels, composed of pore-forming α subunits and auxiliary β subunits, play important roles in diverse physiological activities. The β1 is predominately expressed in smooth muscle cells, where it greatly enhances the Ca(2+) sensitivity of BK channels for proper regulation of smooth muscle tone. However, the structural basis underlying dynamic interaction between BK mSlo1 α and β1 remains elusive. Using macroscopic ionic current recordings in various Ca(2+) and Mg(2+) concentrations, we identified two binding sites on the cytosolic N terminus of β1, namely the electrostatic enhancing site (mSlo1(K392,R393)-β1(E13,T14)), increasing the calcium sensitivity of BK channels, and the hydrophobic site (mSlo1(L906,L908)-β1(L5,V6,M7)), passing the physical force from the Ca(2+) bowl onto the enhancing site and S6 C-linker. Dynamic binding of these sites affects the interaction between the cytosolic domain and voltage-sensing domain, leading to the reduction of Mg(2+) sensitivity. A comprehensive structural model of the BK(mSlo1 α-β1) complex was reconstructed based on these functional studies, which provides structural and mechanistic insights for understanding BK gating. PMID:24764303

  11. The B3 Subunit of the Cone Cyclic Nucleotide-gated Channel Regulates the Light Responses of Cones and Contributes to the Channel Structural Flexibility.

    PubMed

    Ding, Xi-Qin; Thapa, Arjun; Ma, Hongwei; Xu, Jianhua; Elliott, Michael H; Rodgers, Karla K; Smith, Marci L; Wang, Jin-Shan; Pittler, Steven J; Kefalov, Vladimir J

    2016-04-15

    Cone photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in cone phototransduction, which is a process essential for daylight vision, color vision, and visual acuity. Mutations in the cone channel subunits CNGA3 and CNGB3 are associated with human cone diseases, including achromatopsia, cone dystrophies, and early onset macular degeneration. Mutations in CNGB3 alone account for 50% of reported cases of achromatopsia. This work investigated the role of CNGB3 in cone light response and cone channel structural stability. As cones comprise only 2-3% of the total photoreceptor population in the wild-type mouse retina, we used Cngb3(-/-)/Nrl(-/-) mice with CNGB3 deficiency on a cone-dominant background in our study. We found that, in the absence of CNGB3, CNGA3 was able to travel to the outer segments, co-localize with cone opsin, and form tetrameric complexes. Electroretinogram analyses revealed reduced cone light response amplitude/sensitivity and slower response recovery in Cngb3(-/-)/Nrl(-/-) mice compared with Nrl(-/-) mice. Absence of CNGB3 expression altered the adaptation capacity of cones and severely compromised function in bright light. Biochemical analysis demonstrated that CNGA3 channels lacking CNGB3 were more resilient to proteolysis than CNGA3/CNGB3 channels, suggesting a hindered structural flexibility. Thus, CNGB3 regulates cone light response kinetics and the channel structural flexibility. This work advances our understanding of the biochemical and functional role of CNGB3 in cone photoreceptors.

  12. The B3 Subunit of the Cone Cyclic Nucleotide-gated Channel Regulates the Light Responses of Cones and Contributes to the Channel Structural Flexibility.

    PubMed

    Ding, Xi-Qin; Thapa, Arjun; Ma, Hongwei; Xu, Jianhua; Elliott, Michael H; Rodgers, Karla K; Smith, Marci L; Wang, Jin-Shan; Pittler, Steven J; Kefalov, Vladimir J

    2016-04-15

    Cone photoreceptor cyclic nucleotide-gated (CNG) channels play a pivotal role in cone phototransduction, which is a process essential for daylight vision, color vision, and visual acuity. Mutations in the cone channel subunits CNGA3 and CNGB3 are associated with human cone diseases, including achromatopsia, cone dystrophies, and early onset macular degeneration. Mutations in CNGB3 alone account for 50% of reported cases of achromatopsia. This work investigated the role of CNGB3 in cone light response and cone channel structural stability. As cones comprise only 2-3% of the total photoreceptor population in the wild-type mouse retina, we used Cngb3(-/-)/Nrl(-/-) mice with CNGB3 deficiency on a cone-dominant background in our study. We found that, in the absence of CNGB3, CNGA3 was able to travel to the outer segments, co-localize with cone opsin, and form tetrameric complexes. Electroretinogram analyses revealed reduced cone light response amplitude/sensitivity and slower response recovery in Cngb3(-/-)/Nrl(-/-) mice compared with Nrl(-/-) mice. Absence of CNGB3 expression altered the adaptation capacity of cones and severely compromised function in bright light. Biochemical analysis demonstrated that CNGA3 channels lacking CNGB3 were more resilient to proteolysis than CNGA3/CNGB3 channels, suggesting a hindered structural flexibility. Thus, CNGB3 regulates cone light response kinetics and the channel structural flexibility. This work advances our understanding of the biochemical and functional role of CNGB3 in cone photoreceptors. PMID:26893377

  13. Ca(2+)-dependent inactivation of a cloned cardiac Ca2+ channel alpha 1 subunit (alpha 1C) expressed in Xenopus oocytes.

    PubMed Central

    Neely, A; Olcese, R; Wei, X; Birnbaumer, L; Stefani, E

    1994-01-01

    The alpha 1 subunit of cardiac Ca2+ channel, expressed alone or coexpressed with the corresponding beta subunit in Xenopus laevis oocytes, elicits rapidly inactivating Ca2+ currents. The inactivation has the following properties: 1) It is practically absent in external Ba2+; 2) it increases with Ca2+ current amplitudes; 3) it is faster at more negative potentials for comparable Ca2+ current amplitudes; 4) it is independent of channel density; and 5) it does not require the beta subunit. These findings indicate that the Ca2+ binding site responsible for inactivation is encoded in the alpha 1 subunit and suggest that it is located near the inner channel mouth but outside the membrane electric field. PMID:8075326

  14. Concatemers of brain Kv1 channel alpha subunits that give similar K+ currents yield pharmacologically distinguishable heteromers.

    PubMed

    Sokolov, Maxim V; Shamotienko, Oleg; Dhochartaigh, Sorcha Ní; Sack, Jon T; Dolly, J Oliver

    2007-08-01

    At least five subtypes of voltage-gated (Kv1) channels occur in neurons as tetrameric combinations of different alpha subunits. Their involvement in controlling cell excitability and synaptic transmission make them potential targets for neurotherapeutics. As a prerequisite for this, we established herein how the characteristics of hetero-oligomeric K(+) channels can be influenced by alpha subunit composition. Since the three most prevalent Kv1 subunits in brain are Kv1.2, 1.1 and 1.6, new Kv1.6-1.2 and Kv1.1-1.2 concatenated constructs in pIRES-EGFP were stably expressed in HEK cells and the biophysical plus pharmacological properties of their K(+) currents determined relative to those for the requisite homo-tetramers. These heteromers yielded delayed-rectifier type K(+) currents whose activation, deactivation and inactivation parameters are fairly similar although substituting Kv1.1 with Kv1.6 led to a small negative shift in the conductance-voltage relationship, a direction unexpected from the characteristics of the parental homo-tetramers. Changes resulting from swapping Kv1.6 for Kv1.1 in the concatemers were clearly discerned with two pharmacological agents, as measured by inhibition of the K(+) currents and Rb(+) efflux. alphaDendrotoxin and 4-aminopyridine gave a similar blockade of both hetero-tetramers, as expected. Most important for pharmacological dissection of channel subtypes, dendrotoxin(k) and tetraethylammonium readily distinguished the susceptible Kv1.1-1.2 containing oligomers from the resistant Kv1.6-1.2 channels. Moreover, the discriminating ability of dendrotoxin(k) was further confirmed by its far greater ability to displace (125)I-labelled alphadendrotoxin binding to Kv1.1-1.2 than Kv1.6-1.2 channels. Thus, due to the profiles of these two channel subtypes being found to differ, it seems that only multimers corresponding to those present in the nervous system provide meaningful targets for drug development.

  15. Structure and stoichiometry of an accessory subunit TRIP8b interaction with hyperpolarization-activated cyclic nucleotide-gated channels

    PubMed Central

    Bankston, John R.; Camp, Stacey S.; DiMaio, Frank; Lewis, Alan S.; Chetkovich, Dane M.; Zagotta, William N.

    2012-01-01

    Ion channels operate in intact tissues as part of large macromolecular complexes that can include cytoskeletal proteins, scaffolding proteins, signaling molecules, and a litany of other molecules. The proteins that make up these complexes can influence the trafficking, localization, and biophysical properties of the channel. TRIP8b (tetratricopetide repeat-containing Rab8b-interacting protein) is a recently discovered accessory subunit of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that contributes to the substantial dendritic localization of HCN channels in many types of neurons. TRIP8b interacts with the carboxyl-terminal region of HCN channels and regulates their cell-surface expression level and cyclic nucleotide dependence. Here we examine the molecular determinants of TRIP8b binding to HCN2 channels. Using a single-molecule fluorescence bleaching method, we found that TRIP8b and HCN2 form an obligate 4:4 complex in intact channels. Fluorescence-detection size-exclusion chromatography and fluorescence anisotropy allowed us to confirm that two different domains in the carboxyl-terminal portion of TRIP8b—the tetratricopepide repeat region and the TRIP8b conserved region—interact with two different regions of the HCN carboxyl-terminal region: the carboxyl-terminal three amino acids (SNL) and the cyclic nucleotide-binding domain, respectively. And finally, using X-ray crystallography, we determined the atomic structure of the tetratricopepide region of TRIP8b in complex with a peptide of the carboxy-terminus of HCN2. Together, these experiments begin to uncover the mechanism for TRIP8b binding and regulation of HCN channels. PMID:22550182

  16. Calcium activated K⁺ channels in the electroreceptor of the skate confirmed by cloning. Details of subunits and splicing.

    PubMed

    King, Benjamin L; Shi, Ling Fang; Kao, Peter; Clusin, William T

    2016-03-01

    Elasmobranchs detect small potentials using excitable cells of the ampulla of Lorenzini which have calcium-activated K(+) channels, first described in 1974. A distinctive feature of the outward current in voltage clamped ampullae is its apparent insensitivity to voltage. The sequence of a BK channel α isoform expressed in the ampulla of the skate was characterized. A signal peptide is present at the beginning of the gene. When compared to human isoform 1 (the canonical sequence), the largest difference was absence of a 59 amino acid region from the S8-S9 intra-cellular linker that contains the strex regulatory domain. The ampulla isoform was also compared with the isoform predicted in late skate embryos where strex was also absent. The BK voltage sensors were conserved in both skate isoforms. Differences between the skate and human BK channel included alternative splicing. Alternative splicing occurs at seven previously defined sites that are characteristic for BK channels in general and hair cells in particular. Skate BK sequences were highly similar to the Australian ghost shark and several other vertebrate species. Based on alignment of known BK sequences with the skate genome and transcriptome, there are at least two isoforms of Kcnma1α expressed in the skate. One of the β subunits (β4), which is known to decrease voltage sensitivity, was also identified in the skate genome and transcriptome and in the ampulla. These studies advance our knowledge of BK channels and suggest further studies in the ampulla and other excitable tissues. PMID:26687710

  17. A Specific Subset of Transient Receptor Potential Vanilloid-Type Channel Subunits in Caenorhabditis elegans Endocrine Cells Function as Mixed Heteromers to Promote Neurotransmitter Release

    PubMed Central

    Jose, Antony M.; Bany, I. Amy; Chase, Daniel L.; Koelle, Michael R.

    2007-01-01

    Transient receptor potential (TRP) channel subunits form homotetramers that function in sensory transduction. Heteromeric channels also form, but their physiological subunit compositions and functions are largely unknown. We found a dominant-negative mutant of the C. elegans TRPV (vanilloid-type) subunit OCR-2 that apparently incorporates into and inactivates OCR-2 homomers as well as heteromers with the TRPV subunits OCR-1 and -4, resulting in a premature egg-laying defect. This defect is reproduced by knocking out all three OCR genes, but not by any single knockout. Thus a mixture of redundant heteromeric channels prevents premature egg laying. These channels, as well as the G-protein Gαo, function in neuroendocrine cells to promote release of neurotransmitters that block egg laying until eggs filling the uterus deform the neuroendocrine cells. The TRPV channel OSM-9, previously suggested to be an obligate heteromeric partner of OCR-2 in sensory neurons, is expressed in the neuroendocrine cells but has no detectable role in egg laying. Our results identify a specific set of heteromeric TRPV channels that redundantly regulate neuroendocrine function and show that a subunit combination that functions in sensory neurons is also present in neuroendocrine cells but has no detectable function in these cells. PMID:17057248

  18. Silent S-Type Anion Channel Subunit SLAH1 Gates SLAH3 Open for Chloride Root-to-Shoot Translocation.

    PubMed

    Cubero-Font, Paloma; Maierhofer, Tobias; Jaslan, Justyna; Rosales, Miguel A; Espartero, Joaquín; Díaz-Rueda, Pablo; Müller, Heike M; Hürter, Anna-Lena; Al-Rasheid, Khaled A S; Marten, Irene; Hedrich, Rainer; Colmenero-Flores, José M; Geiger, Dietmar

    2016-08-22

    Higher plants take up nutrients via the roots and load them into xylem vessels for translocation to the shoot. After uptake, anions have to be channeled toward the root xylem vessels. Thereby, xylem parenchyma and pericycle cells control the anion composition of the root-shoot xylem sap [1-6]. The fact that salt-tolerant genotypes possess lower xylem-sap Cl(-) contents compared to salt-sensitive genotypes [7-10] indicates that membrane transport proteins at the sites of xylem loading contribute to plant salinity tolerance via selective chloride exclusion. However, the molecular mechanism of xylem loading that lies behind the balance between NO3(-) and Cl(-) loading remains largely unknown. Here we identify two root anion channels in Arabidopsis, SLAH1 and SLAH3, that control the shoot NO3(-)/Cl(-) ratio. The AtSLAH1 gene is expressed in the root xylem-pole pericycle, where it co-localizes with AtSLAH3. Under high soil salinity, AtSLAH1 expression markedly declined and the chloride content of the xylem sap in AtSLAH1 loss-of-function mutants was half of the wild-type level only. SLAH3 anion channels are not active per se but require extracellular nitrate and phosphorylation by calcium-dependent kinases (CPKs) [11-13]. When co-expressed in Xenopus oocytes, however, the electrically silent SLAH1 subunit gates SLAH3 open even in the absence of nitrate- and calcium-dependent kinases. Apparently, SLAH1/SLAH3 heteromerization facilitates SLAH3-mediated chloride efflux from pericycle cells into the root xylem vessels. Our results indicate that under salt stress, plants adjust the distribution of NO3(-) and Cl(-) between root and shoot via differential expression and assembly of SLAH1/SLAH3 anion channel subunits. PMID:27397895

  19. Silent S-Type Anion Channel Subunit SLAH1 Gates SLAH3 Open for Chloride Root-to-Shoot Translocation.

    PubMed

    Cubero-Font, Paloma; Maierhofer, Tobias; Jaslan, Justyna; Rosales, Miguel A; Espartero, Joaquín; Díaz-Rueda, Pablo; Müller, Heike M; Hürter, Anna-Lena; Al-Rasheid, Khaled A S; Marten, Irene; Hedrich, Rainer; Colmenero-Flores, José M; Geiger, Dietmar

    2016-08-22

    Higher plants take up nutrients via the roots and load them into xylem vessels for translocation to the shoot. After uptake, anions have to be channeled toward the root xylem vessels. Thereby, xylem parenchyma and pericycle cells control the anion composition of the root-shoot xylem sap [1-6]. The fact that salt-tolerant genotypes possess lower xylem-sap Cl(-) contents compared to salt-sensitive genotypes [7-10] indicates that membrane transport proteins at the sites of xylem loading contribute to plant salinity tolerance via selective chloride exclusion. However, the molecular mechanism of xylem loading that lies behind the balance between NO3(-) and Cl(-) loading remains largely unknown. Here we identify two root anion channels in Arabidopsis, SLAH1 and SLAH3, that control the shoot NO3(-)/Cl(-) ratio. The AtSLAH1 gene is expressed in the root xylem-pole pericycle, where it co-localizes with AtSLAH3. Under high soil salinity, AtSLAH1 expression markedly declined and the chloride content of the xylem sap in AtSLAH1 loss-of-function mutants was half of the wild-type level only. SLAH3 anion channels are not active per se but require extracellular nitrate and phosphorylation by calcium-dependent kinases (CPKs) [11-13]. When co-expressed in Xenopus oocytes, however, the electrically silent SLAH1 subunit gates SLAH3 open even in the absence of nitrate- and calcium-dependent kinases. Apparently, SLAH1/SLAH3 heteromerization facilitates SLAH3-mediated chloride efflux from pericycle cells into the root xylem vessels. Our results indicate that under salt stress, plants adjust the distribution of NO3(-) and Cl(-) between root and shoot via differential expression and assembly of SLAH1/SLAH3 anion channel subunits.

  20. Solution structure of the N-terminal A domain of the human voltage-gated Ca2+channel beta4a subunit.

    PubMed

    Vendel, Andrew C; Rithner, Christopher D; Lyons, Barbara A; Horne, William A

    2006-02-01

    Ca2+ channel beta subunits regulate trafficking and gating (opening and closing) of voltage-dependent Ca2+ channel alpha1 subunits. Based on primary sequence comparisons, they are thought to be modular structures composed of five domains (A-E) that are related to the large family of membrane associated guanylate-kinase (MAGUK) proteins. The crystal structures of the beta subunit core, B-D, domains have recently been reported; however, very little is known about the structures of the A and E domains. The N-terminal A domain is a hypervariable region that differs among the four subtypes of Ca2+ channel beta subunits (beta1-beta4). Furthermore, this domain undergoes alternative splicing to create multiple N-terminal structures within a given gene class that have distinct effects on gating. We have solved the solution structure of the A domain of the human beta4a subunit, a splice variant that we have shown previously to have alpha1 subunit subtype-specific effects on Ca2+ channel trafficking and gating. PMID:16385006

  1. Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit

    PubMed Central

    Antcliff, Jennifer F; Haider, Shozeb; Proks, Peter; Sansom, Mark S P; Ashcroft, Frances M

    2005-01-01

    ATP-sensitive potassium (KATP) channels couple cell metabolism to electrical activity by regulating K+ flux across the plasma membrane. Channel closure is mediated by ATP, which binds to the pore-forming subunit (Kir6.2). Here we use homology modelling and ligand docking to construct a model of the Kir6.2 tetramer and identify the ATP-binding site. The model is consistent with a large amount of functional data and was further tested by mutagenesis. Ligand binding occurs at the interface between two subunits. The phosphate tail of ATP interacts with R201 and K185 in the C-terminus of one subunit, and with R50 in the N-terminus of another; the N6 atom of the adenine ring interacts with E179 and R301 in the same subunit. Mutation of residues lining the binding pocket reduced ATP-dependent channel inhibition. The model also suggests that interactions between the C-terminus of one subunit and the ‘slide helix' of the adjacent subunit may be involved in ATP-dependent gating. Consistent with a role in gating, mutations in the slide helix bias the intrinsic channel conformation towards the open state. PMID:15650751

  2. Pharmacological characteristics of Kv1.1- and Kv1.2-containing channels are influenced by the stoichiometry and positioning of their α subunits.

    PubMed

    Al-Sabi, Ahmed; Kaza, Seshu Kumar; Dolly, J Oliver; Wang, Jiafu

    2013-08-15

    Voltage-sensitive neuronal Kv1 channels composed of four α subunits and four associated auxiliary β subunits control neuronal excitability and neurotransmission. Limited information exists on the combinations of α subunit isoforms (i.e. Kv1.1-1.6) or their positions in the oligomers, and how these affect sensitivity to blockers. It is known that TEA (tetraethylammonium) inhibits Kv1.1 channels largely due to binding a critical tyrosine (Tyr379) in the pore, whereas Val381 at the equivalent location in Kv1.2 makes it insensitive. With the eventual aim of developing blockers for therapeutic purposes, Kv1.1 and 1.2 α subunit genes were concatenated to form combinations representing those in central neurons, followed by surface expression in HEK (human embryonic kidney)-293 cells as single-chain functional proteins. Patch-clamp recordings demonstrated the influences of the ratios and positioning of these α subunits on the biophysical and pharmacological properties of oligomeric K+ channels. Raising the ratio of Kv1.1 to Kv1.2 in Kv1.2-1.2-1.1-1.2 led to the resultant channels being more sensitive to TEA and also affected their biophysical parameters. Moreover, mutagenesis of one or more residues in the first Kv1.2 to resemble those in Kv1.1 increased TEA sensitivity only when it is adjacent to a Kv1.1 subunit, whereas placing a non-interactive subunit between these two diminished susceptibility. The findings of the present study support the possibility of α subunits being precisely arranged in Kv1 channels, rather than being randomly assembled. This is important in designing drugs with abilities to inhibit particular oligomeric Kv1 subtypes, with the goal of elevating neuronal excitability and improving neurotransmission in certain diseases.

  3. GlialCAM, a CLC-2 Cl- Channel Subunit, Activates the Slow Gate of CLC Chloride Channels

    PubMed Central

    Jeworutzki, Elena; Lagostena, Laura; Elorza-Vidal, Xabier; López-Hernández, Tania; Estévez, Raúl; Pusch, Michael

    2014-01-01

    GlialCAM, a glial cell adhesion molecule mutated in megalencephalic leukoencephalopathy with subcortical cysts, targets the CLC-2 Cl- channel to cell contacts in glia and activates CLC-2 currents in vitro and in vivo. We found that GlialCAM clusters all CLC channels at cell contacts in vitro and thus studied GlialCAM interaction with CLC channels to investigate the mechanism of functional activation. GlialCAM slowed deactivation kinetics of CLC-Ka/barttin channels and increased CLC-0 currents opening the common gate and slowing its deactivation. No functional effect was seen for common gate deficient CLC-0 mutants. Similarly, GlialCAM targets the common gate deficient CLC-2 mutant E211V/H816A to cell contacts, without altering its function. Thus, GlialCAM is able to interact with all CLC channels tested, targeting them to cell junctions and activating them by stabilizing the open configuration of the common gate. These results are important to better understand the physiological role of GlialCAM/CLC-2 interaction. PMID:25185546

  4. Piezo proteins are pore-forming subunits of mechanically activated channels.

    PubMed

    Coste, Bertrand; Xiao, Bailong; Santos, Jose S; Syeda, Ruhma; Grandl, Jörg; Spencer, Kathryn S; Kim, Sung Eun; Schmidt, Manuela; Mathur, Jayanti; Dubin, Adrienne E; Montal, Mauricio; Patapoutian, Ardem

    2012-02-19

    Mechanotransduction has an important role in physiology. Biological processes including sensing touch and sound waves require as-yet-unidentified cation channels that detect pressure. Mouse Piezo1 (MmPiezo1) and MmPiezo2 (also called Fam38a and Fam38b, respectively) induce mechanically activated cationic currents in cells; however, it is unknown whether Piezo proteins are pore-forming ion channels or modulate ion channels. Here we show that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. MmPiezo1 assembles as a ∼1.2-million-dalton homo-oligomer, with no evidence of other proteins in this complex. Purified MmPiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium-red-sensitive ion channels. These data demonstrate that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction.

  5. The β subunit of the high-conductance calcium-activated potassium channel contributes to the high-affinity receptor for charybdotoxin

    PubMed Central

    Hanner, Markus; Schmalhofer, William A.; Munujos, Petraki; Knaus, Hans-Günther; Kaczorowski, Gregory J.; Garcia, Maria L.

    1997-01-01

    Transient expression of either α or α+β subunits of the high-conductance Ca2+-activated K+ (maxi-K) channel has been achieved in COS-1 cells. Expression has been studied using charybdotoxin (ChTX), a peptidyl inhibitor that binds in the pore on the α subunit. Although some properties of monoiodotyrosine-ChTX (125I-ChTX) binding to membranes derived from each type of transfected cells appear to be identical, other parameters of the binding reaction are markedly different. Under low ionic strength conditions, the affinity constant for 125I-ChTX measured under equilibrium binding conditions is increased ca. 50-fold in the presence of the β subunit. The rate constant for 125I-ChTX association is enhanced ca. 5-fold, whereas the dissociation rate constant is decreased more than 7-fold when the β subunit is present. These data indicate that functional coassembly of maxi-K channel subunits can be obtained in a transient expression system, and that the β subunit has profound effects on 125I-ChTX binding. We postulate that certain negatively charged residues in the large extracellular loop of β attract the positively charged 125I-ChTX to its binding site on α through electrostatic interactions, and account for effects observed on ligand association kinetics. Moreover, another residue(s) in the loop of β must contribute to stabilization of the toxin-bound state, either by a direct interaction with toxin, or through an allosteric effect on the α subunit. Certain regions in the extracellular loop of the β subunit may be in close proximity to the pore of the channel, and could play an important role in maxi-K channel function. PMID:9096310

  6. The Cyclooctadepsipeptide Anthelmintic Emodepside Differentially Modulates Nematode, Insect and Human Calcium-Activated Potassium (SLO) Channel Alpha Subunits

    PubMed Central

    Schoenhense, Eva; Harder, Achim; Raming, Klaus; O’Kelly, Ita; Ndukwe, Kelechi; O’Connor, Vincent; Walker, Robert J.; Holden-Dye, Lindy

    2015-01-01

    The anthelmintic emodepside paralyses adult filarial worms, via a mode of action distinct from previous anthelmintics and has recently garnered interest as a new treatment for onchocerciasis. Whole organism data suggest its anthelmintic action is underpinned by a selective activation of the nematode isoform of an evolutionary conserved Ca2+-activated K+ channel, SLO-1. To test this at the molecular level we compared the actions of emodepside at heterologously expressed SLO-1 alpha subunit orthologues from nematode (Caenorhabditis elegans), Drosophila melanogaster and human using whole cell voltage clamp. Intriguingly we found that emodepside modulated nematode (Ce slo-1), insect (Drosophila, Dm slo) and human (hum kcnma1)SLO channels but that there are discrete differences in the features of the modulation that are consistent with its anthelmintic efficacy. Nematode SLO-1 currents required 100 μM intracellular Ca2+ and were strongly facilitated by emodepside (100 nM; +73.0 ± 17.4%; n = 9; p<0.001). Drosophila Slo currents on the other hand were activated by emodepside (10 μM) in the presence of 52 nM Ca2+ but were inhibited in the presence of 290 nM Ca2+ and exhibited a characteristic loss of rectification. Human Slo required 300nM Ca2+ and emodepside transiently facilitated currents (100nM; +33.5 ± 9%; n = 8; p<0.05) followed by a sustained inhibition (-52.6 ± 9.8%; n = 8; p<0.001). This first cross phyla comparison of the actions of emodepside at nematode, insect and human channels provides new mechanistic insight into the compound’s complex modulation of SLO channels. Consistent with whole organism behavioural studies on C. elegans, it indicates its anthelmintic action derives from a strong activation of SLO current, not observed in the human channel. These data provide an important benchmark for the wider deployment of emodepside as an anthelmintic treatment. PMID:26437177

  7. Multi-Generational Pharmacophore Modeling for Ligands to the Cholane Steroid-Recognition Site in the β1 Modulatory Subunit of the BKCa Channel

    PubMed Central

    McMillan, Jacob E.; Bukiya, Anna N.; Terrell, Camisha L.; Patil, Shivaputra A.; Miller, Duane D.; Dopico, Alex M.; Parrill, Abby L.

    2014-01-01

    Large conductance, voltage- and Ca2+-gated K+ (BKCa) channels play a critical role in smooth muscle contractility and thus represent an emerging therapeutic target for drug development to treat vascular disease, gastrointestinal, bladder and uterine disorders. Several compounds are known to target the ubiquitously expressed BKCa channel-forming α subunit. In contrast, just a few are known to target the BKCa modulatory β1 subunit, which is highly expressed in smooth muscle and scarce in most other tissues. Lack of available high-resolution structural data makes structure-based pharmacophore modeling of β1 subunit-dependent BKCa channel activators a major challenge. Following recent discoveries of novel BKCa channel activators that act via β1 subunit recognition, we performed ligand-based pharmacophore modeling that led to the successful creation and fine-tuning of a pharmacophore over several generations. Initial models were developed using physiologically active cholane steroids (bile acids) as template. However, as more compounds that act on BKCa β1 have been discovered, our model has been refined to improve accuracy. Database searching with our best-performing model has uncovered several novel compounds as candidate BKCa β1 subunit ligands. Eight of the identified compounds were experimentally screened and two proved to be activators of recombinant BKCa β1 complexes. One of these activators, sobetirome, differs substantially in structure from any previously reported activator. PMID:25459769

  8. The juvenile myoclonic epilepsy mutant of the calcium channel β4 subunit displays normal nuclear targeting in nerve and muscle cells

    PubMed Central

    Etemad, Solmaz; Campiglio, Marta; Obermair, Gerald J; Flucher, Bernhard E

    2014-01-01

    Voltage-gated calcium channels regulate gene expression by controlling calcium entry through the plasma membrane and by direct interactions of channel fragments and auxiliary β subunits with promoters and the epigenetic machinery in the nucleus. Mutations of the calcium channel β4 subunit gene (CACNB4) cause juvenile myoclonic epilepsy in humans and ataxia and epileptic seizures in mice. Recently a model has been proposed according to which failed nuclear translocation of the truncated β4 subunit R482X mutation resulted in altered transcriptional regulation and consequently in neurological disease. Here we examined the nuclear targeting properties of the truncated β4b(1–481) subunit in tsA-201 cells, skeletal myotubes, and in hippocampal neurons. Contrary to expectation, nuclear targeting of β4b(1–481) was not reduced compared with full-length β4b in any one of the three cell systems. These findings oppose an essential role of the β4 distal C-terminus in nuclear targeting and challenge the idea that the nuclear function of calcium channel β4 subunits is critically involved in the etiology of epilepsy and ataxia in patients and mouse models with mutations in the CACNB4 gene. PMID:24875574

  9. The juvenile myoclonic epilepsy mutant of the calcium channel β(4) subunit displays normal nuclear targeting in nerve and muscle cells.

    PubMed

    Etemad, Solmaz; Campiglio, Marta; Obermair, Gerald J; Flucher, Bernhard E

    2014-01-01

    Voltage-gated calcium channels regulate gene expression by controlling calcium entry through the plasma membrane and by direct interactions of channel fragments and auxiliary β subunits with promoters and the epigenetic machinery in the nucleus. Mutations of the calcium channel β(4) subunit gene (CACNB4) cause juvenile myoclonic epilepsy in humans and ataxia and epileptic seizures in mice. Recently a model has been proposed according to which failed nuclear translocation of the truncated β(4) subunit R482X mutation resulted in altered transcriptional regulation and consequently in neurological disease. Here we examined the nuclear targeting properties of the truncated β(4b(1–481)) subunit in tsA-201 cells, skeletal myotubes, and in hippocampal neurons. Contrary to expectation, nuclear targeting of β(4b(1–481)) was not reduced compared with full-length β(4b) in any one of the three cell systems. These findings oppose an essential role of the β(4) distal C-terminus in nuclear targeting and challenge the idea that the nuclear function of calcium channel β(4) subunits is critically involved in the etiology of epilepsy and ataxia in patients and mouse models with mutations in the CACNB4 gene. PMID:24875574

  10. Troponin T3 regulates nuclear localization of the calcium channel Cavβ1a subunit in skeletal muscle

    PubMed Central

    Zhang, Tan; Taylor, Jackson; Jiang, Yang; Pereyra, Andrea S.; Messi, Maria Laura; Wang, Zhong-Min; Hereñú, Claudia; Delbono, Osvaldo

    2015-01-01

    The voltage-gated calcium channel (Cav) β1a subunit (Cavβ1a) plays an important role in excitation-contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Cavβ1a subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160-244 aa) and Cavβ1a NH2-terminus (1-99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Cavβ1a/YFP shows that TnT3 facilitates Cavβ1a nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. PMID:25981458

  11. Troponin T3 regulates nuclear localization of the calcium channel Cavβ1a subunit in skeletal muscle.

    PubMed

    Zhang, Tan; Taylor, Jackson; Jiang, Yang; Pereyra, Andrea S; Messi, Maria Laura; Wang, Zhong-Min; Hereñú, Claudia; Delbono, Osvaldo

    2015-08-15

    The voltage-gated calcium channel (Cav) β1a subunit (Cavβ1a) plays an important role in excitation-contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Cavβ1a subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160-244 aa) and Cavβ1a NH2-terminus (1-99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Cavβ1a/YFP shows that TnT3 facilitates Cavβ1a nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. PMID:25981458

  12. Voltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature.

    PubMed

    Fohlmeister, Jürgen F

    2015-06-01

    The structural similarity between the primary molecules of voltage-gated Na and K channels (alpha subunits) and activation gating in the Hodgkin-Huxley model is brought into full agreement by increasing the model's sodium kinetics to fourth order (m(3) → m(4)). Both structures then virtually imply activation gating by four independent subprocesses acting in parallel. The kinetics coalesce in four-dimensional (4D) cubic diagrams (16 states, 32 reversible transitions) that show the structure to be highly failure resistant against significant partial loss of gating function. Rate constants, as fitted in phase plot data of retinal ganglion cell excitation, reflect the molecular nature of the gating transitions. Additional dimensions (6D cubic diagrams) accommodate kinetically coupled sodium inactivation and gating processes associated with beta subunits. The gating transitions of coupled sodium inactivation appear to be thermodynamically irreversible; response to dielectric surface charges (capacitive displacement) provides a potential energy source for those transitions and yields highly energy-efficient excitation. A comparison of temperature responses of the squid giant axon (apparently Arrhenius) and mammalian channel gating yields kinetic Q10 = 2.2 for alpha unit gating, whose transitions are rate-limiting at mammalian temperatures; beta unit kinetic Q10 = 14 reproduces the observed non-Arrhenius deviation of mammalian gating at low temperatures; the Q10 of sodium inactivation gating matches the rate-limiting component of activation gating at all temperatures. The model kinetics reproduce the physiologically large frequency range for repetitive firing in ganglion cells and the physiologically observed strong temperature dependence of recovery from inactivation. PMID:25867741

  13. Voltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature.

    PubMed

    Fohlmeister, Jürgen F

    2015-06-01

    The structural similarity between the primary molecules of voltage-gated Na and K channels (alpha subunits) and activation gating in the Hodgkin-Huxley model is brought into full agreement by increasing the model's sodium kinetics to fourth order (m(3) → m(4)). Both structures then virtually imply activation gating by four independent subprocesses acting in parallel. The kinetics coalesce in four-dimensional (4D) cubic diagrams (16 states, 32 reversible transitions) that show the structure to be highly failure resistant against significant partial loss of gating function. Rate constants, as fitted in phase plot data of retinal ganglion cell excitation, reflect the molecular nature of the gating transitions. Additional dimensions (6D cubic diagrams) accommodate kinetically coupled sodium inactivation and gating processes associated with beta subunits. The gating transitions of coupled sodium inactivation appear to be thermodynamically irreversible; response to dielectric surface charges (capacitive displacement) provides a potential energy source for those transitions and yields highly energy-efficient excitation. A comparison of temperature responses of the squid giant axon (apparently Arrhenius) and mammalian channel gating yields kinetic Q10 = 2.2 for alpha unit gating, whose transitions are rate-limiting at mammalian temperatures; beta unit kinetic Q10 = 14 reproduces the observed non-Arrhenius deviation of mammalian gating at low temperatures; the Q10 of sodium inactivation gating matches the rate-limiting component of activation gating at all temperatures. The model kinetics reproduce the physiologically large frequency range for repetitive firing in ganglion cells and the physiologically observed strong temperature dependence of recovery from inactivation.

  14. Effects of MiRP1 and DPP6 β-subunits on the blockade induced by flecainide of KV4.3/KChIP2 channels

    PubMed Central

    Radicke, S; Vaquero, M; Caballero, R; Gómez, R; Núñez, L; Tamargo, J; Ravens, U; Wettwer, E; Delpón, E

    2008-01-01

    Background and purpose: The human cardiac transient outward potassium current (Ito) is believed to be composed of the pore-forming KV4.3 α-subunit, coassembled with modulatory β-subunits as KChIP2, MiRP1 and DPP6 proteins. β-Subunits can alter the pharmacological response of Ito; therefore, we analysed the effects of flecainide on KV4.3/KChIP2 channels coassembled with MiRP1 and/or DPP6 β-subunits. Experimental approach: Currents were recorded in Chinese hamster ovary cells stably expressing KV4.3/KChIP2 channels, and transiently transfected with either MiRP1, DPP6 or both, using the whole-cell patch-clamp technique. Key results: In control conditions, KV4.3/KChIP2/MiRP1 channels exhibited the slowest activation and inactivation kinetics and showed an ‘overshoot' in the time course of recovery from inactivation. The midpoint values (Vh) of the activation and inactivation curves for KV4.3/KChIP2/DPP6 and KV4.3/KChIP2/MiRP1/DPP6 channels were ≈10 mV more negative than Vh values for KV4.3/KChIP2 and KV4.3/KChIP2/MiRP1 channels. Flecainide (0.1–100 μM) produced a similar concentration-dependent blockade of total integrated current flow (IC50 ≈10 μM) in all the channel complexes. However, the IC50 values for peak current amplitude and inactivated channel block were significantly different. Flecainide shifted the Vh values of both the activation and inactivation curves to more negative potentials and apparently accelerated inactivation kinetics in all channels. Moreover, flecainide slowed recovery from inactivation in all the channel complexes and suppressed the ‘overshoot' in KV4.3/KChIP2/MiRP1 channels. Conclusions and implications: Flecainide directly binds to the KV4.3 α-subunit when the channels are in the open and inactivated state and the presence of the β-subunits modulates the blockade by altering the gating function. PMID:18536731

  15. Cloning and functional expression of voltage-gated ion channel subunits from cnidocytes of the Portuguese Man O'War Physalia physalis.

    PubMed

    Bouchard, C; Price, R B; Moneypenny, C G; Thompson, L F; Zillhardt, M; Stalheim, L; Anderson, P A V

    2006-08-01

    Cnidocytes were dissociated from the tentacles of the Portuguese Man O'War Physalia physalis using heat treatment, and purified using density centrifugation. Visual observation confirmed that these cnidocytes contained a nucleus, a cnidocyst and an apical stereocilium, confirming that the cells were intact. A cnidocyte-specific amplified cDNA library was then prepared using RNA isolated from the cnidocytes, and screened for voltage-gated ion channel subunits using conventional molecular cloning techniques. A variety of channel proteins were identified and full-length sequence obtained for two of them, a Ca(2+) channel beta subunit (PpCa(V)beta) and a Shaker-like K(+) channel (PpK(V)1). The location of the transcripts was confirmed by RT-PCR of total RNA isolated from individually selected and rinsed cnidocytes. The functional properties of these two channel proteins were characterized electrophysiologically using heterologous expression. PpCa(V)beta modulates currents carried by both cnidarian and mammalian alpha(1) subunits although the specifics of the modulation differ. PpK(V)1 produces fast transient outward currents that have properties typical of other Shaker channels. The possible role of these channel proteins in the behavior of cnidocytes is discussed. PMID:16857882

  16. Polymorphisms of amiloride-sensitive sodium channel subunits in five sporadic cases of pseudohypoaldosteronism: do they have pathologic potential?

    PubMed

    Arai, K; Zachman, K; Shibasaki, T; Chrousos, G P

    1999-07-01

    Pseudohypoaldosteronism (PHA) is characterized by congenital resistance of the kidney and/or other mineralocorticoid target tissues to aldosterone, resulting in excessive salt wasting. Mineralocorticoid receptor (MR) and postreceptor defects in the aldosterone-responsive amiloride-sensitive sodium channel (ENaC) subunits have been suggested as potential loci of the defect in this disease, whereas recently defects in MR and ENaC subunits were reported in familial PHA cases. Here we studied the ENaC subunit alpha, beta, and gamma complementary DNAs (cDNAs) in a series of five sporadic cases of PHA, whose MR cDNA contained nonconservative homozygous (C944-->T944, Ala241-->Val241) and/or a conservative heterozygous substitutions (A760-->G760, Ileu180-->Val180), which, however, were also present at high frequencies in a control population with apparently normal salt conservation. We found a nonconservative substitution (A2086-->G2086, Thr663-->Ala663) in the alphaENaC in all five of our patients, two of whom were homozygous and three of whom were heterozygous for this alteration, which was also present in the homozygous and heterozygous form in 31% and 64% of control subjects, respectively. We also found a nonconservative homozygous substitution (C1006-->G1006, Pro336-->Ara336) in the betaENaC and three nonconservative and conservative homozygous substitutions (T554-->A554, Trp178-->Arg178; C1526-->G1526, Pro501-->Ala501; T1862-->G1862, Ser614-->Ala614) in the gammaENaC of all five of our patients and in a substantial proportion of control subjects. Interestingly, when the patient group was compared to controls, a significantly increased concurrence of the MR and alphaENaC polymorphisms was found in the patients (P<0.025). We conclude that the changes identified in the cDNA of the three ENaC subunits in the patients with sporadic PHA are polymorphisms, which on their own have no apparent pathophysiological significance. We hypothesize, however, that these polymorphisms

  17. Disruption of the potassium channel regulatory subunit KCNE2 causes iron-deficient anemia.

    PubMed

    Salsbury, Grace; Cambridge, Emma L; McIntyre, Zoe; Arends, Mark J; Karp, Natasha A; Isherwood, Christopher; Shannon, Carl; Hooks, Yvette; Ramirez-Solis, Ramiro; Adams, David J; White, Jacqueline K; Speak, Anneliese O

    2014-12-01

    Iron homeostasis is a dynamic process that is tightly controlled to balance iron uptake, storage, and export. Reduction of dietary iron from the ferric to the ferrous form is required for uptake by solute carrier family 11 (proton-coupled divalent metal ion transporters), member 2 (Slc11a2) into the enterocytes. Both processes are proton dependent and have led to the suggestion of the importance of acidic gastric pH for the absorption of dietary iron. Potassium voltage-gated channel subfamily E, member 2 (KCNE2), in combination with potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1), form a gastric potassium channel essential for gastric acidification. Deficiency of either Kcne2 or Kcnq1 results in achlorhydia, gastric hyperplasia, and neoplasia, but the impact on iron absorption has not, to our knowledge, been investigated. Here we report that Kcne2-deficient mice, in addition to the previously reported phenotypes, also present with iron-deficient anemia. Interestingly, impaired function of KCNQ1 results in iron-deficient anemia in Jervell and Lange-Nielsen syndrome patients. We speculate that impaired function of KCNE2 could result in the same clinical phenotype.

  18. KCNE variants reveal a critical role of the β subunit carboxyl terminus in PKA-dependent regulation of the IKs potassium channel

    PubMed Central

    Kurokawa, Junko; Bankston, John R.; Kaihara, Asami; Chen, Lei; Furukawa, Tetsushi; Kass, Robert S.

    2009-01-01

    Co-assembly of KCNQ1 with different accessory, or beta, subunits that are members of the KCNE family results in potassium (K+) channels that conduct functionally distinct currents. The alpha subunit KCNQ1 conducts a slowly activated delayed rectifier K+ current (IKs), a major contributor to cardiac repolarization, when co-assembled with KCNE1 and channels that favor the open state when co-assembled with either KCNE2 or KCNE3. In the heart, stimulation of the sympathetic nervous system enhances IKs. A macromolecular signaling complex of the IKs channel including the targeting protein Yotiao coordinates up or downregulation of channel activity by protein kinase A (PKA) phosphorylation and dephosphorylation of molecules in the complex. β-adrenergic receptor mediated IKs upregulation, a functional consequence of PKA phosphorylation of the KCNQ1 amino terminus (N-T), requires co-expression of KCNQ1/Yotiao with KCNE1. Here, we report that co-expression of KCNE2, like KCNE1, confers a functional channel response to KCNQ1 phosphorylation, but co-expression of KCNE3 does not. Amino acid sequence comparison among the KCNE peptides, and KCNE1 truncation experiments, reveal a segment of the predicted intracellular KCNE1 carboxyl terminus (C-T) that is necessary for functional transduction of PKA phosphorylated KCNQ1. Moreover, chimera analysis reveals a region of KCNE1 sufficient to confer cAMP-dependent functional regulation upon the KCNQ1_ KCNE3_Yotiao channel. The property of specific beta subunits to transduce post-translational regulation of alpha subunits of ion channels adds another dimension to our understanding molecular mechanisms underlying the diversity of regulation of native K+ channels. PMID:19077539

  19. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes.

    PubMed

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K; Mayer, Mark L

    2015-11-01

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. We hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species. PMID:26460032

  20. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes

    PubMed Central

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K.; Mayer, Mark L.

    2015-01-01

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. We hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species. PMID:26460032

  1. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes.

    PubMed

    Alberstein, Robert; Grey, Richard; Zimmet, Austin; Simmons, David K; Mayer, Mark L

    2015-11-01

    Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysis reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. We hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species.

  2. Integrative Approach for Computationally Inferring Interactions between the Alpha and Beta Subunits of the Calcium-Activated Potassium Channel (BK): a Docking Study

    PubMed Central

    González, Janneth; Gálvez, Angela; Morales, Ludis; Barreto, George E.; Capani, Francisco; Sierra, Omar; Torres, Yolima

    2013-01-01

    Three-dimensional models of the alpha- and beta-1 subunits of the calcium-activated potassium channel (BK) were predicted by threading modeling. A recursive approach comprising of sequence alignment and model building based on three templates was used to build these models, with the refinement of non-conserved regions carried out using threading techniques. The complex formed by the subunits was studied by means of docking techniques, using 3D models of the two subunits, and an approach based on rigid-body structures. Structural effects of the complex were analyzed with respect to hydrogen-bond interactions and binding-energy calculations. Potential interaction sites of the complex were determined by referencing a study of the difference accessible surface area (DASA) of the protein subunits in the complex. PMID:23492851

  3. Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy.

    PubMed

    Wycisk, Katharina Agnes; Zeitz, Christina; Feil, Silke; Wittmer, Mariana; Forster, Ursula; Neidhardt, John; Wissinger, Bernd; Zrenner, Eberhart; Wilke, Robert; Kohl, Susanne; Berger, Wolfgang

    2006-11-01

    Retinal signal transmission depends on the activity of high voltage-gated l-type calcium channels in photoreceptor ribbon synapses. We recently identified a truncating frameshift mutation in the Cacna2d4 gene in a spontaneous mouse mutant with profound loss of retinal signaling and an abnormal morphology of ribbon synapses in rods and cones. The Cacna2d4 gene encodes an l-type calcium-channel auxiliary subunit of the alpha (2) delta type. Mutations in its human orthologue, CACNA2D4, were not yet known to be associated with a disease. We performed mutation analyses of 34 patients who received an initial diagnosis of night blindness, and, in two affected siblings, we detected a homozygous nucleotide substitution (c.2406C-->A) in CACNA2D4. The mutation introduces a premature stop codon that truncates one-third of the corresponding open reading frame. Both patients share symptoms of slowly progressing cone dystrophy. These findings represent the first report of a mutation in the human CACNA2D4 gene and define a novel gene defect that causes autosomal recessive cone dystrophy.

  4. The Ca2+ Channel Subunit β2 Regulates Ca2+ Channel Abundance and Function in Inner Hair Cells and Is Required for Hearing

    PubMed Central

    Neef, Jakob; Gehrt, Anna; Bulankina, Anna V.; Meyer, Alexander C.; Riedel, Dietmar; Gregg, Ronald G.; Strenzke, Nicola; Moser, Tobias

    2015-01-01

    Hearing relies on Ca2+ influx-triggered exocytosis in cochlear inner hair cells (IHCs). Here we studied the role of the Ca2+ channel subunit CaVβ2 in hearing. Of the CaVβ1–4 mRNAs, IHCs predominantly contained CaVβ2. Hearing was severely impaired in mice lacking CaVβ2 in extracardiac tissues (CaVβ2−/−). This involved deficits in cochlear amplification and sound encoding. Otoacoustic emissions were reduced or absent in CaVβ2−/− mice, which showed strongly elevated auditory thresholds in single neuron recordings and auditory brainstem response measurements. CaVβ2−/− IHCs showed greatly reduced exocytosis (by 68%). This was mostly attributable to a decreased number of membrane-standing CaV1.3 channels. Confocal Ca2+ imaging revealed presynaptic Ca2+ microdomains albeit with much lower amplitudes, indicating synaptic clustering of fewer CaV1.3 channels. The coupling of the remaining Ca2+ influx to IHC exocytosis appeared unaffected. Extracellular recordings of sound-evoked spiking in the cochlear nucleus and auditory nerve revealed reduced spike rates in the CaVβ2−/− mice. Still, sizable onset and adapted spike rates were found during suprathreshold stimulation in CaVβ2−/− mice. This indicated that residual synaptic sound encoding occurred, although the number of presynaptic CaV1.3 channels and exocytosis were reduced to one-third. The normal developmental upregulation, clustering, and gating of large-conductance Ca2+ activated potassium channels in IHCs were impaired in the absence of CaVβ2. Moreover, we found the developmental efferent innervation to persist in CaVβ2-deficient IHCs. In summary, CaVβ2 has an essential role in regulating the abundance and properties of CaV1.3 channels in IHCs and, thereby, is critical for IHC development and synaptic encoding of sound. PMID:19710324

  5. Oxaliplatin administration increases expression of the voltage-dependent calcium channel α2δ-1 subunit in the rat spinal cord.

    PubMed

    Yamamoto, Ken; Tsuboi, Mayuko; Kambe, Toshie; Abe, Kenji; Nakatani, Yoshihiko; Kawakami, Kazuyoshi; Utsunomiya, Iku; Taguchi, Kyoji

    2016-02-01

    Oxaliplatin is a chemotherapeutic agent that is effective against various types of cancer including colorectal cancer. Acute cold hyperalgesia is a serious side effect of oxaliplatin treatment. Although the therapeutic drug pregabalin is beneficial for preventing peripheral neuropathic pain by targeting the voltage-dependent calcium channel α2δ-1 (Cavα2δ-1) subunit, the effect of oxaliplatin-induced acute cold hypersensitivity is uncertain. To analyze the contribution of the Cavα2δ-1 subunit to the development of oxaliplatin-induced acute cold hypersensitivity, Cavα2δ-1 subunit expression in the rat spinal cord was analyzed after oxaliplatin treatment. Behavioral assessment using the acetone spray test showed that 6 mg/kg oxaliplatin-induced cold hypersensitivity 2 and 4 days later. Oxaliplatin-induced acute cold hypersensitivity 4 days after treatment was significantly inhibited by pregabalin (50 mg/kg, p.o.). Oxaliplatin (6 mg/kg, i.p.) treatment increased the expression level of Cavα2δ-1 subunit mRNA and protein in the spinal cord 2 and 4 days after treatment. Immunohistochemistry showed that oxaliplatin increased Cavα2δ-1 subunit protein expression in superficial layers of the spinal dorsal horn 2 and 4 days after treatment. These results suggest that oxaliplatin treatment increases Cavα2δ-1 subunit expression in the superficial layers of the spinal cord and may contribute to functional peripheral acute cold hypersensitivity.

  6. Functional analysis of rod monochromacy-associated missense mutations in the CNGA3 subunit of the cone photoreceptor cGMP-gated channel.

    PubMed

    Muraki-Oda, Sanae; Toyoda, Futoshi; Okada, Akira; Tanabe, Shoko; Yamade, Shinichi; Ueyama, Hisao; Matsuura, Hiroshi; Ohji, Masahito

    2007-10-12

    Thirty-nine missense mutations, which had been identified in rod monochromacy or related disorders, in the CNGA3 subunit of cone photoreceptor cGMP-gated channels were analyzed. HEK293 cells were transfected with cDNA of the human CNGA3 subunit harboring each of these mutations in an expression vector. Patch-clamp recordings demonstrated that 32 of the 39 mutants did not show cGMP-activated current, suggesting that these 32 mutations cause a loss of function of the channels. From the remaining 7 mutants that showed cGMP-activated current, two mutations in the cyclic nucleotide-binding domain, T565M or E593K, were further studied. The half-maximal activating concentration (K(1/2)) for cGMP in the homomeric CNGA3-T565M channels (160microM) was 17.8-fold higher than that of the homomeric wild-type CNGA3 channels (9.0microM). Conversely, the K(1/2) for cGMP in the homomeric CNGA3-E593K channels (3.0microM) was 3-fold lower than that of the homomeric wild-type CNGA3 channels. These results suggest that the T565M and E593K mutations alter the apparent affinity for cGMP of the channels to cause cone dysfunction, resulting in rod monochromacy. PMID:17693388

  7. The β1-subunit of Na+/K+-ATPase interacts with BKCa channels and affects their steady-state expression on the cell surface

    PubMed Central

    Jha, Smita; Dryer, Stuart E.

    2009-01-01

    Large conductance Ca2+- activated K+ channels (BKCa) encoded by the Slo1 gene play a role in the physiological regulation of many cell types. Here, we show that the β1 subunit of Na+/K+-ATPase (NKβ1) interacts with the cytoplasmic COOH-terminal region of Slo1 proteins. Reduced expression of endogenous NKβ1 markedly inhibits evoked BKCa currents with no apparent effect on their gating. In addition, NKβ1 down-regulated cells show decreased density of Slo1 subunits on the cell surface. PMID:19729011

  8. Cloning and characterization of a calcium channel alpha 1 subunit from Drosophila melanogaster with similarity to the rat brain type D isoform.

    PubMed

    Zheng, W; Feng, G; Ren, D; Eberl, D F; Hannan, F; Dubald, M; Hall, L M

    1995-02-01

    We report the complete sequence of a calcium channel alpha 1 subunit cDNA cloned from a Drosophila head cDNA library. This cDNA encodes a deduced protein containing 2516 amino acids with a predicted molecular weight of 276,493. The deduced protein shares many features with vertebrate homologs, including four repeat structures, each containing six transmembrane domains, a conserved ion selectivity filter region between transmembrane domains 5 and 6, and an EF hand in the carboxy tail. The Drosophila subunit has unusually long initial amino and terminal carboxy tails. The region corresponding to the last transmembrane domain (IVS6) and the adjacent cytoplasmic domain has been postulated to form a phenylalkylamine-binding site in vertebrate calcium channels. This region is conserved in the Drosophila sequence, while domains thought to be involved in dihydropyridine binding show numerous changes. The Drosophila subunit exhibits 78.3% sequence similarity to the rat brain type D calcium channel alpha 1 subunit, and so has been designated as a Drosophila melanogaster calcium channel alpha 1 type D subunit (Dmca1D). In situ hybridization shows that Dmca1D is highly expressed in the embryonic nervous system. Northern analysis shows that Dmca1D cDNA hybridizes to three size classes of mRNA (9.5, 10.2, and 12.5 kb) in heads, but only two classes (9.5 and 12.5 kb) in bodies and legs. PCR analysis suggests that the Dmca1D message undergoes alternative splicing with more heterogeneity appearing in head and embryonic extracts than in bodies and legs. PMID:7869089

  9. Delta-subunit confers novel biophysical features to alpha beta gamma-human epithelial sodium channel (ENaC) via a physical interaction.

    PubMed

    Ji, Hong-Long; Su, Xue-Feng; Kedar, Shrestha; Li, Jie; Barbry, Pascal; Smith, Peter R; Matalon, Sadis; Benos, Dale J

    2006-03-24

    Native amiloride-sensitive Na+ channels exhibit a variety of biophysical properties, including variable sensitivities to amiloride, different ion selectivities, and diverse unitary conductances. The molecular basis of these differences has not been elucidated. We tested the hypothesis that co-expression of delta-epithelial sodium channel (ENaC) underlies, at least in part, the multiplicity of amiloride-sensitive Na+ conductances in epithelial cells. For example, the delta-subunit may form multimeric channels with alpha beta gamma-ENaC. Reverse transcription-PCR revealed that delta-ENaC is co-expressed with alpha beta gamma-subunits in cultured human lung (H441 and A549), pancreatic (CFPAC), and colonic epithelial cells (Caco-2). Indirect immunofluorescence microscopy revealed that delta-ENaC is co-expressed with alpha-, beta-, and gamma-ENaC in H441 cells at the protein level. Measurement of current-voltage that cation selectivity ratios for the revealed relationships Na+/Li+/K+/Cs+/Ca2+/Mg2+, the apparent dissociation constant (Ki) for amiloride, and unitary conductances for delta alpha beta gamma-ENaC differed from those of both alpha beta gamma- and delta beta gamma-ENaC (n = 6). The contribution of the delta subunit to P(Li)/P(Na) ratio and unitary Na+ conductance under bi-ionic conditions depended on the injected cRNA concentration. In addition, the EC50 for proton activation, mean open and closed times, and the self-inhibition time of delta alpha beta gamma-ENaC differed from those of alpha beta gamma- and delta beta gamma-ENaC. Co-immunoprecipitation of delta-ENaC with alpha- and gamma-subunits in H441 and transfected COS-7 cells suggests an interaction among these proteins. We, therefore, concluded that the interactions of delta-ENaC with other subunits could account for heterogeneity of native epithelial channels. PMID:16423824

  10. Adjuvant Immune Enhancement of Subunit Vaccine Encoding pSCPI of Streptococcus iniae in Channel Catfish (Ictalurus punctatus).

    PubMed

    Jiang, Jie; Zheng, Zonglin; Wang, Kaiyu; Wang, Jun; He, Yang; Wang, Erlong; Chen, Defang; Ouyang, Ping; Geng, Yi; Huang, Xiaoli

    2015-11-25

    Channel catfish (Ictalurus punctatus) is an important agricultural fish that has been plagued by Streptococcus iniae (S. iniae) infections in recent years, some of them severe. C5a peptidase is an important virulent factor of S. iniae. In this study, the subunit vaccine containing the truncated part of C5a peptidase (pSCPI) was mixed with aluminum hydroxide gel (AH), propolis adjuvant (PA), and Freund's Incomplete Adjuvant (FIA). The immunogenicity of the pSCPI was detected by Western-blot in vitro. The relative percent survival (RPS), lysozyme activity, antibody titers, and the expression of the related immune genes were monitored in vivo to evaluate the immune effects of the three different adjuvants. The results showed that pSCPI exerted moderate immune protection (RPS = 46.43%), whereas each of the three adjuvants improved the immune protection of pSCPI. The immunoprotection of pSCPI + AH, pSCPI + PA, and pSCPI + FIA was characterized by RPS values of 67.86%, 75.00% and, 85.71%, respectively. Further, each of the three different adjuvanted pSCPIs stimulated higher levels of lysozyme activity and antibody titers than the unadjuvanted pSCPI and/or PBS buffer. In addition, pSCPI + FIA and pSCPI + PA induced expression of the related immune genes under investigation, which was substantially higher than the levels stimulated by PBS. pSCPI + AH significantly stimulated the induction of MHC II β, CD4-L2, and IFN-γ, while it induced slightly higher production of TNF-α and even led to a decrease in the levels of IL-1β, MHC I α, and CD8 α. Therefore, we conclude that compared with the other two adjuvants, FIA combined with pSCPI is a more promising candidate adjuvant against S. iniae in channel catfish.

  11. Adjuvant Immune Enhancement of Subunit Vaccine Encoding pSCPI of Streptococcus iniae in Channel Catfish (Ictalurus punctatus).

    PubMed

    Jiang, Jie; Zheng, Zonglin; Wang, Kaiyu; Wang, Jun; He, Yang; Wang, Erlong; Chen, Defang; Ouyang, Ping; Geng, Yi; Huang, Xiaoli

    2015-01-01

    Channel catfish (Ictalurus punctatus) is an important agricultural fish that has been plagued by Streptococcus iniae (S. iniae) infections in recent years, some of them severe. C5a peptidase is an important virulent factor of S. iniae. In this study, the subunit vaccine containing the truncated part of C5a peptidase (pSCPI) was mixed with aluminum hydroxide gel (AH), propolis adjuvant (PA), and Freund's Incomplete Adjuvant (FIA). The immunogenicity of the pSCPI was detected by Western-blot in vitro. The relative percent survival (RPS), lysozyme activity, antibody titers, and the expression of the related immune genes were monitored in vivo to evaluate the immune effects of the three different adjuvants. The results showed that pSCPI exerted moderate immune protection (RPS = 46.43%), whereas each of the three adjuvants improved the immune protection of pSCPI. The immunoprotection of pSCPI + AH, pSCPI + PA, and pSCPI + FIA was characterized by RPS values of 67.86%, 75.00% and, 85.71%, respectively. Further, each of the three different adjuvanted pSCPIs stimulated higher levels of lysozyme activity and antibody titers than the unadjuvanted pSCPI and/or PBS buffer. In addition, pSCPI + FIA and pSCPI + PA induced expression of the related immune genes under investigation, which was substantially higher than the levels stimulated by PBS. pSCPI + AH significantly stimulated the induction of MHC II β, CD4-L2, and IFN-γ, while it induced slightly higher production of TNF-α and even led to a decrease in the levels of IL-1β, MHC I α, and CD8 α. Therefore, we conclude that compared with the other two adjuvants, FIA combined with pSCPI is a more promising candidate adjuvant against S. iniae in channel catfish. PMID:26602918

  12. Adjuvant Immune Enhancement of Subunit Vaccine Encoding pSCPI of Streptococcus iniae in Channel Catfish (Ictalurus punctatus)

    PubMed Central

    Jiang, Jie; Zheng, Zonglin; Wang, Kaiyu; Wang, Jun; He, Yang; Wang, Erlong; Chen, Defang; Ouyang, Ping; Geng, Yi; Huang, Xiaoli

    2015-01-01

    Channel catfish (Ictalurus punctatus) is an important agricultural fish that has been plagued by Streptococcus iniae (S. iniae) infections in recent years, some of them severe. C5a peptidase is an important virulent factor of S. iniae. In this study, the subunit vaccine containing the truncated part of C5a peptidase (pSCPI) was mixed with aluminum hydroxide gel (AH), propolis adjuvant (PA), and Freund’s Incomplete Adjuvant (FIA). The immunogenicity of the pSCPI was detected by Western-blot in vitro. The relative percent survival (RPS), lysozyme activity, antibody titers, and the expression of the related immune genes were monitored in vivo to evaluate the immune effects of the three different adjuvants. The results showed that pSCPI exerted moderate immune protection (RPS = 46.43%), whereas each of the three adjuvants improved the immune protection of pSCPI. The immunoprotection of pSCPI + AH, pSCPI + PA, and pSCPI + FIA was characterized by RPS values of 67.86%, 75.00% and, 85.71%, respectively. Further, each of the three different adjuvanted pSCPIs stimulated higher levels of lysozyme activity and antibody titers than the unadjuvanted pSCPI and/or PBS buffer. In addition, pSCPI + FIA and pSCPI + PA induced expression of the related immune genes under investigation, which was substantially higher than the levels stimulated by PBS. pSCPI + AH significantly stimulated the induction of MHC II β, CD4-L2, and IFN-γ, while it induced slightly higher production of TNF-α and even led to a decrease in the levels of IL-1β, MHC I α, and CD8 α. Therefore, we conclude that compared with the other two adjuvants, FIA combined with pSCPI is a more promising candidate adjuvant against S. iniae in channel catfish. PMID:26602918

  13. Sensory Neuron Downregulation of the Kv9.1 Potassium Channel Subunit Mediates Neuropathic Pain following Nerve Injury

    PubMed Central

    Tsantoulas, Christoforos; Zhu, Lan; Shaifta, Yasin; Grist, John; Ward, Jeremy P. T.; Raouf, Ramin; Michael, Gregory J.; McMahon, Stephen B.

    2013-01-01

    Chronic neuropathic pain affects millions of individuals worldwide, is typically long-lasting, and remains poorly treated with existing therapies. Neuropathic pain arising from peripheral nerve lesions is known to be dependent on the emergence of spontaneous and evoked hyperexcitability in damaged nerves. Here, we report that the potassium channel subunit Kv9.1 is expressed in myelinated sensory neurons, but is absent from small unmyelinated neurons. Kv9.1 expression was strongly and rapidly downregulated following axotomy, with a time course that matches the development of spontaneous activity and pain hypersensitivity in animal models. Interestingly, siRNA-mediated knock-down of Kv9.1 in naive rats led to neuropathic pain behaviors. Diminished Kv9.1 function also augmented myelinated sensory neuron excitability, manifested as spontaneous firing, hyper-responsiveness to stimulation, and persistent after-discharge. Intracellular recordings from ex vivo dorsal root ganglion preparations revealed that Kv9.1 knock-down was linked to lowered firing thresholds and increased firing rates under physiologically relevant conditions of extracellular potassium accumulation during prolonged activity. Similar neurophysiological changes were detected in animals subjected to traumatic nerve injury and provide an explanation for neuropathic pain symptoms, including poorly understood conditions such as hyperpathia and paresthesias. In summary, our results demonstrate that Kv9.1 dysfunction leads to spontaneous and evoked neuronal hyperexcitability in myelinated fibers, coupled with development of neuropathic pain behaviors. PMID:23197740

  14. Expression and function of the epithelial sodium channel δ-subunit in human respiratory epithelial cells in vitro.

    PubMed

    Schwagerus, Elena; Sladek, Svenja; Buckley, Stephen T; Armas-Capote, Natalia; Alvarez de la Rosa, Diego; Harvey, Brian J; Fischer, Horst; Illek, Beate; Huwer, Hanno; Schneider-Daum, Nicole; Lehr, Claus-Michael; Ehrhardt, Carsten

    2015-11-01

    Using human airway epithelial cell lines (i.e. NCI-H441 and Calu-3) as well as human alveolar epithelial type I-like (ATI) cells in primary culture, we studied the contribution of the epithelial sodium channel δ-subunit (δ-ENaC) to transepithelial sodium transport in human lung in vitro. Endogenous δ-ENaC protein was present in all three cell types tested; however, protein abundance was low, and no expression was detected in the apical cell membrane of these cells. Similarly, known modulators of δ-ENaC activity, such as capsazepine and icilin (activators) and Evans blue (inhibitor), did not show effects on short-circuit current (I SC), suggesting that δ-ENaC is not involved in the modulation of transcellular sodium absorption in NCI-H441 cell monolayers. Over-expression of δ-ENaC in NCI-H441 cells resulted in detectable protein expression in the apical cell membrane, as well as capsazepine and icilin-stimulated increases in I SC that were effectively blocked by Evans blue and that were consistent with δ-ENaC activation and inhibition, respectively. Consequently, these observations suggest that δ-ENaC expression is low in NCI-H441, Calu-3, and ATI cells and does not contribute to transepithelial sodium absorption.

  15. Protein Kinase C (PKC) Activity Regulates Functional Effects of Kvβ1.3 Subunit on KV1.5 Channels

    PubMed Central

    David, Miren; Macías, Álvaro; Moreno, Cristina; Prieto, Ángela; Martínez-Mármol, Ramón; Vicente, Rubén; González, Teresa; Felipe, Antonio; Tamkun, Michael M.; Valenzuela, Carmen

    2012-01-01

    Kv1.5 channels are the primary channels contributing to the ultrarapid outward potassium current (IKur). The regulatory Kvβ1.3 subunit converts Kv1.5 channels from delayed rectifiers with a modest degree of slow inactivation to channels with both fast and slow inactivation components. Previous studies have shown that inhibition of PKC with calphostin C abolishes the fast inactivation induced by Kvβ1.3. In this study, we investigated the mechanisms underlying this phenomenon using electrophysiological, biochemical, and confocal microscopy approaches. To achieve this, we used HEK293 cells (which lack Kvβ subunits) transiently cotransfected with Kv1.5+Kvβ1.3 and also rat ventricular and atrial tissue to study native α-β subunit interactions. Immunocytochemistry assays demonstrated that these channel subunits colocalize in control conditions and after calphostin C treatment. Moreover, coimmunoprecipitation studies showed that Kv1.5 and Kvβ1.3 remain associated after PKC inhibition. After knocking down all PKC isoforms by siRNA or inhibiting PKC with calphostin C, Kvβ1.3-induced fast inactivation at +60 mV was abolished. However, depolarization to +100 mV revealed Kvβ1.3-induced inactivation, indicating that PKC inhibition causes a dramatic positive shift of the inactivation curve. Our results demonstrate that calphostin C-mediated abolishment of fast inactivation is not due to the dissociation of Kv1.5 and Kvβ1.3. Finally, immunoprecipitation and immunocytochemistry experiments revealed an association between Kv1.5, Kvβ1.3, the receptor for activated C kinase (RACK1), PKCβI, PKCβII, and PKCθ in HEK293 cells. A very similar Kv1.5 channelosome was found in rat ventricular tissue but not in atrial tissue. PMID:22547057

  16. The N-terminal domain tethers the voltage-gated calcium channel β2e-subunit to the plasma membrane via electrostatic and hydrophobic interactions.

    PubMed

    Miranda-Laferte, Erick; Ewers, David; Guzman, Raul E; Jordan, Nadine; Schmidt, Silke; Hidalgo, Patricia

    2014-04-11

    The β-subunit associates with the α1 pore-forming subunit of high voltage-activated calcium channels and modulates several aspects of ion conduction. Four β-subunits are encoded by four different genes with multiple splice variants. Only two members of this family, β2a and β2e, associate with the plasma membrane in the absence of the α1-subunit. Palmitoylation on a di-cysteine motif located at the N terminus of β2a promotes membrane targeting and correlates with the unique ability of this protein to slow down inactivation. In contrast, the mechanism by which β2e anchors to the plasma membrane remains elusive. Here, we identified an N-terminal segment in β2e encompassing a cluster of positively charged residues, which is strictly required for membrane anchoring, and when transferred to the cytoplasmic β1b isoform it confers membrane localization to the latter. In the presence of negatively charged phospholipid vesicles, this segment binds to acidic liposomes dependently on the ionic strength, and the intrinsic fluorescence emission maxima of its single tryptophan blue shifts considerably. Simultaneous substitution of more than two basic residues impairs membrane targeting. Coexpression of the fast inactivating R-type calcium channels with wild-type β2e, but not with a β2e membrane association-deficient mutant, slows down inactivation. We propose that a predicted α-helix within this domain orienting parallel to the membrane tethers the β2e-subunit to the lipid bilayer via electrostatic interactions. Penetration of the tryptophan side chain into the lipidic core stabilizes the membrane-bound conformation. This constitutes a new mechanism for membrane anchoring among the β-subunit family that also sustains slowed inactivation.

  17. Differential neuronal targeting of a new and two known calcium channel β4 subunit splice variants correlates with their regulation of gene expression.

    PubMed

    Etemad, Solmaz; Obermair, Gerald J; Bindreither, Daniel; Benedetti, Ariane; Stanika, Ruslan; Di Biase, Valentina; Burtscher, Verena; Koschak, Alexandra; Kofler, Reinhard; Geley, Stephan; Wille, Alexandra; Lusser, Alexandra; Flockerzi, Veit; Flucher, Bernhard E

    2014-01-22

    The β subunits of voltage-gated calcium channels regulate surface expression and gating of CaV1 and CaV2 α1 subunits and thus contribute to neuronal excitability, neurotransmitter release, and calcium-induced gene regulation. In addition, certain β subunits are targeted into the nucleus, where they interact directly with the epigenetic machinery. Whereas their involvement in this multitude of functions is reflected by a great molecular heterogeneity of β isoforms derived from four genes and abundant alternative splicing, little is known about the roles of individual β variants in specific neuronal functions. In the present study, an alternatively spliced β4 subunit lacking the variable N terminus (β4e) is identified. It is highly expressed in mouse cerebellum and cultured cerebellar granule cells (CGCs) and modulates P/Q-type calcium currents in tsA201 cells and CaV2.1 surface expression in neurons. Compared with the other two known full-length β4 variants (β4a and β4b), β4e is most abundantly expressed in the distal axon, but lacks nuclear-targeting properties. To determine the importance of nuclear targeting of β4 subunits for transcriptional regulation, we performed whole-genome expression profiling of CGCs from lethargic (β4-null) mice individually reconstituted with β4a, β4b, and β4e. Notably, the number of genes regulated by each β4 splice variant correlated with the rank order of their nuclear-targeting properties (β4b > β4a > β4e). Together, these findings support isoform-specific functions of β4 splice variants in neurons, with β4b playing a dual role in channel modulation and gene regulation, whereas the newly detected β4e variant serves exclusively in calcium-channel-dependent functions. PMID:24453333

  18. Differential Neuronal Targeting of a New and Two Known Calcium Channel β4 Subunit Splice Variants Correlates with Their Regulation of Gene Expression

    PubMed Central

    Etemad, Solmaz; Obermair, Gerald J.; Bindreither, Daniel; Benedetti, Ariane; Stanika, Ruslan; Di Biase, Valentina; Burtscher, Verena; Koschak, Alexandra; Kofler, Reinhard; Geley, Stephan; Wille, Alexandra; Lusser, Alexandra; Flockerzi, Veit

    2014-01-01

    The β subunits of voltage-gated calcium channels regulate surface expression and gating of CaV1 and CaV2 α1 subunits and thus contribute to neuronal excitability, neurotransmitter release, and calcium-induced gene regulation. In addition, certain β subunits are targeted into the nucleus, where they interact directly with the epigenetic machinery. Whereas their involvement in this multitude of functions is reflected by a great molecular heterogeneity of β isoforms derived from four genes and abundant alternative splicing, little is known about the roles of individual β variants in specific neuronal functions. In the present study, an alternatively spliced β4 subunit lacking the variable N terminus (β4e) is identified. It is highly expressed in mouse cerebellum and cultured cerebellar granule cells (CGCs) and modulates P/Q-type calcium currents in tsA201 cells and CaV2.1 surface expression in neurons. Compared with the other two known full-length β4 variants (β4a and β4b), β4e is most abundantly expressed in the distal axon, but lacks nuclear-targeting properties. To determine the importance of nuclear targeting of β4 subunits for transcriptional regulation, we performed whole-genome expression profiling of CGCs from lethargic (β4-null) mice individually reconstituted with β4a, β4b, and β4e. Notably, the number of genes regulated by each β4 splice variant correlated with the rank order of their nuclear-targeting properties (β4b > β4a > β4e). Together, these findings support isoform-specific functions of β4 splice variants in neurons, with β4b playing a dual role in channel modulation and gene regulation, whereas the newly detected β4e variant serves exclusively in calcium-channel-dependent functions. PMID:24453333

  19. Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits

    PubMed Central

    1993-01-01

    To identify and localize the protein products of genes encoding distinct L-type calcium channels in central neurons, anti-peptide antibodies specific for the class C and class D alpha 1 subunits were produced. Anti-CNC1 directed against class C immunoprecipitated 75% of the L-type channels solubilized from rat cerebral cortex and hippocampus. Anti-CND1 directed against class D immunoprecipitated only 20% of the L-type calcium channels. Immunoblotting revealed two size forms of the class C L-type alpha 1 subunit, LC1 and LC2, and two size forms of the class D L-type alpha 1 subunit, LD1 and LD2. The larger isoforms had apparent molecular masses of approximately 200-210 kD while the smaller isoforms were 180-190 kD, as estimated from electrophoresis in gels polymerized from 5% acrylamide. Immunocytochemical studies using CNC1 and CND1 antibodies revealed that the alpha 1 subunits of both L-type calcium channel subtypes are localized mainly in neuronal cell bodies and proximal dendrites. Relatively dense labeling was observed at the base of major dendrites in many neurons. Staining in more distal dendritic regions was faint or undetectable with CND1, while a more significant level of staining of distal dendrites was observed with CNC1, particularly in the dentate gyrus and the CA2 and CA3 areas of the hippocampus. Class C calcium channels were concentrated in clusters, while class D calcium channels were generally distributed in the cell surface membrane of cell bodies and proximal dendrites. Our results demonstrate multiple size forms and differential localization of two subtypes of L-type calcium channels in the cell bodies and proximal dendrites of central neurons. The differential localization and multiple size forms may allow these two channel subtypes to participate in distinct aspects of electrical signal integration and intracellular calcium signaling in neuronal cell bodies. The preferential localization of these calcium channels in cell bodies and proximal

  20. Molecular structure of rat brain apamin receptor: differential photoaffinity labeling of putative K/sup +/ channel subunits and target size analysis

    SciTech Connect

    Seagar, M.J.; Labbe-Jullie, C.; Granier, C.; Goll, A.; Glossmann, H.; Rietschoten, J.V.; Couraud, F.

    1986-07-01

    Two photoreactive apamin derivatives were prepared with an aryl azide group coupled at different positions on the neurotoxin molecule. These ligands were used to identify membrane components in the environment of the neuronal binding site that is associated with a Ca/sup 2 +/-activated K/sup +/ channel. /sup 125/I-(..cap alpha..-ANPAA-Cys/sub 1/)apamin labeled a single M/sub r/ 86,000 chain in cultured neurons whereas two bands corresponding to M/sub r/ 86,000 and 59,000 were detected in synaptic membrane preparations, suggesting that the M/sub r/ 59,000 polypeptide may be a degradation product. Randomly modified /sup 125/I-ANPAA-apamin gave a cross-linking profile equivalent to the sum of those obtained with the two defined derivatives. The apamin binding site seems to be located at the frontier between three or more putative K/sup +/ channel subunits which are only accessible from limited regions of the receptor-associated photoprobe. Irradiation of frozen rat brain membranes with high-energy electrons led to a reduction in /sup 125/I-apamin receptor capacity, yielding a target size for the functional binding unit of M/sub r/ 84,000-115,000, which could be constituted by the M/sub r/ 86,000 subunit alone or by the M/sub r/ 86,000 subunit in conjunction with one of the two smaller subunits.

  1. A neuronal nicotinic acetylcholine receptor subunit (alpha 7) is developmentally regulated and forms a homo-oligomeric channel blocked by alpha-BTX.

    PubMed

    Couturier, S; Bertrand, D; Matter, J M; Hernandez, M C; Bertrand, S; Millar, N; Valera, S; Barkas, T; Ballivet, M

    1990-12-01

    cDNA and genomic clones encoding alpha 7, a novel neuronal nicotinic acetylcholine receptor (nAChR) alpha subunit, were isolated and sequenced. The mature alpha 7 protein (479 residues) has moderate homology with all other alpha and non-alpha nAChR subunits and probably assumes the same transmembrane topology. alpha 7 transcripts transiently accumulate in the developing optic tectum between E5 and E16. They are present in both the deep and the superficial layers of E12 tectum. In Xenopus oocytes, the alpha 7 protein assembles into a homo-oligomeric channel responding to acetylcholine and nicotine. The alpha 7 channel desensitizes very rapidly, rectifies strongly above -20 mV, and is blocked by alpha-bungarotoxin. A bacterial fusion protein encompassing residues 124-239 of alpha 7 binds labeled alpha-bungarotoxin. We conclude that alpha-bungarotoxin binding proteins in the vertebrate nervous system can function as nAChRs.

  2. T594M mutation of the epithelial sodium channel beta-subunit gene in pre-eclampsia and eclampsia in Black South African women.

    PubMed

    Pegoraro, R J; Roberts, C B; Rom, L; Moodley, J

    2004-09-01

    The possible role of the beta-subunit of the epithelial sodium channel T594M polymorphism in hypertensive disorders of pregnancy has not been examined. This study compared Black South African women with pre-eclampsia (n= 204), early onset pre-eclampsia (n= 67), eclampsia (n= 120) and gestational hypertension (n= 78) with 338 women from the same ethnic group who had full-term normotensive pregnancies, for the presence of the T594M polymorphism. The variant allele was detected in 1.7% to 3.8% of the various patient groups and in 3.6% of the control group reflecting no significant difference. These results suggest that the T594M polymorphism in the sodium channel beta-subunit is not associated with the pathogenesis of pre-eclampsia or gestational hypertension. PMID:15327619

  3. Differential contribution of the NR1- and NR2A-subunits to the selectivity filter of recombinant NMDA receptor channels.

    PubMed Central

    Wollmuth, L P; Kuner, T; Seeburg, P H; Sakmann, B

    1996-01-01

    1. The molecular determinants for the narrow constriction of recombinant N-methyl-D-aspartate (NMDA) receptor channels composed of wild-type and mutant NR1- and NR2A-subunits were studied in Xenopus oocytes. 2. The relative permeability of differently sized organic cations was used as an indicator of the size of the narrow constriction. From measured reversal potentials under bi-ionic conditions with K+ as the reference solution, permeability ratios were calculated with the Lewis equation. 3. For wild-type NMDA receptor channels, five organic cations showed clear reversal potentials, with permeability ratios (PX/PK): ammonium, 1.28; methylammonium, 0.48; dimethylammonium (DMA), 0.20; diethylammonium, 0.07; and dimethylethanol-ammonium, 0.02. 4. Mutation of the N-site asparagine (N) to glutamine (Q) at homologous positions in either NR1 (position 598) or NR2A (position 595) increased the permeability of DMA relative to wild-type channels about equally. However, for larger sized organic cations, the NR1(N598Q) mutation had stronger effects on increasing their permeability whereas the NR2A(N595Q) mutation was without effect. These changes in organic cation permeability suggest that the NR1(N598Q) mutation increases the pore size while the NR2A(N595Q) mutation does not. 5. Channels in which the NR1 N-site asparagine was replaced by the smaller glycine (G), NR1(N598G)-NR2A, showed the largest increase in pore size of all sites examined in either subunit. In contrast, in the NR2A-subunit the same N-site substitution to glycine produced only small effects on pore size. 6. For the NR2A-subunit, an asparagine residue (position 596) on the C-terminal side of the N-site, when mutated to larger or smaller sized amino acids, produced large, volume-specific effects on pore size. The mutant channel NR1-NR2A(N596G) had the largest increase in pore size of all sites examined in the NR2A-subunit. In contrast, mutation of the homologous position in the NR1-subunit had no effect on

  4. Dendrotoxin acceptor from bovine synaptic plasma membranes. Binding properties, purification and subunit composition of a putative constituent of certain voltage-activated K+ channels.

    PubMed Central

    Parcej, D N; Dolly, J O

    1989-01-01

    Dendrotoxin is a snake polypeptide that blocks selectively and potently certain voltage-sensitive, fast-activating K+ channels in the nervous system, where it binds with high affinity to membranous acceptors. Herein, the acceptor protein for dendrotoxin in bovine synaptic membranes is solubilized in active form and its complete purification achieved by affinity chromatography, involving a novel elution procedure. This putative K+-channel constituent is shown to be a large oligomeric glycoprotein containing two major subunits, with Mr values of 75,000 and 37,000. Images Fig. 2. PMID:2930493

  5. Embryonic type Na+ channel β-subunit, SCN3B masks the disease phenotype of Brugada syndrome

    PubMed Central

    Okata, Shinichiro; Yuasa, Shinsuke; Suzuki, Tomoyuki; Ito, Shogo; Makita, Naomasa; Yoshida, Tetsu; Li, Min; Kurokawa, Junko; Seki, Tomohisa; Egashira, Toru; Aizawa, Yoshiyasu; Kodaira, Masaki; Motoda, Chikaaki; Yozu, Gakuto; Shimojima, Masaya; Hayashiji, Nozomi; Hashimoto, Hisayuki; Kuroda, Yusuke; Tanaka, Atsushi; Murata, Mitsushige; Aiba, Takeshi; Shimizu, Wataru; Horie, Minoru; Kamiya, Kaichiro; Furukawa, Tetsushi; Fukuda, Keiichi

    2016-01-01

    SCN5A is abundant in heart and has a major role in INa. Loss-of-function mutation in SCN5A results in Brugada syndrome (BrS), which causes sudden death in adults. It remains unclear why disease phenotype does not manifest in the young even though mutated SCN5A is expressed in the young. The aim of the present study is to elucidate the timing of the disease manifestation in BrS. A gain-of-function mutation in SCN5A also results in Long QT syndrome type 3 (LQTS3), leading to sudden death in the young. Induced pluripotent stem cells (iPSCs) were generated from a patient with a mixed phenotype of LQTS3 and BrS with the E1784K SCN5A mutation. Here we show that electrophysiological analysis revealed that LQTS3/BrS iPSC-derived cardiomyocytes recapitulate the phenotype of LQTS3 but not BrS. Each β-subunit of the sodium channel is differentially expressed in embryonic and adult hearts. SCN3B is highly expressed in embryonic hearts and iPSC-derived cardiomyocytes. A heterologous expression system revealed that INa of mutated SCN5A is decreased and SCN3B augmented INa of mutated SCN5A. Knockdown of SCN3B in LQTS3/BrS iPSC-derived cardiomyocytes successfully unmasked the phenotype of BrS. Isogenic control of LQTS3/BrS (corrected-LQTS3/BrS) iPSC-derived cardiomyocytes gained the normal electrophysiological properties. PMID:27677334

  6. Drosophila Pheromone-Sensing Neurons Expressing the ppk25 Ion Channel Subunit Stimulate Male Courtship and Female Receptivity

    PubMed Central

    Vijayan, Vinoy; Thistle, Rob; Liu, Tong; Starostina, Elena; Pikielny, Claudio W.

    2014-01-01

    As in many species, gustatory pheromones regulate the mating behavior of Drosophila. Recently, several ppk genes, encoding ion channel subunits of the DEG/ENaC family, have been implicated in this process, leading to the identification of gustatory neurons that detect specific pheromones. In a subset of taste hairs on the legs of Drosophila, there are two ppk23-expressing, pheromone-sensing neurons with complementary response profiles; one neuron detects female pheromones that stimulate male courtship, the other detects male pheromones that inhibit male-male courtship. In contrast to ppk23, ppk25, is only expressed in a single gustatory neuron per taste hair, and males with impaired ppk25 function court females at reduced rates but do not display abnormal courtship of other males. These findings raised the possibility that ppk25 expression defines a subset of pheromone-sensing neurons. Here we show that ppk25 is expressed and functions in neurons that detect female-specific pheromones and mediates their stimulatory effect on male courtship. Furthermore, the role of ppk25 and ppk25-expressing neurons is not restricted to responses to female-specific pheromones. ppk25 is also required in the same subset of neurons for stimulation of male courtship by young males, males of the Tai2 strain, and by synthetic 7-pentacosene (7-P), a hydrocarbon normally found at low levels in both males and females. Finally, we unexpectedly find that, in females, ppk25 and ppk25-expressing cells regulate receptivity to mating. In the absence of the third antennal segment, which has both olfactory and auditory functions, mutations in ppk25 or silencing of ppk25-expressing neurons block female receptivity to males. Together these results indicate that ppk25 identifies a functionally specialized subset of pheromone-sensing neurons. While ppk25 neurons are required for the responses to multiple pheromones, in both males and females these neurons are specifically involved in stimulating

  7. Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25.

    PubMed Central

    Rettig, J; Sheng, Z H; Kim, D K; Hodson, C D; Snutch, T P; Catterall, W A

    1996-01-01

    Presynaptic Ca2+ channels are crucial elements in neuronal excitation-secretion coupling. In addition to mediating Ca2+ entry to initiate transmitter release, they are thought to interact directly with proteins of the synaptic vesicle docking/fusion machinery. Here we report isoform-specific, stoichiometric interaction of the BI and rbA isoforms of the alpha1A subunit of P/Q-type Ca2+ channels with the presynaptic membrane proteins syntaxin and SNAP-25 in vitro and in rat brain membranes. The BI isoform binds to both proteins, while only interaction with SNAP-25 can be detected in vitro for the rbA isoform. The synaptic protein interaction ("synprint") site involves two adjacent segments of the intracellular loop connecting domains II and III between amino acid residues 722 and 1036 of the BI sequence. This interaction is competitively blocked by the corresponding region of the N-type Ca2+ channel, indicating that these two channels bind to overlapping regions of syntaxin and SNAP-25. Our results provide a molecular basis for a physical link between Ca2+ influx into nerve terminals and subsequent exocytosis of neurotransmitters at synapses that have presynaptic Ca2+ channels containing alpha1A subunits. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:8692999

  8. Genetic Variation of the Alpha Subunit of the Epithelial Na+ Channels Influences Exhaled Na+ in Healthy Humans

    PubMed Central

    Foxx-Lupo, William T.; Wheatley, Courtney M.; Baker, Sarah E.; Cassuto, Nicholas A.; Delamere, Nicholas A.; Snyder, Eric M.

    2011-01-01

    Epithelial Na+ Channels (ENaC) are located on alveolar cells and are important in β2-adrenergic receptor-mediated lung fluid clearance through the removal of Na+ from the alveolar airspace. Previous work has demonstrated that genetic variation of the alpha subunit of ENaC at amino acid 663 is important in channel function: cells with the genotype resulting in alanine at amino acid 663 (A663) demonstrate attenuated function when compared to genotypes with at least one allele encoding threonine (T663, AT/TT). We sought to determine the influence of genetic variation at position 663 of ENaC on exhaled Na+ in healthy humans. Exhaled Na+ was measured in 18 AA and 13 AT/TT subjects (age=27±8 vs. 30±10yrs., ht.=174±12 vs. 171±10cm., wt=68±12 vs. 73±14kg., BMI=22±3 vs. 25±4kg/m2, mean±SD, for AA and AT/TT, respectively). Measurements were made at baseline and at 30, 60 and 90 minutes following the administration of a nebulized β2-agonist (albuterol sulfate, 2.5mg diluted in 3ml normal saline). The AA group had a higher baseline level of exhaled Na+ and a greater response to β2-agonist stimulation (baseline= 3.1±1.8 vs. 2.3±1.5mmol/l; 30min-post= 2.1±0.7 vs. 2.2±0.8mmol/l; 60min-post= 2.0±0.5 vs. 2.3±1.0mmol/l; 90min-post= 1.8±0.8 vs. 2.6±1.5mmol/l, mean±SD, for AA and AT/TT, respectively, p<0.05). The results are consistent with the notion that genetic variation of ENaC influences β2-adrenergic receptor stimulated Na+ clearance in the lungs, as there was a significant reduction in exhaled Na+ over time in the AA group. PMID:21889619

  9. Phosphorylation Sites in the Hook Domain of CaVβ Subunits Differentially Modulate CaV1.2 Channel Function

    PubMed Central

    Brunet, Sylvain; Emrick, Michelle A.; Sadilek, Martin; Scheuer, Todd; Catterall, William A.

    2015-01-01

    Regulation of L-type calcium current is critical for the development, function, and regulation of many cell types. CaV1.2 channels that conduct L-type calcium currents are regulated by many protein kinases, but the sites of action of these kinases remain unknown in most cases. We combined mass spectrometry (LC-MS/MS) and whole-cell patch clamp techniques in order to identify sites of phosphorylation of CaVβ subunits in vivo and test the impact of mutations of those sites on CaV1.2 channel function in vitro. Using the CaV1.1 channel purified from rabbit skeletal muscle as a substrate for phosphoproteomic analysis, we found that Ser193 and Thr205 in the HOOK domain of CaVβ1a subunits were both phosphorylated in vivo. Ser193 is located in a potential consensus sequence for casein kinase II, but it was not phosphorylated in vitro by that kinase. In contrast, Thr205 is located in a consensus sequence for cAMP-dependent phosphorylation, and it was robustly phosphorylated in vitro by PKA. These two sites are conserved in multiple CaVβ subunit isoforms, including the principal CaVβ subunit of cardiac CaV1.2 channels, CaVβ2b. In order to assess potential modulatory effects of phosphorylation at these sites separately from effects of phosphorylation of the α11.2 subunit, we inserted phosphomimetic or phosphoinhibitory mutations in CaVβ2b and analyzed their effects on CaV1.2 channel function in transfected nonmuscle cells. The phosphomimetic mutation CaVβ2bS152E decreased peak channel currents and shifted the voltage dependence of both activation and inactivation to more positive membrane potentials. The phosphoinhibitory mutation CaVβ2bS152A had opposite effects. There were no differences in peak CaV1.2 currents or voltage dependence between the phosphomimetic mutation CaVβ2bT164D and the phosphoinhibitory mutation CaVβ2bT164A. However, calcium-dependent inactivation was significantly increased for the phosphomimetic mutation CaVβ2bT164D. This effect was subunit

  10. Role of ATP-sensitive K+ channels in cardiac arrhythmias.

    PubMed

    Nakaya, Haruaki

    2014-05-01

    The sarcolemmal adenosine triphosphate (ATP)-sensitive K(+) (sarcKATP) channel in the heart is a hetero-octamer comprising the pore-forming subunit Kir6.2 and the regulatory subunit sulfonylurea receptor SUR2A. By functional analysis of genetically engineered mice lacking sarcKATP channels, the pathophysiological roles of the K(+) channel in the heart have been extensively evaluated. Although mitochondrial KATP (mitoKATP) channel is proposed to be an important effector for the protection of ischemic myocardium and the inhibition of ischemia/reperfusion-induced ventricular arrhythmias, the molecular identity of mitoKATP channel has not been established. Although selective sarcKATP-channel blockers can prevent ischemia/reperfusion-induced ventricular arrhythmias by inhibiting the action potential shortening in the acute phase, the drugs may aggravate the ischemic damages due to intracellular Ca(2+) overload. The sarcKATP channel is also mandatory for optimal adaptation to hemodynamic stress such as sympathetic activation. Dysfunction of mutated sarcKATP channels in atrial cells may lead to electrical instability and atrial fibrillation. Recently, it has been proposed that the gain-of-function mutation of cardiac Kir6.1 channel can be a pathogenic substrate for J wave syndromes, a cause of idiopathic ventricular fibrillation as early repolarization syndrome or Brugada syndrome, whereas loss of function of the channel mutations can underlie sudden infant death syndrome. However, precise role of Kir6.1 channels in cardiac cells remains to be defined and further study may be needed to clarify the role of Kir6.1 channel in the heart. PMID:24367007

  11. Auxiliary KCNE subunits modulate both homotetrameric Kv2.1 and heterotetrameric Kv2.1/Kv6.4 channels

    PubMed Central

    David, Jens-Peter; Stas, Jeroen I.; Schmitt, Nicole; Bocksteins, Elke

    2015-01-01

    The diversity of the voltage-gated K+ (Kv) channel subfamily Kv2 is increased by interactions with auxiliary β-subunits and by assembly with members of the modulatory so-called silent Kv subfamilies (Kv5-Kv6 and Kv8-Kv9). However, it has not yet been investigated whether these two types of modulating subunits can associate within and modify a single channel complex simultaneously. Here, we demonstrate that the transmembrane β-subunit KCNE5 modifies the Kv2.1/Kv6.4 current extensively, whereas KCNE2 and KCNE4 only exert minor effects. Co-expression of KCNE5 with Kv2.1 and Kv6.4 did not alter the Kv2.1/Kv6.4 current density but modulated the biophysical properties significantly; KCNE5 accelerated the activation, slowed the deactivation and steepened the slope of the voltage-dependence of the Kv2.1/Kv6.4 inactivation by accelerating recovery of the closed-state inactivation. In contrast, KCNE5 reduced the current density ~2-fold without affecting the biophysical properties of Kv2.1 homotetramers. Co-localization of Kv2.1, Kv6.4 and KCNE5 was demonstrated with immunocytochemistry and formation of Kv2.1/Kv6.4/KCNE5 and Kv2.1/KCNE5 complexes was confirmed by Fluorescence Resonance Energy Transfer experiments performed in HEK293 cells. These results suggest that a triple complex consisting of Kv2.1, Kv6.4 and KCNE5 subunits can be formed. In vivo, formation of such tripartite Kv2.1/Kv6.4/KCNE5 channel complexes might contribute to tissue-specific fine-tuning of excitability. PMID:26242757

  12. Properties of ATP-gated ion channels assembled from P2X2 subunits in mouse cochlear Reissner's membrane epithelial cells.

    PubMed

    Morton-Jones, Rachel T; Vlajkovic, Srdjan M; Thorne, Peter R; Cockayne, Debra A; Ryan, Allen F; Housley, Gary D

    2015-12-01

    In the cochlea, Reissner's membrane separates the scala media endolymphatic compartment that sustains the positive endocochlear potential and ion composition necessary for sound transduction, from the scala vestibuli perilymphatic compartment. It is known that with sustained elevated sound levels, adenosine 5'-triphosphate (ATP) is released into the endolymph and ATP-gated ion channels on the epithelial cells lining the endolymphatic compartment shunt the electrochemical driving force, contributing to protective purinergic hearing adaptation. This study characterises the properties of epithelial cell P2X(2)-type ATP-activated membrane conductance in the mouse Reissner's membrane, which forms a substantial fraction of the scale media surface. The cells were found to express two isoforms (a and b) of the P2X(2) subunit arising from alternative splicing of the messenger RNA (mRNA) transcript that could contribute to the trimeric subunit assembly. The ATP-activated conductance demonstrated both immediate and delayed desensitisation consistent with incorporation of the combination of P2X(2) subunit isoforms. Activation by the ATP analogue 2meSATP had equipotency to ATP, whereas α,β-meATP and adenosine 5'-diphosphate (ADP) were ineffective. Positive allosteric modulation of the P2X(2) channels by protons was profound. This native conductance was blocked by the P2X(2)-selective blocker pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) and the conductance was absent in these cells isolated from mice null for the P2rX2 gene encoding the P2X(2) receptor subunit. The activation and desensitisation properties of the Reissner's membrane epithelial cell ATP-gated P2X(2) channels likely contribute to the sensitivity and kinetics of purinergic control of the electrochemical driving force for sound transduction invoked by noise exposure.

  13. Exposure to predator odor and resulting anxiety enhances the expression of the α2 δ subunit of voltage-sensitive calcium channels in the amygdala.

    PubMed

    Nasca, Carla; Orlando, Rosamaria; Marchiafava, Moreno; Boldrini, Paolo; Battaglia, Giuseppe; Scaccianoce, Sergio; Matrisciano, Francesco; Pittaluga, Anna; Nicoletti, Ferdinando

    2013-06-01

    The α2 δ subunit of voltage-sensitive calcium channels (VSCCs) is the molecular target of pregabalin and gabapentin, two drugs marked for the treatment of focal epilepsy, neuropathic pain, and anxiety disorders. Expression of the α2 δ subunit is up-regulated in the dorsal horns of the spinal cord in models of neuropathic pain, suggesting that plastic changes in the α2 δ subunit are associated with pathological states. Here, we examined the expression of the α2 δ-1 subunit in the amygdala, hippocampus, and frontal cortex in the trimethyltiazoline (TMT) mouse model of innate anxiety. TMT is a volatile molecule present in the feces of the rodent predator, red fox. Mice that show a high defensive behavior during TMT exposure developed anxiety-like behavior in the following 72 h, as shown by the light-dark test. Anxiety was associated with an increased expression of the α2 δ-1 subunit of VSCCs in the amygdaloid complex at all times following TMT exposure (4, 24, and 72 h). No changes in the α2 δ-1 protein levels were seen in the hippocampus and frontal cortex of mice exposed to TMT. Pregabalin (30 mg/kg, i.p.) reduced anxiety-like behavior in TMT-exposed mice, but not in control mice. These data offer the first demonstration that the α2 δ-1 subunit of VSCCs undergoes plastic changes in a model of innate anxiety, and supports the use of pregabalin as a disease-dependent drug in the treatment of anxiety disorders. PMID:22849384

  14. Aberrant Splicing Promotes Proteasomal Degradation of L-type CaV1.2 Calcium Channels by Competitive Binding for CaVβ Subunits in Cardiac Hypertrophy

    PubMed Central

    Hu, Zhenyu; Wang, Jiong-Wei; Yu, Dejie; Soon, Jia Lin; de Kleijn, Dominique P. V.; Foo, Roger; Liao, Ping; Colecraft, Henry M.; Soong, Tuck Wah

    2016-01-01

    Decreased expression and activity of CaV1.2 calcium channels has been reported in pressure overload-induced cardiac hypertrophy and heart failure. However, the underlying mechanisms remain unknown. Here we identified in rodents a splice variant of CaV1.2 channel, named CaV1.2e21+22, that contained the pair of mutually exclusive exons 21 and 22. This variant was highly expressed in neonatal hearts. The abundance of this variant was gradually increased by 12.5-folds within 14 days of transverse aortic banding that induced cardiac hypertrophy in adult mouse hearts and was also elevated in left ventricles from patients with dilated cardiomyopathy. Although this variant did not conduct Ca2+ ions, it reduced the cell-surface expression of wild-type CaV1.2 channels and consequently decreased the whole-cell Ca2+ influx via the CaV1.2 channels. In addition, the CaV1.2e21+22 variant interacted with CaVβ subunits significantly more than wild-type CaV1.2 channels, and competition of CaVβ subunits by CaV1.2e21+22 consequently enhanced ubiquitination and subsequent proteasomal degradation of the wild-type CaV1.2 channels. Our findings show that the resurgence of a specific neonatal splice variant of CaV1.2 channels in adult heart under stress may contribute to heart failure. PMID:27731386

  15. Mutant MiRP1 subunits modulate HERG K+ channel gating: a mechanism for pro-arrhythmia in long QT syndrome type 6

    PubMed Central

    Lu, Yu; Mahaut-Smith, Martyn P; Huang, Christopher L-H; Vandenberg, Jamie I

    2003-01-01

    Mutations in KCNE2, which encodes the minK-related protein 1 (MiRP1), are associated with an increased risk of arrhythmias; however, the underlying mechanisms are unknown. MiRP1 is thought to associate with many K+ channel α-subunits, including HERG K+ channels, which have a major role in suppressing arrhythmias initiated by premature beats. In this study we have investigated in chinese hamster ovary (CHO) cells at 37 °C the effects of co-expressing HERG K+ channels with either wild-type (WT) MiRP1 or one of three mutant MiRP1 subunits, T8A, Q9E and M54T. The most significant effects of MiRP1 subunits on HERG channels were a more negative steady-state activation for HERG + T8A MiRP1 and a more positive steady-state activation for HERG + M54T MiRP1 compared to either HERG + WT MiRP1 or HERG alone. All three mutants caused a significant slowing of deactivation at depolarised potentials. T8A MiRP1 also caused an acceleration of inactivation and recovery from inactivation compared to HERG + WT MiRP1. During ventricular action potential clamp experiments there was a significant decrease in current in the early phases of the action potential for HERG + WT MiRP1 channels compared to HERG alone. This effect was not as prominent for the mutant MiRP1 subunits. During premature action potential clamp protocols, the T8A and Q9E mutants, but not the M54T mutant, resulted in significantly larger current spikes during closely coupled premature beats, compared to HERG + WT MiRP1. At longer coupling intervals, all three mutants resulted in larger current spikes than HERG alone or HERG + WT MiRP1 channels. It is therefore possible that augmentation of HERG currents in the early diastolic period may be pro-arrhythmic. PMID:12923204

  16. Effects of the β1 auxiliary subunit on modification of Rat Na(v)1.6 sodium channels expressed in HEK293 cells by the pyrethroid insecticides tefluthrin and deltamethrin.

    PubMed

    He, Bingjun; Soderlund, David M

    2016-01-15

    We expressed rat Nav1.6 sodium channels with or without the rat β1 subunit in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on whole-cell sodium currents. In assays with the Nav1.6 α subunit alone, both pyrethroids prolonged channel inactivation and deactivation and shifted the voltage dependence of channel activation and steady-state inactivation toward hyperpolarization. Maximal shifts in activation were ~18 mV for tefluthrin and ~24 mV for deltamethrin. These compounds also caused hyperpolarizing shifts of ~10-14 mV in the voltage dependence of steady-state inactivation and increased in the fraction of sodium current that was resistant to inactivation. The effects of pyrethroids on the voltage-dependent gating greatly increased the size of sodium window currents compared to unmodified channels; modified channels exhibited increased probability of spontaneous opening at membrane potentials more negative than the normal threshold for channel activation and incomplete channel inactivation. Coexpression of Nav1.6 with the β1 subunit had no effect on the kinetic behavior of pyrethroid-modified channels but had divergent effects on the voltage-dependent gating of tefluthrin- or deltamethrin-modified channels, increasing the size of tefluthrin-induced window currents but decreasing the size of corresponding deltamethrin-induced currents. Unexpectedly, the β1 subunit did not confer sensitivity to use-dependent channel modification by either tefluthrin or deltamethrin. We conclude from these results that functional reconstitution of channels in vitro requires careful attention to the subunit composition of channel complexes to ensure that channels in vitro are faithful functional and pharmacological models of channels in neurons.

  17. Cerebrovascular Dilation via Selective Targeting of the Cholane Steroid-Recognition Site in the BK Channel β1-Subunit by a Novel Nonsteroidal Agent

    PubMed Central

    Bukiya, Anna N.; McMillan, Jacob E.; Fedinec, Alexander L.; Patil, Shivaputra A.; Miller, Duane D.; Leffler, Charles W.; Parrill, Abby L.

    2013-01-01

    The Ca2+/voltage-gated K+ large conductance (BK) channel β1 subunit is particularly abundant in vascular smooth muscle. By determining their phenotype, BK β1 allows the BK channels to reduce myogenic tone, facilitating vasodilation. The endogenous steroid lithocholic acid (LCA) dilates cerebral arteries via BK channel activation, which requires recognition by a BK β1 site that includes Thr169. Whether exogenous nonsteroidal agents can access this site to selectively activate β1-containing BK channels and evoke vasodilation remain unknown. We performed a chemical structure database similarity search using LCA as a template, along with a two-step reaction to generate sodium 3-hydroxyolean-12-en-30-oate (HENA). HENA activated the BK (cbv1 + β1) channels cloned from rat cerebral artery myocytes with a potency (EC50 = 53 μM) similar to and an efficacy (×2.5 potentiation) significantly greater than that of LCA. This HENA action was replicated on native channels in rat cerebral artery myocytes. HENA failed to activate the channels made of cbv1 + β2, β3, β4, or β1T169A, indicating that this drug selectively targets β1-containing BK channels via the BK β1 steroid-sensing site. HENA (3–45 μM) dilated the rat and C57BL/6 mouse pressurized cerebral arteries. Consistent with the electrophysiologic results, this effect was larger than that of LCA. HENA failed to dilate the arteries from the KCNMB1 knockout mouse, underscoring BK β1’s role in HENA action. Finally, carotid artery-infusion of HENA (45 μM) dilated the pial cerebral arterioles via selective BK-channel targeting. In conclusion, we have identified for the first time a nonsteroidal agent that selectively activates β1-containing BK channels by targeting the steroid-sensing site in BK β1, rendering vasodilation. PMID:23455312

  18. TMEM16A is associated with voltage-gated calcium channels in mouse retina and its function is disrupted upon mutation of the auxiliary α2δ4 subunit

    PubMed Central

    Caputo, Antonella; Piano, Ilaria; Demontis, Gian Carlo; Bacchi, Niccolò; Casarosa, Simona; Santina, Luca Della; Gargini, Claudia

    2015-01-01

    Photoreceptors rely upon highly specialized synapses to efficiently transmit signals to multiple postsynaptic targets. Calcium influx in the presynaptic terminal is mediated by voltage-gated calcium channels (VGCC). This event triggers neurotransmitter release, but also gates calcium-activated chloride channels (TMEM), which in turn regulate VGCC activity. In order to investigate the relationship between VGCC and TMEM channels, we analyzed the retina of wild type (WT) and Cacna2d4 mutant mice, in which the VGCC auxiliary α2δ4 subunit carries a nonsense mutation, disrupting the normal channel function. Synaptic terminals of mutant photoreceptors are disarranged and synaptic proteins as well as TMEM16A channels lose their characteristic localization. In parallel, calcium-activated chloride currents are impaired in rods, despite unaltered TMEM16A protein levels. Co-immunoprecipitation revealed the interaction between VGCC and TMEM16A channels in the retina. Heterologous expression of these channels in tsA-201 cells showed that TMEM16A associates with the CaV1.4 subunit, and the association persists upon expression of the mutant α2δ4 subunit. Collectively, our experiments show association between TMEM16A and the α1 subunit of VGCC. Close proximity of these channels allows optimal function of the photoreceptor synaptic terminal under physiological conditions, but also makes TMEM16A channels susceptible to changes occurring to calcium channels. PMID:26557056

  19. Structural modeling and patch-clamp analysis of pain-related mutation TRPA1-N855S reveal inter-subunit salt bridges stabilizing the channel open state.

    PubMed

    Zíma, Vlastimil; Witschas, Katja; Hynkova, Anna; Zímová, Lucie; Barvík, Ivan; Vlachova, Viktorie

    2015-06-01

    The ankyrin transient receptor potential channel TRPA1 is a polymodal sensor for noxious stimuli, and hence a promising target for treating chronic pain. This tetrameric six-transmembrane segment (S1-S6) channel can be activated by various pungent chemicals, such as allyl isothiocyanate or cinnamaldehyde, but also by intracellular Ca(2+) or depolarizing voltages. Within the S4-S5 linker of human TRPA1, a gain-of-function mutation, N855S, was recently found to underlie familial episodic pain syndrome, manifested by bouts of severe upper body pain, triggered by physical stress, fasting, or cold. To clarify the structural basis for this channelopathy, we derive a structural model of TRPA1 by combining homology modeling, molecular dynamics simulations, point mutagenesis and electrophysiology. In the vicinity of N855, the model reveals inter-subunit salt bridges between E854 and K868. Using the heterologous expression of recombinant wild-type and mutant TRPA1 channels in HEK293T cells, we indeed found that the charge-reversal mutants E854R and K868E exhibited dramatically reduced responses to chemical and voltage stimuli, whereas the charge-swapping mutation E854R/K868E substantially rescued their functionalities. Moreover, mutation analysis of highly conserved charged residues within the S4-S5 region revealed a gain-of-function phenotype for R852E with an increased basal channel activity, a loss of Ca(2+)-induced potentiation and an accelerated Ca(2+)-dependent inactivation. Based on the model and on a comparison with the recently revealed atomic-level structure of the related channel TRPV1, we propose that inter-subunit salt bridges between adjacent S4-S5 regions are crucial for stabilizing the conformations associated with chemically and voltage-induced gating of the TRPA1 ion channel.

  20. BACE1 and presenilin/γ-secretase regulate proteolytic processing of KCNE1 and 2, auxiliary subunits of voltage-gated potassium channels

    PubMed Central

    Sachse, Carolyn C.; Kim, Young Hye; Agsten, Marianne; Huth, Tobias; Alzheimer, Christian; Kovacs, Dora M.; Kim, Doo Yeon

    2013-01-01

    BACE1 and presenilin (PS)/γ-secretase play a major role in Alzheimer's disease pathogenesis by regulating amyloid-β peptide generation. We recently showed that these secretases also regulate the processing of voltage-gated sodium channel auxiliary β-subunits and thereby modulate membrane excitability. Here, we report that KCNE1 and KCNE2, auxiliary subunits of voltage-gated potassium channels, undergo sequential cleavage mediated by either α-secretase and PS/γ-secretase or BACE1 and PS/γ-secretase in cells. Elevated α-secretase or BACE1 activities increased C-terminal fragment (CTF) levels of KCNE1 and 2 in human embryonic kidney (HEK293T) and rat neuroblastoma (B104) cells. KCNE-CTFs were then further processed by PS/γ-secretase to KCNE intracellular domains. These KCNE cleavages were specifically blocked by chemical inhibitors of the secretases in the same cell models. We also verified our results in mouse cardiomyocytes and cultured primary neurons. Endogenous KCNE1- and KCNE2-CTF levels increased by 2- to 4-fold on PS/γ-secretase inhibition or BACE1 overexpression in these cells. Furthermore, the elevated BACE1 activity increased KCNE1 processing and shifted KCNE1/KCNQ1 channel activation curve to more positive potentials in HEK cells. KCNE1/KCNQ1 channel is a cardiac potassium channel complex, and the positive shift would lead to a decrease in membrane repolarization during cardiac action potential. Together, these results clearly showed that KCNE1 and KCNE2 cleavages are regulated by BACE1 and PS/γ-secretase activities under physiological conditions. Our results also suggest a functional role of KCNE cleavage in regulating voltage-gated potassium channels.—Sachse, C. C., Kim, Y. H., Agsten, M., Huth, T., Alzheimer, C., Kovacs, D. M., and Kim, D. Y. BACE1 and presenilin/γ-secretase regulate proteolytic processing of KCNE1 and 2, auxiliary subunits of voltage-gated potassium channels. PMID:23504710

  1. Phenylephrine preconditioning in embryonic heart H9c2 cells is mediated by up-regulation of SUR2B/Kir6.2: A first evidence for functional role of SUR2B in sarcolemmal KATP channels and cardioprotection.

    PubMed

    Jovanović, Sofija; Ballantyne, Thomas; Du, Qingyou; Blagojević, Miloš; Jovanović, Aleksandar

    2016-01-01

    ATP-sensitive K(+) (KATP) channels were originally described in cardiomyocytes, where physiological levels of intracellular ATP keep them in a closed state. Structurally, these channels are composed of pore-forming inward rectifier, Kir6.1 or Kir6.2, and a regulatory, ATP-binding subunit, SUR1, SUR2A or SUR2B. SUR1 and Kir6.2 form pancreatic type of KATP channels, SUR2A and Kir6.2 form cardiac type of KATP channels, SUR2B and Kir6.1 form vascular smooth muscle type of KATP channels. The presence of SUR2B has been described in cardiomyocytes, but its functional significance and role has remained unknown. Pretreatment with phenylephrine (100nM) for 24h increased mRNA levels of SUR2B and Kir6.2, without affecting those levels of SUR1, SUR2A and Kir6.1 in embryonic heart H9c2 cells. Such increase was associated with increased K(+) current through KATP channels and Kir6.2/SUR2B protein complexes as revealed by whole cell patch clamp electrophysiology and immunoprecipitation/Western blotting respectively. Pretreatment with phenylephrine (100nM) generated a cellular phenotype that acquired resistance to chemical hypoxia induced by 2,4-dinitrophenol (DNP; 10mM), which was accompanied by increased in K(+) current in response to DNP (10mM). Cytoprotection afforded by phenylephrine (100nM) was abolished by infection of H9c2 cells with adenovirus containing Kir6.2AFA, a mutant form of Kir6.2 with largely reduced K(+) conductance. Taking all together, the present findings demonstrate that the activation of α1-adrenoceptors up-regulates SUR2B/Kir6.2 to confer cardioprotection. This is the first account of possible physiological role of SUR2B in cardiomyocytes.

  2. Titration of KATP channel expression in mammalian cells utilizing recombinant baculovirus transduction.

    PubMed

    Pfohl, Jeffrey L; Worley, Jennings F; Condreay, J Patrick; An, Gang; Apolito, Christopher J; Kost, Tom A; Truax, James F

    2002-01-01

    A variety of transfection approaches have been used to deliver plasmids encoding ion channel genes into cells. We have used the baculovirus transduction system, BacMam, to demonstrate transient expression of multi-subunit KATP channels in CHO-K1 and HEK-293 EBNA cells using sulfonylurea receptor 1 (SUR), SUR2A, SUR2B, and KIR 6.2 genes. [3H]-glyburide binding, patch clamp, and DiBAC4(3) measurements of membrane potential changes were used to monitor channel expression. BacMam delivery of each SUR isoform with KIR6.2 was demonstrated based on its pharmacological profiles. Expression levels of SUR1 and KIR6.2 were titrated by varying the viral concentration or time of virus addition, with functional activity measured in as little as 4-6 hours posttransduction. Further increases in BacMam virus induced sufficient KATP expression to dominate membrane potential without pharmacological opening of the channel. Independently altering treatment with virus containing either the SUR1 or KIR6.2 gene revealed interactions among subunits during formation of functional channels in the plasma membrane. This study demonstrates the utility and versatility of BacMam as a valuable gene delivery tool for the study of ion channel function.

  3. A distinct three-helix centipede toxin SSD609 inhibits I(ks) channels by interacting with the KCNE1 auxiliary subunit.

    PubMed

    Sun, Peibei; Wu, Fangming; Wen, Ming; Yang, Xingwang; Wang, Chenyang; Li, Yiming; He, Shufang; Zhang, Longhua; Zhang, Yun; Tian, Changlin

    2015-08-26

    KCNE1 is a single-span transmembrane auxiliary protein that modulates the voltage-gated potassium channel KCNQ1. The KCNQ1/KCNE1 complex in cardiomyocytes exhibited slow activated potassium (I(ks)) currents. Recently, a novel 47-residue polypeptide toxin SSD609 was purified from Scolopendra subspinipes dehaani venom and showed I(ks) current inhibition. Here, chemically synthesized SSD609 was shown to exert I(ks) inhibition in extracted guinea pig cardiomyocytes and KCNQ1/KCNE1 current attenuation in CHO cells. The K(+) current attenuation of SSD609 showed decent selectivity among different auxiliary subunits. Solution nuclear magnetic resonance analysis of SSD609 revealed a distinctive three-helix conformation that was stabilized by a new disulfide bonding pattern as well as segregated surface charge distribution. Structure-activity studies demonstrated that negatively charged Glu19 in the amphipathic extracellular helix of KCNE1 was the key residue that interacted with SSD609. The distinctive three-helix centipede toxin SSD609 is known to be the first polypeptide toxin acting on channel auxiliary subunit KCNE1, which suggests a new type of pharmacological regulation for ion channels in cardiomyocytes.

  4. A distinct three-helix centipede toxin SSD609 inhibits I(ks) channels by interacting with the KCNE1 auxiliary subunit.

    PubMed

    Sun, Peibei; Wu, Fangming; Wen, Ming; Yang, Xingwang; Wang, Chenyang; Li, Yiming; He, Shufang; Zhang, Longhua; Zhang, Yun; Tian, Changlin

    2015-01-01

    KCNE1 is a single-span transmembrane auxiliary protein that modulates the voltage-gated potassium channel KCNQ1. The KCNQ1/KCNE1 complex in cardiomyocytes exhibited slow activated potassium (I(ks)) currents. Recently, a novel 47-residue polypeptide toxin SSD609 was purified from Scolopendra subspinipes dehaani venom and showed I(ks) current inhibition. Here, chemically synthesized SSD609 was shown to exert I(ks) inhibition in extracted guinea pig cardiomyocytes and KCNQ1/KCNE1 current attenuation in CHO cells. The K(+) current attenuation of SSD609 showed decent selectivity among different auxiliary subunits. Solution nuclear magnetic resonance analysis of SSD609 revealed a distinctive three-helix conformation that was stabilized by a new disulfide bonding pattern as well as segregated surface charge distribution. Structure-activity studies demonstrated that negatively charged Glu19 in the amphipathic extracellular helix of KCNE1 was the key residue that interacted with SSD609. The distinctive three-helix centipede toxin SSD609 is known to be the first polypeptide toxin acting on channel auxiliary subunit KCNE1, which suggests a new type of pharmacological regulation for ion channels in cardiomyocytes. PMID:26307551

  5. Genetic contribution to iron status: SNPs related to iron deficiency anaemia and fine mapping of CACNA2D3 calcium channel subunit.

    PubMed

    Baeza-Richer, Carlos; Arroyo-Pardo, Eduardo; Blanco-Rojo, Ruth; Toxqui, Laura; Remacha, Angel; Vaquero, M Pilar; López-Parra, Ana M

    2015-12-01

    Numerous studies associate genetic markers with iron- and erythrocyte-related parameters, but few relate them to iron-clinical phenotypes. Novel SNP rs1375515, located in a subunit of the calcium channel gene CACNA2D3, is associated with a higher risk of anaemia. The aim of this study is to further investigate the association of this SNP with iron-related parameters and iron-clinical phenotypes, and to explore the potential role of calcium channel subunit region in iron regulation. Furthermore, we aim to replicate the association of other SNPs reported previously in our population. We tested 45 SNPs selected via systematic review and fine mapping of CACNA2D3 region, with haematological and biochemical traits in 358 women of reproductive age. Multivariate analyses include back-step logistic regression and decision trees. The results replicate the association of SNPs with iron-related traits, and also confirm the protective effect of both A allele of rs1800562 (HFE) and G allele of rs4895441 (HBS1L-MYB). The risk of developing anaemia is increased in reproductive age women carriers of A allele of rs1868505 (CACNA2D3) and/or T allele of rs13194491 (HIST1H2BJ). Association of SNPs from fine mapping with ferritin and serum iron suggests that calcium channels could be a potential pathway for iron uptake in physiological conditions.

  6. Mutations in the gene encoding the alpha subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa.

    PubMed

    Dryja, T P; Finn, J T; Peng, Y W; McGee, T L; Berson, E L; Yau, K W

    1995-10-24

    Mutations in the genes encoding two proteins of the retinal rod phototransduction cascade, opsin and the beta subunit of rod cGMP phosphodiesterase, cause retinitis pigmentosa (RP) in some families. Here we report defects in a third member of this biochemical pathway in still other patients with this disease. We screened 94 unrelated patients with autosomal dominant RP and 173 unrelated patients with autosomal recessive RP for mutations in the gene encoding the alpha subunit of the rod cGMP-gated cation channel. Five mutant sequences cosegregated with disease among four unrelated families with autosomal recessive RP. Two of these were nonsense mutations early in the reading frame (Glu76End and Lys139End) and one was a deletion encompassing most if not all of the transcriptional unit; these three alleles would not be expected to encode a functional channel. The remaining two mutations were a missense mutation (Ser316Phe) and a frameshift [Arg654(1-bp del)] mutation truncating the last 32 aa in the C terminus. The latter two mutations were expressed in vitro and found to encode proteins that were predominantly retained inside the cell instead of being targeted to the plasma membrane. We conclude that the absence or paucity of functional cGMP-gated cation channels in the plasma membrane is deleterious to rod photoreceptors and is an uncommon cause of RP.

  7. Open-channel blockade is less effective on GluN3B than GluN3A subunit-containing NMDA receptors.

    PubMed

    McClymont, David W; Harris, John; Mellor, Ian R

    2012-07-01

    The GluN3 subunits of the N-methyl-d-aspartate (NMDA) receptor are known to reduce its Ca(2+) permeability and Mg(2+) sensitivity, however, little is known about their effects on other channel blockers. cRNAs for rat NMDA receptor subunits were injected into Xenopus oocytes and responses to NMDA and glycine were recorded using two electrode voltage clamp. Channel block of receptors containing GluN1-1a/2A, GluN1-1a/2A/3A or GluN1-1a/2A/3B subunits was characterised using Mg(2+), memantine, MK-801, philanthotoxin-343 and methoctramine. IC(50) values for Mg(2+) and memantine increased when receptors contained GluN3A subunits and were further increased when they contained GluN3B, e.g. IC(50)s at -75mV for block of GluN1-1a/2A, GluN1-1a/2A/3A and GluN1-1a/2A/3B receptors respectively were 4.2, 22.4 and 40.1μM for Mg(2+), and 2.5, 7.5 and 17.5μM for memantine. Blocking activity was found to be fully or partially restored when G or R (at the N and N+1 sites respectively) were mutated to N in GluN3A. Thus, the changes cannot be attributed to the loss of the N or N+1 sites alone, but rather involve both sites or residues elsewhere. Block by MK-801 and philanthotoxin-343 was also reduced by GluN3A, most strongly at -100mV but not at -50mV, and by GluN3B at all V(h). Methoctramine was the least sensitive to introduction of GluN3 subunits suggesting a minimal interaction with the N and N+1 sites. We conclude that GluN3B-containing receptors provide increased resistance to channel block compared to GluN3A-containing receptors and this must be due to differences outside the deep pore region (N site and deeper).

  8. Characteristics of brain Kv1 channels tailored to mimic native counterparts by tandem linkage of alpha subunits: implications for K+ channelopathies.

    PubMed

    Akhtar, Sobia; Shamotienko, Oleg; Papakosta, Marianthi; Ali, Farooq; Dolly, J Oliver

    2002-05-10

    Most neuronal Kv1 channels contain Kv1.1, Kv1.2 alpha, and Kvbeta2.1 subunits, yet the influences of their stoichiometries on properties of the (alpha)(4)(beta)(4) variants remain undefined. cDNAs were engineered to contain 0, 1, 2, or 4 copies of Kv1.1 with the requisite number of Kv1.2 and co-expressed in mammalian cells with Kvbeta2.1 to achieve "native-like" hetero-oligomers. The monomeric (Kv1.1 or 1.2), dimeric (Kv1.1-1.2 or 1.2-1.2), and tetrameric (Kv1.1-(1.2)(3)) constructs produced proteins of M(r) approximately 62,000, 120,000, and 240,000, which assembled into (alpha)(4)(beta)(4) complexes. Each alpha cRNA yielded a distinct K(+) current in oocytes, with voltage dependence of activation being shifted negatively as the Kv1.1 content in tetramers was increased. Channels containing 1, 2, or 4 copies of Kv1.1 were blocked by dendrotoxin k (DTX)(k) with similarly high potencies, whereas Kv(1.2)(4) proved nonsusceptible. Accordingly, Kv1.2/beta2.1 expressed in baby hamster kidney cells failed to bind DTX(k); in contrast, oligomers containing only one Kv1.1 subunit in a tetramer exhibited high affinity, with additional copies causing modest increases. Thus, one Kv1.1 subunit largely confers high affinity for DTX(k), whereas channel electrophysiological properties are tailored by the content of Kv1.1 relative to Kv1.2. This notable advance could explain the diversity of symptoms of human episodic ataxia I, which is often accompanied by myokymia, due to mutated Kv1.1 being assembled in different combinations with wild-type and Kv1.2.

  9. KChIP-Like Auxiliary Subunits of Kv4 Channels Regulate Excitability of Muscle Cells and Control Male Turning Behavior during Mating in Caenorhabditis elegans

    PubMed Central

    Chen, Xin; Ruan, Mei-Yu

    2015-01-01

    Voltage-gated Kv4 channels control the excitability of neurons and cardiac myocytes by conducting rapidly activating-inactivating currents. The function of Kv4 channels is profoundly modulated by K+ channel interacting protein (KChIP) soluble auxiliary subunits. However, the in vivo mechanism of the modulation is not fully understood. Here, we identified three C. elegans KChIP-like (ceKChIP) proteins, NCS-4, NCS-5, and NCS-7. All three ceKChIPs alter electrical characteristics of SHL-1, a C. elegans Kv4 channel ortholog, currents by slowing down inactivation kinetics and shifting voltage dependence of activation to more hyperpolarizing potentials. Native SHL-1 current is completely abolished in cultured myocytes of Triple KO worms in which all three ceKChIP genes are deleted. Reexpression of NCS-4 partially restored expression of functional SHL-1 channels, whereas NCS-4(efm), a NCS-4 mutant with impaired Ca2+-binding ability, only enhanced expression of SHL-1 proteins, but failed to transport them from the Golgi apparatus to the cell membrane in body wall muscles of Triple KO worms. Moreover, translational reporter revealed that NCS-4 assembles with SHL-1 K+ channels in male diagonal muscles. Deletion of either ncs-4 or shl-1 significantly impairs male turning, a behavior controlled by diagonal muscles during mating. The phenotype of the ncs-4 null mutant could be rescued by reexpression of NCS-4, but not NCS-4(efm), further emphasizing the importance of Ca2+ binding to ceKChIPs in regulating native SHL-1 channel function. Together, these data reveal an evolutionarily conserved mechanism underlying the regulation of Kv4 channels by KChIPs and unravel critical roles of ceKChIPs in regulating muscle cell excitability and animal behavior in C. elegans. PMID:25653349

  10. Molecular characterization and gene expression of the channel catfish Ferritin H subunit after bacterial infection and iron treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ferritins are the major iron storage protein in the cytoplasm of cells, responsible for regulating levels of intracellular iron. Ferritin genes are widely distributed in both prokaryotes and eukaryotes. In mammals, ferritin molecules are composed of heavy- (H) and light- (L) chain subunits; amphibia...

  11. Cloning and immunocytochemical localization of a cyclic nucleotide-gated channel alpha-subunit to all cone photoreceptors in the mouse retina.

    PubMed

    Hirano, A A; Hack, I; Wässle, H; Duvoisin, R M

    2000-05-22

    Cyclic nucleotide-gated channels (CNGC) are ligand-gated ion channels that open and close in response to changes in the intracellular concentration of the second messengers, 3;,5;-cyclic adenosine monophosphate and 3;,5;-cyclic guanosine monophosphate. Most notably, they transduce the chemical signal produced by the absorption of light in photoreceptors into a membrane potential change, which is then transmitted to the ascending visual pathway. CNGCs have also been implicated in the signal transduction of other neurons downstream of the photoreceptors, in particular the ON-bipolar cells, as well as in other areas of the central nervous system. We therefore undertook a search for additional cyclic nucleotide-gated channels expressed in the retina. Following a degenerate reverse transcription polymerase chain reaction approach to amplify low-copy number messages, a cDNA encoding a new splice variant of CNGC alpha-subunit was isolated from mouse retina and classified as mCNG3. An antiserum raised against the carboxy-terminal sequence identified the retinal cell type expressing mCNG3 as cone photoreceptors. Preembedding immunoelectron microscopy demonstrated its membrane localization in the outer segments, consistent with its role in phototransduction. Double-labeling experiments with cone-specific markers indicated that all cone photoreceptors in the murid retina use the same or a highly conserved cyclic nucleotide-gated channel. Therefore, defects in this channel would be predicted to severely impair photopic vision.

  12. Essential, completely conserved glycine residue in the domain III S2-S3 linker of voltage-gated calcium channel alpha1 subunits in yeast and mammals.

    PubMed

    Iida, Kazuko; Teng, Jinfeng; Tada, Tomoko; Saka, Ayaka; Tamai, Masumi; Izumi-Nakaseko, Hiroko; Adachi-Akahane, Satomi; Iida, Hidetoshi

    2007-08-31

    Voltage-gated Ca2+ channels (VGCCs) mediate the influx of Ca2+ that regulates many cellular events, and mutations in VGCC genes cause serious hereditary diseases in mammals. The yeast Saccharomyces cerevisiae has only one gene encoding the putative pore-forming alpha1 subunit of VGCC, CCH1. Here, we identify a cch1 allele producing a completely nonfunctional Cch1 protein with a Gly1265 to Glu substitution present in the domain III S2-S3 cytoplasmic linker. Comparison of amino acid sequences of this linker among 58 VGCC alpha1 subunits from 17 species reveals that a Gly residue whose position corresponds to that of the Cch1 Gly1265 is completely conserved from yeasts to humans. Systematic amino acid substitution analysis using 10 amino acids with different chemical and structural properties indicates that the Gly1265 is essential for Cch1 function because of the smallest residue volume. Replacement of the Gly959 residue of a rat brain Cav1.2 alpha1 subunit (rbCII), positionally corresponding to the yeast Cch1 Gly1265, with Glu, Ser, Lys, or Ala results in the loss of Ba2+ currents, as revealed by the patch clamp method. These results suggest that the Gly residue in the domain III S2-S3 linker is functionally indispensable from yeasts to mammals. Because the Gly residue has never been studied in any VGCC, these findings provide new insights into the structure-function relationships of VGCCs.

  13. Loss of the calcium channel β4 subunit impairs parallel fibre volley and Purkinje cell firing in cerebellum of adult ataxic mice.

    PubMed

    Benedetti, Bruno; Benedetti, Ariane; Flucher, Bernhard E

    2016-06-01

    The auxiliary voltage-gated calcium channel subunit β4 supports targeting of calcium channels to the cell membrane, modulates ionic currents and promotes synaptic release in the central nervous system. β4 is abundant in cerebellum and its loss causes ataxia. However, the type of calcium channels and cerebellar functions affected by the loss of β4 are currently unknown. We therefore studied the structure and function of Purkinje cells in acute cerebellar slices of the β4 (-/-) ataxic (lethargic) mouse, finding that loss of β4 affected Purkinje cell input, morphology and pacemaker activity. In adult lethargic cerebellum evoked postsynaptic currents from parallel fibres were depressed, while paired-pulse facilitation and spontaneous synaptic currents were unaffected. Because climbing fibre input was spared, the parallel fibre/climbing fibre input ratio was reduced. The dendritic arbor of adult lethargic Purkinje cells displayed fewer and shorter dendrites, but a normal spine density. Accordingly, the width of the molecular and granular layers was reduced. These defects recapitulate the impaired cerebellar maturation observed upon Cav 2.1 ataxic mutations. However, unlike Cav 2.1 mutations, lethargic Purkinje cells also displayed a striking decrease in pacemaker firing frequency, without loss of firing regularity. All these deficiencies appear in late development, indicating the importance of β4 for the normal differentiation and function of mature Purkinje cells networks. The observed reduction of the parallel fibre input, the altered parallel fibre/climbing fibre ratio and the reduced Purkinje cell output can contribute to the severe motor impairment caused by the loss of the calcium channel β4 subunit in lethargic mice. PMID:27003325

  14. Antagonism of ligand-gated ion channel receptors: two domains of the glycine receptor alpha subunit form the strychnine-binding site.

    PubMed Central

    Vandenberg, R J; French, C R; Barry, P H; Shine, J; Schofield, P R

    1992-01-01

    The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. Glycine activation of the receptor is antagonized by the convulsant alkaloid strychnine. Using in vitro mutagenesis and functional analysis of the cDNA encoding the alpha 1 subunit of the human GlyR, we have identified several amino acid residues that form the strychnine-binding site. These residues were identified by transient expression of mutated cDNAs in mammalian (293) cells and examination of resultant [3H]strychnine binding, glycine displacement of [3H]strychnine, and electrophysiological responses to the application of glycine and strychnine. This mutational analysis revealed that residues from two separate domains within the alpha 1 subunit form the binding site for the antagonist strychnine. The first domain includes the amino acid residues Gly-160 and Tyr-161, and the second domain includes the residues Lys-200 and Tyr-202. These results, combined with analyses of other ligand-gated ion channel receptors, suggest a conserved tertiary structure and a common mechanism for antagonism in this receptor superfamily. PMID:1311851

  15. Immunolocalization of a voltage-gated calcium channel β subunit in the tentacles and cnidocytes of the Portuguese man-of-war, Physalia physalis.

    PubMed

    Bouchard, Christelle; Anderson, Peter A V

    2014-12-01

    This study investigated the localization of a voltage-gated calcium channel (VGCC) β subunit in the tentacles and cnidocytes of the Portuguese man-of-war using confocal immunocytochemistry. An antibody specific to the Ca(2+) channel β subunit of the Portuguese-man-of-war (PpCaVβ) was generated, and characterized by Western immunoblotting. The antibody labeling was widespread in the ectoderm of cnidosacs of the tentacles. The binding of the antibody on isolated cnidocytes was distributed at the base of the cell and appeared as multiple strong fluorescent plaques located around the basal hemisphere of the cell. The distribution of PpCaVβ in the cnidocyte is consistent with previous studies on other hydrozoans that demonstrated that cnidocytes convey sensory information to other cnidocytes through chemical synapses in which the cnidocyte is pre-synaptic to elements of the animal's nervous system. Importantly and surprisingly, PpCaVβ did not localize to the apical surface of the cnidocyte where the exocytotic events involved in cnidocyst discharge are thought to take place. PMID:25572213

  16. Neuronal and glial expression of inward rectifier potassium channel subunits Kir2.x in rat dorsal root ganglion and spinal cord.

    PubMed

    Murata, Yuzo; Yasaka, Toshiharu; Takano, Makoto; Ishihara, Keiko

    2016-03-23

    Inward rectifier K(+) channels of the Kir2.x subfamily play important roles in controlling the neuronal excitability. Although their cellular localization in the brain has been extensively studied, only a few studies have examined their expression in the spinal cord and peripheral nervous system. In this study, immunohistochemical analyses of Kir2.1, Kir2.2, and Kir2.3 expression were performed in rat dorsal root ganglion (DRG) and spinal cord using bright-field and confocal microscopy. In DRG, most ganglionic neurons expressed Kir2.1, Kir2.2 and Kir2.3, whereas satellite glial cells chiefly expressed Kir2.3. In the spinal cord, Kir2.1, Kir2.2 and Kir2.3 were all expressed highly in the gray matter of dorsal and ventral horns and moderately in the white matter also. Within the gray matter, the expression was especially high in the substantia gelatinosa (lamina II). Confocal images obtained using markers for neuronal cells, NeuN, and astrocytes, Sox9, showed expression of all three Kir2 subunits in both neuronal somata and astrocytes in lamina I-III of the dorsal horn and the lateral spinal nucleus of the dorsolateral funiculus. Immunoreactive signals other than those in neuronal and glial somata were abundant in lamina I and II, which probably located mainly in nerve fibers or nerve terminals. Colocalization of Kir2.1 and 2.3 and that of Kir2.2 and 2.3 were present in neuronal and glial somata. In the ventral horn, motor neurons and interneurons were also immunoreactive with the three Kir2 subunits. Our study suggests that Kir2 channels composed of Kir2.1-2.3 subunits are expressed in neuronal and glial cells in the DRG and spinal cord, contributing to sensory transduction and motor control. PMID:26854211

  17. Selective expression of KCNS3 potassium channel α-subunit in parvalbumin-containing GABA neurons in the human prefrontal cortex.

    PubMed

    Georgiev, Danko; González-Burgos, Guillermo; Kikuchi, Mitsuru; Minabe, Yoshio; Lewis, David A; Hashimoto, Takanori

    2012-01-01

    The cognitive deficits of schizophrenia appear to be associated with altered cortical GABA neurotransmission in the subsets of inhibitory neurons that express either parvalbumin (PV) or somatostatin (SST). Identification of molecular mechanisms that operate selectively in these neurons is essential for developing targeted therapeutic strategies that do not influence other cell types. Consequently, we sought to identify, in the human cortex, gene products that are expressed selectively by PV and/or SST neurons, and that might contribute to their distinctive functional properties. Based on previously reported expression patterns in the cortex of mice and humans, we selected four genes: KCNS3, LHX6, KCNAB1, and PPP1R2, encoding K(+) channel Kv9.3 modulatory α-subunit, LIM homeobox protein 6, K(+) channel Kvβ1 subunit, and protein phosphatase 1 regulatory subunit 2, respectively, and examined their colocalization with PV or SST mRNAs in the human prefrontal cortex using dual-label in situ hybridization with (35)S- and digoxigenin-labeled antisense riboprobes. KCNS3 mRNA was detected in almost all PV neurons, but not in SST neurons, and PV mRNA was detected in >90% of KCNS3 mRNA-expressing neurons. LHX6 mRNA was detected in almost all PV and >90% of SST neurons, while among all LHX6 mRNA-expressing neurons 50% expressed PV mRNA and >44% expressed SST mRNA. KCNAB1 and PPP1R2 mRNAs were detected in much larger populations of cortical neurons than PV or SST neurons. These findings indicate that KCNS3 is a selective marker of PV neurons, whereas LHX6 is expressed by both PV and SST neurons. KCNS3 and LHX6 might be useful for characterizing cell-type specific molecular alterations of cortical GABA neurotransmission and for the development of novel treatments targeting PV and/or SST neurons in schizophrenia.

  18. Role of glycine residues highly conserved in the S2-S3 linkers of domains I and II of voltage-gated calcium channel alpha(1) subunits.

    PubMed

    Teng, Jinfeng; Iida, Kazuko; Ito, Masanori; Izumi-Nakaseko, Hiroko; Kojima, Itaru; Adachi-Akahane, Satomi; Iida, Hidetoshi

    2010-05-01

    The pore-forming component of voltage-gated calcium channels, alpha(1) subunit, contains four structurally conserved domains (I-IV), each of which contains six transmembrane segments (S1-S6). We have shown previously that a Gly residue in the S2-S3 linker of domain III is completely conserved from yeasts to humans and important for channel activity. The Gly residues in the S2-S3 linkers of domains I and II, which correspond positionally to the Gly in the S2-S3 linker of domain III, are also highly conserved. Here, we investigated the role of the Gly residues in the S2-S3 linkers of domains I and II of Ca(v)1.2. Each of the Gly residues was replaced with Glu or Gln to produce mutant Ca(v)1.2s; G182E, G182Q, G579E, G579Q, and the resulting mutants were transfected into BHK6 cells. Whole-cell patch-clamp recordings showed that current-voltage relationships of the four mutants were the same as those of wild-type Ca(v)1.2. However, G182E and G182Q showed significantly smaller current densities because of mislocalization of the mutant proteins, suggesting that Gly(182) in domain I is involved in the membrane trafficking or surface expression of alpha(1) subunit. On the other hand, G579E showed a slower voltage-dependent current inactivation (VDI) compared to Ca(v)1.2, although G579Q showed a normal VDI, implying that Gly(579) in domain II is involved in the regulation of VDI and that the incorporation of a negative charge alters the VDI kinetics. Our findings indicate that the two conserved Gly residues are important for alpha(1) subunit to become functional.

  19. The sodium channel β1 subunit mediates outgrowth of neurite-like processes on breast cancer cells and promotes tumour growth and metastasis.

    PubMed

    Nelson, Michaela; Millican-Slater, Rebecca; Forrest, Lorna C; Brackenbury, William J

    2014-11-15

    Voltage-gated Na(+) channels (VGSCs) are heteromeric proteins composed of pore-forming α subunits and smaller β subunits. The β subunits are multifunctional channel modulators and are members of the immunoglobulin superfamily of cell adhesion molecules (CAMs). β1, encoded by SCN1B, is best characterized in the central nervous system (CNS), where it plays a critical role in regulating electrical excitability, neurite outgrowth and migration during development. β1 is also expressed in breast cancer (BCa) cell lines, where it regulates adhesion and migration in vitro. In the present study, we found that SCN1B mRNA/β1 protein were up-regulated in BCa specimens, compared with normal breast tissue. β1 upregulation substantially increased tumour growth and metastasis in a xenograft model of BCa. β1 over-expression also increased vascularization and reduced apoptosis in the primary tumours, and β1 over-expressing tumour cells had an elongate morphology. In vitro, β1 potentiated outgrowth of processes from BCa cells co-cultured with fibroblasts, via trans-homophilic adhesion. β1-mediated process outgrowth in BCa cells required the presence and activity of fyn kinase, and Na(+) current, thus replicating the mechanism by which β1 regulates neurite outgrowth in CNS neurons. We conclude that when present in breast tumours, β1 enhances pathological growth and cellular dissemination. This study is the first demonstration of a functional role for β1 in tumour growth and metastasis in vivo. We propose that β1 warrants further study as a potential biomarker and targeting β1-mediated adhesion interactions may have value as a novel anti-cancer therapy.

  20. Ontogenic Changes and Differential Localization of T-type Ca2+ Channel Subunits Cav3.1 and Cav3.2 in Mouse Hippocampus and Cerebellum

    PubMed Central

    Aguado, Carolina; García-Madrona, Sebastián; Gil-Minguez, Mercedes; Luján, Rafael

    2016-01-01

    T-type calcium (Ca2+) channels play a central role in regulating membrane excitability in the brain. Although the contributions of T-type current to neuron output is often proposed to reflect a differential distribution of T-type channel subtypes to somato-dendritic compartments, their precise subcellular distributions in central neurons are not fully determined. Using histoblot and high-resolution immunoelectron microscopic techniques, we have investigated the expression, regional distribution and subcellular localization of T-type Cav3.1 and Cav3.2 channel subunits in the adult brain, as well as the ontogeny of expression during postnatal development. Histoblot analysis showed that Cav3.1 and Cav3.2 proteins were widely expressed in the brain, with mostly non-overlapping patterns. Cav3.1 showed the highest expression level in the molecular layer (ml) of the cerebellum (Cb), and Cav3.2 in the hippocampus (Hp) and the ml of Cb. During development, levels of Cav3.1 and Cav3.2 increased with age, although there were marked region- and developmental stage-specific differences in their expression. At the cellular and subcellular level, immunoelectron microscopy showed that labeling for Cav3.1 was present in somato-dendritic domains of hippocampal interneurons and Purkinje cells (PCs), while Cav3.2 was present in somato-dendritic domains of CA1 pyramidal cells, hippocampal interneurons and PCs. Most of the immunoparticles for Cav3.1 and Cav3.2 were either associated with the plasma membrane or the intracellular membranes, with notable differences depending on the compartment. Thus, Cav3.1 was mainly located in the plasma membrane of interneurons, whereas Cav3.2 was mainly located in the plasma membrane of dendritic spines and had a major intracellular distribution in dendritic shafts. In PCs, Cav3.1 and Cav3.2 showed similar distribution patterns. In addition to its main postsynaptic distribution, Cav3.2 but not Cav3.1 was also detected in axon terminals establishing

  1. Ontogenic Changes and Differential Localization of T-type Ca(2+) Channel Subunits Cav3.1 and Cav3.2 in Mouse Hippocampus and Cerebellum.

    PubMed

    Aguado, Carolina; García-Madrona, Sebastián; Gil-Minguez, Mercedes; Luján, Rafael

    2016-01-01

    T-type calcium (Ca(2+)) channels play a central role in regulating membrane excitability in the brain. Although the contributions of T-type current to neuron output is often proposed to reflect a differential distribution of T-type channel subtypes to somato-dendritic compartments, their precise subcellular distributions in central neurons are not fully determined. Using histoblot and high-resolution immunoelectron microscopic techniques, we have investigated the expression, regional distribution and subcellular localization of T-type Cav3.1 and Cav3.2 channel subunits in the adult brain, as well as the ontogeny of expression during postnatal development. Histoblot analysis showed that Cav3.1 and Cav3.2 proteins were widely expressed in the brain, with mostly non-overlapping patterns. Cav3.1 showed the highest expression level in the molecular layer (ml) of the cerebellum (Cb), and Cav3.2 in the hippocampus (Hp) and the ml of Cb. During development, levels of Cav3.1 and Cav3.2 increased with age, although there were marked region- and developmental stage-specific differences in their expression. At the cellular and subcellular level, immunoelectron microscopy showed that labeling for Cav3.1 was present in somato-dendritic domains of hippocampal interneurons and Purkinje cells (PCs), while Cav3.2 was present in somato-dendritic domains of CA1 pyramidal cells, hippocampal interneurons and PCs. Most of the immunoparticles for Cav3.1 and Cav3.2 were either associated with the plasma membrane or the intracellular membranes, with notable differences depending on the compartment. Thus, Cav3.1 was mainly located in the plasma membrane of interneurons, whereas Cav3.2 was mainly located in the plasma membrane of dendritic spines and had a major intracellular distribution in dendritic shafts. In PCs, Cav3.1 and Cav3.2 showed similar distribution patterns. In addition to its main postsynaptic distribution, Cav3.2 but not Cav3.1 was also detected in axon terminals establishing

  2. Biochemical properties and subcellular distribution of the BI and rbA isoforms of alpha 1A subunits of brain calcium channels

    PubMed Central

    1996-01-01

    Biochemical properties and subcellular distribution of the class A calcium channel alpha 1 subunits (alpha 1A) from rat and rabbit brain were examined using site-directed anti-peptide antibodies specific for rat rbA (anti-CNA3) and for rabbit BI (anti-NBI-1 and anti-NBI-2) isoforms of alpha 1A. In immunoblotting experiments, anti-CNA3 specifically identifies multiple alpha 1A polypeptides with apparent molecular masses of 210, 190, and 160 kD, and anti-NBI-1 and anti-NBI-2 specifically recognize 190-kD alpha 1A polypeptides in rat brain membrane. In rabbit brain, anti-NBI-1 or anti-NBI-2 specifically detect alpha 1A polypeptides with apparent molecular masses of 220, 200, and 190 kD, while anti-CNA3 specifically recognizes 190-kD alpha 1A polypeptides. These polypeptides evidently represent multiple isoforms of alpha 1A present in both rat and rabbit brain. Anti-CNA3 specifically immunoprecipitates high affinity receptor sites for omega- conotoxin MVIIC (Kd approximately 100 pM), whereas anti-NBI-2 immunoprecipitates two distinct affinity receptor sites for omega- conotoxin MVIIC (Kd approximately 100 pM and approximately 1 microM). Coimmunoprecipitation experiments indicate that alpha 1A subunits recognized by anti-CNA3 and anti-NBI-2 are associated with syntaxin in a stable, SDS-resistant complex and with synaptotagmin. Immunofluorescence studies reveal that calcium channels recognized by anti-NBI-2 are localized predominantly in dendrites and nerve terminals forming synapses on them, while calcium channels recognized by anti- CNA3 are localized more prominently in cell bodies and in nerve terminals. The mossy fiber terminals in hippocampus and the terminals of climbing and parallel fibers in cerebellum are differentially stained by these isoform-specific antibodies. These results indicate that both rbA and BI isoforms of alpha 1A are expressed in rat and rabbit brain and form calcium channels having alpha 1A subunits with distinct molecular mass, pharmacology

  3. Ontogenic Changes and Differential Localization of T-type Ca2+ Channel Subunits Cav3.1 and Cav3.2 in Mouse Hippocampus and Cerebellum

    PubMed Central

    Aguado, Carolina; García-Madrona, Sebastián; Gil-Minguez, Mercedes; Luján, Rafael

    2016-01-01

    T-type calcium (Ca2+) channels play a central role in regulating membrane excitability in the brain. Although the contributions of T-type current to neuron output is often proposed to reflect a differential distribution of T-type channel subtypes to somato-dendritic compartments, their precise subcellular distributions in central neurons are not fully determined. Using histoblot and high-resolution immunoelectron microscopic techniques, we have investigated the expression, regional distribution and subcellular localization of T-type Cav3.1 and Cav3.2 channel subunits in the adult brain, as well as the ontogeny of expression during postnatal development. Histoblot analysis showed that Cav3.1 and Cav3.2 proteins were widely expressed in the brain, with mostly non-overlapping patterns. Cav3.1 showed the highest expression level in the molecular layer (ml) of the cerebellum (Cb), and Cav3.2 in the hippocampus (Hp) and the ml of Cb. During development, levels of Cav3.1 and Cav3.2 increased with age, although there were marked region- and developmental stage-specific differences in their expression. At the cellular and subcellular level, immunoelectron microscopy showed that labeling for Cav3.1 was present in somato-dendritic domains of hippocampal interneurons and Purkinje cells (PCs), while Cav3.2 was present in somato-dendritic domains of CA1 pyramidal cells, hippocampal interneurons and PCs. Most of the immunoparticles for Cav3.1 and Cav3.2 were either associated with the plasma membrane or the intracellular membranes, with notable differences depending on the compartment. Thus, Cav3.1 was mainly located in the plasma membrane of interneurons, whereas Cav3.2 was mainly located in the plasma membrane of dendritic spines and had a major intracellular distribution in dendritic shafts. In PCs, Cav3.1 and Cav3.2 showed similar distribution patterns. In addition to its main postsynaptic distribution, Cav3.2 but not Cav3.1 was also detected in axon terminals establishing

  4. Purification and subunit structure of the [3H]phenamil receptor associated with the renal apical Na+ channel.

    PubMed Central

    Barbry, P; Chassande, O; Vigne, P; Frelin, C; Ellory, C; Cragoe, E J; Lazdunski, M

    1987-01-01

    Sodium crosses the apical membrane of tight epithelia through a sodium channel, which is inhibited by the diuretic amiloride and by analogs such as phenamil. Target size analysis indicated that the functional size of the [3H]phenamil binding sites associated with the epithelial Na+ channel from pig kidney is 92 +/- 10 kDa. The [3H]phenamil receptor was solubilized by using 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The solubilized material displayed the same properties of interaction with amiloride and its derivatives as the membrane-bound receptor. A two-step purification of the epithelial Na+ channel was achieved by using QAE Sephadex chromatography and affinity chromatography on a Bandeiraea simplicifolia lectin column. It results in an 1100-fold purification of the Na+ channel as compared to pig kidney microsomes with a yield of 15% +/- 5%. The maximal specific activity was 3.7 nmol/mg of protein. NaDodSO4/poly-acrylamide gel electrophoresis of the purified Na+ channel under nonreducing conditions showed the presence of a single major polypeptide chain of apparent molecular mass 185 kDa. Under disulfide-reducing conditions, the purified epithelial Na+ channel migrated as a single band of apparent molecular mass 105 kDa. It is suggested that the epithelial Na+ channel from pig kidney has a total molecular mass of 185 kDa and consists of two nearly identical 90- to 105-kDa polypeptide chains crosslinked by disulfide bridges. Images PMID:2440032

  5. Comparative study of the distribution of the alpha-subunits of voltage-gated sodium channels in normal and axotomized rat dorsal root ganglion neurons.

    PubMed

    Fukuoka, Tetsuo; Kobayashi, Kimiko; Yamanaka, Hiroki; Obata, Koichi; Dai, Yi; Noguchi, Koichi

    2008-09-10

    We compared the distribution of the alpha-subunit mRNAs of voltage-gated sodium channels Nav1.1-1.3 and Nav1.6-1.9 and a related channel, Nax, in histochemically identified neuronal subpopulations of the rat dorsal root ganglia (DRG). In the naïve DRG, the expression of Nav1.1 and Nav1.6 was restricted to A-fiber neurons, and they were preferentially expressed by TrkC neurons, suggesting that proprioceptive neurons possess these channels. Nav1.7, -1.8, and -1.9 mRNAs were more abundant in C-fiber neurons compared with A-fiber ones. Nax was evenly expressed in both populations. Although Nav1.8 and -1.9 were preferentially expressed by TrkA neurons, other alpha-subunits were expressed independently of TrkA expression. Actually, all IB4(+) neurons expressed both Nav1.8 and -1.9, and relatively limited subpopulations of IB4(+) neurons (3% and 12%, respectively) expressed Nav1.1 and/or Nav1.6. These findings provide useful information in interpreting the electrophysiological characteristics of some neuronal subpopulations of naïve DRG. After L5 spinal nerve ligation, Nav1.3 mRNA was up-regulated mainly in A-fiber neurons in the ipsilateral L5 DRG. Although previous studies demonstrated that nerve growth factor (NGF) and glial cell-derived neurotrophic factor (GDNF) reversed this up-regulation, the Nav1.3 induction was independent of either TrkA or GFRalpha1 expression, suggesting that the induction of Nav1.3 may be one of the common responses of axotomized DRG neurons without a direct relationship to NGF/GDNF supply. PMID:18615542

  6. The cytosolic termini of the beta- and gamma-ENaC subunits are involved in the functional interactions between cystic fibrosis transmembrane conductance regulator and epithelial sodium channel.

    PubMed

    Ji, H L; Chalfant, M L; Jovov, B; Lockhart, J P; Parker, S B; Fuller, C M; Stanton, B A; Benos, D J

    2000-09-01

    Epithelial sodium channel (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR) are co-localized in the apical membrane of many epithelia. These channels are essential for electrolyte and water secretion and/or reabsorption. In cystic fibrosis airway epithelia, a hyperactivated epithelial Na(+) conductance operates in parallel with defective Cl(-) secretion. Several groups have shown that CFTR down-regulates ENaC activity, but the mechanisms and the regulation of CFTR by ENaC are unknown. To test the hypothesis that ENaC and CFTR regulate each other, and to identify the region(s) of ENaC involved in the interaction between CFTR and ENaC, rENaC and its mutants were co-expressed with CFTR in Xenopus oocytes. Whole cell macroscopic sodium currents revealed that wild type (wt) alphabetagamma-rENaC-induced Na(+) current was inhibited by co-expression of CFTR, and further inhibited when CFTR was activated with a cAMP-raising mixture (CKT). Conversely, alphabetagamma-rENaC stimulated CFTR-mediated Cl(-) currents up to approximately 6-fold. Deletion mutations in the intracellular tails of the three rENaC subunits suggested that the carboxyl terminus of the beta subunit was required both for the down-regulation of ENaC by activated CFTR and the up-regulation of CFTR by ENaC. However, both the carboxyl terminus of the beta subunit and the amino terminus of the gamma subunit were essential for the down-regulation of rENaC by unstimulated CFTR. Interestingly, down-regulation of rENaC by activated CFTR was Cl(-)-dependent, while stimulation of CFTR by rENaC was not dependent on either cytoplasmic Na(+) or a depolarized membrane potential. In summary, there appear to be at least two different sites in ENaC involved in the intermolecular interaction between CFTR and ENaC. PMID:10821834

  7. Evolution of CpG island promoter function underlies changes in KChIP2 potassium channel subunit gene expression in mammalian heart.

    PubMed

    Yan, Qinghong; Masson, Rajeev; Ren, Yi; Rosati, Barbara; McKinnon, David

    2012-01-31

    Scaling of cardiac electrophysiology with body mass requires large changes in the ventricular action potential duration and heart rate in mammals. These changes in cellular electrophysiological function are produced by systematic and coordinated changes in the expression of multiple ion channel and transporter genes. Expression of one important potassium current, the transient outward current (I(to)), changes significantly during mammalian evolution. Changes in I(to) expression are determined, in part, by variation in the expression of an obligatory auxiliary subunit encoded by the KChIP2 gene. The KChIP2 gene is expressed in both cardiac myocytes and neurons and transcription in both cell types is initiated from the same CpG island promoter. Species-dependent variation of KChIP2 expression in heart is mediated by the evolution of the cis-regulatory function of this gene. Surprisingly, the major locus of evolutionary change for KChIP2 gene expression in heart lies within the CpG island core promoter. The results demonstrate that CpG island promoters are not simply permissive for gene expression but can also contribute to tissue-selective expression and, as such, can function as an important locus for the evolution of cis-regulatory function. More generally, evolution of the cis-regulatory function of voltage-gated ion channel genes appears to be an effective and efficient way to modify channel expression levels to optimize electrophysiological function.

  8. Structure-based site-directed photo-crosslinking analyses of multimeric cell-adhesive interactions of voltage-gated sodium channel β subunits

    PubMed Central

    Shimizu, Hideaki; Miyazaki, Haruko; Ohsawa, Noboru; Shoji, Shisako; Ishizuka-Katsura, Yoshiko; Tosaki, Asako; Oyama, Fumitaka; Terada, Takaho; Sakamoto, Kensaku; Shirouzu, Mikako; Sekine, Shun-ichi; Nukina, Nobuyuki; Yokoyama, Shigeyuki

    2016-01-01

    The β1, β2, and β4 subunits of voltage-gated sodium channels reportedly function as cell adhesion molecules. The present crystallographic analysis of the β4 extracellular domain revealed an antiparallel arrangement of the β4 molecules in the crystal lattice. The interface between the two antiparallel β4 molecules is asymmetric, and results in a multimeric assembly. Structure-based mutagenesis and site-directed photo-crosslinking analyses of the β4-mediated cell-cell adhesion revealed that the interface between the antiparallel β4 molecules corresponds to that in the trans homophilic interaction for the multimeric assembly of β4 in cell-cell adhesion. This trans interaction mode is also employed in the β1-mediated cell-cell adhesion. Moreover, the β1 gene mutations associated with generalized epilepsy with febrile seizures plus (GEFS+) impaired the β1-mediated cell-cell adhesion, which should underlie the GEFS+ pathogenesis. Thus, the structural basis for the β-subunit-mediated cell-cell adhesion has been established. PMID:27216889

  9. Genomic analyses of sodium channel α-subunit genes from strains of melon thrips, Thrips palmi, with different sensitivities to cypermethrin.

    PubMed

    Bao, Wen Xue; Kataoka, Yoko; Kohara, Yoko; Sonoda, Shoji

    2014-01-01

    We examined the genomic organization of the sodium channel α-subunit gene in two strains of melon thrips, Thrips palmi, having differing sensitivity to cypermethrin. The nucleotide sequences of the strains included 18 or 16 putative exons which covered the entire coding region of the gene producing 2039 amino acid residues. Deduced amino acid sequences of both strains showed 80% homology with those of Periplaneta americana and Cimex lectularius. Comparison of deduced amino acid sequences of both strains showed no consistent amino acid difference. In addition to the previously reported resistant amino acid (Ile) at the T929I site, both strains encoded another resistant amino acids at two positions which are involved in pyrethroid resistance in other arthropods. These amino acids might also involve in the basal levels of resistance to pyrethroids of both strains.

  10. Oxidation differentially modulates the recombinant voltage-gated Na(+) channel α-subunits Nav1.7 and Nav1.8.

    PubMed

    Schlüter, Friederike; Leffler, Andreas

    2016-10-01

    Voltage-gated Na(+) channels regulate neuronal excitability by generating the upstroke of action potentials. The α-subunits Nav1.7 and Nav1.8 are required for normal function of sensory neurons and thus for peripheral pain processing, but also for an increased excitability leading to an increased pain sensitivity under several conditions associated with oxidative stress. While little is known about the direct effects of oxidants on Nav1.7 and Nav1.8, a recent study on mouse dorsal root ganglion neurons suggested that oxidant-induced alterations of nociceptor excitability are primarily driven by Nav1.8. Here we performed whole-cell patch clamp recordings to explore how oxidation modulates functional properties of recombinant Nav1.7 and Nav1.8 channels. The strong oxidant chloramine-T (ChT) at 100 and 500µM induced a shift of the voltage-dependency of activation towards more hyperpolarized potentials. While fast inactivation was stabilized by 100µM ChT, it was partially removed by 500µM ChT on both α-subunits (Nav1.7

  11. Comparative study of voltage-gated sodium channel α-subunits in non-overlapping four neuronal populations in the rat dorsal root ganglion.

    PubMed

    Fukuoka, Tetsuo; Noguchi, Koichi

    2011-06-01

    Voltage-gated sodium channel α-subunit (Nav) is the major determinant of neuronal electrophysiological characters. In order to compare the composition of Navs among neurochemically different neurons in the rat dorsal root ganglion (DRG), we examined the expression of Nav transcripts in four non-overlapping neuronal populations, with (+) or without (-) N52 immunoreactivity, a marker of neurons with myelinated axons, and TrkA mRNA identified by in situ hybridization histochemistry. Both N52-/TrkA+ and N52-/TrkA- populations had high levels of signals for Nav1.7, Nav1.8, and Nav1.9 mRNAs, but rarely expressed Nav1.1 or Nav1.6. There was no significant difference in these signals, suggesting that C-fiber peptidergic and non-peptidergic neurons have similar electrophysiological characters with regard to sodium currents. N52+/TrkA+ neurons (putative A-fiber nociceptors) had similar high levels of signals for Nav1.7 and Nav1.8, but a significantly lower level of Nav1.9 signals, as compared to N52- neurons. Although, almost no N52+/TrkA- neurons had Nav1.8 or Nav1.9, half of this population expressed Nav1.7 at similar levels to other three populations and the other half completely lacked this channel. These data suggest that Nav1.8 is a common channel for both C- and A-fiber nociceptors, and Nav1.9 is rather selective for C-fiber nociceptors. Nav1.7 is the most universal channel while some functionally unknown N52+/TrkA- subpopulation selectively lacks it. PMID:21303679

  12. Phenotypical manifestations of mutations in the genes encoding subunits of the cardiac voltage-dependent L-type calcium channel

    PubMed Central

    Napolitano, Carlo; Antzelevitch, Charles

    2011-01-01

    The L-type Cardiac Calcium Channel (LTCC) plays a prominent role in the electrical and mechanical function of the heart. Mutations in the LTCC have been associated with a number of inherited cardiac arrhythmia syndromes, including Timothy, Brugada and Early Repolarization syndromes. Elucidation of the genetic defects associated with these syndromes has led to a better understanding of molecular and cellular mechanisms and the development of novel therapeutic approaches to dealing with the arrhythmic manifestations. This review provides an overview of the molecular structure and function of the LTCC, the genetic defects in these channels known to contribute to inherited disorders and the underlying molecular and cellular mechanisms contributing to the development of life-threatening arrhythmias. PMID:21372292

  13. The cyclic nucleotide gated channel subunit CNG-1 instructs behavioral outputs in Caenorhabditis elegans by coincidence detection of nutritional status and olfactory input.

    PubMed

    He, Chao; Altshuler-Keylin, Svetlana; Daniel, David; L'Etoile, Noelle D; O'Halloran, Damien

    2016-10-01

    In mammals, olfactory subsystems have been shown to express seven-transmembrane G-protein-coupled receptors (GPCRs) in a one-receptor-one-neuron pattern, whereas in Caenorhabditis elegans, olfactory sensory neurons express multiple G-protein coupled odorant receptors per olfactory sensory neuron. In both mammalian and C. elegans olfactory sensory neurons (OSNs), the process of olfactory adaptation begins within the OSN; this process of negative feedback within the mammalian OSN has been well described in mammals and enables activated OSNs to desensitize their response cell autonomously while attending to odors detected by separate OSNs. However, the mechanism that enables C. elegans to adapt to one odor and attend to another odor sensed by the same olfactory sensory neuron remains unclear. We found that the cyclic nucleotide gated channel subunit CNG-1 is required to promote cross adaptation responses between distinct olfactory cues. This change in sensitivity to a pair of odorants after persistent stimulation by just one of these odors is modulated by the internal nutritional state of the animal, and we find that this response is maintained across a diverse range of food sources for C. elegans. We also reveal that CNG-1 integrates food related cues for exploratory motor output, revealing that CNG-1 functions in multiple capacities to link nutritional information with behavioral output. Our data describes a novel model whereby CNG channels can integrate the coincidence detection of appetitive and olfactory information to set olfactory preferences and instruct behavioral outputs.

  14. The noncompetitive blocker ( sup 3 H)chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: Implications for the alpha-helical organization of regions MII and for the structure of the ion channel

    SciTech Connect

    Revah, F.; Galzi, J.L.; Giraudat, J.; Haumont, P.Y.; Lederer, F.; Changeux, J.P. )

    1990-06-01

    Labeling studies of Torpedo marmorata nicotinic acetylcholine receptor with the noncompetitive channel blocker ({sup 3}H)chlorpromazine have led to the initial identification of amino acids plausibly participating to the walls of the ion channel on the alpha, beta, and delta subunits. We report here results obtained with the gamma subunit, which bring additional information on the structure of the channel. After photolabeling of the membrane-bound receptor under equilibrium conditions in the presence of agonist and with or without phencyclidine (a specific ligand for the high-affinity site for noncompetitive blockers), the purified labeled gamma subunit was digested with trypsin, and the resulting fragments were fractionated by HPLC. Sequence analysis of peptide mixtures containing various amounts of highly hydrophobic fragments showed that three amino acids are labeled by ({sup 3}H)chlorpromazine in a phencyclidine-sensitive manner: Thr-253, Ser-257, and Leu-260. These residues all belong to the hydrophobic and putative transmembrane region MII of the gamma subunit. Their distribution along the sequence is consistent with an alpha-helical organization of this segment. The ({sup 3}H)chlorpromazine-labeled amino acids are conserved at homologous positions in the known sequences of other ligand-gated ion channels and may, thus, play a critical role in ion-transport mechanisms.

  15. Purification and subunit structure of a putative K sup + -channel protein identified by its binding properties for dendrotoxin I

    SciTech Connect

    Rehm, H.; Lazdunski, M. )

    1988-07-01

    The binding protein for the K{sup +}-channel toxin dendrotoxin I was purified from a detergent extract of rat brain membranes. The purification procedure utilized chromatography on DEAE-Trisacryl, affinity chromatography on a dendrotoxin-I-Aca 22 column, and wheat germ agglutinin-Affigel 10 with a final 3,800- to 4,600-fold enrichment and a recovery of 8-16%. The high affinity (K{sub d}, 40-100 pM) and specificity of the binding site are retained throughout the purification procedure. Analysis of the purified material on silver-stained NaDodSO{sub 4}/polyacrylamide gel revealed three bands of M{sub r} 76,000-80,000, 38,000 and 35,000. Interestingly, the binding site for {sup 125}I-labeled mast cell degranulating peptide, another putative K{sup +}-channel ligand from bee venom, which induces long-term potentiation in hippocampus, seems to reside on the same protein complex, as both binding sites copurify through the entire purification protocol.

  16. Fe2O3 nanoparticles suppress Kv1.3 channels via affecting the redox activity of Kvβ2 subunit in Jurkat T cells

    NASA Astrophysics Data System (ADS)

    Yan, Li; Liu, Xiao; Liu, Wei-Xia; Tan, Xiao-Qiu; Xiong, Fei; Gu, Ning; Hao, Wei; Gao, Xue; Cao, Ji-Min

    2015-12-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are promising nanomaterials in medical practice due to their special magnetic characteristics and nanoscale size. However, their potential impacts on immune cells are not well documented. This study aims to investigate the effects of Fe2O3 nanoparticles (Fe2O3-NPs) on the electrophysiology of Kv1.3 channels in Jurkat T cells. Using the whole-cell patch-clamp technique, we demonstrate that incubation of Jurkat cells with Fe2O3-NPs dose- and time-dependently decreased the current density and shifted the steady-state inactivation curve and the recovery curve of Kv1.3 channels to a rightward direction. Fe2O3-NPs increased the NADP level but decreased the NADPH level of Jurkat cells. Direct induction of NADPH into the cytosole of Jurkat cells via the pipette abolished the rightward shift of the inactivation curve. In addition, transmission electron microscopy showed that Fe2O3-NPs could be endocytosed by Jurkat cells with relatively low speed and capacity. Fe2O3-NPs did not significantly affect the viability of Jurkat cells, but suppressed the expressions of certain cytokines (TNFα, IFNγ and IL-2) and interferon responsive genes (IRF-1 and PIM-1), and the time courses of Fe2O3-NPs endocytosis and effects on the expressions of cytokines and interferon responsive genes were compatible. We conclude that Fe2O3-NPs can be endocytosed by Jurkat cells and act intracellularly. Fe2O3-NPs decrease the current density and delay the inactivation and recovery kinetics of Kv1.3 channels in Jurkat cells by oxidizing NADPH and therefore disrupting the redox activity of the Kvβ2 auxiliary subunit, and as a result, lead to changes of the Kv1.3 channel function. These results suggest that iron oxide nanoparticles may affect T cell function by disturbing the activity of Kv1.3 channels. Further, the suppressing effects of Fe2O3-NPs on the expressions of certain inflammatory cytokines and interferon responsive genes suggest that iron

  17. The amiloride-sensitive epithelial sodium channel alpha-subunit is transcriptionally down-regulated in rat parotid cells by the extracellular signal-regulated protein kinase pathway.

    PubMed

    Zentner, M D; Lin, H H; Wen, X; Kim, K J; Ann, D K

    1998-11-13

    Previous studies have shown that an inducible Raf-1 kinase protein, DeltaRaf-1:ER, activates the mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK)-signaling pathway, which is required for the transformation of the rat salivary epithelial cell line, Pa-4. Differential display polymerase chain reaction was employed to search for mRNAs repressed by DeltaRaf-1:ER activation. Through this approach, the gene encoding the alpha-subunit of the amiloride-sensitive epithelial sodium channel (alpha-ENaC) was identified as a target of activated Raf-1 kinases. alpha-ENaC down-regulation could also be seen in cells treated with 12-O-tetradecanoyl-1-phorbol-13-acetate (TPA), indicating that the repression of steady-state alpha-ENaC mRNA level was dependent upon the activity of protein kinase C, the target of TPA, as well. Pretreatment of cells with a specific inhibitor of the ERK kinase pathway, PD 98059, markedly abolished the down-regulation of alpha-ENaC expression, consistent with the hypothesis that the ERK kinase-signaling pathway is involved in TPA-mediated repression. Moreover, through the use of transient transfection assays with alpha-ENaC-reporter and activated Raf expression construct(s), we provide the first evidence that activation of the ERK pathway down-regulates alpha-ENaC expression at the transcriptional level. Elucidating the molecular programming that modulates the expression of the alpha-subunit may provide new insights into the modulation of sodium reabsorption across epithelia. PMID:9804854

  18. The CaVβ Subunit Protects the I-II Loop of the Voltage-gated Calcium Channel CaV2.2 from Proteasomal Degradation but Not Oligoubiquitination.

    PubMed

    Page, Karen M; Rothwell, Simon W; Dolphin, Annette C

    2016-09-23

    CaVβ subunits interact with the voltage-gated calcium channel CaV2.2 on a site in the intracellular loop between domains I and II (the I-II loop). This interaction influences the biophysical properties of the channel and leads to an increase in its trafficking to the plasma membrane. We have shown previously that a mutant CaV2.2 channel that is unable to bind CaVβ subunits (CaV2.2 W391A) was rapidly degraded (Waithe, D., Ferron, L., Page, K. M., Chaggar, K., and Dolphin, A. C. (2011) J. Biol. Chem. 286, 9598-9611). Here we show that, in the absence of CaVβ subunits, a construct consisting of the I-II loop of CaV2.2 was directly ubiquitinated and degraded by the proteasome system. Ubiquitination could be prevented by mutation of all 12 lysine residues in the I-II loop to arginines. Including a palmitoylation motif at the N terminus of CaV2.2 I-II loop was insufficient to target it to the plasma membrane in the absence of CaVβ subunits even when proteasomal degradation was inhibited with MG132 or ubiquitination was prevented by the lysine-to-arginine mutations. In the presence of CaVβ subunit, the palmitoylated CaV2.2 I-II loop was protected from degradation, although oligoubiquitination could still occur, and was efficiently trafficked to the plasma membrane. We propose that targeting to the plasma membrane requires a conformational change in the I-II loop that is induced by binding of the CaVβ subunit. PMID:27489103

  19. The CaVβ Subunit Protects the I-II Loop of the Voltage-gated Calcium Channel CaV2.2 from Proteasomal Degradation but Not Oligoubiquitination*

    PubMed Central

    Page, Karen M.; Rothwell, Simon W.; Dolphin, Annette C.

    2016-01-01

    CaVβ subunits interact with the voltage-gated calcium channel CaV2.2 on a site in the intracellular loop between domains I and II (the I-II loop). This interaction influences the biophysical properties of the channel and leads to an increase in its trafficking to the plasma membrane. We have shown previously that a mutant CaV2.2 channel that is unable to bind CaVβ subunits (CaV2.2 W391A) was rapidly degraded (Waithe, D., Ferron, L., Page, K. M., Chaggar, K., and Dolphin, A. C. (2011) J. Biol. Chem. 286, 9598–9611). Here we show that, in the absence of CaVβ subunits, a construct consisting of the I-II loop of CaV2.2 was directly ubiquitinated and degraded by the proteasome system. Ubiquitination could be prevented by mutation of all 12 lysine residues in the I-II loop to arginines. Including a palmitoylation motif at the N terminus of CaV2.2 I-II loop was insufficient to target it to the plasma membrane in the absence of CaVβ subunits even when proteasomal degradation was inhibited with MG132 or ubiquitination was prevented by the lysine-to-arginine mutations. In the presence of CaVβ subunit, the palmitoylated CaV2.2 I-II loop was protected from degradation, although oligoubiquitination could still occur, and was efficiently trafficked to the plasma membrane. We propose that targeting to the plasma membrane requires a conformational change in the I-II loop that is induced by binding of the CaVβ subunit. PMID:27489103

  20. β-Site APP-cleaving enzyme 1 (BACE1) cleaves cerebellar Na+ channel β4-subunit and promotes Purkinje cell firing by slowing the decay of resurgent Na+ current.

    PubMed

    Huth, Tobias; Rittger, Andrea; Saftig, Paul; Alzheimer, Christian

    2011-03-01

    In cerebellar Purkinje cells, the β4-subunit of voltage-dependent Na(+) channels has been proposed to serve as an open-channel blocker giving rise to a "resurgent" Na(+) current (I (NaR)) upon membrane repolarization. Notably, the β4-subunit was recently identified as a novel substrate of the β-secretase, BACE1, a key enzyme of the amyloidogenic pathway in Alzheimer's disease. Here, we asked whether BACE1-mediated cleavage of β4-subunit has an impact on I (NaR) and, consequently, on the firing properties of Purkinje cells. In cerebellar tissue of BACE1-/- mice, mRNA levels of Na(+) channel α-subunits 1.1, 1.2, and 1.6 and of β-subunits 1-4 remained unchanged, but processing of β4 peptide was profoundly altered. Patch-clamp recordings from acutely isolated Purkinje cells of BACE1-/- and WT mice did not reveal any differences in steady-state properties and in current densities of transient, persistent, and resurgent Na(+) currents. However, I (NaR) was found to decay significantly faster in BACE1-deficient Purkinje cells than in WT cells. In modeling studies, the altered time course of I (NaR) decay could be replicated when we decreased the efficiency of open-channel block. In current-clamp recordings, BACE1-/- Purkinje cells displayed lower spontaneous firing rate than normal cells. Computer simulations supported the hypothesis that the accelerated decay kinetics of I (NaR) are responsible for the slower firing rate. Our study elucidates a novel function of BACE1 in the regulation of neuronal excitability that serves to tune the firing pattern of Purkinje cells and presumably other neurons endowed with I (NaR).

  1. Drosophila nociceptors mediate larval aversion to dry surface environments utilizing both the painless TRP channel and the DEG/ENaC subunit, PPK1.

    PubMed

    Johnson, Wayne A; Carder, Justin W

    2012-01-01

    A subset of sensory neurons embedded within the Drosophila larval body wall have been characterized as high-threshold polymodal nociceptors capable of responding to noxious heat and noxious mechanical stimulation. They are also sensitized by UV-induced tissue damage leading to both thermal hyperalgesia and allodynia very similar to that observed in vertebrate nociceptors. We show that the class IV multiple-dendritic(mdIV) nociceptors are also required for a normal larval aversion to locomotion on to a dry surface environment. Drosophila melanogaster larvae are acutely susceptible to desiccation displaying a strong aversion to locomotion on dry surfaces severely limiting the distance of movement away from a moist food source. Transgenic inactivation of mdIV nociceptor neurons resulted in larvae moving inappropriately into regions of low humidity at the top of the vial reflected as an increased overall pupation height and larval desiccation. This larval lethal desiccation phenotype was not observed in wild-type controls and was completely suppressed by growth in conditions of high humidity. Transgenic hyperactivation of mdIV nociceptors caused a reciprocal hypersensitivity to dry surfaces resulting in drastically decreased pupation height but did not induce the writhing nocifensive response previously associated with mdIV nociceptor activation by noxious heat or harsh mechanical stimuli. Larvae carrying mutations in either the Drosophila TRP channel, Painless, or the degenerin/epithelial sodium channel subunit Pickpocket1(PPK1), both expressed in mdIV nociceptors, showed the same inappropriate increased pupation height and lethal desiccation observed with mdIV nociceptor inactivation. Larval aversion to dry surfaces appears to utilize the same or overlapping sensory transduction pathways activated by noxious heat and harsh mechanical stimulation but with strikingly different sensitivities and disparate physiological responses. PMID:22403719

  2. Drosophila Nociceptors Mediate Larval Aversion to Dry Surface Environments Utilizing Both the Painless TRP Channel and the DEG/ENaC Subunit, PPK1

    PubMed Central

    Johnson, Wayne A.; Carder, Justin W.

    2012-01-01

    A subset of sensory neurons embedded within the Drosophila larval body wall have been characterized as high-threshold polymodal nociceptors capable of responding to noxious heat and noxious mechanical stimulation. They are also sensitized by UV-induced tissue damage leading to both thermal hyperalgesia and allodynia very similar to that observed in vertebrate nociceptors. We show that the class IV multiple-dendritic(mdIV) nociceptors are also required for a normal larval aversion to locomotion on to a dry surface environment. Drosophila melanogaster larvae are acutely susceptible to desiccation displaying a strong aversion to locomotion on dry surfaces severely limiting the distance of movement away from a moist food source. Transgenic inactivation of mdIV nociceptor neurons resulted in larvae moving inappropriately into regions of low humidity at the top of the vial reflected as an increased overall pupation height and larval desiccation. This larval lethal desiccation phenotype was not observed in wild-type controls and was completely suppressed by growth in conditions of high humidity. Transgenic hyperactivation of mdIV nociceptors caused a reciprocal hypersensitivity to dry surfaces resulting in drastically decreased pupation height but did not induce the writhing nocifensive response previously associated with mdIV nociceptor activation by noxious heat or harsh mechanical stimuli. Larvae carrying mutations in either the Drosophila TRP channel, Painless, or the degenerin/epithelial sodium channel subunit Pickpocket1(PPK1), both expressed in mdIV nociceptors, showed the same inappropriate increased pupation height and lethal desiccation observed with mdIV nociceptor inactivation. Larval aversion to dry surfaces appears to utilize the same or overlapping sensory transduction pathways activated by noxious heat and harsh mechanical stimulation but with strikingly different sensitivities and disparate physiological responses. PMID:22403719

  3. Physical linkage of the human growth hormone gene cluster and the skeletal muscle sodium channel {alpha}-subunit gene (SCN4A) on chromosome 17

    SciTech Connect

    Bennani-Baiti, I.M.; Jones, B.K.; Liebhaber, S.A.; Cooke, N.E.

    1995-10-10

    The human growth hormone (GH) locus, a cluster of five genes, spans 47 kb on chromosome 17q22-q24. The skeletal muscle sodium channel {alpha}-subunit locus (SCN4A), a 32.5-kb gene, has previously been mapped to 17q23.1-q25.3. We demonstrate that both the GH gene cluster and the SCN4A gene colocalize to a single 525-kb yeast artificial chromosome (YAC) containing DNA derived from human chromosome 17. Restriction maps of two cosmids encompassing the 5{prime} terminus of the GH locus and including up to 40 kb of 5{prime}-flanking sequences demonstrate a perfect 20-kb overlap with previously published maps of the SCN4A gene. A 720-bp DNA segment, encompassing sequences 32.3 to 31.6 kb 5{prime} to GH, was sequenced and found to be identical to exon 14 of SCN4A. These data demonstrate that the SCN4A gene and the entire GH gene cluster are contained within 100 kb on chromosome 17 and are separated by only 21.5 kb. Remarkably, this physical linkage between GH and SCN4A also reveals that multiple elements critical to tissue-specific transcriptional activation of the GH gene lie within the SCN4A gene. 48 refs., 5 figs.

  4. Ultrasound-targeted microbubble destruction of calcium channel subunit α 1D siRNA inhibits breast cancer via G protein-coupled receptor 30

    PubMed Central

    Ji, Yanlei; Han, Zhen; Shao, Limei; Zhao, Yuehuan

    2016-01-01

    Estrogen has been closely associated with breast cancer. Several studies reported that Ca2+ signal and Ca2+ channels act in estrogen-modulated non-genomic pathway of breast cancer, however little was revealed on the function of L-type Ca2+ channels. The L-type Ca2+ channel subunit α 1D, named Cav1.3 was found in breast cancer cells. We aimed to investigate the expression and activity of Cav1.3 in human breast cancer, and reveal the effect of estrogen in regulating the expression of Cav1.3. The qRT-PCR and western blotting were employed to show that Cav1.3 was highly expressed in breast cancer tissues. E2 exposure rapidly upregulated the expression of Cav1.3 in dosage- and time-dependent manner, and promoted Ca2+ influx. The silencing of G protein-coupled estrogen receptor 30 (GPER1/GPR30) using siRNA transfection inhibited the upregulation of Cav1.3 and Ca2+ influx induced by E2. Moreover, the inhibition of Cav1.3 by siRNA transfection suppressed E2-induced second peak of Ca2+ signal, the expression of p-ERK1/2, and the cell proliferation. Ultrasound-targeted microbubble destruction (UTMD) of Cav1.3 siRNA was used in MCF-7 cells in vitro and in the tumor xenografts mice in vivo. The application of UTMD significantly suppressed the tumor growth and promoted the survival rate. In conclusion, E2 upregulated the expression of Cav1.3 for Ca2+ influx to promote the expression of p-ERK1/2 for cell proliferation. The study confirmed that the mechanism of E2 inducing the expression of Cav1.3 through a non-genomic pathway, and highlighted that UTMD of Cav1.3 siRNA is a powerful promising technology for breast cancer gene therapy. PMID:27572936

  5. Myorelaxant action of fluorine-containing pinacidil analog, flocalin, in bladder smooth muscle is mediated by inhibition of L-type calcium channels rather than activation of KATP channels.

    PubMed

    Philyppov, Igor B; Golub, Andriy А; Boldyriev, Oleksiy I; Shtefan, Natalia L; Totska, Khrystyna; Voitychuk, Oleg I; Shuba, Yaroslav M

    2016-06-01

    Flocalin (FLO) is a new ATP-sensitive K(+) (KATP) channel opener (KCO) derived from pinacidil (PIN) by adding fluorine group to the drug's structure. FLO acts as a potent cardioprotector against ischemia-reperfusion damage in isolated heart and whole animal models primarily via activating cardiac-specific Kir6.2/SUR2A KATP channels. Given that FLO also confers relaxation on several types of smooth muscles and can partially inhibit L-type Ca(2+) channels, in this study, we asked what is the mechanism of FLO action in bladder detrusor smooth muscle (DSM). The actions of FLO and PIN on contractility of rat and guinea pig DSM strips and membrane currents of isolated DSM cells were compared by tensiometry and patch clamp. Kir6 and SUR subunit expression in rat DSM was assayed by reverse transcription PCR (RT-PCR). In contrast to PIN (10 μM), FLO (10 μM) did not produce glibenclamide-sensitive DSM strips' relaxation and inhibition of spontaneous and electrically evoked contractions. However, FLO, but not PIN, inhibited contractions evoked by high K(+) depolarization. FLO (40 μM) did not change the level of isolated DSM cell's background K(+) current, but suppressed by 20 % L-type Ca(2+) current. Determining various Kir6 and SUR messenger RNA (mRNA) expressions in rat DSM by RT-PCR indicated that dominant KATP channel in rat DSM is of vascular type involving association of Kir6.1 and SUR2B subunits. Myorelaxant effects of FLO in bladder DSM are explained by partial blockade of L-type Ca(2+) channel-mediated Ca(2+) influx rather than by hyperpolarization associated with increased K(+) permeability. Thus, insertion of fluorine group in PIN's structure made the drug more discriminative between Kir6.2/SUR2A cardiac- and Kir6.1/SUR2B vascular-type KATP channels and rendered it partial L-type Ca(2+) channel-blocking potency.

  6. Troponin T3 regulates nuclear localization of the calcium channel Ca{sub v}β{sub 1a} subunit in skeletal muscle

    SciTech Connect

    Zhang, Tan; Taylor, Jackson; Jiang, Yang; Pereyra, Andrea S.; Messi, Maria Laura; Wang, Zhong-Min; Hereñú, Claudia; Delbono, Osvaldo

    2015-08-15

    The voltage-gated calcium channel (Ca{sub v}) β{sub 1a} subunit (Ca{sub v}β{sub 1a}) plays an important role in excitation–contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Ca{sub v}β{sub 1a} subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160–244 aa) and Ca{sub v}β{sub 1a} NH{sub 2}-terminus (1–99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Ca{sub v}β{sub 1a}/YFP shows that TnT3 facilitates Ca{sub v}β{sub 1a} nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation. - Highlights: • Previously, we demonstrated that Ca{sub v}β{sub 1a} is a gene transcription regulator. • Here, we show that TnT3 interacts with Ca{sub v}β{sub 1a}. • We mapped TnT3 and Ca{sub v}β{sub 1a} interaction domain. • TnT3 facilitates Ca{sub v}β{sub 1a} nuclear enrichment. • The two proteins play a heretofore unknown role during early muscle differentiation.

  7. Predicting a double mutant in the twilight zone of low homology modeling for the skeletal muscle voltage-gated sodium channel subunit beta-1 (Nav1.4 β1)

    PubMed Central

    Scior, Thomas; Paiz-Candia, Bertin; Islas, Ángel A.; Sánchez-Solano, Alfredo; Millan-Perez Peña, Lourdes; Mancilla-Simbro, Claudia; Salinas-Stefanon, Eduardo M.

    2015-01-01

    The molecular structure modeling of the β1 subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4) was carried out in the twilight zone of very low homology. Structural significance can per se be confounded with random sequence similarities. Hence, we combined (i) not automated computational modeling of weakly homologous 3D templates, some with interfaces to analogous structures to the pore-bearing Nav1.4 α subunit with (ii) site-directed mutagenesis (SDM), as well as (iii) electrophysiological experiments to study the structure and function of the β1 subunit. Despite the distant phylogenic relationships, we found a 3D-template to identify two adjacent amino acids leading to the long-awaited loss of function (inactivation) of Nav1.4 channels. This mutant type (T109A, N110A, herein called TANA) was expressed and tested on cells of hamster ovary (CHO). The present electrophysiological results showed that the double alanine substitution TANA disrupted channel inactivation as if the β1 subunit would not be in complex with the α subunit. Exhaustive and unbiased sampling of “all β proteins” (Ig-like, Ig) resulted in a plethora of 3D templates which were compared to the target secondary structure prediction. The location of TANA was made possible thanks to another “all β protein” structure in complex with an irreversible bound protein as well as a reversible protein–protein interface (our “Rosetta Stone” effect). This finding coincides with our electrophysiological data (disrupted β1-like voltage dependence) and it is safe to utter that the Nav1.4 α/β1 interface is likely to be of reversible nature. PMID:25904995

  8. Localization of the gene encoding the [alpha][sub 2]/[delta] subunit (CACNL2A) of the human skeletal muscle voltage-dependent Ca[sup 2+] channel to chromosome 7q21-q22 by somatic cell hybrid analysis

    SciTech Connect

    Powers, P.A.; Hogan, K.; Gregg, R.G. ); Scherer, S.W.; Tsui, L.C. Hospital for Sick Children, Ontario )

    1994-01-01

    Activation of voltage-dependent calcium channels (VDCCs) by membrane depolarization triggers key cellular responses such as contraction, secretion, excitation, and electrical signaling. The skeletal muscle L-type VDCC is a heteromultimer complex containing four subunits, [alpha][sub 1],[alpha][sub 2]/[delta],[beta][sub 1], and [gamma]. The [alpha][sub 2]/[delta] subunit, an integral component of the VDCC, appears to modulate the channel kinetics. The [alpha][sub 2]/[delta] gene is expressed in many tissues, including skeletal muscle, brain, heart, and lung, and cDNAs representing the skeletal muscle and brain isoforms have been isolated. DNA sequence comparisons indicate that these cDNAs are encoding by a single gene. 15 refs., 1 fig.

  9. Parallel channels and rate-limiting steps in complex protein folding reactions: prolyl isomerization and the alpha subunit of Trp synthase, a TIM barrel protein.

    PubMed

    Wu, Ying; Matthews, C Robert

    2002-10-18

    A kinetic folding mechanism for the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli, involving four parallel channels with multiple native, intermediate and unfolded forms, has recently been proposed. The hypothesis that cis/trans isomerization of several Xaa-Pro peptide bonds is the source of the multiple folding channels was tested by measuring the sensitivity of the three rate-limiting phases (tau(1), tau(2), tau(3)) to catalysis by cyclophilin, a peptidyl-prolyl isomerase. Although the absence of catalysis for the tau(1) (fast) phase leaves its assignment ambiguous, our previous mutational analysis demonstrated its connection to the unique cis peptide bond preceding proline 28. The acceleration of the tau(2) (medium) and tau(3) (slow) refolding phases by cyclophilin demonstrated that cis/trans prolyl isomerization is also the source of these phases. A collection of proline mutants, which covered all of the remaining 18 trans proline residues of alphaTS, was constructed to obtain specific assignments for these phases. Almost all of the mutant proteins retained the complex equilibrium and kinetic folding properties of wild-type alphaTS; only the P217A, P217G and P261A mutations caused significant changes in the equilibrium free energy surface. Both the P78A and P96A mutations selectively eliminated the tau(1) folding phase, while the P217M and P261A mutations eliminated the tau(2) and tau(3) folding phases, respectively. The redundant assignment of the tau(1) phase to Pro28, Pro78 and Pro96 may reflect their mutual interactions in non-random structure in the unfolded state. The non-native cis isomers for Pro217 and Pro261 may destabilize an autonomous C-terminal folding unit, thereby giving rise to kinetically distinct unfolded forms. The nature of the preceding amino acid, the solvent exposure, or the participation in specific elements of secondary structure in the native state, in general, are not determinative of the proline residues whose

  10. An atypical heterotrimeric G-protein γ-subunit is involved in guard cell K⁺-channel regulation and morphological development in Arabidopsis thaliana.

    PubMed

    Chakravorty, David; Trusov, Yuri; Zhang, Wei; Acharya, Biswa R; Sheahan, Michael B; McCurdy, David W; Assmann, Sarah M; Botella, José Ramón

    2011-09-01

    Currently, there are strong inconsistencies in our knowledge of plant heterotrimeric G-proteins that suggest the existence of additional members of the family. We have identified a new Arabidopsis G-protein γ-subunit (AGG3) that modulates morphological development and ABA-regulation of stomatal aperture. AGG3 strongly interacts with the Arabidopsis G-protein β-subunit in vivo and in vitro. Most importantly, AGG3-deficient mutants account for all but one of the 'orphan' phenotypes previously unexplained by the two known γ-subunits in Arabidopsis. AGG3 has unique characteristics never before observed in plant or animal systems, such as its size (more than twice that of canonical γ-subunits) and the presence of a C-terminal Cys-rich domain. AGG3 thus represent a novel class of G-protein γ-subunits, widely spread throughout the plant kingdom but not present in animals. Homologues of AGG3 in rice have been identified as important quantitative trait loci for grain size and yield, but due to the atypical nature of the proteins their identity as G-protein subunits was thus far unknown. Our work demonstrates a similar trend in seeds of Arabidopsis agg3 mutants, and implicates G-proteins in such a crucial agronomic trait. The discovery of this highly atypical subunit reinforces the emerging notion that plant and animal G-proteins have distinct as well as shared evolutionary pathways. PMID:21575088

  11. Human amiloride-sensitive epithelial Na+ channel gamma subunit promoter: functional analysis and identification of a polypurine-polypyrimidine tract with the potential for triplex DNA formation.

    PubMed Central

    Auerbach, S D; Loftus, R W; Itani, O A; Thomas, C P

    2000-01-01

    The mRNA for the epithelial Na(+) channel gamma subunit (gammaENaC) is regulated developmentally in the lung, colon and distal nephron and in response to Na(+) deprivation and systemic corticosteroids in the distal colon. Because such regulation is likely to be at the level of gene transcription, we examined the function of the promoter and other 5' flanking elements of the human gammaENaC gene. The proximal 5' flanking region contains two GC boxes but does not contain a TATA box. A 450 bp human gammaENaC fragment (-459 to +40) directed the expression of luciferase in H441 cells and primer extension analysis in transfected cells confirmed the correct initiation of human gammaENaC-luciferase chimaeric transcripts. By deletional analysis, GC boxes at -21 and -52 were found to be critical for this promoter activity. To begin to identify transcription factors that bind to the core promoter, a double-stranded oligonucleotide that corresponded to this region was synthesized and tested in a gel mobility-shift assay. Incubation of this radiolabelled oligonucleotide with nuclear extracts from H441 and FRTL5 cells resulted in the formation of four specific and distinct DNA-protein complexes. On the basis of antibody 'supershift' assays, one of these factors corresponds to Sp1, whereas the other three correspond to Sp3. Further upstream, an approx. 300 nt (-1143 to -839) polypurine-polypyrimidine tract (PPy tract) containing internal mirror repeats was identified. When contained in a supercoiled plasmid, the approx. 1200 nt 5' flanking region was sensitive to S1 endonuclease, which was consistent with the formation of an intramolecular triplex DNA ('H-DNA') structure with an unpaired single strand. High-resolution mapping with S1 endonuclease and sequencing of S1-generated clones confirmed that all S1-sensitive sites were within the PPy tract. Finally, a negative regulatory element was identified between -1525 and -1296 that functioned in lung, colon and collecting duct cell

  12. The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes

    PubMed Central

    Dusenkova, Svetlana; Ru, Fei; Surdenikova, Lenka; Nassenstein, Christina; Hatok, Jozef; Dusenka, Robert; Banovcin, Peter; Kliment, Jan; Tatar, Milos

    2014-01-01

    Acid-sensing ion channels (ASICs) have been implicated in esophageal acid sensing and mechanotransduction. However, insufficient knowledge of ASIC subunit expression profile in esophageal afferent nerves hampers the understanding of their role. This knowledge is essential because ASIC subunits form heteromultimeric channels with distinct functional properties. We hypothesized that the esophageal putative nociceptive C-fiber nerves (transient receptor potential vanilloid 1, TRPV1-positive) express multiple ASIC subunits and that the ASIC expression profile differs between the nodose TRPV1-positive subtype developmentally derived from placodes and the jugular TRPV1-positive subtype derived from neural crest. We performed single cell RT-PCR on the vagal afferent neurons retrogradely labeled from the esophagus. In the guinea pig, nearly all (90%–95%) nodose and jugular esophageal TRPV1-positive neurons expressed ASICs, most often in a combination (65–75%). ASIC1, ASIC2, and ASIC3 were expressed in 65–75%, 55–70%, and 70%, respectively, of both nodose and jugular TRPV1-positive neurons. The ASIC1 splice variants ASIC1a and ASIC1b and the ASIC2 splice variant ASIC2b were similarly expressed in both nodose and jugular TRPV1-positive neurons. However, ASIC2a was found exclusively in the nodose neurons. In contrast to guinea pig, ASIC3 was almost absent from the mouse vagal esophageal TRPV1-positive neurons. However, ASIC3 was similarly expressed in the nonnociceptive TRPV1-negative (tension mechanoreceptors) neurons in both species. We conclude that the majority of esophageal vagal nociceptive neurons express multiple ASIC subunits. The placode-derived nodose neurons selectively express ASIC2a, known to substantially reduce acid sensitivity of ASIC heteromultimers. ASIC3 is expressed in the guinea pig but not in the mouse vagal esophageal TRPV1-positive neurons, indicating species differences in ASIC expression. PMID:25190475

  13. Transcriptome Analysis of the Central and Peripheral Nervous Systems of the Spider Cupiennius salei Reveals Multiple Putative Cys-Loop Ligand Gated Ion Channel Subunits and an Acetylcholine Binding Protein.

    PubMed

    Torkkeli, Päivi H; Liu, Hongxia; French, Andrew S

    2015-01-01

    Invertebrates possess a diverse collection of pentameric Cys-loop ligand gated ion channel (LGIC) receptors whose molecular structures, evolution and relationships to mammalian counterparts have been intensely investigated in several clinically and agriculturally important species. These receptors are targets for a variety of control agents that may also harm beneficial species. However, little is known about Cys-loop receptors in spiders, which are important natural predators of insects. We assembled de novo transcriptomes from the central and peripheral nervous systems of the Central American wandering spider Cupiennius salei, a model species for neurophysiological, behavioral and developmental studies. We found 15 Cys-loop receptor subunits that are expected to form anion or cation permeable channels, plus a putative acetylcholine binding protein (AChBP) that has only previously been reported in molluscs and one annelid. We used phylogenetic and sequence analysis to compare the spider subunits to homologous receptors in other species and predicted the 3D structures of each protein using the I-Tasser server. The quality of homology models improved with increasing sequence identity to the available high-resolution templates. We found that C. salei has orthologous γ-aminobutyric acid (GABA), GluCl, pHCl, HisCl and nAChα LGIC subunits to other arthropods, but some subgroups are specific to arachnids, or only to spiders. C. salei sequences were phylogenetically closest to gene fragments from the social spider, Stegodyphus mimosarum, indicating high conservation within the Araneomorphae suborder of spiders. C. salei sequences had similar ligand binding and transmembrane regions to other invertebrate and vertebrate LGICs. They also had motifs associated with high sensitivity to insecticides and antiparasitic agents such as fipronil, dieldrin and ivermectin. Development of truly selective control agents for pest species will require information about the molecular

  14. Transcriptome Analysis of the Central and Peripheral Nervous Systems of the Spider Cupiennius salei Reveals Multiple Putative Cys-Loop Ligand Gated Ion Channel Subunits and an Acetylcholine Binding Protein

    PubMed Central

    Torkkeli, Päivi H.; Liu, Hongxia; French, Andrew S.

    2015-01-01

    Invertebrates possess a diverse collection of pentameric Cys-loop ligand gated ion channel (LGIC) receptors whose molecular structures, evolution and relationships to mammalian counterparts have been intensely investigated in several clinically and agriculturally important species. These receptors are targets for a variety of control agents that may also harm beneficial species. However, little is known about Cys-loop receptors in spiders, which are important natural predators of insects. We assembled de novo transcriptomes from the central and peripheral nervous systems of the Central American wandering spider Cupiennius salei, a model species for neurophysiological, behavioral and developmental studies. We found 15 Cys-loop receptor subunits that are expected to form anion or cation permeable channels, plus a putative acetylcholine binding protein (AChBP) that has only previously been reported in molluscs and one annelid. We used phylogenetic and sequence analysis to compare the spider subunits to homologous receptors in other species and predicted the 3D structures of each protein using the I-Tasser server. The quality of homology models improved with increasing sequence identity to the available high-resolution templates. We found that C. salei has orthologous γ-aminobutyric acid (GABA), GluCl, pHCl, HisCl and nAChα LGIC subunits to other arthropods, but some subgroups are specific to arachnids, or only to spiders. C. salei sequences were phylogenetically closest to gene fragments from the social spider, Stegodyphus mimosarum, indicating high conservation within the Araneomorphae suborder of spiders. C. salei sequences had similar ligand binding and transmembrane regions to other invertebrate and vertebrate LGICs. They also had motifs associated with high sensitivity to insecticides and antiparasitic agents such as fipronil, dieldrin and ivermectin. Development of truly selective control agents for pest species will require information about the molecular

  15. Hyperactivation of L-type voltage-gated Ca2+ channels in Caenorhabditis elegans striated muscle can result from point mutations in the IS6 or the IIIS4 segment of the α1 subunit.

    PubMed

    Lainé, Viviane; Ségor, Jean Rony; Zhan, Hong; Bessereau, Jean-Louis; Jospin, Maelle

    2014-11-01

    Several human diseases, including hypokalemic periodic paralysis and Timothy syndrome, are caused by mutations in voltage-gated calcium channels. The effects of these mutations are not always well understood, partially because of difficulties in expressing these channels in heterologous systems. The use of Caenorhabditis elegans could be an alternative approach to determine the effects of mutations on voltage-gated calcium channel function because all the main types of voltage-gated calcium channels are found in C. elegans, a large panel of mutations already exists and efficient genetic tools are available to engineer customized mutations in any gene. In this study, we characterize the effects of two gain-of-function mutations in egl-19, which encodes the L-type calcium channel α1 subunit. One of these mutations, ad695, leads to the replacement of a hydrophobic residue in the IIIS4 segment. The other mutation, n2368, changes a conserved glycine of IS6 segment; this mutation has been identified in patients with Timothy syndrome. We show that both egl-19 (gain-of-function) mutants have defects in locomotion and morphology that are linked to higher muscle tone. Using in situ electrophysiological approaches in striated muscle cells, we provide evidence that this high muscle tone is due to a shift of the voltage dependency towards negative potentials, associated with a decrease of the inactivation rate of the L-type Ca(2+) current. Moreover, we show that the maximal conductance of the Ca(2+) current is decreased in the strongest mutant egl-19(n2368), and that this decrease is correlated with a mislocalization of the channel. PMID:25214488

  16. Channel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03693 Channel

    This channel is located south of Iani Chaos.

    Image information: VIS instrument. Latitude -10.9N, Longitude 345.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Intracellular segment between transmembrane helices S0 and S1 of BK channel α subunit contains two amphipathic helices connected by a flexible loop

    SciTech Connect

    Shi, Pan; Li, Dong; Lai, Chaohua; Zhang, Longhua; Tian, Changlin

    2013-08-02

    Highlights: •The loop between S0 and S1 of BK channel was overexpressed and purified in DPC. •NMR studies indicated BK-IS1 contained two helices connected by a flexible loop. •Mg{sup 2+} titration of BK-IS1 indicated two possible binding sites of divalent ions. -- Abstract: The BK channel, a tetrameric potassium channel with very high conductance, has a central role in numerous physiological functions. The BK channel can be activated by intracellular Ca{sup 2+} and Mg{sup 2+}, as well as by membrane depolarization. Unlike other tetrameric potassium channels, the BK channel has seven transmembrane helices (S0–S6) including an extra helix S0. The intracellular segment between S0 and S1 (BK-IS1) is essential to BK channel functions and Asp99 in BK-IS1 is reported to be responsible for Mg{sup 2+} coordination. In this study, BK-IS1 (44–113) was over-expressed using a bacterial system and purified in the presence of detergent micelles for multidimensional heteronuclear nuclear magnetic resonance (NMR) structural studies. Backbone resonance assignment and secondary structure analysis showed that BK-IS1 contains two amphipathic helices connected by a 36-residue loop. Amide {sup 1}H–{sup 15}N heteronuclear NOE analysis indicated that the loop is very flexible, while the two amphipathic helices are possibly stabilized through interaction with the membrane. A solution NMR-based titration assay of BK-IS1 was performed with various concentrations of Mg{sup 2+}. Two residues (Thr45 and Leu46) with chemical shift changes were observed but no, or very minor, chemical shift difference was observed for Asp99, indicating a possible site for binding divalent ions or other modulation partners.

  18. Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes

    NASA Technical Reports Server (NTRS)

    Sukharev, Sergei

    2002-01-01

    The small mechanosensitive channel, MscS, is a part of the turgor-driven solute efflux system that protects bacteria from lysis in the event of osmotic downshift. It has been identified in Escherichia coli as a product of the orphan yggB gene, now called mscS (Levina et al., 1999, EMBO J. 18:1730). Here I show that that the isolated 31-kDa MscS protein is sufficient to form a functional mechanosensitive channel gated directly by tension in the lipid bilayer. MscS-6His complexes purified in the presence of octylglucoside and lipids migrate in a high-resolution gel-filtration column as particles of approximately 200 kDa. Consistent with that, the protein cross-linking patterns predict a hexamer. The channel reconstituted in soybean asolectin liposomes was activated by pressures of 20-60 mm Hg and displayed the same asymmetric I-V curve and slight anionic preference as in situ. At the same time, the single-channel conductance is proportional to the buffer conductivity in a wide range of salt concentrations. The rate of channel activation in response to increasing pressure gradient across the patch was slower than the rate of closure in response to decreasing steps of pressure gradient. Therefore, the open probability curves were recorded with descending series of pressures. Determination of the curvature of patches by video imaging permitted measurements of the channel activity as a function of membrane tension (gamma). Po(gamma) curves had the midpoint at 5.5 +/- 0.1 dyne/cm and gave estimates for the energy of opening DeltaG = 11.4 +/- 0.5 kT, and the transition-related area change DeltaA = 8.4 +/- 0.4 nm(2) when fitted with a two-state Boltzmann model. The correspondence between channel properties in the native and reconstituted systems is discussed.

  19. The pore region of the Kv1.2alpha subunit is an important component of recombinant Kv1.2 channel oxygen sensitivity.

    PubMed

    Conforti, Laura; Takimoto, Koichi; Petrovic, Milan; Pongs, Olaf; Millhorn, David

    2003-06-27

    Oxygen-sensitive K(+) channels are important elements in the cellular response to hypoxia. Although much progress has been made in identifying their molecular composition, the structural components associated to their O(2)-sensitivity are not yet understood. Recombinant Kv1.2 currents expressed in Xenopus oocytes are inhibited by a decrease in O(2) availability. On the contrary, heterologous Kv2.1 channels are O(2)-insensitive. To elucidate the protein segment responsible for the O(2)-sensitivity of Kv1.2 channels, we analyzed the response to anoxia of Kv1.2/Kv2.1 chimeric channels. Expression of chimeric Kv2.1 channels each containing the S4, the S1-S3 or the S6-COOH segments of Kv1.2 polypeptide resulted in a K(+) current insensitive to anoxia. In contrast, transferring the S5-S6 segment of Kv1.2 into Kv2.1 produced an O(2)-sensitive K(+) current. Finally, mutating a redox-sensitive methionine residue (M380) of Kv1.2 polypeptide did not affect O(2)-sensitivity. Thus, the pore and its surrounding regions of Kv1.2 polypeptide confer its hypoxic inhibition. This response is independent on the redox modulation of methionine residues in this protein segment. PMID:12804584

  20. Modification of K+ channel–drug interactions by ancillary subunits

    PubMed Central

    Bett, Glenna C L; Rasmusson, Randall L

    2008-01-01

    Reconciling ion channel α-subunit expression with native ionic currents and their pharmacological sensitivity in target organs has proved difficult. In native tissue, many K+ channel α-subunits co-assemble with ancillary subunits, which can profoundly affect physiological parameters including gating kinetics and pharmacological interactions. In this review, we examine the link between voltage-gated potassium ion channel pharmacology and the biophysics of ancillary subunits. We propose that ancillary subunits can modify the interaction between pore blockers and ion channels by three distinct mechanisms: changes in (1) binding site accessibility; (2) orientation of pore-lining residues; (3) the ability of the channel to undergo post-binding conformational changes. Each of these subunit-induced changes has implications for gating, drug affinity and use dependence of their respective channel complexes. A single subunit may modulate its associated α-subunit by more than one of these mechanisms. Voltage-gated potassium channels are the site of action of many therapeutic drugs. In addition, potassium channels interact with drugs whose primary target is another channel, e.g. the calcium channel blocker nifedipine, the sodium channel blocker quinidine, etc. Even when K+ channel block is the intended mode of action, block of related channels in non-target organs, e.g. the heart, can result in major and potentially lethal side-effects. Understanding factors that determine specificity, use dependence and other properties of K+ channel drug binding are therefore of vital clinical importance. Ancillary subunits play a key role in determining these properties in native tissue, and so understanding channel–subunit interactions is vital to understanding clinical pharmacology. PMID:18096604

  1. Ionotropic glutamate receptor GluA4 and T-type calcium channel Cav 3.1 subunits control key aspects of synaptic transmission at the mouse L5B-POm giant synapse.

    PubMed

    Seol, Min; Kuner, Thomas

    2015-12-01

    The properties and molecular determinants of synaptic transmission at giant synapses connecting layer 5B (L5B) neurons of the somatosensory cortex (S1) with relay neurons of the posteriomedial nucleus (POm) of the thalamus have not been investigated in mice. We addressed this by using direct electrical stimulation of fluorescently labelled single corticothalamic terminals combined with molecular perturbations and whole-cell recordings from POm relay neurons. Consistent with their function as drivers, we found large-amplitude excitatory postsynaptic currents (EPSCs) and multiple postsynaptic action potentials triggered by a single presynaptic action potential. To study the molecular basis of these two features, ionotropic glutamate receptors and low voltage-gated T-type calcium channels were probed by virus-mediated genetic perturbation. Loss of GluA4 almost abolished the EPSC amplitude, strongly delaying the onset of action potential generation, but maintaining the number of action potentials generated per presynaptic action potential. In contrast, knockdown of the Cav 3.1 subunit abrogated the driver function of the synapse at a typical resting membrane potential of -70 mV. However, when depolarizing the membrane potential to -60 mV, the synapse relayed single action potentials. Hence, GluA4 subunits are required to produce an EPSC sufficiently large to trigger postsynaptic action potentials within a defined time window after the presynaptic action potential, while Cav 3.1 expression is essential to establish the driver function of L5B-POm synapses at hyperpolarized membrane potentials.

  2. Identification of Glycosylation Sites Essential for Surface Expression of the CaVα2δ1 Subunit and Modulation of the Cardiac CaV1.2 Channel Activity.

    PubMed

    Tétreault, Marie-Philippe; Bourdin, Benoîte; Briot, Julie; Segura, Emilie; Lesage, Sylvie; Fiset, Céline; Parent, Lucie

    2016-02-26

    Alteration in the L-type current density is one aspect of the electrical remodeling observed in patients suffering from cardiac arrhythmias. Changes in channel function could result from variations in the protein biogenesis, stability, post-translational modification, and/or trafficking in any of the regulatory subunits forming cardiac L-type Ca(2+) channel complexes. CaVα2δ1 is potentially the most heavily N-glycosylated subunit in the cardiac L-type CaV1.2 channel complex. Here, we show that enzymatic removal of N-glycans produced a 50-kDa shift in the mobility of cardiac and recombinant CaVα2δ1 proteins. This change was also observed upon simultaneous mutation of the 16 Asn sites. Nonetheless, the mutation of only 6/16 sites was sufficient to significantly 1) reduce the steady-state cell surface fluorescence of CaVα2δ1 as characterized by two-color flow cytometry assays and confocal imaging; 2) decrease protein stability estimated from cycloheximide chase assays; and 3) prevent the CaVα2δ1-mediated increase in the peak current density and voltage-dependent gating of CaV1.2. Reversing the N348Q and N812Q mutations in the non-operational sextuplet Asn mutant protein partially restored CaVα2δ1 function. Single mutation N663Q and double mutations N348Q/N468Q, N348Q/N812Q, and N468Q/N812Q decreased protein stability/synthesis and nearly abolished steady-state cell surface density of CaVα2δ1 as well as the CaVα2δ1-induced up-regulation of L-type currents. These results demonstrate that Asn-663 and to a lesser extent Asn-348, Asn-468, and Asn-812 contribute to protein stability/synthesis of CaVα2δ1, and furthermore that N-glycosylation of CaVα2δ1 is essential to produce functional L-type Ca(2+) channels. PMID:26742847

  3. Drugability of extracellular targets: discovery of small molecule drugs targeting allosteric, functional, and subunit-selective sites on GPCRs and ion channels.

    PubMed

    Grigoriadis, Dimitri E; Hoare, Samuel R J; Lechner, Sandra M; Slee, Deborah H; Williams, John A

    2009-01-01

    Beginning with the discovery of the structure of deoxyribose nucleic acid in 1953, by James Watson and Francis Crick, the sequencing of the entire human genome some 50 years later, has begun to quantify the classes and types of proteins that may have relevance to human disease with the promise of rapidly identifying compounds that can modulate these proteins so as to have a beneficial and therapeutic outcome. This so called 'drugable space' involves a variety of membrane-bound proteins including the superfamily of G-protein-coupled receptors (GPCRs), ion channels, and transporters among others. The recent number of novel therapeutics targeting membrane-bound extracellular proteins that have reached the market in the past 20 years however pales in magnitude when compared, during the same timeframe, to the advancements made in the technologies available to aid in the discovery of these novel therapeutics. This review will consider select examples of extracellular drugable targets and focus on the GPCRs and ion channels highlighting the corticotropin releasing factor (CRF) type 1 and gamma-aminobutyric acid receptors, and the Ca(V)2.2 voltage-gated ion channel. These examples will elaborate current technological advancements in drug discovery and provide a prospective framework for future drug development.

  4. Genotypic to expression profiling of bovine calcium channel, voltage-dependent, alpha-2/delta subunit 1 gene, and their association with bovine mastitis among Frieswal (HFX Sahiwal) crossbred cattle of Indian origin.

    PubMed

    Deb, Rajib; Singh, Umesh; Kumar, Sushil; Kumar, Arun; Singh, Rani; Sengar, Gyanendra; Mann, Sandeep; Sharma, Arjava

    2014-04-01

    Calcium channel, voltage-dependent, alpha-2/delta subunit 1 (CACNA2D1) gene is considered to be an important noncytokine candidate gene influencing mastitis. Scanty of reports are available until today regarding the role play of CACNA2D1 gene on the susceptibility of bovine mastitis. We interrogated the CACNA2D1 G519663A [A>G] SNP by PCR-RFLP among two hundreds Frieswal (HF X Sahiwal) crossbred cattle of Indian origin. Genotypic frequency of AA (51.5, n=101) was comparatively higher than AG (35, n=70) and GG (14.5, n=29). Association of Somatic cell score (SCS) with genotypes revealed that, GG genotypes showing lesser count (less susceptible to mastitis) compare to AA and AG. Relative expression of CACNA2D1 transcript (in milk samples) was significantly higher among GG than AG and AA. Further we have also isolated blood sample from the all groups and PBMCs were cultured from each blood sample as per the standard protocol. They were treated with Calcium channel blocker and the expression level of the CACNA2D1 gene was evaluated by Real Time PCR. Results show that expression level decline in each genotypic group after treatment and expression level of GG are again significantly higher than AA and AG. Thus, it may be concluded that GG genotypic animals are favorable for selecting disease resistant breeds.

  5. Transient receptor potential vanilloid 1 activation by dietary capsaicin promotes urinary sodium excretion by inhibiting epithelial sodium channel α subunit-mediated sodium reabsorption.

    PubMed

    Li, Li; Wang, Fei; Wei, Xing; Liang, Yi; Cui, Yuanting; Gao, Feng; Zhong, Jian; Pu, Yunfei; Zhao, Yu; Yan, Zhencheng; Arendshorst, William J; Nilius, Bernd; Chen, Jing; Liu, Daoyan; Zhu, Zhiming

    2014-08-01

    High salt (HS) intake contributes to the development of hypertension. Epithelial sodium channels play crucial roles in regulating renal sodium reabsorption and blood pressure. The renal transient receptor potential vanilloid 1 (TRPV1) cation channel can be activated by its agonist capsaicin. However, it is unknown whether dietary factors can act on urinary sodium excretion and renal epithelial sodium channel (ENaC) function. Here, we report that TRPV1 activation by dietary capsaicin increased urinary sodium excretion through reducing sodium reabsorption in wild-type (WT) mice on a HS diet but not in TRPV1(-/-) mice. The effect of capsaicin on urinary sodium excretion was involved in inhibiting αENaC and its related with-no-lysine kinase 1/serum- and glucocorticoid-inducible protein kinase 1 pathway in renal cortical collecting ducts of WT mice. Dietary capsaicin further reduced the increased αENaC activity in WT mice attributed to the HS diet. In contrast, this capsaicin effect was absent in TRPV1(-/-) mice. Immunoprecipitation study indicated αENaC specifically coexpressed and functionally interact with TRPV1 in renal cortical collecting ducts of WT mice. Additionally, ENaC activity and expression were suppressed by capsaicin-mediated TRPV1 activation in cultured M1-cortical collecting duct cells. Long-term dietary capsaicin prevented the development of high blood pressure in WT mice on a HS diet. It concludes that TRPV1 activation in the cortical collecting ducts by capsaicin increases urinary sodium excretion and avoids HS diet-induced hypertension through antagonizing αENaC-mediated urinary sodium reabsorption. Dietary capsaicin may represent a promising lifestyle intervention in populations exposed to a high dietary salt intake.

  6. Molecular Cloning and Functional Expression of the Equine K+ Channel KV11.1 (Ether à Go-Go-Related/KCNH2 Gene) and the Regulatory Subunit KCNE2 from Equine Myocardium

    PubMed Central

    Pedersen, Philip Juul; Thomsen, Kirsten Brolin; Olander, Emma Rie; Hauser, Frank; Tejada, Maria de los Angeles; Poulsen, Kristian Lundgaard; Grubb, Soren; Buhl, Rikke; Calloe, Kirstine; Klaerke, Dan Arne

    2015-01-01

    The KCNH2 and KCNE2 genes encode the cardiac voltage-gated K+ channel KV11.1 and its auxiliary β subunit KCNE2. KV11.1 is critical for repolarization of the cardiac action potential. In humans, mutations or drug therapy affecting the KV11.1 channel are associated with prolongation of the QT intervals on the ECG and increased risk of ventricular tachyarrhythmia and sudden cardiac death—conditions known as congenital or acquired Long QT syndrome (LQTS), respectively. In horses, sudden, unexplained deaths are a well-known problem. We sequenced the cDNA of the KCNH2 and KCNE2 genes using RACE and conventional PCR on mRNA purified from equine myocardial tissue. Equine KV11.1 and KCNE2 cDNA had a high homology to human genes (93 and 88%, respectively). Equine and human KV11.1 and KV11.1/KCNE2 were expressed in Xenopus laevis oocytes and investigated by two-electrode voltage-clamp. Equine KV11.1 currents were larger compared to human KV11.1, and the voltage dependence of activation was shifted to more negative values with V1/2 = -14.2±1.1 mV and -17.3±0.7, respectively. The onset of inactivation was slower for equine KV11.1 compared to the human homolog. These differences in kinetics may account for the larger amplitude of the equine current. Furthermore, the equine KV11.1 channel was susceptible to pharmacological block with terfenadine. The physiological importance of KV11.1 was investigated in equine right ventricular wedge preparations. Terfenadine prolonged action potential duration and the effect was most pronounced at slow pacing. In conclusion, these findings indicate that horses could be disposed to both congenital and acquired LQTS. PMID:26376488

  7. Thrombospondin-4 reduces binding affinity of [(3)H]-gabapentin to calcium-channel α2δ-1-subunit but does not interact with α2δ-1 on the cell-surface when co-expressed.

    PubMed

    Lana, Beatrice; Page, Karen M; Kadurin, Ivan; Ho, Shuxian; Nieto-Rostro, Manuela; Dolphin, Annette C

    2016-01-01

    The α2δ proteins are auxiliary subunits of voltage-gated calcium channels, and influence their trafficking and biophysical properties. The α2δ ligand gabapentin interacts with α2δ-1, and inhibits calcium channel trafficking. However, α2-1 has also been proposed to play a synaptogenic role, independent of calcium channel function. In this regard, α2δ-1 was identified as a ligand of thrombospondins, with the interaction involving the thrombospondin synaptogenic domain and the α2δ-1 von-Willebrand-factor domain. Co-immunoprecipitation between α2δ-1 and the synaptogenic domain of thrombospondin-2 was prevented by gabapentin. We therefore examined whether interaction of thrombospondin with α2δ-1 might reciprocally influence (3)H-gabapentin binding. We concentrated on thrombospondin-4, because, like α2δ-1, it is upregulated in neuropathic pain models. We found that in membranes from cells co-transfected with α2δ-1 and thrombospondin-4, there was a Mg(2+) -dependent reduction in affinity of (3)H-gabapentin binding to α2δ-1. This effect was lost for α2δ-1 with mutations in the von-Willebrand-factor-A domain. However, the effect on (3)H-gabapentin binding was not reproduced by the synaptogenic EGF-domain of thrombospondin-4. Partial co-immunoprecipitation could be demonstrated between thrombospondin-4 and α2δ-1 when co-transfected, but there was no co-immunoprecipitation with thrombospondin-4-EGF domain. Furthermore, we could not detect any association between these two proteins on the cell-surface, indicating the demonstrated interaction occurs intracellularly. PMID:27076051

  8. Molecular Cloning and Functional Expression of the Equine K+ Channel KV11.1 (Ether à Go-Go-Related/KCNH2 Gene) and the Regulatory Subunit KCNE2 from Equine Myocardium.

    PubMed

    Pedersen, Philip Juul; Thomsen, Kirsten Brolin; Olander, Emma Rie; Hauser, Frank; Tejada, Maria de los Angeles; Poulsen, Kristian Lundgaard; Grubb, Soren; Buhl, Rikke; Calloe, Kirstine; Klaerke, Dan Arne

    2015-01-01

    The KCNH2 and KCNE2 genes encode the cardiac voltage-gated K+ channel KV11.1 and its auxiliary β subunit KCNE2. KV11.1 is critical for repolarization of the cardiac action potential. In humans, mutations or drug therapy affecting the KV11.1 channel are associated with prolongation of the QT intervals on the ECG and increased risk of ventricular tachyarrhythmia and sudden cardiac death--conditions known as congenital or acquired Long QT syndrome (LQTS), respectively. In horses, sudden, unexplained deaths are a well-known problem. We sequenced the cDNA of the KCNH2 and KCNE2 genes using RACE and conventional PCR on mRNA purified from equine myocardial tissue. Equine KV11.1 and KCNE2 cDNA had a high homology to human genes (93 and 88%, respectively). Equine and human KV11.1 and KV11.1/KCNE2 were expressed in Xenopus laevis oocytes and investigated by two-electrode voltage-clamp. Equine KV11.1 currents were larger compared to human KV11.1, and the voltage dependence of activation was shifted to more negative values with V1/2 = -14.2±1.1 mV and -17.3±0.7, respectively. The onset of inactivation was slower for equine KV11.1 compared to the human homolog. These differences in kinetics may account for the larger amplitude of the equine current. Furthermore, the equine KV11.1 channel was susceptible to pharmacological block with terfenadine. The physiological importance of KV11.1 was investigated in equine right ventricular wedge preparations. Terfenadine prolonged action potential duration and the effect was most pronounced at slow pacing. In conclusion, these findings indicate that horses could be disposed to both congenital and acquired LQTS. PMID:26376488

  9. Thrombospondin-4 reduces binding affinity of [3H]-gabapentin to calcium-channel α2δ-1-subunit but does not interact with α2δ-1 on the cell-surface when co-expressed

    PubMed Central

    Lana, Beatrice; Page, Karen M.; Kadurin, Ivan; Ho, Shuxian; Nieto-Rostro, Manuela; Dolphin, Annette C.

    2016-01-01

    The α2δ proteins are auxiliary subunits of voltage-gated calcium channels, and influence their trafficking and biophysical properties. The α2δ ligand gabapentin interacts with α2δ-1, and inhibits calcium channel trafficking. However, α2-1 has also been proposed to play a synaptogenic role, independent of calcium channel function. In this regard, α2δ-1 was identified as a ligand of thrombospondins, with the interaction involving the thrombospondin synaptogenic domain and the α2δ-1 von-Willebrand-factor domain. Co-immunoprecipitation between α2δ-1 and the synaptogenic domain of thrombospondin-2 was prevented by gabapentin. We therefore examined whether interaction of thrombospondin with α2δ-1 might reciprocally influence 3H-gabapentin binding. We concentrated on thrombospondin-4, because, like α2δ-1, it is upregulated in neuropathic pain models. We found that in membranes from cells co-transfected with α2δ-1 and thrombospondin-4, there was a Mg2+ -dependent reduction in affinity of 3H-gabapentin binding to α2δ-1. This effect was lost for α2δ-1 with mutations in the von-Willebrand-factor-A domain. However, the effect on 3H-gabapentin binding was not reproduced by the synaptogenic EGF-domain of thrombospondin-4. Partial co-immunoprecipitation could be demonstrated between thrombospondin-4 and α2δ-1 when co-transfected, but there was no co-immunoprecipitation with thrombospondin-4-EGF domain. Furthermore, we could not detect any association between these two proteins on the cell-surface, indicating the demonstrated interaction occurs intracellularly. PMID:27076051

  10. The carboxyl terminus of the alpha-subunit of the amiloride-sensitive epithelial sodium channel binds to F-actin.

    PubMed

    Mazzochi, Christopher; Bubien, James K; Smith, Peter R; Benos, Dale J

    2006-03-10

    The activity of the amiloride-sensitive epithelial sodium channel (ENaC) is modulated by F-actin. However, it is unknown if there is a direct interaction between alpha-ENaC and actin. We have investigated the hypothesis that the actin cytoskeleton directly binds to the carboxyl terminus of alpha-ENaC using a combination of confocal microscopy, co-immunoprecipitation, and protein binding studies. Confocal microscopy of Madin-Darby canine kidney cell monolayers stably transfected with wild type, rat isoforms of alpha-, beta-, and gamma-ENaC revealed co-localization of alpha-ENaC with the cortical F-actin cytoskeleton both at the apical membrane and within the subapical cytoplasm. F-actin was found to co-immunoprecipitate with alpha-ENaC from whole cell lysates of this cell line. Gel overlay assays demonstrated that F-actin specifically binds to the carboxyl terminus of alpha-ENaC. A direct interaction between F-actin and the COOH terminus of alpha-ENaC was further corroborated by F-actin co-sedimentation studies. This is the first study to report a direct and specific biochemical interaction between F-actin and ENaC. PMID:16356937

  11. Altered expression of the voltage-gated calcium channel subunit α2δ-1: A comparison between two experimental models of epilepsy and a sensory nerve ligation model of neuropathic pain

    PubMed Central

    Nieto-Rostro, M.; Sandhu, G.; Bauer, C.S.; Jiruska, P.; Jefferys, J.G.R.; Dolphin, A.C.

    2014-01-01

    The auxiliary α2δ-1 subunit of voltage-gated calcium channels is up-regulated in dorsal root ganglion neurons following peripheral somatosensory nerve damage, in several animal models of neuropathic pain. The α2δ-1 protein has a mainly presynaptic localization, where it is associated with the calcium channels involved in neurotransmitter release. Relevant to the present study, α2δ-1 has been shown to be the therapeutic target of the gabapentinoid drugs in their alleviation of neuropathic pain. These drugs are also used in the treatment of certain epilepsies. In this study we therefore examined whether the level or distribution of α2δ-1 was altered in the hippocampus following experimental induction of epileptic seizures in rats, using both the kainic acid model of human temporal lobe epilepsy, in which status epilepticus is induced, and the tetanus toxin model in which status epilepticus is not involved. The main finding of this study is that we did not identify somatic overexpression of α2δ-1 in hippocampal neurons in either of the epilepsy models, unlike the upregulation of α2δ-1 that occurs following peripheral nerve damage to both somatosensory and motor neurons. However, we did observe local reorganization of α2δ-1 immunostaining in the hippocampus only in the kainic acid model, where it was associated with areas of neuronal cell loss, as indicated by absence of NeuN immunostaining, dendritic loss, as identified by areas where microtubule-associated protein-2 immunostaining was missing, and reactive gliosis, determined by regions of strong OX42 staining. PMID:24641886

  12. Fluvastatin upregulates the α 1C subunit of CaV1.2 channel expression in vascular smooth muscle cells via RhoA and ERK/p38 MAPK pathways.

    PubMed

    Ouyang, Qiu-Fang; Han, Ying; Lin, Zhi-Hong; Xie, Hong; Xu, Chang-Sheng; Xie, Liang-Di

    2014-01-01

    Abnormal phenotypic switch of vascular smooth muscle cell (VSMC) is a hallmark of vascular disorders such as atherosclerosis and restenosis. And this process has been related to remodeling of L-type calcium channel (LTCC). We attempted to investigate whether fluvastatin has any effect on VSMC proliferation and LTCCα 1C subunit (LTCCα 1C) expression as well as the potential mechanisms involved. The VSMCs proliferation was assayed by osteopontin immunofluorescent staining and [(3)H]-thymidine incorporation. The cell cycle was detected by flow cytometric analysis. The activity of RhoA was determined with pull-down assay. MAPK activity and LTCCα 1C expression were assessed by western blotting. We demonstrated fluvastatin prevented the VSMCs dedifferentiating into a proliferative phenotype and induced cell cycle arrest in the G0/G1 phase in response to PDGF-BB stimulation. Fluvastatin dose-dependently reversed the downregulation of LTCCα 1C expression induced by PDGF-BB. Inhibition of ROCK, ERK, or p38 MAPK activation largely enhanced the upregulation effect of fluvastatin (P < 0.01). However, blockade of JNK pathway had no effect on LTCCα 1C expression. We concluded LTCCα 1C was a VSMC contractile phenotype marker gene. Fluvastatin upregulated LTCCα 1C expression, at least in part, by inhibiting ROCK, ERK1/2, and p38 MAPK activation. Fluvastatin may be a potential candidate for preventing or treating vascular diseases.

  13. Differential expression of gill Na+,K+-ATPaseα - and β-subunits, Na+,K+,2Cl- cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar

    USGS Publications Warehouse

    Nilsen, Tom O.; Ebbesson, Lars O.E.; Madsen, Steffen S.; McCormick, Stephen D.; Andersson, Eva; Bjornsson, Bjorn Thrandur; Prunet, Patrick; Stefansson, Sigurd O.

    2007-01-01

    This study examines changes in gill Na+,K+-ATPase (NKA) α- and β-subunit isoforms, Na+,K+,2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR I and II) in anadromous and landlocked strains of Atlantic salmon during parr-smolt transformation, and after seawater (SW) transfer in May/June. Gill NKA activity increased from February through April, May and June among both strains in freshwater (FW), with peak enzyme activity in the landlocked salmon being 50% below that of the anadromous fish in May and June. Gill NKA-α1b, -α3, -β1 and NKCC mRNA levels in anadromous salmon increased transiently, reaching peak levels in smolts in April/May, whereas no similar smolt-related upregulation of these transcripts occurred in juvenile landlocked salmon. Gill NKA-α1a mRNA decreased significantly in anadromous salmon from February through June, whereas α1a levels in landlocked salmon, after an initial decrease in April, remained significantly higher than those of the anadromous smolts in May and June. Following SW transfer, gill NKA-α1b and NKCC mRNA increased in both strains, whereas NKA-α1a decreased. Both strains exhibited a transient increase in gill NKA α-protein abundance, with peak levels in May. Gill α-protein abundance was lower in SW than corresponding FW values in June. Gill NKCC protein abundance increased transiently in anadromous fish, with peak levels in May, whereas a slight increase was observed in landlocked salmon in May, increasing to peak levels in June. Gill CFTR I mRNA levels increased significantly from February to April in both strains, followed by a slight, though not significant increase in May and June. CFTR I mRNA levels were significantly lower in landlocked than anadromous salmon in April/June. Gill CFTR II mRNA levels did not change significantly in either strain. Our findings demonstrates that differential expression of gill NKA-α1a, -α1b and -α3 isoforms may be important for potential functional

  14. Oxidative stress disrupts glucocorticoid hormone-dependent transcription of the amiloride-sensitive epithelial sodium channel alpha-subunit in lung epithelial cells through ERK-dependent and thioredoxin-sensitive pathways.

    PubMed

    Wang, H C; Zentner, M D; Deng, H T; Kim, K J; Wu, R; Yang, P C; Ann, D K

    2000-03-24

    The amiloride-sensitive epithelial Na(+) channel (ENaC) plays a critical role in the maintenance of alveolar fluid balance. It is generally accepted that reactive oxygen and nitrogen species can inhibit ENaC activity and aggravate acute lung injury; however, the molecular mechanism for free radical-mediated ENaC inhibition is unclear. Previously, we showed that the expression of the alpha-subunit of ENaC, alpha-ENaC, which is indispensable for ENaC activity, is repressed by Ras activation in salivary epithelial cells. Here, we investigated whether exogenous H(2)O(2) modulates alpha-ENaC gene expression in lung epithelial cells through a similar molecular mechanism. Utilizing transient transfection reporter assays and site-directed mutagenesis analyses, we found that the glucocorticoid response element (GRE), located at -1334 to -1306 base pairs of the alpha-ENaC 5'-flanking region, is the major enhancer for the stimulated alpha-ENaC expression in A549 lung epithelial cells. We further demonstrate that the presence of an intact GRE is necessary and sufficient for oxidants to repress alpha-ENaC expression. Consistent with our hypothesis, exogenous H(2)O(2)-mediated repression of alpha-ENaC GRE activity is partially blocked by either a specific inhibitor for extracellular signal-regulated kinase (ERK) pathway activation, U0126, or dominant negative ERK, suggesting that, in part, activated ERK may mediate the repressive effects of H(2)O(2) on alpha-ENaC expression. In addition, overexpression of thioredoxin restored glucocorticoid receptor action on the alpha-ENaC GRE in the presence of exogenous H(2)O(2). Taken together, we hypothesize that oxidative stress impairs Na(+) transport activity by inhibiting dexamethasone-dependent alpha-ENaC GRE activation via both ERK-dependent and thioredoxin-sensitive pathways. These results suggest a putative mechanism whereby cellular redox potentials modulate the glucocorticoid receptor/dexamethasone effect on alpha-ENaC expression

  15. Gramicidin Channels: Versatile Tools

    NASA Astrophysics Data System (ADS)

    Andersen, Olaf S.; Koeppe, Roger E., II; Roux, Benoît

    Gramicidin channels are miniproteins in which two tryptophan-rich subunits associate by means of transbilayer dimerization to form the conducting channels. That is, in contrast to other ion channels, gramicidin channels do not open and close; they appear and disappear. Each subunit in the bilayer-spanning channel is tied to the bilayer/solution interface through hydrogen bonds that involve the indole NH groups as donors andwater or the phospholipid backbone as acceptors. The channel's permeability characteristics are well-defined: gramicidin channels are selective for monovalent cations, with no measurable permeability to anions or polyvalent cations; ions and water move through a pore whose wall is formed by the peptide backbone; and the single-channel conductance and cation selectivity vary when the amino acid sequence is varied, even though the permeating ions make no contact with the amino acid side chains. Given the plethora of available experimental information—for not only the wild-type channels but also for channels formed by amino acid-substituted gramicidin analogues—gramicidin channels continue to provide important insights into the microphysics of ion permeation through bilayer-spanning channels. For similar reasons, gramicidin channels constitute a system of choice for evaluating computational strategies for obtaining mechanistic insights into ion permeation through the more complex channels formed by integral membrane proteins.

  16. Subunit Arrangement and Function in NMDA Receptors

    SciTech Connect

    Furukawa,H.; Singh, S.; Mancusso, R.; Gouaux, E.

    2005-01-01

    Excitatory neurotransmission mediated by NMDA (N-methyl-D-aspartate) receptors is fundamental to the physiology of the mammalian central nervous system. These receptors are heteromeric ion channels that for activation require binding of glycine and glutamate to the NR1 and NR2 subunits, respectively. NMDA receptor function is characterized by slow channel opening and deactivation, and the resulting influx of cations initiates signal transduction cascades that are crucial to higher functions including learning and memory. Here we report crystal structures of the ligand-binding core of NR2A with glutamate and that of the NR1-NR2A heterodimer with glutamate and glycine. The NR2A-glutamate complex defines the determinants of glutamate and NMDA recognition, and the NR1-NR2A heterodimer suggests a mechanism for ligand-induced ion channel opening. Analysis of the heterodimer interface, together with biochemical and electrophysiological experiments, confirms that the NR1-NR2A heterodimer is the functional unit in tetrameric NMDA receptors and that tyrosine 535 of NR1, located in the subunit interface, modulates the rate of ion channel deactivation.

  17. Neuritin Up-regulates Kv4.2 α-Subunit of Potassium Channel Expression and Affects Neuronal Excitability by Regulating the Calcium-Calcineurin-NFATc4 Signaling Pathway*

    PubMed Central

    Yao, Jin-jing; Zhao, Qian-Ru; Liu, Dong-Dong; Chow, Chi-Wing; Mei, Yan-Ai

    2016-01-01

    Neuritin is an important neurotrophin that regulates neural development, synaptic plasticity, and neuronal survival. Elucidating the downstream molecular signaling is important for potential therapeutic applications of neuritin in neuronal dysfunctions. We previously showed that neuritin up-regulates transient potassium outward current (IA) subunit Kv4.2 expression and increases IA densities, in part by activating the insulin receptor signaling pathway. Molecular mechanisms of neuritin-induced Kv4.2 expression remain elusive. Here, we report that the Ca2+/calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) c4 axis is required for neuritin-induced Kv4.2 transcriptional expression and potentiation of IA densities in cerebellum granule neurons. We found that neuritin elevates intracellular Ca2+ and increases Kv4.2 expression and IA densities; this effect was sensitive to CaN inhibition and was eliminated in Nfatc4−/− mice but not in Nfatc2−/− mice. Stimulation with neuritin significantly increased nuclear accumulation of NFATc4 in cerebellum granule cells and HeLa cells, which expressed IR. Furthermore, NFATc4 was recruited to the Kv4.2 gene promoter loci detected by luciferase reporter and chromatin immunoprecipitation assays. More importantly, data obtained from cortical neurons following adeno-associated virus-mediated overexpression of neuritin indicated that reduced neuronal excitability and increased formation of dendritic spines were abrogated in the Nfatc4−/− mice. Together, these data demonstrate an indispensable role for the CaN/NFATc4 signaling pathway in neuritin-regulated neuronal functions. PMID:27307045

  18. Neuritin Up-regulates Kv4.2 α-Subunit of Potassium Channel Expression and Affects Neuronal Excitability by Regulating the Calcium-Calcineurin-NFATc4 Signaling Pathway.

    PubMed

    Yao, Jin-Jing; Zhao, Qian-Ru; Liu, Dong-Dong; Chow, Chi-Wing; Mei, Yan-Ai

    2016-08-12

    Neuritin is an important neurotrophin that regulates neural development, synaptic plasticity, and neuronal survival. Elucidating the downstream molecular signaling is important for potential therapeutic applications of neuritin in neuronal dysfunctions. We previously showed that neuritin up-regulates transient potassium outward current (IA) subunit Kv4.2 expression and increases IA densities, in part by activating the insulin receptor signaling pathway. Molecular mechanisms of neuritin-induced Kv4.2 expression remain elusive. Here, we report that the Ca(2+)/calcineurin (CaN)/nuclear factor of activated T-cells (NFAT) c4 axis is required for neuritin-induced Kv4.2 transcriptional expression and potentiation of IA densities in cerebellum granule neurons. We found that neuritin elevates intracellular Ca(2+) and increases Kv4.2 expression and IA densities; this effect was sensitive to CaN inhibition and was eliminated in Nfatc4(-/-) mice but not in Nfatc2(-/-) mice. Stimulation with neuritin significantly increased nuclear accumulation of NFATc4 in cerebellum granule cells and HeLa cells, which expressed IR. Furthermore, NFATc4 was recruited to the Kv4.2 gene promoter loci detected by luciferase reporter and chromatin immunoprecipitation assays. More importantly, data obtained from cortical neurons following adeno-associated virus-mediated overexpression of neuritin indicated that reduced neuronal excitability and increased formation of dendritic spines were abrogated in the Nfatc4(-/-) mice. Together, these data demonstrate an indispensable role for the CaN/NFATc4 signaling pathway in neuritin-regulated neuronal functions. PMID:27307045

  19. Arrangement of Kv1 alpha subunits dictates sensitivity to tetraethylammonium.

    PubMed

    Al-Sabi, Ahmed; Shamotienko, Oleg; Dhochartaigh, Sorcha Ni; Muniyappa, Nagesh; Le Berre, Marie; Shaban, Hamdy; Wang, Jiafu; Sack, Jon T; Dolly, J Oliver

    2010-09-01

    Shaker-related Kv1 channels contain four channel-forming alpha subunits. Subfamily member Kv1.1 often occurs oligomerized with Kv1.2 alpha subunits in synaptic membranes, and so information was sought on the influence of their positions within tetramers on the channels' properties. Kv1.1 and 1.2 alpha genes were tandem linked in various arrangements, followed by expression as single-chain proteins in mammalian cells. As some concatenations reported previously seemed not to reliably position Kv1 subunits in their assemblies, the identity of expressed channels was methodically evaluated. Surface protein, isolated by biotinylation of intact transiently transfected HEK-293 cells, gave Kv1.1/1.2 reactivity on immunoblots with electrophoretic mobilities corresponding to full-length concatenated tetramers. There was no evidence of protein degradation, indicating that concatemers were delivered intact to the plasmalemma. Constructs with like genes adjacent (Kv1.1-1.1-1.2-1.2 or Kv1.2-1.2-1.1-1.1) yielded delayed-rectifying, voltage-dependent K(+) currents with activation parameters and inactivation kinetics slightly different from the diagonally positioned genes (Kv1.1-1.2-1.1-1.2 or 1.2-1.1-1.2-1.1). Pore-blocking petidergic toxins, alpha dendrotoxin, agitoxin-1, tityustoxin-Kalpha, and kaliotoxin, were unable to distinguish between the adjacent and diagonal concatamers. Unprecedentedly, external application of the pore-blocker tetraethylammonium (TEA) differentially inhibited the adjacent versus diagonal subunit arrangements, with diagonal constructs having enhanced susceptibility. Concatenation did not directly alter the sensitivities of homomeric Kv1.1 or 1.2 channels to TEA or the toxins. TEA inhibition of currents generated by channels made up from dimers (Kv1.1-1.2 and/or Kv1.2-1.1) was similar to the adjacently arranged constructs. These collective findings indicate that assembly of alpha subunits can be directed by this optimized concatenation, and that subunit

  20. Interaction of factor XIII subunits.

    PubMed

    Katona, Eva; Pénzes, Krisztina; Csapó, Andrea; Fazakas, Ferenc; Udvardy, Miklós L; Bagoly, Zsuzsa; Orosz, Zsuzsanna Z; Muszbek, László

    2014-03-13

    Coagulation factor XIII (FXIII) is a heterotetramer consisting of 2 catalytic A subunits (FXIII-A2) and 2 protective/inhibitory B subunits (FXIII-B2). FXIII-B, a mosaic protein consisting of 10 sushi domains, significantly prolongs the lifespan of catalytic subunits in the circulation and prevents their slow progressive activation in plasmatic conditions. In this study, the biochemistry of the interaction between the 2 FXIII subunits was investigated. Using a surface plasmon resonance technique and an enzyme-linked immunosorbent assay-type binding assay, the equilibrium dissociation constant (Kd) for the interaction was established in the range of 10(-10) M. Based on the measured Kd, it was calculated that in plasma approximately 1% of FXIII-A2 should be in free form. This value was confirmed experimentally by measuring FXIII-A2 in plasma samples immunodepleted of FXIII-A2B2. Free plasma FXIII-A2 is functionally active, and when activated by thrombin and Ca(2+), it can cross-link fibrin. In cerebrospinal fluid and tears with much lower FXIII subunit concentrations, >80% of FXIII-A2 existed in free form. A monoclonal anti-FXIII-B antibody that prevented the interaction between the 2 subunits reacted with the recombinant combined first and second sushi domains of FXIII-B, and its epitope was localized to the peptide spanning positions 96 to 103 in the second sushi domain. PMID:24408323

  1. Unique properties of the ATP-sensitive K⁺ channel in the mouse ventricular cardiac conduction system.

    PubMed

    Bao, Li; Kefaloyianni, Eirini; Lader, Joshua; Hong, Miyoun; Morley, Gregory; Fishman, Glenn I; Sobie, Eric A; Coetzee, William A

    2011-12-01

    Background- The specialized cardiac conduction system (CCS) expresses a unique complement of ion channels that confer a specific electrophysiological profile. ATP-sensitive potassium (K(ATP)) channels in these myocytes have not been systemically investigated. Methods and Results- We recorded K(ATP) channels in isolated CCS myocytes using Cntn2-EGFP reporter mice. The CCS K(ATP) channels were less sensitive to inhibitory cytosolic ATP compared with ventricular channels and more strongly activated by MgADP. They also had a smaller slope conductance. The 2 types of channels had similar intraburst open and closed times, but the CCS K(ATP) channel had a prolonged interburst closed time. CCS K(ATP) channels were strongly activated by diazoxide and less by levcromakalim, whereas the ventricular K(ATP) channel had a reverse pharmacological profile. CCS myocytes express elevated levels of Kir6.1 but reduced Kir6.2 and SUR2A mRNA compared with ventricular myocytes (SUR1 expression was negligible). SUR2B mRNA expression was higher in CCS myocytes relative to SUR2A. Canine Purkinje fibers expressed higher levels of Kir6.1 and SUR2B protein relative to the ventricle. Numeric simulation predicts a high sensitivity of the Purkinje action potential to changes in ATP:ADP ratio. Cardiac conduction time was prolonged by low-flow ischemia in isolated, perfused mouse hearts, which was prevented by glibenclamide. Conclusions- These data imply a differential electrophysiological response (and possible contribution to arrhythmias) of the ventricular CCS to K(ATP) channel opening during periods of ischemia.

  2. Kv5, Kv6, Kv8, and Kv9 subunits: No simple silent bystanders

    PubMed Central

    2016-01-01

    Members of the electrically silent voltage-gated K+ (Kv) subfamilies (Kv5, Kv6, Kv8, and Kv9, collectively identified as electrically silent voltage-gated K+ channel [KvS] subunits) do not form functional homotetrameric channels but assemble with Kv2 subunits into heterotetrameric Kv2/KvS channels with unique biophysical properties. Unlike the ubiquitously expressed Kv2 subunits, KvS subunits show a more restricted expression. This raises the possibility that Kv2/KvS heterotetramers have tissue-specific functions, making them potential targets for the development of novel therapeutic strategies. Here, I provide an overview of the expression of KvS subunits in different tissues and discuss their proposed role in various physiological and pathophysiological processes. This overview demonstrates the importance of KvS subunits and Kv2/KvS heterotetramers in vivo and the importance of considering KvS subunits and Kv2/KvS heterotetramers in the development of novel treatments. PMID:26755771

  3. Sequence of a functional invertebrate GABAA receptor subunit which can form a chimeric receptor with a vertebrate alpha subunit.

    PubMed Central

    Harvey, R J; Vreugdenhil, E; Zaman, S H; Bhandal, N S; Usherwood, P N; Barnard, E A; Darlison, M G

    1991-01-01

    The sequence of an invertebrate GABAA receptor subunit is described. This was deduced from a cDNA which was isolated from the mollusc Lymnaea stagnalis and which corresponds to a transcript of extremely low abundance. The cDNA was isolated using short exonic sequences from part of the corresponding gene in combination with a variant of the polymerase chain reaction (PCR) known as RACE (rapid amplification of cDNA ends). The mature polypeptide has a predicted molecular weight of 54,569 Daltons and exhibits approximately 50% identity to vertebrate GABAA receptor beta subunits. The six intron-exon boundaries determined to date in the molluscan gene occur at the same relative positions as those found in vertebrate GABAA receptor genes. Functional expression, in Xenopus oocytes, of the molluscan cDNA alone results in the formation of GABA-activated chloride ion channels that have a finite open probability even in the absence of agonist. These GABA-evoked currents can be reversibly blocked by the vertebrate GABAA receptor antagonist bicuculline. Surprisingly, the molluscan beta subunit is capable of replacing vertebrate beta subunits in co-expression experiments with the bovine GABAA receptor alpha 1 subunit. These findings suggest that invertebrate GABAA receptors exist in vivo as hetero-oligomeric complexes. PMID:1655414

  4. Kv2 subunits underlie slowly inactivating potassium current in rat neocortical pyramidal neurons.

    PubMed

    Guan, D; Tkatch, T; Surmeier, D J; Armstrong, W E; Foehring, R C

    2007-06-15

    We determined the expression of Kv2 channel subunits in rat somatosensory and motor cortex and tested for the contributions of Kv2 subunits to slowly inactivating K+ currents in supragranular pyramidal neurons. Single cell RT-PCR showed that virtually all pyramidal cells expressed Kv2.1 mRNA and approximately 80% expressed Kv2.2 mRNA. Immunocytochemistry revealed striking differences in the distribution of Kv2.1 and Kv2.2 subunits. Kv2.1 subunits were clustered and located on somata and proximal dendrites of all pyramidal cells. Kv2.2 subunits were primarily distributed on large apical dendrites of a subset of pyramidal cells from deep layers. We used two methods for isolating currents through Kv2 channels after excluding contributions from Kv1 subunits: intracellular diffusion of Kv2.1 antibodies through the recording pipette and extracellular application of rStromatoxin-1 (ScTx). The Kv2.1 antibody specifically blocked the slowly inactivating K+ current by 25-50% (at 8 min), demonstrating that Kv2.1 subunits underlie much of this current in neocortical pyramidal neurons. ScTx (300 nM) also inhibited approximately 40% of the slowly inactivating K+ current. We observed occlusion between the actions of Kv2.1 antibody and ScTx. In addition, Kv2.1 antibody- and ScTx-sensitive currents demonstrated similar recovery from inactivation and voltage dependence and kinetics of activation and inactivation. These data indicate that both agents targeted the same channels. Considering the localization of Kv2.1 and 2.2 subunits, currents from truncated dissociated cells are probably dominated by Kv2.1 subunits. Compared with Kv2.1 currents in expression systems, the Kv2.1 current in neocortical pyramidal cells activated and inactivated at relatively negative potentials and was very sensitive to holding potential.

  5. The ribosomal subunit assembly line

    PubMed Central

    Dlakić, Mensur

    2005-01-01

    Recent proteomic studies in Saccharomyces cerevisiae have identified nearly 200 proteins, other than the structural ribosomal proteins, that participate in the assembly of ribosomal subunits and their transport from the nucleus. In a separate line of research, proteomic studies of mature plant ribosomes have revealed considerable variability in the protein composition of individual ribosomes. PMID:16207363

  6. Localisation of AMPK γ subunits in cardiac and skeletal muscles.

    PubMed

    Pinter, Katalin; Grignani, Robert T; Watkins, Hugh; Redwood, Charles

    2013-12-01

    The trimeric protein AMP-activated protein kinase (AMPK) is an important sensor of energetic status and cellular stress, and mutations in genes encoding two of the regulatory γ subunits cause inherited disorders of either cardiac or skeletal muscle. AMPKγ2 mutations cause hypertrophic cardiomyopathy with glycogen deposition and conduction abnormalities; mutations in AMPKγ3 result in increased skeletal muscle glycogen. In order to gain further insight into the roles of the different γ subunits in muscle and into possible disease mechanisms, we localised the γ2 and γ3 subunits, along with the more abundant γ1 subunit, by immunofluorescence in cardiomyocytes and skeletal muscle fibres. The predominant cardiac γ2 variant, γ2-3B, gave a striated pattern in cardiomyocytes, aligning with the Z-disk but with punctate staining similar to T-tubule (L-type Ca(2+) channel) and sarcoplasmic reticulum (SERCA2) markers. In skeletal muscle fibres AMPKγ3 localises to the I band, presenting a uniform staining that flanks the Z-disk, also coinciding with the position of Ca(2+) influx in these muscles. The localisation of γ2-3B- and γ3-containing AMPK suggests that these trimers may have similar functions in the different muscles. AMPK containing γ2-3B was detected in oxidative skeletal muscles which had low expression of γ3, confirming that these two regulatory subunits may be co-ordinately regulated in response to metabolic requirements. Compartmentalisation of AMPK complexes is most likely dependent on the regulatory γ subunit and this differential localisation may direct substrate selection and specify particular functional roles.

  7. Distinct Structural Pathways Coordinate the Activation of AMPA Receptor-Auxiliary Subunit Complexes

    PubMed Central

    Dawe, G. Brent; Musgaard, Maria; Aurousseau, Mark R.P.; Nayeem, Naushaba; Green, Tim; Biggin, Philip C.; Bowie, Derek

    2016-01-01

    Summary Neurotransmitter-gated ion channels adopt different gating modes to fine-tune signaling at central synapses. At glutamatergic synapses, high and low activity of AMPA receptors (AMPARs) is observed when pore-forming subunits coassemble with or without auxiliary subunits, respectively. Whether a common structural pathway accounts for these different gating modes is unclear. Here, we identify two structural motifs that determine the time course of AMPAR channel activation. A network of electrostatic interactions at the apex of the AMPAR ligand-binding domain (LBD) is essential for gating by pore-forming subunits, whereas a conserved motif on the lower, D2 lobe of the LBD prolongs channel activity when auxiliary subunits are present. Accordingly, channel activity is almost entirely abolished by elimination of the electrostatic network but restored via auxiliary protein interactions at the D2 lobe. In summary, we propose that activation of native AMPAR complexes is coordinated by distinct structural pathways, favored by the association/dissociation of auxiliary subunits. PMID:26924438

  8. Distinct Structural Pathways Coordinate the Activation of AMPA Receptor-Auxiliary Subunit Complexes.

    PubMed

    Dawe, G Brent; Musgaard, Maria; Aurousseau, Mark R P; Nayeem, Naushaba; Green, Tim; Biggin, Philip C; Bowie, Derek

    2016-03-16

    Neurotransmitter-gated ion channels adopt different gating modes to fine-tune signaling at central synapses. At glutamatergic synapses, high and low activity of AMPA receptors (AMPARs) is observed when pore-forming subunits coassemble with or without auxiliary subunits, respectively. Whether a common structural pathway accounts for these different gating modes is unclear. Here, we identify two structural motifs that determine the time course of AMPAR channel activation. A network of electrostatic interactions at the apex of the AMPAR ligand-binding domain (LBD) is essential for gating by pore-forming subunits, whereas a conserved motif on the lower, D2 lobe of the LBD prolongs channel activity when auxiliary subunits are present. Accordingly, channel activity is almost entirely abolished by elimination of the electrostatic network but restored via auxiliary protein interactions at the D2 lobe. In summary, we propose that activation of native AMPAR complexes is coordinated by distinct structural pathways, favored by the association/dissociation of auxiliary subunits. PMID:26924438

  9. Direct visualization of the trimeric structure of the ASIC1a channel, using AFM imaging

    SciTech Connect

    Carnally, Stewart M.; Dev, Harveer S.; Stewart, Andrew P.; Barrera, Nelson P.; Van Bemmelen, Miguel X.; Schild, Laurent; Henderson, Robert M.; Edwardson, J.Michael

    2008-08-08

    There has been confusion about the subunit stoichiometry of the degenerin family of ion channels. Recently, a crystal structure of acid-sensing ion channel (ASIC) 1a revealed that it assembles as a trimer. Here, we used atomic force microscopy (AFM) to image unprocessed ASIC1a bound to mica. We detected a mixture of subunit monomers, dimers and trimers. In some cases, triple-subunit clusters were clearly visible, confirming the trimeric structure of the channel, and indicating that the trimer sometimes disaggregated after adhesion to the mica surface. This AFM-based technique will now enable us to determine the subunit arrangement within heteromeric ASICs.

  10. Atomic force microscopy of ionotropic receptors bearing subunit-specific tags provides a method for determining receptor architecture

    NASA Astrophysics Data System (ADS)

    Neish, Calum S.; Martin, Ian L.; Davies, Martin; Henderson, Robert M.; Edwardson, J. Michael

    2003-08-01

    We have developed an atomic force microscopy (AFM)-based method for the determination of the subunit architecture of ionotropic receptors, and tested the method using the GABAA receptor as a model system. The most common form of the GABAA receptor probably consists of 2alpha1-, 2beta2- and 1gamma2-subunits. We show here that the arrangement of subunits around the central Cl- ion channel can be deduced by AFM of receptors tagged with subunit-specific antibodies. Transfection of cells with DNA encoding alpha1-, beta2- and gamma2-subunits resulted in the production of receptors containing all three subunits, as judged by both immunoblot analysis and the binding of [3H]-Ro15-1788, a specific radioligand for the GABAA receptor. A His6-tag on the alpha1-subunit was used to purify the receptor from membrane fractions of transfected cells. After incubation with anti-His6 immunoglobulin G, some receptors became tagged with either one or two antibody molecules. AFM analysis of complexes containing two bound antibodies showed that the most common angle between the two tags was 135°, close to the value of 144° expected if the two alpha-subunits are separated by a third subunit. This method is applicable to the complete elucidation of the subunit arrangement around the GABAA receptor rosette, and can also be applied to other ionotropic receptors.

  11. The Biochemistry, Ultrastructure, and Subunit Assembly Mechanism of AMPA Receptors

    PubMed Central

    2010-01-01

    The AMPA-type ionotropic glutamate receptors (AMPA-Rs) are tetrameric ligand-gated ion channels that play crucial roles in synaptic transmission and plasticity. Our knowledge about the ultrastructure and subunit assembly mechanisms of intact AMPA-Rs was very limited. However, the new studies using single particle EM and X-ray crystallography are revealing important insights. For example, the tetrameric crystal structure of the GluA2cryst construct provided the atomic view of the intact receptor. In addition, the single particle EM structures of the subunit assembly intermediates revealed the conformational requirement for the dimer-to-tetramer transition during the maturation of AMPA-Rs. These new data in the field provide new models and interpretations. In the brain, the native AMPA-R complexes contain auxiliary subunits that influence subunit assembly, gating, and trafficking of the AMPA-Rs. Understanding the mechanisms of the auxiliary subunits will become increasingly important to precisely describe the function of AMPA-Rs in the brain. The AMPA-R proteomics studies continuously reveal a previously unexpected degree of molecular heterogeneity of the complex. Because the AMPA-Rs are important drug targets for treating various neurological and psychiatric diseases, it is likely that these new native complexes will require detailed mechanistic analysis in the future. The current ultrastructural data on the receptors and the receptor-expressing stable cell lines that were developed during the course of these studies are useful resources for high throughput drug screening and further drug designing. Moreover, we are getting closer to understanding the precise mechanisms of AMPA-R-mediated synaptic plasticity. PMID:21080238

  12. Peering into the birth canal during ion channel parturition.

    PubMed

    Trimmer, James S

    2004-10-14

    Recent studies have provided detailed structures of the N-terminal T1 domain of Kv channel alpha subunits that mediates contranslational subunit assembly. In this issue of Neuron, Kosolapov et al. probe T1 domain structure within the ribosomal tunnel. They find that the T1 domain forms secondary structure within the tunnel, in preparation for its immediate role in governing channel assembly upon exit.

  13. Transient Hippocampal Down-Regulation of Kv1.1 Subunit mRNA during Associative Learning in Rats

    ERIC Educational Resources Information Center

    Kourrich, Said; Manrique, Christine; Salin, Pascal; Mourre, Christiane

    2005-01-01

    Voltage-gated potassium channels (Kv) are critically involved in learning and memory processes. It is not known, however, whether the expression of the Kv1.1 subunit, constituting Kv1 channels, can be specifically regulated in brain areas important for learning and memory processing. Radioactive in situ hybridization was used to evaluate the…

  14. The Ligand Gated Ion Channel Database.

    PubMed

    Le Novère, N; Changeux, J P

    1999-01-01

    The ligand gated ion channels (LGICs) are ionotropic receptors to neurotransmitters. Their physiological effect is carried out by the opening of an ionic channel upon binding of a particular neurotransmitter. These LGICs constitute superfamilies of receptors formed by homologous subunits. A database has been developed to handle the growing wealth of cloned subunits. This database contains nucleic acid sequences, protein sequences, as well as multiple sequence alignments and phylogenetic studies. This database is accessible via the worldwide web (http://www.pasteur.fr/units/neubiomol/LGIC.h tml), where it is continuously updated. A downloadable version is also available [currently v0.1 (98.06)].

  15. Genetically encoding a light switch in an ionotropic glutamate receptor reveals subunit-specific interfaces.

    PubMed

    Zhu, Shujia; Riou, Morgane; Yao, C Andrea; Carvalho, Stéphanie; Rodriguez, Pamela C; Bensaude, Olivier; Paoletti, Pierre; Ye, Shixin

    2014-04-22

    Reprogramming receptors to artificially respond to light has strong potential for molecular studies and interrogation of biological functions. Here, we design a light-controlled ionotropic glutamate receptor by genetically encoding a photoreactive unnatural amino acid (UAA). The photo-cross-linker p-azido-L-phenylalanine (AzF) was encoded in NMDA receptors (NMDARs), a class of glutamate-gated ion channels that play key roles in neuronal development and plasticity. AzF incorporation in the obligatory GluN1 subunit at the GluN1/GluN2B N-terminal domain (NTD) upper lobe dimer interface leads to an irreversible allosteric inhibition of channel activity upon UV illumination. In contrast, when pairing the UAA-containing GluN1 subunit with the GluN2A subunit, light-dependent inactivation is completely absent. By combining electrophysiological and biochemical analyses, we identify subunit-specific structural determinants at the GluN1/GluN2 NTD dimer interfaces that critically dictate UV-controlled inactivation. Our work reveals that the two major NMDAR subtypes differ in their ectodomain-subunit interactions, in particular their electrostatic contacts, resulting in GluN1 NTD coupling more tightly to the GluN2B NTD than to the GluN2A NTD. It also paves the way for engineering light-sensitive ligand-gated ion channels with subtype specificity through the genetic code expansion. PMID:24715733

  16. Genetically encoding a light switch in an ionotropic glutamate receptor reveals subunit-specific interfaces

    PubMed Central

    Zhu, Shujia; Riou, Morgane; Yao, C. Andrea; Carvalho, Stéphanie; Rodriguez, Pamela C.; Bensaude, Olivier; Paoletti, Pierre; Ye, Shixin

    2014-01-01

    Reprogramming receptors to artificially respond to light has strong potential for molecular studies and interrogation of biological functions. Here, we design a light-controlled ionotropic glutamate receptor by genetically encoding a photoreactive unnatural amino acid (UAA). The photo–cross-linker p-azido-l-phenylalanine (AzF) was encoded in NMDA receptors (NMDARs), a class of glutamate-gated ion channels that play key roles in neuronal development and plasticity. AzF incorporation in the obligatory GluN1 subunit at the GluN1/GluN2B N-terminal domain (NTD) upper lobe dimer interface leads to an irreversible allosteric inhibition of channel activity upon UV illumination. In contrast, when pairing the UAA-containing GluN1 subunit with the GluN2A subunit, light-dependent inactivation is completely absent. By combining electrophysiological and biochemical analyses, we identify subunit-specific structural determinants at the GluN1/GluN2 NTD dimer interfaces that critically dictate UV-controlled inactivation. Our work reveals that the two major NMDAR subtypes differ in their ectodomain-subunit interactions, in particular their electrostatic contacts, resulting in GluN1 NTD coupling more tightly to the GluN2B NTD than to the GluN2A NTD. It also paves the way for engineering light-sensitive ligand-gated ion channels with subtype specificity through the genetic code expansion. PMID:24715733

  17. ASIC3 channels in multimodal sensory perception.

    PubMed

    Li, Wei-Guang; Xu, Tian-Le

    2011-01-19

    Acid-sensing ion channels (ASICs), which are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family, act as membrane-bound receptors for extracellular protons as well as nonproton ligands. At least five ASIC subunits have been identified in mammalian neurons, which form both homotrimeric and heterotrimeric channels. The highly proton sensitive ASIC3 channels are predominantly distributed in peripheral sensory neurons, correlating with their roles in multimodal sensory perception, including nociception, mechanosensation, and chemosensation. Different from other ASIC subunit composing ion channels, ASIC3 channels can mediate a sustained window current in response to mild extracellular acidosis (pH 7.3-6.7), which often occurs accompanied by many sensory stimuli. Furthermore, recent evidence indicates that the sustained component of ASIC3 currents can be enhanced by nonproton ligands including the endogenous metabolite agmatine. In this review, we first summarize the growing body of evidence for the involvement of ASIC3 channels in multimodal sensory perception and then discuss the potential mechanisms underlying ASIC3 activation and mediation of sensory perception, with a special emphasis on its role in nociception. We conclude that ASIC3 activation and modulation by diverse sensory stimuli represent a new avenue for understanding the role of ASIC3 channels in sensory perception. Furthermore, the emerging implications of ASIC3 channels in multiple sensory dysfunctions including nociception allow the development of new pharmacotherapy. PMID:22778854

  18. NMDA receptor structures reveal subunit arrangement and pore architecture

    PubMed Central

    Lee, Chia-Hsueh; Lü, Wei; Michel, Jennifer Carlisle; Goehring, April; Du, Juan; Song, Xianqiang; Gouaux, Eric

    2014-01-01

    Summary N-methyl-d-aspartate (NMDA) receptors are Hebbian-like coincidence detectors, requiring binding of glycine and glutamate in combination with the relief of voltage-dependent magnesium block to open an ion conductive pore across the membrane bilayer. Despite the importance of the NMDA receptor in the development and function of the brain, a molecular structure of an intact receptor has remained elusive. Here we present x-ray crystal structures of the GluN1/GluN2B NMDA receptor with the allosteric inhibitor, Ro25-6981, partial agonists and the ion channel blocker, MK-801. Receptor subunits are arranged in a 1-2-1-2 fashion, demonstrating extensive interactions between the amino terminal and ligand binding domains. The transmembrane domains harbor a closed-blocked ion channel, a pyramidal central vestibule lined by residues implicated in binding ion channel blockers and magnesium, and a ~2-fold symmetric arrangement of ion channel pore loops. These structures provide new insights into the architecture, allosteric coupling and ion channel function of NMDA receptors. PMID:25008524

  19. SK channels and calmodulin.

    PubMed

    Adelman, John P

    2016-01-01

    Calcium ions are Nature's most widely used signaling mechanism, mediating communication between pathways at virtually every physiological level. Ion channels are no exception, as the activities of a wide range of ion channels are intricately shaped by fluctuations in intracellular Ca(2+) levels. Mirroring the importance and the breadth of Ca(2+) signaling, free Ca(2+) levels are tightly controlled, and a myriad of Ca(2+) binding proteins transduce Ca(2+) signals, each with its own nuance, comprising a constantly changing symphony of metabolic activity. The founding member of Ca(2+) binding proteins is calmodulin (CaM), a small, acidic, modular protein endowed with gymnastic-like flexibility and E-F hand motifs that chelate Ca(2+) ions. In this review, I will trace the history that led to the realization that CaM serves as the Ca(2+)-gating cue for SK channels, the experiments that revealed that CaM is an intrinsic subunit of SK channels, and itself a target of regulation. PMID:25942650

  20. Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure.

    PubMed

    Stockand, James D; Staruschenko, Alexander; Pochynyuk, Oleh; Booth, Rachell E; Silverthorn, Dee U

    2008-09-01

    The epithelial Na(+) channel/degenerin (ENaC/DEG) protein family includes a diverse group of ion channels, including nonvoltage-gated Na(+) channels of epithelia and neurons, and the acid-sensing ion channel 1 (ASIC1). In mammalian epithelia, ENaC helps regulate Na(+) and associated water transport, making it a critical determinant of systemic blood pressure and pulmonary mucosal fluidity. In the nervous system, ENaC/DEG proteins are related to sensory transduction. While the importance and physiological function of these ion channels are established, less is known about their structure. One hallmark of the ENaC/DEG channel family is that each channel subunit has only two transmembrane domains connected by an exceedingly large extracellular loop. This subunit structure was recently confirmed when Jasti and colleagues determined the crystal structure of chicken ASIC1, a neuronal acid-sensing ENaC/DEG channel. By mapping ENaC to the structural coordinates of cASIC1, as we do here, we hope to provide insight toward ENaC structure. ENaC, like ASIC1, appears to be a trimeric channel containing 1alpha, 1beta, and 1gamma subunit. Heterotrimeric ENaC and monomeric ENaC subunits within the trimer possibly contain many of the major secondary, tertiary, and quaternary features identified in cASIC1 with a few subtle but critical differences. These differences are expected to have profound effects on channel behavior. In particular, they may contribute to ENaC insensitivity to acid and to its constitutive activity in the absence of time- and ligand-dependent inactivation. Experiments resulting from this comparison of cASIC1 and ENaC may help clarify unresolved issues related to ENaC architecture, and may help identify secondary structures and residues critical to ENaC function.

  1. Intracellular Na+ regulates epithelial Na+ channel maturation.

    PubMed

    Heidrich, Elisa; Carattino, Marcelo D; Hughey, Rebecca P; Pilewski, Joseph M; Kleyman, Thomas R; Myerburg, Mike M

    2015-05-01

    Epithelial Na(+) channel (ENaC) function is regulated by the intracellular Na(+) concentration ([Na(+)]i) through a process known as Na(+) feedback inhibition. Although this process is known to decrease the expression of proteolytically processed active channels on the cell surface, it is unknown how [Na(+)]i alters ENaC cleavage. We show here that [Na(+)]i regulates the posttranslational processing of ENaC subunits during channel biogenesis. At times when [Na(+)]i is low, ENaC subunits develop mature N-glycans and are processed by proteases. Conversely, glycan maturation and sensitivity to proteolysis are reduced when [Na(+)]i is relatively high. Surface channels with immature N-glycans were not processed by endogenous channel activating proteases, nor were they sensitive to cleavage by exogenous trypsin. Biotin chase experiments revealed that the immature surface channels were not converted into mature cleaved channels following a reduction in [Na(+)]i. The hypothesis that [Na(+)]i regulates ENaC maturation within the biosynthetic pathways is further supported by the finding that Brefeldin A prevented the accumulation of processed surface channels following a reduction in [Na(+)]i. Therefore, increased [Na(+)]i interferes with ENaC N-glycan maturation and prevents the channel from entering a state that allows proteolytic processing. PMID:25767115

  2. Phosphatidic acid stimulates cardiac KATP channels like phosphatidylinositols, but with novel gating kinetics.

    PubMed

    Fan, Zheng; Gao, Lizhi; Wang, Wenxia

    2003-01-01

    Membrane-bound anionic phospholipids such as phosphatidylinositols have the capacity to modulate ATP-sensitive potassium (K(ATP)) channels through a mechanism involving long-range electrostatic interaction between the lipid headgroup and channel. However, it has not yet been determined whether the multiple effects of phosphatidylinositols reported in the literature all result from this general electrostatic interaction or require a specific headgroup structure. The present study investigated whether phosphatidic acid (PA), an anionic phospholipid substantially different in structure from phosphatidylinositols, evokes effects similar to phosphatidylinositols on native K(ATP) channels of rat heart and heterogeneous Kir6.2/SUR2A channels. Channels treated with PA (0.2-1 mg/ml applied to the cytoplasmic side of the membrane) exhibited higher activity, lower sensitivity to ATP inhibition, less Mg(2+)-dependent nucleotide stimulation, and poor sulfonylurea inhibition. These effects match the spectrum of phosphatidylinositols' effects, but, in addition, PA also induced a novel pattern in gating kinetics, represented by a decreased mean open time (from 12.2 +/- 2.0 to 3.3 +/- 0.7 ms). This impact on gating kinetics clearly distinguishes PA's effects from those of phosphatidylinositols. Results indicate that multiple effects of anionic phospholipids on K(ATP) channels are related phenomena and can likely be attributed to a common mechanism, but additional specific effects due to other mechanisms may also coincide.

  3. ASIC2 Subunits Facilitate Expression at the Cell Surface and Confer Regulation by PSD-95

    PubMed Central

    Harding, Anne Marie S.; Kusama, Nobuyoshi; Hattori, Tomonori; Gautam, Mamta; Benson, Christopher J.

    2014-01-01

    Acid-sensing ion channels (ASICs) are Na+ channels activated by changes in pH within the peripheral and central nervous systems. Several different isoforms of ASICs combine to form trimeric channels, and their properties are determined by their subunit composition. ASIC2 subunits are widely expressed throughout the brain, where they heteromultimerize with their partnering subunit, ASIC1a. However, ASIC2 contributes little to the pH sensitivity of the channels, and so its function is not well understood. We found that ASIC2 increased cell surface levels of the channel when it is coexpressed with ASIC1a, and genetic deletion of ASIC2 reduced acid-evoked current amplitude in mouse hippocampal neurons. Additionally, ASIC2a interacted with the neuronal synaptic scaffolding protein PSD-95, and PSD-95 reduced cell surface expression and current amplitude in ASICs that contain ASIC2a. Overexpression of PSD-95 also reduced acid-evoked current amplitude in hippocampal neurons. This result was dependent upon ASIC2 since the effect of PSD-95 was abolished in ASIC2−/− neurons. These results lend support to an emerging role of ASIC2 in the targeting of ASICs to surface membranes, and allows for interaction with PSD-95 to regulate these processes. PMID:24699665

  4. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  5. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  6. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  7. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  8. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  9. Single-channel properties of ionic channels gated by cyclic nucleotides.

    PubMed Central

    Bucossi, G; Nizzari, M; Torre, V

    1997-01-01

    This paper presents an extensive analysis of single-channel properties of cyclic nucleotide gated (CNG) channels, obtained by injecting into Xenopus laevis oocytes the mRNA encoding for the alpha and beta subunits from bovine rods. When the alpha and beta subunits of the CNG channel are coexpressed, at least three types of channels with different properties are observed. One type of channel has well-resolved, multiple conductive levels at negative voltages, but not at positive voltages. The other two types of channel are characterized by flickering openings, but are distinguished because they have a low and a high conductance. The alpha subunit of CNG channels has a well-defined conductance of about 28 pS, but multiple conductive levels are observed in mutant channels E363D and T364M. The conductance of these open states is modulated by protons and the membrane voltage, and has an activation energy around 44 kJ/mol. The relative probability of occupying any of these open states is independent of the cGMP concentration, but depends on extracellular protons. The open probability in the presence of saturating cGMP was 0.78, 0.47, 0.5, and 0.007 in the w.t. and mutants E363D, T364M, and E363G, and its dependence on temperature indicates that the thermodynamics of the transition between the closed and open state is also affected by mutations in the pore region. These results suggest that CNG channels have different conductive levels, leading to the existence of multiple open states in homomeric channels and to the flickering behavior in heteromeric channels, and that the pore is an essential part of the gating of CNG channels. PMID:9138564

  10. Molecular cloning and expression of a GABA receptor subunit from the crayfish Procambarus clarkii.

    PubMed

    Jiménez-Vázquez, Eric N; Díaz-Velásquez, Clara E; Uribe, R M; Arias, Juan M; García, Ubaldo

    2016-02-01

    Molecular cloning has introduced an unexpected, large diversity of neurotransmitter hetero- oligomeric receptors. Extensive research on the molecular structure of the γ-aminobutyric acid receptor (GABAR) has been of great significance for understanding how the nervous system works in both vertebrates and invertebrates. However, only two examples of functional homo-oligomeric GABA-activated Cl(-) channels have been reported. In the vertebrate retina, the GABAρ1 subunit of various species forms homo-oligomeric receptors; in invertebrates, a cDNA encoding a functional GABA-activated Cl(-) channel has been isolated from a Drosophila melanogaster head cDNA library. When expressed in Xenopus laevis oocytes, these subunits function efficiently as a homo-oligomeric complex. To investigate the structure-function of GABA channels from the crayfish Procambarus clarkii, we cloned a subunit and expressed it in human embryonic kidney cells. Electrophysiological recordings show that this subunit forms a homo-oligomeric ionotropic GABAR that gates a bicuculline-insensitive Cl(-) current. The order of potency of the agonists was GABA > trans-4-amino-crotonic acid = cis-4-aminocrotonic acid > muscimol. These data support the notion that X-organ sinus gland neurons express at least two GABA subunits responsible for the formation of hetero-oligomeric and homo-oligomeric receptors. In addition, by in situ hybridization studies we demonstrate that most X-organ neurons from crayfish eyestalk express the isolated pcGABAA β subunit. This study increases the knowledge of the genetics of the crayfish, furthers the understanding of this important neurotransmitter receptor family, and provides insight into the evolution of these genes among vertebrates and invertebrates.

  11. The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid

    SciTech Connect

    Zhang, Rong-Guang; Westbrook, M.L.; Maulik, P.R.; Reed, R.A.; Shipley, G.; Westbrook, E.M. |; Scott, D.L.; Otwinowski, Z.

    1996-02-01

    Cholera toxin, a heterohexameric AB{sub 5} enterotoxin released by Vibrio cholera, induces a profuse secretory diarrhea in susceptible hosts. Choleragenoid, the B subunit pentamer of cholera toxin, directs the enzymatic A subunit to its target by binding to GM{sub 1} gangliosides exposed on the luminal surface of intestinal epithelial cells. We have solved the crystal structure of choleragenoid at 2.3 {Angstrom} resolution by combining single isomorphous replacement with non-crystallographic symmetry averaging. The structure of the B subunits, and their pentameric arrangement, closely resembles that reported for the intact holotoxin (choleragen), the heat-labile enterotoxin from E. coli, and for a choleragenoid-GM{sub 1} pentasaccharide complex. In the absence of the A subunit the central cavity of the B pentamer is a highly solvated channel. The binding of the A subunit or the receptor pentasaccharide to choleragenoid has only a modest effect on the local stereochemistry and does not perceptibly alter the subunit interface.

  12. ATP release through pannexon channels.

    PubMed

    Dahl, Gerhard

    2015-07-01

    Extracellular adenosine triphosphate (ATP) serves as a signal for diverse physiological functions, including spread of calcium waves between astrocytes, control of vascular oxygen supply and control of ciliary beat in the airways. ATP can be released from cells by various mechanisms. This review focuses on channel-mediated ATP release and its main enabler, Pannexin1 (Panx1). Six subunits of Panx1 form a plasma membrane channel termed 'pannexon'. Depending on the mode of stimulation, the pannexon has large conductance (500 pS) and unselective permeability to molecules less than 1.5 kD or is a small (50 pS), chloride-selective channel. Most physiological and pathological stimuli induce the large channel conformation, whereas the small conformation so far has only been observed with exclusive voltage activation of the channel. The interaction between pannexons and ATP is intimate. The pannexon is not only the conduit for ATP, permitting ATP efflux from cells down its concentration gradient, but the pannexon is also modulated by ATP. The channel can be activated by ATP through both ionotropic P2X as well as metabotropic P2Y purinergic receptors. In the absence of a control mechanism, this positive feedback loop would lead to cell death owing to the linkage of purinergic receptors with apoptotic processes. A control mechanism preventing excessive activation of the purinergic receptors is provided by ATP binding (with low affinity) to the Panx1 protein and gating the channel shut. PMID:26009770

  13. Knockout of the BK β2 subunit abolishes inactivation of BK currents in mouse adrenal chromaffin cells and results in slow-wave burst activity.

    PubMed

    Martinez-Espinosa, Pedro L; Yang, Chengtao; Gonzalez-Perez, Vivian; Xia, Xiao-Ming; Lingle, Christopher J

    2014-10-01

    Rat and mouse adrenal medullary chromaffin cells (CCs) express an inactivating BK current. This inactivation is thought to arise from the assembly of up to four β2 auxiliary subunits (encoded by the kcnmb2 gene) with a tetramer of pore-forming Slo1 α subunits. Although the physiological consequences of inactivation remain unclear, differences in depolarization-evoked firing among CCs have been proposed to arise from the ability of β2 subunits to shift the range of BK channel activation. To investigate the role of BK channels containing β2 subunits, we generated mice in which the gene encoding β2 was deleted (β2 knockout [KO]). Comparison of proteins from wild-type (WT) and β2 KO mice allowed unambiguous demonstration of the presence of β2 subunit in various tissues and its coassembly with the Slo1 α subunit. We compared current properties and cell firing properties of WT and β2 KO CCs in slices and found that β2 KO abolished inactivation, slowed action potential (AP) repolarization, and, during constant current injection, decreased AP firing. These results support the idea that the β2-mediated shift of the BK channel activation range affects repetitive firing and AP properties. Unexpectedly, CCs from β2 KO mice show an increased tendency toward spontaneous burst firing, suggesting that the particular properties of BK channels in the absence of β2 subunits may predispose to burst firing.

  14. A BK (Slo1) channel journey from molecule to physiology.

    PubMed

    Contreras, Gustavo F; Castillo, Karen; Enrique, Nicolás; Carrasquel-Ursulaez, Willy; Castillo, Juan Pablo; Milesi, Verónica; Neely, Alan; Alvarez, Osvaldo; Ferreira, Gonzalo; González, Carlos; Latorre, Ramón

    2013-01-01

    Calcium and voltage-activated potassium (BK) channels are key actors in cell physiology, both in neuronal and non-neuronal cells and tissues. Through negative feedback between intracellular Ca (2+) and membrane voltage, BK channels provide a damping mechanism for excitatory signals. Molecular modulation of these channels by alternative splicing, auxiliary subunits and post-translational modifications showed that these channels are subjected to many mechanisms that add diversity to the BK channel α subunit gene. This complexity of interactions modulates BK channel gating, modifying the energetic barrier of voltage sensor domain activation and channel opening. Regions for voltage as well as Ca (2+) sensitivity have been identified, and the crystal structure generated by the 2 RCK domains contained in the C-terminal of the channel has been described. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, has been found to be relevant in many physiological processes. This review includes the hallmarks of BK channel biophysics and its physiological impact on specific cells and tissues, highlighting its relationship with auxiliary subunit expression.

  15. A BK (Slo1) channel journey from molecule to physiology

    PubMed Central

    Contreras, Gustavo F; Castillo, Karen; Enrique, Nicolás; Carrasquel-Ursulaez, Willy; Castillo, Juan Pablo; Milesi, Verónica; Neely, Alan; Alvarez, Osvaldo; Ferreira, Gonzalo; González, Carlos; Latorre, Ramón

    2013-01-01

    Calcium and voltage-activated potassium (BK) channels are key actors in cell physiology, both in neuronal and non-neuronal cells and tissues. Through negative feedback between intracellular Ca2+ and membrane voltage, BK channels provide a damping mechanism for excitatory signals. Molecular modulation of these channels by alternative splicing, auxiliary subunits and post-translational modifications showed that these channels are subjected to many mechanisms that add diversity to the BK channel α subunit gene. This complexity of interactions modulates BK channel gating, modifying the energetic barrier of voltage sensor domain activation and channel opening. Regions for voltage as well as Ca2+ sensitivity have been identified, and the crystal structure generated by the 2 RCK domains contained in the C-terminal of the channel has been described. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, has been found to be relevant in many physiological processes. This review includes the hallmarks of BK channel biophysics and its physiological impact on specific cells and tissues, highlighting its relationship with auxiliary subunit expression. PMID:24025517

  16. Subsecond regulation of striatal dopamine release by presynaptic KATP channels

    PubMed Central

    Patel, Jyoti C.; Witkovsky, Paul; Coetzee, William A.; Rice, Margaret E.

    2011-01-01

    ATP-sensitive K+ (KATP) channels are composed of pore-forming subunits, typically Kir6.2 in neurons, and regulatory sulfonylurea receptor subunits. In dorsal striatum, activity-dependent H2O2 produced from glutamatergic AMPA-receptor activation inhibits dopamine release via KATP channels. Sources of modulatory H2O2 include medium spiny neurons, but not dopaminergic axons. Using fast-scan cyclic voltammetry in guinea-pig striatal slices and immunohistochemistry, we determined the time window for H2O2/KATP-channel-mediated inhibition and assessed whether modulatory KATP channels are on dopaminergic axons. Comparison of paired-pulse suppression of dopamine release in the absence and presence of glibenclamide, a KATP-channel blocker, or mercaptosuccinate, a glutathione peroxidase inhibitor that enhances endogenous H2O2 levels, revealed a time window for inhibition of 500 to 1000 ms after stimulation. Immunohistochemistry demonstrated localization of Kir6.2 KATP-channel subunits on dopaminergic axons. Consistent with the presence of functional KATP channels on dopaminergic axons, KATP-channel openers, diazoxide and cromakalim, suppressed single-pulse evoked dopamine release. Although cholinergic interneurons that tonically regulate dopamine release also express KATP channels, diazoxide did not induce the enhanced frequency responsiveness of dopamine release seen with nicotinic-receptor blockade. Together, these studies reveal subsecond regulation of striatal dopamine release by endogenous H2O2 acting at KATP channels on dopaminergic axons, including a role in paired-pulse suppression. PMID:21689107

  17. BK Channels in the Vascular System.

    PubMed

    Krishnamoorthy-Natarajan, G; Koide, M

    2016-01-01

    Autoregulation of blood flow is essential for the preservation of organ function to ensure continuous supply of oxygen and essential nutrients and removal of metabolic waste. This is achieved by controlling the diameter of muscular arteries and arterioles that exhibit a myogenic response to changes in arterial blood pressure, nerve activity and tissue metabolism. Large-conductance voltage and Ca(2+)-dependent K(+) channels (BK channels), expressed exclusively in smooth muscle cells (SMCs) in the vascular wall of healthy arteries, play a critical role in regulating the myogenic response. Activation of BK channels by intracellular, local, and transient ryanodine receptor-mediated "Ca(2+) sparks," provides a hyperpolarizing influence on the SMC membrane potential thereby decreasing the activity of voltage-dependent Ca(2+) channels and limiting Ca(2+) influx to promote SMC relaxation and vasodilation. The BK channel α subunit, a large tetrameric protein with each monomer consisting of seven-transmembrane domains, a long intracellular C-terminal tail and an extracellular N-terminus, associates with the β1 and γ subunits in vascular SMCs. The BK channel is regulated by factors originating within the SMC or from the endothelium, perivascular nerves and circulating blood, that significantly alter channel gating properties, Ca(2+) sensitivity and expression of the α and/or β1 subunit. The BK channel thus serves as a central receiving dock that relays the effects of the changes in several such concomitant autocrine and paracrine factors and influences cardiovascular health. This chapter describes the primary mechanism of regulation of myogenic response by BK channels and the alterations to this mechanism wrought by different vasoactive mediators. PMID:27238270

  18. Subunit arrangement in beef heart complex III

    SciTech Connect

    Gonzalez-Halphen, D.; Lindorfer, M.A.; Capaldi, R.A.

    1988-09-06

    Beef heart mitochondrial complex III was separated into 12 polypeptide bands representing 11 different subunits by using the electrophoresis conditions described previously. Eight of the 12 polypeptide bands were identified from their NH/sub 2/-terminal sequences as obtained by electroblotting directly from the NaDodSO/sub 4/-polyacrylamide gel onto a solid support. The topology of the subunits in complex III was explored by three different approaches. (1) Protease digestion experiments of submitochrondial particles in the presence and absence of detergent showed that subunits II and VI are on the M side of the inner membrane and subunits V and XI on the C side. (2) Labeling experiments with the membrane-intercalated probes (/sup 125/I)TID and arylazidoPE indicated that cytochrome b is the predominant bilayer embedded subunit of complex III, while the non-heme iron protein appears to be peripherally located. (3) Cross-linking studies with carbodiimides and homobifunctional cleavable reagents demonstrated that near-neighbor pairs include subunits I+II, II+VI, III+VI, IV+V, V+X, and V+VII. The cytochrome c binding site was found to include subunits IV, VII, and X. The combined data are used to provide an updated model of the topology of beef heart complex III.

  19. Action of the pyrethroid insecticide cypermethrin on rat brain IIa sodium channels expressed in xenopus oocytes.

    PubMed

    Smith, T J; Soderlund, D M

    1998-12-01

    Pyrethroid insecticides bind to a unique site on voltage-dependent sodium channels and prolong sodium currents, leading to repetitive bursts of action potentials or use-dependent nerve block. To further characterize the site and mode of action of pyrethroids on sodium channels, we injected synthetic mRNA encoding the rat brain IIa sodium channel alpha subunit, either alone or in combination with synthetic mRNA encoding the rat sodium channel beta1 subunit, into oocytes of the frog Xenopus laevis and assessed the actions of the pyrethroid insecticide [1R,cis,alphaS]-cypermethrin on expressed sodium currents by two-electrode voltage clamp. In oocytes expressing only the rat brain IIa alpha subunit, cypermethrin produced a slowly-decaying sodium tail current following a depolarizing pulse. In parallel experiments using oocytes expressing the rat brain IIa alpha subunit in combination with the rat beta1 subunit, cypermethrin produced qualitatively similar tail currents following a depolarizing pulse and also induced a sustained component of the sodium current measured during a step depolarization of the oocyte membrane. The voltage dependence of activation and steady-state inactivation of the cypermethrin-dependent sustained current were identical to those of the peak transient sodium current measured in the absence of cypermethrin. Concentration-response curves obtained using normalized tail current amplitude as an index of the extent of sodium channel modification by cypermethrin revealed that coexpression of the rat brain IIa alpha subunit with the rat beta1 subunit increased the apparent affinity of the sodium channel binding site for cypermethrin by more than 20-fold. These results confirm that the pyrethroid binding site is intrinsic to the sodium channel alpha subunit and demonstrate that coexpression of the rat brain IIa alpha subunit with the rat beta1 subunit alters the apparent affinity of this site for pyrethroids.

  20. AFM imaging reveals the tetrameric structure of the TRPC1 channel

    SciTech Connect

    Barrera, Nelson P.; Shaifta, Yasin; McFadzean, Ian; Ward, Jeremy P.T.; Henderson, Robert M.; Edwardson, J. Michael . E-mail: jme1000@cam.ac.uk

    2007-07-13

    We have determined the subunit stoichiometry of the transient receptor potential C1 (TRPC1) channel by imaging isolated channels using atomic force microscopy (AFM). A frequency distribution of the molecular volumes of individual channel particles had two peaks, at 170 and 720 nm{sup 3}, corresponding with the expected sizes of TRPC1 monomers and tetramers, respectively. Complexes were formed between TRPC1 channels and antibodies against a V5 epitope tag present on each subunit. The frequency distribution of angles between pairs of bound antibodies had two peaks, at 88{sup o} and 178{sup o}. This result again indicates that the channel assembles as a tetramer.

  1. Cleft Lip Repair: The Hybrid Subunit Method.

    PubMed

    Tollefson, Travis T

    2016-04-01

    The unilateral cleft lip repair is one of the most rewarding and challenging of plastic surgery procedures. Surgeons have introduced a variety of straight line, geometric, and rotation-advancement designs, while in practice the majority of North American surgeons have been using hybrids of the rotation-advancement techniques. The anatomic subunit approach was introduced in 2005 by Fisher and has gained popularity, with early adopters of the design touting its simplicity and effectiveness. The objectives of this article are to summarize the basic tenets of respecting the philtral subunit, accurate measurement and planning, and tips for transitioning to this subunit approach.

  2. Cleft Lip Repair: The Hybrid Subunit Method.

    PubMed

    Tollefson, Travis T

    2016-04-01

    The unilateral cleft lip repair is one of the most rewarding and challenging of plastic surgery procedures. Surgeons have introduced a variety of straight line, geometric, and rotation-advancement designs, while in practice the majority of North American surgeons have been using hybrids of the rotation-advancement techniques. The anatomic subunit approach was introduced in 2005 by Fisher and has gained popularity, with early adopters of the design touting its simplicity and effectiveness. The objectives of this article are to summarize the basic tenets of respecting the philtral subunit, accurate measurement and planning, and tips for transitioning to this subunit approach. PMID:27097136

  3. Distinct potassium channels on pain-sensing neurons.

    PubMed

    Rasband, M N; Park, E W; Vanderah, T W; Lai, J; Porreca, F; Trimmer, J S

    2001-11-01

    Differential expression of ion channels contributes functional diversity to sensory neuron signaling. We find nerve injury induced by the Chung model of neuropathic pain leads to striking reductions in voltage-gated K(+) (Kv) channel subunit expression in dorsal root ganglia (DRG) neurons, suggesting a potential molecular mechanism for hyperexcitability of injured nerves. Moreover, specific classes of DRG neurons express distinct Kv channel subunit combinations. Importantly, Kv1.4 is the sole Kv1 alpha subunit expressed in smaller diameter neurons, suggesting that homomeric Kv1.4 channels predominate in A delta and C fibers arising from these cells. These neurons are presumably nociceptors, because they also express the VR-1 capsaicin receptor, calcitonin gene-related peptide, and/or Na(+) channel SNS/PN3/Nav1.8. In contrast, larger diameter neurons associated with mechanoreception and proprioception express high levels of Kv1.1 and Kv1.2 without Kv1.4 or other Kv1 alpha subunits, suggesting that heteromers of these subunits predominate on large, myelinated afferent axons that extend from these cells. PMID:11698689

  4. Structure–Function Relationships in Fungal Large-Subunit Catalases

    SciTech Connect

    Diaz, A.; Valdez, V; Rudino-Pinera, E; Horjales, E; Hansberg, W

    2009-01-01

    Neurospora crassa has two large-subunit catalases, CAT-1 and CAT-3. CAT-1 is associated with non-growing cells and accumulates particularly in asexual spores; CAT-3 is associated with growing cells and is induced under different stress conditions. It is our interest to elucidate the structure-function relationships in large-subunit catalases. Here we have determined the CAT-3 crystal structure and compared it with the previously determined CAT-1 structure. Similar to CAT-1, CAT-3 hydrogen peroxide (H{sub 2}O{sub 2}) saturation kinetics exhibited two components, consistent with the existence of two active sites: one saturated in the millimolar range and the other in the molar range. In the CAT-1 structure, we found three interesting features related to its unusual kinetics: (a) a constriction in the channel that conveys H{sub 2}O{sub 2} to the active site; (b) a covalent bond between the tyrosine, which forms the fifth coordination bound to the iron of the heme, and a vicinal cysteine; (c) oxidation of the pyrrole ring III to form a cis-hydroxyl group in C5 and a cis-{gamma}-spirolactone in C6. The site of heme oxidation marks the starts of the central channel that communicates to the central cavity and the shortest way products can exit the active site. CAT-3 has a similar constriction in its major channel, which could function as a gating system regulated by the H{sub 2}O{sub 2} concentration before the gate. CAT-3 functional tyrosine is not covalently bonded, but has instead the electron relay mechanism described for the human catalase to divert electrons from it. Pyrrole ring III in CAT-3 is not oxidized as it is in other large-subunit catalases whose structure has been determined. Different in CAT-3 from these enzymes is an occupied central cavity. Results presented here indicate that CAT-3 and CAT-1 enzymes represent a functional group of catalases with distinctive structural characteristics that determine similar kinetics.

  5. Cardiac Strong Inward Rectifier Potassium Channels

    PubMed Central

    Anumonwo, Justus MB; Lopatin, Anatoli N

    2009-01-01

    Cardiac IK1 and IKACh are the major potassium currents displaying classical strong inward rectification, a unique property that is critical for their roles in cardiac excitability. In the last fifteen years, research on IK1 and IKACh has been propelled by the cloning of the underlying inwardly rectifying potassium (Kir) channels, the discovery of the molecular mechanism of strong rectification and the linking of a number of disorders of cardiac excitability to defects in genes encoding Kir channels. Disease-causing mutations in Kir genes have been shown experimentally to affect one or more of the following channel properties: structure, assembly, trafficking and regulation, with the ultimate effect of a gain-, or a loss-of-function of the channel. It is now established that IK1 and IKACh channels are heterotetramers of Kir2 and Kir3 subunits, respectively. Each homomeric Kir channel has distinct biophysical and regulatory properties, and individual Kir subunits often display different patterns of regional, cellular and membrane distribution. These differences are thought to underlie important variations in the physiological properties of IK1 and IKACh. It has become increasingly clear that the contribution of IK1 and IKACh channels to cardiac electrical activity goes beyond their long recognized role in the stabilization of resting membrane potential and shaping the late phase of action potential repolarization in individual myocytes, but extends to being critical elements determining the overall electrical stability of the heart. PMID:19703462

  6. KCNE Regulation of K+ Channel Trafficking – a Sisyphean Task?

    PubMed Central

    Kanda, Vikram A.; Abbott, Geoffrey W.

    2012-01-01

    Voltage-gated potassium (Kv) channels shape the action potentials of excitable cells and regulate membrane potential and ion homeostasis in excitable and non-excitable cells. With 40 known members in the human genome and a variety of homomeric and heteromeric pore-forming α subunit interactions, post-translational modifications, cellular locations, and expression patterns, the functional repertoire of the Kv α subunit family is monumental. This versatility is amplified by a host of interacting proteins, including the single membrane-spanning KCNE ancillary subunits. Here, examining both the secretory and the endocytic pathways, we review recent findings illustrating the surprising virtuosity of the KCNE proteins in orchestrating not just the function, but also the composition, diaspora and retrieval of channels formed by their Kv α subunit partners. PMID:22754540

  7. TRP Channels

    NASA Astrophysics Data System (ADS)

    Voets, Thomas; Owsianik, Grzegorz; Nilius, Bernd

    The TRP superfamily represents a highly diverse group of cation-permeable ion channels related to the product of the Drosophila trp (transient receptor potential) gene. The cloning and characterization of members of this cation channel family has experienced a remarkable growth during the last decade, uncovering a wealth of information concerning the role of TRP channels in a variety of cell types, tissues, and species. Initially, TRP channels were mainly considered as phospholipase C (PLC)-dependent and/or store-operated Ca2+-permeable cation channels. More recent research has highlighted the sensitivity of TRP channels to a broad array of chemical and physical stimuli, allowing them to function as dedicated biological sensors involved in processes ranging from vision to taste, tactile sensation, and hearing. Moreover, the tailored selectivity of certain TRP channels enables them to play key roles in the cellular uptake and/or transepithelial transport of Ca2+, Mg2+, and trace metal ions. In this chapter we give a brief overview of the TRP channel superfamily followed by a survey of current knowledge concerning their structure and activation mechanisms.

  8. Mechanisms contributing to myocardial potassium channel diversity, regulation and remodeling.

    PubMed

    Yang, Kai-Chien; Nerbonne, Jeanne M

    2016-04-01

    In the mammalian heart, multiple types of K(+) channels contribute to the control of cardiac electrical and mechanical functioning through the regulation of resting membrane potentials, action potential waveforms and refractoriness. There are similarly vast arrays of K(+) channel pore-forming and accessory subunits that contribute to the generation of functional myocardial K(+) channel diversity. Maladaptive remodeling of K(+) channels associated with cardiac and systemic diseases results in impaired repolarization and increased propensity for arrhythmias. Here, we review the diverse transcriptional, post-transcriptional, post-translational, and epigenetic mechanisms contributing to regulating the expression, distribution, and remodeling of cardiac K(+) channels under physiological and pathological conditions. PMID:26391345

  9. Direct Activation of β-Cell KATP Channels with a Novel Xanthine Derivative

    PubMed Central

    Raphemot, Rene; Swale, Daniel R.; Dadi, Prasanna K.; Jacobson, David A.; Cooper, Paige; Wojtovich, Andrew P.; Banerjee, Sreedatta; Nichols, Colin G.

    2014-01-01

    ATP-regulated potassium (KATP) channel complexes of inward rectifier potassium channel (Kir) 6.2 and sulfonylurea receptor (SUR) 1 critically regulate pancreatic islet β-cell membrane potential, calcium influx, and insulin secretion, and consequently, represent important drug targets for metabolic disorders of glucose homeostasis. The KATP channel opener diazoxide is used clinically to treat intractable hypoglycemia caused by excessive insulin secretion, but its use is limited by off-target effects due to lack of potency and selectivity. Some progress has been made in developing improved Kir6.2/SUR1 agonists from existing chemical scaffolds and compound screening, but there are surprisingly few distinct chemotypes that are specific for SUR1-containing KATP channels. Here we report the serendipitous discovery in a high-throughput screen of a novel activator of Kir6.2/SUR1: VU0071063 [7-(4-(tert-butyl)benzyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione]. The xanthine derivative rapidly and dose-dependently activates Kir6.2/SUR1 with a half-effective concentration (EC50) of approximately 7 μM, is more efficacious than diazoxide at low micromolar concentrations, directly activates the channel in excised membrane patches, and is selective for SUR1- over SUR2A-containing Kir6.1 or Kir6.2 channels, as well as Kir2.1, Kir2.2, Kir2.3, Kir3.1/3.2, and voltage-gated potassium channel 2.1. Finally, we show that VU0071063 activates native Kir6.2/SUR1 channels, thereby inhibiting glucose-stimulated calcium entry in isolated mouse pancreatic β cells. VU0071063 represents a novel tool/compound for investigating β-cell physiology, KATP channel gating, and a new chemical scaffold for developing improved activators with medicinal chemistry. PMID:24646456

  10. Voltage-gated sodium channels and metastatic disease

    PubMed Central

    Brackenbury, William J.

    2012-01-01

    Voltage-gated Na+ channels (VGSCs) are macromolecular protein complexes containing a pore-forming α subunit and smaller non-pore-forming β subunits. VGSCs are expressed in metastatic cells from a number of cancers. In these cells, Na+ current carried by α subunits enhances migration, invasion and metastasis in vivo. In contrast, the β subunits mediate cellular adhesion and process extension. The prevailing hypothesis is that VGSCs are upregulated in cancer, in general favoring an invasive/metastatic phenotype, although the mechanisms are still not fully clear. Expression of the Nav1.5 α subunit associates with poor prognosis in clinical breast cancer specimens, suggesting that VGSCs may have utility as prognostic markers for cancer progression. Furthermore, repurposing existing VGSC-blocking therapeutic drugs may provide a new strategy to improve outcomes in patients suffering from metastatic disease, which is the major cause of cancer-related deaths, and for which there is currently no cure. PMID:22992466

  11. Sulfhydryl-group modifications of Torpedo Californica acetylcholine receptor: subunit localization and effects on function

    SciTech Connect

    McNamee, M.G.; Yee, A.S.

    1986-05-01

    The effects of thiol-group modification on acetylcholine receptor (ACHR) function were measured using purified Torpedo ACHR reconstituted into soybean lipid vesicles. N-Phenyl-maleimide (NPM) was used to modify sulfhydryl groups in ACHR in the absence of any prior reduction by dithiotheitol. Modification by NPM led to the inhibition of ion channel activity without a detectable effect on ligand binding. The ion flux inhibition by NPM primarily affected channel activation, since the initial rates of activation decreased over a wide range of carbamylcholine concentrations. The /sup 3/H-NPM subunit labelling pattern of ACHR (a multisubunit membrane protein with ..cap alpha../sub 2/..beta gamma..delta stoichiometry) revealed preferential labelling of the ..gamma.. subunit. At high NPM concentration, the number of sulfhydryl groups on the ..gamma.. subunit that could be modified with NPM was two. Detergent was required during labelling for functionally relevant thiol group modifications, and most of the label was protected from protease digestion in the reconstituted membranes. These results are consistent with the presence of the NPM modification in a bilayer and/or cytoplasmic domain. Analysis of cyanogen bromide and trypsin fragments indicates that the labeled cysteines may be located in the postulated amphipathic helix region of the ..gamma.. subunit.

  12. Stable expression of transfected Torpedo acetylcholine receptor. cap alpha. subunits in mouse fibroblast L cells

    SciTech Connect

    Claudio, T.

    1987-08-01

    Torpedo californica electric organ cDNA libraries were constructed in lambdagt10 and lambdagt11. Four acetylcholine receptor (AcChoR) subunit cDNA clones were isolated and shown to contain the entire coding region for each of the subunits. When in vitro synthesized AcChoR mRNA was microinjected into Xenopus laevis oocytes, functional cell surface AcChoRs were expressed. A very simple and fast /sup 22/Na-uptake experiment was performed on batches of microinjected oocytes to identify oocytes that were expressing large quantities of functional cell surface AcChoRs for use in single-channel recordings. In addition to the transient expression system, DNA-mediated contransformation is described, which is a method for stably introducing AcChoR cDNAs into the chromosomes of tissue culture cells. Because the AcChoR is composed of four different subunits, it is necessary to integrate four cDNAs into the chromosomes of the same cell before stable expression of a completely functional receptor complex can be established. The authors show that 80% of the cells that integrated the selectable marker gene into their chromosomes also integrated all four AcChoR cDNAs. When Torpedo ..cap alpha..-subunit cDNA inserted into an appropriate expression vector was introduced into cells by transfection, ..cap alpha..-subunit protein was synthesized that migrated on NaDodSO/sub 4//polyacrylamide gels with the same molecular mass as native Torpedo ..cap alpha.. subunits and expressed antigenic determinants similar to those of native Torpedo ..cap alpha.. subunits.

  13. Subunit Movements in Single Membrane-bound H+-ATP Synthases from Chloroplasts during ATP Synthesis

    PubMed Central

    Bienert, Roland; Rombach-Riegraf, Verena; Diez, Manuel; Gräber, Peter

    2009-01-01

    Subunit movements within the H+-ATP synthase from chloroplasts (CF0F1) are investigated during ATP synthesis. The γ-subunit (γCys-322) is covalently labeled with a fluorescence donor (ATTO532). A fluorescence acceptor (adenosine 5′-(β,γ-imino)triphosphate (AMPPNP)-ATTO665) is noncovalently bound to a noncatalytic site at one α-subunit. The labeled CF0F1 is integrated into liposomes, and a transmembrane pH difference is generated by an acid base transition. Single-pair fluorescence resonance energy transfer is measured in freely diffusing proteoliposomes with a confocal two-channel microscope. The fluorescence time traces reveal a repetitive three-step rotation of the γ-subunit relative to the α-subunit during ATP synthesis. Some traces show splitting into sublevels with fluctuations between the sublevels. During catalysis the central stalk interacts, with equal probability, with each αβ-pair. Without catalysis the central stalk interacts with only one specific αβ-pair, and no stepping between FRET levels is observed. Two inactive states of the enzyme are identified: one in the presence of AMPPNP and one in the presence of ADP. PMID:19864418

  14. Subunit movements in single membrane-bound H+-ATP synthases from chloroplasts during ATP synthesis.

    PubMed

    Bienert, Roland; Rombach-Riegraf, Verena; Diez, Manuel; Gräber, Peter

    2009-12-25

    Subunit movements within the H(+)-ATP synthase from chloroplasts (CF(0)F(1)) are investigated during ATP synthesis. The gamma-subunit (gammaCys-322) is covalently labeled with a fluorescence donor (ATTO532). A fluorescence acceptor (adenosine 5'-(beta,gamma-imino)triphosphate (AMPPNP)-ATTO665) is noncovalently bound to a noncatalytic site at one alpha-subunit. The labeled CF(0)F(1) is integrated into liposomes, and a transmembrane pH difference is generated by an acid base transition. Single-pair fluorescence resonance energy transfer is measured in freely diffusing proteoliposomes with a confocal two-channel microscope. The fluorescence time traces reveal a repetitive three-step rotation of the gamma-subunit relative to the alpha-subunit during ATP synthesis. Some traces show splitting into sublevels with fluctuations between the sublevels. During catalysis the central stalk interacts, with equal probability, with each alphabeta-pair. Without catalysis the central stalk interacts with only one specific alphabeta-pair, and no stepping between FRET levels is observed. Two inactive states of the enzyme are identified: one in the presence of AMPPNP and one in the presence of ADP.

  15. Reconfiguration of yeast 40S ribosomal subunit domains by the translation initiation multifactor complex.

    PubMed

    Gilbert, Robert J C; Gordiyenko, Yulya; von der Haar, Tobias; Sonnen, Andreas F-P; Hofmann, Gregor; Nardelli, Maria; Stuart, David I; McCarthy, John E G

    2007-04-01

    In the process of protein synthesis, the small (40S) subunit of the eukaryotic ribosome is recruited to the capped 5' end of the mRNA, from which point it scans along the 5' untranslated region in search of a start codon. However, the 40S subunit alone is not capable of functional association with cellular mRNA species; it has to be prepared for the recruitment and scanning steps by interactions with a group of eukaryotic initiation factors (eIFs). In budding yeast, an important subset of these factors (1, 2, 3, and 5) can form a multifactor complex (MFC). Here, we describe cryo-EM reconstructions of the 40S subunit, of the MFC, and of 40S complexes with MFC factors plus eIF1A. These studies reveal the positioning of the core MFC on the 40S subunit, and show how eIF-binding induces mobility in the head and platform and reconfigures the head-platform-body relationship. This is expected to increase the accessibility of the mRNA channel, thus enabling the 40S subunit to convert to a recruitment-competent state.

  16. Nicotinamide is an endogenous agonist for a C. elegans TRPV OSM-9 and OCR-4 channel

    PubMed Central

    Upadhyay, Awani; Pisupati, Aditya; Jegla, Timothy; Crook, Matt; Mickolajczyk, Keith J.; Shorey, Matthew; Rohan, Laura E.; Billings, Katherine A.; Rolls, Melissa M.; Hancock, William O.; Hanna-Rose, Wendy

    2016-01-01

    TRPV ion channels are directly activated by sensory stimuli and participate in thermo-, mechano- and chemo-sensation. They are also hypothesized to respond to endogenous agonists that would modulate sensory responses. Here, we show that the nicotinamide (NAM) form of vitamin B3 is an agonist of a Caenorhabditis elegans TRPV channel. Using heterologous expression in Xenopus oocytes, we demonstrate that NAM is a soluble agonist for a channel consisting of the well-studied OSM-9 TRPV subunit and relatively uncharacterized OCR-4 TRPV subunit as well as the orthologous Drosophila Nan-Iav TRPV channel, and we examine stoichiometry of subunit assembly. Finally, we show that behaviours mediated by these C. elegans and Drosophila channels are responsive to NAM, suggesting conservation of activity of this soluble endogenous metabolite on TRPV activity. Our results in combination with the role of NAM in NAD+ metabolism suggest an intriguing link between metabolic regulation and TRPV channel activity. PMID:27731314

  17. The novel component Kgd4 recruits the E3 subunit to the mitochondrial α-ketoglutarate dehydrogenase

    PubMed Central

    Heublein, Manfred; Burguillos, Miguel A.; Vögtle, F. Nora; Teixeira, Pedro F.; Imhof, Axel; Meisinger, Chris; Ott, Martin

    2014-01-01

    The mitochondrial citric acid cycle is a central hub of cellular metabolism, providing intermediates for biosynthetic pathways and channeling electrons to the respiratory chain complexes. In this study, we elucidated the composition and organization of the multienzyme complex α-ketoglutarate dehydrogenase (α-KGDH). In addition to the three classical E1-E3 subunits, we identified a novel component, Kgd4 (Ymr31/MRPS36), which was previously assigned to be a subunit of the mitochondrial ribosome. Biochemical analyses demonstrate that this protein plays an evolutionarily conserved role in the organization of mitochondrial α-KGDH complexes of fungi and animals. By binding to both the E1-E2 core and the E3 subunit, Kgd4 acts as a molecular adaptor that is necessary to a form a stable α-KGDH enzyme complex. Our work thus reveals a novel subunit of a key citric acid–cycle enzyme and shows how this large complex is organized. PMID:25165143

  18. The novel component Kgd4 recruits the E3 subunit to the mitochondrial α-ketoglutarate dehydrogenase.

    PubMed

    Heublein, Manfred; Burguillos, Miguel A; Vögtle, F Nora; Teixeira, Pedro F; Imhof, Axel; Meisinger, Chris; Ott, Martin

    2014-11-01

    The mitochondrial citric acid cycle is a central hub of cellular metabolism, providing intermediates for biosynthetic pathways and channeling electrons to the respiratory chain complexes. In this study, we elucidated the composition and organization of the multienzyme complex α-ketoglutarate dehydrogenase (α-KGDH). In addition to the three classical E1-E3 subunits, we identified a novel component, Kgd4 (Ymr31/MRPS36), which was previously assigned to be a subunit of the mitochondrial ribosome. Biochemical analyses demonstrate that this protein plays an evolutionarily conserved role in the organization of mitochondrial α-KGDH complexes of fungi and animals. By binding to both the E1-E2 core and the E3 subunit, Kgd4 acts as a molecular adaptor that is necessary to a form a stable α-KGDH enzyme complex. Our work thus reveals a novel subunit of a key citric acid-cycle enzyme and shows how this large complex is organized.

  19. Protein synthesis by ribosomes with tethered subunits.

    PubMed

    Orelle, Cédric; Carlson, Erik D; Szal, Teresa; Florin, Tanja; Jewett, Michael C; Mankin, Alexander S

    2015-08-01

    The ribosome is a ribonucleoprotein machine responsible for protein synthesis. In all kingdoms of life it is composed of two subunits, each built on its own ribosomal RNA (rRNA) scaffold. The independent but coordinated functions of the subunits, including their ability to associate at initiation, rotate during elongation, and dissociate after protein release, are an established model of protein synthesis. Furthermore, the bipartite nature of the ribosome is presumed to be essential for biogenesis, since dedicated assembly factors keep immature ribosomal subunits apart and prevent them from translation initiation. Free exchange of the subunits limits the development of specialized orthogonal genetic systems that could be evolved for novel functions without interfering with native translation. Here we show that ribosomes with tethered and thus inseparable subunits (termed Ribo-T) are capable of successfully carrying out protein synthesis. By engineering a hybrid rRNA composed of both small and large subunit rRNA sequences, we produced a functional ribosome in which the subunits are covalently linked into a single entity by short RNA linkers. Notably, Ribo-T was not only functional in vitro, but was also able to support the growth of Escherichia coli cells even in the absence of wild-type ribosomes. We used Ribo-T to create the first fully orthogonal ribosome-messenger RNA system, and demonstrate its evolvability by selecting otherwise dominantly lethal rRNA mutations in the peptidyl transferase centre that facilitate the translation of a problematic protein sequence. Ribo-T can be used for exploring poorly understood functions of the ribosome, enabling orthogonal genetic systems, and engineering ribosomes with new functions.

  20. Inwardly rectifying Kir3.1 subunit knockdown impairs learning and memory in an olfactory associative task in rat.

    PubMed

    Kourrich, Saïd; Masmejean, Frédérique; Martin-Eauclaire, Marie France; Soumireu-Mourat, Bernard; Mourre, Christiane

    2003-05-12

    Inward-rectifier potassium channels gated by the direct action of G proteins are activated or inhibited by numerous neurotransmitters and they modulate neuronal excitability. Using an olfactory associative task, the effect of Kir3.1 subunit knockdown was tested on learning and memory. Repeated intracerebroventricular injections of antisense oligodeoxyribonucleotide to the Kir3.1 subunit significantly reduced hippocampal expression of its mRNA target determined by Western blotting. The antisense knockdown had no effect on locomotor and drinking activity or on attention processes. The reduction in Kir3.1 subunit impaired the learning of the odor associations and the procedural side of the task. This reduction correlated with the performance impairment. The results suggest that Kir3.1 channel activity is implicated in the memory processes. PMID:12750011

  1. Kv7 Channels Can Function without Constitutive Calmodulin Tethering

    PubMed Central

    Alberdi, Araitz; Alaimo, Alessandro; Etxeberría, Ainhoa; Fernández-Orth, Juncal; Zamalloa, Teresa; Roura-Ferrer, Meritxell; Villace, Patricia; Areso, Pilar; Casis, Oscar; Villarroel, Alvaro

    2011-01-01

    M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC), a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function. PMID:21980481

  2. Regulation of Na v channels in sensory neurons.

    PubMed

    Chahine, Mohamed; Ziane, Rahima; Vijayaragavan, Kausalia; Okamura, Yasushi

    2005-10-01

    Voltage-gated Na(+) channels have an essential role in the biophysical properties of nociceptive neurons. Factors that regulate Na(+) channel function are of interest from both pathophysiological and therapeutic perspectives. Increasing evidence indicates that changes in expression or inappropriate modulation of these channels leads to electrical instability of the cell membrane and the inappropriate spontaneous activity that is observed following nerve injury, and that this might contribute to neuropathic pain. The role of Na(v) channels in nociception depends on modulation by factors such as auxiliary beta-subunits, cytoskeletal proteins and the phosphorylation state of neurons. In this review we describe the modulation of Na(v) channels on sensory neurons by auxiliary beta-subunits, protein kinases and cytoskeletal proteins.

  3. Regulation of Ion Channels by Pyridine Nucleotides

    PubMed Central

    Kilfoil, Peter J.; Tipparaju, Srinivas M.; Barski, Oleg A.; Bhatnagar, Aruni

    2014-01-01

    Recent research suggests that in addition to their role as soluble electron carriers, pyridine nucleotides [NAD(P)(H)] also regulate ion transport mechanisms. This mode of regulation seems to have been conserved through evolution. Several bacterial ion–transporting proteins or their auxiliary subunits possess nucleotide-binding domains. In eukaryotes, the Kv1 and Kv4 channels interact with pyridine nucleotide–binding β-subunits that belong to the aldo-keto reductase superfamily. Binding of NADP+ to Kvβ removes N-type inactivation of Kv currents, whereas NADPH stabilizes channel inactivation. Pyridine nucleotides also regulate Slo channels by interacting with their cytosolic regulator of potassium conductance domains that show high sequence homology to the bacterial TrkA family of K+ transporters. These nucleotides also have been shown to modify the activity of the plasma membrane KATP channels, the cystic fibrosis transmembrane conductance regulator, the transient receptor potential M2 channel, and the intracellular ryanodine receptor calcium release channels. In addition, pyridine nucleotides also modulate the voltage-gated sodium channel by supporting the activity of its ancillary subunit—the glycerol-3-phosphate dehydrogenase-like protein. Moreover, the NADP+ metabolite, NAADP+, regulates intracellular calcium homeostasis via the 2-pore channel, ryanodine receptor, or transient receptor potential M2 channels. Regulation of ion channels by pyridine nucleotides may be required for integrating cell ion transport to energetics and for sensing oxygen levels or metabolite availability. This mechanism also may be an important component of hypoxic pulmonary vasoconstriction, memory, and circadian rhythms, and disruption of this regulatory axis may be linked to dysregulation of calcium homeostasis and cardiac arrhythmias. PMID:23410881

  4. Mutations Causing Slow-Channel Myasthenia Reveal That a Valine Ring in the Channel Pore of Muscle AChR is Optimized for Stabilizing Channel Gating.

    PubMed

    Shen, Xin-Ming; Okuno, Tatsuya; Milone, Margherita; Otsuka, Kenji; Takahashi, Koji; Komaki, Hirofumi; Giles, Elizabeth; Ohno, Kinji; Engel, Andrew G

    2016-10-01

    We identify two novel mutations in acetylcholine receptor (AChR) causing a slow-channel congenital myasthenia syndrome (CMS) in three unrelated patients (Pts). Pt 1 harbors a heterozygous βV266A mutation (p.Val289Ala) in the second transmembrane domain (M2) of the AChR β subunit (CHRNB1). Pts 2 and 3 carry the same mutation at an equivalent site in the ε subunit (CHRNE), εV265A (p.Val285Ala). The mutant residues are conserved across all AChR subunits of all species and are components of a valine ring in the channel pore, which is positioned four residues above the leucine ring. Both βV266A and εV265A reduce the amino acid size and lengthen the channel opening bursts by fourfold by enhancing gating efficiency by approximately 30-fold. Substitution of alanine for valine at the corresponding position in the δ and α subunit prolongs the burst duration four- and eightfold, respectively. Replacing valine at ε codon 265 either by a still smaller glycine or by a larger leucine also lengthens the burst duration. Our analysis reveals that each valine in the valine ring contributes to channel kinetics equally, and the valine ring has been optimized in the course of evolution to govern channel gating. PMID:27375219

  5. Mutations Causing Slow-Channel Myasthenia Reveal That a Valine Ring in the Channel Pore of Muscle AChR is Optimized for Stabilizing Channel Gating.

    PubMed

    Shen, Xin-Ming; Okuno, Tatsuya; Milone, Margherita; Otsuka, Kenji; Takahashi, Koji; Komaki, Hirofumi; Giles, Elizabeth; Ohno, Kinji; Engel, Andrew G

    2016-10-01

    We identify two novel mutations in acetylcholine receptor (AChR) causing a slow-channel congenital myasthenia syndrome (CMS) in three unrelated patients (Pts). Pt 1 harbors a heterozygous βV266A mutation (p.Val289Ala) in the second transmembrane domain (M2) of the AChR β subunit (CHRNB1). Pts 2 and 3 carry the same mutation at an equivalent site in the ε subunit (CHRNE), εV265A (p.Val285Ala). The mutant residues are conserved across all AChR subunits of all species and are components of a valine ring in the channel pore, which is positioned four residues above the leucine ring. Both βV266A and εV265A reduce the amino acid size and lengthen the channel opening bursts by fourfold by enhancing gating efficiency by approximately 30-fold. Substitution of alanine for valine at the corresponding position in the δ and α subunit prolongs the burst duration four- and eightfold, respectively. Replacing valine at ε codon 265 either by a still smaller glycine or by a larger leucine also lengthens the burst duration. Our analysis reveals that each valine in the valine ring contributes to channel kinetics equally, and the valine ring has been optimized in the course of evolution to govern channel gating.

  6. Acetylcholine receptor gating: movement in the alpha-subunit extracellular domain.

    PubMed

    Purohit, Prasad; Auerbach, Anthony

    2007-12-01

    Acetylcholine receptor channel gating is a brownian conformational cascade in which nanometer-sized domains ("Phi blocks") move in staggering sequence to link an affinity change at the transmitter binding sites with a conductance change in the pore. In the alpha-subunit, the first Phi-block to move during channel opening is comprised of residues near the transmitter binding site and the second is comprised of residues near the base of the extracellular domain. We used the rate constants estimated from single-channel currents to infer the gating dynamics of Y127 and K145, in the inner and outer sheet of the beta-core of the alpha-subunit. Y127 is at the boundary between the first and second Phi blocks, at a subunit interface. alphaY127 mutations cause large changes in the gating equilibrium constant and with a characteristic Phi-value (Phi = 0.77) that places this residue in the second Phi-block. We also examined the effect on gating of mutations in neighboring residues deltaI43 (Phi = 0.86), epsilonN39 (complex kinetics), alphaI49 (no effect) and in residues that are homologous to alphaY127 on the epsilon, beta, and delta subunits (no effect). The extent to which alphaY127 gating motions are coupled to its neighbors was estimated by measuring the kinetic and equilibrium constants of constructs having mutations in alphaY127 (in both alpha subunits) plus residues alphaD97 or deltaI43. The magnitude of the coupling between alphaD97 and alphaY127 depended on the alphaY127 side chain and was small for both H (0.53 kcal/mol) and C (-0.37 kcal/mol) substitutions. The coupling across the single alpha-delta subunit boundary was larger (0.84 kcal/mol). The Phi-value for K145 (0.96) indicates that its gating motion is correlated temporally with the motions of residues in the first Phi-block and is not synchronous with those of alphaY127. This suggests that the inner and outer sheets of the alpha-subunit beta-core do not rotate as a rigid body.

  7. Functional inositol 1,4,5-trisphosphate receptors assembled from concatenated homo- and heteromeric subunits.

    PubMed

    Alzayady, Kamil J; Wagner, Larry E; Chandrasekhar, Rahul; Monteagudo, Alina; Godiska, Ronald; Tall, Gregory G; Joseph, Suresh K; Yule, David I

    2013-10-11

    Vertebrate genomes code for three subtypes of inositol 1,4,5-trisphosphate (IP3) receptors (IP3R1, -2, and -3). Individual IP3R monomers are assembled to form homo- and heterotetrameric channels that mediate Ca(2+) release from intracellular stores. IP3R subtypes are regulated differentially by IP3, Ca(2+), ATP, and various other cellular factors and events. IP3R subtypes are seldom expressed in isolation in individual cell types, and cells often express different complements of IP3R subtypes. When multiple subtypes of IP3R are co-expressed, the subunit composition of channels cannot be specifically defined. Thus, how the subunit composition of heterotetrameric IP3R channels contributes to shaping the spatio-temporal properties of IP3-mediated Ca(2+) signals has been difficult to evaluate. To address this question, we created concatenated IP3R linked by short flexible linkers. Dimeric constructs were expressed in DT40-3KO cells, an IP3R null cell line. The dimeric proteins were localized to membranes, ran as intact dimeric proteins on SDS-PAGE, and migrated as an ∼1100-kDa band on blue native gels exactly as wild type IP3R. Importantly, IP3R channels formed from concatenated dimers were fully functional as indicated by agonist-induced Ca(2+) release. Using single channel "on-nucleus" patch clamp, the channels assembled from homodimers were essentially indistinguishable from those formed by the wild type receptor. However, the activity of channels formed from concatenated IP3R1 and IP3R2 heterodimers was dominated by IP3R2 in terms of the characteristics of regulation by ATP. These studies provide the first insight into the regulation of heterotetrameric IP3R of defined composition. Importantly, the results indicate that the properties of these channels are not simply a blend of those of the constituent IP3R monomers.

  8. Sequence stratigraphic model and Evolution of the Channelized depositional systems during Miocene in Ulleung Basin southeastern margin, East Sea

    NASA Astrophysics Data System (ADS)

    Baek, Y.; Lee, S. H.; Kim, H. J.; Jou, H. T.

    2015-12-01

    The southwestern margin of Ulleung Basin consists of broad and gentle slope continental shelf and shelf break. The sedimentary succession of the continental shelf is divided into nine sequences (S1-S9). The sedimentary succession is consists of the lower pro-graded sequences (from S2 to S6; 16.5-8.2 Ma) and upper channelized depositional sequences (S7 and S8; 8.2-5.5 Ma) in the Miocene. It progressively thickens northeast ward, suggesting a significant contribution of sediments into the basin margin. The channelized depositional system of S7 is divided into two subunits in which lower boundaries of each subunit are indicated by erosional truncation and channel incision. The underlying subunit 1 has two main streams; the progressive directions are to the NNE (a) and ENE (b). The main stream of subunit 2, developed after giving rise to the low-relief topography of the subunit 1, is only overlapping main stream (a) of subunit 1. The gentle sloped proximal-middle zone has different internal reflector, subunit 1 is characterized by parallel to chaotic reflections, whereas the subunit 2 is dominated by continuous and inclined reflectors, which can be interpreted that sediments supply is increase in subunit 2 than subunit 1. The steep sloped distal zone of channelized depositional systems connected the shelf break. The slope gradient is more slanted subunit 2 than 1. The internal structures are dis-continuous and inclined chaotic internal reflectors, which is interpreted mass transport deposits (MTDs). The slope failures commonly start near the shelf break, but some others are connected perpendicular to the main stream. The upper boundary of subunit 2 is truncated by transgressive surface. The stacking pattern of sequence 7 suggests the type-1 sequence controlled by sea level change, and the internal erosional surface in the channelized depositional systems can be interpreted that formed by tectonic or relative sea level flocculation during late Miocene in East Sea.

  9. The roles of the alpha and gamma subunits in proton conduction through the Fo sector of the proton-translocating ATPase of Escherichia coli.

    PubMed

    Pati, S; Brusilow, W S

    1989-02-15

    Previous genetic and biochemical studies have shown that the Fo sector of the Escherichia coli H+-ATPase is synthesized and assembled in a nonleaky form from plasmid-borne genes. The proton channel then appears to be opened by an interaction of F1 subunits, especially the alpha subunit, with the nonleaky Fo (Brusilow, W. S. A. (1987) J. Bacteriol. 169, 4984-4990; Solomon, K. A., and Brusilow, W. S. A. (1988) J. Biol. Chem. 263, 5402-5407). To study the role of the alpha and gamma subunits in proton conduction, we constructed an inducible alpha plasmid. In an alpha-gamma- background, the induction of alpha synthesis caused lethal proton leakiness, as assayed by the loss of respiration-dependent acridine orange fluorescence quenching of E. coli membranes. The presence of a gamma subunit counteracted the lethal effects as if gamma were blocking the opened channel. PMID:2536718

  10. Optical control of endogenous proteins with a photoswitchable conditional subunit reveals a role for TREK1 in GABA(B) signaling.

    PubMed

    Sandoz, Guillaume; Levitz, Joshua; Kramer, Richard H; Isacoff, Ehud Y

    2012-06-21

    Selective ligands are lacking for many neuronal signaling proteins. Photoswitched tethered ligands (PTLs) have enabled fast and reversible control of specific proteins containing a PTL anchoring site and have been used to remote control overexpressed proteins. We report here a scheme for optical remote control of native proteins using a "photoswitchable conditional subunit" (PCS), which contains the PTL anchoring site as well as a mutation that prevents it from reaching the plasma membrane. In cells lacking native subunits for the protein, the PCS remains nonfunctional internally. However, in cells expressing native subunits, the native subunit and PCS coassemble, traffic to the plasma membrane, and place the native protein under optical control provided by the coassembled PCS. We apply this approach to the TREK1 potassium channel, which lacks selective, reversible blockers. We find that TREK1, typically considered to be a leak channel, contributes to the hippocampal GABA(B) response. PMID:22726831

  11. Response kinetics and pharmacological properties of heteromeric receptors formed by coassembly of GABA rho- and gamma 2-subunits.

    PubMed

    Qian, H; Ripps, H

    1999-12-01

    Two of the gamma-aminobutyric acid (GABA) receptors, GABAA and GABAC, are ligand-gated chloride channels expressed by neurons in the retina and throughout the central nervous system. The different subunit composition of these two classes of GABA receptor result in very different physiological and pharmacological properties. Although little is known at the molecular level as to the subunit composition of any native GABA receptor, it is thought that GABAC receptors are homomeric assemblies of rho-subunits. However, we found that the kinetic and pharmacological properties of homomeric receptors formed by each of the rho-subunits cloned from perch retina did not resemble those of the GABAC receptors on perch bipolar cells. Because both GABAA and GABAC receptors are present on retinal bipolar cells, we attempted to determine whether subunits of these two receptor classes are capable of interacting with each other. We report here that, when coexpressed in Xenopus oocytes, heteromeric (rho 1B gamma 2) receptors formed by coassembly of the rho 1B-subunit with the gamma 2-subunit of the GABAA receptor displayed response properties very similar to those obtained with current recordings from bipolar cells. In addition to being unresponsive to bicuculline and diazepam, the time-constant of deactivation, and the sensitivities to GABA, picrotoxin and zinc closely approximated the values obtained from the native GABAC receptors on bipolar cells. These results provide the first direct evidence of interaction between GABA rho and GABAA receptor subunits. It seems highly likely that coassembly of GABAA and rho-subunits contributes to the molecular organization of GABAC receptors in the retina and perhaps throughout the nervous system. PMID:10643085

  12. Putative nicotinic acetylcholine receptor subunits express differentially through the life cycle of codling moth, Cydia pomonella (Lepidoptera: Tortricidae).

    PubMed

    Martin, Jessica A; Garczynski, Stephen F

    2016-04-01

    Nicotinic acetylcholine receptors (nAChRs) are the targets of neonicotinoids and spinosads, two insecticides used in orchards to effectively control codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Orchardists in Washington State are concerned about the possibility of codling moth field populations developing resistance to these two insecticides. In an effort to help mitigate this issue, we initiated a project to identify and characterize codling moth nAChR subunits expressed in heads. This study had two main goals; (i) identify transcripts from a codling moth head transcriptome that encode for nAChR subunits, and (ii) determine nAChR subunit expression profiles in various life stages of codling moth. From a codling moth head transcriptome, 24 transcripts encoding for 12 putative nAChR subunit classes were identified and verified by PCR amplification, cloning, and sequence determination. Characterization of the deduced protein sequences encoded by putative nAChR transcripts revealed that they share the distinguishing features of the cys-loop ligand-gated ion channel superfamily with 9 α-type subunits and 3 β-type subunits identified. Phylogenetic analysis comparing these protein sequences to those of other insect nAChR subunits supports the identification of these proteins as nAChR subunits. Stage expression studies determined that there is clear differential expression of many of these subunits throughout the codling moth life cycle. The information from this study will be used in the future to monitor for potential target-site resistance mechanisms to neonicotinoids and spinosads in tolerant codling moth populations.

  13. Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues.

    PubMed Central

    Burnashev, N; Villarroel, A; Sakmann, B

    1996-01-01

    1. Recombinant alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) subunits (GluR-A or GluR-B) and kainate receptor (KAR) subunit (GluR-6) in their unedited (Q)- and edited (R)-forms were expressed in HEK 293 cells. To estimate the dimensions of the narrow portion of these channels, biionic reversal potentials for organic cations of different mean diameters were determined with Cs+ as the internal reference ion. 2. Homomeric channels assembled from Q-form subunits were cation selective. The relation between the relative permeability and the mean size of different organic cations suggests that the diameter of the narrow portion of Q-form channels is approximately 0.78 nm for AMPAR and 0.75 nm for KAR channels. 3. Homomeric channels assembled from R-form subunits were permeant for anions and cations. When probed with CsC1 gradients the relative chloride permeability (PC1/PCs) was estimated as 0.14 for GluR-B(R) and 0.74 for GluR-6(R)-subunit channels. The permeability versus mean size relation for large cations measured with the weakly permeant F- as anion, indicates that for the R-form KAR channels the apparent pore diameter is close to 0.76 nm. 4. Heteromeric AMPAR and KAR channels co-assembled from Q- and R-form subunits were cation selective. The diameter of the narrow portion of these channels is estimated to be in the range between 0.70 and 0.74 nm. 5. The results indicated that the diameters of the narrow portion of AMPAR and KAR channels of different subunit composition and of widely different ion selectivity are comparable. Therefore, the differences in the anion versus cation selectivity, in Ca2+ permeability and in channel conductance are likely to be determined by the difference in charge density of the channel. PMID:8910205

  14. Base of the thumb domain modulates epithelial sodium channel gating.

    PubMed

    Shi, Shujie; Ghosh, D Dipon; Okumura, Sora; Carattino, Marcelo D; Kashlan, Ossama B; Sheng, Shaohu; Kleyman, Thomas R

    2011-04-29

    The activity of the epithelial sodium channel (ENaC) is modulated by multiple external factors, including proteases, cations, anions and shear stress. The resolved crystal structure of acid-sensing ion channel 1 (ASIC1), a structurally related ion channel, and mutagenesis studies suggest that the large extracellular region is involved in recognizing external signals that regulate channel gating. The thumb domain in the extracellular region of ASIC1 has a cylinder-like structure with a loop at its base that is in proximity to the tract connecting the extracellular region to the transmembrane domains. This loop has been proposed to have a role in transmitting proton-induced conformational changes within the extracellular region to the gate. We examined whether loops at the base of the thumb domains within ENaC subunits have a similar role in transmitting conformational changes induced by external Na(+) and shear stress. Mutations at selected sites within this loop in each of the subunits altered channel responses to both external Na(+) and shear stress. The most robust changes were observed at the site adjacent to a conserved Tyr residue. In the context of channels that have a low open probability due to retention of an inhibitory tract, mutations in the loop activated channels in a subunit-specific manner. Our data suggest that this loop has a role in modulating channel gating in response to external stimuli, and are consistent with the hypothesis that external signals trigger movements within the extracellular regions of ENaC subunits that are transmitted to the channel gate. PMID:21367859

  15. English Channel

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The cloud covered earthscape of Northern Europe demonstrates the difficulty of photographing this elusive subject from space. The English Channel (51.0N, 1.5E) separating the British Islands from Europe is in the center of the scene. The white cliffs of Dover on the SE coast of the UK, the Thames River estuary and a partial view of the city of London can be seen on the north side of the Channel while the Normandy coast of France is to the south.

  16. Effects of fractal gating of potassium channels on neuronal behaviours

    NASA Astrophysics Data System (ADS)

    Zhao, De-Jiang; Zeng, Shang-You; Zhang, Zheng-Zhen

    2010-10-01

    The classical model of voltage-gated ion channels assumes that according to a Markov process ion channels switch among a small number of states without memory, but a bunch of experimental papers show that some ion channels exhibit significant memory effects, and this memory effects can take the form of kinetic rate constant that is fractal. Obviously the gating character of ion channels will affect generation and propagation of action potentials, furthermore, affect generation, coding and propagation of neural information. However, there is little previous research on this series of interesting issues. This paper investigates effects of fractal gating of potassium channel subunits switching from closed state to open state on neuronal behaviours. The obtained results show that fractal gating of potassium channel subunits switching from closed state to open state has important effects on neuronal behaviours, increases excitability, rest potential and spiking frequency of the neuronal membrane, and decreases threshold voltage and threshold injected current of the neuronal membrane. So fractal gating of potassium channel subunits switching from closed state to open state can improve the sensitivity of the neuronal membrane, and enlarge the encoded strength of neural information.

  17. Regulation of Shaker-type potassium channels by hypoxia. Oxygen-sensitive K+ channels in PC12 cells.

    PubMed

    Conforti, L; Millhorn, D E

    2000-01-01

    Little is known about the molecular composition of the O2-sensitive K+ (Ko2) channels. The possibility that these channels belong to the Shaker subfamily (Kv1) of voltage-dependent K+ (Kv) channels has been raised in pulmonary artery (PA) smooth muscle cells. Numerous findings suggest that the Ko2 channel in PC12 cells is a Kv1 channel, formed by the Kv1.2 alpha subunit. The Ko2 channel in PC12 cells is a slow-inactivating voltage-dependent K+ channel of 20 pS conductance. Other Kv channels, also expressed in PC12 cells, are not inhibited by hypoxia. Selective up-regulation by chronic hypoxia of the Kv1.2 alpha subunit expression correlates with an increase O2-sensitivity of the K+ current. Other Kv1 alpha subunit genes encoding slow-inactivating Kv channels, such as Kv1.3, Kv2.1, Kv3.1 and Kv3.2 are not modulated by chronic hypoxia. The Ko2 current in PC12 cells is blocked by 5 mM externally applied tetraethylammonium chloride (TEA) and by charydbotoxin (CTX). The responses of the Kv1.2 K+ channel to hypoxia have been studied in the Xenopus oocytes and compared to those of Kv2.1, also proposed as Ko2 channel in PA smooth muscle cells. Two-electrode voltage clamp experiments show that hypoxia induces inhibition of K+ current amplitude only in oocytes injected with Kv1.2 cRNA. These data indicate that Kv1.2 K+ channels are inhibited by hypoxia. PMID:10849667

  18. Polar groups in membrane channels: consequences of replacing alanines with serines in membrane-spanning gramicidin channels.

    PubMed

    Daily, Anna E; Kim, Jung H; Greathouse, Denise V; Andersen, Olaf S; Koeppe, Roger E

    2010-08-17

    To explore the consequences of burying polar, hydrogen-bonding hydroxyl groups within the hydrocarbon core of lipid bilayer membranes, we examined the structural and functional effects of alanine-to-serine substitutions in bilayer-spanning gramicidin channels. A native Ala was replaced by Ser at position 3 or 5 in the gramicidin A (gA) sequence: formyl-VG(2)A(3)LA(5)VVVWLWLWLW-ethanolamide (d-residues underlined). In the head-to-head dimers that form the conducting, membrane-spanning gA channels, these sequence positions are located near the lipid bilayer center (and subunit interface). The sequence substitutions at positions 3 and 5 were tested within the context of having either Gly or d-Ala at position 2, because d-Ala(2) causes the channel lifetimes to increase 3-fold relative to Gly(2) [Mattice et al. (1995) Biochemistry 34, 6827]. Size-exclusion chromatograms and circular dichroism spectra show that the Ala --> Ser replacements are well tolerated and have little effect on channel structure. In planar bilayers, the Ser-substituted gramicidins form well-defined channels, with cation conductances that are approximately 60% of those of the reference channels. The Ser-substituted channels are structurally equivalent to native gramicidin channels, as demonstrated by the formation of heterodimeric channels between a Ser-containing subunit and a native gramicidin subunit. These hybrid channels exhibit rectification, attributable to asymmetric placement of the single Ser hydroxyl group with respect to the bilayer center. Compared to the corresponding Ala-containing reference channels, the polar Ser residues decrease the analogues' channel-forming potency by 3 orders of magnitude, indicating a substantial energetic penalty ( approximately 15 kJ/mol) for burying the polar Ser side chain in the bilayer hydrophobic core.

  19. Moving Iron through ferritin protein nanocages depends on residues throughout each four α-helix bundle subunit.

    PubMed

    Haldar, Suranjana; Bevers, Loes E; Tosha, Takehiko; Theil, Elizabeth C

    2011-07-22

    Eukaryotic H ferritins move iron through protein cages to form biologically required, iron mineral concentrates. The biominerals are synthesized during protein-based Fe²⁺/O₂ oxidoreduction and formation of [Fe³⁺O](n) multimers within the protein cage, en route to the cavity, at sites distributed over ~50 Å. Recent NMR and Co²⁺-protein x-ray diffraction (XRD) studies identified the entire iron path and new metal-protein interactions: (i) lines of metal ions in 8 Fe²⁺ ion entry channels with three-way metal distribution points at channel exits and (ii) interior Fe³⁺O nucleation channels. To obtain functional information on the newly identified metal-protein interactions, we analyzed effects of amino acid substitution on formation of the earliest catalytic intermediate (diferric peroxo-A(650 nm)) and on mineral growth (Fe³⁺O-A(350 nm)), in A26S, V42G, D127A, E130A, and T149C. The results show that all of the residues influenced catalysis significantly (p < 0.01), with effects on four functions: (i) Fe²⁺ access/selectivity to the active sites (Glu¹³⁰), (ii) distribution of Fe²⁺ to each of the three active sites near each ion channel (Asp¹²⁷), (iii) product (diferric oxo) release into the Fe³⁺O nucleation channels (Ala²⁶), and (iv) [Fe³⁺O](n) transit through subunits (Val⁴², Thr¹⁴⁹). Synthesis of ferritin biominerals depends on residues along the entire length of H subunits from Fe²⁺ substrate entry at 3-fold cage axes at one subunit end through active sites and nucleation channels, at the other subunit end, inside the cage at 4-fold cage axes. Ferritin subunit-subunit geometry contributes to mineral order and explains the physiological impact of ferritin H and L subunits. PMID:21592958

  20. Novel subunit-subunit interactions in the structure of glutamine synthetase.

    PubMed

    Almassy, R J; Janson, C A; Hamlin, R; Xuong, N H; Eisenberg, D

    We present an atomic model for glutamine synthetase, an enzyme of central importance in bacterial nitrogen metabolism, from X-ray crystallography. The 12 identical subunits are arranged as the carbon atoms in two face-to-face benzene rings, with unusual subunit contacts. Our model, which places the active sites at the subunit interfaces, suggests a mechanism for the main functional role of glutamine synthetase: how the enzyme regulates the rate of synthesis of glutamine in response to covalent modification and feedback inhibition. PMID:2876389

  1. The Upregulation of α2δ-1 Subunit Modulates Activity-Dependent Ca2+ Signals in Sensory Neurons

    PubMed Central

    Margas, Wojciech; Cassidy, John S.

    2015-01-01

    As auxiliary subunits of voltage-gated Ca2+ channels, the α2δ proteins modulate membrane trafficking of the channels and their localization to specific presynaptic sites. Following nerve injury, upregulation of the α2δ-1 subunit in sensory dorsal root ganglion neurons contributes to the generation of chronic pain states; however, very little is known about the underlying molecular mechanisms. Here we show that the increased expression of α2δ-1 in rat sensory neurons leads to prolonged Ca2+ responses evoked by membrane depolarization. This mechanism is coupled to CaV2.2 channel-mediated responses, as it is blocked by a ω-conotoxin GVIA application. Once initiated, the prolonged Ca2+ transients are not dependent on extracellular Ca2+ and do not require Ca2+ release from the endoplasmic reticulum. The selective inhibition of mitochondrial Ca2+ uptake demonstrates that α2δ-1-mediated prolonged Ca2+ signals are buffered by mitochondria, preferentially activated by Ca2+ influx through CaV2.2 channels. Thus, by controlling channel abundance at the plasma membrane, the α2δ-1 subunit has a major impact on the organization of depolarization-induced intracellular Ca2+ signaling in dorsal root ganglion neurons. PMID:25878262

  2. The upregulation of α2δ-1 subunit modulates activity-dependent Ca2+ signals in sensory neurons.

    PubMed

    D'Arco, Marianna; Margas, Wojciech; Cassidy, John S; Dolphin, Annette C

    2015-04-15

    As auxiliary subunits of voltage-gated Ca(2+) channels, the α2δ proteins modulate membrane trafficking of the channels and their localization to specific presynaptic sites. Following nerve injury, upregulation of the α2δ-1 subunit in sensory dorsal root ganglion neurons contributes to the generation of chronic pain states; however, very little is known about the underlying molecular mechanisms. Here we show that the increased expression of α2δ-1 in rat sensory neurons leads to prolonged Ca(2+) responses evoked by membrane depolarization. This mechanism is coupled to CaV2.2 channel-mediated responses, as it is blocked by a ω-conotoxin GVIA application. Once initiated, the prolonged Ca(2+) transients are not dependent on extracellular Ca(2+) and do not require Ca(2+) release from the endoplasmic reticulum. The selective inhibition of mitochondrial Ca(2+) uptake demonstrates that α2δ-1-mediated prolonged Ca(2+) signals are buffered by mitochondria, preferentially activated by Ca(2+) influx through CaV2.2 channels. Thus, by controlling channel abundance at the plasma membrane, the α2δ-1 subunit has a major impact on the organization of depolarization-induced intracellular Ca(2+) signaling in dorsal root ganglion neurons.

  3. ENaC alpha-subunit variants are expressed in lung epithelial cells and are suppressed by oxidative stress.

    PubMed

    Xu, Haishan; Chu, Shijian

    2007-12-01

    Amiloride-sensitive epithelial sodium channel (ENaC) is a major sodium channel in the lung facilitating fluid absorption. ENaC is composed of alpha-, beta-, and gamma-subunits, and the alpha-subunit is indispensable for ENaC function in the lung. In human lungs, the alpha-subunit is expressed as various splice variants. Among them, alpha(1)- and alpha(2)-subunits are two major variants with different upstream regulatory sequences that possess similar channel characteristics when tested in Xenopus oocytes. Despite the importance of alpha-ENaC, little was known about the relative abundance of its variants in lung epithelial cells. Furthermore, lung infection and inflammation are often accompanied by reduced alpha-ENaC expression, oxidative stress, and pulmonary edema. However, it was not clear how oxidative stress affects expression of alpha-ENaC variants. In this study, we examined relative expression levels of alpha-subunit variants in four human lung epithelial cell lines. We also tested the hypothesis that oxidative stress inhibits alpha-ENaC expression. Our results show that both alpha(1)- and alpha(2)-ENaC variants are expressed in the cells we tested, but relative abundance varies. In the two monolayer-forming cell lines, H441 and Calu-3, alpha(2)-ENaC is the predominant variant. We also show that H(2)O(2) specifically suppresses alpha(1)- and alpha(2)-ENaC variant expression in H441 and Calu-3 cells in a dose-dependent fashion. This suppression is achieved by inhibition of their promoters and is attenuated by dexamethasone. These data demonstrate the importance of the alpha(2)-subunit variant and suggest that glucocorticoids and antioxidants may be useful in correcting infection/inflammation-induced lung fluid imbalance. PMID:17905853

  4. The GIRK1 subunit potentiates G protein activation of cardiac GIRK1/4 hetero-tetramers

    PubMed Central

    Touhara, Kouki K; Wang, Weiwei; MacKinnon, Roderick

    2016-01-01

    G protein gated inward rectifier potassium (GIRK) channels are gated by direct binding of G protein beta-gamma subunits (Gβγ), signaling lipids, and intracellular Na+. In cardiac pacemaker cells, hetero-tetramer GIRK1/4 channels and homo-tetramer GIRK4 channels play a central role in parasympathetic slowing of heart rate. It is known that the Na+ binding site of the GIRK1 subunit is defective, but the functional difference between GIRK1/4 hetero-tetramers and GIRK4 homo-tetramers remains unclear. Here, using purified proteins and the lipid bilayer system, we characterize Gβγ and Na+ regulation of GIRK1/4 hetero-tetramers and GIRK4 homo-tetramers. We find in GIRK4 homo-tetramers that Na+ binding increases Gβγ affinity and thereby increases the GIRK4 responsiveness to G protein stimulation. GIRK1/4 hetero-tetramers are not activated by Na+, but rather are in a permanent state of high responsiveness to Gβγ, suggesting that the GIRK1 subunit functions like a GIRK4 subunit with Na+ permanently bound. DOI: http://dx.doi.org/10.7554/eLife.15750.001 PMID:27074664

  5. Effect of the alpha subunit subtype on the macroscopic kinetic properties of recombinant GABA(A) receptors.

    PubMed

    Picton, Amber J; Fisher, Janet L

    2007-08-24

    The GABA(A) receptors (GABARs) are chloride-permeable ligand-gated ion channels responsible for fast inhibitory neurotransmission. These receptors are structurally heterogeneous, and in mammals can be formed from a combination of sixteen different subunit subtypes. Much of this variety comes from the six different alpha subunit subtypes. All neuronal GABARs contain an alpha subunit, and the identity of the alpha subtype affects the pharmacological properties of the receptors. The expression of each of the different alpha subtypes is regulated developmentally and regionally and changes with both normal physiological processes such development and synaptic plasticity, and pathological conditions such as epilepsy. In order to understand the functional significance of this structural heterogeneity, we examined the effect of the alpha subtype on the receptor's response to GABA. Each of the six alpha subtypes was transiently co-expressed with the beta3 and gamma2L subunits in mammalian cells. The sensitivity to GABA was measured with whole-cell recordings. We also determined the activation, deactivation, desensitization, and recovery kinetics for the six isoforms using rapid application recordings from excised macropatches. We found unique characteristics associated with each alpha subunit subtype. These properties would be expected to influence the post-synaptic response to GABA, creating functional diversity among neurons expressing different alpha subunits.

  6. Voltage-Gated Sodium Channels: Biophysics, Pharmacology, and Related Channelopathies

    PubMed Central

    Savio-Galimberti, Eleonora; Gollob, Michael H.; Darbar, Dawood

    2012-01-01

    Voltage-gated sodium channels (VGSC) are multi-molecular protein complexes expressed in both excitable and non-excitable cells. They are primarily formed by a pore-forming multi-spanning integral membrane glycoprotein (α-subunit) that can be associated with one or more regulatory β-subunits. The latter are single-span integral membrane proteins that modulate the sodium current (INa) and can also function as cell adhesion molecules. In vitro some of the cell-adhesive functions of the β-subunits may play important physiological roles independently of the α-subunits. Other endogenous regulatory proteins named “channel partners” or “channel interacting proteins” (ChiPs) like caveolin-3 and calmodulin/calmodulin kinase II (CaMKII) can also interact and modulate the expression and/or function of VGSC. In addition to their physiological roles in cell excitability and cell adhesion, VGSC are the site of action of toxins (like tetrodotoxin and saxitoxin), and pharmacologic agents (like antiarrhythmic drugs, local anesthetics, antiepileptic drugs, and newly developed analgesics). Mutations in genes that encode α- and/or β-subunits as well as the ChiPs can affect the structure and biophysical properties of VGSC, leading to the development of diseases termed sodium “channelopathies”.  This review will outline the structure, function, and biophysical properties of VGSC as well as their pharmacology and associated channelopathies and highlight some of the recent advances in this field. PMID:22798951

  7. Auxiliary Subunit GSG1L Acts to Suppress Calcium-Permeable AMPA Receptor Function

    PubMed Central

    McGee, Thomas P.; Bats, Cécile

    2015-01-01

    AMPA-type glutamate receptors are ligand-gated cation channels responsible for a majority of the fast excitatory synaptic transmission in the brain. Their behavior and calcium permeability depends critically on their subunit composition and the identity of associated auxiliary proteins. Calcium-permeable AMPA receptors (CP-AMPARs) contribute to various forms of synaptic plasticity, and their dysfunction underlies a number of serious neurological conditions. For CP-AMPARs, the prototypical transmembrane AMPAR regulatory protein stargazin, which acts as an auxiliary subunit, enhances receptor function by increasing single-channel conductance, slowing channel gating, increasing calcium permeability, and relieving the voltage-dependent block by endogenous intracellular polyamines. We find that, in contrast, GSG1L, a transmembrane auxiliary protein identified recently as being part of the AMPAR proteome, acts to reduce the weighted mean single-channel conductance and calcium permeability of recombinant CP-AMPARs, while increasing polyamine-dependent rectification. To examine the effects of GSG1L on native AMPARs, we manipulated its expression in cerebellar and hippocampal neurons. Transfection of GSG1L into mouse cultured cerebellar stellate cells that lack this protein increased the inward rectification of mEPSCs. Conversely, shRNA-mediated knockdown of endogenous GSG1L in rat cultured hippocampal pyramidal neurons led to an increase in mEPSC amplitude and in the underlying weighted mean single-channel conductance, revealing that GSG1L acts to suppress current flow through native CP-AMPARs. Thus, our data suggest that GSG1L extends the functional repertoire of AMPAR auxiliary subunits, which can act not only to enhance but also diminish current flow through their associated AMPARs. SIGNIFICANCE STATEMENT Calcium-permeable AMPA receptors (CP-AMPARs) are an important group of receptors for the neurotransmitter glutamate. These receptors contribute to various forms of

  8. Potassium Channels and Human Epileptic Phenotypes: An Updated Overview

    PubMed Central

    Villa, Chiara; Combi, Romina

    2016-01-01

    Potassium (K+) channels are expressed in almost every cells and are ubiquitous in neuronal and glial cell membranes. These channels have been implicated in different disorders, in particular in epilepsy. K+ channel diversity depends on the presence in the human genome of a large number of genes either encoding pore-forming or accessory subunits. More than 80 genes encoding the K+ channels were cloned and they represent the largest group of ion channels regulating the electrical activity of cells in different tissues, including the brain. It is therefore not surprising that mutations in these genes lead to K+ channels dysfunctions linked to inherited epilepsy in humans and non-human model animals. This article reviews genetic and molecular progresses in exploring the pathogenesis of different human epilepsies, with special emphasis on the role of K+ channels in monogenic forms. PMID:27064559

  9. Intra-membrane molecular interactions of K+ channel proteins :

    SciTech Connect

    Moczydlowski, Edward G.

    2013-07-01

    Ion channel proteins regulate complex patterns of cellular electrical activity and ionic signaling. Certain K+ channels play an important role in immunological biodefense mechanisms of adaptive and innate immunity. Most ion channel proteins are oligomeric complexes with the conductive pore located at the central subunit interface. The long-term activity of many K+ channel proteins is dependent on the concentration of extracellular K+; however, the mechanism is unclear. Thus, this project focused on mechanisms underlying structural stability of tetrameric K+ channels. Using KcsA of Streptomyces lividans as a model K+ channel of known structure, the molecular basis of tetramer stability was investigated by: 1. Bioinformatic analysis of the tetramer interface. 2. Effect of two local anesthetics (lidocaine, tetracaine) on tetramer stability. 3. Molecular simulation of drug docking to the ion conduction pore. The results provide new insights regarding the structural stability of K+ channels and its possible role in cell physiology.

  10. Subunit–subunit interactions are critical for proton sensitivity of ROMK: Evidence in support of an intermolecular gating mechanism

    PubMed Central

    Leng, Qiang; MacGregor, Gordon G.; Dong, Ke; Giebisch, Gerhard; Hebert, Steven C.

    2006-01-01

    The tetrameric K channel ROMK provides an important pathway for K secretion by the mammalian kidney, and the gating of this channel is highly sensitive to changes in cytosolic pH. Although charge–charge interactions have been implicated in pH sensing by this K channel tetramer, the molecular mechanism linking pH sensing and the gating of ion channels is poorly understood. The x-ray crystal structure KirBac1.1, a prokaryotic ortholog of ROMK, has suggested that channel gating involves intermolecular interactions of the N- and C-terminal domains of adjacent subunits. Here we studied channel gating behavior to changes in pH using giant patch clamping of Xenopus laevis oocytes expressing WT or mutant ROMK, and we present evidence that no single charged residue provides the pH sensor. Instead, we show that N–C- and C–C-terminal subunit–subunit interactions form salt bridges, which function to stabilize ROMK in the open state and which are modified by protons. We identify a highly conserved C–C-terminal arginine–glutamate (R-E) ion pair that forms an intermolecular salt bridge and responds to changes in proton concentration. Our results support the intermolecular model for pH gating of inward rectifier K channels. PMID:16446432

  11. The neuronal nicotinic acetylcholine receptor {alpha}7 subunit gene: Cloning, mapping, structure, and targeting in mouse

    SciTech Connect

    Orr-Urtreger, A.; Baldini, A.; Beaudet, A.L.

    1994-09-01

    The neuronal nicotinic acetylcholine receptor {alpha}7 subunit is a member of a family of ligand-gated ion channels, and is the only subunit know to bind {alpha}-bungarotoxin in mammalian brain. {alpha}-Bungarotoxin binding sites are known to be more abundant in the hippocampus of mouse strains that are particularly sensitive to nicotine-induced seizures. The {alpha}7 receptor is highly permeable to calcium, which could suggest a role in synaptic plasticity in the nervous system. Auditory gating deficiency, an abnormal response to a second auditory stimulus, is characteristic of schizophrenia. Mouse strains that exhibit a similar gating deficit have reduced hippocampal expression of the {alpha}7 subunit. We have cloned and sequenced the full length cDNA for the mouse {alpha}7 gene (Acra-7) and characterized its gene structure. The murine {alpha}7 shares amino acid identity of 99% and 93% with the rat and human {alpha}7 subunits, respectively. Using an interspecies backcross panel, the murine gene was mapped to chromosome 7 near the p locus, a region syntenic with human chromosome 15; the human gene (CHRNA7) was confirmed to map to 15q13-q14 by FISH. To generate a mouse {alpha}7 mutant by homologous recombination, we have constructed a replacement vector which will delete transmembrane domains II-IV and the cytoplasmic domain from the gene product. Recombinant embryonic stem (ES) cell clones were selected and used to develop mouse chimeras that are currently being bred to obtain germline transmission.

  12. Contribution of the global subunit structure and stargazin on the maturation of AMPA receptors

    PubMed Central

    Shanks, Natalie F.; Maruo, Tomohiko; Farina, Anthony N.; Ellisman, Mark H.; Nakagawa, Terunaga

    2010-01-01

    Subunit assembly governs regulation of AMPA receptor (AMPA-R) synaptic delivery and determines biophysical parameters of the ion channel. However, little is known about the molecular pathways of this process. Here we present single particle electron microscopy (EM) 3D structures of dimeric biosynthetic intermediates of the GluA2 subunit of AMPA-Rs. Consistent with the structures of intact tetramers, the amino terminal domains of the biosynthetic intermediates form dimers. Transmembrane domains also dimerize despite the two ligand binding domains (LBD) being separated. A significant difference was detected between the dimeric structures of the wildtype and the L504Y mutant, a point mutation that blocks receptor trafficking and desensitization. In contrast to the wildtype, whose LBD is separated, the LBD of the L504Y mutant was detected as a single density. Our results provide direct structural evidence that separation of the LBD within the intact dimeric subunits is critical for efficient tetramerization in the endoplasmic reticulum and further trafficking of AMPA-Rs. The contribution of stargazin on the subunit assembly of AMPA-R was examined. Our data suggests that stargazin affects AMPA-R trafficking at a later stage of receptor maturation. PMID:20164357

  13. Involvement of proteasomal subunits zeta and iota in RNA degradation.

    PubMed Central

    Petit, F; Jarrousse, A S; Dahlmann, B; Sobek, A; Hendil, K B; Buri, J; Briand, Y; Schmid, H P

    1997-01-01

    We have identified two distinct subunits of 20 S proteasomes that are associated with RNase activity. Proteasome subunits zeta and iota, eluted from two-dimensional Western blots, hydrolysed tobacco mosaic virus RNA, whereas none of the other subunits degraded this substrate under the same conditions. Additionally, proteasomes were dissociated by 6 M urea, and subunit zeta, containing the highest RNase activity, was isolated by anion-exchange chromatography and gel filtration. Purified subunit zeta migrated as a single spot on two-dimensional PAGE with a molecular mass of approx. 28 kDa. Addition of anti-(subunit zeta) antibodies led to the co-precipitation of this proteasome subunit and nuclease activity. This is the first evidence that proteasomal alpha-type subunits are associated with an enzymic activity, and our results provide further evidence that proteasomes may be involved in cellular RNA metabolism. PMID:9337855

  14. AFM imaging reveals the tetrameric structure of the TRPM8 channel

    SciTech Connect

    Stewart, Andrew P.; Egressy, Kinga; Lim, Annabel; Edwardson, J. Michael

    2010-04-02

    Several members of the transient receptor potential (TRP) channel superfamily have been shown to assemble as tetramers. Here we have determined the subunit stoichiometry of the transient receptor potential M8 (TRPM8) channel using atomic force microscopy (AFM). TRPM8 channels were isolated from transfected cells, and complexes were formed between the channels and antibodies against a V5 epitope tag present on each subunit. The complexes were then subjected to AFM imaging. A frequency distribution of the molecular volumes of antibody decorated channels had a peak at 1305 nm{sup 3}, close to the expected size of a TRPM8 tetramer. The frequency distribution of angles between pairs of bound antibodies had two peaks, at 93{sup o} and 172{sup o}, confirming that the channel assembles as a tetramer. We suggest that this assembly pattern is common to all members of the TRP channel superfamily.

  15. Hexadecameric structure of an invertebrate gap junction channel.

    PubMed

    Oshima, Atsunori; Matsuzawa, Tomohiro; Murata, Kazuyoshi; Tani, Kazutoshi; Fujiyoshi, Yoshinori

    2016-03-27

    Innexins are invertebrate-specific gap junction proteins with four transmembrane helices. These proteins oligomerize to constitute intercellular channels that allow for the passage of small signaling molecules associated with neural and muscular electrical activity. In contrast to the large number of structural and functional studies of connexin gap junction channels, few structural studies of recombinant innexin channels are reported. Here we show the three-dimensional structure of two-dimensionally crystallized Caenorhabditis elegans innexin-6 (INX-6) gap junction channels. The N-terminal deleted INX-6 proteins are crystallized in lipid bilayers. The three-dimensional reconstruction determined by cryo-electron crystallography reveals that a single INX-6 gap junction channel comprises 16 subunits, a hexadecamer, in contrast to chordate connexin channels, which comprise 12 subunits. The channel pore diameters at the cytoplasmic entrance and extracellular gap region are larger than those of connexin26. Two bulb densities are observed in each hemichannel, one in the pore and the other at the cytoplasmic side of the hemichannel in the channel pore pathway. These findings imply a structural diversity of gap junction channels among multicellular organisms. PMID:26883891

  16. Regulation of myometrial contraction by ATP-sensitive potassium (KATP) channel via activation of SUR2B and Kir 6.2 in mouse.

    PubMed

    Hong, Seung Hwa; Kyeong, Kyu-Sang; Kim, Chan Hyung; Kim, Young Chul; Choi, Woong; Yoo, Ra Young; Kim, Hun Sik; Park, Yeon Jin; Ji, Il Woon; Jeong, Eun-Hwan; Kim, Hak Soon; Xu, Wen-Xie; Lee, Sang Jin

    2016-08-01

    ATP-sensitive potassium (KATP) channels are well characterized in cardiac, pancreatic and many other muscle cells. In the present study, functional expression of the KATP channel was examined in non-pregnant murine longitudinal myometrium. Isometric contraction measurements and Western blot were used. KATP channel openers (KCOs), such as pinacidil, cromakalim, diazoxide and nicorandil, inhibited spontaneous myometrial contractions in a reversible and glibenclamide-sensitive manner. KCOs inhibited oxytocin (OXT)- and prostaglandin F2α (PGF2α)-induced phasic contractions in a glibenclamide-sensitive manner. SUR2B and Kir6.2 were detected by Western blot, whereas SUR1, SUR2A and Kir6.1 were not. These results show that pinacidl, cromakalim, diazoxide and nicorandil-sensitive KATP channels exist in murine myometrium, which are composed of SUR2B and Kir6.2. Based on the modulatory effects of the KATP channel on spontaneous contraction, OXT- and PGF2α-induced contractions, KATP channels seem to play an essential role in murine myometrial motility via activation of SUR2B and Kir6.2.

  17. Regulation of myometrial contraction by ATP-sensitive potassium (KATP) channel via activation of SUR2B and Kir 6.2 in mouse

    PubMed Central

    HONG, Seung Hwa; KYEONG, Kyu-Sang; KIM, Chan Hyung; KIM, Young Chul; CHOI, Woong; YOO, Ra Young; KIM, Hun Sik; PARK, Yeon Jin; JI, Il Woon; JEONG, Eun-Hwan; KIM, Hak Soon; XU, Wen-Xie; LEE, Sang Jin

    2016-01-01

    ATP-sensitive potassium (KATP) channels are well characterized in cardiac, pancreatic and many other muscle cells. In the present study, functional expression of the KATP channel was examined in non-pregnant murine longitudinal myometrium. Isometric contraction measurements and Western blot were used. KATP channel openers (KCOs), such as pinacidil, cromakalim, diazoxide and nicorandil, inhibited spontaneous myometrial contractions in a reversible and glibenclamide-sensitive manner. KCOs inhibited oxytocin (OXT)- and prostaglandin F2α (PGF2α)-induced phasic contractions in a glibenclamide-sensitive manner. SUR2B and Kir6.2 were detected by Western blot, whereas SUR1, SUR2A and Kir6.1 were not. These results show that pinacidl, cromakalim, diazoxide and nicorandil-sensitive KATP channels exist in murine myometrium, which are composed of SUR2B and Kir6.2. Based on the modulatory effects of the KATP channel on spontaneous contraction, OXT- and PGF2α-induced contractions, KATP channels seem to play an essential role in murine myometrial motility via activation of SUR2B and Kir6.2. PMID:27086859

  18. Regulation of myometrial contraction by ATP-sensitive potassium (KATP) channel via activation of SUR2B and Kir 6.2 in mouse.

    PubMed

    Hong, Seung Hwa; Kyeong, Kyu-Sang; Kim, Chan Hyung; Kim, Young Chul; Choi, Woong; Yoo, Ra Young; Kim, Hun Sik; Park, Yeon Jin; Ji, Il Woon; Jeong, Eun-Hwan; Kim, Hak Soon; Xu, Wen-Xie; Lee, Sang Jin

    2016-08-01

    ATP-sensitive potassium (KATP) channels are well characterized in cardiac, pancreatic and many other muscle cells. In the present study, functional expression of the KATP channel was examined in non-pregnant murine longitudinal myometrium. Isometric contraction measurements and Western blot were used. KATP channel openers (KCOs), such as pinacidil, cromakalim, diazoxide and nicorandil, inhibited spontaneous myometrial contractions in a reversible and glibenclamide-sensitive manner. KCOs inhibited oxytocin (OXT)- and prostaglandin F2α (PGF2α)-induced phasic contractions in a glibenclamide-sensitive manner. SUR2B and Kir6.2 were detected by Western blot, whereas SUR1, SUR2A and Kir6.1 were not. These results show that pinacidl, cromakalim, diazoxide and nicorandil-sensitive KATP channels exist in murine myometrium, which are composed of SUR2B and Kir6.2. Based on the modulatory effects of the KATP channel on spontaneous contraction, OXT- and PGF2α-induced contractions, KATP channels seem to play an essential role in murine myometrial motility via activation of SUR2B and Kir6.2. PMID:27086859

  19. Isolation of the alpha subunits of GTP-binding regulatory proteins by affinity chromatography with immobilized beta gamma subunits.

    PubMed Central

    Pang, I H; Sternweis, P C

    1989-01-01

    Immobilized beta gamma subunits of GTP-binding regulatory proteins (G proteins) were used to isolate alpha subunits from solubilized membranes of bovine tissues and to separate specific alpha subunits based on their differential affinities for beta gamma subunits. The beta gamma subunits were cross-linked to omega-aminobutyl agarose. Up to 7 nmol of alpha subunit could bind to each milliliter of beta gamma-agarose and be recovered by elution with AIF4-. This affinity resin effectively separated the alpha subunits of Gi1 and Gi2 from "contaminating" alpha subunits of Go, the most abundant G protein in bovine brain, by taking advantage of the apparent lower affinity of the alpha subunits of Go for beta gamma subunits. The beta gamma-agarose was also used to isolate mixtures of alpha subunits from cholate extracts of membranes from different bovine tissues. alpha subunits of 39-41 kDa (in various ratios) as well as the alpha subunits of Gs were purified. The yields from extracts exceeded 60% for all alpha subunits examined and apparently represented the relative content of alpha subunits in the tissues. This technique can rapidly isolate and identify, from a small amount of sample, the endogenous G proteins in various tissues and cells. So far, only polypeptides in the range of 39-52 kDa have been detected with this approach. If other GTP-binding proteins interact with these beta gamma subunits, the interaction is either of low affinity or mechanistically unique from the alpha subunits isolated in this study. Images PMID:2510152

  20. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.

    1988-01-01

    The geomorphology of Mars is discussed, focusing on the Martian channels. The great flood channels of Mars, the processes of channel erosion, and dendritic channel networks, are examined. The topography of the Channeled Scabland region of the northwestern U.S. is described and compared to the Martian channels. The importance of water in the evolution of the channel systems is considered.

  1. Identification and functional expression of a family of nicotinic acetylcholine receptor subunits in the central nervous system of the mollusc Lymnaea stagnalis.

    PubMed

    van Nierop, Pim; Bertrand, Sonia; Munno, David W; Gouwenberg, Yvonne; van Minnen, Jan; Spafford, J David; Syed, Naweed I; Bertrand, Daniel; Smit, August B

    2006-01-20

    We described a family of nicotinic acetylcholine receptor (nAChR) subunits underlying cholinergic transmission in the central nervous system (CNS) of the mollusc Lymnaea stagnalis. By using degenerate PCR cloning, we identified 12 subunits that display a high sequence similarity to nAChR subunits, of which 10 are of the alpha-type, 1 is of the beta-type, and 1 was not classified because of insufficient sequence information. Heterologous expression of identified subunits confirms their capacity to form functional receptors responding to acetylcholine. The alpha-type subunits can be divided into groups that appear to underlie cation-conducting (excitatory) and anion-conducting (inhibitory) channels involved in synaptic cholinergic transmission. The expression of the Lymnaea nAChR subunits, assessed by real time quantitative PCR and in situ hybridization, indicates that it is localized to neurons and widespread in the CNS, with the number and localization of expressing neurons differing considerably between subunit types. At least 10% of the CNS neurons showed detectable nAChR subunit expression. In addition, cholinergic neurons, as indicated by the expression of the vesicular ACh transporter, comprise approximately 10% of the neurons in all ganglia. Together, our data suggested a prominent role for fast cholinergic transmission in the Lymnaea CNS by using a number of neuronal nAChR subtypes comparable with vertebrate species but with a functional complexity that may be much higher.

  2. Interaction of ASIC1 and ENaC subunits in human glioma cells and rat astrocytes.

    PubMed

    Kapoor, Niren; Lee, William; Clark, Edlira; Bartoszewski, Rafal; McNicholas, Carmel M; Latham, Cecelia B; Bebok, Zsuzsanna; Parpura, Vladimir; Fuller, Catherine M; Palmer, Cheryl A; Benos, Dale J

    2011-06-01

    Glioblastoma multiforme (GBM) is the most common and aggressive of the primary brain tumors. These tumors express multiple members of the epithelial sodium channel (ENaC)/degenerin (Deg) family and are associated with a basally active amiloride-sensitive cation current. We hypothesize that this glioma current is mediated by a hybrid channel composed of a mixture of ENaC and acid-sensing ion channel (ASIC) subunits. To test the hypothesis that ASIC1 interacts with αENaC and γENaC at the cellular level, we have used total internal reflection fluorescence microscopy (TIRFM) in live rat astrocytes transiently cotransfected with cDNAs for ASIC1-DsRed plus αENaC-yellow fluorescent protein (YFP) or ASIC1-DsRed plus γENaC-YFP. TIRFM images show colocalization of ASIC1 with both αENaC and γENaC. Furthermore, using TIRFM in stably transfected D54-MG cells, we also found that ASIC1 and αENaC both localize to a submembrane region following exposure to pH 6.0, similar to the acidic conditions found in the core of a glioblastoma lesion. Using high-resolution clear native gel electrophoresis, we found that ASIC1 forms a complex with ENaC subunits which migrates at ≈480 kDa in D54-MG glioma cells. These data suggest that different ENaC/Deg subunits interact and could combine to form a hybrid channel that likely underlies the amiloride-sensitive current seen in human glioma cells. PMID:21346156

  3. Dissociation of ribosomes into large and small subunits.

    PubMed

    Rivera, Maria C; Maguire, Bruce; Lake, James A

    2015-04-01

    Structural and functional studies of ribosomal subunits require the dissociation of intact ribosomes into individual small and large ribosomal subunits. The dissociation of the prokaryotic 70S ribosomes into the 50S and 30S subunits is achieved by dialysis against a buffer containing a lower Mg(2+) concentration. Eukaryotic 80S ribosomes are dissociated into 60S and 40S subunits by incubation in a buffer containing puromycin and higher KCl and Mg(2+) concentrations.

  4. ENaC subunits are molecular components of the arterial baroreceptor complex.

    PubMed

    Drummond, H A; Welsh, M J; Abboud, F M

    2001-06-01

    Mechanosensation is essential to the perception of our environment. It is required for hearing, touch, balance, proprioception, and blood pressure homeostasis. Yet little is known about the identity of ion-channel complexes that transduce mechanical stimuli into neuronal responses. Genetic studies in Caenorhabditis elegans suggest that members of the DEG/ENaC family may be mechanosensors. Therefore we tested the hypothesis that mammalian epithelial Na(+)-channel (ENaC) subunits contribute to the mechanosensor in baroreceptor neurons. The data presented here show that ENaC transcripts and proteins are expressed in mechanosensory neurons and at the putative sites of mechanotransduction in baroreceptor sensory-nerve terminals. Additionally, known ENaC inhibitors, amiloride and benzamil, disrupt mechanotransduction in arterial baroreceptor neurons. These data are consistent with the hypothesis that DEG/ENaC proteins are components of mechanosensitive ion-channel complexes. PMID:11458698

  5. Nonlinear channelizer.

    PubMed

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  6. Cyclic Nucleotide-Gated Channels Require Ankyrin-G for Transport to the Sensory Cilium of Rod Photoreceptors

    PubMed Central

    Kizhatil, Krishnakumar; Baker, Sheila A.; Arshavsky, Vadim Y.; Bennett, Vann

    2009-01-01

    Cyclic nucleotide-gated channels localize exclusively to the plasma membrane of photosensitive outer segments of rod photoreceptors where they generate the electrical response to light. Here we found that targeting of cyclic nucleotide-gated channels to the rod outer segment required their interaction with ankyrin-G. Ankyrin-G localized exclusively to rod outer segments, coimmunoprecipitated with the cyclic nucleotide-gated channel, and bound to the C-terminal domain of the β1-subunit. Ankyrin-G depletion in neonatal mouse retinas markedly reduced cyclic nucleotide-gated channel expression. Transgenic expression of cyclic nucleotide-gated channel β-subunit mutants in Xenopus rods showed that ankyrin-G binding was necessary and sufficient for targeting of the β1-subunit to outer segments. Thus ankyrin-G is required for transport of cyclic nucleotide-gated channels to the plasma membrane of rod outer segments. PMID:19299621

  7. Recent Advances in Subunit Vaccine Carriers

    PubMed Central

    Vartak, Abhishek; Sucheck, Steven J.

    2016-01-01

    The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, these multi-functional carrier systems are being explored for use in active immunotherapy against cancer and infectious diseases. Advancing technology, improved analytical methods, and use of computational methodology have also contributed to the development of subunit vaccine carriers. This review details recent breakthroughs in the design of nano-particulate vaccine carriers, including liposomes, polymeric nanoparticles, and inorganic nanoparticles. PMID:27104575

  8. PKA regulatory subunit expression in tooth development.

    PubMed

    de Sousa, Sílvia Ferreira; Kawasaki, Katsushige; Kawasaki, Maiko; Volponi, Ana Angelova; Gomez, Ricardo Santiago; Gomes, Carolina Cavaliéri; Sharpe, Paul T; Ohazama, Atsushi

    2014-05-01

    Protein kinase A (PKA) plays critical roles in many biological processes including cell proliferation, cell differentiation, cellular metabolism and gene regulation. Mutation in PKA regulatory subunit, PRKAR1A has previously been identified in odontogenic myxomas, but it is unclear whether PKA is involved in tooth development. The aim of the present study was to assess the expression of alpha isoforms of PKA regulatory subunit (Prkar1a and Prkar2a) in mouse and human odontogenesis by in situ hybridization. PRKAR1A and PRKAR2A mRNA transcription was further confirmed in a human deciduous germ by qRT-PCR. Mouse Prkar1a and human PRKAR2A exhibited a dynamic spatio-temporal expression in tooth development, whereas neither human PRKAR1A nor mouse Prkar2a showed their expression in odontogenesis. These isoforms thus showed different expression pattern between human and mouse tooth germs. PMID:24755349

  9. Recent Advances in Subunit Vaccine Carriers.

    PubMed

    Vartak, Abhishek; Sucheck, Steven J

    2016-01-01

    The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, these multi-functional carrier systems are being explored for use in active immunotherapy against cancer and infectious diseases. Advancing technology, improved analytical methods, and use of computational methodology have also contributed to the development of subunit vaccine carriers. This review details recent breakthroughs in the design of nano-particulate vaccine carriers, including liposomes, polymeric nanoparticles, and inorganic nanoparticles. PMID:27104575

  10. PKA regulatory subunit expression in tooth development.

    PubMed

    de Sousa, Sílvia Ferreira; Kawasaki, Katsushige; Kawasaki, Maiko; Volponi, Ana Angelova; Gomez, Ricardo Santiago; Gomes, Carolina Cavaliéri; Sharpe, Paul T; Ohazama, Atsushi

    2014-05-01

    Protein kinase A (PKA) plays critical roles in many biological processes including cell proliferation, cell differentiation, cellular metabolism and gene regulation. Mutation in PKA regulatory subunit, PRKAR1A has previously been identified in odontogenic myxomas, but it is unclear whether PKA is involved in tooth development. The aim of the present study was to assess the expression of alpha isoforms of PKA regulatory subunit (Prkar1a and Prkar2a) in mouse and human odontogenesis by in situ hybridization. PRKAR1A and PRKAR2A mRNA transcription was further confirmed in a human deciduous germ by qRT-PCR. Mouse Prkar1a and human PRKAR2A exhibited a dynamic spatio-temporal expression in tooth development, whereas neither human PRKAR1A nor mouse Prkar2a showed their expression in odontogenesis. These isoforms thus showed different expression pattern between human and mouse tooth germs.

  11. Voltage-gated calcium channel and antisense oligonucleotides thereto

    NASA Technical Reports Server (NTRS)

    Hruska, Keith A. (Inventor); Friedman, Peter A. (Inventor); Barry, Elizabeth L. R. (Inventor); Duncan, Randall L. (Inventor)

    1998-01-01

    An antisense oligonucleotide of 10 to 35 nucleotides in length that can hybridize with a region of the .alpha..sub.1 subunit of the SA-Cat channel gene DNA or mRNA is provided, together with pharmaceutical compositions containing and methods utilizing such antisense oligonucleotide.

  12. Large-Conductance Calcium-Activated Potassium Channels in Glomerulus: From Cell Signal Integration to Disease

    PubMed Central

    Tao, Jie; Lan, Zhen; Wang, Yunman; Hei, Hongya; Tian, Lulu; Pan, Wanma; Zhang, Xuemei; Peng, Wen

    2016-01-01

    Large-conductance calcium-activated potassium (BK) channels are currently considered as vital players in a variety of renal physiological processes. In podocytes, BK channels become active in response to stimuli that increase local cytosolic Ca2+, possibly secondary to activation of slit diaphragm TRPC6 channels by chemical or mechanical stimuli. Insulin increases filtration barrier permeability through mobilization of BK channels. In mesangial cells, BK channels co-expressed with β1 subunits act as a major component of the counteractive response to contraction in order to regulate glomerular filtration. This review aims to highlight recent discoveries on the localization, physiological and pathological roles of BK channels in glomerulus. PMID:27445840

  13. Large-Conductance Calcium-Activated Potassium Channels in Glomerulus: From Cell Signal Integration to Disease.

    PubMed

    Tao, Jie; Lan, Zhen; Wang, Yunman; Hei, Hongya; Tian, Lulu; Pan, Wanma; Zhang, Xuemei; Peng, Wen

    2016-01-01

    Large-conductance calcium-activated potassium (BK) channels are currently considered as vital players in a variety of renal physiological processes. In podocytes, BK channels become active in response to stimuli that increase local cytosolic Ca(2+), possibly secondary to activation of slit diaphragm TRPC6 channels by chemical or mechanical stimuli. Insulin increases filtration barrier permeability through mobilization of BK channels. In mesangial cells, BK channels co-expressed with β1 subunits act as a major component of the counteractive response to contraction in order to regulate glomerular filtration. This review aims to highlight recent discoveries on the localization, physiological and pathological roles of BK channels in glomerulus. PMID:27445840

  14. Subunit organization in cytoplasmic dynein subcomplexes

    PubMed Central

    King, Stephen J.; Bonilla, Myriam; Rodgers, Michael E.; Schroer, Trina A.

    2002-01-01

    Because cytoplasmic dynein plays numerous critical roles in eukaryotic cells, determining the subunit composition and the organization and functions of the subunits within dynein are important goals. This has been difficult partly because of accessory polypeptide heterogeneity of dynein populations. The motor domain containing heavy chains of cytoplasmic dynein are associated with multiple intermediate, light intermediate, and light chain accessory polypeptides. We examined the organization of these subunits within cytoplasmic dynein by separating the molecule into two distinct subcomplexes. These subcomplexes were competent to reassemble into a molecule with dynein-like properties. One subcomplex was composed of the dynein heavy and light intermediate chains whereas the other subcomplex was composed of the intermediate and light chains. The intermediate and light chain subcomplex could be further separated into two pools, only one of which contained dynein light chains. The two pools had distinct intermediate chain compositions, suggesting that intermediate chain isoforms have different light chain–binding properties. When the two intermediate chain pools were characterized by analytical velocity sedimentation, at least four molecular components were seen: intermediate chain monomers, intermediate chain dimers, intermediate chain monomers with bound light chains, and a mixture of intermediate chain dimers with assorted bound light chains. These data provide new insights into the compositional heterogeneity and assembly of the cytoplasmic dynein complex and suggest that individual dynein molecules have distinct molecular compositions in vivo. PMID:11967380

  15. Arrangement of subunits in microribbons from Giardia.

    PubMed

    Holberton, D V

    1981-02-01

    Ultrasound has been used to disperse the cytoplasm of Giardia muris and Giardia duodenalis trophozoites, releasing disk cytoskeletons for negative staining and study by electron microscopy. Sonication also breaks down the corss-bridges uniting microribbons in disks. Individual ribbons and small bundles of these structures, are found in these preparations and have been imaged both from their edges and in flat face view. The outer layers of ribbons are 2 sheets of regularly arranged globular subunits, held apart by a fibrous inner core. The axial repeat of the microribbon is 15 nm, which is also the distance separating cross-bridge sites along ribbons. Pronounced striping at this interval is a feature of ribbon faces where they are joined in bundles. Subunits in the outer layer are arranged in vertical protofilaments that are set orthogonally to the long axis of the ribbon. Protofilaments bind tannic acid and are seen clearly in sectioned ribbons. Three protofilaments fit into the 15-nm longitudinal spacing. Optical diffraction patterns from ribbon images are dominated by orders of the 15-nm periodicity, including the third-order reflexions expected from protofilaments spacings. Fourth-order reflexions indicate that the ribbon core may also be structured. Ribbon face images give rise to a strong 4-nm layer line, corresponding to the vertical spacing of subunits in protofilaments. Neighbouring protofilaments are staggered by about 0.67 nm. The lattices found in ribbons are consistent with studies of cytoskeleton composition.

  16. Ca2+ signalling, voltage-gated Ca2+ channels and praziquantel in flatworm neuromusculature.

    PubMed

    Greenberg, R M

    2005-01-01

    Transient changes in calcium (Ca2+) levels regulate a wide variety of cellular processes, and cells employ both intracellular and extracellular sources of Ca2+ for signalling. Praziquantel, the drug of choice against schistosomiasis, disrupts Ca2+ homeostasis in adult worms. This review will focus on voltage-gated Ca2+ channels, which regulate levels of intracellular Ca2+ by coupling membrane depolarization to entry of extracellular Ca2+. Ca2+ channels are members of the ion channel superfamily and represent essential components of neurons, muscles and other excitable cells. Ca2+ channels are membrane protein complexes in which the pore-forming alpha1 subunit is modulated by auxiliary subunits such as beta and alpha2delta. Schistosomes express two Ca2+ channel beta subunit subtypes: a conventional subtype similar to beta subunits found in other vertebrates and invertebrates and a novel variant subtype with unusual structural and functional properties. The variant schistosome beta subunit confers praziquantel sensitivity to an otherwise praziquantel-insensitive mammalian Ca2+ channel, implicating it as a mediator of praziquantel action.

  17. DNA sequences, recombinant DNA molecules and processes for producing the A and B subunits of cholera toxin and preparations containing so-obtained subunit or subunits

    SciTech Connect

    Harford, N.; De Wilde, M.

    1987-05-19

    A recombinant DNA molecule is described comprising at least a portion coding for subunits A and B of cholera toxin, or a fragment or derivative of the portion wherein the fragment or derivative codes for a polypeptide have an activity which can induce an immune response to subunit A; can induce an immune response to subunit A and cause epithelial cell penetration and the enzymatic effect leading to net loss of fluid into the gut lumen; can bind to the membrane receptor for the B subunit of cholera toxin; can induce an immune response to subunit B; can induce an immune response to subunit B and bind to the membrane receptor; or has a combination of the activities.

  18. Conservation of the TRAPPII-specific subunits of a Ypt/Rab exchanger complex

    PubMed Central

    Cox, Randal; Chen, Shu Hui; Yoo, Eunice; Segev, Nava

    2007-01-01

    Background Ypt/Rab GTPases and their GEF activators regulate intra-cellular trafficking in all eukaryotic cells. In S. cerivisiae, the modular TRAPP complex acts as a GEF for the Golgi gatekeepers: Ypt1 and the functional pair Ypt31/32. While TRAPPI, which acts in early Golgi, is conserved from fungi to animals, not much is known about TRAPPII, which acts in late Golgi and consists of TRAPPI plus three additional subunits. Results Here, we show a phylogenetic analysis of the three TRAPPII-specific subunits. One copy of each of the two essential subunits, Trs120 and Trs130, is present in almost every fully sequenced eukaryotic genome. Moreover, the primary, as well as the predicted secondary, structure of the Trs120- and Trs130-related sequences are conserved from fungi to animals. The mammalian orthologs of Trs120 and Trs130, NIBP and TMEM1, respectively, are candidates for human disorders. Currently, NIBP is implicated in signaling, and TMEM1 is suggested to have trans-membrane domains (TMDs) and to function as a membrane channel. However, we show here that the yeast Trs130 does not function as a trans-membrane protein, and the human TMEM1 does not contain putative TMDs. The non-essential subunit, Trs65, is conserved only among many fungi and some unicellular eukaryotes. Multiple alignment analysis of each TRAPPII-specific subunit revealed conserved domains that include highly conserved amino acids. Conclusion We suggest that the function of both NIBP and TMEM1 in the regulation of intra-cellular trafficking is conserved from yeast to man. The conserved domains and amino acids discovered here can be used for functional analysis that should help to resolve the differences in the assigned functions of these proteins in fungi and animals. PMID:17274825

  19. Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart.

    PubMed

    Little, Sean C; Curran, Jerry; Makara, Michael A; Kline, Crystal F; Ho, Hsiang-Ting; Xu, Zhaobin; Wu, Xiangqiong; Polina, Iuliia; Musa, Hassan; Meadows, Allison M; Carnes, Cynthia A; Biesiadecki, Brandon J; Davis, Jonathan P; Weisleder, Noah; Györke, Sandor; Wehrens, Xander H; Hund, Thomas J; Mohler, Peter J

    2015-07-21

    Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme composed of a catalytic, scaffolding, and regulatory subunit. In the heart, PP2A activity is requisite for cardiac excitation-contraction coupling and central in adrenergic signaling. We found that mice deficient in the PP2A regulatory subunit B56α (1 of 13 regulatory subunits) had altered PP2A signaling in the heart that was associated with changes in cardiac physiology, suggesting that the B56α regulatory subunit had an autoinhibitory role that suppressed excess PP2A activity. The increase in PP2A activity in the mice with reduced B56α expression resulted in slower heart rates and increased heart rate variability, conduction defects, and increased sensitivity of heart rate to parasympathetic agonists. Increased PP2A activity in B56α(+/-) myocytes resulted in reduced Ca(2+) waves and sparks, which was associated with decreased phosphorylation (and thus decreased activation) of the ryanodine receptor RyR2, an ion channel on intracellular membranes that is involved in Ca(2+) regulation in cardiomyocytes. In line with an autoinhibitory role for B56α, in vivo expression of B56α in the absence of altered abundance of other PP2A subunits decreased basal phosphatase activity. Consequently, in vivo expression of B56α suppressed parasympathetic regulation of heart rate and increased RyR2 phosphorylation in cardiomyocytes. These data show that an integral component of the PP2A holoenzyme has an important inhibitory role in controlling PP2A enzyme activity in the heart.

  20. Protein phosphatase 2A regulatory subunit B56α limits phosphatase activity in the heart

    PubMed Central

    Little, Sean C.; Curran, Jerry; Makara, Michael A.; Kline, Crystal F.; Ho, Hsiang-Ting; Xu, Zhaobin; Wu, Xiangqiong; Polina, Iuliia; Musa, Hassan; Meadows, Allison M.; Carnes, Cynthia A.; Biesiadecki, Brandon J.; Davis, Jonathan P.; Weisleder, Noah; Györke, Sandor; Wehrens, Xander H.; Hund, Thomas J.; Mohler, Peter J.

    2015-01-01

    Protein phosphatase 2A (PP2A) is a serine/threonine-selective holoenzyme composed of a catalytic, scaffolding, and regulatory subunit. In the heart, PP2A activity is requisite for cardiac excitation-contraction coupling and central in adrenergic signaling. We found that mice deficient in the PP2A regulatory subunit B56α (1 of 13 regulatory subunits) had altered PP2A signaling in the heart that was associated with changes in cardiac physiology, suggesting that the B56α regulatory subunit had an autoinhibitory role that suppressed excess PP2A activity. The increase in PP2A activity in the mice with reduced B56α expression resulted in slower heart rates and increased heart rate variability, conduction defects, and increased sensitivity of heart rate to parasympathetic agonists. Increased PP2A activity in B56α+/− myocytes resulted in reduced Ca2+ waves and sparks, which was associated with decreased phosphorylation (and thus decreased activation) of the ryanodine receptor RyR2, an ion channel on intracellular membranes that is involved in Ca2+ regulation in cardiomyocytes. In line with an autoinhibitory role for B56α, in vivo expression of B56α in the absence of altered abundance of other PP2A subunits decreased basal phosphatase activity. Consequently, in vivo expression of B56α suppressed parasympathetic regulation of heart rate and increased RyR2 phosphorylation in cardiomyocytes. These data show that an integral component of the PP2A holoenzyme has an important inhibitory role in controlling PP2A enzyme activity in the heart. PMID:26198358

  1. PKA catalytic subunit mutations in adrenocortical Cushing's adenoma impair association with the regulatory subunit.

    PubMed

    Calebiro, Davide; Hannawacker, Annette; Lyga, Sandra; Bathon, Kerstin; Zabel, Ulrike; Ronchi, Cristina; Beuschlein, Felix; Reincke, Martin; Lorenz, Kristina; Allolio, Bruno; Kisker, Caroline; Fassnacht, Martin; Lohse, Martin J

    2014-01-01

    We recently identified a high prevalence of mutations affecting the catalytic (Cα) subunit of protein kinase A (PKA) in cortisol-secreting adrenocortical adenomas. The two identified mutations (Leu206Arg and Leu199_Cys200insTrp) are associated with increased PKA catalytic activity, but the underlying mechanisms are highly controversial. Here we utilize a combination of biochemical and optical assays, including fluorescence resonance energy transfer in living cells, to analyze the consequences of the two mutations with respect to the formation of the PKA holoenzyme and its regulation by cAMP. Our results indicate that neither mutant can form a stable PKA complex, due to the location of the mutations at the interface between the catalytic and the regulatory subunits. We conclude that the two mutations cause high basal catalytic activity and lack of regulation by cAMP through interference of complex formation between the regulatory and the catalytic subunits of PKA. PMID:25477193

  2. EXP-1 is an excitatory GABA-gated cation channel.

    PubMed

    Beg, Asim A; Jorgensen, Erik M

    2003-11-01

    Gamma-aminobutyric acid (GABA) mediates fast inhibitory neurotransmission by activating anion-selective ligand-gated ion channels. Although electrophysiological studies indicate that GABA may activate cation-selective ligand-gated ion channels in some cell types, such a channel has never been characterized at the molecular level. Here we show that GABA mediates enteric muscle contraction in the nematode Caenorhabditis elegans via the EXP-1 receptor, a cation-selective ligand-gated ion channel. The EXP-1 protein resembles ionotropic GABA receptor subunits in almost all domains. In the pore-forming domain of EXP-1, however, the residues that confer anion selectivity are exchanged for those that specify cation selectivity. When expressed in Xenopus laevis oocytes, EXP-1 forms a GABA receptor that is permeable to cations and not anions. We conclude that some of the excitatory functions assigned to GABA are mediated by cation channels rather than by anion channels.

  3. Neuronal and Cardiovascular Potassium Channels as Therapeutic Drug Targets

    PubMed Central

    Humphries, Edward S. A.

    2015-01-01

    Potassium (K+) channels, with their diversity, often tissue-defined distribution, and critical role in controlling cellular excitability, have long held promise of being important drug targets for the treatment of dysrhythmias in the heart and abnormal neuronal activity within the brain. With the exception of drugs that target one particular class, ATP-sensitive K+ (KATP) channels, very few selective K+ channel activators or inhibitors are currently licensed for clinical use in cardiovascular and neurological disease. Here we review what a range of human genetic disorders have told us about the role of specific K+ channel subunits, explore the potential of activators and inhibitors of specific channel populations as a therapeutic strategy, and discuss possible reasons for the difficulty in designing clinically relevant K+ channel modulators. PMID:26303307

  4. Major diversification of voltage-gated K+ channels occurred in ancestral parahoxozoans.

    PubMed

    Li, Xiaofan; Liu, Hansi; Chu Luo, Jose; Rhodes, Sarah A; Trigg, Liana M; van Rossum, Damian B; Anishkin, Andriy; Diatta, Fortunay H; Sassic, Jessica K; Simmons, David K; Kamel, Bishoy; Medina, Monica; Martindale, Mark Q; Jegla, Timothy

    2015-03-01

    We examined the origins and functional evolution of the Shaker and KCNQ families of voltage-gated K(+) channels to better understand how neuronal excitability evolved. In bilaterians, the Shaker family consists of four functionally distinct gene families (Shaker, Shab, Shal, and Shaw) that share a subunit structure consisting of a voltage-gated K(+) channel motif coupled to a cytoplasmic domain that mediates subfamily-exclusive assembly (T1). We traced the origin of this unique Shaker subunit structure to a common ancestor of ctenophores and parahoxozoans (cnidarians, bilaterians, and placozoans). Thus, the Shaker family is metazoan specific but is likely to have evolved in a basal metazoan. Phylogenetic analysis suggested that the Shaker subfamily could predate the divergence of ctenophores and parahoxozoans, but that the Shab, Shal, and Shaw subfamilies are parahoxozoan specific. In support of this, putative ctenophore Shaker subfamily channel subunits coassembled with cnidarian and mouse Shaker subunits, but not with cnidarian Shab, Shal, or Shaw subunits. The KCNQ family, which has a distinct subunit structure, also appears solely within the parahoxozoan lineage. Functional analysis indicated that the characteristic properties of Shaker, Shab, Shal, Shaw, and KCNQ currents evolved before the divergence of cnidarians and bilaterians. These results show that a major diversification of voltage-gated K(+) channels occurred in ancestral parahoxozoans and imply that many fundamental mechanisms for the regulation of action potential propagation evolved at this time. Our results further suggest that there are likely to be substantial differences in the regulation of neuronal excitability between ctenophores and parahoxozoans.

  5. Design of a hyperstable 60-subunit protein icosahedron.

    PubMed

    Hsia, Yang; Bale, Jacob B; Gonen, Shane; Shi, Dan; Sheffler, William; Fong, Kimberly K; Nattermann, Una; Xu, Chunfu; Huang, Po-Ssu; Ravichandran, Rashmi; Yi, Sue; Davis, Trisha N; Gonen, Tamir; King, Neil P; Baker, David

    2016-07-01

    The icosahedron is the largest of the Platonic solids, and icosahedral protein structures are widely used in biological systems for packaging and transport. There has been considerable interest in repurposing such structures for applications ranging from targeted delivery to multivalent immunogen presentation. The ability to design proteins that self-assemble into precisely specified, highly ordered icosahedral structures would open the door to a new generation of protein containers with properties custom-tailored to specific applications. Here we describe the computational design of a 25-nanometre icosahedral nanocage that self-assembles from trimeric protein building blocks. The designed protein was produced in Escherichia coli, and found by electron microscopy to assemble into a homogenous population of icosahedral particles nearly identical to the design model. The particles are stable in 6.7 molar guanidine hydrochloride at up to 80 degrees Celsius, and undergo extremely abrupt, but reversible, disassembly between 2 molar and 2.25 molar guanidinium thiocyanate. The icosahedron is robust to genetic fusions: one or two copies of green fluorescent protein (GFP) can be fused to each of the 60 subunits to create highly fluorescent ‘standard candles’ for use in light microscopy, and a designed protein pentamer can be placed in the centre of each of the 20 pentameric faces to modulate the size of the entrance/exit channels of the cage. Such robust and customizable nanocages should have considerable utility in targeted drug delivery, vaccine design and synthetic biology. PMID:27309817

  6. Design of a hyperstable 60-subunit protein icosahedron

    NASA Astrophysics Data System (ADS)

    Hsia, Yang; Bale, Jacob B.; Gonen, Shane; Shi, Dan; Sheffler, William; Fong, Kimberly K.; Nattermann, Una; Xu, Chunfu; Huang, Po-Ssu; Ravichandran, Rashmi; Yi, Sue; Davis, Trisha N.; Gonen, Tamir; King, Neil P.; Baker, David

    2016-07-01

    The icosahedron is the largest of the Platonic solids, and icosahedral protein structures are widely used in biological systems for packaging and transport. There has been considerable interest in repurposing such structures for applications ranging from targeted delivery to multivalent immunogen presentation. The ability to design proteins that self-assemble into precisely specified, highly ordered icosahedral structures would open the door to a new generation of protein containers with properties custom-tailored to specific applications. Here we describe the computational design of a 25-nanometre icosahedral nanocage that self-assembles from trimeric protein building blocks. The designed protein was produced in Escherichia coli, and found by electron microscopy to assemble into a homogenous population of icosahedral particles nearly identical to the design model. The particles are stable in 6.7 molar guanidine hydrochloride at up to 80 degrees Celsius, and undergo extremely abrupt, but reversible, disassembly between 2 molar and 2.25 molar guanidinium thiocyanate. The icosahedron is robust to genetic fusions: one or two copies of green fluorescent protein (GFP) can be fused to each of the 60 subunits to create highly fluorescent ‘standard candles’ for use in light microscopy, and a designed protein pentamer can be placed in the centre of each of the 20 pentameric faces to modulate the size of the entrance/exit channels of the cage. Such robust and customizable nanocages should have considerable utility in targeted drug delivery, vaccine design and synthetic biology.

  7. Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons.

    PubMed

    Goldwyn, Joshua H; Imennov, Nikita S; Famulare, Michael; Shea-Brown, Eric

    2011-04-01

    The random transitions of ion channels between conducting and nonconducting states generate a source of internal fluctuations in a neuron, known as channel noise. The standard method for modeling the states of ion channels nonlinearly couples continuous-time Markov chains to a differential equation for voltage. Beginning with the work of R. F. Fox and Y.-N. Lu [Phys. Rev. E 49, 3421 (1994)], there have been attempts to generate simpler models that use stochastic differential equation (SDEs) to approximate the stochastic spiking activity produced by Markov chain models. Recent numerical investigations, however, have raised doubts that SDE models can capture the stochastic dynamics of Markov chain models.We analyze three SDE models that have been proposed as approximations to the Markov chain model: one that describes the states of the ion channels and two that describe the states of the ion channel subunits. We show that the former channel-based approach can capture the distribution of channel noise and its effects on spiking in a Hodgkin-Huxley neuron model to a degree not previously demonstrated, but the latter two subunit-based approaches cannot. Our analysis provides intuitive and mathematical explanations for why this is the case. The temporal correlation in the channel noise is determined by the combinatorics of bundling subunits into channels, but the subunit-based approaches do not correctly account for this structure. Our study confirms and elucidates the findings of previous numerical investigations of subunit-based SDE models. Moreover, it presents evidence that Markov chain models of the nonlinear, stochastic dynamics of neural membranes can be accurately approximated by SDEs. This finding opens a door to future modeling work using SDE techniques to further illuminate the effects of ion channel fluctuations on electrically active cells. PMID:21599202

  8. Large conductance calcium-activated potassium channels: their expression and modulation of glutamate release from nerve terminals isolated from rat trigeminal caudal nucleus and cerebral cortex.

    PubMed

    Samengo, Irene; Currò, Diego; Barrese, Vincenzo; Taglialatela, Maurizio; Martire, Maria

    2014-05-01

    Large conductance, calcium-activated potassium channels [big potassium (BK) channel] consist of a tetramer of pore-forming α-subunit and distinct accessory β-subunits (β1-4) that modify the channel's properties. In this study, we analyzed the effects of BK channel activators and blockers on glutamate and γ-aminobutyric acid (GABA) release from synaptosomes isolated from the cerebral cortices or trigeminal caudal nuclei (TCN) of rats. Real-time polymerase chain reaction was used to characterize BK channel α and β(1-4) subunit expression in the cortex and in the trigeminal ganglia (TG), whose neurons project primary terminal afferents into the TCN. Immunocytochemistry was used to localize these subunits on cortical and TCN synaptosomes. The BK channels regulating [(3)H]D-aspartate release from primary afferent nerve terminals projecting into the TCN displayed limited sensitivity to iberiotoxin, whereas those expressed on cortical synaptosomes were highly sensitive to this toxin. BK channels did not appear to be present on GABAergic nerve terminals from the TCN since [(3)H]-γ-aminobutyric acid release in this model was unaffected by BK channel activators or blockers. Gene expression studies revealed expression levels of the α subunit in the TG that were only 31.2 ± 2.1% of those found in cortical tissues. The β4 subunit was the accessory subunit expressed most abundantly in both the cortex and TG. Levels of β1 and β2 were low in both these areas although β2 expression in the TG was higher than that found in the cortex. Immunocytochemistry experiments showed that co-localization of α and β4 subunits (the accessory subunit most abundantly expressed in both brain areas) was more common in TCN synaptosomes than in cortical synaptosomes. On the basis of these findings, it is reasonable to hypothesize that BK channels expressed on glutamatergic terminals in the TCN and cortex have distinct pharmacological profiles, which probably reflect different α and

  9. [Preeclampsia, cellular migration and ion channels].

    PubMed

    Del Mónaco, Silvana M; Marino, Gabriela; Assef, Yanina; Kotsias, Basilio A

    2008-01-01

    The syncytiotrophoblast acts in human placenta as a transporting barrier regulating the transference of nutrients, solutes and water between maternal and fetal blood. This transepithelial transport involves movement of Na+ and its contribution to the osmotic pressure is an important determinant of the extracellular fluid volume. ENaC is a channel that mediates entry of Na+ from the luminal fluid into the cells in many reabsorbing epithelia; it is aldosterone, vasopressin, insulin and catecholamine-inducible, modulated by estrogens and progesterone and blocked by amiloride and its analogs. Multiple proteases are involved in the proteolytic processing and activation of ENaC subunits and aldosterone alters the protease-protease inhibitors balance. ENaC is also expressed in human placenta; although its function is not well known, the Na+ conductive properties may participate in electrolyte and extracellular volume homeostasis. The activity of ENaC channels and other ion channels and transporters is regulated by the state of actin filaments; on the other hand, changes in volume influence the actin cytoskeleton. Thus, there is an interaction between ENaC and components of the apical membrane cytoskeleton. In addition to their role in cellular homeostasis and electrical properties, Na+ currents through ENaC and other sodium channels are involved in cell migration, well documented in normal and cancer cells. In this work we presented evidences supporting the hypothesis that ENaC channels are required for the migration of BeWo cells, a human hormone-synthesizing trophoblastic cell line that express the three subunits of the ENaC channels. BeWo cell line has also been used as a model to investigate the placental transport mechanisms. PMID:18977715

  10. [Preeclampsia, cellular migration and ion channels].

    PubMed

    Del Mónaco, Silvana M; Marino, Gabriela; Assef, Yanina; Kotsias, Basilio A

    2008-01-01

    The syncytiotrophoblast acts in human placenta as a transporting barrier regulating the transference of nutrients, solutes and water between maternal and fetal blood. This transepithelial transport involves movement of Na+ and its contribution to the osmotic pressure is an important determinant of the extracellular fluid volume. ENaC is a channel that mediates entry of Na+ from the luminal fluid into the cells in many reabsorbing epithelia; it is aldosterone, vasopressin, insulin and catecholamine-inducible, modulated by estrogens and progesterone and blocked by amiloride and its analogs. Multiple proteases are involved in the proteolytic processing and activation of ENaC subunits and aldosterone alters the protease-protease inhibitors balance. ENaC is also expressed in human placenta; although its function is not well known, the Na+ conductive properties may participate in electrolyte and extracellular volume homeostasis. The activity of ENaC channels and other ion channels and transporters is regulated by the state of actin filaments; on the other hand, changes in volume influence the actin cytoskeleton. Thus, there is an interaction between ENaC and components of the apical membrane cytoskeleton. In addition to their role in cellular homeostasis and electrical properties, Na+ currents through ENaC and other sodium channels are involved in cell migration, well documented in normal and cancer cells. In this work we presented evidences supporting the hypothesis that ENaC channels are required for the migration of BeWo cells, a human hormone-synthesizing trophoblastic cell line that express the three subunits of the ENaC channels. BeWo cell line has also been used as a model to investigate the placental transport mechanisms.

  11. [Nose surgical anatomy in six aesthetic subunits].

    PubMed

    Chaput, B; Lauwers, F; Lopez, R; Saboye, J; André, A; Grolleau, J-L; Chavoin, J-P

    2013-04-01

    The nose is a complex entity, combining aesthetic and functional roles. Descriptive anatomy is a fundamental science that it can be difficult to relate directly to our daily surgical activity. Reasoning in terms of aesthetic subunits to decide on his actions appeared to us so obvious. The aim of this paper is to resume the anatomical bases relevant to our daily practice in order to fully apprehend the restorative or cosmetic procedures. We discuss the limits of the systematization of these principles in nasal oncology.

  12. A comparison of the yeast and rabbit 80 S ribosome reveals the topology of the nascent chain exit tunnel, inter-subunit bridges and mammalian rRNA expansion segments.

    PubMed

    Morgan, D G; Ménétret, J F; Radermacher, M; Neuhof, A; Akey, I V; Rapoport, T A; Akey, C W

    2000-08-11

    Protein synthesis in eukaryotes is mediated by both cytoplasmic and membrane-bound ribosomes. During the co-translational translocation of secretory and membrane proteins, eukaryotic ribosomes dock with the protein conducting channel of the endoplasmic reticulum. An understanding of these processes will require the detailed structure of a eukaryotic ribosome. To this end, we have compared the three-dimensional structures of yeast and rabbit ribosomes at 24 A resolution. In general, we find that the active sites for protein synthesis and translocation have been highly conserved. It is interesting that a channel was visualized in the neck of the small subunit whose entrance is formed by a deep groove. By analogy with the prokaryotic small subunit, this channel may provide a conserved portal through which mRNA is threaded into the decoding center. In addition, both the small and large subunits are built around a dense tubular network. Our analysis further suggests that the nascent chain exit tunnel and the docking surface for the endoplasmic reticulum channel are formed by this network. We surmise that many of these features correspond to rRNA, based on biochemical and structural data. Ribosomal function is critically dependent on the specific association of small and large subunits. Our analysis of eukaryotic ribosomes reveals four conserved inter-subunit bridges with a geometry similar to that found in prokaryotes. In particular, a double-bridge connects the small subunit platform with the interface canyon on the large subunit. Moreover, a novel bridge is formed between the platform and the base of the L1 domain. Finally, size differences between mammalian and yeast large subunit rRNAs have been correlated with five expansion segments that form two large spines and three extended fingers. Overall, we find that expansion segments within the large subunit rRNA have been incorporated at positions distinct from the active sites for protein synthesis and translocation.

  13. A subunit-selective potentiator of NR2C- and NR2D-containing NMDA receptors

    PubMed Central

    Mullasseril, Praseeda; Hansen, Kasper B.; Vance, Katie M.; Ogden, Kevin K.; Yuan, Hongjie; Kurtkaya, Natalie L.; Santangelo, Rose; Orr, Anna G.; Le, Phuong; Vellano, Kimberly M.; Liotta, Dennis C.; Traynelis, Stephen F.

    2011-01-01

    NMDA receptors are tetrameric complexes of NR1 and NR2A-D subunits that mediate excitatory synaptic transmission and play a role in neurological disorders. We have identified a novel subunit-selective potentiator of NMDA receptors containing the NR2C or NR2D subunit, which could allow selective modification of circuit function in regions expressing NR2C/D subunits. The substituted tetrahydroisoquinoline CIQ enhances receptor responses two-fold with an EC50 of 3 μM by increasing channel opening frequency without altering mean open time or EC50 values for glutamate or glycine. The actions of CIQ depend on a single residue in the M1 region (NR2D Thr592) and the linker between the amino terminal domain and agonist binding domain. CIQ potentiates native NR2D-containing NMDA receptor currents from subthalamic neurons. Our identification of a subunit-selective NMDA receptor modulator reveals a new class of pharmacological tools with which to probe the role of NR2C- and NR2D-containing NMDA receptors in brain function and disease. PMID:20981015

  14. Altered expression of renal NHE3, TSC, BSC-1, and ENaC subunits in potassium-depleted rats.

    PubMed

    Elkjaer, Marie-Louise; Kwon, Tae-Hwan; Wang, Weidong; Nielsen, Jakob; Knepper, Mark A; Frøkiaer, Jørgen; Nielsen, Søren

    2002-12-01

    The purpose of this study was to examine whether hypokalemia is associated with altered abundance of major renal Na+ transporters that may contribute to the development of urinary concentrating defects. We examined the changes in the abundance of the type 3 Na+/H+ exchanger (NHE3), Na+ - K+-ATPase, the bumetanide-sensitive Na+ - K+ - 2Cl- cotransporter (BSC-1), the thiazide-sensitive Na+ - Cl- cotransporter (TSC), and epithelial sodium channel (ENaC) subunits in kidneys of hypokalemic rats. Semiquantitative immunoblotting revealed that the abundance of BSC-1 (57%) and TSC (46%) were profoundly decreased in the inner stripe of the outer medulla (ISOM) and cortex/outer stripe of the outer medulla (OSOM), respectively. These findings were confirmed by immunohistochemistry. Moreover, total kidney abundance of all ENaC subunits was significantly reduced in response to the hypokalemia: alpha-subunit (61%), beta-subunit (41%), and gamma-subunit (60%), and this was confirmed by immunohistochemistry. In contrast, the renal abundance of NHE3 in hypokalemic rats was dramatically increased in cortex/OSOM (736%) and ISOM (210%). Downregulation of BSC-1, TSC, and ENaC may contribute to the urinary concentrating defect, whereas upregulation of NHE3 may be compensatory to prevent urinary Na+ loss and/or to maintain intracellular pH levels.

  15. RNA editing of the GABA(A) receptor alpha3 subunit alters the functional properties of recombinant receptors.

    PubMed

    Nimmich, Mitchell L; Heidelberg, Laura S; Fisher, Janet L

    2009-04-01

    RNA editing provides a post-transcriptional mechanism to increase structural heterogeneity of gene products. Recently, the alpha3 subunit of the GABAA receptors has been shown to undergo RNA editing. As a result, a highly conserved isoleucine residue in the third transmembrane domain is replaced with a methionine. To determine the effect of this structural change on receptor function, we compared the GABA sensitivity, pharmacological properties and macroscopic kinetics of recombinant receptors containing either the edited or unedited forms of the alpha3 subunit along with beta3 and gamma2L. Editing substantially altered the GABA sensitivity and deactivation rate of the receptors, with the unedited form showing a lower GABA EC50 and slower decay. Comparable effects were observed with a mutation at the homologous location in the alpha1 subunit, suggesting a common role for this site in regulation of channel gating. Except for the response to GABA, the pharmacological properties of the receptor were unaffected by editing, with similar enhancement by a variety of modulators. Since RNA editing of the alpha3 subunit increases through development, our findings suggest that GABAergic neurotransmission may be more effective early in development, with greater GABA sensitivity and slower decay rates conferred by the unedited alpha3 subunit.

  16. GluN2A and GluN2B subunit-containing NMDA receptors in hippocampal plasticity

    PubMed Central

    Shipton, Olivia A.; Paulsen, Ole

    2014-01-01

    N-Methyl-d-aspartate receptor (NMDAR)-dependent synaptic plasticity is a strong candidate to mediate learning and memory processes that require the hippocampus. This plasticity is bidirectional, and how the same receptor can mediate opposite changes in synaptic weights remains a conundrum. It has been suggested that the NMDAR subunit composition could be involved. Specifically, one subunit composition of NMDARs would be responsible for the induction of long-term potentiation (LTP), whereas NMDARs with a different subunit composition would be engaged in the induction of long-term depression (LTD). Unfortunately, the results from studies that have investigated this hypothesis are contradictory, particularly in relation to LTD. Nevertheless, current evidence does suggest that the GluN2B subunit might be particularly important for plasticity and may make a synapse bidirectionally malleable. In particular, we conclude that the presence of GluN2B subunit-containing NMDARs at the postsynaptic density might be a necessary, though not a sufficient, condition for the strengthening of individual synapses. This is owing to the interaction of GluN2B with calcium/calmodulin-dependent protein kinase II (CaMKII) and is distinct from its contribution as an ion channel. PMID:24298164

  17. Modification of Glutamate Receptor Channels: Molecular Mechanisms and Functional Consequences

    NASA Astrophysics Data System (ADS)

    Hatt, Hanns

    Of the many possible mechanisms for modulating the efficiency of ion channels, the phosphorylation of receptor channel proteins may be the primary one. Changes in the set of molecular subunits of which the channels are composed are also important, especially for long-term regulation. In the central nervous system synaptic plasticity may be altered by modulating the ligand-activated neuronal ion channels involved in synaptic transmission; among them are channels gated directly by glutamate, the regulation of which we are only beginning to understand. This paper focuses on modulation of these channels [α-amino-3-hydroxy-5-methyl-4-isoxazoleprionic acid (AMPA), kainate, and N-methyl-d-aspartate (NMDA) types] by phosphorylation and changes in subunit composition. AMPA- and kainate-activated receptors are modulated by adenosine 3, 5-monophosphate (cAMP) dependent protein kinase A (PKA) coupled via D1 dopamine receptors. An increase in the intracellular concentration of cAMP and protein kinase A potentiates kainate-activated currents in α-motoneurons of the spinal cord by increasing the affinity of the ligand (glutamate) for the phosphorylated receptor protein (GluR6 and 7). The rapid desensitization of AMPA-evoked currents normally observed in horizontal cells of the retina is completely blocked by increasing the intracellular concentration of cAMP. The effects of changes in subunit composition were examined in rat hippocampal neurons. The subunit composition of the NMDA receptor determines the kinetic properties of synaptic currents and can be regulated by the type of innervating neuron. Similar changes also occur during development. An important determinant here is the activity of the system. Dynamic regulation of excitatory receptors by both mechanisms may well be associated with some forms of learning and memory in the mammalian brain.

  18. The α2δ-1 subunit remodels CaV1.2 voltage sensors and allows Ca2+ influx at physiological membrane potentials.

    PubMed

    Savalli, Nicoletta; Pantazis, Antonios; Sigg, Daniel; Weiss, James N; Neely, Alan; Olcese, Riccardo

    2016-08-01

    Excitation-evoked calcium influx across cellular membranes is strictly controlled by voltage-gated calcium channels (CaV), which possess four distinct voltage-sensing domains (VSDs) that direct the opening of a central pore. The energetic interactions between the VSDs and the pore are critical for tuning the channel's voltage dependence. The accessory α2δ-1 subunit is known to facilitate CaV1.2 voltage-dependent activation, but the underlying mechanism is unknown. In this study, using voltage clamp fluorometry, we track the activation of the four individual VSDs in a human L-type CaV1.2 channel consisting of α1C and β3 subunits. We find that, without α2δ-1, the channel complex displays a right-shifted voltage dependence such that currents mainly develop at nonphysiological membrane potentials because of very weak VSD-pore interactions. The presence of α2δ-1 facilitates channel activation by increasing the voltage sensitivity (i.e., the effective charge) of VSDs I-III. Moreover, the α2δ-1 subunit also makes VSDs I-III more efficient at opening the channel by increasing the coupling energy between VSDs II and III and the pore, thus allowing Ca influx within the range of physiological membrane potentials. PMID:27481713

  19. Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses

    PubMed Central

    Ward, John M.; Mäser, Pascal; Schroeder, Julian I.

    2016-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100

  20. Role of Epithelium Sodium Channel in Bone Formation

    PubMed Central

    Wang, Ruo-Yu; Yang, Shu-Hua; Xu, Wei-Hua

    2016-01-01

    Objective: To review the recent developments in the mechanisms of epithelium sodium channels (ENaCs) induced bone formation and regulation. Data Sources: Studies written in English or Chinese were searched using Medline, PubMed and the index of Chinese-language literature with time restriction from 2005 to 2014. Keywords included ENaC, bone, bone formation, osteonecrosis, estrogen, and osteoporosis. Data from published articles about the structure of ENaC, mechanism of ENaC in bone formation in recent domestic and foreign literature were selected. Study Selection: Abstract and full text of all studies were required to obtain. Studies those were not accessible and those did not focus on the keywords were excluded. Results: ENaCs are tripolymer ion channels which are assembled from homologous α, β, and γ subunits. Crystal structure of ENaCs suggests that ENaC has a central ion-channel located in the central symmetry axis of the three subunits. ENaCs are protease sensitive channels whose iron-channel activity is regulated by the proteolytic reaction. Channel opening probability of ENaCs is regulated by proteinases, mechanical force, and shear stress. Several molecules are involved in regulation of ENaCs in bone formation, including nitride oxide synthases, voltage-sensitive calcium channels, and cyclooxygenase-2. Conclusion: The pathway of ENaC involved in shear stress has an effect on stimulating osteoblasts even bone formation by estrogen interference. PMID:26904995

  1. Subunit stoichiometry of the chloroplast photosystem I complex

    SciTech Connect

    Bruce, B.D.; Malkin, R.

    1988-05-25

    A native photosystem I (PS I) complex and a PS I core complex depleted of antenna subunits has been isolated from the uniformly /sup 14/C-labeled aquatic higher plant, Lemna. These complexes have been analyzed for their subunit stoichiometry by quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis methods. The results for both preparations indicate that one copy of each high molecular mass subunit is present per PS I complex and that a single copy of most low molecular mass subunits is also present. These results suggest that iron-sulfur center X, an early PS I electron acceptor proposed to bind to the high molecular mass subunits, contains a single (4Fe-4S) cluster which is bound to a dimeric structure of high molecular mass subunits, each providing 2 cysteine residues to coordinate this cluster.

  2. Subunit structure of the phycobiliproteins of blue-green algae.

    PubMed

    Glazer, A N; Cohen-Bazire, G

    1971-07-01

    The phycobiliproteins of the blue-green algae Synechococcus sp. and Aphanocapsu sp. were characterized with respect to homogeneity, isoelectric point, and subunit composition. Each of the biliproteins consisted of two different noncovalently associated subunits, with molecular weights of about 20,000 and 16,000 for phycocyanin, 17,500 and 15,500 for allophycocyanin, and 22,000 and 20,000 for phycoerythrin. Covalently bound chromophore was associated with each subunit.

  3. Diversity of heterotrimeric G-protein γ subunits in plants

    PubMed Central

    2012-01-01

    Background Heterotrimeric G-proteins, consisting of three subunits Gα, Gβ and Gγ are present in most eukaryotes and mediate signaling in numerous biological processes. In plants, Gγ subunits were shown to provide functional selectivity to G-proteins. Three unconventional Gγ subunits were recently reported in Arabidopsis, rice and soybean but no structural analysis has been reported so far. Their relationship with conventional Gγ subunits and taxonomical distribution has not been yet demonstrated. Results After an extensive similarity search through plant genomes, transcriptomes and proteomes we assembled over 200 non-redundant proteins related to the known Gγ subunits. Structural analysis of these sequences revealed that most of them lack the obligatory C-terminal prenylation motif (CaaX). According to their C-terminal structures we classified the plant Gγ subunits into three distinct types. Type A consists of Gγ subunits with a putative prenylation motif. Type B subunits lack a prenylation motif and do not have any cysteine residues in the C-terminal region, while type C subunits contain an extended C-terminal domain highly enriched with cysteines. Comparative analysis of C-terminal domains of the proteins, intron-exon arrangement of the corresponding genes and phylogenetic studies suggested a common origin of all plant Gγ subunits. Conclusion Phylogenetic analyses suggest that types C and B most probably originated independently from type A ancestors. We speculate on a potential mechanism used by those Gγ subunits lacking isoprenylation motifs to anchor the Gβγ dimer to the plasma membrane and propose a new flexible nomenclature for plant Gγ subunits. Finally, in the light of our new classification, we give a word of caution about the interpretation of Gγ research in Arabidopsis and its generalization to other plant species. PMID:23113884

  4. Intersubunit Concerted Cooperative and cis-Type Mechanisms Modulate Allosteric Gating in Two-Pore-Domain Potassium Channel TREK-2

    PubMed Central

    Zhuo, Ren-Gong; Peng, Peng; Liu, Xiao-Yan; Yan, Hai-Tao; Xu, Jiang-Ping; Zheng, Jian-Quan; Wei, Xiao-Li; Ma, Xiao-Yun

    2016-01-01

    In response to diverse stimuli, two-pore-domain potassium channel TREK-2 regulates cellular excitability, and hence plays a key role in mediating neuropathic pain, mood disorders and ischemia through. Although more and more input modalities are found to achieve their modulations via acting on the channel, the potential role of subunit interaction in these modulations remains to be explored. In the current study, the deletion (lack of proximal C-terminus, ΔpCt) or point mutation (G312A) was introduced into TREK-2 subunits to limit K+ conductance and used to report subunit stoichiometry. The constructs were then combined with wild type (WT) subunit to produce concatenated dimers with defined composition, and the gating kinetics of these channels to 2-Aminoethoxydiphenyl borate (2-APB) and extracellular pH (pHo) were characterized. Our results show that combination of WT and ΔpCt/G312A subunits reserves similar gating properties to that of WT dimmers, suggesting that the WT subunit exerts dominant and positive effects on the mutated one, and thus the two subunits controls channel gating via a concerted cooperative manner. Further introduction of ΔpCt into the latter subunit of heterodimeric channel G312A-WT or G312A-G312A attenuated their sensitivity to 2-APB and pHo alkalization, implicating that these signals were transduced by a cis-type mechanism. Together, our findings elucidate the mechanisms for how the two subunits control the pore gating of TREK-2, in which both intersubunit concerted cooperative and cis-type manners modulate the allosteric regulations induced by 2-APB and pHo alkalization. PMID:27242438

  5. Regulatory–auxiliary subunits of CLC chloride channel–transport proteins

    PubMed Central

    Barrallo-Gimeno, Alejandro; Gradogna, Antonella; Zanardi, Ilaria; Pusch, Michael; Estévez, Raúl

    2015-01-01

    Abstract The CLC family of chloride channels and transporters is composed by nine members, but only three of them, ClC-Ka/b, ClC-7 and ClC-2, have been found so far associated with auxiliary subunits. These CLC regulatory subunits are small proteins that present few common characteristics among them, both structurally and functionally, and their effects on the corresponding CLC protein are different. Barttin, a protein with two transmembrane domains, is essential for the membrane localization of ClC-K proteins and their activity in the kidney and inner ear. Ostm1 is a protein with a single transmembrane domain and a highly glycosylated N-terminus. Unlike the other two CLC auxiliary subunits, Ostm1 shows a reciprocal relationship with ClC-7 for their stability. The subcellular localization of Ostm1 depends on ClC-7 and not the other way around. ClC-2 is active on its own, but GlialCAM, a transmembrane cell adhesion molecule with two extracellular immunoglobulin (Ig)-like domains, regulates its subcellular localization and activity in glial cells. The common theme for these three proteins is their requirement for a proper homeostasis, since their malfunction leads to distinct diseases. We will review here their properties and their role in normal chloride physiology and the pathological consequences of their improper function. PMID:25762128

  6. Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex.

    PubMed

    Tsai, Ming-Feng; Phillips, Charles B; Ranaghan, Matthew; Tsai, Chen-Wei; Wu, Yujiao; Willliams, Carole; Miller, Christopher

    2016-04-21

    Mitochondrial Ca(2+) uptake, a process crucial for bioenergetics and Ca(2+) signaling, is catalyzed by the mitochondrial calcium uniporter. The uniporter is a multi-subunit Ca(2+)-activated Ca(2+) channel, with the Ca(2+) pore formed by the MCU protein and Ca(2+)-dependent activation mediated by MICU subunits. Recently, a mitochondrial inner membrane protein EMRE was identified as a uniporter subunit absolutely required for Ca(2+) permeation. However, the molecular mechanism and regulatory purpose of EMRE remain largely unexplored. Here, we determine the transmembrane orientation of EMRE, and show that its known MCU-activating function is mediated by the interaction of transmembrane helices from both proteins. We also reveal a second function of EMRE: to maintain tight MICU regulation of the MCU pore, a role that requires EMRE to bind MICU1 using its conserved C-terminal polyaspartate tail. This dual functionality of EMRE ensures that all transport-competent uniporters are tightly regulated, responding appropriately to a dynamic intracellular Ca(2+) landscape.

  7. Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex

    PubMed Central

    Tsai, Ming-Feng; Phillips, Charles B; Ranaghan, Matthew; Tsai, Chen-Wei; Wu, Yujiao; Williams, Carole; Miller, Christopher

    2016-01-01

    Mitochondrial Ca2+ uptake, a process crucial for bioenergetics and Ca2+ signaling, is catalyzed by the mitochondrial calcium uniporter. The uniporter is a multi-subunit Ca2+-activated Ca2+ channel, with the Ca2+ pore formed by the MCU protein and Ca2+-dependent activation mediated by MICU subunits. Recently, a mitochondrial inner membrane protein EMRE was identified as a uniporter subunit absolutely required for Ca2+ permeation. However, the molecular mechanism and regulatory purpose of EMRE remain largely unexplored. Here, we determine the transmembrane orientation of EMRE, and show that its known MCU-activating function is mediated by the interaction of transmembrane helices from both proteins. We also reveal a second function of EMRE: to maintain tight MICU regulation of the MCU pore, a role that requires EMRE to bind MICU1 using its conserved C-terminal polyaspartate tail. This dual functionality of EMRE ensures that all transport-competent uniporters are tightly regulated, responding appropriately to a dynamic intracellular Ca2+ landscape. DOI: http://dx.doi.org/10.7554/eLife.15545.001 PMID:27099988

  8. NaVβ Subunits Modulate the Inhibition of NaV1.8 by the Analgesic Gating Modifier μO-Conotoxin MrVIB

    PubMed Central

    Wilson, Michael J.; Zhang, Min-Min; Azam, Layla; Olivera, Baldomero M.; Bulaj, Grzegorz

    2011-01-01

    Voltage-gated sodium channels (VGSCs) consist of a pore-forming α-subunit and regulatory β-subunits. Several families of neuroactive peptides of Conus snails target VGSCs, including μO-conotoxins and μ-conotoxins. Unlike μ-conotoxins and the guanidinium alkaloid saxitoxin (STX), which are pore blockers, μO-conotoxins MrVIA and MrVIB inhibit VGSCs by modifying channel gating. μO-MrVIA/B can block NaV1.8 (a tetrodotoxin-resistant isoform of VGSCs) and have analgesic properties. The effect of NaVβ-subunit coexpression on susceptibility to block by μO-MrVIA/B and STX has, until now, not been reported. Here, we show that β1-, β2-, β3-, and β4-subunits, when individually coexpressed with NaV1.8 in Xenopus laevis oocytes, increased the kon of the block produced by μO-MrVIB (by 3-, 32-, 2-, and 7-fold, respectively) and modestly decreased the apparent koff. Strong depolarizing prepulses markedly accelerated MrVIB washout with rates dependent on β-subunit coexpression. Thus, coexpression of β-subunits with NaV1.8 can strongly influence the affinity of the conopeptide for the channel. This observation is of particular interest because β-subunit expression can be dynamic, e.g., β2-expression is up-regulated after nerve injury (J Neurosci, 25:10970–10980, 2005); therefore, the effectiveness of a μO-conotoxin as a channel blocker could be enhanced by the conditions that may call for its use therapeutically. In contrast to MrVIB's action, the STX-induced block of NaV1.8 was only marginally, if at all, affected by coexpression of any of the β-subunits. Our results raise the possibility that μO-conotoxins and perhaps other gating modifiers may provide a means to functionally assess the β-subunit composition of VGSC complexes in neurons. PMID:21586605

  9. Different roles of C-terminal cassettes in the trafficking of full-length NR1 subunits to the cell surface.

    PubMed

    Horak, Martin; Wenthold, Robert J

    2009-04-10

    N-Methyl-d-aspartate (NMDA) receptors are glutamate-gated ion channels composed of NR1 and NR2 subunits. When expressed alone, the most prevalent NR1 splice variant and all NR2 subunits are retained in the endoplasmic reticulum (ER), whereas other NR1 splice variants reach the cell surface to varying degrees. Because similar trafficking patterns have been seen for single transmembrane domain chimeric proteins with appended C termini of NMDA receptor subunits, these chimeric proteins have been used as a model for studying the mechanisms underlying the ER retention and surface trafficking of NMDA receptors. Using this approach, an RRR motif in the C1 cassette has been identified as a major ER retention signal present in NR1 subunits, and the surface localization of other NR1 splice variants has been explained by the absence of the C1 cassette or by the presence of a PDZ/coatomer protein complex II-binding domain in the C2' cassette. However, when we tested these conclusions using full-length NR1 constructs, a more complex role of the C-terminal cassettes in the trafficking of NR1 subunits emerged. Our experiments showed that two independent ER retention motifs in the C1 cassette, KKK and RRR, are the signals mediating ER retention of the full-length NR1 subunits and that the C2 cassette has an additional inhibitory effect on the forward trafficking of NR1 subunits. On the other hand, C0 and C2' cassettes had an enhancing effect on the trafficking of NR1 subunits to the cell surface. Our observations identify the unique roles of C-terminal cassettes in the trafficking of full-length NR1 subunits.

  10. Coupled gating between cardiac calcium release channels (ryanodine receptors).

    PubMed

    Marx, S O; Gaburjakova, J; Gaburjakova, M; Henrikson, C; Ondrias, K; Marks, A R

    2001-06-01

    Excitation-contraction coupling in heart muscle requires the activation of Ca(2+)-release channels/type 2 ryanodine receptors (RyR2s) by Ca(2+) influx. RyR2s are arranged on the sarcoplasmic reticular membrane in closely packed arrays such that their large cytoplasmic domains contact one another. We now show that multiple RyR2s can be isolated under conditions such that they remain physically coupled to one another. When these coupled channels are examined in planar lipid bilayers, multiple channels exhibit simultaneous gating, termed "coupled gating." Removal of the regulatory subunit, the FK506 binding protein (FKBP12.6), functionally but not physically uncouples multiple RyR2 channels. Coupled gating between RyR2 channels may be an important regulatory mechanism in excitation-contraction coupling as well as in other signaling pathways involving intracellular Ca(2+) release. PMID:11397781

  11. Compilation of small ribosomal subunit RNA structures.

    PubMed Central

    Neefs, J M; Van de Peer, Y; De Rijk, P; Chapelle, S; De Wachter, R

    1993-01-01

    The database on small ribosomal subunit RNA structure contained 1804 nucleotide sequences on April 23, 1993. This number comprises 365 eukaryotic, 65 archaeal, 1260 bacterial, 30 plastidial, and 84 mitochondrial sequences. These are stored in the form of an alignment in order to facilitate the use of the database as input for comparative studies on higher-order structure and for reconstruction of phylogenetic trees. The elements of the postulated secondary structure for each molecule are indicated by special symbols. The database is available on-line directly from the authors by ftp and can also be obtained from the EMBL nucleotide sequence library by electronic mail, ftp, and on CD ROM disk. PMID:8332525

  12. Atomic Force Microscopy Reveals the Architecture of the Epithelial Sodium Channel (ENaC)

    PubMed Central

    Stewart, Andrew P.; Haerteis, Silke; Diakov, Alexei; Korbmacher, Christoph; Edwardson, J. Michael

    2011-01-01

    The epithelial sodium channel (ENaC) is a member of the ENaC/degenerin superfamily. ENaC is a heteromultimer containing three homologous subunits (α, β, and γ); however, the subunit stoichiometry is still controversial. Here, we addressed this issue using atomic force microscopy imaging of complexes between isolated ENaC and antibodies/Fab fragments directed against specific epitope tags on the α-, β- and γ-subunits. We show that for α-, β- and γ-ENaC alone, pairs of antibodies decorate the channel at an angle of 120°, indicating that the individual subunits assemble as homotrimers. A similar approach demonstrates that αβγ-ENaC assembles as a heterotrimer containing one copy of each subunit. Intriguingly, all four subunit combinations also produce higher-order structures containing two or three individual trimers. The trimer-of-trimers organization would account for earlier reports that ENaC contains eight to nine subunits. PMID:21775436

  13. KCNE1 Constrains the Voltage Sensor of Kv7.1 K+ Channels

    PubMed Central

    Yisharel, Ilanit; Malka, Eti; Schottelndreier, Hella; Peretz, Asher; Paas, Yoav; Attali, Bernard

    2008-01-01

    Kv7 potassium channels whose mutations cause cardiovascular and neurological disorders are members of the superfamily of voltage-gated K+ channels, comprising a central pore enclosed by four voltage-sensing domains (VSDs) and sharing a homologous S4 sensor sequence. The Kv7.1 pore-forming subunit can interact with various KCNE auxiliary subunits to form K+ channels with very different gating behaviors. In an attempt to characterize the nature of the promiscuous gating of Kv7.1 channels, we performed a tryptophan-scanning mutagenesis of the S4 sensor and analyzed the mutation-induced perturbations in gating free energy. Perturbing the gating energetics of Kv7.1 bias most of the mutant channels towards the closed state, while fewer mutations stabilize the open state or the inactivated state. In the absence of auxiliary subunits, mutations of specific S4 residues mimic the gating phenotypes produced by co-assembly of Kv7.1 with either KCNE1 or KCNE3. Many S4 perturbations compromise the ability of KCNE1 to properly regulate Kv7.1 channel gating. The tryptophan-induced packing perturbations and cysteine engineering studies in S4 suggest that KCNE1 lodges at the inter-VSD S4-S1 interface between two adjacent subunits, a strategic location to exert its striking action on Kv7.1 gating functions. PMID:18398469

  14. δ ENaC: a novel divergent amiloride-inhibitable sodium channel

    PubMed Central

    Zhao, Run-Zhen; Chen, Zai-Xing; Shetty, Sreerama; Idell, Steven; Matalon, Sadis

    2012-01-01

    The fourth subunit of the epithelial sodium channel, termed delta subunit (δ ENaC), was cloned in human and monkey. Increasing evidence shows that this unique subunit and its splice variants exhibit biophysical and pharmacological properties that are divergent from those of α ENaC channels. The widespread distribution of epithelial sodium channels in both epithelial and nonepithelial tissues implies a range of physiological functions. The altered expression of SCNN1D is associated with numerous pathological conditions. Genetic studies link SCNN1D deficiency with rare genetic diseases with developmental and functional disorders in the brain, heart, and respiratory systems. Here, we review the progress of research on δ ENaC in genomics, biophysics, proteomics, physiology, pharmacology, and clinical medicine. PMID:22983350

  15. Ca2+ channels as integrators of G protein-mediated signaling in neurons.

    PubMed

    Strock, Jesse; Diversé-Pierluissi, María A

    2004-11-01

    The observations from Dunlap and Fischbach that transmitter-mediated shortening of the duration of action potentials could be caused by a decrease in calcium conductance led to numerous studies of the mechanisms of modulation of voltage-dependent calcium channels. Calcium channels are well known targets for inhibition by receptor-G protein pathways, and multiple forms of inhibition have been described. Inhibition of Ca(2+) channels can be mediated by G protein betagamma-subunits or by kinases, such as protein kinase C and tyrosine kinases. In the last few years, it has been shown that integration of G protein signaling can take place at the level of the calcium channel by regulation of the interaction of the channel pore-forming subunit with different cellular proteins.

  16. The AMPA receptor subunit GluR1 regulates dendritic architecture of motor neurons

    NASA Technical Reports Server (NTRS)

    Inglis, Fiona M.; Crockett, Richard; Korada, Sailaja; Abraham, Wickliffe C.; Hollmann, Michael; Kalb, Robert G.

    2002-01-01

    The morphology of the mature motor neuron dendritic arbor is determined by activity-dependent processes occurring during a critical period in early postnatal life. The abundance of the AMPA receptor subunit GluR1 in motor neurons is very high during this period and subsequently falls to a negligible level. To test the role of GluR1 in dendrite morphogenesis, we reintroduced GluR1 into rat motor neurons at the end of the critical period and quantitatively studied the effects on dendrite architecture. Two versions of GluR1 were studied that differed by the amino acid in the "Q/R" editing site. The amino acid occupying this site determines single-channel conductance, ionic permeability, and other essential electrophysiologic properties of the resulting receptor channels. We found large-scale remodeling of dendritic architectures in a manner depending on the amino acid occupying the Q/R editing site. Alterations in the distribution of dendritic arbor were not prevented by blocking NMDA receptors. These observations suggest that the expression of GluR1 in motor neurons modulates a component of the molecular substrate of activity-dependent dendrite morphogenesis. The control of these events relies on subunit-specific properties of AMPA receptors.

  17. Expression of ENaC subunits in sensory nerve endings in the rat larynx.

    PubMed

    Yamamoto, Yoshio; Taniguchi, Kazuyuki

    2006-07-24

    We investigated the expression of three subunits of epithelial sodium channel (ENaC), alphaENaC, betaENaC and gammaENaC, in the nodose ganglion and laryngeal mucosa of rat by RT-PCR analysis and immunohistochemistry. PCR products of predicted size for alphaENaC, betaENaC and gammaENaC subunits were amplified from extract of nodose ganglion. Immunohistochemically, nodose ganglion neurons of medium to large diameter were immunoreactive for alphaENaC, betaENaC and gammaENaC. In the deep region of laryngeal submucosal layer, thick nerve fibers without varicosities were immunoreactive for alphaENaC, betaENaC and gammaENaC. In the laryngeal mucosa, terminal arborizations of the nerve endings, that immunoreacted for alphaENaC, betaENaC and gammaENaC were scattered in the lamina propria just beneath the epithelia of epiglottis and laryngeal vestibule. Double immunofluorescence with calretinin revealed that they were laminar nerve endings. Some thick nerve fibers near the laryngeal taste buds were also immunoreactive for betaENaC and gammaENaC, but negative for alphaENaC. In the larynx, ENaC channels may play important roles in mechanotransduction in the laminar endings and in the mechano- and chemotransductions in the taste bud-associated nerve fibers. PMID:16725259

  18. Indirect activation of the epithelial Na+ channel by trypsin.

    PubMed

    Bengrine, Abderrahmane; Li, Jinqing; Hamm, L Lee; Awayda, Mouhamed S

    2007-09-14

    We tested the hypothesis that the serine protease trypsin can indirectly activate the epithelial Na(+) channel (ENaC). Experiments were carried out in Xenopus oocytes and examined the effects on the channel formed by all three human ENaC subunits and that formed by Xenopus epsilon and human beta and gamma subunits (epsilonbetagammaENaC). Low levels of trypsin (1-10 ng/ml) were without effects on the oocyte endogenous conductances and were specifically used to test the effects on ENaC. Addition of 1 ng/ml trypsin for 60 min stimulated the amiloride-sensitive human ENaC conductance (g(Na)) by approximately 6-fold. This effect on the g(Na) was [Na(+)]-independent, thereby ruling out an interaction with channel feedback inhibition by Na(+). The indirect nature of this activation was confirmed in cell-attached patch clamp experiments with trypsin added to the outside of the pipette. Trypsin was comparatively ineffective at activating epsilonbetagammaENaC, a channel that exhibited a high spontaneous open probability. These observations, in combination with surface binding experiments, indicated that trypsin indirectly activated membrane-resident channels. Activation by trypsin was also dependent on catalytic activity of this protease but was not accompanied by channel subunit proteolysis. Channel activation was dependent on downstream activation of G-proteins and was blocked by G-protein inhibition by injection of guanyl-5'-yl thiophosphate and by pre-stimulation of phospholipase C. These data indicate a receptor-mediated activation of ENaC by trypsin. This trypsin-activated receptor is distinct from that of protease-activated receptor-2, because the response to trypsin was unaffected by protease-activated receptor-2 overexpression or knockdown. PMID:17627947

  19. Enhanced neurosteroid potentiation of ternary GABA(A) receptors containing the delta subunit.

    PubMed

    Wohlfarth, Kai M; Bianchi, Matt T; Macdonald, Robert L

    2002-03-01

    Attenuated behavioral sensitivity to neurosteroids has been reported for mice deficient in the GABA(A) receptor delta subunit. We therefore investigated potential subunit-specific neurosteroid pharmacology of the following GABA(A) receptor isoforms in a transient expression system: alpha1beta3gamma2L, alpha1beta3delta, alpha6beta3gamma2L, and alpha6beta3delta. Potentiation of submaximal GABA(A) receptor currents by the neurosteroid tetrahydrodeoxycorticosterone (THDOC) was greatest for the alpha1beta3delta isoform. Whole-cell GABA concentration--response curves performed with and without low concentrations (30 nm) of THDOC revealed enhanced peak GABA(A) receptor currents for isoforms tested without affecting the GABA EC50. Alpha1beta3delta currents were enhanced the most (>150%), whereas the other isoform currents were enhanced 15-50%. At a higher concentration (1 microm), THDOC decreased peak alpha1beta3gamma2L receptor current amplitude evoked by GABA (1 mm) concentration jumps and prolonged deactivation but had little effect on the rate or extent of apparent desensitization. Thus the polarity of THDOC modulation depended on GABA concentration for alpha1beta3gamma2L GABA(A) receptors. However, the same protocol applied to alpha1beta3delta receptors resulted in peak current enhancement by THDOC of >800% and prolonged deactivation. Interestingly, THDOC induced pronounced desensitization in the minimally desensitizing alpha1beta3delta receptors. Single channel recordings obtained from alpha1beta3delta receptors indicated that THDOC increased the channel opening duration, including the introduction of an additional longer duration open state. Our results suggest that the GABA(A) receptor delta subunit confers increased sensitivity to neurosteroid modulation and that the intrinsic gating and desensitization kinetics of alpha1beta3delta GABA(A) receptors are altered by THDOC.

  20. A590T mutation in KCNQ1 C-terminal helix D decreases IKs channel trafficking and function but not Yotiao interaction.

    PubMed

    Kinoshita, Koshi; Komatsu, Takuto; Nishide, Kohki; Hata, Yukiko; Hisajima, Nozomi; Takahashi, Hiroyuki; Kimoto, Katsuya; Aonuma, Kei; Tsushima, Eikichi; Tabata, Toshihide; Yoshida, Tomoyuki; Mori, Hisashi; Nishida, Kunihiro; Yamaguchi, Yoshiaki; Ichida, Fukiko; Fukurotani, Kenkichi; Inoue, Hiroshi; Nishida, Naoki

    2014-07-01

    KCNQ1 encodes the α subunit of the voltage-gated channel that mediates the cardiac slow delayed rectifier K(+) current (IKs). Here, we report a KCNQ1 allele encoding an A590T mutation [KCNQ1(A590T)] found in a 39-year-old female with a mild QT prolongation. A590 is located in the C-terminal α helical region of KCNQ1 that mediates subunit tetramerization, membrane trafficking, and interaction with Yotiao. This interaction is known to be required for the proper modulation of IKs by cAMP. Since previous studies reported that mutations in the vicinity of A590 impair IKs channel surface expression and function, we examined whether and how the A590T mutation affects the IKs channel. Electrophysiological measurements in HEK-293T cells showed that the A590T mutation caused a reduction in IKs density and a right-shift of the current-voltage relation of channel activation. Immunocytochemical and immunoblot analyses showed the reduced cell surface expression of KCNQ1(A590T) subunit and its rescue by coexpression of the wild-type KCNQ1 [KCNQ1(WT)] subunit. Moreover, KCNQ1(A590T) subunit interacted with Yotiao and had a cAMP-responsiveness comparable to that of KCNQ1(WT) subunit. These findings indicate that the A590 of KCNQ1 subunit plays important roles in the maintenance of channel surface expression and function via a novel mechanism independent of interaction with Yotiao.

  1. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    PubMed Central

    Tandrup Schmidt, Signe; Foged, Camilla; Smith Korsholm, Karen; Rades, Thomas; Christensen, Dennis

    2016-01-01

    The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs) concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs), which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the specific PRR

  2. Subcellular compartment-specific molecular diversity of pre- and postsynaptic GABAB-activated GIRK channels in Purkinje cells

    PubMed Central

    Fernández-Alacid, Laura; Aguado, Carolina; Ciruela, Francisco; Martín, Ricardo; Colón, José; Cabañero, María José; Gassmann, Martin; Watanabe, Masahiko; Shigemoto, Ryuichi; Wickman, Kevin; Bettler, Bernhard; Sánchez-Prieto, José; Luján, Rafael

    2009-01-01

    Activation of G protein-gated inwardly-rectifying K+ (GIRK or Kir3) channels by metabotropic gamma-aminobutyric acid (B) (GABAB) receptors is an essential signalling pathway controlling neuronal excitability and synaptic transmission in the brain. To investigate the relationship between GIRK channel subunits and GABAB receptors in cerebellar Purkinje cells at post- and pre-synaptic sites, we used biochemical, functional and immunohistochemical techniques. Co-immunoprecipitation analysis demonstrated that GIRK subunits are co-assembled with GABAB receptors in the cerebellum. Immunoelectron microscopy showed that the subunit composition of GIRK channels in Purkinje cell spines is compartment-dependent. Thus, at extrasynaptic sites GIRK channels are formed by GIRK1/GIRK2/GIRK3, postsynaptic densities contain GIRK2/GIRK3 and dendritic shafts contain GIRK1/GIRK3. The postsynaptic association of GIRK subunits with GABAB receptors in Purkinje cells is supported by the subcellular regulation of the ion channel and the receptor in mutant mice. At presynaptic sites, GIRK channels localized to parallel fibre terminals are formed by GIRK1/GIRK2/GIRK3 and co-localize with GABAB receptors. Consistent with this morphological evidence we demonstrate their functional interaction at axon terminals in the cerebellum by showing that GIRK channels play a role in the inhibition of glutamate release by GABAB receptors. The association of GIRK channels and GABAB receptors with excitatory synapses at both post- and presynaptic sites indicates their intimate involvement in the modulation of glutamatergic neurotransmission in the cerebellum. PMID:19558451

  3. The light subunit of system bo,+ is fully functional in the absence of the heavy subunit

    PubMed Central

    Reig, Núria; Chillarón, Josep; Bartoccioni, Paola; Fernández, Esperanza; Bendahan, Annie; Zorzano, Antonio; Kanner, Baruch; Palacín, Manuel; Bertran, Joan

    2002-01-01

    The heteromeric amino acid transporters are composed of a type II glycoprotein and a non-glycosylated polytopic membrane protein. System bo,+ exchanges dibasic for neutral amino acids. It is composed of rBAT and bo,+AT, the latter being the polytopic membrane subunit. Mutations in either of them cause malfunction of the system, leading to cystinuria. bo,+AT-reconstituted systems from HeLa or MDCK cells catalysed transport of arginine that was totally dependent on the presence of one of the bo,+ substrates inside the liposomes. rBAT was essential for the cell surface expression of bo,+AT, but it was not required for reconstituted bo,+AT transport activity. No system bo,+ transport was detected in liposomes derived from cells expressing rBAT alone. The reconstituted bo,+AT showed kinetic asymmetry. Expressing the cystinuria-specific mutant A354T of bo,+AT in HeLa cells together with rBAT resulted in defective arginine uptake in whole cells, which was paralleled by the reconstituted bo,+AT activity. Thus, subunit bo,+AT by itself is sufficient to catalyse transmembrane amino acid exchange. The polytopic subunits may also be the catalytic part in other heteromeric transporters. PMID:12234930

  4. Benzodiazepine-insensitive mice generated by targeted disruption of the gamma 2 subunit gene of gamma-aminobutyric acid type A receptors.

    PubMed Central

    Günther, U; Benson, J; Benke, D; Fritschy, J M; Reyes, G; Knoflach, F; Crestani, F; Aguzzi, A; Arigoni, M; Lang, Y

    1995-01-01

    Vigilance, anxiety, epileptic activity, and muscle tone can be modulated by drugs acting at the benzodiazepine (BZ) site of gamma-aminobutyric acid type A (GABAA) receptors. In vivo, BZ sites are potential targets for endogenous ligands regulating the corresponding central nervous system states. To assess the physiological relevance of BZ sites, mice were generated containing GABAA receptors devoid of BZ sites. Following targeted disruption of the gamma 2 subunit gene, 94% of the BZ sites were absent in brain of neonatal mice, while the number of GABA sites was only slightly reduced. Except for the gamma 2 subunit, the level of expression and the regional and cellular distribution of the major GABAA receptor subunits were unaltered. The single channel main conductance level and the Hill coefficient were reduced to values consistent with recombinant GABAA receptors composed of alpha and beta subunits. The GABA response was potentiated by pentobarbital but not by flunitrazepam. Diazepam was inactive behaviorally. Thus, the gamma 2 subunit is dispensable for the assembly of functional GABAA receptors but is required for normal channel conductance and the formation of BZ sites in vivo. BZ sites are not essential for embryonic development, as suggested by the normal body weight and histology of newborn mice. Postnatally, however, the reduced GABAA receptor function is associated with retarded growth, sensorimotor dysfunction, and drastically reduced life-span. The lack of postnatal GABAA receptor regulation by endogenous ligands of BZ sites might contribute to this phenotype. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7644489

  5. Molecular mechanism underlying β1 regulation in voltage- and calcium-activated potassium (BK) channels.

    PubMed

    Castillo, Karen; Contreras, Gustavo F; Pupo, Amaury; Torres, Yolima P; Neely, Alan; González, Carlos; Latorre, Ramon

    2015-04-14

    Being activated by depolarizing voltages and increases in cytoplasmic Ca(2+), voltage- and calcium-activated potassium (BK) channels and their modulatory β-subunits are able to dampen or stop excitatory stimuli in a wide range of cellular types, including both neuronal and nonneuronal tissues. Minimal alterations in BK channel function may contribute to the pathophysiology of several diseases, including hypertension, asthma, cancer, epilepsy, and diabetes. Several gating processes, allosterically coupled to each other, control BK channel activity and are potential targets for regulation by auxiliary β-subunits that are expressed together with the α (BK)-subunit in almost every tissue type where they are found. By measuring gating currents in BK channels coexpressed with chimeras between β1 and β3 or β2 auxiliary subunits, we were able to identify that the cytoplasmic regions of β1 are responsible for the modulation of the voltage sensors. In addition, we narrowed down the structural determinants to the N terminus of β1, which contains two lysine residues (i.e., K3 and K4), which upon substitution virtually abolished the effects of β1 on charge movement. The mechanism by which K3 and K4 stabilize the voltage sensor is not electrostatic but specific, and the α (BK)-residues involved remain to be identified. This is the first report, to our knowledge, where the regulatory effects of the β1-subunit have been clearly assigned to a particular segment, with two pivotal amino acids being responsible for this modulation.

  6. The diversity of GABA(A) receptor subunit distribution in the normal and Huntington's disease human brain.

    PubMed

    Waldvogel, H J; Faull, R L M

    2015-01-01

    GABA(A) receptors are assembled into pentameric receptor complexes from a total of 19 different subunits derived from a variety of different subunit classes (α1-6, β1-3, γ1-3, δ, ɛ, θ, and π) which surround a central chloride ion channel. GABA(A) receptor complexes are distributed heterogeneously throughout the brain and spinal cord and are activated by the extensive GABAergic inhibitory system. In this chapter, we describe the heterogeneous distribution of six of the most widely distributed subunits (α1, α2, α3, β2,3, and γ2) throughout the human basal ganglia. This review describes the studies we have carried out on the normal and Huntington's disease human basal ganglia using autoradiographic labeling and immunohistochemistry in the human basal ganglia. GABA(A) receptors are known to react to changing conditions in the brain in neurological disorders, especially in Huntington's disease and display a high degree of plasticity which is thought to compensate for loss of function caused by disease. In Huntington's disease, the variable loss of GABAergic medium spiny striatopallidal projection neurons is associated with a loss of GABA(A) receptor subunits in the striosome and/or the matrix compartments of the striatum. By contrast in the globus pallidus, a loss of the GABAergic striatal projection neurons results in a dramatic upregulation of subunits on the large postsynaptic pallidal neurons; this is thought to be a compensatory plastic mechanism resulting from the loss of striatal GABAergic input. Most interestingly, our studies have revealed that the subventricular zone overlying the caudate nucleus contains a variety of proliferating progenitor stem cells that possess a heterogeneity of GABA(A) receptor subunits which may play a role in human brain repair mechanisms.

  7. Epitopes from two soybean glycinin subunits antigenic in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Glycinin is a seed storage protein in soybean (Glycine max) that is allergenic in pigs. Glycinin is a hexamer composed of subunits consisting of a basic and acidic portion joined by disulfide bridges. There are 5 glycinin subunits designated Gy1-Gy5. Results: Twenty seven out of 30 pi...

  8. The Development and Institutionalization of Subunit Power in Organizations.

    ERIC Educational Resources Information Center

    Boeker, Warren

    1989-01-01

    Examines the effects of founding events on the evolution of subunit importance in the semiconductor industry from 1958 to 1985. Distributions of power and subunit importance represent not only influences of current conditions, but also vestiges of earlier events, including the institution's founding. Includes 55 references. (MLH)

  9. Proteopedia Entry: The Large Ribosomal Subunit of "Haloarcula Marismortui"

    ERIC Educational Resources Information Center

    Decatur, Wayne A.

    2010-01-01

    This article presents a "Proteopedia" page that shows the refined version of the structure of the "Haloarcula" large ribosomal subunit as solved by the laboratories of Thomas Steitz and Peter Moore. The landmark structure is of great impact as it is the first atomic-resolution structure of the highly conserved ribosomal subunit which harbors…

  10. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  11. A revised model for AMP-activated protein kinase structure: The alpha-subunit binds to both the beta- and gamma-subunits although there is no direct binding between the beta- and gamma-subunits.

    PubMed

    Wong, Kelly A; Lodish, Harvey F

    2006-11-24

    The 5'-AMP-activated protein kinase (AMPK) is a master sensor for cellular metabolic energy state. It is activated by a high AMP/ATP ratio and leads to metabolic changes that conserve energy and utilize alternative cellular fuel sources. The kinase is composed of a heterotrimeric protein complex containing a catalytic alpha-subunit, an AMP-binding gamma-subunit, and a scaffolding beta-subunit thought to bind directly both the alpha- and gamma-subunits. Here, we use coimmunoprecipitation of proteins in transiently transfected cells to show that the alpha2-subunit binds directly not only to the beta-subunit, confirming previous work, but also to the gamma1-subunit. Deletion analysis of the alpha2-subunit reveals that the C-terminal 386-552 residues are sufficient to bind to the beta-subunit. The gamma1-subunit binds directly to the alpha2-subunit at two interaction sites, one within the catalytic domain consisting of alpha2 amino acids 1-312 and a second within residues 386-552. Binding of the alpha2 and the gamma1-subunits was not affected by 400 mum AMP or ATP. Furthermore, we show that the beta-subunit C terminus is essential for binding to the alpha2-subunit but, in contrast to previous work, the beta-subunit does not bind directly to the gamma1-subunit. Taken together, this study presents a new model for AMPK heterotrimer structure where through its C terminus the beta-subunit binds to the alpha-subunit that, in turn, binds to the gamma-subunit. There is no direct interaction between the beta- and gamma-subunits.

  12. Pregnenolone sulfate block of GABA(A) receptors: mechanism and involvement of a residue in the M2 region of the alpha subunit.

    PubMed

    Akk, G; Bracamontes, J; Steinbach, J H

    2001-05-01

    Neurosteroids are produced in the brain, and can have rapid actions on membrane channels of neurons. Pregnenolone sulfate (PS) is a sulfated neurosteroid which reduces the responses of the [gamma]-aminobutyric acid A (GABA(A)) receptor. We analysed the actions of PS on single-channel currents from recombinant GABA(A) receptors formed from [alpha]1, [beta]2 and [gamma]2L subunits. Currents were elicited by a concentration of GABA eliciting a half-maximal response (50 microM) and a saturating concentration (1 mM). PS reduced the duration of clusters of single-channel activity at either concentration of GABA. PS had no discernable effect on rapid processes: no effects were apparent on channel opening and closing, nor on GABA affinity, and a rapidly recovering desensitised state was not affected. Instead, PS produced a slowly developing block which occurred at a similar rate for receptors with open or closed channels and with one or two bound GABA molecules. The rate of block was independent of membrane potential, implying that the charged sulfate moiety does not move through the membrane field. Change in a specific residue near the intracellular end of the channel lining portion of the [alpha]1 subunit had a major effect on the rate of block. Mutation of the residue [alpha]1 V256S reduced the rate of block by 30-fold. A mutation at the homologous position of the [beta]2 subunit ([beta]2 A252S) had no effect, nor did a complementary mutation in the [gamma]2L subunit ([gamma]2L S266A). It seems likely that this residue is involved in a conformational change underlying block by PS, instead of forming part of the binding site for PS.

  13. Synaptic GABAA Receptor Clustering without the γ2 Subunit

    PubMed Central

    Kerti-Szigeti, Katalin

    2014-01-01

    Rapid activation of postsynaptic GABAA receptors (GABAARs) is crucial in many neuronal functions, including the synchronization of neuronal ensembles and controlling the precise timing of action potentials. Although the γ2 subunit is believed to be essential for the postsynaptic clustering of GABAARs, synaptic currents have been detected in neurons obtained from γ2−/− mice. To determine the role of the γ2 subunit in synaptic GABAAR enrichment, we performed a spatially and temporally controlled γ2 subunit deletion by injecting Cre-expressing viral vectors into the neocortex of GABAARγ277Ilox mice. Whole-cell recordings revealed the presence of miniature IPSCs in Cre+ layer 2/3 pyramidal cells (PCs) with unchanged amplitudes and rise times, but significantly prolonged decays. Such slowly decaying currents could be evoked in PCs by action potentials in presynaptic fast-spiking interneurons. Freeze-fracture replica immunogold labeling revealed the presence of the α1 and β3 subunits in perisomatic synapses of cells that lack the γ2 subunit. Miniature IPSCs in Cre+ PCs were insensitive to low concentrations of flurazepam, providing a pharmacological confirmation of the lack of the γ2 subunit. Receptors assembled from only αβ subunits were unlikely because Zn2+ did not block the synaptic currents. Pharmacological experiments indicated that the αβγ3 receptor, rather than the αβδ, αβε, or αβγ1 receptors, was responsible for the slowly decaying IPSCs. Our data demonstrate the presence of IPSCs and the synaptic enrichment of the α1 and β3 subunits and suggest that the γ3 subunit is the most likely candidate for clustering GABAARs at synapses in the absence of the γ2 subunit. PMID:25080584

  14. Murine embryonic stem cell line CGR8 expresses all subtypes of muscarinic receptors and multiple nicotinic receptor subunits: Down-regulation of α4- and β4-subunits during early differentiation.

    PubMed

    Kaltwasser, Susanne; Schmitz, Luise; Michel-Schmidt, Rosmarie; Anspach, Laura; Kirkpatrick, Charles James; Wessler, Ignaz

    2015-11-01

    Non-neuronal acetylcholine mediates its cellular effects via stimulation of the G-protein-coupled muscarinic receptors and the ligand-gated ion channel nicotinic receptors. The murine embryonic stem cell line CGR8 synthesizes and releases non-neuronal acetylcholine. In the present study a systematic investigation of the expression of nicotinic receptor subunits and muscarinic receptors was performed, when the stem cells were grown in the presence or absence of LIF, as the latter condition induces early differentiation. CGR8 cells expressed multiple nicotinic receptor subtypes (α3, α4, α7, α9, α10, β1, β2, β3, β4, γ, δ, ε) and muscarinic receptors (M1, M3, M4, M5); M2 was detected only in 2 out of 8 cultures. LIF removal caused a down-regulation only of the α4- and β4-subunit. In conclusion, more or less the whole repertoire of cholinergic receptors is expressed on the murine embryonic stem cell line CGR8 for mediating cellular signaling of non-neuronal acetylcholine which acts via auto- and paracrine pathways. During early differentiation of the murine CGR8 stem cell signaling via nicotinic receptors containing α4- or β4 subunits is reduced. Thus, the so-called neuronal α4 nicotine receptor composed of these subunits may be involved in the regulation of pluripotency in this murine stem cell line.

  15. Structural modeling of the catalytic subunit-regulatory subunit dimeric complex of the camp-dependent protein kinase.

    SciTech Connect

    Tung, C-S; Gallagher, S. C.; Walsh, D. A.; Trewhella, J.

    2001-01-01

    The cAMP-dependent protein kinase (PKA) is a multifunctional kinase that serves as a prototype for understanding second messenger signaling and protein phosphorylation. In the absence of a cAMP signal, PKA exists as a dimer of dimers, consisting of two regulatory (R) and two catalystic (C) subunits. Based on experimentally derived data (i.e., crystal structures of the R and C subunits, mutagenesis data identifying points of subunit-subunit contacts), the neutron scattering derived model for the heterodimer (Zhao et al., 1998) and using a set of computational approaches (homology modeling, Monte Carlo simulation), they have developed a high-resolution model of the RII{alpha}-C{alpha} dimer. The nature of the subunit-subunit interface was studied. The model reveals an averaged size dimer interface (2100 Angstrom{sup 2}) that is distant from the pseudo-substrate binding site on the C subunit. The additional contacts made by the pseudosubstrate increases the stability of the dimeric complex. Based on a set of R-C dimer structures derived using a simulated annealing approach, specific interactions (hydrogen bonds) between the two subunits and were identified.

  16. LGICdb: the ligand-gated ion channel database.

    PubMed

    Le Novère, N; Changeux, J P

    2001-01-01

    Ligand-Gated Ion Channels (LGIC) are polymeric transmembrane proteins involved in the fast response to numerous neurotransmitters. All these receptors are formed by homologous subunits and the last two decades revealed an unexpected wealth of genes coding for these subunits. The Ligand-Gated Ion Channel database (LGICdb) has been developed to handle this increasing amount of data. The database aims to provide only one entry for each gene, containing annotated nucleic acid and protein sequences. The repository is carefully structured and the entries can be retrieved by various criteria. In addition to the sequences, the LGICdb provides multiple sequence alignments, phylogenetic analyses and atomic coordinates when available. The database is accessible via the World Wide Web (http://www.pasteur.fr/recherche/banques/LGIC /LGIC.html), where it is continuously updated. The version 16 (September 2000) available for download contained 333 entries covering 34 species.

  17. The Cavβ1a subunit regulates gene expression and suppresses myogenin in muscle progenitor cells.

    PubMed

    Taylor, Jackson; Pereyra, Andrea; Zhang, Tan; Messi, Maria Laura; Wang, Zhong-Min; Hereñú, Claudia; Kuan, Pei-Fen; Delbono, Osvaldo

    2014-06-23

    Voltage-gated calcium channel (Cav) β subunits are auxiliary subunits to Cavs. Recent reports show Cavβ subunits may enter the nucleus and suggest a role in transcriptional regulation, but the physiological relevance of this localization remains unclear. We sought to define the nuclear function of Cavβ in muscle progenitor cells (MPCs). We found that Cavβ1a is expressed in proliferating MPCs, before expression of the calcium conducting subunit Cav1.1, and enters the nucleus. Loss of Cavβ1a expression impaired MPC expansion in vitro and in vivo and caused widespread changes in global gene expression, including up-regulation of myogenin. Additionally, we found that Cavβ1a localizes to the promoter region of a number of genes, preferentially at noncanonical (NC) E-box sites. Cavβ1a binds to a region of the Myog promoter containing an NC E-box, suggesting a mechanism for inhibition of myogenin gene expression. This work indicates that Cavβ1a acts as a Cav-independent regulator of gene expression in MPCs, and is required for their normal expansion during myogenic development. PMID:24934157

  18. The Cavβ1a subunit regulates gene expression and suppresses myogenin in muscle progenitor cells

    PubMed Central

    Taylor, Jackson; Pereyra, Andrea; Zhang, Tan; Messi, Maria Laura; Wang, Zhong-Min; Hereñú, Claudia; Kuan, Pei-Fen

    2014-01-01

    Voltage-gated calcium channel (Cav) β subunits are auxiliary subunits to Cavs. Recent reports show Cavβ subunits may enter the nucleus and suggest a role in transcriptional regulation, but the physiological relevance of this localization remains unclear. We sought to define the nuclear function of Cavβ in muscle progenitor cells (MPCs). We found that Cavβ1a is expressed in proliferating MPCs, before expression of the calcium conducting subunit Cav1.1, and enters the nucleus. Loss of Cavβ1a expression impaired MPC expansion in vitro and in vivo and caused widespread changes in global gene expression, including up-regulation of myogenin. Additionally, we found that Cavβ1a localizes to the promoter region of a number of genes, preferentially at noncanonical (NC) E-box sites. Cavβ1a binds to a region of the Myog promoter containing an NC E-box, suggesting a mechanism for inhibition of myogenin gene expression. This work indicates that Cavβ1a acts as a Cav-independent regulator of gene expression in MPCs, and is required for their normal expansion during myogenic development. PMID:24934157

  19. Equalization in redundant channels

    NASA Technical Reports Server (NTRS)

    Tulpule, Bhalchandra R. (Inventor); Collins, Robert E. (Inventor); Cominelli, Donald F. (Inventor); O'Neill, Richard D. (Inventor)

    1988-01-01

    A miscomparison between a channel's configuration data base and a voted system configuration data base in a redundant channel system having identically operating, frame synchronous channels triggers autoequalization of the channel's historical signal data bases in a hierarchical, chronological manner with that of a correctly operating channel. After equalization, symmetrization of the channel's configuration data base with that of the system permits upgrading of the previously degraded channel to full redundancy. An externally provided equalization command, e.g., manually actuated, can also trigger equalization.

  20. Associated proteins and renal epithelial Na+ channel function.

    PubMed

    Ismailov, I I; Berdiev, B K; Bradford, A L; Awayda, M S; Fuller, C M; Benos, D J

    1996-01-01

    The hypothesis that amiloride-sensitive Na+ channel complexes immunopurified from bovine renal papillary collecting tubules contain, as their core conduction component, an ENaC subunit, was tested by functional and immunological criteria. Disulfide bond reduction with dithiothreitol (DTT) of renal Na+ channels incorporated into planar lipid bilayers caused a reduction of single channel conductance from 40 pS to 13 pS, and uncoupled PKA regulation of this channel. The cation permeability sequence, as assessed from bi-ionic reversal potential measurements, and apparent amiloride equilibrium dissociation constant (K(amil)i) of the Na+ channels were unaltered by DTT treatment. Like ENaC, the DTT treated renal channel became mechanosensitive, and displayed a substantial decrease in K(amil)i following stretch (0.44 +/- 0.12 microM versus 6.9 +/- 1.0 microM). Moreover, stretch activation induced a loss in the channel's ability to discriminate between monovalent cations, and even allowed Ca2+ to permeate. Polyclonal antibodies generated against a fusion protein of alpha bENaC recognized a 70 kDa polypeptide component of the renal Na+ channel complex. These data suggest that ENaC is present in the immunopurified renal Na+ channel protein complex, and that PKA sensitivity is conferred by other associated proteins. PMID:8834119

  1. Subunit dissociations in natural and recombinant hemoglobins.

    PubMed

    Manning, L R; Jenkins, W T; Hess, J R; Vandegriff, K; Winslow, R M; Manning, J M

    1996-04-01

    A precise and rapid procedure employing gel filtration on Superose-12 to measure the tetramer-dimer dissociation constants of some natural and recombinant hemoglobins in the oxy conformation is described. Natural sickle hemoglobin was chosen to verify the validity of the results by comparing the values with those reported using an independent method not based on gel filtration. Recombinant sickle hemoglobin, as well as a sickle double mutant with a substitution at the Val-6(beta) receptor site, had approximately the same dissociation constant as natural sickle hemoglobin. Of the two recombinant hemoglobins with amino acid replacements in the alpha 1 beta 2 subunit interface, one was found to be extensively dissociated and the other completely dissociated. In addition, the absence of an effect of the allosteric regulators DPG and IHP on the dissociation constant was demonstrated. Thus, a tetramer dissociation constant can now be determined readily and used together with other criteria for characterization of hemoglobins and their interaction with small regulatory molecules. PMID:8845768

  2. α6 integrin subunit regulates cerebellar development

    PubMed Central

    Marchetti, Giovanni; De Arcangelis, Adèle; Pfister, Véronique; Georges-Labouesse, Elisabeth

    2013-01-01

    Mutations in genes encoding several basal lamina components as well as their cellular receptors disrupt normal deposition and remodeling of the cortical basement membrane resulting in a disorganized cerebral and cerebellar cortex. The α6 integrin was the first α subunit associated with cortical lamination defects and formation of neural ectopias. In order to understand the precise role of α6 integrin in the central nervous system (CNS), we have generated mutant mice carrying specific deletion of α6 integrin in neuronal and glia precursors by crossing α6 conditional knockout mice with Nestin-Cre line. Cerebral cortex development occurred properly in the resulting α6fl/fl;nestin-Cre mutant animals. Interestingly, however, cerebellum displayed foliation pattern defects although granule cell (GC) proliferation and migration were not affected. Intriguingly, analysis of Bergmann glial (BG) scaffold revealed abnormalities in fibers morphology associated with reduced processes outgrowth and altered actin cytoskeleton. Overall, these data show that α6 integrin receptors are required in BG cells to provide a proper fissure formation during cerebellum morphogenesis. PMID:23722246

  3. Gel-based chemical cross-linking analysis of 20S proteasome subunit-subunit interactions in breast cancer.

    PubMed

    Song, Hai; Xiong, Hua; Che, Jing; Xi, Qing-Song; Huang, Liu; Xiong, Hui-Hua; Zhang, Peng

    2016-08-01

    The ubiquitin-proteasome system plays a pivotal role in breast tumorigenesis by controlling transcription factors, thus promoting cell cycle growth, and degradation of tumor suppressor proteins. However, breast cancer patients have failed to benefit from proteasome inhibitor treatment partially due to proteasome heterogeneity, which is poorly understood in malignant breast neoplasm. Chemical crosslinking is an increasingly important tool for mapping protein three-dimensional structures and proteinprotein interactions. In the present study, two cross-linkers, bis (sulfosuccinimidyl) suberate (BS(3)) and its water-insoluble analog disuccinimidyl suberate (DSS), were used to map the subunit-subunit interactions in 20S proteasome core particle (CP) from MDA-MB-231 cells. Different types of gel electrophoresis technologies were used. In combination with chemical cross-linking and mass spectrometry, we applied these gel electrophoresis technologies to the study of the noncovalent interactions among 20S proteasome subunits. Firstly, the CP subunit isoforms were profiled. Subsequently, using native/SDSPAGE, it was observed that 0.5 mmol/L BS(3) was a relatively optimal cross-linking concentration for CP subunit-subunit interaction study. 2-DE analysis of the cross-linked CP revealed that α1 might preinteract with α2, and α3 might pre-interact with α4. Moreover, there were different subtypes of α1α2 and α3α4 due to proteasome heterogeneity. There was no significant difference in cross-linking pattern for CP subunits between BS(3) and DSS. Taken together, the gel-based characterization in combination with chemical cross-linking could serve as a tool for the study of subunit interactions within a multi-subunit protein complex. The heterogeneity of 20S proteasome subunit observed in breast cancer cells may provide some key information for proteasome inhibition strategy. PMID:27465334

  4. Localization of beta and gamma subunits of ENaC in sensory nerve endings in the rat foot pad.

    PubMed

    Drummond, H A; Abboud, F M; Welsh, M J

    2000-11-24

    The molecular mechanisms underlying mechanoelectrical transduction and the receptors that detect light touch remain uncertain. Studies in Caenorhabditis elegans suggest that members of the DEG/ENaC cation channel family may be mechanoreceptors. Therefore, we tested the hypothesis that subunits of the mammalian epithelial Na(+) channel (ENaC) family are expressed in touch receptors in rat hairless skin. We detected betaENaC and gammaENaC, but not alphaENaC transcripts in ce