Sample records for channeling

  1. Precision gap particle separator

    DOEpatents

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  2. Communication Channel Estimation and Waveform Design: Time Delay Estimation on Parallel, Flat Fading Channels

    DTIC Science & Technology

    2010-02-01

    channels, so the channel gain is known on each realization and used in a coherent matched filter; and (c) Rayleigh channels with noncoherent matched...gain is known on each realization and used in a coherent matched filter (channel model 1A); and (c) Rayleigh channels with noncoherent matched filters...filters, averaged over Rayleigh channel realizations (channel model 1A). (b) Noncoherent matched filters with Rayleigh fading (channel model 3). MSEs are

  3. 47 CFR 90.531 - Band plan.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... power must not exceed 2 watts (ERP): Channels 1-8 paired with Channels 961-968, and Channels 949-958... 2 watts (ERP): Channels 9-12 paired with Channels 969-972 and Channels 959-960 paired with Channels...

  4. Differential Effects of TRPA and TRPV Channels on Behaviors of Caenorhabditis elegans

    PubMed Central

    Thies, Jennifer; Neutzler, Vanessa; O’Leary, Fidelma; Liu, He

    2016-01-01

    TRPA and TRPV ion channels are members of the transient receptor potential (TRP) cation channel superfamily, which mediates various sensory transductions. In Caenorhabditis elegans, the TRPV channels are known to affect chemosensation, while the TRPA-1 channel is associated with thermosensation and mechanosensation. We examined thermosensation, chemosensation, and osmosensation in strains lacking TRPA-1 or TRPV channels. We found that TRPV channel knockout worms exhibited similar behavioral deficits associated with thermotaxis as the TRPA-1 channel knockout, suggesting a dual role for TRPV channels. In contrast, chemosensation responses, assessed by both avoidance reversal behavior and NaCl osmosensation, were dependent on TRPV channels but seemed independent of TRPA-1 channel. Our findings suggest that, in addition to TRPA-1 channel, TRPV channels are necessary for thermotaxis and may activate, or modulate, the function of TRPA-1 channels. In contrast, TRPA-1 channels do not have a dual responsibility, as they have no functional role in odorant avoidance or osmosensation. PMID:27168724

  5. Landscape assessment of side channel plugs and associated cumulative side channel attrition across a large river floodplain.

    PubMed

    Reinhold, Ann Marie; Poole, Geoffrey C; Bramblett, Robert G; Zale, Alexander V; Roberts, David W

    2018-04-24

    Determining the influences of anthropogenic perturbations on side channel dynamics in large rivers is important from both assessment and monitoring perspectives because side channels provide critical habitat to numerous aquatic species. Side channel extents are decreasing in large rivers worldwide. Although riprap and other linear structures have been shown to reduce side channel extents in large rivers, we hypothesized that small "anthropogenic plugs" (flow obstructions such as dikes or berms) across side channels modify whole-river geomorphology via accelerating side channel senescence. To test this hypothesis, we conducted a geospatial assessment, comparing digitized side channel areas from aerial photographs taken during the 1950s and 2001 along 512 km of the Yellowstone River floodplain. We identified longitudinal patterns of side channel recruitment (created/enlarged side channels) and side channel attrition (destroyed/senesced side channels) across n = 17 river sections within which channels were actively migrating. We related areal measures of recruitment and attrition to the density of anthropogenic side channel plugs across river sections. Consistent with our hypothesis, a positive spatial relationship existed between the density of anthropogenic plugs and side channel attrition, but no relationship existed between plug density and side channel recruitment. Our work highlights important linkages among side channel plugs and the persistence and restoration of side channels across floodplain landscapes. Specifically, management of small plugs represents a low-cost, high-benefit restoration opportunity to facilitate scouring flows in side channels to enable the persistence of these habitats over time.

  6. Channel function reconstitution and re-animation: a single-channel strategy in the postcrystal age

    PubMed Central

    Oiki, Shigetoshi

    2015-01-01

    The most essential properties of ion channels for their physiologically relevant functions are ion-selective permeation and gating. Among the channel species, the potassium channel is primordial and the most ubiquitous in the biological world, and knowledge of this channel underlies the understanding of features of other ion channels. The strategy applied to studying channels changed dramatically after the crystal structure of the potassium channel was resolved. Given the abundant structural information available, we exploited the bacterial KcsA potassium channel as a simple model channel. In the postcrystal age, there are two effective frameworks with which to decipher the functional codes present in the channel structure, namely reconstitution and re-animation. Complex channel proteins are decomposed into essential functional components, and well-examined parts are rebuilt for integrating channel function in the membrane (reconstitution). Permeation and gating are dynamic operations, and one imagines the active channel by breathing life into the ‘frozen’ crystal (re-animation). Capturing the motion of channels at the single-molecule level is necessary to characterize the behaviour of functioning channels. Advanced techniques, including diffracted X-ray tracking, lipid bilayer methods and high-speed atomic force microscopy, have been used. Here, I present dynamic pictures of the KcsA potassium channel from the submolecular conformational changes to the supramolecular collective behaviour of channels in the membrane. These results form an integrated picture of the active channel and offer insights into the processes underlying the physiological function of the channel in the cell membrane. PMID:25833254

  7. Channel function reconstitution and re-animation: a single-channel strategy in the postcrystal age.

    PubMed

    Oiki, Shigetoshi

    2015-06-15

    The most essential properties of ion channels for their physiologically relevant functions are ion-selective permeation and gating. Among the channel species, the potassium channel is primordial and the most ubiquitous in the biological world, and knowledge of this channel underlies the understanding of features of other ion channels. The strategy applied to studying channels changed dramatically after the crystal structure of the potassium channel was resolved. Given the abundant structural information available, we exploited the bacterial KcsA potassium channel as a simple model channel. In the postcrystal age, there are two effective frameworks with which to decipher the functional codes present in the channel structure, namely reconstitution and re-animation. Complex channel proteins are decomposed into essential functional components, and well-examined parts are rebuilt for integrating channel function in the membrane (reconstitution). Permeation and gating are dynamic operations, and one imagines the active channel by breathing life into the 'frozen' crystal (re-animation). Capturing the motion of channels at the single-molecule level is necessary to characterize the behaviour of functioning channels. Advanced techniques, including diffracted X-ray tracking, lipid bilayer methods and high-speed atomic force microscopy, have been used. Here, I present dynamic pictures of the KcsA potassium channel from the submolecular conformational changes to the supramolecular collective behaviour of channels in the membrane. These results form an integrated picture of the active channel and offer insights into the processes underlying the physiological function of the channel in the cell membrane. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  8. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.

    1988-01-01

    The geomorphology of Mars is discussed, focusing on the Martian channels. The great flood channels of Mars, the processes of channel erosion, and dendritic channel networks, are examined. The topography of the Channeled Scabland region of the northwestern U.S. is described and compared to the Martian channels. The importance of water in the evolution of the channel systems is considered.

  9. Transmission electron microscope cells for use with liquid samples

    DOEpatents

    Khalid, Waqas; Alivisatos, Paul A.; Zettl, Alexander K.

    2016-08-09

    This disclosure provides systems, methods, and devices related to transmission electron microscopy cells for use with liquids. In one aspect a device includes a substrate, a first graphene layer, and a second graphene layer. The substrate has a first surface and a second surface. The first surface defines a first channel, a second channel, and an outlet channel. The first channel and the second channel are joined to the outlet channel. The outlet channel defines a viewport region forming a though hole in the substrate. The first graphene layer overlays the first surface of the substrate, including an interior area of the first channel, the second channel, and the outlet channel. The second graphene layer overlays the first surface of the substrate, including open regions defined by the first channel, the second channel, and the outlet channel.

  10. Landscape assessment of side channel plugs and associated cumulative side channel attrition across a large river floodplain

    USGS Publications Warehouse

    Reinhold, Ann Marie; Poole, Geoffrey C.; Bramblett, Robert G.; Zale, Alexander V.; Roberts, David W.

    2018-01-01

    Determining the influences of anthropogenic perturbations on side channel dynamics in large rivers is important from both assessment and monitoring perspectives because side channels provide critical habitat to numerous aquatic species. Side channel extents are decreasing in large rivers worldwide. Although riprap and other linear structures have been shown to reduce side channel extents in large rivers, we hypothesized that small “anthropogenic plugs” (flow obstructions such as dikes or berms) across side channels modify whole-river geomorphology via accelerating side channel senescence. To test this hypothesis, we conducted a geospatial assessment, comparing digitized side channel areas from aerial photographs taken during the 1950s and 2001 along 512 km of the Yellowstone River floodplain. We identified longitudinal patterns of side channel recruitment (created/enlarged side channels) and side channel attrition (destroyed/senesced side channels) across n = 17 river sections within which channels were actively migrating. We related areal measures of recruitment and attrition to the density of anthropogenic side channel plugs across river sections. Consistent with our hypothesis, a positive spatial relationship existed between the density of anthropogenic plugs and side channel attrition, but no relationship existed between plug density and side channel recruitment. Our work highlights important linkages among side channel plugs and the persistence and restoration of side channels across floodplain landscapes. Specifically, management of small plugs represents a low-cost, high-benefit restoration opportunity to facilitate scouring flows in side channels to enable the persistence of these habitats over time.

  11. Quantum-capacity-approaching codes for the detected-jump channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassl, Markus; Wei Zhaohui; Ji Zhengfeng

    2010-12-15

    The quantum-channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasuresmore » and bit flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity-approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel.« less

  12. CNG and HCN channels: two peas, one pod.

    PubMed

    Craven, Kimberley B; Zagotta, William N

    2006-01-01

    Cyclic nucleotide-activated ion channels play a fundamental role in a variety of physiological processes. By opening in response to intracellular cyclic nucleotides, they translate changes in concentrations of signaling molecules to changes in membrane potential. These channels belong to two families: the cyclic nucleotide-gated (CNG) channels and the hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels. The two families exhibit high sequence similarity and belong to the superfamily of voltage-gated potassium channels. Whereas HCN channels are activated by voltage and CNG channels are virtually voltage independent, both channels are activated by cyclic nucleotide binding. Furthermore, the channels are thought to have similar channel structures, leading to similar mechanisms of activation by cyclic nucleotides. However, although these channels are structurally and behaviorally similar, they have evolved to perform distinct physiological functions. This review describes the physiological roles and biophysical behavior of CNG and HCN channels. We focus on how similarities in structure and activation mechanisms result in common biophysical models, allowing CNG and HCN channels to be viewed as a single genre.

  13. Potassium channels in brain mitochondria.

    PubMed

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify their molecular correlates.

  14. Background and tandem-pore potassium channels in magnocellular neurosecretory cells of the rat supraoptic nucleus

    PubMed Central

    Han, Jaehee; Gnatenco, Carmen; Sladek, Celia D; Kim, Donghee

    2003-01-01

    Magnocellular neurosecretory cells (MNCs) were isolated from the supraoptic nucleus of rat hypothalamus, and properties of K+ channels that may regulate the resting membrane potential and the excitability of MNCs were studied. MNCs showed large transient outward currents, typical of vasopressin- and oxytocin-releasing neurons. K+ channels in MNCs were identified by recording K+ channels that were open at rest in cell-attached and inside-out patches in symmetrical 150 mm KCl. Eight different K+ channels were identified and could be distinguished unambiguously by their single-channel kinetics and voltage-dependent rectification. Two K+ channels could be considered functional correlates of TASK-1 and TASK-3, as judged by their single-channel kinetics and high sensitivity to pHo. Three K+ channels showed properties similar to TREK-type tandem-pore K+ channels (TREK-1, TREK-2 and a novel TREK), as judged by their activation by membrane stretch, intracellular acidosis and arachidonic acid. One K+ channel was activated by application of pressure, arachidonic acid and alkaline pHi, and showed single-channel kinetics indistinguishable from those of TRAAK. One K+ channel showed strong inward rectification and single-channel conductance similar to those of a classical inward rectifier, IRK3. Finally, a K+ channel whose cloned counterpart has not yet been identified was highly sensitive to extracellular pH near the physiological range similar to those of TASK channels, and was the most active among all K+ channels. Our results show that in MNCs at rest, eight different types of K+ channels can be found and six of them belong to the tandem-pore K+ channel family. Various physiological and pathophysiological conditions may modulate these K+ channels and regulate the excitability of MNCs. PMID:12562991

  15. Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations*

    PubMed Central

    Martin, Gregory M.; Rex, Emily A.; Devaraneni, Prasanna; Denton, Jerod S.; Boodhansingh, Kara E.; DeLeon, Diva D.; Stanley, Charles A.; Shyng, Show-Ling

    2016-01-01

    ATP-sensitive potassium (KATP) channels play a key role in mediating glucose-stimulated insulin secretion by coupling metabolic signals to β-cell membrane potential. Loss of KATP channel function due to mutations in ABCC8 or KCNJ11, genes encoding the sulfonylurea receptor 1 (SUR1) or the inwardly rectifying potassium channel Kir6.2, respectively, results in congenital hyperinsulinism. Many SUR1 mutations prevent trafficking of channel proteins from the endoplasmic reticulum to the cell surface. Channel inhibitors, including sulfonylureas and carbamazepine, have been shown to correct channel trafficking defects. In the present study, we identified 13 novel SUR1 mutations that cause channel trafficking defects, the majority of which are amenable to pharmacological rescue by glibenclamide and carbamazepine. By contrast, none of the mutant channels were rescued by KATP channel openers. Cross-linking experiments showed that KATP channel inhibitors promoted interactions between the N terminus of Kir6.2 and SUR1, whereas channel openers did not, suggesting the inhibitors enhance intersubunit interactions to overcome channel biogenesis and trafficking defects. Functional studies of rescued mutant channels indicate that most mutants rescued to the cell surface exhibited WT-like sensitivity to ATP, MgADP, and diazoxide. In intact cells, recovery of channel function upon trafficking rescue by reversible sulfonylureas or carbamazepine was facilitated by the KATP channel opener diazoxide. Our study expands the list of KATP channel trafficking mutations whose function can be recovered by pharmacological ligands and provides further insight into the structural mechanism by which channel inhibitors correct channel biogenesis and trafficking defects. PMID:27573238

  16. A new Infrared Atmospheric Sounding Interferometer channel selection and assessment of its impact on Met Office NWP forecasts

    NASA Astrophysics Data System (ADS)

    Noh, Young-Chan; Sohn, Byung-Ju; Kim, Yoonjae; Joo, Sangwon; Bell, William; Saunders, Roger

    2017-11-01

    A new set of Infrared Atmospheric Sounding Interferometer (IASI) channels was re-selected from 314 EUMETSAT channels. In selecting channels, we calculated the impact of the individually added channel on the improvement in the analysis outputs from a one-dimensional variational analysis (1D-Var) for the Unified Model (UM) data assimilation system at the Met Office, using the channel score index (CSI) as a figure of merit. Then, 200 channels were selected in order by counting each individual channel's CSI contribution. Compared with the operationally used 183 channels for the UM at the Met Office, the new set shares 149 channels, while the other 51 channels are new. Also examined is the selection from the entropy reduction method with the same 1D-Var approach. Results suggest that channel selection can be made in a more objective fashion using the proposed CSI method. This is because the most important channels can be selected across the whole IASI observation spectrum. In the experimental trial runs using the UM global assimilation system, the new channels had an overall neutral impact in terms of improvement in forecasts, as compared with results from the operational channels. However, upper-tropospheric moist biases shown in the control run with operational channels were significantly reduced in the experimental trial with the newly selected channels. The reduction of moist biases was mainly due to the additional water vapor channels, which are sensitive to the upper-tropospheric water vapor.

  17. Modulation frequency discrimination with single and multiple channels in cochlear implant users

    PubMed Central

    Galvin, John J.; Oba, Sandy; Başkent, Deniz; Fu, Qian-Jie

    2015-01-01

    Temporal envelope cues convey important speech information for cochlear implant (CI) users. Many studies have explored CI users’ single-channel temporal envelope processing. However, in clinical CI speech processors, temporal envelope information is processed by multiple channels. Previous studies have shown that amplitude modulation frequency discrimination (AMFD) thresholds are better when temporal envelopes are delivered to multiple rather than single channels. In clinical fitting, current levels on single channels must often be reduced to accommodate multi-channel loudness summation. As such, it is unclear whether the multi-channel advantage in AMFD observed in previous studies was due to coherent envelope information distributed across the cochlea or to greater loudness associated with multi-channel stimulation. In this study, single- and multi-channel AMFD thresholds were measured in CI users. Multi-channel component electrodes were either widely or narrowly spaced to vary the degree of overlap between neural populations. The reference amplitude modulation (AM) frequency was 100 Hz, and coherent modulation was applied to all channels. In Experiment 1, single- and multi-channel AMFD thresholds were measured at similar loudness. In this case, current levels on component channels were higher for single- than for multi-channel AM stimuli, and the modulation depth was approximately 100% of the perceptual dynamic range (i.e., between threshold and maximum acceptable loudness). Results showed no significant difference in AMFD thresholds between similarly loud single- and multi-channel modulated stimuli. In Experiment 2, single- and multi-channel AMFD thresholds were compared at substantially different loudness. In this case, current levels on component channels were the same for single-and multi-channel stimuli (“summation-adjusted” current levels) and the same range of modulation (in dB) was applied to the component channels for both single- and multi-channel testing. With the summation-adjusted current levels, loudness was lower with single than with multiple channels and the AM depth resulted in substantial stimulation below single-channel audibility, thereby reducing the perceptual range of AM. Results showed that AMFD thresholds were significantly better with multiple channels than with any of the single component channels. There was no significant effect of the distribution of electrodes on multi-channel AMFD thresholds. The results suggest that increased loudness due to multi-channel summation may contribute to the multi-channel advantage in AMFD, and that that overall loudness may matter more than the distribution of envelope information in the cochlea. PMID:25746914

  18. Capacity of PPM on Gaussian and Webb Channels

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Dolinar, S.; Pollara, F.; Hamkins, J.

    2000-01-01

    This paper computes and compares the capacities of M-ary PPM on various idealized channels that approximate the optical communication channel: (1) the standard additive white Gaussian noise (AWGN) channel;(2) a more general AWGN channel (AWGN2) allowing different variances in signal and noise slots;(3) a Webb-distributed channel (Webb2);(4) a Webb+Gaussian channel, modeling Gaussian thermal noise added to Webb-distributed channel outputs.

  19. [Study on the white channel system carved on the wooden acupoint figurine of Laoguanshan: comments on lacquer-coating acupoint figure].

    PubMed

    Liu, Chengzhong

    2018-02-12

    There are two systems as the red channel system and the white channel system carved or painted on the wooden figurine of Laoguanshan of Benque school. The two systems are horizontally staggered each other without overlapped. The red channel system, similar to Shuangbaoshan wooden figurine, have channels, but without points. For the white channel system, the running courses of channels result from the sensation distributions of the points after optional stimulation. The Laoguanshan wooden figurine focuses on the illustration of the white channel system, named as white channel figurine. Compared with the Shuangbaoshan red channel figurine, together with examples, such as the running course of the white channel related to the meridian of heart-transfer-point, the white channel related to the belt vessel linking to lung-transfer-point, stomach-transfer-point and kidney-transfer-point, as well as the corresponding photographs. It is indicated that the Laoguanshan white channel figurine is a training aid for testing the sensation marching along channel (SMC) caused by transfer-point stimulation. The white channel system is a flexible way of channel. The study aims to observe the QI /SMC reaching the affected area and contributes to clinical practice. This discovery is not related to the "intermediate link theory" in the Yellow Emperor meridian system.

  20. Three-dimensional laser velocimeter simultaneity detector

    NASA Technical Reports Server (NTRS)

    Brown, James L. (Inventor)

    1990-01-01

    A three-dimensional laser Doppler velocimeter has laser optics for a first channel positioned to create a probe volume in space, and laser optics and for second and third channels, respectively, positioned to create entirely overlapping probe volumes in space. The probe volumes and overlap partially in space. The photodetector is positioned to receive light scattered by a particle present in the probe volume, while photodetectors and are positioned to receive light scattered by a particle present in the probe volume. The photodetector for the first channel is directly connected to provide a first channel analog signal to frequency measuring circuits. The first channel is therefore a primary channel for the system. Photodetectors and are respectively connected through a second channel analog signal attenuator to frequency measuring circuits and through a third channel analog signal attenuator to frequency measuring circuits. The second and third channels are secondary channels, with the second and third channels analog signal attenuators and controlled by the first channel measurement burst signal on line. The second and third channels analog signal attenuators and attenuate the second and third channels analog signals only when the measurement burst signal is false.

  1. Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs

    PubMed Central

    Yeoum, Sanggil; Kang, Byungseok; Lee, Jinkyu; Choo, Hyunseung

    2017-01-01

    Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs). While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources) optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes. PMID:28471416

  2. Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs.

    PubMed

    Yeoum, Sanggil; Kang, Byungseok; Lee, Jinkyu; Choo, Hyunseung

    2017-05-04

    Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs). While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources) optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes.

  3. Use of navigation channels by Lake Sturgeon: Does channelization increase vulnerability of fish to ship strikes?

    PubMed

    Hondorp, Darryl W; Bennion, David H; Roseman, Edward F; Holbrook, Christopher M; Boase, James C; Chiotti, Justin A; Thomas, Michael V; Wills, Todd C; Drouin, Richard G; Kessel, Steven T; Krueger, Charles C

    2017-01-01

    Channelization for navigation and flood control has altered the hydrology and bathymetry of many large rivers with unknown consequences for fish species that undergo riverine migrations. In this study, we investigated whether altered flow distributions and bathymetry associated with channelization attracted migrating Lake Sturgeon (Acipenser fulvescens) into commercial navigation channels, potentially increasing their exposure to ship strikes. To address this question, we quantified and compared Lake Sturgeon selection for navigation channels vs. alternative pathways in two multi-channel rivers differentially affected by channelization, but free of barriers to sturgeon movement. Acoustic telemetry was used to quantify Lake Sturgeon movements. Under the assumption that Lake Sturgeon navigate by following primary flow paths, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River were expected to choose navigation channels over alternative pathways and to exhibit greater selection for navigation channels than conspecifics in the less-channelized lower St. Clair River. Consistent with these predictions, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River selected the higher-flow and deeper navigation channels over alternative migration pathways, whereas in the less-channelized lower St. Clair River, individuals primarily used pathways alternative to navigation channels. Lake Sturgeon selection for navigation channels as migratory pathways also was significantly higher in the more-channelized lower Detroit River than in the less-channelized lower St. Clair River. We speculated that use of navigation channels over alternative pathways would increase the spatial overlap of commercial vessels and migrating Lake Sturgeon, potentially enhancing their vulnerability to ship strikes. Results of our study thus demonstrated an association between channelization and the path use of migrating Lake Sturgeon that could prove important for predicting sturgeon-vessel interactions in navigable rivers as well as for understanding how fish interact with their habitat in landscapes altered by human activity.

  4. Use of navigation channels by Lake Sturgeon: Does channelization increase vulnerability of fish to ship strikes?

    PubMed Central

    Bennion, David H.; Roseman, Edward F.; Holbrook, Christopher M.; Boase, James C.; Chiotti, Justin A.; Thomas, Michael V.; Wills, Todd C.; Drouin, Richard G.; Kessel, Steven T.; Krueger, Charles C.

    2017-01-01

    Channelization for navigation and flood control has altered the hydrology and bathymetry of many large rivers with unknown consequences for fish species that undergo riverine migrations. In this study, we investigated whether altered flow distributions and bathymetry associated with channelization attracted migrating Lake Sturgeon (Acipenser fulvescens) into commercial navigation channels, potentially increasing their exposure to ship strikes. To address this question, we quantified and compared Lake Sturgeon selection for navigation channels vs. alternative pathways in two multi-channel rivers differentially affected by channelization, but free of barriers to sturgeon movement. Acoustic telemetry was used to quantify Lake Sturgeon movements. Under the assumption that Lake Sturgeon navigate by following primary flow paths, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River were expected to choose navigation channels over alternative pathways and to exhibit greater selection for navigation channels than conspecifics in the less-channelized lower St. Clair River. Consistent with these predictions, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River selected the higher-flow and deeper navigation channels over alternative migration pathways, whereas in the less-channelized lower St. Clair River, individuals primarily used pathways alternative to navigation channels. Lake Sturgeon selection for navigation channels as migratory pathways also was significantly higher in the more-channelized lower Detroit River than in the less-channelized lower St. Clair River. We speculated that use of navigation channels over alternative pathways would increase the spatial overlap of commercial vessels and migrating Lake Sturgeon, potentially enhancing their vulnerability to ship strikes. Results of our study thus demonstrated an association between channelization and the path use of migrating Lake Sturgeon that could prove important for predicting sturgeon-vessel interactions in navigable rivers as well as for understanding how fish interact with their habitat in landscapes altered by human activity. PMID:28678798

  5. Alternative Splicing Generates a Novel Truncated Cav1.2 Channel in Neonatal Rat Heart*

    PubMed Central

    Liao, Ping; Yu, Dejie; Hu, Zhenyu; Liang, Mui Cheng; Wang, Jue Jin; Yu, Chye Yun; Ng, Gandi; Yong, Tan Fong; Soon, Jia Lin; Chua, Yeow Leng; Soong, Tuck Wah

    2015-01-01

    L-type Cav1.2 Ca2+ channel undergoes extensive alternative splicing, generating functionally different channels. Alternatively spliced Cav1.2 Ca2+ channels have been found to be expressed in a tissue-specific manner or under pathological conditions. To provide a more comprehensive understanding of alternative splicing in Cav1.2 channel, we systematically investigated the splicing patterns in the neonatal and adult rat hearts. The neonatal heart expresses a novel 104-bp exon 33L at the IVS3-4 linker that is generated by the use of an alternative acceptor site. Inclusion of exon 33L causes frameshift and C-terminal truncation. Whole-cell electrophysiological recordings of Cav1.233L channels expressed in HEK 293 cells did not detect any current. However, when co-expressed with wild type Cav1.2 channels, Cav1.233L channels reduced the current density and altered the electrophysiological properties of the wild type Cav1.2 channels. Interestingly, the truncated 3.5-domain Cav1.233L channels also yielded a dominant negative effect on Cav1.3 channels, but not on Cav3.2 channels, suggesting that Cavβ subunits is required for Cav1.233L regulation. A biochemical study provided evidence that Cav1.233L channels enhanced protein degradation of wild type channels via the ubiquitin-proteasome system. Although the physiological significance of the Cav1.233L channels in neonatal heart is still unknown, our report demonstrates the ability of this novel truncated channel to modulate the activity of the functional Cav1.2 channels. Moreover, the human Cav1.2 channel also contains exon 33L that is developmentally regulated in heart. Unexpectedly, human exon 33L has a one-nucleotide insertion that allowed in-frame translation of a full Cav1.2 channel. An electrophysiological study showed that human Cav1.233L channel is a functional channel but conducts Ca2+ ions at a much lower level. PMID:25694430

  6. Effects of channel noise on firing coherence of small-world Hodgkin-Huxley neuronal networks

    NASA Astrophysics Data System (ADS)

    Sun, X. J.; Lei, J. Z.; Perc, M.; Lu, Q. S.; Lv, S. J.

    2011-01-01

    We investigate the effects of channel noise on firing coherence of Watts-Strogatz small-world networks consisting of biophysically realistic HH neurons having a fraction of blocked voltage-gated sodium and potassium ion channels embedded in their neuronal membranes. The intensity of channel noise is determined by the number of non-blocked ion channels, which depends on the fraction of working ion channels and the membrane patch size with the assumption of homogeneous ion channel density. We find that firing coherence of the neuronal network can be either enhanced or reduced depending on the source of channel noise. As shown in this paper, sodium channel noise reduces firing coherence of neuronal networks; in contrast, potassium channel noise enhances it. Furthermore, compared with potassium channel noise, sodium channel noise plays a dominant role in affecting firing coherence of the neuronal network. Moreover, we declare that the observed phenomena are independent of the rewiring probability.

  7. Adaptive gain and filtering circuit for a sound reproduction system

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor)

    1998-01-01

    Adaptive compressive gain and level dependent spectral shaping circuitry for a hearing aid include a microphone to produce an input signal and a plurality of channels connected to a common circuit output. Each channel has a preset frequency response. Each channel includes a filter with a preset frequency response to receive the input signal and to produce a filtered signal, a channel amplifier to amplify the filtered signal to produce a channel output signal, a threshold register to establish a channel threshold level, and a gain circuit. The gain circuit increases the gain of the channel amplifier when the channel output signal falls below the channel threshold level and decreases the gain of the channel amplifier when the channel output signal rises above the channel threshold level. A transducer produces sound in response to the signal passed by the common circuit output.

  8. Diadenosine tetraphosphate-gating of recombinant pancreatic ATP-sensitive K(+) channels.

    PubMed

    Jovanovic, S; Jovanovic, A

    2001-02-01

    Diadenosine tetraphosphate (Ap4A) has been recently discovered in the pancreatic beta cells where targets ATP-sensitive K(+) (K(ATP)) channels, depolarizes the cell membrane and induces insulin secretion. However, whether Ap4A inhibit pancreatic K(ATP) channels by targeting protein channel complex itself was unknown. Therefore, we coexpressed pancreatic K(ATP) channel subunits, Kir6.2 and SUR1, in COS-7 cells and examined the effect of Ap4A on the single channel behavior using the inside-out configuration of the patch-clamp technique. Ap4A inhibited channel opening in a concentration-dependent manner. Analysis of single channels demonstrated that Ap4A did not change intraburst kinetic behavior of K(ATP) channels, but rather decreased burst duration and increased between-burst duration. It is concluded that Ap4A antagonizes K(ATP) channel opening by targeting channel subunits themselves and by keeping channels longer in closed interburst states.

  9. Grafting voltage and pharmacological sensitivity in potassium channels.

    PubMed

    Lan, Xi; Fan, Chunyan; Ji, Wei; Tian, Fuyun; Xu, Tao; Gao, Zhaobing

    2016-08-01

    A classical voltage-gated ion channel consists of four voltage-sensing domains (VSDs). However, the roles of each VSD in the channels remain elusive. We developed a GVTDT (Graft VSD To Dimeric TASK3 channels that lack endogenous VSDs) strategy to produce voltage-gated channels with a reduced number of VSDs. TASK3 channels exhibit a high host tolerance to VSDs of various voltage-gated ion channels without interfering with the intrinsic properties of the TASK3 selectivity filter. The constructed channels, exemplified by the channels grafted with one or two VSDs from Kv7.1 channels, exhibit classical voltage sensitivity, including voltage-dependent opening and closing. Furthermore, the grafted Kv7.1 VSD transfers the potentiation activity of benzbromarone, an activator that acts on the VSDs of the donor channels, to the constructed channels. Our study indicates that one VSD is sufficient to voltage-dependently gate the pore and provides new insight into the roles of VSDs.

  10. Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations.

    PubMed

    Martin, Gregory M; Rex, Emily A; Devaraneni, Prasanna; Denton, Jerod S; Boodhansingh, Kara E; DeLeon, Diva D; Stanley, Charles A; Shyng, Show-Ling

    2016-10-14

    ATP-sensitive potassium (K ATP ) channels play a key role in mediating glucose-stimulated insulin secretion by coupling metabolic signals to β-cell membrane potential. Loss of K ATP channel function due to mutations in ABCC8 or KCNJ11, genes encoding the sulfonylurea receptor 1 (SUR1) or the inwardly rectifying potassium channel Kir6.2, respectively, results in congenital hyperinsulinism. Many SUR1 mutations prevent trafficking of channel proteins from the endoplasmic reticulum to the cell surface. Channel inhibitors, including sulfonylureas and carbamazepine, have been shown to correct channel trafficking defects. In the present study, we identified 13 novel SUR1 mutations that cause channel trafficking defects, the majority of which are amenable to pharmacological rescue by glibenclamide and carbamazepine. By contrast, none of the mutant channels were rescued by K ATP channel openers. Cross-linking experiments showed that K ATP channel inhibitors promoted interactions between the N terminus of Kir6.2 and SUR1, whereas channel openers did not, suggesting the inhibitors enhance intersubunit interactions to overcome channel biogenesis and trafficking defects. Functional studies of rescued mutant channels indicate that most mutants rescued to the cell surface exhibited WT-like sensitivity to ATP, MgADP, and diazoxide. In intact cells, recovery of channel function upon trafficking rescue by reversible sulfonylureas or carbamazepine was facilitated by the K ATP channel opener diazoxide. Our study expands the list of K ATP channel trafficking mutations whose function can be recovered by pharmacological ligands and provides further insight into the structural mechanism by which channel inhibitors correct channel biogenesis and trafficking defects. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Influence of alluvial cover and lithology on the adjustment characteristics of semi-alluvial bedrock channels

    NASA Astrophysics Data System (ADS)

    Ferguson, Sean P.; Rennie, Colin D.

    2017-05-01

    A growing body of research has focused on evaluating the adjustment characteristics of semi-alluvial channels containing proximate bedrock, mixed, and alluvial sections. Active orogens have been the focus of most empirical field-based studies with comparatively less focus on semi-alluvial bedrock channels located in other regions. In this study, we present an inventory of channel geometry data collected from semi-alluvial bedrock channels in Ontario and Québec, Canada, which are not subject to tectonic uplift. Data were sourced from a variety of physiographic settings, permitting evaluation of the influence of alluvial cover, lithology, and gradient on cross-sectional channel form. Our results show no substantial difference in channel width or scaling behaviour amongst bedrock, mixed, and alluvial channels included in our study, except for sedimentary bedrock channels virtually bare of alluvial cover that represent a uniquely wide, distinct subgroup. Channel gradient does not appear to exhibit any observable control on channel width amongst our study rivers, suggesting that sedimentary bedrock channels form a distinct subgroup because of lithology. Comparatively, the widths of our bedrock channels formed in igneous/metamorphic bedrock are comparable to the widths of mixed channels and alluvial channels for a given discharge and drainage area. Our findings also suggest that cross-sectional adjustment of sedimentary bedrock channels is achieved through lateral erosion of the channel banks and downward erosion of the channel bed, whereas cross-sectional adjustment of igneous/metamorphic bedrock is primarily achieved through downward erosion of the bed with limited lateral erosion of the banks.

  12. Differences between main-channel and off-channel food webs in the upper Mississippi River revealed by fatty acid profiles of consumers

    USGS Publications Warehouse

    Larson, James H.; Bartsch, Michelle; Gutreuter, Steve; Knights, Brent C.; Bartsch, Lynn; Richardson, William B.; Vallazza, Jonathan M.; Arts, Michael T.

    2015-01-01

    Large river systems are often thought to contain a mosaic of patches with different habitat characteristics driven by differences in flow and mixing environments. Off-channel habitats (e.g., backwater areas, secondary channels) can become semi-isolated from main-channel water inputs, leading to the development of distinct biogeochemical environments. Observations of adult bluegill (Lepomis macrochirus) in the main channel of the Mississippi River led to speculation that the main channel offered superior food resources relative to off-channel areas. One important aspect of food quality is the quantity and composition of polyunsaturated fatty acids (PUFA). We sampled consumers from main-channel and backwater habitats to determine whether they differed in PUFA content. Main-channel individuals for relatively immobile species (young-of-year bluegill, zebra mussels [Dreissena polymorpha], and plain pocketbook mussels [Lampsilis cardium]) had significantly greater PUFA content than off-channel individuals. No difference in PUFA was observed for the more mobile gizzard shad (Dorsoma cepedianum), which may move between main-channel and off-channel habitats even at early life-history stages. As off-channel habitats become isolated from main-channel waters, flow and water column nitrogen decrease, potentially improving conditions for nitrogen-fixing cyanobacteria and vascular plants that, in turn, have low PUFA content. We conclude that main-channel food webs of the upper Mississippi River provide higher quality food resources for some riverine consumers as compared to food webs in off-channel habitats.

  13. A linearization of quantum channels

    NASA Astrophysics Data System (ADS)

    Crowder, Tanner

    2015-06-01

    Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.

  14. Quantum incompatibility of channels with general outcome operator algebras

    NASA Astrophysics Data System (ADS)

    Kuramochi, Yui

    2018-04-01

    A pair of quantum channels is said to be incompatible if they cannot be realized as marginals of a single channel. This paper addresses the general structure of the incompatibility of completely positive channels with a fixed quantum input space and with general outcome operator algebras. We define a compatibility relation for such channels by identifying the composite outcome space as the maximal (projective) C*-tensor product of outcome algebras. We show theorems that characterize this compatibility relation in terms of the concatenation and conjugation of channels, generalizing the recent result for channels with quantum outcome spaces. These results are applied to the positive operator valued measures (POVMs) by identifying each of them with the corresponding quantum-classical (QC) channel. We also give a characterization of the maximality of a POVM with respect to the post-processing preorder in terms of the conjugate channel of the QC channel. We consider another definition of compatibility of normal channels by identifying the composite outcome space with the normal tensor product of the outcome von Neumann algebras. We prove that for a given normal channel, the class of normally compatible channels is upper bounded by a special class of channels called tensor conjugate channels. We show the inequivalence of the C*- and normal compatibility relations for QC channels, which originates from the possibility and impossibility of copying operations for commutative von Neumann algebras in C*- and normal compatibility relations, respectively.

  15. Harnessing the Flow of Excitation: TRP, Voltage-Gated Na(+), and Voltage-Gated Ca(2+) Channels in Contemporary Medicine.

    PubMed

    Frolov, Roman V; Weckström, Matti

    2016-01-01

    Cellular signaling in both excitable and nonexcitable cells involves several classes of ion channels. Some of them are of minor importance, with very specialized roles in physiology, but here we concentrate on three major channel classes: TRP (transient receptor potential channels), voltage-gated sodium channels (Nav), and voltage-gated calcium channels (Cav). Here, we first propose a conceptual framework binding together all three classes of ion channels, a "flow-of-excitation model" that takes into account the inputs mediated by TRP and other similar channels, the outputs invariably provided by Cav channels, and the regenerative transmission of signals in the neural networks, for which Nav channels are responsible. We use this framework to examine the function, structure, and pharmacology of these channel classes both at cellular and also at whole-body physiological level. Building on that basis we go through the pathologies arising from the direct or indirect malfunction of the channels, utilizing ion channel defects, the channelopathies. The pharmacological interventions affecting these channels are numerous. Part of those are well-established treatments, like treatment of hypertension or some forms of epilepsy, but many other are deeply problematic due to poor drug specificity, ion channel diversity, and widespread expression of the channels in tissues other than those actually targeted. © 2016 Elsevier Inc. All rights reserved.

  16. Lightning energetics: Estimates of energy dissipation in channels, channel radii, and channel-heating risetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovsky, J.E.

    1998-05-01

    In this report, several lightning-channel parameters are calculated with the aid of an electrodynamic model of lightning. The electrodynamic model describes dart leaders and return strokes as electromagnetic waves that are guided along conducting lightning channels. According to the model, electrostatic energy is delivered to the channel by a leader, where it is stored around the outside of the channel; subsequently, the return stroke dissipates this locally stored energy. In this report this lightning-energy-flow scenario is developed further. Then the energy dissipated per unit length in lightning channels is calculated, where this quantity is now related to the linear chargemore » density on the channel, not to the cloud-to-ground electrostatic potential difference. Energy conservation is then used to calculate the radii of lightning channels: their initial radii at the onset of return strokes and their final radii after the channels have pressure expanded. Finally, the risetimes for channel heating during return strokes are calculated by defining an energy-storage radius around the channel and by estimating the radial velocity of energy flow toward the channel during a return stroke. In three appendices, values for the linear charge densities on lightning channels are calculated, estimates of the total length of branch channels are obtained, and values for the cloud-to-ground electrostatic potential difference are estimated. {copyright} 1998 American Geophysical Union« less

  17. Impact of a large flood on mountain river habitats, channel morphology, and valley infrastructure

    NASA Astrophysics Data System (ADS)

    Hajdukiewicz, Hanna; Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Radecki-Pawlik, Artur

    2016-11-01

    The Biała River, Polish Carpathians, was considerably modified by channelization and channel incision in the twentieth century. To restore the Biała, establishing an erodible corridor was proposed in two river sections located in its mountain and foothill course. In these sections, longer, unmanaged channel reaches alternate with short, channelized reaches; and channel narrowing and incision increases in the downstream direction. In June 2010 an 80-year flood occurred on the river; and this study aims at determining its effects on physical habitat conditions for river biota, channel morphology, and valley-floor infrastructure. Surveys of 10 pairs of closely located, unmanaged and channelized cross sections, performed in 2009 and in the late summer 2010, allowed us to assess the flood-induced changes to physical habitat conditions. A comparison of channel planforms determined before (2009) and after (2012) the flood provided information on the degree of channel widening as well as changes in the width of particular elements of the river's active zone in eight stretches of the Biała. The impact of the flood on valley-floor infrastructure was confronted with the degree of river widening in unmanaged and channelized river reaches. Before the flood, unmanaged cross sections were typified by finer bed material and greater lateral variability in depth-averaged and near-bed flow velocity than channelized cross sections. The flood tended to equalize habitat conditions in both types of river cross sections, obliterating differences (in particular physical habitat parameters) between channelized and unmanaged channel reaches. River widening mostly reflected an increase in the area of channel bars, whereas the widening of low-flow channels was less pronounced. A comparison of channel planform from 2009 and 2012 indicated that intense channel incision typical of downstream sections limited river widening by the flood. Active channel width increased by half in the unmanaged cross sections and by one-third in the channelized cross sections. However, damage to the valley-floor infrastructure was practically limited to the channelized river reaches with reinforced channel banks. This indicates incompetent management of riparian areas rather than the degree of river widening as a principal reason for the economic losses during the flood.

  18. Geomorphic Response of a Low-Gradient Channel to Modern, Progressive Base-Level Lowering: Nahal HaArava, the Dead Sea

    NASA Astrophysics Data System (ADS)

    Dente, Elad; Lensky, Nadav G.; Morin, Efrat; Grodek, Tamir; Sheffer, Nathan A.; Enzel, Yehouda

    2017-12-01

    The geomorphic response of channels to base-level fall is an important factor in landscape evolution. To better understand the complex interactions between the factors controlling channel evolution in an emerging continental shelf setting, we use an extensive data set (high-resolution digital elevation models, aerial photographs, and Landsat imagery) of a newly incising, perennial segment of Nahal (Wadi) HaArava, Israel. This channel responds to the rapid and progressive lowering of its base-level, the Dead Sea (>30 m in 35 years; 0.5-1.3 m yr-1). Progressively evolving longitudinal profiles, channel width, sinuosity, and knickpoint retreat during the last few decades were documented or reconstructed. The results indicate that even under fast base-level fall, rapid delta progradation on top of the shelf and shelf edge can moderate channel mouth slopes and, therefore, largely inhibit channel incision and knickpoint propagation. This channel elongation stage ends when the delta reaches an extended accommodation within the receiving basin and fails to keep the channel mouth slopes as low as the channel bed slopes. Then, processes of incision, narrowing, and meandering begin to shape the channel and expand upstream. When the down-cutting channel encounters a more resistant stratum within the channel substrate, these processes are restricted to a downstream reach by formation of a retreating vertical knickpoint. When the knickpoint and the channel incise to a level below this stratum, a spatially continuous, diffusion-like evolution characterizes the channel's response and source-to-sink transport can be implemented. These results emphasize the mouth slope and channel substrate resistance as the governing factors over long-term channel evolution, whereas flash floods have only local and short-lived impacts in a confined, continuously incising channel. The documented channel response applies to eustatic base-level fall under steepening basin bathymetry, rapid delta progradation, and lithologic variations in the channel substrate.

  19. Proximal clustering between BK and CaV1.3 channels promotes functional coupling and BK channel activation at low voltage

    PubMed Central

    Vivas, Oscar; Moreno, Claudia M; Santana, Luis F; Hille, Bertil

    2017-01-01

    CaV-channel dependent activation of BK channels is critical for feedback control of both calcium influx and cell excitability. Here we addressed the functional and spatial interaction between BK and CaV1.3 channels, unique CaV1 channels that activate at low voltages. We found that when BK and CaV1.3 channels were co-expressed in the same cell, BK channels started activating near −50 mV, ~30 mV more negative than for activation of co-expressed BK and high-voltage activated CaV2.2 channels. In addition, single-molecule localization microscopy revealed striking clusters of CaV1.3 channels surrounding clusters of BK channels and forming a multi-channel complex both in a heterologous system and in rat hippocampal and sympathetic neurons. We propose that this spatial arrangement allows tight tracking between local BK channel activation and the gating of CaV1.3 channels at quite negative membrane potentials, facilitating the regulation of neuronal excitability at voltages close to the threshold to fire action potentials. DOI: http://dx.doi.org/10.7554/eLife.28029.001 PMID:28665272

  20. Polar codes for achieving the classical capacity of a quantum channel

    NASA Astrophysics Data System (ADS)

    Guha, Saikat; Wilde, Mark

    2012-02-01

    We construct the first near-explicit, linear, polar codes that achieve the capacity for classical communication over quantum channels. The codes exploit the channel polarization phenomenon observed by Arikan for classical channels. Channel polarization is an effect in which one can synthesize a set of channels, by ``channel combining'' and ``channel splitting,'' in which a fraction of the synthesized channels is perfect for data transmission while the other fraction is completely useless for data transmission, with the good fraction equal to the capacity of the channel. Our main technical contributions are threefold. First, we demonstrate that the channel polarization effect occurs for channels with classical inputs and quantum outputs. We then construct linear polar codes based on this effect, and the encoding complexity is O(N log N), where N is the blocklength of the code. We also demonstrate that a quantum successive cancellation decoder works well, i.e., the word error rate decays exponentially with the blocklength of the code. For a quantum channel with binary pure-state outputs, such as a binary-phase-shift-keyed coherent-state optical communication alphabet, the symmetric Holevo information rate is in fact the ultimate channel capacity, which is achieved by our polar code.

  1. Clofilium inhibits Slick and Slack potassium channels.

    PubMed

    de Los Angeles Tejada, Maria; Stolpe, Kathleen; Meinild, Anne-Kristine; Klaerke, Dan A

    2012-01-01

    Slick and Slack high-conductance potassium channels have been recently discovered, and are found in the central nervous system and in the heart. Both channels are activated by Na(+) and Cl(-), and Slick channels are also inhibited by adenosine triphospate (ATP). An important role of setting the resting membrane potential and controlling the basal excitability of neurons has been suggested for these channels. In addition, no specific blockers for these channels are known up to the present. With the purpose of studying the pharmacological characteristics of Slick and Slack channels, the effects of exposure to the antiarrhythmic compound clofilium were evaluated. Clofilium was able to modulate the activity of Slick and Slack channels effectively, with a stronger effect on Slack than Slick channels. In order to evaluate the pharmacological behavior of Slick and Slack channels further, 38 commonly used potassium channel blockers were tested. Screening of these compounds did not reveal any modulators of Slick and Slack channels, except for clofilium. The present study provides a first approach towards elucidating the pharmacological characteristics of Slick and Slack channels and could be the basis for future studies aimed at developing potent and specific blockers and activators for these channels.

  2. Channel Formation in Physical Experiments: Examples from Deep and Shallow Water Clastic Sedimentary Systems

    NASA Astrophysics Data System (ADS)

    Hoyal, D. C.; Sheets, B. A.

    2005-12-01

    The degree to which experimental sedimentary systems form channels has an important bearing on their applicability as analogs of large-scale natural systems, where channels and their associated landforms are ubiquitous. The internal geometry and properties (e.g., grain size, vertical succession and stacking) of many depositional landforms can be directly linked to the processes of channel initiation and evolution. Unfortunately, strong self-channelization, a prerequisite for certain natural phenomena (e.g. mouth lobe development, meandering, etc.), has been difficult to reproduce at laboratory scales. In shallow-water experiments (sub-aerial), although weak channelization develops relatively easily, as is commonly observed in gutters after a rain storm, strong channelization with well-developed banks has proved difficult to model. In deep water experiments the challenge is even greater. Despite considerable research effort experimental conditions for deep water channel initiation have only recently been identified. Experiments on the requisite conditions for channelization in shallow and deep water have been ongoing at the ExxonMobil Upstream Research Company (EMURC) for several years. By primarily manipulating the cohesiveness of the sediment supply we have developed models of distributive systems with well-defined channels in shallow water, reminiscent of fine grained river-dominated deltas like the Mississippi. In deep water we have developed models that demonstrate strong channelization and associated lobe behavior in a distributive setting, by scaling up an approach developed by another group using salt-water flows and low-density plastic sediment. The experiments highlight a number of important controls on experimental channel formation, including: (1) bed strength or cohesiveness; (2) bedform development; and (3) Reynolds number. Among these controls bed forms disrupt the channel forming instability, reducing the energy available for channelization. The fundamental channel instability develops in both laminar and turbulent flow but with important differences. The scaling of these effects is the focus of ongoing research. In general it was observed that there are strong similarities between the processes and sedimentary products in shallow and deep water systems. Further, strong channelization in EMURC experiments provides insights into the evolution of distributive systems including: (1) the cyclic process of lobe formation and channel growth at a channel mouth, (2) types of channel fill, (3) architectural differences between channel fill and lobe deposits, (4) channel backfilling and avulsion, (5) Channel initiation vs. entrenched channel phases, (6) knickpoints and channel erosion, (7) structure of overbank, levee-building flows, and (8) the role of levees in altering the distributive channel pattern.

  3. Calcium Channel Block by Cadmium in Chicken Sensory Neurons

    NASA Astrophysics Data System (ADS)

    Swandulla, D.; Armstrong, C. M.

    1989-03-01

    Cadmium block of calcium channels was studied in chicken dorsal root ganglion cells by a whole-cell patch clamp that provides high time resolution. Barium ion was the current carrier, and the channel type studied had a high threshold of activation and fast deactivation (type FD). Block of these channels by 20 μ M external Cd2+ is voltage dependent. Cd2+ ions can be cleared from blocked channels by stepping the membrane voltage (Vm) to a negative value. Clearing the channels is progressively faster and more complete as Vm is made more negative. Once cleared of Cd2+, the channels conduct transiently on reopening but reequilibrate with Cd2+ and become blocked within a few milliseconds. Cd2+ equilibrates much more slowly with closed channels, but at a holding potential of -80 mV virtually all channels are blocked at equilibrium. Cd2+ does not slow closing of the channels, as would be expected if it were necessary for Cd2+ to leave the channels before closing occurred. Instead, the data show unambiguously that the channel gate can close when the channel is Cd2+ occupied.

  4. Molecular basis of activation of the arachidonate-regulated Ca2+ (ARC) channel, a store-independent Orai channel, by plasma membrane STIM1

    PubMed Central

    Thompson, Jill L; Shuttleworth, Trevor J

    2013-01-01

    Currently, Orai proteins are known to encode two distinct agonist-activated, highly calcium-selective channels: the store-operated Ca2+ release-activated Ca2+ (CRAC) channels, and the store-independent, arachidonic acid-activated ARC channels. Surprisingly, whilst the trigger for activation of these channels is entirely different, both depend on stromal interacting molecule 1 (STIM1). However, whilst STIM1 in the endoplasmic reticulum membrane is the critical sensor for the depletion of this calcium store that triggers CRAC channel activation, it is the pool of STIM1 constitutively resident in the plasma membrane that is essential for activation of the ARC channels. Here, using a variety of approaches, we show that the key domains within the cytosolic part of STIM1 identified as critical for the activation of CRAC channels are also key for activation of the ARC channels. However, examination of the actual steps involved in such activation reveal marked differences between these two Orai channel types. Specifically, loss of calcium from the EF-hand of STIM1 that forms the key initiation point for activation of the CRAC channels has no effect on ARC channel activity. Secondly, in marked contrast to the dynamic and labile nature of interactions between STIM1 and the CRAC channels, STIM1 in the plasma membrane appears to be constitutively associated with the ARC channels. Finally, specific mutations in STIM1 that induce an extended, constitutively active, conformation for the CRAC channels actually prevent activation of the ARC channels by arachidonic acid. Based on these findings, we propose that the likely role of arachidonic acid lies in inducing the actual gating of the channel. PMID:23690558

  5. Differential effect of brief electrical stimulation on voltage-gated potassium channels

    PubMed Central

    Al Abed, Amr; Buskila, Yossi; Dokos, Socrates; Lovell, Nigel H.; Morley, John W.

    2017-01-01

    Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of these voltage-gated channels. In spiking neurons, it is activation of voltage-gated sodium channels (NaV channels) that leads to action potential generation. However, several other types of voltage-gated channels are expressed that also respond to electrical stimulation. In this study, we examine the response of voltage-gated potassium channels (KV channels) to brief electrical stimulation by whole cell patch-clamp electrophysiology and computational modeling. We show that nonspiking amacrine neurons of the retina exhibit a large variety of responses to stimulation, driven by different KV-channel subtypes. Computational modeling reveals substantial differences in the response of specific KV-channel subtypes that is dependent on channel kinetics. This suggests that the expression levels of different KV-channel subtypes in retinal neurons are a crucial predictor of the response that can be obtained. These data expand our knowledge of the mechanisms of neuronal activation and suggest that KV-channel expression is an important determinant of the sensitivity of neurons to electrical stimulation. NEW & NOTEWORTHY This paper describes the response of various voltage-gated potassium channels (KV channels) to brief electrical stimulation, such as is applied during prosthetic electrical stimulation. We show that the pattern of response greatly varies between KV channel subtypes depending on activation and inactivation kinetics of each channel. Our data suggest that problems encountered when artificially stimulating neurons such as cessation in firing at high frequencies, or “fading,” may be attributed to KV-channel activation. PMID:28202576

  6. Channel characteristics and coordination in three-echelon dual-channel supply chain

    NASA Astrophysics Data System (ADS)

    Saha, Subrata

    2016-02-01

    We explore the impact of channel structure on the manufacturer, the distributer, the retailer and the entire supply chain by considering three different channel structures in radiance of with and without coordination. These structures include a traditional retail channel and two manufacturer direct channels with and without consistent pricing. By comparing the performance of the manufacturer, the distributer and the retailer, and the entire supply chain in three different supply chain structures, it is established analytically that, under some conditions, a dual channel can outperform a single retail channel; as a consequence, a coordination mechanism is developed that not only coordinates the dual channel but also outperforms the non-cooperative single retail channel. All the analytical results are further analysed through numerical examples.

  7. Calibration of the AVHRR visible and near IR channels using radiances measured over remote ocean areas

    NASA Technical Reports Server (NTRS)

    Vermote, Eric F.; Vassiliou, George D.; Kaufman, Yoram J.; Holben, Brent N.

    1992-01-01

    An inflight absolute calibration method has been adapted and applied to channel 1 of the AVHRR. The approach is based on AVHRR observations in channels 1, 2 and 4. A rigorous cloud screening is performed, based on the homogeneity of the data in channel 1 and 2 and on the temperature in channel 4. In a combined approach, the off-nadir view satellite count in channel 2 is used to detect the aerosol optical thickness and loading and the count of channel 1 is used to calibrate this channel, based on the predictable Rayleigh scattering component. Water vapor data are used, and the channels are intercalibrated using the ratio between channels 1 and 2 over the glint region.

  8. K+ channels of Müller glial cells in retinal disorders.

    PubMed

    Gao, Feng; Xu, Linjie; Zhao, Yuan; Sun, Xinghuai; Wang, Zhongfeng

    2018-02-01

    Müller cell is the major type glial cell in the vertebrate retina. Müller cells express various types of K+ channels, such as inwardly rectifying K+ (Kir) channels, big conductance Ca2+-activated K+ (BKCa) channels, delayed rectifier K+ channels (KDR), and transient A-type K+ channels. These K+ channels play important roles in maintaining physiological functions of Müller cells. Under some retinal pathological conditions, the changed expression and functions of K+ channels may contribute to retinal pathogenesis. In this article, we reviewed the physiological properties of K+ channels in retinal Müller cells and the functional changes of these channels in retinal disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Adaptive evolution of voltage-gated sodium channels: The first 800 million years

    PubMed Central

    Zakon, Harold H.

    2012-01-01

    Voltage-gated Na+-permeable (Nav) channels form the basis for electrical excitability in animals. Nav channels evolved from Ca2+ channels and were present in the common ancestor of choanoflagellates and animals, although this channel was likely permeable to both Na+ and Ca2+. Thus, like many other neuronal channels and receptors, Nav channels predated neurons. Invertebrates possess two Nav channels (Nav1 and Nav2), whereas vertebrate Nav channels are of the Nav1 family. Approximately 500 Mya in early chordates Nav channels evolved a motif that allowed them to cluster at axon initial segments, 50 million years later with the evolution of myelin, Nav channels “capitalized” on this property and clustered at nodes of Ranvier. The enhancement of conduction velocity along with the evolution of jaws likely made early gnathostomes fierce predators and the dominant vertebrates in the ocean. Later in vertebrate evolution, the Nav channel gene family expanded in parallel in tetrapods and teleosts (∼9 to 10 genes in amniotes, 8 in teleosts). This expansion occurred during or after the late Devonian extinction, when teleosts and tetrapods each diversified in their respective habitats, and coincided with an increase in the number of telencephalic nuclei in both groups. The expansion of Nav channels may have allowed for more sophisticated neural computation and tailoring of Nav channel kinetics with potassium channel kinetics to enhance energy savings. Nav channels show adaptive sequence evolution for increasing diversity in communication signals (electric fish), in protection against lethal Nav channel toxins (snakes, newts, pufferfish, insects), and in specialized habitats (naked mole rats). PMID:22723361

  10. Advanced porous electrodes with flow channels for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon

    2017-02-01

    Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.

  11. Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses

    PubMed Central

    Ward, John M.; Mäser, Pascal; Schroeder, Julian I.

    2016-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100

  12. Plant ion channels: gene families, physiology, and functional genomics analyses.

    PubMed

    Ward, John M; Mäser, Pascal; Schroeder, Julian I

    2009-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

  13. [Mechanisms of action of voltage-gated sodium channel ligands].

    PubMed

    Tikhonov, D B

    2007-05-01

    The voltage-gated sodium channels play a key role in the generation of action potential in excitable cells. Sodium channels are targeted by a number of modulating ligands. Despite numerous studies, the mechanisms of action of many ligands are still unknown. The main cause of the problem is the absence of the channel structure. Sodium channels belong to the superfamily of P-loop channels that also the data abowt includes potassium and calcium channels and the channels of ionotropic glutamate receptors. Crystallization of several potassium channels has opened a possibility to analyze the structure of other members of the superfamily using the homology modeling approach. The present study summarizes the results of several recent modelling studies of such sodium channel ligands as tetrodotoxin, batrachotoxin and local anesthetics. Comparison of available experimental data with X-ray structures of potassium channels has provided a new level of understanding of the mechanisms of action of sodium channel ligands and has allowed proposing several testable hypotheses.

  14. Channel instability as a control on silting dynamics and vegetation patterns within perifluvial aquatic zones

    NASA Astrophysics Data System (ADS)

    Piégay, H.; Bornette, G.; Citterio, A.; Hérouin, E.; Moulin, B.; Statiotis, C.

    2000-10-01

    Many authors have shown that the sedimentology of former channels and subsequent vegetation changes are controlled by temporal (flood events and successional processes) and spatial (e.g. distance to the main channel) factors. River channel instability can disrupt these associations. The Ain River, France, has undergone a fluvial metamorphosis during the past 100 years, its braided pattern being replaced by a sinuous single-thread pattern. As a consequence, former channels have different geometrical characteristics and sediment trap efficiencies. Former meandering channels experience more frequent backflows and are more rapidly silted than the older former braided channels. The recently abandoned channels are characterized by the development of large-sized vegetation species with a relatively slow colonization rate, whereas the older channels are colonized predominantly by flood-tolerant aquatic plants. The locally derived discharge of former channels (from groundwater or from their own basin) may reduce or prevent sediment entry during flood events and thus may decrease the sedimentation rate. In such cases, the oligotrophic component of the water from the hillslope aquifer is high and the former channel is usually nutrient-poor, characterized by oligotrophic species. The main river channel also has experienced local incision, aggradation and horizontal displacement during recent decades, so that the dynamics of the former channels strongly depend on the dynamics of the reach in which they are located. In degraded reaches, former channels are often dry, and helophyte species have been replaced by mesophytes. The frequency and magnitude of flow connection between the river channel and the former channel can increase or decrease owing to the movement of the active river channel within the fluvial corridor, inducing varying modifications of former channel vegetation patterns. River channel instability at various time-scales is a key-factor controlling process diversity and thus biodiversity in the fluvial corridor. It can modify the geometry of abandoned channels, groundwater fluxes, the amount, mobilization and deposition of sediment within the corridor, and consequently the vegetation community patterns. This increases the complexity of successional patterns, because an old former channel may be characterized by pioneer species whereas a younger one can become quickly filled and colonized by terrestrial species.

  15. Carbamazepine as a novel small molecule corrector of trafficking-impaired ATP-sensitive potassium channels identified in congenital hyperinsulinism.

    PubMed

    Chen, Pei-Chun; Olson, Erik M; Zhou, Qing; Kryukova, Yelena; Sampson, Heidi M; Thomas, David Y; Shyng, Show-Ling

    2013-07-19

    ATP-sensitive potassium (KATP) channels consisting of sulfonylurea receptor 1 (SUR1) and the potassium channel Kir6.2 play a key role in insulin secretion by coupling metabolic signals to β-cell membrane potential. Mutations in SUR1 and Kir6.2 that impair channel trafficking to the cell surface lead to loss of channel function and congenital hyperinsulinism. We report that carbamazepine, an anticonvulsant, corrects the trafficking defects of mutant KATP channels previously identified in congenital hyperinsulinism. Strikingly, of the 19 SUR1 mutations examined, only those located in the first transmembrane domain of SUR1 responded to the drug. We show that unlike that reported for several other protein misfolding diseases, carbamazepine did not correct KATP channel trafficking defects by activating autophagy; rather, it directly improved the biogenesis efficiency of mutant channels along the secretory pathway. In addition to its effect on channel trafficking, carbamazepine also inhibited KATP channel activity. Upon subsequent removal of carbamazepine, however, the function of rescued channels was recovered. Importantly, combination of the KATP channel opener diazoxide and carbamazepine led to enhanced mutant channel function without carbamazepine washout. The corrector effect of carbamazepine on mutant KATP channels was also demonstrated in rat and human β-cells with an accompanying increase in channel activity. Our findings identify carbamazepine as a novel small molecule corrector that may be used to restore KATP channel expression and function in a subset of congenital hyperinsulinism patients.

  16. Channel interaction limits melodic pitch perception in simulated cochlear implants

    PubMed Central

    Crew, Joseph D.; Galvin, John J.; Fu, Qian-Jie

    2012-01-01

    In cochlear implants (CIs), melodic pitch perception is limited by the spectral resolution, which in turn is limited by the number of spectral channels as well as interactions between adjacent channels. This study investigated the effect of channel interaction on melodic contour identification (MCI) in normal-hearing subjects listening to novel 16-channel sinewave vocoders that simulated channel interaction in CI signal processing. MCI performance worsened as the degree of channel interaction increased. Although greater numbers of spectral channels may be beneficial to melodic pitch perception, the present data suggest that it is also important to improve independence among spectral channels. PMID:23145706

  17. Catalytic reaction in confined flow channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hassel, Bart A.

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flowmore » channel.« less

  18. Transportation behavior of alkali ions through a cell membrane ion channel. A quantum chemical description of a simplified isolated model.

    PubMed

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans

    2012-08-01

    Quantum chemical model calculations were carried out for modeling the ion transport through an isolated ion channel of a cell membrane. An isolated part of a natural ion channel was modeled. The model channel was a calixarene derivative, hydrated sodium and potassium ions were the models of the transported ion. The electrostatic potential of the channel and the energy of the channel-ion system were calculated as a function of the alkali ion position. Both attractive and repulsive ion-channel interactions were found. The calculations - namely the dependence of the system energy and the atomic charges of the water molecules with respect to the position of the alkali ion in the channel - revealed the molecular-structural background of the potassium selectivity of this artificial ion channel. It was concluded that the studied ion channel mimics real biological ion channel quite well.

  19. 47 CFR 27.5 - Frequencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-2560 MHz EBS Channel C2: 2560-2566 MHz EBS Channel D2: 2566-2572 MHz EBS Channel C3: 2572-2578 MHz EBS... MHz EBS Channel D1: 2551.5-2557 MHz EBS Channel D2: 2557-2562.5 MHz EBS Channel D3: 2562.5-2568 MHz...

  20. Envelope Interactions in Multi-Channel Amplitude Modulation Frequency Discrimination by Cochlear Implant Users.

    PubMed

    Galvin, John J; Oba, Sandra I; Başkent, Deniz; Chatterjee, Monita; Fu, Qian-Jie

    2015-01-01

    Previous cochlear implant (CI) studies have shown that single-channel amplitude modulation frequency discrimination (AMFD) can be improved when coherent modulation is delivered to additional channels. It is unclear whether the multi-channel advantage is due to increased loudness, multiple envelope representations, or to component channels with better temporal processing. Measuring envelope interference may shed light on how modulated channels can be combined. In this study, multi-channel AMFD was measured in CI subjects using a 3-alternative forced-choice, non-adaptive procedure ("which interval is different?"). For the reference stimulus, the reference AM (100 Hz) was delivered to all 3 channels. For the probe stimulus, the target AM (101, 102, 104, 108, 116, 132, 164, 228, or 256 Hz) was delivered to 1 of 3 channels, and the reference AM (100 Hz) delivered to the other 2 channels. The spacing between electrodes was varied to be wide or narrow to test different degrees of channel interaction. Results showed that CI subjects were highly sensitive to interactions between the reference and target envelopes. However, performance was non-monotonic as a function of target AM frequency. For the wide spacing, there was significantly less envelope interaction when the target AM was delivered to the basal channel. For the narrow spacing, there was no effect of target AM channel. The present data were also compared to a related previous study in which the target AM was delivered to a single channel or to all 3 channels. AMFD was much better with multiple than with single channels whether the target AM was delivered to 1 of 3 or to all 3 channels. For very small differences between the reference and target AM frequencies (2-4 Hz), there was often greater sensitivity when the target AM was delivered to 1 of 3 channels versus all 3 channels, especially for narrowly spaced electrodes. Besides the increased loudness, the present results also suggest that multiple envelope representations may contribute to the multi-channel advantage observed in previous AMFD studies. The different patterns of results for the wide and narrow spacing suggest a peripheral contribution to multi-channel temporal processing. Because the effect of target AM frequency was non-monotonic in this study, adaptive procedures may not be suitable to measure AMFD thresholds with interfering envelopes. Envelope interactions among multiple channels may be quite complex, depending on the envelope information presented to each channel and the relative independence of the stimulated channels.

  1. Envelope Interactions in Multi-Channel Amplitude Modulation Frequency Discrimination by Cochlear Implant Users

    PubMed Central

    2015-01-01

    Rationale Previous cochlear implant (CI) studies have shown that single-channel amplitude modulation frequency discrimination (AMFD) can be improved when coherent modulation is delivered to additional channels. It is unclear whether the multi-channel advantage is due to increased loudness, multiple envelope representations, or to component channels with better temporal processing. Measuring envelope interference may shed light on how modulated channels can be combined. Methods In this study, multi-channel AMFD was measured in CI subjects using a 3-alternative forced-choice, non-adaptive procedure (“which interval is different?”). For the reference stimulus, the reference AM (100 Hz) was delivered to all 3 channels. For the probe stimulus, the target AM (101, 102, 104, 108, 116, 132, 164, 228, or 256 Hz) was delivered to 1 of 3 channels, and the reference AM (100 Hz) delivered to the other 2 channels. The spacing between electrodes was varied to be wide or narrow to test different degrees of channel interaction. Results Results showed that CI subjects were highly sensitive to interactions between the reference and target envelopes. However, performance was non-monotonic as a function of target AM frequency. For the wide spacing, there was significantly less envelope interaction when the target AM was delivered to the basal channel. For the narrow spacing, there was no effect of target AM channel. The present data were also compared to a related previous study in which the target AM was delivered to a single channel or to all 3 channels. AMFD was much better with multiple than with single channels whether the target AM was delivered to 1 of 3 or to all 3 channels. For very small differences between the reference and target AM frequencies (2–4 Hz), there was often greater sensitivity when the target AM was delivered to 1 of 3 channels versus all 3 channels, especially for narrowly spaced electrodes. Conclusions Besides the increased loudness, the present results also suggest that multiple envelope representations may contribute to the multi-channel advantage observed in previous AMFD studies. The different patterns of results for the wide and narrow spacing suggest a peripheral contribution to multi-channel temporal processing. Because the effect of target AM frequency was non-monotonic in this study, adaptive procedures may not be suitable to measure AMFD thresholds with interfering envelopes. Envelope interactions among multiple channels may be quite complex, depending on the envelope information presented to each channel and the relative independence of the stimulated channels. PMID:26431043

  2. Chick cerebellar Purkinje cells express omega-conotoxin GVIA-sensitive rather than funnel-web spider toxin-sensitive calcium channels.

    PubMed

    Angulo, M C; Parra, P; Dieudonné, S

    1998-03-01

    Voltage-gated calcium channels form a complex family of distinct molecular entities which participate in multiple neuronal functions. In cerebellar Purkinje cells these channels contribute to the characteristic electrophysiological pattern of complex spikes, first described in birds and later in mammals. A specific calcium channel, the P-type channel, has been shown to mediate the majority of the voltage-gated calcium flux in mammalian Purkinje cells. P-type channels play an essential role in synaptic transmission of mammalian cerebellum. It is unclear whether the P-type calcium channel is present in birds. Studies in chick synaptosomal preparations show that the pharmacological profile of calcium channels is complex and suggest a minimal expression of the P-type channel in avian central nervous system. In the present work, we studied voltage-gated calcium channels in dissociated chick cerebellar Purkinje cells to examine the presence of different calcium channel types. Purkinje cells were used because, in mammals, they express predominantly P-type channels and because the morphology of these cells is thought to be phylogenetically conserved. We found that omega-conotoxin GVIA (omega-CgTx GVIA), a specific antagonist of N-type calcium channel, rather than the synthetic funnel-web spider toxin (sFTX), a P-type channel antagonist, blocks the majority of the barium current flowing through calcium channels in chick Purkinje neurons.

  3. pH and external Ca(2+) regulation of a small conductance Cl(-) channel in kidney distal tubule.

    PubMed

    Sauvé, R; Cai, S; Garneau, L; Klein, H; Parent, L

    2000-12-20

    A single channel characterization of the Cl(-) channels in distal nephron was undertaken using vesicles prepared from plasma membranes of isolated rabbit distal tubules. The presence in this vesicle preparation of ClC-K type Cl(-) channels was first established by immunodetection using an antibody raised against ClC-K isoforms. A ClC-K1 based functional characterization was next performed by investigating the pH and external Ca(2+) regulation of a small conductance Cl(-) channel which we identified previously by channel incorporation experiments. Acidification of the cis (external) solution from pH 7.4 to 6.5 led to a dose-dependent inhibition of the channel open probability P(O). Similarly, changing the trans pH from 7.4 to 6.8 resulted in a 4-fold decrease of the channel P(O) with no effect on the channel conductance. Channel activity also appeared to be regulated by cis (external) Ca(2+) concentration, with a dose-dependent increase in channel activity as a function of the cis Ca(2+) concentration. It is concluded on the basis of these results that the small conductance Cl(-) channel present in rabbit distal tubules is functionally equivalent to the ClC-K1 channel in the rat. In addition, the present work constitutes the first single channel evidence for a chloride channel regulated by external Ca(2+).

  4. Classification and sedimentary characteristics of lacustrine hyperpycnal channels: Triassic outcrops in the south Ordos Basin, central China

    NASA Astrophysics Data System (ADS)

    Xian, Benzhong; Wang, Junhui; Gong, Chenglin; Yin, Yu; Chao, Chuzhi; Liu, Jianping; Zhang, Guodong; Yan, Qi

    2018-06-01

    Subaquatic channels are known as active conduits for the delivery of terrigenous sediments into related marine and lacustrine basins, as well as important targets for hydrocarbon exploration. Compared to submarine channels, lacustrine subaqueous channels created by hyperpycnal flows are understudied. Using well-exposed outcrops collected from three different locations in the southern Ordos Basin, central China, morphologies and architecture of a channelized hyperpycnal system were studied and classified. Six facies associations represent sedimentary processes from strong erosion by bedload dominated hyperpycnal flows, to transitional deposition jointly controlled by bedload and suspended-load dominated hyperpycnal flows, finally to deposition from suspended-load dominated hyperpycnal flows. On the basis of channel morphologies, infilling sediments and sedimentary processes, the documented channels can be classified into four main categories, which are erosional, bedload dominated, suspended-load dominated, and depositional channels. In very proximal and very distal locations, erosional channels and depositional channels serve as two end-members, while in middle areas, bedload-dominated channels and suspended-load dominated channels are transitional types. Erosional channels, as a response to strong erosion from bedload dominated hyperpycnal flows on upper slope, were mainly filled by mud interbedded with thin sand beds. As flow energy decreases, bedload dominated channels develop on middle slopes, which are characterized mainly by under- to balanced sediment infillings with cross-bedded sandstones and/or minor massive sandstones. Compared to bedload dominated channels, suspended-load dominated channels mainly develop in deeper water, and were filled mainly by massive or planar-laminated sandstones. Depositional channels, as a response to suspended-load dominated hyperpycnal flows in deep-water areas, are characterized by thin-medium bed classical turbidites with Bouma sequences and thin- to thick massive sandstones. Such evolution patterns of hyperpycnal channel systems are ascribed to the progressive decrease in flow capacity of hyperpycnal flows, and provide an adequate explanation for the basinward channelization behavior of hyperpycnal systems.

  5. Performance Analysis of Iterative Channel Estimation and Multiuser Detection in Multipath DS-CDMA Channels

    NASA Astrophysics Data System (ADS)

    Li, Husheng; Betz, Sharon M.; Poor, H. Vincent

    2007-05-01

    This paper examines the performance of decision feedback based iterative channel estimation and multiuser detection in channel coded aperiodic DS-CDMA systems operating over multipath fading channels. First, explicit expressions describing the performance of channel estimation and parallel interference cancellation based multiuser detection are developed. These results are then combined to characterize the evolution of the performance of a system that iterates among channel estimation, multiuser detection and channel decoding. Sufficient conditions for convergence of this system to a unique fixed point are developed.

  6. Microfluidic channel fabrication method

    DOEpatents

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  7. Channel width dependence of electrical characteristics of a-Si:H TFTs under bending stresses

    NASA Astrophysics Data System (ADS)

    Oh, Hyungon; Cho, Kyoungah; Kim, Sangsig

    2017-04-01

    In this study, we investigate the electrical characteristics of bendable a-Si:H thin-film transistors (TFTs) with various channel widths as a function of bending stress. Compared with a narrower channel TFT, a wider channel TFT exhibits a stable performance even at a bending strain of 1.3%. Our stress and strain distribution analysis reveals an inverse relationship between the channel width and the channel stress. As the channel width widens from 8 to 50 μm, the stress experienced by the middle channel region decreases from 545 to 277 MPa. Moreover, a 50 μm-channel-width TFT operates stably even after a 15 000 bending cycle while the 8 μm-channel-width TFT fails to operate after a 2000 bending cycle.

  8. A Channelization-Based DOA Estimation Method for Wideband Signals

    PubMed Central

    Guo, Rui; Zhang, Yue; Lin, Qianqiang; Chen, Zengping

    2016-01-01

    In this paper, we propose a novel direction of arrival (DOA) estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM) and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS) are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR) using direct wideband radio frequency (RF) digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method. PMID:27384566

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradler, Kamil; Hayden, Patrick; Touchette, Dave

    Coding theorems in quantum Shannon theory express the ultimate rates at which a sender can transmit information over a noisy quantum channel. More often than not, the known formulas expressing these transmission rates are intractable, requiring an optimization over an infinite number of uses of the channel. Researchers have rarely found quantum channels with a tractable classical or quantum capacity, but when such a finding occurs, it demonstrates a complete understanding of that channel's capabilities for transmitting classical or quantum information. Here we show that the three-dimensional capacity region for entanglement-assisted transmission of classical and quantum information is tractable formore » the Hadamard class of channels. Examples of Hadamard channels include generalized dephasing channels, cloning channels, and the Unruh channel. The generalized dephasing channels and the cloning channels are natural processes that occur in quantum systems through the loss of quantum coherence or stimulated emission, respectively. The Unruh channel is a noisy process that occurs in relativistic quantum information theory as a result of the Unruh effect and bears a strong relationship to the cloning channels. We give exact formulas for the entanglement-assisted classical and quantum communication capacity regions of these channels. The coding strategy for each of these examples is superior to a naieve time-sharing strategy, and we introduce a measure to determine this improvement.« less

  10. L-type Ca2+ channels in the heart: structure and regulation.

    PubMed

    Treinys, Rimantas; Jurevicius, Jonas

    2008-01-01

    This review analyzes the structure and regulation mechanisms of voltage-dependent L-type Ca(2+) channel in the heart. L-type Ca(2+) channels in the heart are composed of four different polypeptide subunits, and the pore-forming subunit alpha(1) is the most important part of the channel. In cardiac myocytes, Ca(2+) enter cell cytoplasm from extracellular space mainly through L-type Ca(2+) channels; these channels are very important system in heart Ca(2+) uptake regulation. L-type Ca(2+) channels are responsible for the activation of sarcoplasmic reticulum channels (RyR2) and force of muscle contraction generation in heart; hence, activity of the heart depends on L-type Ca(2+) channels. Phosphorylation of channel-forming subunits by different kinases is one of the most important ways to change the activity of L-type Ca(2+) channel. Additionally, the activity of L-type Ca(2+) channels depends on Ca(2+) concentration in cytoplasm. Ca(2+) current in cardiac cells can facilitate, and this process is regulated by phosphorylation of L-type Ca(2+) channels and intracellular Ca(2+) concentration. Disturbances in cellular Ca(2+) transport and regulation of L-type Ca(2+) channels are directly related to heart diseases, life quality, and life span.

  11. Are restored side channels sustainable aquatic habitat features? Predicting the potential persistence of side channels as aquatic habitats based on their fine sedimentation dynamics

    NASA Astrophysics Data System (ADS)

    Riquier, Jérémie; Piégay, Hervé; Lamouroux, Nicolas; Vaudor, Lise

    2017-10-01

    The restoration of side channels (also referred to as abandoned channels, former channels, floodplain channels, or side arms) is increasingly implemented to improve the ecological integrity of river-floodplain systems. However, the design of side channel restoration projects remains poorly informed by theory or empirical observations despite the increasing number of projects. Moreover, feedback regarding the hydromorphological adjustment of restored channels is rarely documented, making it difficult to predict channel persistence as aquatic habitats. In this study, we analyze the spatial and temporal patterns of fine sediment deposition (< 2 mm) in 16 side channels of the Rhône River, France, restored in 1999-2006 by a combination of dredging and/or partial to full reconnection of their extremities and as a by-product of an increase in minimum flow through the bypassed main channels. We develop prediction tools to assess the persistence of restored channels as aquatic habitats, using between five and seven monitoring surveys per channel (spanning 7-15 years after restoration). Observed channel-averaged sedimentation rates ranged from 0 to 40.3 cm·y- 1 and reached 90.3 cm·y- 1 locally. Some channels exhibited a significant decline of sedimentation rates through time, whereas others maintained rather constant rates. Scouring processes (i.e., self-rejuvenation capacity) were occasionally documented in 15 channels. Six of the 16 studied channels appeared to be self-sustaining. The 10 others accumulated more and more fine sediment deposits after restoration. Parametric modeling of sedimentation rates suggested that among these 10 channels, four have long life-durations (i.e., more than a century), three have intermediate life-durations (i.e., likely between three and nine decades), and three others have short life-durations (i.e., likely between two and five decades). Observed channel-averaged sedimentation rates can be predicted from the frequency and magnitude (i.e., maximum shear stress) of upstream overflow events and the maximum intensity of backflow events (i.e., maximum backflow capacity). These predictors reflect the dominant role of side channel geometry (i.e., morphology of the upstream alluvial plug, slope conditions) in controlling their flooding regime. These models applied successfully to a wide range of channel morphologies and can be used to quantify a priori the likely effects and the sustainability of side channel restoration.

  12. On the motion of substance in a channel of a network and human migration

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay K.; Vitanov, Kaloyan N.

    2018-01-01

    We model the motion of a substance in a channel of a network that consists of chain of (i) nodes of the network and (ii) edges that connect the nodes and form the way for motion of the substance. The nodes of the channel can have different ;leakage;, i.e., some amount of the substance can leave the channel at a node and the rate of leaving can be different for the different nodes of the channel. The nodes close to the end of the channel for some (design or other) reason may be more ;attractive; for the substance in comparison to the nodes around the incoming node of the channel. We discuss channels containing infinite or finite number of nodes. The main outcome of the model is the distribution of the substance along the nodes. Two regimes of functioning of the channels are studied: stationary regime and non-stationary regime. The distribution of the substance along the nodes of the channel for the case of stationary regime is a distribution with a very long tail that contains as particular case the Waring distribution (for channel with infinite number of nodes) or the truncated Waring distribution (for channel with finite number of nodes). In the non-stationary regime of functioning of the channel one observes an exponential increase or exponential decrease of the amount of substance in the nodes. However the asymptotic distribution of the substance among the nodes of the channel in this regime remains stationary. The studied model is applied to the case of migration of humans through a migration channel consisting of chain of countries. In this case the model accounts for the number of migrants entering the channel through the first country of the channel; permeability of the borders between the countries; possible large attractiveness of some countries of the channel; possibility for migrants to obtain permission to reside in a country of the channel. The main outcome of the model is the distribution of migrants along the countries of the channel. We discuss the conditions for concentration of migrants in selected country of the channel. Finally two scenarios of changes of conditions of the functioning of the channel are discussed. It is shown that from the point of view of decreasing of the number of migrants in the countries of the channel it is more effective to concentrate efforts on preventing the entrance of migrants in the first country of the channel when compared to concentration of efforts on decrease of permeability of the borders between the countries of the channel.

  13. Technical Note: Statistical dependences between channels in radiochromic film readings. Implications in multichannel dosimetry.

    PubMed

    González-López, Antonio; Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen

    2016-05-01

    This note studies the statistical relationships between color channels in radiochromic film readings with flatbed scanners. The same relationships are studied for noise. Finally, their implications for multichannel film dosimetry are discussed. Radiochromic films exposed to wedged fields of 6 MV energy were read in a flatbed scanner. The joint histograms of pairs of color channels were used to obtain the joint and conditional probability density functions between channels. Then, the conditional expectations and variances of one channel given another channel were obtained. Noise was extracted from film readings by means of a multiresolution analysis. Two different dose ranges were analyzed, the first one ranging from 112 to 473 cGy and the second one from 52 to 1290 cGy. For the smallest dose range, the conditional expectations of one channel given another channel can be approximated by linear functions, while the conditional variances are fairly constant. The slopes of the linear relationships between channels can be used to simplify the expression that estimates the dose by means of the multichannel method. The slopes of the linear relationships between each channel and the red one can also be interpreted as weights in the final contribution to dose estimation. However, for the largest dose range, the conditional expectations of one channel given another channel are no longer linear functions. Finally, noises in different channels were found to correlate weakly. Signals present in different channels of radiochromic film readings show a strong statistical dependence. By contrast, noise correlates weakly between channels. For the smallest dose range analyzed, the linear behavior between the conditional expectation of one channel given another channel can be used to simplify calculations in multichannel film dosimetry.

  14. Compartmentalized beta subunit distribution determines characteristics and ethanol sensitivity of somatic, dendritic, and terminal large-conductance calcium-activated potassium channels in the rat central nervous system.

    PubMed

    Wynne, P M; Puig, S I; Martin, G E; Treistman, S N

    2009-06-01

    Neurons are highly differentiated and polarized cells, whose various functions depend upon the compartmentalization of ion channels. The rat hypothalamic-neurohypophysial system (HNS), in which cell bodies and dendrites reside in the hypothalamus, physically separated from their nerve terminals in the neurohypophysis, provides a particularly powerful preparation in which to study the distribution and regional properties of ion channel proteins. Using electrophysiological and immunohistochemical techniques, we characterized the large-conductance calcium-activated potassium (BK) channel in each of the three primary compartments (soma, dendrite, and terminal) of HNS neurons. We found that dendritic BK channels, in common with somatic channels but in contrast to nerve terminal channels, are insensitive to iberiotoxin. Furthermore, analysis of dendritic BK channel gating kinetics indicates that they, like somatic channels, have fast activation kinetics, in contrast to the slow gating of terminal channels. Dendritic and somatic channels are also more sensitive to calcium and have a greater conductance than terminal channels. Finally, although terminal BK channels are highly potentiated by ethanol, somatic and dendritic channels are insensitive to the drug. The biophysical and pharmacological properties of somatic and dendritic versus nerve terminal channels are consistent with the characteristics of exogenously expressed alphabeta1 versus alphabeta4 channels, respectively. Therefore, one possible explanation for our findings is a selective distribution of auxiliary beta1 subunits to the somatic and dendritic compartments and beta4 to the terminal compartment. This hypothesis is supported immunohistochemically by the appearance of distinct punctate beta1 or beta4 channel clusters in the membrane of somatic and dendritic or nerve terminal compartments, respectively.

  15. Large fraction of crystal directions leads to ion channeling

    NASA Astrophysics Data System (ADS)

    Nordlund, K.; Djurabekova, F.; Hobler, G.

    2016-12-01

    It is well established that when energetic ions are moving in crystals, they may penetrate much deeper if they happen to be directed in some specific crystal directions. This `channeling' effect is utilized for instance in certain ion beam analysis methods and has been described by analytical theories and atomistic computer simulations. However, there have been very few systematic studies of channeling in directions other than the principal low-index ones. We present here a molecular dynamics-based approach to calculate ion channeling systematically over all crystal directions, providing ion `channeling maps' that easily show in which directions channeling is expected. The results show that channeling effects can be quite significant even at energies below 1 keV, and that in many cases, significant planar channeling occurs also in a wide range of crystal directions between the low-index principal ones. In all of the cases studied, a large fraction (˜20 -60 % ) of all crystal directions show channeling. A practical implication of this is that modern experiments on randomly oriented nanostructures will have a large probability of channeling. It also means that when ion irradiations are carried out on polycrystalline samples, channeling effects on the results cannot a priori be assumed to be negligible. The maps allow for easy selection of good `nonchanneling' directions in experiments or alternatively finding wide channels for beneficial uses of channeling. We implement channeling theory to also give the fraction of channeling directions in a manner directly comparable to the simulations. The comparison shows good qualitative agreement. In particular, channeling theory is very good at predicting which channels are active at a given energy. This is true down to sub-keV energies, provided the penetration depth is not too small.

  16. Human-induced stream channel abandonment/capture and filling of floodplain channels within the Atchafalaya River Basin, Louisiana

    USGS Publications Warehouse

    Kroes, Daniel E.; Kraemer, Thomas F.

    2013-01-01

    The Atchafalaya River Basin is a distributary system of the Mississippi River containing the largest riparian area in the lower Mississippi River Valley and the largest remaining forested bottomland in North America. Reductions in the area of open water in the Atchafalaya have been occurring over the last 100 years, and many historical waterways are increasingly filled by sediment. This study examines two cases of swamp channels (3/s) that are filling and becoming unnavigable as a result of high sediment loads and slow water velocities. The water velocities in natural bayous are further reduced because of flow capture by channels constructed for access. Bathymetry, flow, suspended sediment, deposited bottom-material, isotopes, and photointerpretation were used to characterize the channel fill. On average, water flowing through these two channels lost 23% of the suspended sediment load in the studied reaches. Along one of the studied reaches, two constructed access channels diverted significant flow out of the primary channel and into the adjacent swamp. Immediately downstream of each of the two access channels, the cross-sectional area of the studied channel was reduced. Isotopic analyses of bottom-material cores indicate that bed filling has been rapid and occurred after detectable levels of Cesium-137 were no longer being deposited. Interpretation of aerial photography indicates that water is bypassing the primary channels in favor of the more hydraulically efficient access channels, resulting in low or no-velocity flow conditions in the primary channel. These swamp channel conditions are typical in the Atchafalaya River Basin where relict large channel dimensions result in flow velocities that are normally too low to carry fine-grained sediment. Constructed channels increase the rate of natural channel avulsion and abandonment as a result of flow capture.

  17. Technical Note: Statistical dependences between channels in radiochromic film readings. Implications in multichannel dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González-López, Antonio, E-mail: antonio.gonzalez7@carm.es; Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen

    Purpose: This note studies the statistical relationships between color channels in radiochromic film readings with flatbed scanners. The same relationships are studied for noise. Finally, their implications for multichannel film dosimetry are discussed. Methods: Radiochromic films exposed to wedged fields of 6 MV energy were read in a flatbed scanner. The joint histograms of pairs of color channels were used to obtain the joint and conditional probability density functions between channels. Then, the conditional expectations and variances of one channel given another channel were obtained. Noise was extracted from film readings by means of a multiresolution analysis. Two different dosemore » ranges were analyzed, the first one ranging from 112 to 473 cGy and the second one from 52 to 1290 cGy. Results: For the smallest dose range, the conditional expectations of one channel given another channel can be approximated by linear functions, while the conditional variances are fairly constant. The slopes of the linear relationships between channels can be used to simplify the expression that estimates the dose by means of the multichannel method. The slopes of the linear relationships between each channel and the red one can also be interpreted as weights in the final contribution to dose estimation. However, for the largest dose range, the conditional expectations of one channel given another channel are no longer linear functions. Finally, noises in different channels were found to correlate weakly. Conclusions: Signals present in different channels of radiochromic film readings show a strong statistical dependence. By contrast, noise correlates weakly between channels. For the smallest dose range analyzed, the linear behavior between the conditional expectation of one channel given another channel can be used to simplify calculations in multichannel film dosimetry.« less

  18. On the number of channels needed to classify vowels: Implications for cochlear implants

    NASA Astrophysics Data System (ADS)

    Fourakis, Marios; Hawks, John W.; Davis, Erin

    2005-09-01

    In cochlear implants the incoming signal is analyzed by a bank of filters. Each filter is associated with an electrode to constitute a channel. The present research seeks to determine the number of channels needed for optimal vowel classification. Formant measurements of vowels produced by men and women [Hillenbrand et al., J. Acoust. Soc. Am. 97, 3099-3111 (1995)] were converted to channel assignments. The number of channels varied from 4 to 20 over two frequency ranges (180-4000 and 180-6000 Hz) in equal bark steps. Channel assignments were submitted to linear discriminant analysis (LDA). Classification accuracy increased with the number of channels, ranging from 30% with 4 channels to 98% with 20 channels, both for the female voice. To determine asymptotic performance, LDA classification scores were plotted against the number of channels and fitted with quadratic equations. The number of channels at which no further improvement occurred was determined, averaging 19 across all conditions with little variation. This number of channels seems to resolve the frequency range spanned by the first three formants finely enough to maximize vowel classification. This resolution may not be achieved using six or eight channels as previously proposed. [Work supported by NIH.

  19. Dynamics of Cohering and Decohering Power under Markovian Channels

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Ming; Luo, Yu; Shao, Lian-He; Li, Yong-Ming

    2017-11-01

    In this paper, we investigate the cohering and decohering power of the one-qubit Markovian channels with respect to coherence measures based on the l 1-norm, the Rényi α-relative entropy and the Tsallis α-relative entropy of coherence, respectively. The amplitude damping channel, phase damping channel, depolarizing channel, and flip channels are analytically calculated. It shows that the decohering power of the amplitude damping channel on the x,y , and z basis is equal to each other. The same phenomenon can be seen for the phase damping channel and the flip channels. The cohering power for the phase damping channel and the flip channels on the x,y basis also equals to that on the z basis. However, the cohering and decohering power of the depolarizing channel is independent to the reference basises. And the cohering power of the amplitude damping channel on the x,y basis is different to that on the z basis. Supported by the National Natural Science Foundation of China under Grant Nos. 11271237, 11671244, the Higher School Doctoral Subject Foundation of Ministry of Education of China under Grant No. 20130202110001, and Fundamental Research Funds for the Central Universities under Grants Nos. 2016TS060 and 2016CBY003

  20. Inhibitory effect of DIDS, NPPB, and phloretin on intracellular chloride channels.

    PubMed

    Malekova, Lubica; Tomaskova, Jana; Novakova, Marie; Stefanik, Peter; Kopacek, Juraj; Lakatos, Boris; Pastorekova, Silvia; Krizanova, Olga; Breier, Albert; Ondrias, Karol

    2007-11-01

    We studied the effects of the chloride channel blockers, 5-nitro-2-(phenylpropylamino)-benzoate (NPPB), dihydro-4,4' diisothiocyanostilbene-2,2'-disulphonic acid (DIDS), and phloretin on H2O2-induced primary culture cardiomyocyte apoptosis and activity of intracellular chloride channels obtained from rat heart mitochondrial and lysosomal vesicles. The chloride channel blockers (100 micromol/l) inhibited the H2O2-induced cardiomyocytes apoptosis. We characterized the effect of the blockers on single channel properties of the chloride channels derived from the mitochondrial and lysosomal vesicles incorporated into a bilayer lipid membrane. The single chloride channel currents were measured in 250:50 mmol/l KCl cis/trans solutions. NPPB, DIDS, and phloretin inhibited the chloride channels by decreasing the channel open probability in a concentration-dependent manner with EC50 values of 42, 7, and 20 micromol/l, respectively. NPPB and phloretin inhibited the channel's conductance and open dwell time, indicating that they could affect the chloride selective filter, pore permeability, and gating mechanism of the chloride channels. DIDS and NPPB inhibited the channels from the other side than bongkrekic acid and carboxyatractyloside. The results may contribute to understand a possible involvement of intracellular chloride channels in apoptosis and cardioprotection.

  1. Channel Acquisition for Massive MIMO-OFDM With Adjustable Phase Shift Pilots

    NASA Astrophysics Data System (ADS)

    You, Li; Gao, Xiqi; Swindlehurst, A. Lee; Zhong, Wen

    2016-03-01

    We propose adjustable phase shift pilots (APSPs) for channel acquisition in wideband massive multiple-input multiple-output (MIMO) systems employing orthogonal frequency division multiplexing (OFDM) to reduce the pilot overhead. Based on a physically motivated channel model, we first establish a relationship between channel space-frequency correlations and the channel power angle-delay spectrum in the massive antenna array regime, which reveals the channel sparsity in massive MIMO-OFDM. With this channel model, we then investigate channel acquisition, including channel estimation and channel prediction, for massive MIMO-OFDM with APSPs. We show that channel acquisition performance in terms of sum mean square error can be minimized if the user terminals' channel power distributions in the angle-delay domain can be made non-overlapping with proper phase shift scheduling. A simplified pilot phase shift scheduling algorithm is developed based on this optimal channel acquisition condition. The performance of APSPs is investigated for both one symbol and multiple symbol data models. Simulations demonstrate that the proposed APSP approach can provide substantial performance gains in terms of achievable spectral efficiency over the conventional phase shift orthogonal pilot approach in typical mobility scenarios.

  2. Modeling and characterization of different channels based on human body communication.

    PubMed

    Jingzhen Li; Zedong Nie; Yuhang Liu; Lei Wang

    2017-07-01

    Human body communication (HBC), which uses the human body as a transmission medium for electrical signals, provides a prospective communication solution for body sensor networks (BSNs). In this paper, an inhomogeneous model which includes the tissue layers of skin, fat, and muscle is proposed to study the propagation characteristics of different HBC channels. Specifically, the HBC channels, namely, the on-body to on-body (OB-OB)channel, on-body to in-body (OB-IB) channel, in-body to on-body (IB-OB) channel, and in-body to in-body (IB-IB)channel, are studied over different frequencies (from 1MHz to 100MHz) through numerical simulations with finite-difference time-domain (FDTD) method. The results show that the gain of OB-IB channel and IB-OB channel is almost the same. The gain of IB-IB channel is greater than other channels in the frequency range 1MHz to 70MHz. In addition, the gain of all channels is associated with the channel length and communication frequency. The simulations are verified by experimental measurements in a porcine tissue sample. The results show that the simulations are in agreement with the measurements.

  3. Channels selection using independent component analysis and scalp map projection for EEG-based driver fatigue classification.

    PubMed

    Rifai Chai; Naik, Ganesh R; Sai Ho Ling; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T

    2017-07-01

    This paper presents a classification of driver fatigue with electroencephalography (EEG) channels selection analysis. The system employs independent component analysis (ICA) with scalp map back projection to select the dominant of EEG channels. After channel selection, the features of the selected EEG channels were extracted based on power spectral density (PSD), and then classified using a Bayesian neural network. The results of the ICA decomposition with the back-projected scalp map and a threshold showed that the EEG channels can be reduced from 32 channels into 16 dominants channels involved in fatigue assessment as chosen channels, which included AF3, F3, FC1, FC5, T7, CP5, P3, O1, P4, P8, CP6, T8, FC2, F8, AF4, FP2. The result of fatigue vs. alert classification of the selected 16 channels yielded a sensitivity of 76.8%, specificity of 74.3% and an accuracy of 75.5%. Also, the classification results of the selected 16 channels are comparable to those using the original 32 channels. So, the selected 16 channels is preferable for ergonomics improvement of EEG-based fatigue classification system.

  4. Machine-Learning Based Channel Quality and Stability Estimation for Stream-Based Multichannel Wireless Sensor Networks.

    PubMed

    Rehan, Waqas; Fischer, Stefan; Rehan, Maaz

    2016-09-12

    Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end, simulations are made using MATLAB, and the results show that the Extended version of NEAMCBTC algorithm (Ext-NEAMCBTC) outperforms the compared techniques in terms of channel quality and stability assessment. It also minimizes channel switching overheads (in terms of switching delays and energy consumption) for accommodating stream-based communication in multichannel WSNs.

  5. Machine-Learning Based Channel Quality and Stability Estimation for Stream-Based Multichannel Wireless Sensor Networks

    PubMed Central

    Rehan, Waqas; Fischer, Stefan; Rehan, Maaz

    2016-01-01

    Wireless sensor networks (WSNs) have become more and more diversified and are today able to also support high data rate applications, such as multimedia. In this case, per-packet channel handshaking/switching may result in inducing additional overheads, such as energy consumption, delays and, therefore, data loss. One of the solutions is to perform stream-based channel allocation where channel handshaking is performed once before transmitting the whole data stream. Deciding stream-based channel allocation is more critical in case of multichannel WSNs where channels of different quality/stability are available and the wish for high performance requires sensor nodes to switch to the best among the available channels. In this work, we will focus on devising mechanisms that perform channel quality/stability estimation in order to improve the accommodation of stream-based communication in multichannel wireless sensor networks. For performing channel quality assessment, we have formulated a composite metric, which we call channel rank measurement (CRM), that can demarcate channels into good, intermediate and bad quality on the basis of the standard deviation of the received signal strength indicator (RSSI) and the average of the link quality indicator (LQI) of the received packets. CRM is then used to generate a data set for training a supervised machine learning-based algorithm (which we call Normal Equation based Channel quality prediction (NEC) algorithm) in such a way that it may perform instantaneous channel rank estimation of any channel. Subsequently, two robust extensions of the NEC algorithm are proposed (which we call Normal Equation based Weighted Moving Average Channel quality prediction (NEWMAC) algorithm and Normal Equation based Aggregate Maturity Criteria with Beta Tracking based Channel weight prediction (NEAMCBTC) algorithm), that can perform channel quality estimation on the basis of both current and past values of channel rank estimation. In the end, simulations are made using MATLAB, and the results show that the Extended version of NEAMCBTC algorithm (Ext-NEAMCBTC) outperforms the compared techniques in terms of channel quality and stability assessment. It also minimizes channel switching overheads (in terms of switching delays and energy consumption) for accommodating stream-based communication in multichannel WSNs. PMID:27626429

  6. Man-induced channel adjustment in Tennessee streams

    USGS Publications Warehouse

    Robbins, C.H.; Simon, Andrew

    1983-01-01

    Channel modifications in Tennessee, particularly in the western part, have led to large-scale instabilities in the channelized rivers and may have contributed to several bridge failures. These modifications, together with land-use practices, led to downcutting, headward erosion, downstream aggradation, accelerated scour, and bank instabilities. Changes in gradient by channel straightening caused more severe channel response than did dredging or clearing. Large-scale changes continue to occur in all the channelized rivers: the Obion River, its forks, and the South Fork Forked Deer River. However, the non-channelized Hatchie River in west Tennessee not only withstood the natural stresses imposed by the wet years of 1973 to 1975 but continues to exhibit characteristics of stability. Water-surface slope, the primary dependent variable, proved to be a sensitive and descriptive parameter useful in determining channel adjustment. Adjustments to man-induced increases in channel-slope are described by inverse exponential functions of the basic form S=ae(-b(t)); where ' S ' is some function describing channel-slope, ' t ' is the number of years since completion of channel work, and ' a ' and ' b ' are coefficients. Response times for the attainment of ' equilibrium ' channel slopes are a function of the magnitude and extent of the imposed modifications. The adjusted profile gradients attained by the streams following channelization are similar to the predisturbed profile gradients, where no alteration to channel length was made. Where the channels were straightened by constructing cut-offs, thus shortening channel length, then slope adjustments (reduction) proceed past the predisturbed profile gradients, to new profiles with lower gradients. (USGS)

  7. Distribution, persistence, and hydrologic characteristics of salmon spawning habitats in clearwater side channels of the Matanuska River, southcentral Alaska

    USGS Publications Warehouse

    Curran, Janet H.; McTeague, Monica L.; Burril, Sean E.; Zimmerman, Christian E.

    2011-01-01

    Turbid, glacially influenced rivers are often considered to be poor salmon spawning and rearing habitats and, consequently, little is known about salmon habitats that do occur within rivers of this type. To better understand salmon spawning habitats in the Matanuska River of southcentral Alaska, the distribution and characteristics of clearwater side-channel spawning habitats were determined and compared to spawning habitats in tributaries. More than 100 kilometers of clearwater side channels within the braided mainstem of the Matanuska River were mapped for 2006 from aerial images and ground-based surveys. In reaches selected for historical analysis, side channel locations shifted appreciably between 1949 and 2006, but the relative abundance of clearwater side channels was fairly stable during the same period. Geospatial analysis of side channel distribution shows side channels typically positioned along abandoned bars at the braid plain margin rather than on bars between mainstem channels, and shows a strong correlation of channel abundance with braid plain width. Physical and geomorphic characteristics of the channel and chemical character of the water measured at 19 side channel sites, 6 tributary sites, 4 spring sites, and 5 mainstem channel sites showed conditions suitable for salmon spawning in side channels and tributaries, and a correlation of side channel characteristics with the respective tributary or groundwater source water. Autumn-through-spring monitoring of intergravel water temperatures adjacent to salmon redds (nests) in three side channels and two tributaries indicate adequate accumulated thermal units for incubation and emergence of salmon in side channels and relatively low accumulated thermal units in tributaries.

  8. Gating of the designed trimeric/tetrameric voltage-gated H+ channel

    PubMed Central

    Fujiwara, Yuichiro; Kurokawa, Tatsuki; Takeshita, Kohei; Nakagawa, Atsushi; Larsson, H Peter; Okamura, Yasushi

    2013-01-01

    The voltage-gated H+ channel functions as a dimer, a configuration that is different from standard tetrameric voltage-gated channels. Each channel protomer has its own permeation pathway. The C-terminal coiled-coil domain has been shown to be necessary for both dimerization and cooperative gating in the two channel protomers. Here we report the gating cooperativity in trimeric and tetrameric Hv channels engineered by altering the hydrophobic core sequence of the coiled-coil assembly domain. Trimeric and tetrameric channels exhibited more rapid and less sigmoidal kinetics of activation of H+ permeation than dimeric channels, suggesting that some channel protomers in trimers and tetramers failed to produce gating cooperativity observed in wild-type dimers. Multimerization of trimer and tetramer channels were confirmed by the biochemical analysis of proteins, including crystallography. These findings indicate that the voltage-gated H+ channel is optimally designed as a dimeric channel on a solid foundation of the sequence pattern of the coiled-coil core, with efficient cooperative gating that ensures sustained and steep voltage-dependent H+ conductance in blood cells. PMID:23165764

  9. RAC-multi: reader anti-collision algorithm for multichannel mobile RFID networks.

    PubMed

    Shin, Kwangcheol; Song, Wonil

    2010-01-01

    At present, RFID is installed on mobile devices such as mobile phones or PDAs and provides a means to obtain information about objects equipped with an RFID tag over a multi-channeled telecommunication networks. To use mobile RFIDs, reader collision problems should be addressed given that readers are continuously moving. Moreover, in a multichannel environment for mobile RFIDs, interference between adjacent channels should be considered. This work first defines a new concept of a reader collision problem between adjacent channels and then suggests a novel reader anti-collision algorithm for RFID readers that use multiple channels. To avoid interference with adjacent channels, the suggested algorithm separates data channels into odd and even numbered channels and allocates odd-numbered channels first to readers. It also sets an unused channel between the control channel and data channels to ensure that control messages and the signal of the adjacent channel experience no interference. Experimental results show that suggested algorithm shows throughput improvements ranging from 29% to 46% for tag identifications compared to the GENTLE reader anti-collision algorithm for multichannel RFID networks.

  10. Self-Optimized Biological Channels in Facilitating the Transmembrane Movement of Charged Molecules

    PubMed Central

    Huyen, V. T. N.; Lap, Vu Cong; Nguyen, V. Lien

    2016-01-01

    We consider an anisotropically two-dimensional diffusion of a charged molecule (particle) through a large biological channel under an external voltage. The channel is modeled as a cylinder of three structure parameters: radius, length, and surface density of negative charges located at the channel interior-lining. These charges induce inside the channel a potential that plays a key role in controlling the particle current through the channel. It was shown that to facilitate the transmembrane particle movement the channel should be reasonably self-optimized so that its potential coincides with the resonant one, resulting in a large particle current across the channel. Observed facilitation appears to be an intrinsic property of biological channels, regardless of the external voltage or the particle concentration gradient. This facilitation is very selective in the sense that a channel of definite structure parameters can facilitate the transmembrane movement of only particles of proper valence at corresponding temperatures. Calculations also show that the modeled channel is nonohmic with the ion conductance which exhibits a resonance at the same channel potential as that identified in the current. PMID:27022394

  11. RAC-Multi: Reader Anti-Collision Algorithm for Multichannel Mobile RFID Networks

    PubMed Central

    Shin, Kwangcheol; Song, Wonil

    2010-01-01

    At present, RFID is installed on mobile devices such as mobile phones or PDAs and provides a means to obtain information about objects equipped with an RFID tag over a multi-channeled telecommunication networks. To use mobile RFIDs, reader collision problems should be addressed given that readers are continuously moving. Moreover, in a multichannel environment for mobile RFIDs, interference between adjacent channels should be considered. This work first defines a new concept of a reader collision problem between adjacent channels and then suggests a novel reader anti-collision algorithm for RFID readers that use multiple channels. To avoid interference with adjacent channels, the suggested algorithm separates data channels into odd and even numbered channels and allocates odd-numbered channels first to readers. It also sets an unused channel between the control channel and data channels to ensure that control messages and the signal of the adjacent channel experience no interference. Experimental results show that suggested algorithm shows throughput improvements ranging from 29% to 46% for tag identifications compared to the GENTLE reader anti-collision algorithm for multichannel RFID networks. PMID:22315528

  12. State-dependent block of CNG channels by dequalinium.

    PubMed

    Rosenbaum, Tamara; Gordon-Shaag, Ariela; Islas, León D; Cooper, Jeremy; Munari, Mika; Gordon, Sharona E

    2004-03-01

    Cyclic nucleotide-gated (CNG) ion channels are nonselective cation channels with a high permeability for Ca(2+). Not surprisingly, they are blocked by a number of Ca(2+) channel blockers including tetracaine, pimozide, and diltiazem. We studied the effects of dequalinium, an extracellular blocker of the small conductance Ca(2+)-activated K(+) channel. We previously noted that dequalinium is a high-affinity blocker of CNGA1 channels from the intracellular side, with little or no state dependence at 0 mV. Here we examined block by dequalinium at a broad range of voltages in both CNGA1 and CNGA2 channels. We found that dequalinium block was mildly state dependent for both channels, with the affinity for closed channels 3-5 times higher than that for open channels. Mutations in the S4-S5 linker did not alter the affinity of open channels for dequalinium, but increased the affinity of closed channels by 10-20-fold. The state-specific effect of these mutations raises the question of whether/how the S4-S5 linker alters the binding of a blocker within the ion permeation pathway.

  13. Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy.

    PubMed

    Michalakis, Stylianos; Becirovic, Elvir; Biel, Martin

    2018-03-07

    The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG) channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP) or cyclic adenosine monophosphate (cAMP). Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca 2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and voltage-gated potassium channels (KCN). In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application.

  14. Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy

    PubMed Central

    Biel, Martin

    2018-01-01

    The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG) channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP) or cyclic adenosine monophosphate (cAMP). Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and voltage-gated potassium channels (KCN). In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application. PMID:29518895

  15. Mechanisms of action of ligands of potential-dependent sodium channels.

    PubMed

    Tikhonov, D B

    2008-06-01

    Potential-dependent sodium channels play a leading role in generating action potentials in excitable cells. Sodium channels are the site of action of a variety of modulator ligands. Despite numerous studies, the mechanisms of action of many modulators remain incompletely understood. The main reason that many important questions cannot be resolved is that there is a lack of precise data on the structures of the channels themselves. Structurally, potential-dependent sodium channels are members of the P-loop channel superfamily, which also include potassium and calcium channels and glutamate receptor channels. Crystallization of a series of potassium channels showed that it was possible to analyze the structures of different members of the superfamily using the "homologous modeling" method. The present study addresses model investigations of the actions of ligands of sodium channels, including tetrodotoxin and batrachotoxin, as well as local anesthetics. Comparison of experimental data on sodium channel ligands with x-ray analysis data allowed us to reach a new level of understanding of the mechanisms of channel modulation and to propose a series of experimentally verifiable hypotheses.

  16. Monodisperse microdroplet generation and stopping without coalescence

    DOEpatents

    Beer, Neil Reginald

    2015-04-21

    A system for monodispersed microdroplet generation and trapping including providing a flow channel in a microchip; producing microdroplets in the flow channel, the microdroplets movable in the flow channel; providing carrier fluid in the flow channel using a pump or pressure source; controlling movement of the microdroplets in the flow channel and trapping the microdroplets in a desired location in the flow channel. The system includes a microchip; a flow channel in the microchip; a droplet maker that generates microdroplets, the droplet maker connected to the flow channel; a carrier fluid in the flow channel, the carrier fluid introduced to the flow channel by a source of carrier fluid, the source of carrier fluid including a pump or pressure source; a valve connected to the carrier fluid that controls flow of the carrier fluid and enables trapping of the microdroplets.

  17. Monodisperse microdroplet generation and stopping without coalescence

    DOEpatents

    Beer, Neil Reginald

    2016-02-23

    A system for monodispersed microdroplet generation and trapping including providing a flow channel in a microchip; producing microdroplets in the flow channel, the microdroplets movable in the flow channel; providing carrier fluid in the flow channel using a pump or pressure source; controlling movement of the microdroplets in the flow channel and trapping the microdroplets in a desired location in the flow channel. The system includes a microchip; a flow channel in the microchip; a droplet maker that generates microdroplets, the droplet maker connected to the flow channel; a carrier fluid in the flow channel, the carrier fluid introduced to the flow channel by a source of carrier fluid, the source of carrier fluid including a pump or pressure source; a valve connected to the carrier fluid that controls flow of the carrier fluid and enables trapping of the microdroplets.

  18. CFTR Cl- channel and CFTR-associated ATP channel: distinct pores regulated by common gates.

    PubMed Central

    Sugita, M; Yue, Y; Foskett, J K

    1998-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is regulated by phosphorylation of the R domain and ATP hydrolysis at two nucleotide-binding domains (NBDs). It is controversial whether CFTR conducts ATP or whether CFTR might be closely associated with a separate ATP conductance. To characterize ATP channels associated with CFTR, we analyzed Cl- and ATP single channel-currents in excised inside-out membrane patches from MDCK epithelial cells transiently expressing CFTR. With 100 mM ATP in the pipette and 140 mM Cl- in the bath, ATP channels were associated with CFTR Cl- channels in two-thirds of patches that included CFTR. CFTR Cl- channels and CFTR-associated ATP channels had slope conductances of 7.4 pS and 5.2 pS, respectively, and had distinct reversal potentials and sensitivities to channel blockers. CFTR-associated ATP channels exhibited slow gating kinetics that depended on the presence of protein kinase A and cytoplasmic ATP, similar to CFTR Cl- channels. Gating kinetics of the ATP channels as well as the CFTR Cl- channels were similarly affected by non-hydrolyzable ATP analogues and mutations in the CFTR R domain and NBDs. Our results indicate that phosphorylation- and nucleotide-hydrolysis-dependent gating of CFTR is directly involved in gating of an associated ATP channel. However, the permeation pathways for Cl- and ATP are distinct and the ATP conduction pathway is not obligatorily associated with the expression of CFTR. PMID:9463368

  19. KCa2 and KCa3 Channels in Learning and Memory Processes, and Neurodegeneration

    PubMed Central

    Kuiper, Els F. E.; Nelemans, Ad; Luiten, Paul; Nijholt, Ingrid; Dolga, Amalia; Eisel, Uli

    2012-01-01

    Calcium-activated potassium (KCa) channels are present throughout the central nervous system as well as many peripheral tissues. Activation of KCa channels contribute to maintenance of the neuronal membrane potential and was shown to underlie the afterhyperpolarization (AHP) that regulates action potential firing and limits the firing frequency of repetitive action potentials. Different subtypes of KCa channels were anticipated on the basis of their physiological and pharmacological profiles, and cloning revealed two well defined but phylogenetic distantly related groups of channels. The group subject of this review includes both the small conductance KCa2 channels (KCa2.1, KCa2.2, and KCa2.3) and the intermediate-conductance (KCa3.1) channel. These channels are activated by submicromolar intracellular Ca2+ concentrations and are voltage independent. Of all KCa channels only the KCa2 channels can be potently but differentially blocked by the bee-venom apamin. In the past few years modulation of KCa channel activation revealed new roles for KCa2 channels in controlling dendritic excitability, synaptic functioning, and synaptic plasticity. Furthermore, KCa2 channels appeared to be involved in neurodegeneration, and learning and memory processes. In this review, we focus on the role of KCa2 and KCa3 channels in these latter mechanisms with emphasis on learning and memory, Alzheimer’s disease and on the interplay between neuroinflammation and different neurotransmitters/neuromodulators, their signaling components and KCa channel activation. PMID:22701424

  20. Anatomy and growth pattern of Amazon deep-sea fan as revealed by long-range side-scan sonar (GLORIA) and high-resolution seismic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damuth, J.E.; Flood, R.D.; Kowsmann, R.O.

    1988-08-01

    Imaging of the Amazon deep-sea fan with long-range side-scan sonar (GLORIA) has, for the first time, revealed the anatomy, trends, and growth pattern of distributary channels on this fan. Only one channel-levee system was active at any given time and extended from the Amazon Submarine Canyon downslope onto the lower fan (> 4,200 m). Formation of new channel-levee systems occurred when a currently active channel-levee system was cut off and abandoned through avulsion, and a new channel-levee system was established nearby. Through time, successive channel-levee formation and abandonment built two broad levee complexes consisting of groups of overlapping, coalescing segmentsmore » of channel-levee systems across the present fan surface. These, plus older, now buried levee complexes, indicate that fan growth is radially outward and downslope through development of successive levee complexes. The most striking characteristic of the distributary channels is their intricate, often recurving, meanders with sinuosities of up to 2.5. Cutoffs and abandoned meander loops indicate that the channels migrate laterally through time. Channel bifurcation results predominantly from avulsion when flows breach a channel levee, thereby abandoning the present channel and establishing a new channel-levee segment nearby. No clear evidence of channel branching (i.e., division of a single channel into two active segments) or braiding was observed. 22 figs.« less

  1. The dipole moment of membrane proteins: potassium channel protein and beta-subunit.

    PubMed

    Takashima, S

    2001-12-25

    The mechanism of ion channel opening is one of the most fascinating problems in membrane biology. Based on phenomenological studies, early researchers suggested that the elementary process of ion channel opening may be the intramembrane charge movement or the orientation of dipolar proteins in the channel. In spite of the far reaching significance of these hypotheses, it has not been possible to formulate a comprehensive molecular theory for the mechanism of channel opening. This is because of the lack of the detailed knowledge on the structure of channel proteins. In recent years, however, the research on the structure of channel proteins made marked advances and, at present, we are beginning to have sufficient information on the structure of some of the channel proteins, e.g. potassium-channel protein and beta-subunits. With these new information, we are now ready to have another look at the old hypothesis, in particular, the dipole moment of channel proteins being the voltage sensor for the opening and closing of ion channels. In this paper, the dipole moments of potassium channel protein and beta-subunit, are calculated using X-ray diffraction data. A large dipole moment was found for beta-subunits while the dipole moment of K-channel protein was found to be considerably smaller than that of beta-subunits. These calculations were conducted as a preliminary study of the comprehensive research on the dipolar structure of channel proteins in excitable membranes, above all, sodium channel proteins.

  2. Differential effect of brief electrical stimulation on voltage-gated potassium channels.

    PubMed

    Cameron, Morven A; Al Abed, Amr; Buskila, Yossi; Dokos, Socrates; Lovell, Nigel H; Morley, John W

    2017-05-01

    Electrical stimulation of neuronal tissue is a promising strategy to treat a variety of neurological disorders. The mechanism of neuronal activation by external electrical stimulation is governed by voltage-gated ion channels. This stimulus, typically brief in nature, leads to membrane potential depolarization, which increases ion flow across the membrane by increasing the open probability of these voltage-gated channels. In spiking neurons, it is activation of voltage-gated sodium channels (Na V channels) that leads to action potential generation. However, several other types of voltage-gated channels are expressed that also respond to electrical stimulation. In this study, we examine the response of voltage-gated potassium channels (K V channels) to brief electrical stimulation by whole cell patch-clamp electrophysiology and computational modeling. We show that nonspiking amacrine neurons of the retina exhibit a large variety of responses to stimulation, driven by different K V -channel subtypes. Computational modeling reveals substantial differences in the response of specific K V -channel subtypes that is dependent on channel kinetics. This suggests that the expression levels of different K V -channel subtypes in retinal neurons are a crucial predictor of the response that can be obtained. These data expand our knowledge of the mechanisms of neuronal activation and suggest that K V -channel expression is an important determinant of the sensitivity of neurons to electrical stimulation. NEW & NOTEWORTHY This paper describes the response of various voltage-gated potassium channels (K V channels) to brief electrical stimulation, such as is applied during prosthetic electrical stimulation. We show that the pattern of response greatly varies between K V channel subtypes depending on activation and inactivation kinetics of each channel. Our data suggest that problems encountered when artificially stimulating neurons such as cessation in firing at high frequencies, or "fading," may be attributed to K V -channel activation. Copyright © 2017 the American Physiological Society.

  3. Local calcium signalling is mediated by mechanosensitive ion channels in mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubinskiy-Nadezhdin, Vladislav I., E-mail: vchubinskiy@gmail.com; Vasileva, Valeria Y.; Pugovkina, Natalia A.

    Mechanical forces are implicated in key physiological processes in stem cells, including proliferation, differentiation and lineage switching. To date, there is an evident lack of understanding of how external mechanical cues are coupled with calcium signalling in stem cells. Mechanical reactions are of particular interest in adult mesenchymal stem cells because of their promising potential for use in tissue remodelling and clinical therapy. Here, single channel patch-clamp technique was employed to search for cation channels involved in mechanosensitivity in mesenchymal endometrial-derived stem cells (hMESCs). Functional expression of native mechanosensitive stretch-activated channels (SACs) and calcium-sensitive potassium channels of different conductances inmore » hMESCs was shown. Single current analysis of stretch-induced channel activity revealed functional coupling of SACs and BK channels in plasma membrane. The combination of cell-attached and inside-out experiments have indicated that highly localized Ca{sup 2+} entry via SACs triggers BK channel activity. At the same time, SK channels are not coupled with SACs despite of high calcium sensitivity as compared to BK. Our data demonstrate novel mechanism controlling BK channel activity in native cells. We conclude that SACs and BK channels are clusterized in functional mechanosensitive domains in the plasma membrane of hMESCs. Co-clustering of ion channels may significantly contribute to mechano-dependent calcium signalling in stem cells. - Highlights: • Stretch-induced channel activity in human mesenchymal stem cells was analyzed. • Functional expression of SACs and Ca{sup 2+}-sensitive BK and SK channels was shown. • Local Ca{sup 2+} influx via stretch-activated channels triggers BK channel activity. • SK channels are not coupled with SACs despite higher sensitivity to [Ca{sup 2+}]{sub i}. • Functional clustering of SACs and BK channels in stem cell membrane is proposed.« less

  4. Activation of zero-error classical capacity in low-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Park, Jeonghoon; Heo, Jun

    2018-06-01

    Channel capacities of quantum channels can be nonadditive even if one of two quantum channels has no channel capacity. We call this phenomenon activation of the channel capacity. In this paper, we show that when we use a quantum channel on a qubit system, only a noiseless qubit channel can generate the activation of the zero-error classical capacity. In particular, we show that the zero-error classical capacity of two quantum channels on qubit systems cannot be activated. Furthermore, we present a class of examples showing the activation of the zero-error classical capacity in low-dimensional systems.

  5. Isotachophoresis system having larger-diameter channels flowing into channels with reduced diameter and with selectable counter-flow

    DOEpatents

    Mariella, Jr., Raymond P.

    2018-03-06

    An isotachophoresis system for separating a sample containing particles into discrete packets including a flow channel, the flow channel having a large diameter section and a small diameter section; a negative electrode operably connected to the flow channel; a positive electrode operably connected to the flow channel; a leading carrier fluid in the flow channel; a trailing carrier fluid in the flow channel; and a control for separating the particles in the sample into discrete packets using the leading carrier fluid, the trailing carrier fluid, the large diameter section, and the small diameter section.

  6. Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators.

    PubMed

    Sonkusare, Swapnil K; Dalsgaard, Thomas; Bonev, Adrian D; Nelson, Mark T

    2016-06-15

    Increase in endothelial cell (EC) calcium activates calcium-sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium-dependent vasodilatation. Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium-dependent vasodilatation is not clear. In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform. Endothelium-dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown. These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Endothelium-dependent vasodilators, such as acetylcholine, increase intracellular Ca(2+) through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca(2+) -sensitive intermediate and small conductance K(+) (IK and SK, respectively) channels. Although strong inward rectifier K(+) (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC-dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC-dependent vasodilatation of resistance-sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC-specific Kir2.1 knockdown (EC-Kir2.1(-/-) ) mice. Elevation of extracellular K(+) to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial denudation and Kir channel inhibitors (Ba(2+) , ML-133) or in the arteries from EC-Kir2.1(-/-) mice. Potassium-induced dilatations were unaffected by inhibitors of TRPV4, IK and SK channels. The Kir channel blocker, Ba(2+) , did not affect currents through TRPV4, IK or SK channels. Endothelial cell-dependent vasodilatations in response to activation of muscarinic receptors, TRPV4 channels or IK/SK channels were reduced, but not eliminated, by Kir channel inhibitors or EC-Kir2.1(-/-) . In angiotensin II-induced hypertension, the Kir channel function was not altered, although the endothelium-dependent vasodilatation was severely impaired. Our results support the concept that EC Kir2 channels boost vasodilatory signals that are generated by Ca(2+) -dependent activation of IK and SK channels. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  7. Inward rectifier potassium (Kir2.1) channels as end‐stage boosters of endothelium‐dependent vasodilators

    PubMed Central

    Dalsgaard, Thomas; Bonev, Adrian D.; Nelson, Mark T.

    2016-01-01

    Key points Increase in endothelial cell (EC) calcium activates calcium‐sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium‐dependent vasodilatation.Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium‐dependent vasodilatation is not clear.In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform.Endothelium‐dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown.These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Abstract Endothelium‐dependent vasodilators, such as acetylcholine, increase intracellular Ca2+ through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca2+‐sensitive intermediate and small conductance K+ (IK and SK, respectively) channels. Although strong inward rectifier K+ (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC‐dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC‐dependent vasodilatation of resistance‐sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC‐specific Kir2.1 knockdown (EC‐Kir2.1 −/−) mice. Elevation of extracellular K+ to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial denudation and Kir channel inhibitors (Ba2+, ML‐133) or in the arteries from EC‐Kir2.1 −/− mice. Potassium‐induced dilatations were unaffected by inhibitors of TRPV4, IK and SK channels. The Kir channel blocker, Ba2+, did not affect currents through TRPV4, IK or SK channels. Endothelial cell‐dependent vasodilatations in response to activation of muscarinic receptors, TRPV4 channels or IK/SK channels were reduced, but not eliminated, by Kir channel inhibitors or EC‐Kir2.1 −/−. In angiotensin II‐induced hypertension, the Kir channel function was not altered, although the endothelium‐dependent vasodilatation was severely impaired. Our results support the concept that EC Kir2 channels boost vasodilatory signals that are generated by Ca2+‐dependent activation of IK and SK channels. PMID:26840527

  8. Activity and Ca2+ regulate the mobility of TRPV1 channels in the plasma membrane of sensory neurons

    PubMed Central

    Senning, Eric N; Gordon, Sharona E

    2015-01-01

    TRPV1 channels are gated by a variety of thermal, chemical, and mechanical stimuli. We used optical recording of Ca2+ influx through TRPV1 to measure activity and mobility of single TRPV1 molecules in isolated dorsal root ganglion neurons and cell lines. The opening of single TRPV1 channels produced sparklets, representing localized regions of elevated Ca2+. Unlike sparklets reported for L-type Ca2+ channels, TRPV4 channels, and AchR channels, TRPV1 channels diffused laterally in the plasma membrane as they gated. Mobility was highly variable from channel-to-channel and, to a smaller extent, from cell to cell. Most surprisingly, we found that mobility decreased upon channel activation by capsaicin, but only in the presence of extracellular Ca2+. We propose that decreased mobility of open TRPV1 could act as a diffusion trap to concentrate channels in cell regions with high activity. DOI: http://dx.doi.org/10.7554/eLife.03819.001 PMID:25569155

  9. Capacity, cutoff rate, and coding for a direct-detection optical channel

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1980-01-01

    It is shown that Pierce's pulse position modulation scheme with 2 to the L pulse positions used on a self-noise-limited direct detection optical communication channel results in a 2 to the L-ary erasure channel that is equivalent to the parallel combination of L completely correlated binary erasure channels. The capacity of the full channel is the sum of the capacities of the component channels, but the cutoff rate of the full channel is shown to be much smaller than the sum of the cutoff rates. An interpretation of the cutoff rate is given that suggests a complexity advantage in coding separately on the component channels. It is shown that if short-constraint-length convolutional codes with Viterbi decoders are used on the component channels, then the performance and complexity compare favorably with the Reed-Solomon coding system proposed by McEliece for the full channel. The reasons for this unexpectedly fine performance by the convolutional code system are explored in detail, as are various facets of the channel structure.

  10. Load-adaptive practical multi-channel communications in wireless sensor networks.

    PubMed

    Islam, Md Shariful; Alam, Muhammad Mahbub; Hong, Choong Seon; Lee, Sungwon

    2010-01-01

    In recent years, a significant number of sensor node prototypes have been designed that provide communications in multiple channels. This multi-channel feature can be effectively exploited to increase the overall capacity and performance of wireless sensor networks (WSNs). In this paper, we present a multi-channel communications system for WSNs that is referred to as load-adaptive practical multi-channel communications (LPMC). LPMC estimates the active load of a channel at the sink since it has a more comprehensive view of the network behavior, and dynamically adds or removes channels based on the estimated load. LPMC updates the routing path to balance the loads of the channels. The nodes in a path use the same channel; therefore, they do not need to switch channels to receive or forward packets. LPMC has been evaluated through extensive simulations, and the results demonstrate that it can effectively increase the delivery ratio, network throughput, and channel utilization, and that it can decrease the end-to-end delay and energy consumption.

  11. Fading channel simulator

    DOEpatents

    Argo, Paul E.; Fitzgerald, T. Joseph

    1993-01-01

    Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  12. Pixel-Wise-Inter/Intra-Channel Color and Luminance Uniformity Corrections for Multi-Channel Projection Displays

    DTIC Science & Technology

    2016-08-11

    Journal Article 3. DATES COVERED (From – To) Jan 2015 – Dec 2015 4. TITLE AND SUBTITLE PIXEL-WISE INTER/INTRA-CHANNEL COLOR & LUMINANCE UNIFORMITY...Conference Dayton, Ohio – 28-29 June 2016 14. ABSTRACT Inter- and intra-channel color and luminance are generally non-uniform in multi-channel...projection display systems. Several methods have been proposed to correct for both inter- and intra-channel color and luminance variation in multi-channel

  13. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.

    PubMed

    Kajma, Anna; Szewczyk, Adam

    2012-10-01

    Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels

    PubMed Central

    Martin, Gregory M.; Chen, Pei-Chun; Devaraneni, Prasanna; Shyng, Show-Ling

    2013-01-01

    ATP-sensitive potassium (KATP) channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic β-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel function results in neonatal diabetes or congenital hyperinsulinism, respectively. The β-cell KATP channel is formed by co-assembly of four Kir6.2 inwardly rectifying potassium channel subunits encoded by KCNJ11 and four sulfonylurea receptor 1 subunits encoded by ABCC8. Many mutations in ABCC8 or KCNJ11 cause loss of channel function, thus, congenital hyperinsulinism by hampering channel biogenesis and hence trafficking to the cell surface. The trafficking defects caused by a subset of these mutations can be corrected by sulfonylureas, KATP channel antagonists that have long been used to treat type 2 diabetes. More recently, carbamazepine, an anticonvulsant that is thought to target primarily voltage-gated sodium channels has been shown to correct KATP channel trafficking defects. This article reviews studies to date aimed at understanding the mechanisms by which mutations impair channel biogenesis and trafficking and the mechanisms by which pharmacological ligands overcome channel trafficking defects. Insight into channel structure-function relationships and therapeutic implications from these studies are discussed. PMID:24399968

  15. Big Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy

    PubMed Central

    Ge, Lisheng; Hoa, Neil T.; Wilson, Zechariah; Arismendi-Morillo, Gabriel; Kong, Xia-Tang; Tajhya, Rajeev B.; Beeton, Christine; Jadus, Martin R.

    2017-01-01

    The Big Potassium (BK) ion channel is commonly known by a variety of names (Maxi-K, KCNMA1, slo, Stretch-activated potassium channels, KCa1.1). Each name reflects a different physical property displayed by this single ion channel. This transmembrane channel is found on nearly every cell type of the body and has its own distinctive roles for that tissue type. The BKα channel contains the pore that releases potassium ions from intracellular stores. This ion channel is found on the cell membrane, endoplasmic reticulum, Golgi and mitochondria. Complex splicing pathways produce different isoforms. The BKα channels can be phosphorylated, palmitoylated and myristylated. BK is composed of a homo-tetramer that interacts with β and γ chains. These accessory proteins provide a further modulating effect on the functions of BKα channels. BK channels play important roles in cell division and migration. In this review, we will focus on the biology of BK channels, especially its role, and that it has in the immune response towards cancer. Recent proteomic studies have linked BK channels with various proteins. Some of these interactions offer further insight into the role that BK channels have with cancers, especially with brain tumors. This review shows that BK channels have a complex interplay with intracellular components of cancer cells and still have plenty of secrets to be discovered. PMID:25027630

  16. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation.

    PubMed

    Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime

    2015-09-01

    Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels. © 2015 Wiley Periodicals, Inc.

  17. Impacts of salt marsh plants on tidal channel initiation and inheritance

    NASA Astrophysics Data System (ADS)

    Schwarz, Christian; Ye, Qinghua; van der Wal, Daphne; Zhang, Liquan; Ysebaert, Tom; Herman, Peter MJ

    2013-04-01

    Tidal channel networks are the most prominent and striking features visible in tidal wetlands. They serve as major pathways for the exchange of water, sediments, nutrients and contaminants between the wetland and the adjacent open water body. Previous studies identified topography guided sheet flows, as the predominate process for tidal channel initiation. Guided through differences in local topography, sheet flows are able to locally exceed bottom shear stress thresholds, initiating scouring and incision of tidal channels, which then further grow through head ward erosion. The fate of these channels after plant colonization is described in literature as being inherited into the salt marsh through vegetation induced bank stabilization (further referred to as vegetation stabilized channel inheritance). In this study we present a combination of flume experiments and modelling simulations elucidating the impact of vegetation on tidal channel initiation. We first studied the impact of plant properties (stiff: Spartina alterniflora versus flexible: Scirpus mariqueter) on local sediment transport utilizing a flume experiment. Then a coupled hydrodynamic morphodynamic plant growth model was set up to simulate plant colonization by these two different species in the pioneer zone at the mudflat - salt marsh transition. Based on the model we investigated the ramifications of interactions between vegetation, sediment and flow on tidal channel initiation. We specifically compared the effect of vegetation properties (such as stiffness, growth velocity and stress tolerance) on emerging channel patterns, hypothesizing that vegetation mediated channel incision (vegetation induced flow routing and differential sedimentation/erosion patterns leading to tidal channel incision) plays an active role in intertidal landscape evolution. We finally extended our model simulation by imposing pre-existing mudflat channels with different maximum depths, to investigate the impact of existing channels on vegetation mediated channel incision. This simulated landscape development was then compared to aerial photographs from the Scheldt estuary (the Netherlands) and the Yangtze estuary (China). Our results suggest a significant impact of plant properties on tidal channel network emergence, specifically in respect to network drainage density and channel width. This emphasizes the repercussions of vegetation mediated channel incision on estuarine landscape development. Further do our results point to the existence of a threshold in pre-existing mudflat channel depth favoring either vegetation stabilized channel inheritance or vegetation mediated channel incision processes. Increasing depth in mudflat channels favors flow routing via these channels, leaving less flow and momentum remaining for the interaction between vegetation, sediment and flow and therefore vegetation mediated channel incision. This threshold will be influenced by field specific parameters such as hydrodynamics (tidal range, waves, and flow), sediments and predominant plant species. Hence our study not only demonstrates to importance of plant properties on landscape development it also shows that vegetation stabilized channel inheritance or vegetation mediated channel incision are two occurring mechanisms depending on ecosystem properties, adding important information for salt marsh management and conservation.

  18. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].

    PubMed

    Lian, Qin; Zhuang, Pei; Li, Changhai; Jin, Zhongmin; Li, Dichen

    2014-03-01

    To improve the poor mechanical strength of porous ceramic scaffold, an integrated method based on three-dimensional (3-D) printing technique is developed to incorporate the controlled double-channel porous structure into the polylactic acid/beta-tricalcium phosphate (PLA/beta-TCP) reinforced composite scaffolds (double-channel composite scaffold) to improve their tissue regeneration capability and the mechanical properties. The designed double-channel structure inside the ceramic scaffold consisted of both primary and secondary micropipes, which parallel but un-connected. The set of primary channels was used for cell ingrowth, while the set of secondary channels was used for the PLA perfusion. Integration technology of 3-D printing technique and gel-casting was firstly used to fabricate the double-channel ceramic scaffolds. PLA/beta-TCP composite scaffolds were obtained by the polymer gravity perfusion process to pour PLA solution into the double-channel ceramic scaffolds through the secondary channel set. Microscope, porosity, and mechanical experiments for the standard samples were used to evaluate the composite properties. The ceramic scaffold with only the primary channel (single-channel scaffold) was also prepared as a control. Morphology observation results showed that there was no PLA inside the primary channels of the double-channel composite scaffolds but a dense interface layer between PLA and beta-TCP obviously formed on the inner wall of the secondary channels by the PLA penetration during the perfusion process. Finite element simulation found that the compressive strength of the double-channel composite scaffold was less than that of the single-channel scaffold; however, mechanical tests found that the maximum compressive strength of the double-channel composite scaffold [(21.25 +/- 1.15) MPa] was higher than that of the single-channel scaffold[ (9.76 +/- 0.64) MPa]. The double-channel composite scaffolds fabricated by 3-D printing technique have controlled complex micropipes and can significantly enhance mechanical properties, which is a promising strategy to solve the contradiction of strength and high-porosity of the ceramic scaffolds for the bone tissue engineering application.

  19. Spatial and temporal variability in sedimentation rates associated with cutoff channel infill deposits: Ain River, France

    USGS Publications Warehouse

    Piégay, H.; Hupp, C.R.; Citterio, A.; Dufour, S.; Moulin, B.; Walling, D.E.

    2008-01-01

    Floodplain development is associated with lateral accretion along stable channel geometry. Along shifting rivers, the floodplain sedimentation is more complex because of changes in channel position but also cutoff channel presence, which exhibit specific overflow patterns. In this contribution, the spatial and temporal variability of sedimentation rates in cutoff channel infill deposits is related to channel changes of a shifting gravel bed river (Ain River, France). The sedimentation rates estimated from dendrogeomorphic analysis are compared between and within 14 cutoff channel infills. Detailed analyses along a single channel infill are performed to assess changes in the sedimentation rates through time by analyzing activity profiles of the fallout radionuclides 137Cs and unsupported 210Pb. Sedimentation rates are also compared within the channel infills with rates in other plots located in the adjacent floodplain. Sedimentation rates range between 0.65 and 2.4 cm a−1 over a period of 10 to 40 years. The data provide additional information on the role of distance from the bank, overbank flow frequency, and channel geometry in controlling the sedimentation rate. Channel infills, lower than adjacent floodplains, exhibit higher sedimentation rates and convey overbank sediment farther away within the floodplain. Additionally, channel degradation, aggradation, and bank erosion, which reduce or increase the distance between the main channel and the cutoff channel aquatic zone, affect local overbank flow magnitude and frequency and therefore sedimentation rates, thereby creating a complex mosaic of sedimentation zones within the floodplain and along the cutoff channel infills. Last, the dendrogeomorphic and 137Cs approaches are cross validated for estimating the sedimentation rate within a channel infill.

  20. Bedrock channel reaches morphology: examples from the Northern Marche Region (Italy)

    NASA Astrophysics Data System (ADS)

    Tiberi, V.; di Agostino, V.; Troiani, F.; Nesci, O.; Savelli, D.

    2009-04-01

    The Northern Marche rivers, on account of a significant variability of their catchment geology, geodynamics and geomorphology, can be regarded as excellent natural laboratories for the study of the morphology, dynamics and evolution of bedrock channel reaches. Hence a geomorphologic study has been carried on in order to map and describe -from qualitative and quantitative point of view- some bedrock channel types of this area, to detect morphological controls at different scales (from the local scale up to the catchment one), and to assess human perturbations on the drainage systems. The study is based on detailed field surveying concerning channel shape and dynamics, floodplain configurations, slope geomorphologic processes, bedrock structure and composition. In addiction, a good aero photograph documentation dating back to the 1955 allowed a reliable reconstruction of the main evolution trends of bedrock channel reaches in the latest past. In the reported rivers the bedrock channel reaches vary in length from a few tens to hundreds of meters, and alternate with alluvial and mixed bedrock-alluvial channel reaches. In many cases specific numerical relations among geometric parameters of bedrock channels have been discovered and some similarities in both morphology and dynamics of rock-cut channels with alluvial channel reaches have been pointed out. Specifically, with regard of their morphologic arrangement, geometric parameters, and flow dynamics several bedrock channels are quite similar to step pool channels found along gravelly channel reaches. Nonetheless, along a given segment of the hydrographical network where an individual alluvial-channel pattern (e.g. a wandering) is found both upstream and downstream a rock-cut channel reach, the occurrence of this latter (e.g. planar bedrock-floored channel) simply breaks the along-stream continuity of the alluvial-bed morphology.

  1. Electrophysiological channel interactions using focused multipolar stimulation for cochlear implants

    NASA Astrophysics Data System (ADS)

    George, Shefin S.; Shivdasani, Mohit N.; Wise, Andrew K.; Shepherd, Robert K.; Fallon, James B.

    2015-12-01

    Objective. Speech intelligibility with existing multichannel cochlear implants (CIs) is thought to be limited by poor spatial selectivity and interactions between CI channels caused by overlapping activation with monopolar (MP) stimulation. Our previous studies have shown that focused multipolar (FMP) and tripolar (TP) stimulation produce more restricted neural activation in the inferior colliculus (IC), compared to MP stimulation. Approach. This study explored interactions in the IC produced by simultaneous stimulation of two CI channels. We recorded multi-unit neural activity in the IC of anaesthetized cats with normal and severely degenerated spiral ganglion neuron populations in response to FMP, TP and MP stimulation from a 14 channel CI. Stimuli were applied to a ‘fixed’ CI channel, chosen toward the middle of the cochlear electrode array, and the effects of simultaneously stimulating a more apical ‘test’ CI channel were measured as a function of spatial separation between the two stimulation channels and stimulus level of the fixed channel. Channel interactions were quantified by changes in neural responses and IC threshold (i.e., threshold shift) elicited by simultaneous stimulation of two CI channels, compared to stimulation of the test channel alone. Main results. Channel interactions were significantly lower for FMP and TP than for MP stimulation (p < 0.001), whereas no significant difference was observed between FMP and TP stimulation. With MP stimulation, threshold shifts increased with decreased inter-electrode spacing and increased stimulus levels of the fixed channel. For FMP and TP stimulation, channel interactions were found to be similar for different inter-electrode spacing and stimulus levels of the fixed channel. Significance. The present study demonstrates how the degree of channel interactions in a CI can be controlled using stimulation configurations such as FMP and TP; such knowledge is essential in enhancing CI function in complex acoustic environments.

  2. Using 15-minute acoustic data to analyze suspended-sediment dynamics in the Rio Grande in the Big Bend Region

    USGS Publications Warehouse

    Dean, David; Topping, David; Griffiths, Ronald; Sabol, Thomas; Schmidt, John C.; Bennett, Jeffery B.

    2015-01-01

    The Rio Grande in the Big Bend region is subject to rapid geomorphic change consisting of channel narrowing during years of low flow, and channel widening during rare, large, long duration floods. Since the 1940s, there have been large declines in mean and peak stream flow, and the channel has progressively narrowed. Large, channel widening floods are infrequent and have failed to widen the channel to widths measured prior to the onset of channel narrowing in the 1940s. Before the most recent channel-widening flood in September 2008, the Rio Grande in the Big Bend was more than 50 percent narrower than measured in the 1940s. Channel narrowing results in increased flood frequency and flood magnitude due to the loss of channel capacity and flood conveyance (Dean and Schmidt, 2011). Channel narrowing also results in the loss of important aquatic habitats such as backwaters and side-channels, because these habitats accumulate sediment and are converted to floodplains. Environmental managers are attempting to construct an environmental flow program for the purposes of minimizing channel narrowing during low flow years such that channel capacity, flood conveyance, and important aquatic habitats are maintained. Effective mitigation of channel narrowing processes requires an in-depth understanding of the predominant sediment source areas, the quantity of sediment input from those source areas, the parts of the flow regime responsible for the greatest sediment deposition, and the effect of managed flows in ameliorating the sediment loading that occurs within the channel. Here, we analyze data collected with acoustic instrumentation at high temporal resolution to quantify suspended-sediment transport during a variety of flood types. We also investigate the effect of long duration managed flows in promoting sediment export and minimizing channel narrowing.

  3. Alluvial cover controlling the width, slope and sinuosity of bedrock channels

    NASA Astrophysics Data System (ADS)

    Turowski, Jens Martin

    2018-02-01

    Bedrock channel slope and width are important parameters for setting bedload transport capacity and for stream-profile inversion to obtain tectonics information. Channel width and slope development are closely related to the problem of bedrock channel sinuosity. It is therefore likely that observations on bedrock channel meandering yields insights into the development of channel width and slope. Active meandering occurs when the bedrock channel walls are eroded, which also drives channel widening. Further, for a given drop in elevation, the more sinuous a channel is, the lower is its channel bed slope in comparison to a straight channel. It can thus be expected that studies of bedrock channel meandering give insights into width and slope adjustment and vice versa. The mechanisms by which bedrock channels actively meander have been debated since the beginning of modern geomorphic research in the 19th century, but a final consensus has not been reached. It has long been argued that whether a bedrock channel meanders actively or not is determined by the availability of sediment relative to transport capacity, a notion that has also been demonstrated in laboratory experiments. Here, this idea is taken up by postulating that the rate of change of both width and sinuosity over time is dependent on bed cover only. Based on the physics of erosion by bedload impacts, a scaling argument is developed to link bedrock channel width, slope and sinuosity to sediment supply, discharge and erodibility. This simple model built on sediment-flux-driven bedrock erosion concepts yields the observed scaling relationships of channel width and slope with discharge and erosion rate. Further, it explains why sinuosity evolves to a steady-state value and predicts the observed relations between sinuosity, erodibility and storm frequency, as has been observed for meandering bedrock rivers on Pacific Arc islands.

  4. The C-terminus SH3-binding domain of Kv1.3 is required for the actin-mediated immobilization of the channel via cortactin

    PubMed Central

    Hajdu, Peter; Martin, Geoffrey V.; Chimote, Ameet A.; Szilagyi, Orsolya; Takimoto, Koichi; Conforti, Laura

    2015-01-01

    Kv1.3 channels play a pivotal role in the activation and migration of T-lymphocytes. These functions are accompanied by the channels' polarization, which is essential for associated downstream events. However, the mechanisms that govern the membrane movement of Kv1.3 channels remain unclear. F-actin polymerization occurs concomitantly to channel polarization, implicating the actin cytoskeleton in this process. Here we show that cortactin, a factor initiating the actin network, controls the membrane mobilization of Kv1.3 channels. FRAP with EGFP-tagged Kv1.3 channels demonstrates that knocking down cortactin decreases the actin-based immobilization of the channels. Using various deletion and mutation constructs, we show that the SH3 motif of Kv1.3 mediates the channel immobilization. Proximity ligation assays indicate that deletion or mutation of the SH3 motif also disrupts interaction of the channel with cortactin. In T-lymphocytes, the interaction between HS1 (the cortactin homologue) and Kv1.3 occurs at the immune synapse and requires the channel's C-terminal domain. These results show that actin dynamics regulates the membrane motility of Kv1.3 channels. They also provide evidence that the SH3 motif of the channel and cortactin plays key roles in this process. PMID:25739456

  5. Non-Gaussian operations on bosonic modes of light: Photon-added Gaussian channels

    NASA Astrophysics Data System (ADS)

    Sabapathy, Krishna Kumar; Winter, Andreas

    2017-06-01

    We present a framework for studying bosonic non-Gaussian channels of continuous-variable systems. Our emphasis is on a class of channels that we call photon-added Gaussian channels, which are experimentally viable with current quantum-optical technologies. A strong motivation for considering these channels is the fact that it is compulsory to go beyond the Gaussian domain for numerous tasks in continuous-variable quantum information processing such as entanglement distillation from Gaussian states and universal quantum computation. The single-mode photon-added channels we consider are obtained by using two-mode beam splitters and squeezing operators with photon addition applied to the ancilla ports giving rise to families of non-Gaussian channels. For each such channel, we derive its operator-sum representation, indispensable in the present context. We observe that these channels are Fock preserving (coherence nongenerating). We then report two examples of activation using our scheme of photon addition, that of quantum-optical nonclassicality at outputs of channels that would otherwise output only classical states and of both the quantum and private communication capacities, hinting at far-reaching applications for quantum-optical communication. Further, we see that noisy Gaussian channels can be expressed as a convex mixture of these non-Gaussian channels. We also present other physical and information-theoretic properties of these channels.

  6. Effects of cochlear-implant pulse rate and inter-channel timing on channel interactions and thresholds

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John C.

    2004-07-01

    Interactions among the multiple channels of a cochlear prosthesis limit the number of channels of information that can be transmitted to the brain. This study explored the influence on channel interactions of electrical pulse rates and temporal offsets between channels. Anesthetized guinea pigs were implanted with 2-channel scala-tympani electrode arrays, and spike activity was recorded from the auditory cortex. Channel interactions were quantified as the reduction of the threshold for pulse-train stimulation of the apical channel by sub-threshold stimulation of the basal channel. Pulse rates were 254 or 4069 pulses per second (pps) per channel. Maximum threshold reductions averaged 9.6 dB when channels were stimulated simultaneously. Among nonsimultaneous conditions, threshold reductions at the 254-pps rate were entirely eliminated by a 1966-μs inter-channel offset. When offsets were only 41 to 123 μs, however, maximum threshold shifts averaged 3.1 dB, which was comparable to the dynamic ranges of cortical neurons in this experimental preparation. Threshold reductions at 4069 pps averaged up to 1.3 dB greater than at 254 pps, which raises some concern in regard to high-pulse-rate speech processors. Thresholds for various paired-pulse stimuli, pulse rates, and pulse-train durations were measured to test possible mechanisms of temporal integration.

  7. New design of a cathode flow-field with a sub-channel to improve the polymer electrolyte membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Wang, Yulin; Yue, Like; Wang, Shixue

    2017-03-01

    The cathode flow-field design of polymer electrolyte membrane (PEM) fuel cells determines the distribution of reactant gases and the removal of liquid water. A suitable design can result in perfect water management and thus high cell performance. In this paper, a new design for a cathode flow-field with a sub-channel was proposed and had been experimentally analyzed in a parallel flow-field PEM fuel cell. Three sub-channel inlets were placed along the cathode channel. The main-channel inlet was fed with moist air to humidify the membrane and maintain high proton conductivity, whereas, the sub-channel inlet was fed with dry air to enhance water removal in the flow channel. The experimental results indicated that the sub-channel design can decrease the pressure drop in the flow channel, and the sub-channels inlet positions (SIP, where the sub-channel inlets were placed along the cathode channel) and flow rates (SFR, percentage of air from the sub-channel inlet in the total cathode flow rate) had a considerable impact on water removal and cell performance. A proposed design that combines the SIP and SFR can effectively eliminate water from the fuel cell, increasing the maximum power density by more than 13.2% compared to the conventional design.

  8. Model microswimmers in channels with varying cross section

    NASA Astrophysics Data System (ADS)

    Malgaretti, Paolo; Stark, Holger

    2017-05-01

    We study different types of microswimmers moving in channels with varying cross section and thereby interacting hydrodynamically with the channel walls. Starting from the Smoluchowski equation for a dilute suspension, for which interactions among swimmers can be neglected, we derive analytic expressions for the lateral probability distribution between plane channel walls. For weakly corrugated channels, we extend the Fick-Jacobs approach to microswimmers and thereby derive an effective equation for the probability distribution along the channel axis. Two regimes arise dominated either by entropic forces due to the geometrical confinement or by the active motion. In particular, our results show that the accumulation of microswimmers at channel walls is sensitive to both the underlying swimming mechanism and the geometry of the channels. Finally, for asymmetric channel corrugation, our model predicts a rectification of microswimmers along the channel, the strength and direction of which strongly depends on the swimmer type.

  9. Particle-Based Microfluidic Device for Providing High Magnetic Field Gradients

    NASA Technical Reports Server (NTRS)

    Wong, Tak S. (Inventor); Lin, Adam Y. (Inventor)

    2013-01-01

    A microfluidic device for manipulating particles in a fluid has a device body that defines a main channel therein, in which the main channel has an inlet and an outlet. The device body further defines a particulate diverting channel therein, the particulate diverting channel being in fluid connection with the main channel between the inlet and the outlet of the main channel and having a particulate outlet. The microfluidic device also has a plurality of microparticles arranged proximate or in the main channel between the inlet of the main channel and the fluid connection of the particulate diverting channel to the main channel. The plurality of microparticles each comprises a material in a composition thereof having a magnetic susceptibility suitable to cause concentration of magnetic field lines of an applied magnetic field while in operation. A microfluidic particle-manipulation system has a microfluidic particle-manipulation device and a magnet disposed proximate the microfluidic particle-manipulation device.

  10. Unbounded number of channel uses may be required to detect quantum capacity.

    PubMed

    Cubitt, Toby; Elkouss, David; Matthews, William; Ozols, Maris; Pérez-García, David; Strelchuk, Sergii

    2015-03-31

    Transmitting data reliably over noisy communication channels is one of the most important applications of information theory, and is well understood for channels modelled by classical physics. However, when quantum effects are involved, we do not know how to compute channel capacities. This is because the formula for the quantum capacity involves maximizing the coherent information over an unbounded number of channel uses. In fact, entanglement across channel uses can even increase the coherent information from zero to non-zero. Here we study the number of channel uses necessary to detect positive coherent information. In all previous known examples, two channel uses already sufficed. It might be that only a finite number of channel uses is always sufficient. We show that this is not the case: for any number of uses, there are channels for which the coherent information is zero, but which nonetheless have capacity.

  11. [K+ channels and lung epithelial physiology].

    PubMed

    Bardou, Olivier; Trinh, Nguyen Thu Ngan; Brochiero, Emmanuelle

    2009-04-01

    Transcripts of more than 30 different K(+) channels have been detected in the respiratory epithelium lining airways and alveoli. These channels belong to the 3 main classes of K(+) channels, i.e. i) voltage-dependent or calcium-activated, 6 transmembrane segments (TM), ii) 2-pores 4-TM and iii) inward-rectified 2-TM channels. The physiological and functional significance of this high molecular diversity of lung epithelial K(+) channels is not well understood. Surprisingly, relatively few studies are focused on K(+) channel function in lung epithelial physiology. Nevertheless, several studies have shown that KvLQT1, KCa and K(ATP) K(+) channels play a crucial role in ion and fluid transport, contributing to the control of airway and alveolar surface liquid composition and volume. K(+) channels are involved in other key functions, such as O(2) sensing or the capacity of the respiratory epithelia to repair after injury. This mini-review aims to discuss potential functions of lung K(+) channels.

  12. Measuring the Non-Line-of-Sight Ultra-High-Frequency Channel in Mountainous Terrain: A Spread-Spectrum, Portable Channel Sounder

    DTIC Science & Technology

    2018-03-01

    ER D C/ CR RE L TR -1 8- 3 ERDC 6.1 Basic Research Measuring the Non-Line-of-Sight Ultra- High - Frequency Channel in Mountainous Terrain... High - Frequency Channel in Mountainous Terrain A Spread-Spectrum, Portable Channel Sounder Samuel S. Streeter and Daniel J. Breton U.S. Army...spread-spectrum, portable channel sounder specifically designed to meas- ure the non-line-of-sight, ultra- high -frequency channel in mountainous terrain

  13. Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo.

    PubMed

    Katz, Ben; Oberacker, Tina; Richter, David; Tzadok, Hanan; Peters, Maximilian; Minke, Baruch; Huber, Armin

    2013-07-15

    Family members of the cationic transient receptor potential (TRP) channels serve as sensors and transducers of environmental stimuli. The ability of different TRP channel isoforms of specific subfamilies to form heteromultimers and the structural requirements for channel assembly are still unresolved. Although heteromultimerization of different mammalian TRP channels within single subfamilies has been described, even within a subfamily (such as TRPC) not all members co-assemble with each other. In Drosophila photoreceptors two TRPC channels, TRP and TRP-like protein (TRPL) are expressed together in photoreceptors where they generate the light-induced current. The formation of functional TRP-TRPL heteromultimers in cell culture and in vitro has been reported. However, functional in vivo assays have shown that each channel functions independently of the other. Therefore, the issue of whether TRP and TRPL form heteromultimers in vivo is still unclear. In the present study we investigated the ability of TRP and TRPL to form heteromultimers, and the structural requirements for channel assembly, by studying assembly of GFP-tagged TRP and TRPL channels and chimeric TRP and TRPL channels, in vivo. Interaction studies of tagged and native channels as well as native and chimeric TRP-TRPL channels using co-immunoprecipitation, immunocytochemistry and electrophysiology, critically tested the ability of TRP and TRPL to interact. We found that TRP and TRPL assemble exclusively as homomultimeric channels in their native environment. The above analyses revealed that the transmembrane regions of TRP and TRPL do not determine assemble specificity of these channels. However, the C-terminal regions of both TRP and TRPL predominantly specify the assembly of homomeric TRP and TRPL channels.

  14. Adenosine triphosphate regulates the activity of guinea pig Cav1.2 channel by direct binding to the channel in a dose-dependent manner.

    PubMed

    Feng, Rui; Xu, Jianjun; Minobe, Etsuko; Kameyama, Asako; Yang, Lei; Yu, Lifeng; Hao, Liying; Kameyama, Masaki

    2014-05-01

    The present study is to investigate the mechanism by which ATP regulates Cav1.2 channel activity. Ventricular tissue was obtained from adult guinea pig hearts using collagenase. Ca(2+) channel activity was monitored using the patch-clamp technique. Proteins were purified using wheat germ agglutinin-Sepharose, and the concentration was determined using the Coomassie brilliant blue technique. ATP binding to the Cav1.2 channel was examined using the photoaffinity method. EDA-ATP-biotin maintains Ca(2+) channel activity in inside-out membrane patches. ATP directly bound to the Cav1.2 channel in a dose-dependent manner, and at least two molecules of ATP bound to one molecule of the Cav1.2 channel. Low levels of calmodulin (CaM) increased ATP binding to the Cav1.2 channel, but higher levels of CaM decreased ATP binding to the Cav1.2 channel. In addition, Ca(2+) was another regulator for ATP binding to the Cav1.2 channel. Furthermore, ATP bound to GST-fusion peptides of NH2-terminal region (amino acids 6-140) and proximal COOH-terminal region (amino acids 1,509-1,789) of the main subunit (α1C) of the Cav1.2 channel. Our data suggest that ATP might regulate Cav1.2 channel activity by directly binding to the Cav1.2 channel in a dose-dependent manner. In addition, the ATP-binding effect to the Cav1.2 channel was both CaM- and Ca(2+) dependent.

  15. Role of Unchannelized Flow in Determining Bifurcation Angle in Distributary Channel Networks

    NASA Astrophysics Data System (ADS)

    Coffey, T.

    2016-12-01

    Distributary channel bifurcations on river deltas are important features in both modern systems, where the channels control water, sediment, and nutrient routing, and in ancient deltas, where the channel networks can dictate large-scale stratigraphic heterogeneity. Geometric features of distributary channels, such as channel dimensions and network structure, have long been thought to be defined by factors such as flow velocity, grain size, or channel aspect ratio where the channel enters the basin. We use theory originally developed for tributary networks fed by groundwater seepage to understand the dynamics of distributary channel bifurcations. Interestingly, bifurcations in groundwater-fed tributary networks have been shown to evolve dependent on the diffusive flow patterns around the channel network. These networks possess a characteristic bifurcation angle of 72°, due to Laplacian flow (gradient2h2=0, where h is water surface elevation) in the groundwater flow field near tributary channel tips. We develop and test the hypothesis that bifurcation angles in distributary channel networks are likewise dictated by the external flow field, in this case the shallow surface water surrounding the subaqueous portion of distributary channel bifurcations in a deltaic setting. We measured 130 unique distributary channel bifurcations in a single experimental delta and in 10 natural deltas, yielding a mean angle of 70.35°±2.59° (95% confidence interval), in line with the theoretical prediction. This similarity implies that flow outside of the distributary channel network is also Laplacian, which we use scaling arguments to justify. We conclude that the dynamics of the unchannelized flow control bifurcation formation in distributary networks.

  16. Ion-binding properties of a K+ channel selectivity filter in different conformations.

    PubMed

    Liu, Shian; Focke, Paul J; Matulef, Kimberly; Bian, Xuelin; Moënne-Loccoz, Pierre; Valiyaveetil, Francis I; Lockless, Steve W

    2015-12-08

    K(+) channels are membrane proteins that selectively conduct K(+) ions across lipid bilayers. Many voltage-gated K(+) (KV) channels contain two gates, one at the bundle crossing on the intracellular side of the membrane and another in the selectivity filter. The gate at the bundle crossing is responsible for channel opening in response to a voltage stimulus, whereas the gate at the selectivity filter is responsible for C-type inactivation. Together, these regions determine when the channel conducts ions. The K(+) channel from Streptomyces lividians (KcsA) undergoes an inactivation process that is functionally similar to KV channels, which has led to its use as a practical system to study inactivation. Crystal structures of KcsA channels with an open intracellular gate revealed a selectivity filter in a constricted conformation similar to the structure observed in closed KcsA containing only Na(+) or low [K(+)]. However, recent work using a semisynthetic channel that is unable to adopt a constricted filter but inactivates like WT channels challenges this idea. In this study, we measured the equilibrium ion-binding properties of channels with conductive, inactivated, and constricted filters using isothermal titration calorimetry (ITC). EPR spectroscopy was used to determine the state of the intracellular gate of the channel, which we found can depend on the presence or absence of a lipid bilayer. Overall, we discovered that K(+) ion binding to channels with an inactivated or conductive selectivity filter is different from K(+) ion binding to channels with a constricted filter, suggesting that the structures of these channels are different.

  17. Channel nut tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Marvin

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  18. Distributed Joint Source-Channel Coding in Wireless Sensor Networks

    PubMed Central

    Zhu, Xuqi; Liu, Yu; Zhang, Lin

    2009-01-01

    Considering the fact that sensors are energy-limited and the wireless channel conditions in wireless sensor networks, there is an urgent need for a low-complexity coding method with high compression ratio and noise-resisted features. This paper reviews the progress made in distributed joint source-channel coding which can address this issue. The main existing deployments, from the theory to practice, of distributed joint source-channel coding over the independent channels, the multiple access channels and the broadcast channels are introduced, respectively. To this end, we also present a practical scheme for compressing multiple correlated sources over the independent channels. The simulation results demonstrate the desired efficiency. PMID:22408560

  19. Adaptive channel estimation for soft decision decoding over non-Gaussian optical channel

    NASA Astrophysics Data System (ADS)

    Xiang, Jing-song; Miao, Tao-tao; Huang, Sheng; Liu, Huan-lin

    2016-10-01

    An adaptive priori likelihood ratio (LLR) estimation method is proposed over non-Gaussian channel in the intensity modulation/direct detection (IM/DD) optical communication systems. Using the nonparametric histogram and the weighted least square linear fitting in the tail regions, the LLR is estimated and used for the soft decision decoding of the low-density parity-check (LDPC) codes. This method can adapt well to the three main kinds of intensity modulation/direct detection (IM/DD) optical channel, i.e., the chi-square channel, the Webb-Gaussian channel and the additive white Gaussian noise (AWGN) channel. The performance penalty of channel estimation is neglected.

  20. Comparative sequence analysis suggests a conserved gating mechanism for TRP channels

    PubMed Central

    Palovcak, Eugene; Delemotte, Lucie; Klein, Michael L.

    2015-01-01

    The transient receptor potential (TRP) channel superfamily plays a central role in transducing diverse sensory stimuli in eukaryotes. Although dissimilar in sequence and domain organization, all known TRP channels act as polymodal cellular sensors and form tetrameric assemblies similar to those of their distant relatives, the voltage-gated potassium (Kv) channels. Here, we investigated the related questions of whether the allosteric mechanism underlying polymodal gating is common to all TRP channels, and how this mechanism differs from that underpinning Kv channel voltage sensitivity. To provide insight into these questions, we performed comparative sequence analysis on large, comprehensive ensembles of TRP and Kv channel sequences, contextualizing the patterns of conservation and correlation observed in the TRP channel sequences in light of the well-studied Kv channels. We report sequence features that are specific to TRP channels and, based on insight from recent TRPV1 structures, we suggest a model of TRP channel gating that differs substantially from the one mediating voltage sensitivity in Kv channels. The common mechanism underlying polymodal gating involves the displacement of a defect in the H-bond network of S6 that changes the orientation of the pore-lining residues at the hydrophobic gate. PMID:26078053

  1. Comparative use of side and main channels by small-bodied fish in a large, unimpounded river

    USGS Publications Warehouse

    Reinhold, Ann Marie; Bramblett, Robert G.; Zale, Alexander V.; Roberts, David W.; Poole, Geoffrey C.

    2016-01-01

    Ecological theory and field studies suggest that lateral floodplain connectivity and habitat heterogeneity provided by side channels impart favourable habitat conditions for lotic fishes, especially fluvial fishes dependent on large patches of shallow, slow velocity habitats for some portion of their life cycle. However, anthropogenic modification of large, temperate floodplain rivers has led to extensive channel simplification and side-channel loss. Highly modified rivers consist of simplified channels in contracted, less dynamic floodplains.Most research examining the seasonal importance of side channels for fish assemblages in large rivers has been carried out in heavily modified rivers, where side-channel extents are substantially reduced from pre-settlement times, and has often overlooked small-bodied fishes. Inferences about the ecological importance of side channels for small-bodied fishes in large rivers can be ascertained only from investigations of large rivers with largely intact floodplains. The Yellowstone River, our study area, is a rare example of one such river.We targeted small-bodied fishes and compared their habitat use in side and main channels in two geomorphically distinct types of river bends during early and late snowmelt runoff, and autumn base flow. Species compositions of side and main channels differed throughout hydroperiods concurrent with the seasonal redistribution of the availability of shallow, slow current-velocity habitats. More species of fish used side channels than main channels during runoff. Additionally, catch rates of small fishes were generally greater in side channels than in main channels and quantitative assemblage compositions differed between channel types during runoff, but not during base flow. Presence of and access to diverse habitats facilitated the development and persistence of diverse fish assemblages in our study area.Physical dissimilarities between side and main channels may have differentially structured the side- and main-channel fish assemblages during runoff. Patches of shallow, slow current-velocity (SSCV) habitats in side channels were larger and had slightly slower water velocities than SSCV habitat patches in main channels during runoff, but not during base flow.Our findings establish a baseline importance of side channels to riverine fishes in a large, temperate river without heavy anthropogenic modification. Establishing this baseline contributes to basic fluvial ecology and provides empirical justification for restoration efforts that reconnect large rivers with their floodplains.

  2. Channel Evolution Following Avulsion: an Example from the Yellow River Delta

    NASA Astrophysics Data System (ADS)

    Zheng, S.

    2017-12-01

    Long-term field observation of morphological adjustments of rivers following avulsions is lacked when studying the evolution of avulsive channel on deltas. Avulsion at the Yellow River Delta (YRD) is frequent with average lifespan of channels of only about a decade. The Qing-shui-gou channel, the recent lobe on the YRD, provides a rare opportunity for investigating channel evolution following artificial avulsion. The reasons for its longer lifespan also needs investigation of the channel evolution. In this study, we comprehensively analyzed the geomorphic adjustment of the channel based on filed survey data during 1976-2014. The evolution of the channel was impacted by anthropogenic activities, including artificial avulsion at the downstream channel reaches in 1996, alteration of runoff and sediment load through Water and Sediment Regulation Scheme (WSRS), construction of levees and dikes. Analysis on channel geometry showed that avulsions in 1976 and in 1996 both caused short-term (1 2 years) erosion at the upstream channel reaches. Following the avulsion in 1976, massive aggradation occurred at the channel reaches at the downstream of the avulsion point. A single-thread channel gradually formed, widened and enlarged as channel bed under-cut on the deposition material. As delta extended seaward and the longitudinal slope decreased with time, aggradation occurred and an alluvial ridge formed. The ratio of lateral slope to the longitudinal slope (i.e. gradient advantage) and the relative super-elevation of the channel were calculated to estimate the possibility of avulsion at the channel in the late 1990. Results showed that the slope ratio was greater than 20 locally and super-elevation near its critical value for avulsion. The fact, that natural avulsion did not occurred despite of high values of gradient advantage and super elevation, may indicate that they are not sufficient conditions for avulsion at highly human-controlled rivers, where channel boundaries are constrained by dikes and bankfull discharge rarely occur. The Qing-shui-gou channel has been eroded and deepened since 2002 when the WSRS was implemented. Although channel erosion rates caused by WSRS decreased with time, the risk of avulsion has been reduced. This may also help explain the relative longer life-span of the Qing-shui-gou channel.

  3. Effects of the β1 auxiliary subunit on modification of Rat Na{sub v}1.6 sodium channels expressed in HEK293 cells by the pyrethroid insecticides tefluthrin and deltamethrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Bingjun; Soderlund, David M., E-mail: dms6@cornell.edu

    We expressed rat Na{sub v}1.6 sodium channels with or without the rat β1 subunit in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on whole-cell sodium currents. In assays with the Na{sub v}1.6 α subunit alone, both pyrethroids prolonged channel inactivation and deactivation and shifted the voltage dependence of channel activation and steady-state inactivation toward hyperpolarization. Maximal shifts in activation were ~ 18 mV for tefluthrin and ~ 24 mV for deltamethrin. These compounds also caused hyperpolarizing shifts of ~ 10–14 mV in the voltage dependence of steady-state inactivation and increased inmore » the fraction of sodium current that was resistant to inactivation. The effects of pyrethroids on the voltage-dependent gating greatly increased the size of sodium window currents compared to unmodified channels; modified channels exhibited increased probability of spontaneous opening at membrane potentials more negative than the normal threshold for channel activation and incomplete channel inactivation. Coexpression of Na{sub v}1.6 with the β1 subunit had no effect on the kinetic behavior of pyrethroid-modified channels but had divergent effects on the voltage-dependent gating of tefluthrin- or deltamethrin-modified channels, increasing the size of tefluthrin-induced window currents but decreasing the size of corresponding deltamethrin-induced currents. Unexpectedly, the β1 subunit did not confer sensitivity to use-dependent channel modification by either tefluthrin or deltamethrin. We conclude from these results that functional reconstitution of channels in vitro requires careful attention to the subunit composition of channel complexes to ensure that channels in vitro are faithful functional and pharmacological models of channels in neurons. - Highlights: • We expressed Na{sub v}1.6 sodium channels with or without β1 subunits in HEK293 cells. • Tefluthrin and deltamethrin shifted channel gating to hyperpolarized potentials. • The β1 subunit had opposite effects on the actions of tefluthrin and deltamethrin. • Auxiliary subunits are required for full reconstitution of channel function. • Channels in HEK293 cells exhibit properties similar to channels in neurons.« less

  4. AVHRR channel selection for land cover classification

    USGS Publications Warehouse

    Maxwell, S.K.; Hoffer, R.M.; Chapman, P.L.

    2002-01-01

    Mapping land cover of large regions often requires processing of satellite images collected from several time periods at many spectral wavelength channels. However, manipulating and processing large amounts of image data increases the complexity and time, and hence the cost, that it takes to produce a land cover map. Very few studies have evaluated the importance of individual Advanced Very High Resolution Radiometer (AVHRR) channels for discriminating cover types, especially the thermal channels (channels 3, 4 and 5). Studies rarely perform a multi-year analysis to determine the impact of inter-annual variability on the classification results. We evaluated 5 years of AVHRR data using combinations of the original AVHRR spectral channels (1-5) to determine which channels are most important for cover type discrimination, yet stabilize inter-annual variability. Particular attention was placed on the channels in the thermal portion of the spectrum. Fourteen cover types over the entire state of Colorado were evaluated using a supervised classification approach on all two-, three-, four- and five-channel combinations for seven AVHRR biweekly composite datasets covering the entire growing season for each of 5 years. Results show that all three of the major portions of the electromagnetic spectrum represented by the AVHRR sensor are required to discriminate cover types effectively and stabilize inter-annual variability. Of the two-channel combinations, channels 1 (red visible) and 2 (near-infrared) had, by far, the highest average overall accuracy (72.2%), yet the inter-annual classification accuracies were highly variable. Including a thermal channel (channel 4) significantly increased the average overall classification accuracy by 5.5% and stabilized interannual variability. Each of the thermal channels gave similar classification accuracies; however, because of the problems in consistently interpreting channel 3 data, either channel 4 or 5 was found to be a more appropriate choice. Substituting the thermal channel with a single elevation layer resulted in equivalent classification accuracies and inter-annual variability.

  5. Streamflow and Topographic Characteristics of the Platte River near Grand Island, Nebraska, 1938-2007

    USGS Publications Warehouse

    Woodward, Brenda K.

    2008-01-01

    The central Platte River is a dynamic, braided, sand-bed river located near Grand Island, Nebraska. An understanding of the Platte River channel characteristics, hydrologic flow patterns, and geomorphic conditions is important for the operation and management of water resources by the City of Grand Island. The north channel of the Platte River flows within 1 mile of the municipal well field, and its surface-water flow recharges the underlying aquifer, which serves as a water source for the city. Recharge from the north channel helps minimize the flow of contaminated ground water from the north of the channel towards the well field. In recent years the river channels have experienced no-flow conditions for extended periods during the summer and fall seasons, and it has been observed that no-flow conditions in the north channel often persist after streamflow has returned to the other three channels. This potentially allows more contaminated ground water to move toward the municipal well field each year, and has caused resource managers to ask whether human disturbances or natural geomorphic change have contributed to the increased frequency of no-flow conditions in the north channel. Analyses of aerial photography, channel surveys, Light Detection and Ranging data, discharge measurements, and historical land surveys were used to understand the past and present dynamics of the four channels of the Platte River near Grand Island and to detect changes with time. Results indicate that some minor changes have occurred in the channels. Changes in bed elevation, channel location, and width were minimal when compared using historical information. Changes in discharge distribution among channels indicate that low- and no-flow conditions in the north channel may be attributed to the small changes in channel characteristics or small elevation differences, along with recent reductions in total streamflow within the Platte River near Grand Island, or to factors not measured in this study, such as increased channel roughness from increased vegetation within the channel.

  6. Device-independent tests of quantum channels

    NASA Astrophysics Data System (ADS)

    Dall'Arno, Michele; Brandsen, Sarah; Buscemi, Francesco

    2017-03-01

    We develop a device-independent framework for testing quantum channels. That is, we falsify a hypothesis about a quantum channel based only on an observed set of input-output correlations. Formally, the problem consists of characterizing the set of input-output correlations compatible with any arbitrary given quantum channel. For binary (i.e. two input symbols, two output symbols) correlations, we show that extremal correlations are always achieved by orthogonal encodings and measurements, irrespective of whether or not the channel preserves commutativity. We further provide a full, closed-form characterization of the sets of binary correlations in the case of: (i) any dihedrally covariant qubit channel (such as any Pauli and amplitude-damping channels) and (ii) any universally-covariant commutativity-preserving channel in an arbitrary dimension (such as any erasure, depolarizing, universal cloning and universal transposition channels).

  7. International Union of Basic and Clinical Pharmacology. LXXVI. Current Progress in the Mammalian TRP Ion Channel Family

    PubMed Central

    Wu, Long-Jun; Sweet, Tara-Beth

    2010-01-01

    Transient receptor potential (TRP) channels are a large family of ion channel proteins, surpassed in number in mammals only by voltage-gated potassium channels. TRP channels are activated and regulated through strikingly diverse mechanisms, making them suitable candidates for cellular sensors. They respond to environmental stimuli such as temperature, pH, osmolarity, pheromones, taste, and plant compounds, and intracellular stimuli such as Ca2+ and phosphatidylinositol signal transduction pathways. However, it is still largely unknown how TRP channels are activated in vivo. Despite the uncertainties, emerging evidence using TRP channel knockout mice indicates that these channels have broad function in physiology. Here we review the recent progress on the physiology, pharmacology and pathophysiological function of mammalian TRP channels. PMID:20716668

  8. [Single channel analysis of aconitine blockade of calcium channels in rat myocardiocytes].

    PubMed

    Chen, L; Ma, C; Cai, B C; Lu, Y M; Wu, H

    1995-01-01

    Ventricular myocardiocytes from neonatal Wistar rats were isolated and cultured. Aconitine, Ca2+ channel blocker verapamil or Ca2+ channel activator BAY K8644 were added to the bath solution separately. Using the cell-attached configuration of the patch clamp technique, the single channel activities of L type Ca2+ channel were recorded before and after addition of all three drugs. The results showed the blocking effect of aconitine (50 micrograms.ml-1) on L type Ca2+ channels. Its mechanism may be relevant to the decrease in both open state probability and the mean open time of Ca2+ channel. The difference was statistically significant compared with control group (P < 0.01). The amplitude of Ba2+ currents, which flow through open L type Ca2+ channel was unchanged.

  9. Device-independent tests of quantum channels.

    PubMed

    Dall'Arno, Michele; Brandsen, Sarah; Buscemi, Francesco

    2017-03-01

    We develop a device-independent framework for testing quantum channels. That is, we falsify a hypothesis about a quantum channel based only on an observed set of input-output correlations. Formally, the problem consists of characterizing the set of input-output correlations compatible with any arbitrary given quantum channel. For binary (i.e. two input symbols, two output symbols) correlations, we show that extremal correlations are always achieved by orthogonal encodings and measurements, irrespective of whether or not the channel preserves commutativity. We further provide a full, closed-form characterization of the sets of binary correlations in the case of: (i) any dihedrally covariant qubit channel (such as any Pauli and amplitude-damping channels) and (ii) any universally-covariant commutativity-preserving channel in an arbitrary dimension (such as any erasure, depolarizing, universal cloning and universal transposition channels).

  10. Wavelength division multiplexing of chaotic secure and fiber-optic communications.

    PubMed

    Zhang, Jian-Zhong; Wang, An-Bang; Wang, Juan-Fen; Wang, Yun-Cai

    2009-04-13

    Wavelength division multiplexing (WDM) transmission of chaotic optical communication (COC) and conventional fiber-optic communication (CFOC) is numerically confirmed and analyzed. For an 80-km-long two-channel communication system, a 1-Gb/s secure message in COC channel and 10-Gb/s digital signal in CFOC channel are simultaneously achieved with 100 GHz channel spacing. Our numerical simulations demonstrate that the COC and CFOC can realize no-crosstalk transmission of 80 km when the peak power of CFOC channel is less than 8dBm. We also find that the crosstalk between COC and CFOC does not depend on channel spacing when the channel spacing exceeds 100GHz. Moreover, the crosstalk does not limit channel number by comparing the synchronization performance of COC in four- and six-channel WDM systems.

  11. Two-pore channels: Regulation by NAADP and customized roles in triggering calcium signals

    PubMed Central

    Patel, Sandip; Marchant, Jonathan; Brailoiu, Eugen

    2010-01-01

    NAADP is a potent regulator of cytosolic calcium levels. Much evidence suggests that NAADP activates a novel channel located on an acidic (lysosomal-like) calcium store, the mobilisation of which results in further calcium release from the endoplasmic reticulum. Here, we discuss the recent identification of a family of poorly characterized ion channels (the two-pore channels) as endo-lysosomal NAADP receptors. The generation of calcium signals by these channels is likened to those evoked by depolarisation during excitation-contraction coupling in muscle. We discuss the idea that two pore-channels can mediate a trigger release of calcium which is then amplified by calcium-induced calcium release from the endoplasmic reticulum. This is similar to the activation of voltage-sensitive calcium channels and subsequent mobilisation of sarcoplasmic reticulum calcium stores in cardiac tissue. We suggest that two-pore channels may physically interact with ryanodine receptors to account for more direct release of calcium from the endoplasmic reticulum in analogy with the conformational coupling of voltage-sensitive calcium channels and ryanodine receptors in skeletal muscle. Interaction of two-pore channels with other calcium release channels likely occurs between stores “trans-chatter” and possibly within the same store “cis-chatter”. We also speculate that trafficking of two-pore channels through the endolysosomal system facilitates interactions with calcium entry channels. Strategic placing of two-pore channels thus provides a versatile means of generating spatiotemporally complex cellular calcium signals. PMID:20621760

  12. Life in the fast lane: fish and foodweb structure in the main channel of large rivers

    USGS Publications Warehouse

    Dettmers, J.M.; Wahl, David H.; Soluk, D.A.; Gutreuter, S.

    2001-01-01

    We studied the main channel of the lower Illinois River and of the Mississippi River just upstream and downstream of its confluence with the Illinois River to describe the abundance, composition, and/or seasonal appearance of components of the main-channel community. Abundance of fishes in the main channel was high, especially adults. Most adult fishes were present in the main channel for either 3 or 4 seasons/y, indicating that fishes regularly reside in the main channel. We documented abundant zooplankton and benthic invertebrates in the main channel, and the presence of these food types in the diets of channel catfish and freshwater drum. All trophic levels were well represented in the main channel, indicating that the main channel supports a unique food web. The main channel also serves as an important energetic link with other riverine habitats (e.g., floodplains, secondary channels, backwater lakes) because of the mobility of resident fishes and because of the varied energy sources supplying this food web. It may be more realistic to view energy flow in large-river systems as a combination of 3 existing concepts, the river continuum concept (downstream transport), the flood pulse concept (lateral transport to the floodplain), and the riverine productivity model (autochthonous production). We urge additional research to quantify the links between the main channel and other habitat types in large rivers because of the apparent importance of main-channel processes in the overall structure and function of large-river ecosystems.

  13. Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum

    NASA Astrophysics Data System (ADS)

    Bezprozvanny, Llya; Watras, James; Ehrlich, Barbara E.

    1991-06-01

    RELEASE of calcium from intracellular stores occurs by two pathways, an inositol 1,4,5-trisphosphate (InsP3)-gated channel1-3 and a calcium-gated channel (ryanodine receptor)4-6. Using specific antibodies, both receptors were found in Purkinje cells of cerebellum7,8. We have now compared the functional properties of the channels corresponding to the two receptors by incorporating endoplasmic reticulum vesicles from canine cerebellum into planar bilayers. InsP3-gated channels were observed most frequently. Another channel type was activated by adenine nucleotides or caffeine, inhibited by ruthenium red, and modified by ryanodine, characteristics of the ryanodine receptor/channel6. The open probability of both channel types displayed a bell-shaped curve for dependence on calcium. For the InsP3-gated channel, the maximum probability of opening occurred at 0.2 µM free calcium, with sharp decreases on either side of the maximum. Maximum activity for the ryanodine receptor/channel was maintained between 1 and 100 µM calcium. Thus, within the physiological range of cytoplasmic calcium, the InsP3-gated channel itself allows positive feed-back and then negative feedback for calcium release, whereas the ryanodine receptor/channel behaves solely as a calcium-activated channel. The existence in the same cell of two channels with different responses to calcium and different ligand sensitivities provides a basis for complex patterns of intracellular calcium regulation.

  14. Simulation and experimental validation of droplet dynamics in microchannels of PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Ashrafi, Moosa; Shams, Mehrzad; Bozorgnezhad, Ali; Ahmadi, Goodarz

    2016-12-01

    In this study, dynamics of droplets in the channels of proton exchange membrane fuel cells with straight and serpentine flow-fields was investigated. Tapered and filleted channels were suggested for the straight and serpentine flow-fields respectively in order to improve water removal in channels. Surface tension and wall adhesion forces were applied by using the volume of fluid method. The hydrophilic walls and hydrophobic gas diffusion layer were considered. The mechanism of droplets movement with different diameters was studied by using the Weber and capillary numbers in simple and tapered straight channels. It was illustrated that the flooding was reduced in tapered channel due to increase of water removal rate, and available reaction sites improved subsequently. In addition, film flow was formed in the tapered channel more than the simple channel, so pressure fluctuation was decreased in the tapered channel. Moreover, the water coverage ratio of hydrophilic tapered surface was more than the simple channel, which enhanced water removal from the channel. The filleted serpentine channel was introduced to improve water removal from the simple serpentine channel. It was shown by observation of the unsteady and time-averaged two-phase pressure drop that in the filleted serpentine channels, the two-phase pressure drop was far less than the simple serpentine channel, and also the accumulation of water droplets in the elbows was less leading to lower pressure fluctuation. The numerical simulation results were validated by experiments.

  15. Cell volume changes regulate slick (Slo2.1), but not slack (Slo2.2) K+ channels.

    PubMed

    Tejada, Maria A; Stople, Kathleen; Hammami Bomholtz, Sofia; Meinild, Anne-Kristine; Poulsen, Asser Nyander; Klaerke, Dan A

    2014-01-01

    Slick (Slo2.1) and Slack (Slo2.2) channels belong to the family of high-conductance K+ channels and have been found widely distributed in the CNS. Both channels are activated by Na+ and Cl- and, in addition, Slick channels are regulated by ATP. Therefore, the roles of these channels in regulation of cell excitability as well as ion transport processes, like regulation of cell volume, have been hypothesized. It is the aim of this work to evaluate the sensitivity of Slick and Slack channels to small, fast changes in cell volume and to explore mechanisms, which may explain this type of regulation. For this purpose Slick and Slack channels were co-expressed with aquaporin 1 in Xenopus laevis oocytes and cell volume changes of around 5% were induced by exposure to hypotonic or hypertonic media. Whole-cell currents were measured by two electrode voltage clamp. Our results show that Slick channels are dramatically stimulated (196% of control) by cell swelling and inhibited (57% of control) by a decrease in cell volume. In contrast, Slack channels are totally insensitive to similar cell volume changes. The mechanism underlining the strong volume sensitivity of Slick channels needs to be further explored, however we were able to show that it does not depend on an intact actin cytoskeleton, ATP release or vesicle fusion. In conclusion, Slick channels, in contrast to the similar Slack channels, are the only high-conductance K+ channels strongly sensitive to small changes in cell volume.

  16. The Psychology of Channeling.

    ERIC Educational Resources Information Center

    Corey, Michael A.

    1988-01-01

    Theoretically analyzes phenomenon of channeling from perspective of C. G. Jung's analytic psychology. Hypothesizes that contact with otherworldly spiritual beings claimed by channelers is actually projected contact with contents of channeler's own unconscious mind. Suggests that channelers seek more constructive ways of contacting their…

  17. Mobility of large woody debris (LWD) jams in a low gradient channel

    NASA Astrophysics Data System (ADS)

    Curran, Joanna C.

    2010-04-01

    Mobility of large woody debris (LWD) in low gradient channels is an important but often overlooked transport process. The majority of studies on LWD have focused on its role in geomorphic and ecologic river processes. When jams extend across the width of the channel, they have the potential to retain sediment and alter the channel profile. When jams obstruct only a portion of the channel, they can re-direct flow, altering patterns of scour and deposition. The boundary complexity created by LWD has a recognized role in riverine ecosystems which has led to programs of replacing LWD in-channel corridors where it was previously removed. Although LWD jams are common in rivers around the world, they have been studied most intensely in steep, forested channel reaches where they are often found to be stable channel features. It is not fully known how much of the information on LWD from steep forested channels will transfer to other channel types. Whereas it may be reasonable to assume that the ecological benefits of LWD are similar in low gradient channels, research has shown that a much higher rate of LWD transport occurs in low gradient channels, with jams mobilized on timescales of 10 0-10 2 years. This study evaluates the distribution and mobility of LWD over 72 km of the San Antonio River, a low gradient channel in southeast Texas. LWD jam locations were identified for 2003 and 2007 using a combination of aerial photography and field mapping. Each jam was cataloged according to its location in the channel cross-section and the amount of channel area blocked. During the four-year period, all the LWD jams were mobilized, including those jams extending across the channel width. Although easily mobilized, 34 jams re-form in the same locations, creating 34 channel locations with persistent LWD jams. Data from the San Antonio River are applied to two models developed to predict LWD mobility and transport distances to assess the applicability of each model to a low gradient channel. The locations of stable (or recurring) LWD jams were matched to model results where predicted LWD transport distances were equal to measured LWD jam spacing. Model results showed good agreement with the mean and median spacing of LWD jams when given input parameters specific to the channel and wood species. The ability to predict where LWD jams will persist over time in a low gradient channel has application in watershed management. Persistent LWD jams can exert a greater influence on channel morphology and may require active management.

  18. Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves.

    PubMed

    Bierer, Julie Arenberg; Faulkner, Kathleen F

    2010-04-01

    The goal of this study was to evaluate the ability of a threshold measure, made with a restricted electrode configuration, to identify channels exhibiting relatively poor spatial selectivity. With a restricted electrode configuration, channel-to-channel variability in threshold may reflect variations in the interface between the electrodes and auditory neurons (i.e., nerve survival, electrode placement, and tissue impedance). These variations in the electrode-neuron interface should also be reflected in psychophysical tuning curve (PTC) measurements. Specifically, it is hypothesized that high single-channel thresholds obtained with the spatially focused partial tripolar (pTP) electrode configuration are predictive of wide or tip-shifted PTCs. Data were collected from five cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp., Sylmar, CA). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the pTP configuration for which a fraction of current (sigma) from a center-active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. Forward-masked PTCs were obtained for channels with the highest, lowest, and median tripolar (sigma = 1 or 0.9) thresholds. The probe channel and level were fixed and presented with either the monopolar (sigma = 0) or a more focused pTP (sigma > or = 0.55) configuration. The masker channel and level were varied, whereas the configuration was fixed to sigma = 0.5. A standard, three-interval, two-alternative forced choice procedure was used for thresholds and masked levels. Single-channel threshold and variability in threshold across channels systematically increased as the compensating current, sigma, increased and the presumed electrical field became more focused. Across subjects, channels with the highest single-channel thresholds, when measured with a narrow, pTP stimulus, had significantly broader PTCs than the lowest threshold channels. In two subjects, the tips of the tuning curves were shifted away from the probe channel. Tuning curves were also wider for the monopolar probes than with pTP probes for both the highest and lowest threshold channels. These results suggest that single-channel thresholds measured with a restricted stimulus can be used to identify cochlear implant channels with poor spatial selectivity. Channels having wide or tip-shifted tuning characteristics would likely not deliver the appropriate spectral information to the intended auditory neurons, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception.

  19. An interview with Arthur M. "Buzz" Brown, M.D., Ph.D. by Vicki Glaser.

    PubMed

    Brown, Arthur M

    2008-12-01

    Dr. Arthur M. "Buzz" Brown is the founder and CEO of ChanTest Corporation, an ion channel company specializing in drug discovery and safety services. He is Adjunct Professor of Physiology and Biophysics, School of Medicine, Case Western Reserve University. Dr. Brown has more than 30 years of experience in ion channel structure-function relationships and their associations with human health. He established world-leading ion channel departments at University of Texas Medical Branch, Baylor College of Medicine, and Case Western Reserve University. His lab first applied liquid ion exchanger ion-selective microelectrodes to single cells, introduced the concept of membrane delimited action of G proteins on ion channels, identified the ion channel conduction pathway or pore of voltage-gated channels and inwardly rectifying potassium channels, showed that the human ether-à-go-go-related gene potassium channel was the molecular target for lethal arrhythmias associated with noncardiac drugs, and established that noncardiac drugs could also produce lethal arrhythmias by inhibiting ion channel trafficking. Dr. Brown holds eight patents on ion channel methodology and application of ion channel pharmacology to therapeutics.

  20. A BK (Slo1) channel journey from molecule to physiology

    PubMed Central

    Contreras, Gustavo F; Castillo, Karen; Enrique, Nicolás; Carrasquel-Ursulaez, Willy; Castillo, Juan Pablo; Milesi, Verónica; Neely, Alan; Alvarez, Osvaldo; Ferreira, Gonzalo; González, Carlos; Latorre, Ramón

    2013-01-01

    Calcium and voltage-activated potassium (BK) channels are key actors in cell physiology, both in neuronal and non-neuronal cells and tissues. Through negative feedback between intracellular Ca2+ and membrane voltage, BK channels provide a damping mechanism for excitatory signals. Molecular modulation of these channels by alternative splicing, auxiliary subunits and post-translational modifications showed that these channels are subjected to many mechanisms that add diversity to the BK channel α subunit gene. This complexity of interactions modulates BK channel gating, modifying the energetic barrier of voltage sensor domain activation and channel opening. Regions for voltage as well as Ca2+ sensitivity have been identified, and the crystal structure generated by the 2 RCK domains contained in the C-terminal of the channel has been described. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, has been found to be relevant in many physiological processes. This review includes the hallmarks of BK channel biophysics and its physiological impact on specific cells and tissues, highlighting its relationship with auxiliary subunit expression. PMID:24025517

  1. Development of channel organization and roughness following sediment pulses in single‐thread, gravel bed rivers

    USGS Publications Warehouse

    Madej, Mary Ann

    2001-01-01

    Large, episodic inputs of coarse sediment (sediment pulses) in forested, mountain streams may result in changes in the size and arrangement of bed forms and in channel roughness. A conceptual model of channel organization delineates trajectories of response to sediment pulses for many types of gravel bed channels. Channels exhibited self‐organizing behavior to various degrees based on channel gradient, presence of large in‐channel wood or other forcing elements, the size of the sediment pulse, and the number of bed‐mobilizing flows since disturbance. Typical channel changes following a sediment pulse were initial decreases in water depth, in variability of bed elevations, and in the regularity of bed form spacing. Trajectories of change subsequently showed increased average water depth, more variable and complex bed topography, and increased uniformity of bed form spacing. Bed form spacing in streams with abundant forcing elements developed at a shorter spatial scale (two to five channel widths) than in streams without such forcing mechanisms (five to 10 channel widths). Channel roughness increased as bed forms developed.

  2. Standardizing the atomic description, axis and centre of biological ion channels.

    PubMed

    Kaats, Adrian J; Galiana, Henrietta L; Nadeau, Jay L

    2007-09-15

    A general representation of the atomic co-ordinates of a biological ion channel is obtained from a definition of channel axis and centre. Through rotation and translation of the channel, its centre becomes the origin of the standard co-ordinate system, and the channel axis becomes the system's z-axis. A method for determining the channel axis and centre based on the concepts of mass centre and mass moment of inertia is presented. The method for determining the channel axis can be directly applied to channels that adhere to two specific conditions regarding their geometry and mass distribution. Specific examples are given for Gramicidin A (GA), and the mammalian potassium channel Kv 1.2. For channels that do not adhere to these conditions, minor modifications of these procedures can be applied in determining the channel axis. Specific examples are given for the outer membrane bacterial porin OmpF, and for the staphylococcal pore-forming toxin alpha-hemolysin (alpha HL). The definitions and procedures presented are made in an effort to establish a standard basis for performing, sharing, and comparing computations in a consistent manner.

  3. Channel plate for DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1998-01-13

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

  4. The geomorphic effectiveness of a large flood on the Rio Grande in the Big Bend region: insights on geomorphic controls and post-flood geomorphic response

    USGS Publications Warehouse

    Dean, David J.; Schmidt, John C.

    2013-01-01

    Since the 1940s, the Rio Grande in the Big Bend region has undergone long periods of channel narrowing, which have been occasionally interrupted by rare, large floods that widen the channel (termed a channel reset). The most recent channel reset occurred in 2008 following a 17-year period of extremely low stream flow and rapid channel narrowing. Flooding was caused by precipitation associated with the remnants of tropical depression Lowell in the Rio Conchos watershed, the largest tributary to the Rio Grande. Floodwaters approached 1500 m3/s (between a 13 and 15 year recurrence interval) and breached levees, inundated communities, and flooded the alluvial valley of the Rio Grande; the wetted width exceeding 2.5 km in some locations. The 2008 flood had the 7th largest magnitude of record, however, conveyed the largest volume of water than any other flood. Because of the narrow pre-flood channel conditions, record flood stages occurred. We used pre- and post-flood aerial photographs, channel and floodplain surveys, and 1-dimensional hydraulic models to quantify the magnitude of channel change, investigate the controls of flood-induced geomorphic changes, and measure the post-flood response of the widened channel. These analyses show that geomorphic changes included channel widening, meander migration, avulsions, extensive bar formation, and vertical floodplain accretion. Reach-averaged channel widening between 26 and 52% occurred, but in some localities exceeded 500%. The degree and style of channel response was related, but not limited to, three factors: 1) bed-load supply and transport, 2) pre-flood channel plan form, and 3) rapid declines in specific stream power downstream of constrictions and areas of high channel bed slope. The post-flood channel response has consisted of channel contraction through the aggradation of the channel bed and the formation of fine-grained benches inset within the widened channel margins. The most significant post-flood geomorphic changes have occurred at and downstream from ephemeral tributaries that contribute large volumes of sediment.

  5. An electrodynamic description of lightning return strokes and dart leaders: Guided wave propagation along conducting cylindrical channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borovsky, J.E.

    1995-02-20

    The return-stroke breakdown pulse and the dart leader are treated as electric waves guided by conducting lightning channels; such waves are launched when current is injected into a conducting channel (producing the dart leader) or when charge on a channel begins to drain to Earth (producing the return stroke). The guided waves are self-consistent solutions to the full set of Maxwell`s equations, obeying the physical boundary conditions for cylindrical channels. These waves are shown (1) to move with velocities substantially slower than c along the channel, (2) to push current inside the lightning channel, (3) to move charge and voltagemore » along the channel, and (4) to transport energy along and into the channel via Poynting flux. The velocity of a guided wave is a function of only three parameters: the channel radius r{sub ch}, the channel temperature T, and the risetime {triangle}t of the wave front. These velocities are found to fall in the range of velocities of return strokes and of dart leaders. The dart leader and the return stroke are caused by the same type of guided electromagnetic waves: the difference in velocity is owed mostly to the difference in channel temperature. In the case of the dart leader the waves deliver Poynting flux along the outside of the channel down from a thundercloud generator to the downward-propagating wave front. At the wave front of the dart leader the delivered energy goes into heating the channel and into storage in the form of E{sup 2}/8{pi} around the newly charged channel. In the case of the return stroke the Poynting flux is localized to the vicinity of the wave front where stored energy E{sup 2}/8{pi} is delivered radially inward onto the channel to heat the channel in the propagating front. The net result of a dart leader and return stroke is that charge is moved from the cloud to the ground and that energy is moved from the cloud onto the channel. 123 refs., 11 figs., 5 tabs.« less

  6. Development of levees on deep-sea channels: Insights from high-resolution AUV exploration of the Lucia Chica system, offshore central California

    NASA Astrophysics Data System (ADS)

    Maier, K. L.; Fildani, A.; Romans, B.; Paull, C. K.; McHargue, T.; Graham, S. A.; Caress, D. W.

    2010-12-01

    The Lucia Chica, a tributary channel system of the Lucia Canyon, offshore central California, was imaged using the Monterey Bay Aquarium Research Institute’s (MBARI) Autonomous Underwater Vehicle (AUV) in order to investigate seafloor and subsurface morphologies associated with low-relief submarine channels. In larger, previously investigated seafloor channel-levee systems, initial deposits are either eroded, compacted, or below the resolution of available imaging. In this dataset from the Lucia Chica, the unprecedented high-resolution multibeam bathymetry (1 m lateral resolution) and chirp sub-bottom profiles (11 cm vertical resolution) reveal a highly irregular seafloor with scours, depressions, and discontinuous low-relief conduits over an area of ~70 km2. Sediment packages associated with channels, levees, and deposits related to less confined flows are correlated between chirp profiles and with the multibeam bathymetric image to determine the stratigraphic evolution of the Lucia Chica and the sequence of channel-levee development. In the Lucia Chica, channels appear to have initiated as trains of scours that eventually coalesced into continuous channel thalwegs carved by erosional turbidity currents. Channel incision and stepped lateral migration led to the development of terraces, complex levee stratigraphy, and distinct morphologies associated with inner and outer bends of sinuous channels. The inner bend levee stratigraphy indicates that the channel position migrated in discrete shifts, as opposed to continuous channel migration associated with lateral accretion. Discrete levee packages, formed from flow-stripped turbidity currents, later infilled abandoned portions of the channel and overbank areas. While processes of initial channel and levee development are well established in fluvial settings, detailed examples are lacking for deep-sea systems. These results highlight the differences in initiation between submarine channel systems, their fluvial counterparts, and larger submarine channel-levee systems imaged only with lower-resolution technologies. High-resolution imaging and detailed mapping made possible by cutting-edge oceanographic technology provide an unprecedented examination of deep-water channel-levee morphology and improve understanding of deep-water channel migration and levee development.

  7. Effect of ceramic membrane channel geometry and uniform transmembrane pressure on limiting flux and serum protein removal during skim milk microfiltration.

    PubMed

    Adams, Michael C; Hurt, Emily E; Barbano, David M

    2015-11-01

    Our objectives were to determine the effects of a ceramic microfiltration (MF) membrane's retentate flow channel geometry (round or diamond-shaped) and uniform transmembrane pressure (UTP) on limiting flux (LF) and serum protein (SP) removal during skim milk MF at a temperature of 50°C, a retentate protein concentration of 8.5%, and an average cross-flow velocity of 7 m·s(-1). Performance of membranes with round and diamond flow channels was compared in UTP mode. Performance of the membrane with round flow channels was compared with and without UTP. Using UTP with round flow channel MF membranes increased the LF by 5% when compared with not using UTP, but SP removal was not affected by the use of UTP. Using membranes with round channels instead of diamond-shaped channels in UTP mode increased the LF by 24%. This increase was associated with a 25% increase in Reynolds number and can be explained by lower shear at the vertices of the diamond-shaped channel's surface. The SP removal factor of the diamond channel system was higher than the SP removal factor of the round channel system below the LF. However, the diamond channel system passed more casein into the MF permeate than the round channel system. Because only one batch of each membrane was tested in our study, it was not possible to determine if the differences in protein rejection between channel geometries were due to the membrane design or random manufacturing variation. Despite the lower LF of the diamond channel system, the 47% increase in membrane module surface area of the diamond channel system produced a modular permeate removal rate that was at least 19% higher than the round channel system. Consequently, using diamond channel membranes instead of round channel membranes could reduce some of the costs associated with ceramic MF of skim milk if fewer membrane modules could be used to attain the required membrane area. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Sediment sorting at a side channel bifurcation

    NASA Astrophysics Data System (ADS)

    van Denderen, Pepijn; Schielen, Ralph; Hulscher, Suzanne

    2017-04-01

    Side channels have been constructed to reduce the flood risk and to increase the ecological value of the river. In various Dutch side channels large aggradation in these channels occurred after construction. Measurements show that the grain size of the deposited sediment in the side channel is smaller than the grain size found on the bed of the main channel. This suggest that sorting occurs at the bifurcation of the side channel. The objective is to reproduce with a 2D morphological model the fining of the bed in the side channel and to study the effect of the sediment sorting on morphodynamic development of the side channel. We use a 2D Delft3D model with two sediment fractions. The first fraction corresponds with the grain size that can be found on the bed of the main channel and the second fraction corresponds with the grain size found in the side channel. With the numerical model we compute several side channel configurations in which we vary the length and the width of the side channel, and the curvature of the upstream channel. From these computations we can derive the equilibrium state and the time scale of the morphodynamic development of the side channel. Preliminary results show that even when a simple sediment transport relation is used, like Engelund & Hansen, more fine sediment enters the side channel than coarse sediment. This is as expected, and is probably related to the bed slope effects which are a function of the Shields parameter. It is expected that by adding a sill at the entrance of the side channel the slope effect increases. This might reduce the amount of coarse sediment which enters the side channel even more. It is unclear whether the model used is able to reproduce the effect of such a sill correctly as modelling a sill and reproducing the correct hydrodynamic and morphodynamic behaviour is not straightforward in a 2D model. Acknowledgements: This research is funded by STW, part of the Dutch Organization for Scientific Research under grant number P12-P14 (RiverCare Perspective Programme) project number 13516.

  9. Kv7 (KCNQ) channel openers induce hypothermia in the mouse.

    PubMed

    Kristensen, Line V; Sandager-Nielsen, Karin; Hansen, Henrik H

    2011-01-20

    Kv7 channels, encoded by corresponding kcnq genes, are expressed both centrally and peripherally where they serve to dampen neuronal activity. While Kv7 channel openers have shown efficacy in neurological and neuropsychiatric disease models, the impact of Kv7 channel activation on physiological endpoint markers have not been addressed in detail. In this study we assessed the effect of a range of Kv7 channel openers with different affinity for neuronal Kv7.2-5 channel subunits on body temperature regulation in mice. Female NMRI mice were acutely exposed to vehicle (10% Tween-80, i.p.), retigabine (3-30 mg/kg, i.p., pan-Kv7 channel opener), (S)BMS-204352 (60-240 mg/kg, i.p., Kv7.4/5 channel-preferring opener), ICA-27243 (1-10mg/kg, i.p., Kv7.2/3 channel-preferring opener), or S-(1) (10-60 mg/kg, i.p., Kv7.2/3 channel-preferring opener), and rectal body temperature was measured 15-120 min post-injection. Retigabine (>10mg/kg), ICA-27243 (≥ 10 mg/kg), and S-(1) (≥ 30 mg/kg) dose-dependently lowered rectal body temperature with maximal doses of each Kv7 channel opener inducing a marked drop (>4°C) in rectal temperature. The Kv7 channel openers showed differential temporal pharmacodynamics, which likely reflects their different pharmacokinetic profiles. Pretreatment with the pan-Kv7 channel blocker XE-991 (1.0mg/kg, i.p.) completely reversed the hypothermic effect of the pan-Kv7 opener, retigabine (15 mg/kg), whereas ICA-27243-induced hypothermia (10mg/kg) could only be partially prevented by XE-991. Because ICA-27743 and S-(1) are Kv7.2/3 channel subunit-preferring compounds, this suggests that the Kv7.2/3 channel isoform is the predominant substrate for Kv7 channel opener-evoked hypothermia. These data indicate the physiological relevance of Kv7 channel function on body temperature regulation which may potentially reside from central inhibitory Kv7 channel activity. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Removal of inactivation causes time-invariant sodium current decays

    PubMed Central

    1988-01-01

    The kinetic properties of the closing of Na channels were studied in frog skeletal muscle to obtain information about the dependence of channel closing on the past history of the channel. Channel closing was studied in normal and modified channels. Chloramine-T was used to modify the channels so that inactivation was virtually removed. A series of depolarizing prepulse potentials was used to activate Na channels, and a -140-mV postpulse was used to monitor the closing of the channels. Unmodified channels decay via a biexponential process with time constants of 72 and 534 microseconds at 12 degrees C. The observed time constants do not depend upon the potential used to activate the channels. The contribution of the slow component to the total decay increases as the activating prepulse is lengthened. After inactivation is removed, the biexponential character of the decay is retained, with no change in the magnitude of the time constants. However, increases in the duration of the activating prepulse over the range where the current is maximal 1-75 ms) produce identical biexponential decays. The presence of biexponential decays suggests that either two subtypes of Na channels are found in muscle, or Na channels can exist in one of two equally conductive states. The time- invariant decays observed suggest that channel closure does not depend upon their past history. PMID:2852208

  11. Cross-Layer Design for Video Transmission over Wireless Rician Slow-Fading Channels Using an Adaptive Multiresolution Modulation and Coding Scheme

    NASA Astrophysics Data System (ADS)

    Pei, Yong; Modestino, James W.

    2007-12-01

    We describe a multilayered video transport scheme for wireless channels capable of adapting to channel conditions in order to maximize end-to-end quality of service (QoS). This scheme combines a scalable H.263+ video source coder with unequal error protection (UEP) across layers. The UEP is achieved by employing different channel codes together with a multiresolution modulation approach to transport the different priority layers. Adaptivity to channel conditions is provided through a joint source-channel coding (JSCC) approach which attempts to jointly optimize the source and channel coding rates together with the modulation parameters to obtain the maximum achievable end-to-end QoS for the prevailing channel conditions. In this work, we model the wireless links as slow-fading Rician channel where the channel conditions can be described in terms of the channel signal-to-noise ratio (SNR) and the ratio of specular-to-diffuse energy[InlineEquation not available: see fulltext.]. The multiresolution modulation/coding scheme consists of binary rate-compatible punctured convolutional (RCPC) codes used together with nonuniform phase-shift keyed (PSK) signaling constellations. Results indicate that this adaptive JSCC scheme employing scalable video encoding together with a multiresolution modulation/coding approach leads to significant improvements in delivered video quality for specified channel conditions. In particular, the approach results in considerably improved graceful degradation properties for decreasing channel SNR.

  12. Do rivers really obey power-laws? Using continuous high resolution measurements to define bankfull channel and evaluate downstream hydraulic-scaling over large changes in drainage area

    NASA Astrophysics Data System (ADS)

    Scher, C.; Tennant, C.; Larsen, L.; Bellugi, D. G.

    2016-12-01

    Advances in remote-sensing technology allow for cost-effective, accurate, high-resolution mapping of river-channel topography and shallow aquatic bathymetry over large spatial scales. A combination of near-infrared and green spectra airborne laser swath mapping was used to map river channel bathymetry and watershed geometry over 90+ river-kilometers (75-1175 km2) of the Greys River in Wyoming. The day of flight wetted channel was identified from green LiDAR returns, and more than 1800 valley-bottom cross-sections were extracted at regular 50-m intervals. The bankfull channel geometry was identified using a "watershed-based" algorithm that incrementally filled local minima to a "spill" point, thereby constraining areas of local convergence and delineating all the potential channels along the cross-section for each distinct "spill stage." Multiple potential channels in alluvial floodplains and lack of clearly defined channel banks in bedrock reaches challenge identification of the bankfull channel based on topology alone. Here we combine a variety of topological measures, geometrical considerations, and stage levels to define a stage-dependent bankfull channel geometry, and compare the results with day of flight wetted channel data. Initial results suggest that channel hydraulic geometry and basin hydrology power-law scaling may not accurately capture downstream channel adjustments for rivers draining complex mountain topography.

  13. Domain model for Ca2(+)-inactivation of Ca2+ channels at low channel density.

    PubMed Central

    Sherman, A; Keizer, J; Rinzel, J

    1990-01-01

    The "shell" model for Ca2(+)-inactivation of Ca2+ channels is based on the accumulation of Ca2+ in a macroscopic shell beneath the plasma membrane. The shell is filled by Ca2+ entering through open channels, with the elevated Ca2+ concentration inactivating both open and closed channels at a rate determined by how fast the shell is filled. In cells with low channel density, the high concentration Ca2+ "shell" degenerates into a collection of nonoverlapping "domains" localized near open channels. These domains form rapidly when channels open and disappear rapidly when channels close. We use this idea to develop a "domain" model for Ca2(+)-inactivation of Ca2+ channels. In this model the kinetics of formation of an inactivated state resulting from Ca2+ binding to open channels determines the inactivation rate, a mechanism identical with that which explains single-channel recordings on rabbit-mesenteric artery Ca2+ channels (Huang Y., J. M. Quayle, J. F. Worley, N. B. Standen, and M. T. Nelson. 1989. Biophys. J. 56:1023-1028). We show that the model correctly predicts five important features of the whole-cell Ca2(+)-inactivation for mouse pancreatic beta-cells (Plants, T. D. 1988. J. Physiol. 404:731-747) and that Ca2(+)-inactivation has only minor effects on the bursting electrical activity of these cells. PMID:2174274

  14. Role of Unchannelized Flow in Determining Bifurcation Angle in Distributary Channel Networks

    NASA Astrophysics Data System (ADS)

    Coffey, T.

    2016-02-01

    Distributary channel bifurcations on river deltas are important features in both actively prograding river deltas and in lithified deltas within the stratigraphic record. Attributes of distributary channels have long been thought to be defined by flow velocity, grain size and channel aspect ratio where the channel enters the basin. Interestingly, bifurcations in groundwater-fed tributary networks have been shown to grow and bifurcate independent of flow within the exposed channel network. These networks possess a characteristic bifurcation angle of 72°, based on Laplacian flow (water surface concavity equals zero) in the groundwater flow field near tributary channel tips. Based on the tributary channel model, we develop and test the hypothesis that bifurcation angles in distributary channels are likewise dictated by the external flow field, in this case the surface water surrounding the subaqueous portion of distributary channel tips in a deltaic setting. We measured 64 unique distributary bifurcations in an experimental delta, yielding a characteristic angle of 70.2°±2.2° (95% confidence interval), in line with the theoretical prediction for tributary channels. This similarity between bifurcation angles suggests that (A) flow directly outside of the distributary network is Laplacian, (B) the external flow field controls the bifurcation dynamics of distributary channels, and (C) that flow within the channel plays a secondary role in network dynamics.

  15. Method for optimizing channelized quadratic observers for binary classification of large-dimensional image datasets

    PubMed Central

    Kupinski, M. K.; Clarkson, E.

    2015-01-01

    We present a new method for computing optimized channels for channelized quadratic observers (CQO) that is feasible for high-dimensional image data. The method for calculating channels is applicable in general and optimal for Gaussian distributed image data. Gradient-based algorithms for determining the channels are presented for five different information-based figures of merit (FOMs). Analytic solutions for the optimum channels for each of the five FOMs are derived for the case of equal mean data for both classes. The optimum channels for three of the FOMs under the equal mean condition are shown to be the same. This result is critical since some of the FOMs are much easier to compute. Implementing the CQO requires a set of channels and the first- and second-order statistics of channelized image data from both classes. The dimensionality reduction from M measurements to L channels is a critical advantage of CQO since estimating image statistics from channelized data requires smaller sample sizes and inverting a smaller covariance matrix is easier. In a simulation study we compare the performance of ideal and Hotelling observers to CQO. The optimal CQO channels are calculated using both eigenanalysis and a new gradient-based algorithm for maximizing Jeffrey's divergence (J). Optimal channel selection without eigenanalysis makes the J-CQO on large-dimensional image data feasible. PMID:26366764

  16. Mass conservation: 1-D open channel flow equations

    USGS Publications Warehouse

    DeLong, Lewis L.

    1989-01-01

    Unsteady flow simulation in natural rivers is often complicated by meandering channels of compound section. Hydraulic properties and the length of the wetted channel may vary significantly as a meandering river inundates its adjacent floodplain. The one-dimensional, unsteady, open-channel flow equations can be extended to simulate floods in channels of compound section. It will be shown that equations derived from the addition of differential equations individually describing flow in main and overbank channels do not in general conserve mass when overbank and main channels are of different lengths.

  17. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels.

    PubMed

    Hansen, P B L

    2013-04-01

    Calcium channel blockers are widely used to treat hypertension because they inhibit voltage-gated calcium channels that mediate transmembrane calcium influx in, for example, vascular smooth muscle and cardiomyocytes. The calcium channel family consists of several subfamilies, of which the L-type is usually associated with vascular contractility. However, the L-, T- and P-/Q-types of calcium channels are present in the renal vasculature and are differentially involved in controlling vascular contractility, thereby contributing to regulation of kidney function and blood pressure. In the preglomerular vascular bed, all the three channel families are present. However, the T-type channel is the only channel in cortical efferent arterioles which is in contrast to the juxtamedullary efferent arteriole, and that leads to diverse functional effects of L- and T-type channel inhibition. Furthermore, by different mechanisms, T-type channels may contribute to both constriction and dilation of the arterioles. Finally, P-/Q-type channels are involved in the regulation of human intrarenal arterial contractility. The calcium blockers used in the clinic affect not only L-type but also P-/Q- and T-type channels. Therefore, the distinct effect obtained by inhibiting a given subtype or set of channels under experimental settings should be considered when choosing a calcium blocker for treatment. T-type channels seem to be crucial for regulating the GFR and the filtration fraction. Use of blockers is expected to lead to preferential efferent vasodilation, reduction of glomerular pressure and proteinuria. Therefore, renovascular T-type channels might provide novel therapeutic targets, and may have superior renoprotective effects compared to conventional calcium blockers. Acta Physiologica © 2013 Scandinavian Physiological Society.

  18. BK Channels Localize to the Paranodal Junction and Regulate Action Potentials in Myelinated Axons of Cerebellar Purkinje Cells.

    PubMed

    Hirono, Moritoshi; Ogawa, Yasuhiro; Misono, Kaori; Zollinger, Daniel R; Trimmer, James S; Rasband, Matthew N; Misonou, Hiroaki

    2015-05-06

    In myelinated axons, K(+) channels are clustered in distinct membrane domains to regulate action potentials (APs). At nodes of Ranvier, Kv7 channels are expressed with Na(+) channels, whereas Kv1 channels flank nodes at juxtaparanodes. Regulation of axonal APs by K(+) channels would be particularly important in fast-spiking projection neurons such as cerebellar Purkinje cells. Here, we show that BK/Slo1 channels are clustered at the paranodal junctions of myelinated Purkinje cell axons of rat and mouse. The paranodal junction is formed by a set of cell-adhesion molecules, including Caspr, between the node and juxtaparanodes in which it separates nodal from internodal membrane domains. Remarkably, only Purkinje cell axons have detectable paranodal BK channels, whose clustering requires the formation of the paranodal junction via Caspr. Thus, BK channels occupy this unique domain in Purkinje cell axons along with the other K(+) channel complexes at nodes and juxtaparanodes. To investigate the physiological role of novel paranodal BK channels, we examined the effect of BK channel blockers on antidromic AP conduction. We found that local application of blockers to the axon resulted in a significant increase in antidromic AP failure at frequencies above 100 Hz. We also found that Ni(2+) elicited a similar effect on APs, indicating the involvement of Ni(2+)-sensitive Ca(2+) channels. Furthermore, axonal application of BK channel blockers decreased the inhibitory synaptic response in the deep cerebellar nuclei. Thus, paranodal BK channels uniquely support high-fidelity firing of APs in myelinated Purkinje cell axons, thereby underpinning the output of the cerebellar cortex. Copyright © 2015 the authors 0270-6474/15/357082-13$15.00/0.

  19. The pore properties of human nociceptor channel TRPA1 evaluated in single channel recordings

    PubMed Central

    Bobkov, Y.V.; Corey, E.A.; Ache, B.W.

    2011-01-01

    TRPA channels detect stimuli of different sensory modalities, including a broad spectrum of chemosensory stimuli, noxious stimuli associated with tissue damage and inflammation, mechanical stimuli, and thermal stimuli. Despite a growing understanding of potential modulators, agonists, and antagonists for these channels, the exact mechanisms of channel regulation and activation remain mostly unknown or controversial and widely debated. Relatively little is also known about the basic biophysical parameters of both native and heterologously expressed TRPA channels. Here we use conventional single channel inside-out and outside-out patch recording from the human TRPA1 channel transiently expressed in human embryonic kidney 293T cells to characterize the selectivity of the channel for inorganic mono-/divalent and organic monovalent cations in the presence of Allylisothiocyanate (AITC). We show the relative permeability of the hTRPA1 channel to inorganic cations to be: Ca2+(5.1)>Ba2+(3.5)>Mg2+(2.8)>NH4+(1.5)>Li+(1.2)>Na+(1.0)≥K+(0.98)≥Rb+(0.98)>Cs+(0.95); and to organic cations: Na+(1.0)≥Dimethylamine(0.99)>Trimethylamine(0.7)>Tetramethylammonium(0.4)>N-methyl-d-glucamine(0.1). Activation of the hTRPA1 channels by AITC appears to recruit the channels to a conformational state with an increased permeability to large organic cations. The pore of the channels in this state can be characterized as dilated by approximately 1–2.5A. These findings provide important insight into the basic fundamental properties and function of TRPA1 channels in general and human TRPA1 channel in particular. PMID:21195050

  20. Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo

    PubMed Central

    Katz, Ben; Oberacker, Tina; Richter, David; Tzadok, Hanan; Peters, Maximilian; Minke, Baruch; Huber, Armin

    2013-01-01

    Summary Family members of the cationic transient receptor potential (TRP) channels serve as sensors and transducers of environmental stimuli. The ability of different TRP channel isoforms of specific subfamilies to form heteromultimers and the structural requirements for channel assembly are still unresolved. Although heteromultimerization of different mammalian TRP channels within single subfamilies has been described, even within a subfamily (such as TRPC) not all members co-assemble with each other. In Drosophila photoreceptors two TRPC channels, TRP and TRP-like protein (TRPL) are expressed together in photoreceptors where they generate the light-induced current. The formation of functional TRP–TRPL heteromultimers in cell culture and in vitro has been reported. However, functional in vivo assays have shown that each channel functions independently of the other. Therefore, the issue of whether TRP and TRPL form heteromultimers in vivo is still unclear. In the present study we investigated the ability of TRP and TRPL to form heteromultimers, and the structural requirements for channel assembly, by studying assembly of GFP-tagged TRP and TRPL channels and chimeric TRP and TRPL channels, in vivo. Interaction studies of tagged and native channels as well as native and chimeric TRP–TRPL channels using co-immunoprecipitation, immunocytochemistry and electrophysiology, critically tested the ability of TRP and TRPL to interact. We found that TRP and TRPL assemble exclusively as homomultimeric channels in their native environment. The above analyses revealed that the transmembrane regions of TRP and TRPL do not determine assemble specificity of these channels. However, the C-terminal regions of both TRP and TRPL predominantly specify the assembly of homomeric TRP and TRPL channels. PMID:23687378

  1. Ion channels in plants.

    PubMed

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  2. Connectivity of Secondary Channels in the Floodplain of a Low-Gradient Midwestern U.S. Agricultural River

    NASA Astrophysics Data System (ADS)

    Czuba, J. A.; David, S. R.; Edmonds, D. A.

    2016-12-01

    Floodplains of low-gradient Midwestern U.S. agricultural rivers are commonly dissected by a network of secondary channels that convey flow only during flood events. These networks of secondary channels have only recently been revealed by high resolution digital elevation models. Secondary channels, as referred to here, span multiple meander wavelengths and appear fundamentally different from chute channels. While secondary channels have been described to some extent in other river systems, our focus here is on those found in Indiana, which are revealed by state-wide LiDAR data acquired in 2011. In this work, we quantify how the network connectivity of the secondary channels in the floodplain develops as a function of flow stage. Secondary channels begin conveying water at stages just below bankfull, become an interconnected web of flow pathways above bankfull stage, and are completely inundated at higher stages. We construct a two-dimensional numerical model of the river/floodplain system from LiDAR data and from main-channel river bathymetry in order to obtain the extent of floodplain inundation at various flows. The inundated area within the secondary channels is then converted into a river/floodplain flow-channel network and quantified using various network metrics. Future work will explore the morphodynamics of this river/floodplain system extended to 100-1,000 year timescales. The goal is to develop a simple model to test hypotheses about how these floodplain channels evolve. Relevant research questions include: do secondary channels serve as preferential avulsion pathways? Or could secondary channels evolve to create a multi-channeled anabranching system? Furthermore, under what hydrologic and sedimentologic conditions would a river/floodplain system evolve to one state or another?

  3. Three homologous subunits form a high affinity peptide-gated ion channel in Hydra.

    PubMed

    Dürrnagel, Stefan; Kuhn, Anne; Tsiairis, Charisios D; Williamson, Michael; Kalbacher, Hubert; Grimmelikhuijzen, Cornelis J P; Holstein, Thomas W; Gründer, Stefan

    2010-04-16

    Recently, three ion channel subunits of the degenerin (DEG)/epithelial Na(+) channel (ENaC) gene family have been cloned from the freshwater polyp Hydra magnipapillata, the Hydra Na(+) channels (HyNaCs) 2-4. Two of them, HyNaC2 and HyNaC3, co-assemble to form an ion channel that is gated by the neuropeptides Hydra-RFamides I and II. The HyNaC2/3 channel is so far the only cloned ionotropic receptor from cnidarians and, together with the related ionotropic receptor FMRFamide-activated Na(+) channel (FaNaC) from snails, the only known peptide-gated ionotropic receptor. The HyNaC2/3 channel has pore properties, like a low Na(+) selectivity and a low amiloride affinity, that are different from other channels of the DEG/ENaC gene family, suggesting that a component of the native Hydra channel might still be lacking. Here, we report the cloning of a new ion channel subunit from Hydra, HyNaC5. The new subunit is closely related to HyNaC2 and -3 and co-localizes with HyNaC2 and -3 to the base of the tentacles. Coexpression in Xenopus oocytes of HyNaC5 with HyNaC2 and -3 largely increases current amplitude after peptide stimulation and affinity of the channel to Hydra-RFamides I and II. Moreover, the HyNaC2/3/5 channel has altered pore properties and amiloride affinity, more similarly to other DEG/ENaC channels. Collectively, our results suggest that the three homologous subunits HyNaC2, -3, and -5 form a peptide-gated ion channel in Hydra that could contribute to fast synaptic transmission.

  4. TRPV1 channels in cardiovascular system: A double edged sword?

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2017-02-01

    Apart from modulating nociception, there is vital role of TRPV 1 channels in modulating atherosclerosis, congestive heart failure, systemic hypertension, pulmonary hypertension, hemorrhagic shock and vascular remodeling. TRPV 1 channel activation has shielding effect against the development of atherosclerosis and systemic hypertension. TRPV 1 channel activation alleviates the formation of atherosclerotic lesions via increasing the expression of cholesterol efflux regulatory protein, UCP 2 and enhancing autophagy. Furthermore, activation of these channels enhances Na + excretion and NO release to reduce the blood pressure. TRPV 1 channel activation in the cardiac sensory neurons and subsequent CGRP release reduces ischemia-reperfusion injury. Activation of these channels during conditioning enhances CGRP and SP release from the sensory nerve fibers innervating the heart to induce cardioprotection. However, activation of these channels may elicit detrimental effects in pulmonary hypertension, hemorrhage and vascular remodeling. Activation of TRPV 1 channels enhances smooth muscle cell proliferation to promote pulmonary hypertension. Moreover, TRPV 1 channel inhibition reduces massive catecholamine release, improves survival during hemorrhage. Activation of these channels enhances vascular remodeling via enhancing NO release. Furthermore, dual role of TRPV 1 channels has been reported in the perpetuation of congestive heart failure. On one hand, TRPV 1 channel activation increases the expression of UCP2, PPAR- δ and mitochondrial sirtuin 3 to decrease oxidative stress and reduce heart injury. On the other hand, activation of these channels may enhance the expression of hypertrophic fibrotic proteins viz. GATA4, MMP to promote cardiac fibrosis. The present review discusses the dual role of activation of TRPV 1 channels in diseases associated with cardiovascular system. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Channel responses to varying sediment input: A flume experiment modeled after Redwood Creek, California

    USGS Publications Warehouse

    Madej, Mary Ann; Sutherland, D.G.; Lisle, T.E.; Pryor, B.

    2009-01-01

    At the reach scale, a channel adjusts to sediment supply and flow through mutual interactions among channel form, bed particle size, and flow dynamics that govern river bed mobility. Sediment can impair the beneficial uses of a river, but the timescales for studying recovery following high sediment loading in the field setting make flume experiments appealing. We use a flume experiment, coupled with field measurements in a gravel-bed river, to explore sediment transport, storage, and mobility relations under various sediment supply conditions. Our flume experiment modeled adjustments of channel morphology, slope, and armoring in a gravel-bed channel. Under moderate sediment increases, channel bed elevation increased and sediment output increased, but channel planform remained similar to pre-feed conditions. During the following degradational cycle, most of the excess sediment was evacuated from the flume and the bed became armored. Under high sediment feed, channel bed elevation increased, the bed became smoother, mid-channel bars and bedload sheets formed, and water surface slope increased. Concurrently, output increased and became more poorly sorted. During the last degradational cycle, the channel became armored and channel incision ceased before all excess sediment was removed. Selective transport of finer material was evident throughout the aggradational cycles and became more pronounced during degradational cycles as the bed became armored. Our flume results of changes in bed elevation, sediment storage, channel morphology, and bed texture parallel those from field surveys of Redwood Creek, northern California, which has exhibited channel bed degradation for 30??years following a large aggradation event in the 1970s. The flume experiment suggested that channel recovery in terms of reestablishing a specific morphology may not occur, but the channel may return to a state of balancing sediment supply and transport capacity.

  6. Energy-Efficient Channel Handoff for Sensor Network-Assisted Cognitive Radio Network

    PubMed Central

    Usman, Muhammad; Sajjad Khan, Muhammad; Vu-Van, Hiep; Insoo, Koo

    2015-01-01

    The visiting and less-privileged status of the secondary users (SUs) in a cognitive radio network obligates them to release the occupied channel instantly when it is reclaimed by the primary user. The SU has a choice to make: either wait for the channel to become free, thus conserving energy at the expense of delayed transmission and delivery, or find and switch to a vacant channel, thereby avoiding delay in transmission at the expense of increased energy consumption. An energy-efficient decision that considers the tradeoff between energy consumption and continuous transmission needs to be taken as to whether to switch the channels. In this work, we consider a sensor network-assisted cognitive radio network and propose a backup channel, which is sensed by the SU in parallel with the operating channel that is being sensed by the sensor nodes. Imperfect channel sensing and residual energy of the SU are considered in order to develop an energy-efficient handoff strategy using the partially observable Markov decision process (POMDP), which considers beliefs about the operating and backup channels and the remaining energy of the SU in order to take an optimal channel handoff decision on the question “Should we switch the channel?” The objective is to dynamically decide in each time slot whether the SU should switch the channel or not in order to maximize throughput by utilizing energy efficiently. Extensive simulations were performed to show the effectiveness of the proposed channel handoff strategy, which was demonstrated in the form of throughput with respect to various parameters, i.e., detection probability, the channel idle probabilities of the operating and backup channels, and the maximum energy of the SU. PMID:26213936

  7. Proton transfer in the K-channel analog of B-type Cytochrome c oxidase from Thermus thermophilus.

    PubMed

    Woelke, Anna Lena; Wagner, Anke; Galstyan, Gegham; Meyer, Tim; Knapp, Ernst-Walter

    2014-11-04

    A key enzyme in aerobic metabolism is cytochrome c oxidase (CcO), which catalyzes the reduction of molecular oxygen to water in the mitochondrial and bacterial membranes. Substrate electrons and protons are taken up from different sides of the membrane and protons are pumped across the membrane, thereby generating an electrochemical gradient. The well-studied A-type CcO uses two different entry channels for protons: the D-channel for all pumped and two consumed protons, and the K-channel for the other two consumed protons. In contrast, the B-type CcO uses only a single proton input channel for all consumed and pumped protons. It has the same location as the A-type K-channel (and thus is named the K-channel analog) without sharing any significant sequence homology. In this study, we performed molecular-dynamics simulations and electrostatic calculations to characterize the K-channel analog in terms of its energetic requirements and functionalities. The function of Glu-15B as a proton sink at the channel entrance is demonstrated by its rotational movement out of the channel when it is deprotonated and by its high pKA value when it points inside the channel. Tyr-244 in the middle of the channel is identified as the valve that ensures unidirectional proton transfer, as it moves inside the hydrogen-bond gap of the K-channel analog only while being deprotonated. The electrostatic energy landscape was calculated for all proton-transfer steps in the K-channel analog, which functions via proton-hole transfer. Overall, the K-channel analog has a very stable geometry without large energy barriers.

  8. Proton Transfer in the K-Channel Analog of B-Type Cytochrome c Oxidase from Thermus thermophilus

    PubMed Central

    Woelke, Anna Lena; Wagner, Anke; Galstyan, Gegham; Meyer, Tim; Knapp, Ernst-Walter

    2014-01-01

    A key enzyme in aerobic metabolism is cytochrome c oxidase (CcO), which catalyzes the reduction of molecular oxygen to water in the mitochondrial and bacterial membranes. Substrate electrons and protons are taken up from different sides of the membrane and protons are pumped across the membrane, thereby generating an electrochemical gradient. The well-studied A-type CcO uses two different entry channels for protons: the D-channel for all pumped and two consumed protons, and the K-channel for the other two consumed protons. In contrast, the B-type CcO uses only a single proton input channel for all consumed and pumped protons. It has the same location as the A-type K-channel (and thus is named the K-channel analog) without sharing any significant sequence homology. In this study, we performed molecular-dynamics simulations and electrostatic calculations to characterize the K-channel analog in terms of its energetic requirements and functionalities. The function of Glu-15B as a proton sink at the channel entrance is demonstrated by its rotational movement out of the channel when it is deprotonated and by its high pKA value when it points inside the channel. Tyr-244 in the middle of the channel is identified as the valve that ensures unidirectional proton transfer, as it moves inside the hydrogen-bond gap of the K-channel analog only while being deprotonated. The electrostatic energy landscape was calculated for all proton-transfer steps in the K-channel analog, which functions via proton-hole transfer. Overall, the K-channel analog has a very stable geometry without large energy barriers. PMID:25418102

  9. Quantum and Private Capacities of Low-Noise Channels

    NASA Astrophysics Data System (ADS)

    Leditzky, Felix; Leung, Debbie; Smith, Graeme

    2018-04-01

    We determine both the quantum and the private capacities of low-noise quantum channels to leading orders in the channel's distance to the perfect channel. It has been an open problem for more than 20 yr to determine the capacities of some of these low-noise channels such as the depolarizing channel. We also show that both capacities are equal to the single-letter coherent information of the channel, again to leading orders. We thus find that, in the low-noise regime, superadditivity and degenerate codes have a negligible benefit for the quantum capacity, and shielding does not improve the private capacity beyond the quantum capacity, in stark contrast to the situation when noisier channels are considered.

  10. Voltage-dependent ion channels in the mouse RPE: comparison with Norrie disease mice.

    PubMed

    Wollmann, Guido; Lenzner, Steffen; Berger, Wolfgang; Rosenthal, Rita; Karl, Mike O; Strauss, Olaf

    2006-03-01

    We studied electrophysiological properties of cultured retinal pigment epithelial (RPE) cells from mouse and a mouse model for Norrie disease. Wild-type RPE cells revealed the expression of ion channels known from other species: delayed-rectifier K(+) channels composed of Kv1.3 subunits, inward rectifier K(+) channels, Ca(V)1.3 L-type Ca(2+) channels and outwardly rectifying Cl(-) channels. Expression pattern and the ion channel characteristics current density, blocker sensitivity, kinetics and voltage-dependence were compared in cells from wild-type and Norrie mice. Although no significant differences were observed, our study provides a base for future studies on ion channel function and dysfunction in transgenic mouse models.

  11. Subconductance states of mitochondrial chloride channels: implication for functionally-coupled tetramers.

    PubMed

    Tomasek, Milan; Misak, Anton; Grman, Marian; Tomaskova, Zuzana

    2017-08-01

    Recently, it has been discovered that isoforms of intracellular chloride channels (CLIC) are present in cardiac mitochondria. By reconstituting rat cardiac mitochondrial chloride channels into bilayer lipid membranes, we detected three equally separated subconductance states with conductance increment of 45 pS and < 2% occupancy. The observed rare events of channel decomposition into substates, accompanied by disrupted gating, provide an insight into channel quaternary structure. Our findings suggest that the observed channels work as four functionally coupled subunits with synchronized gating. We discuss the putative connection of channel activity from native mitochondria with the recombinant CLIC channels. However, conclusive evidence is needed to prove this connection. © 2017 Federation of European Biochemical Societies.

  12. Molecular Basis of Cardiac Delayed Rectifier Potassium Channel Function and Pharmacology.

    PubMed

    Wu, Wei; Sanguinetti, Michael C

    2016-06-01

    Human cardiomyocytes express 3 distinct types of delayed rectifier potassium channels. Human ether-a-go-go-related gene (hERG) channels conduct the rapidly activating current IKr; KCNQ1/KCNE1 channels conduct the slowly activating current IKs; and Kv1.5 channels conduct an ultrarapid activating current IKur. Here the authors provide a general overview of the mechanistic and structural basis of ion selectivity, gating, and pharmacology of the 3 types of cardiac delayed rectifier potassium ion channels. Most blockers bind to S6 residues that line the central cavity of the channel, whereas activators interact with the channel at 4 symmetric binding sites outside the cavity. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. [Voltage-gated potassium channels and human neurological diseases].

    PubMed

    Jin, Hong-Wei; Wang, Xiao-Liang

    2002-01-01

    Voltage-gated potassium channels (Kv) is the largest, most complex in potassium channel superfamily. It can be divided into Kv alpha subunit and auxiliary two groups. The roles of some Kv channels types, e.g. rapidly inactivating (A-Type channel) and muscarine sensitive channels (M-type channel) are beginning to be understood. They are prominent in nervous system, acting in delicate and accurate ways to control or modify many physiological and pathological functions including membrane excitability, neurotransmitter release, cell proliferation or degeneration, signal transduction in neuronal network. Many human neurological disease pathogenesis are found to be related to mutant of Kv-channels subunit or subtype, such as, learning and memory impairing, ataxia, epilepsy, deafness, etc.

  14. Effect of stochastic gating on channel-facilitated transport of non-interacting and strongly repelling solutes.

    PubMed

    Berezhkovskii, Alexander M; Bezrukov, Sergey M

    2017-08-28

    Ligand- or voltage-driven stochastic gating-the structural rearrangements by which the channel switches between its open and closed states-is a fundamental property of biological membrane channels. Gating underlies the channel's ability to respond to different stimuli and, therefore, to be functionally regulated by the changing environment. The accepted understanding of the gating effect on the solute flux through the channel is that the mean flux is the product of the flux through the open channel and the probability of finding the channel in the open state. Here, using a diffusion model of channel-facilitated transport, we show that this is true only when the gating is much slower than the dynamics of solute translocation through the channel. If this condition breaks, the mean flux could differ from this simple estimate by orders of magnitude.

  15. Effect of stochastic gating on channel-facilitated transport of non-interacting and strongly repelling solutes

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Bezrukov, Sergey M.

    2017-08-01

    Ligand- or voltage-driven stochastic gating—the structural rearrangements by which the channel switches between its open and closed states—is a fundamental property of biological membrane channels. Gating underlies the channel's ability to respond to different stimuli and, therefore, to be functionally regulated by the changing environment. The accepted understanding of the gating effect on the solute flux through the channel is that the mean flux is the product of the flux through the open channel and the probability of finding the channel in the open state. Here, using a diffusion model of channel-facilitated transport, we show that this is true only when the gating is much slower than the dynamics of solute translocation through the channel. If this condition breaks, the mean flux could differ from this simple estimate by orders of magnitude.

  16. Hybrid microfluidic and nanofluidic system

    DOEpatents

    Bohn, Paul W [Champaign, IL; Sweedler, Jonathan V [Urbana, IL; Shannon, Mark A [Champaign, IL; Kuo, Tzu-chi [Savoy, IL

    2007-05-22

    A fluid circuit includes a membrane having a first side, a second side opposite the first side, and a pore extending from the first side to the second side. The circuit also includes a first channel containing fluid extending along the first side of the membrane and a second channel containing fluid extending along the second side of the membrane and crossing the first channel. The circuit also includes an electrical source in electrical communication with at least one of the first fluid and second fluid for selectively developing an electrical potential between fluid in the first channel and fluid in the second channel. This causes at least one component of fluid to pass through the pore in the membrane from one of the first channel and the second channel to the other of the first channel and the second channel.

  17. The KATP channel in migraine pathophysiology: a novel therapeutic target for migraine.

    PubMed

    Al-Karagholi, Mohammad Al-Mahdi; Hansen, Jakob Møller; Severinsen, Johanne; Jansen-Olesen, Inger; Ashina, Messoud

    2017-08-23

    To review the distribution and function of K ATP channels, describe the use of K ATP channels openers in clinical trials and make the case that these channels may play a role in headache and migraine. K ATP channels are widely present in the trigeminovascular system and play an important role in the regulation of tone in cerebral and meningeal arteries. Clinical trials using synthetic K ATP channel openers report headache as a prevalent-side effect in non-migraine sufferers, indicating that K ATP channel opening may cause headache, possibly due to vascular mechanisms. Whether K ATP channel openers can provoke migraine in migraine sufferers is not known. We suggest that K ATP channels may play an important role in migraine pathogenesis and could be a potential novel therapeutic anti-migraine target.

  18. 33 CFR 162.255 - Wrangell Narrows, Alaska; use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Channel Buoy 1 TC. East of Tow Channel Buoy 3 TC. West of Tow Channel Buoy 4 TC. East of Colorado Reef... Tow Channel Buoy 5 TC. East of Tow Channel Buoy 7 TC. West of Petersburg: East of Wrangell Narrows...

  19. A probabilistic approach for channel initiation

    Treesearch

    Erkan Istanbulluoglu; David G. Tarboton; Robert T. Pack; Charles H. Luce

    2002-01-01

    The channel head represents an important transition point from hillslope to fluvial processes. There is a nonlinear threshold transition across the channel head with sediment transport much larger in channels than on hillslopes. Deterministic specific catchment area, a, thresholds for channel initiation, sometimes dependent on slope, S...

  20. 33 CFR 162.255 - Wrangell Narrows, Alaska; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Channel Buoy 1 TC. East of Tow Channel Buoy 3 TC. West of Tow Channel Buoy 4 TC. East of Colorado Reef... Tow Channel Buoy 5 TC. East of Tow Channel Buoy 7 TC. West of Petersburg: East of Wrangell Narrows...

  1. Pulse-excited, auto-zeroing multiple channel data transmission system

    NASA Astrophysics Data System (ADS)

    Fasching, G. E.

    1985-02-01

    A multiple channel data transmission system is provided in which signals from a plurality of pulse operated transducers and a corresponding plurality of pulse operated signal processor channels are multiplexed for single channel FM transmission to a receiving station. The transducers and corresponding channel amplifiers are powered by pulsing the dc battery power to these devices to conserve energy and battery size for long-term data transmission from remote or inaccessible locations. Auto zeroing of the signal channel amplifiers to compensate for drift associated with temperature changes, battery decay, component aging, etc., in each channel is accomplished by means of a unique auto zero feature which between signal pulses holds a zero correction voltage on an integrating capacitor coupled to the corresponding channel amplifier output. Pseudo-continuous outputs for each channel are achieved by pulsed sample-and-hold circuits which are updated at the pulsed operation rate. The sample-and-hold outputs are multiplexed into an FM/FM transmitter for transmission to an FM receiver station for demultiplexing and storage in separate channel recorders.

  2. Pulse-excited, auto-zeroing multiple channel data transmission system

    DOEpatents

    Fasching, G.E.

    1985-02-22

    A multiple channel data transmission system is provided in which signals from a plurality of pulse operated transducers and a corresponding plurality of pulse operated signal processor channels are multiplexed for single channel FM transmission to a receiving station. The transducers and corresponding channel amplifiers are powered by pulsing the dc battery power to these devices to conserve energy and battery size for long-term data transmission from remote or inaccessible locations. Auto zeroing of the signal channel amplifiers to compensate for drift associated with temperature changes, battery decay, component aging, etc., in each channel is accomplished by means of a unique auto zero feature which between signal pulses holds a zero correction voltage on an integrating capacitor coupled to the corresponding channel amplifier output. Pseudo-continuous outputs for each channel are achieved by pulsed sample-and-hold circuits which are updated at the pulsed operation rate. The sample-and-hold outputs are multiplexed into an FM/FM transmitter for transmission to an FM receiver station for demultiplexing and storage in separate channel recorders.

  3. Pulse-excited, auto-zeroing multiple channel data transmission system

    DOEpatents

    Fasching, George E.

    1987-01-01

    A multiple channel data transmission system is provided in which signals from a plurality of pulse operated transducers and a corresponding plurality of pulse operated signal processor channels are multiplexed for single channel FM transmission to a receiving station. The transducers and corresponding channel amplifiers are powered by pulsing the dc battery power to these devices to conserve energy and battery size for long-term data transmission from remote or inaccessible locations. Auto zeroing of the signal channel amplifiers to compensate for drift associated with temperature changes, battery decay, component aging, etc., in each channel is accomplished by means of a unique auto zero feature which between signal pulses holds a zero correction voltage on an integrating capacitor coupled to the corresponding channel amplifier output. Pseudo-continuous outputs for each channel are achieved by pulsed sample-and-hold circuits which are updated at the pulsed operation rate. The sample-and-hold outputs are multiplexed into an FM/FM transmitter for transmission to an FM receiver station for demultiplexing and storage in separate channel recorders.

  4. Alternative splicing modulates Kv channel clustering through a molecular ball and chain mechanism

    NASA Astrophysics Data System (ADS)

    Zandany, Nitzan; Marciano, Shir; Magidovich, Elhanan; Frimerman, Teddy; Yehezkel, Rinat; Shem-Ad, Tzilhav; Lewin, Limor; Abdu, Uri; Orr, Irit; Yifrach, Ofer

    2015-03-01

    Ion channel clustering at the post-synaptic density serves a fundamental role in action potential generation and transmission. Here, we show that interaction between the Shaker Kv channel and the PSD-95 scaffold protein underlying channel clustering is modulated by the length of the intrinsically disordered C terminal channel tail. We further show that this tail functions as an entropic clock that times PSD-95 binding. We thus propose a ‘ball and chain’ mechanism to explain Kv channel binding to scaffold proteins, analogous to the mechanism describing channel fast inactivation. The physiological relevance of this mechanism is demonstrated in that alternative splicing of the Shaker channel gene to produce variants of distinct tail lengths resulted in differential channel cell surface expression levels and clustering metrics that correlate with differences in affinity of the variants for PSD-95. We suggest that modulating channel clustering by specific spatial-temporal spliced variant targeting serves a fundamental role in nervous system development and tuning.

  5. Nuclear BK Channels Regulate Gene Expression via the Control of Nuclear Calcium Signaling

    PubMed Central

    Li, Boxing; Jie, Wei; Huang, Lianyan; Wei, Peng; Li, Shuji; Luo, Zhengyi; Friedman, Allyson K.; Meredith, Andrea L.; Han, Ming-Hu; Zhu, Xin-Hong; Gao, Tian-Ming

    2014-01-01

    Ion channels are essential for the regulation of neuronal functions. The significance of plasma membrane, mitochondrial, endoplasmic reticulum, and lysosomal ion channels in the regulation of Ca2+ is well established. In contrast, surprisingly less is known about the function of ion channels on the nuclear envelope (NE). Here we demonstrate the presence of functional large-conductance, calcium-activated potassium channels (BK channels) on the NE of rodent hippocampal neurons. Functionally blockade of nuclear BK channels (nBK channels) induces NE-derived Ca2+ release, nucleoplasmic Ca2+ elevation, and cAMP response element binding protein (CREB)-dependent transcription. More importantly, blockade of nBK channels regulates nuclear Ca2+-sensitive gene expression and promotes dendritic arborization in a nuclear Ca2+-dependent manner. These results suggest that nBK channel functions as a molecular linker between neuronal activity and nuclear Ca2+ to convey the signals from synapse to nucleus and is a new modulator for synaptic activity-dependent neuronal functions at the NE level. PMID:24952642

  6. Simulation of the effect of a magnetically insulated anode on a low-power cylindrical Hall thruster

    NASA Astrophysics Data System (ADS)

    Yongjie, DING; Hong, LI; Boyang, JIA; Peng, LI; Liqiu, WEI; Yu, XU; Wuji, PENG; Hezhi, SUN; Yong, CAO; Daren, YU

    2018-03-01

    The intersection point of the characteristic magnetic field line (CMFL) crossing the anode boundary with the discharge channel wall, and its influence on thruster performance and the energy and flux of ions bombarding the channel wall, have been studied numerically. The simulation results demonstrate that with the increase in distance from the crossover point of the CMFL with the channel wall to the bottom of the thruster channel, the ionization rate in the discharge channel gradually increases; meanwhile, the ion energy and ion current density bombarding the channel wall decreases. When the point of the CMFL with the channel wall is at the channel outlet, the thrust, specific impulse, and efficiency are at a maximum, while the ion energy and ion current density bombarding the channel wall are at a minimum. Therefore, to improve the performance and lifetime of the thruster, it is important to control the point of intersection of the CMFL with the channel wall.

  7. Results of gamma activity traverses made in process tube channels and VSR channels at 105-KW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, M.C. Jr.

    1955-02-03

    Activity traverses were made at Hanford reactor 105-KW in VSR channels 23, 29, 37, 46, 55, 63 and 69 and in process channels 4669, 4569, 4668, 4670 and 4769. These traverses were made during cleaning operations to assist in the location of any contaminated material in these channels and again after completion of the cleaning operations to determine if all of the contaminated material was removed. Upon completion of the cleaning of the VSR channels and process channels activity traverses were made in all of the channels. The results of these traverses show that no detectable amounts of contaminated materialmore » were present in any of these channels. The traverses made in the VSR channels all show a large peak in the lower part of the pile indicating that the metal in the lower part of the pile received as much as five times the integrated exposure received by the metal in the upper half of the pile. 15 figs.« less

  8. Apparatus for diffusion separation

    DOEpatents

    Nierenberg, William A.

    1976-08-10

    1. A diffuser separator apparatus which comprises a plurality of flow channels in a single stage, each of said channels having an inlet port and an outlet port and a constant cross sectional area between said ports, at least a portion of the defining surface of each of said channels being a diffusion separation membrane, and each of said channels having a different cross sectional area, means for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series, a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area.

  9. DRIFT CONTROL IN AN ANALYTICAL GAMMA RAY SPECTROMETER

    DOEpatents

    Fite, L.E.

    1963-08-20

    A device for automatically and continuously controlling the over-all drift of a multi-channel analyzer so as to permit the accurate processing of spectrometric analytical data by a digital computer is described. Two sources of reference pulses, one of which is stored in the lower channels and the other being stored in the higher channels of a 256 channel analyzer, are provided. The reference pulses are processed in the same manner as the data pulses. The channels that should contain the reference pulses and the adjacent channels above and below those channels are monitored by comparison circuits such that any drift, upward or downward, of the reference pulses is detected to effect a change in high voltage supply in response to a drift in the upper channel, and to effect a change in the lower discriminator level of the analog to digital converter of the analyzer in response to a drift in the lower channel, thereby maintaining the pulses in the proper channels. (AEC)

  10. Characterization of a novel 132-bp exon of the human maxi-K channel.

    PubMed

    Korovkina, V P; Fergus, D J; Holdiman, A J; England, S K

    2001-07-01

    The large-conductance Ca2+-activated voltage-dependent K+ channel (maxi-K channel) induces a significant repolarizing current that buffers cell excitability. This channel can derive its diversity by alternative splicing of its transcript-producing isoforms that differ in their sensitivity to voltage and intracellular Ca2+. We have identified a novel 132-bp exon of the maxi-K channel from human myometrial cells that encodes 44 amino acids within the first intracellular loop of the channel protein. Distribution analysis reveals that this exon is expressed predominantly in human smooth muscle tissues with the highest abundance in the uterus and aorta and resembles the previously reported distribution of the total maxi-K channel transcript. Single-channel K+ current measurements in fibroblasts transfected with the maxi-K channel containing this novel 132-bp exon demonstrate that the presence of this insert attenuates the sensitivity to voltage and intracellular Ca2+. Alternative splicing to introduce this 132-bp exon into the maxi-K channel may elicit another mode to modulate cell excitability.

  11. Truthful Channel Sharing for Self Coexistence of Overlapping Medical Body Area Networks

    PubMed Central

    Dutkiewicz, Eryk; Zheng, Guanglou

    2016-01-01

    As defined by IEEE 802.15.6 standard, channel sharing is a potential method to coordinate inter-network interference among Medical Body Area Networks (MBANs) that are close to one another. However, channel sharing opens up new vulnerabilities as selfish MBANs may manipulate their online channel requests to gain unfair advantage over others. In this paper, we address this issue by proposing a truthful online channel sharing algorithm and a companion protocol that allocates channel efficiently and truthfully by punishing MBANs for misreporting their channel request parameters such as time, duration and bid for the channel. We first present an online channel sharing scheme for unit-length channel requests and prove that it is truthful. We then generalize our model to settings with variable-length channel requests, where we propose a critical value based channel pricing and preemption scheme. A bid adjustment procedure prevents unbeneficial preemption by artificially raising the ongoing winner’s bid controlled by a penalty factor λ. Our scheme can efficiently detect selfish behaviors by monitoring a trust parameter α of each MBAN and punish MBANs from cheating by suspending their requests. Our extensive simulation results show our scheme can achieve a total profit that is more than 85% of the offline optimum method in the typical MBAN settings. PMID:26844888

  12. Gender Representation on Gender-Targeted Television Channels: A Comparison of Female- and Male-Targeted TV Channels in the Netherlands.

    PubMed

    Daalmans, Serena; Kleemans, Mariska; Sadza, Anne

    2017-01-01

    The current study investigated the differences in the representation of gender on male- and female-targeted channels with regard to recognition (i.e., the actual presence of men and women) and respect (i.e., the nature of that representation or portrayal). To this end, the presence of men and women on two female- and two male-targeted Dutch channels ( N  = 115 programs, N  = 1091 persons) were compared via content analysis. The expectation that men's channels would portray a less equal and more traditional image of gender than women's channels was generally supported by the results. Regardless of genre as well as country of origin of the program, women were underrepresented on men's channels, while gender distribution on women's channels was more equal. The representation of women in terms of age and occupation was more stereotypical on men's channels than on women's channels, whereas men were represented in more contra-stereotypical ways (e.g., performing household tasks) on women's channels. Since television viewing contributes to the learning and maintenance of stereotyped perceptions, the results imply that it is important to strengthen viewers' defenses against the effects of gender stereotyping when watching gendered television channels, for instance through media literacy programs in schools.

  13. Twenty Years of "Plug-and-Pond" Meadow Restoration: A Geomorphic Review

    NASA Astrophysics Data System (ADS)

    Natali, J.

    2015-12-01

    Channel incision has degraded the ecological function of wet meadows across montane regions of California. Conservation groups estimate that half of the Sierra Nevada's 333,000 acres of meadow are entrenched in a degraded state that is characterized by a shift from groundwater­fed, herbaceous vegetation to more sparse, drought­tolerant woody vegetation. My poster will present results of field research on a prominent restoration technique in California's montane meadows, the "Plug­and­Pond." Fundamentally, the technique re­channelizes the meadow by blocking flow into incised stream channels. Spoils dug from meadow sediments plug the incised channel, creating ponds as a by­product. One of three approaches to re­channelization ensues: (1) construct a new shallow and sinuous channel, (2) redirect flows into a remnant channel, (3) or allow the channel to define itself over the meadow floodplain. Re­ channelization aims to support overbank flows at 1.5 to 3 year recurrence intervals. Field surveys of ten of the oldest "plug-and-pond" meadow restoration projects in California reveal that channel bed degradation caused by meadow-scale changes to channel slope (i.e. culverts concentrating flows, channel straightening, meadow grazing) may be more conducive to intensive restoration approaches like Plug-and-Pond.

  14. Large scale rearrangement of protein domains is associated with voltage gating of the VDAC channel.

    PubMed Central

    Peng, S; Blachly-Dyson, E; Forte, M; Colombini, M

    1992-01-01

    The VDAC channel of the mitochondrial outer membrane is voltage-gated like the larger, more complex voltage-gated channels of the plasma membrane. However, VDAC is a low molecular weight (30 kDa), abundant protein, which is readily purified and reconstituted, making it an ideal system for analyzing the molecular basis for ion selectivity and voltage-gating. We have probed the VDAC channel by subjecting the cloned yeast (S. cerevisiae) VDAC gene to site-directed mutagenesis and introducing the resulting mutant channels into planar bilayers to detect the effects of specific sequence changes on channel properties. This approach has allowed us to formulate and test a model of the open state structure of the VDAC channel. Now we have applied the same approach to analyzing the structure of the channel's low-conducting "closed state" (essentially closed to important metabolites). We have identified protein domains forming the wall of the closed conformation and domains that seem to be removed from the wall of the pore during channel closure. The latter can explain the reduction in pore diameter and volume and the dramatically altered channel selectivity resulting from the channel closure. This process would make a natural coupling between motion of the sensor and channel gating. PMID:1376163

  15. Molecular dynamics of alamethicin transmembrane channels from open-channel current noise analysis.

    PubMed

    Mak, D O; Webb, W W

    1995-12-01

    Conductance noise measurement of the open states of alamethicin transmembrane channels reveals excess noise attributable to cooperative low-frequency molecular dynamics that can generate fluctuations approximately 1 A rms in the effective channel pore radius. Single-channel currents through both persistent and nonpersistent channels with multiple conductance states formed by purified polypeptide alamethicin in artificial phospholipid bilayers isolated onto micropipettes with gigaohm seals were recorded using a voltage-clamp technique with low background noise (rms noise < 3 pA up to 20 kHz). Current noise power spectra between 100 Hz and 20 kHz of each open channel state showed little frequency dependence. Noise from undetected conductance state transitions was insignificant. Johnson and shot noises were evaluated. Current noise caused by electrolyte concentration fluctuation via diffusion was isolated by its dependence on buffer concentration. After removing these contributions, significant current noise remains in all persistent channel states and increases in higher conductance states. In nonpersistent channels, remaining noise occurs primarily in the lowest two states. These fluctuations of channel conductance are attributed to thermal oscillations of the channel molecular conformation and are modeled as a Langevin translational oscillation of alamethicin molecules moving radially from the channel pore, damped mostly by lipid bilayer viscosity.

  16. Formation and maintenance of single-thread tie channels entering floodplain lakes: Observations from three diverse river systems

    NASA Astrophysics Data System (ADS)

    Rowland, J. C.; Dietrich, W. E.; Day, G.; Parker, G.

    2009-06-01

    Tie channels connect rivers to floodplain lakes on many lowland rivers and thereby play a central role in floodplain sedimentology and ecology; yet they are generally unrecognized and little studied. Here we report the results of field studies focused on tie channel origin and morphodynamics in the following three contrasting systems: the Middle Fly River (Papua New Guinea), the Lower Mississippi River, and Birch Creek in Alaska. Across these river systems, tie channels vary by an order of magnitude in size but exhibit the same characteristic morphology and appear to develop and evolve by a similar set of processes. In all three systems, the channels are characterized by a narrow, leveed, single-thread morphology with maximum width approximately one tenth the width of the mainstem river. The channels typically have a V-shaped cross section, unlike most fluvial channels. These channels develop as lakes become isolated from the river by sedimentation. Narrowing of the connection between river and lake causes a sediment-laden jet to develop. Levees develop along the margins of the jet leading to channel emergence and eventual levee aggradation to the height of the mainstem levees. Bidirectional flow in these channels is common. Outflows from the lake scour sediment and prevent channel blockage. We propose that channel geometry and size are then controlled by a dynamic balance between channel narrowing by suspended sediment deposition and incision and widening by mass failure of banks during outflows. Tie channels are laterally stable and may convey flow for hundreds to a few thousand of years.

  17. Analysis of temperature profiles for investigating stream losses beneath ephemeral channels

    USGS Publications Warehouse

    Constantz, Jim; Stewart, Amy E.; Niswonger, Richard G.; Sarma, Lisa

    2002-01-01

    Continuous estimates of streamflow are challenging in ephemeral channels. The extremely transient nature of ephemeral streamflows results in shifting channel geometry and degradation in the calibration of streamflow stations. Earlier work suggests that analysis of streambed temperature profiles is a promising technique for estimating streamflow patterns in ephemeral channels. The present work provides a detailed examination of the basis for using heat as a tracer of stream/groundwater exchanges, followed by a description of an appropriate heat and water transport simulation code for ephemeral channels, as well as discussion of several types of temperature analysis techniques to determine streambed percolation rates. Temperature‐based percolation rates for three ephemeral stream sites are compared with available surface water estimates of channel loss for these sites. These results are combined with published results to develop conclusions regarding the accuracy of using vertical temperature profiles in estimating channel losses. Comparisons of temperature‐based streambed percolation rates with surface water‐based channel losses indicate that percolation rates represented 30% to 50% of the total channel loss. The difference is reasonable since channel losses include both vertical and nonvertical component of channel loss as well as potential evapotranspiration losses. The most significant advantage of the use of sediment‐temperature profiles is their robust and continuous nature, leading to a long‐term record of the timing and duration of channel losses and continuous estimates of streambed percolation. The primary disadvantage is that temperature profiles represent the continuous percolation rate at a single point in an ephemeral channel rather than an average seepage loss from the entire channel.

  18. N-(2-methoxyphenyl) benzenesulfonamide, a novel regulator of neuronal G protein-gated inward rectifier K+ channels.

    PubMed

    Walsh, Kenneth B; Gay, Elaine A; Blough, Bruce E; Geurkink, David W

    2017-11-15

    G protein-gated inward rectifier K + (GIRK) channels are members of the super-family of proteins known as inward rectifier K + (Kir) channels and are expressed throughout the peripheral and central nervous systems. Neuronal GIRK channels are the downstream targets of a number of neuromodulators including opioids, somatostatin, dopamine and cannabinoids. Previous studies have demonstrated that the ATP-sensitive K + channel, another member of the Kir channel family, is regulated by sulfonamide drugs. Therefore, to determine if sulfonamides also modulate GIRK channels, we screened a library of arylsulfonamide compounds using a GIRK channel fluorescent assay that utilized pituitary AtT20 cells expressing GIRK channels along with the somatostatin type-2 and -5 receptors. Enhancement of the GIRK channel fluorescent signal by one compound, N-(2-methoxyphenyl) benzenesulfonamide (MPBS), was dependent on the activation of the channel by somatostatin. In whole-cell patch clamp experiments, application of MPBS both shifted the somatostatin concentration-response curve (EC 50 = 3.5nM [control] vs.1.0nM [MPBS]) for GIRK channel activation and increased the maximum GIRK current measured with 100nM somatostatin. However, GIRK channel activation was not observed when MPBS was applied to the cells in the absence of somatostatin. While the MPBS structural analog 4-fluoro-N-(2-methoxyphenyl) benzenesulfonamide also augmented the somatostatin-induced GIRK fluorescent signal, no increase in the signal was observed with the sulfonamides tolbutamide, sulfapyridine and celecoxib. In conclusion, MPBS represents a novel prototypic GPCR-dependent regulator of neuronal GIRK channels. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Plasma oscillation effects on nested Hall thruster operation and stability

    NASA Astrophysics Data System (ADS)

    McDonald, M. S.; Sekerak, M. J.; Gallimore, A. D.; Hofer, R. R.

    High-power Hall thrusters capable of throughput on the order of 100 kW are currently under development, driven by more demanding mission profiles and rapid growth in on-orbit solar power generation capability. At these power levels the nested Hall thruster (NHT), a new design that concentrically packs multiple thrusters into a single body with a shared magnetic circuit, offers performance and logistical advantages over conventional single-channel Hall thrusters. An important area for risk reduction in NHT development is quantifying inter-channel coupling between discharge channels. This work presents time- and frequency-domain discharge current and voltage measurements paired with high-speed video of the X2, a 10-kW class dual channel NHT. Two “ triads” of operating conditions at 150 V, 3.6 kW and 250 V, 8.6 kW were examined, including each channel in individual operation and both channels in joint operation. For both triads tested, dual-channel operation did not noticeably destabilize the discharge. Partial coupling of outer channel oscillations into the inner channel occurred at 150 V, though oscillation amplitudes did not change greatly. As a percentage of mean discharge current, RMS oscillations at 150 V increased from 8% to 13% on the inner channel and decreased from 10% to 8% on the outer channel from single- to dual-channel operation. At 250 V the RMS/mean level stayed steady at 13% on the inner channel and decreased from 7% to 6% on the outer channel. The only mean discharge parameter noticeably affected was the cathode floating potential, which decreased in magnitude below ground with increased absolute cathode flow rate in dual-channel mode. Rotating spokes were detected on high-speed video across all X2 operating cases with wavelength 12-18 cm, and spoke velocity generally increased from single- to dual-channel operation.

  20. Structural implications of weak Ca2+ block in Drosophila cyclic nucleotide–gated channels

    PubMed Central

    Lam, Yee Ling; Zeng, Weizhong; Derebe, Mehabaw Getahun

    2015-01-01

    Calcium permeability and the concomitant calcium block of monovalent ion current (“Ca2+ block”) are properties of cyclic nucleotide–gated (CNG) channel fundamental to visual and olfactory signal transduction. Although most CNG channels bear a conserved glutamate residue crucial for Ca2+ block, the degree of block displayed by different CNG channels varies greatly. For instance, the Drosophila melanogaster CNG channel shows only weak Ca2+ block despite the presence of this glutamate. We previously constructed a series of chimeric channels in which we replaced the selectivity filter of the bacterial nonselective cation channel NaK with a set of CNG channel filter sequences and determined that the resulting NaK2CNG chimeras displayed the ion selectivity and Ca2+ block properties of the parent CNG channels. Here, we used the same strategy to determine the structural basis of the weak Ca2+ block observed in the Drosophila CNG channel. The selectivity filter of the Drosophila CNG channel is similar to that of most other CNG channels except that it has a threonine at residue 318 instead of a proline. We constructed a NaK chimera, which we called NaK2CNG-Dm, which contained the Drosophila selectivity filter sequence. The high resolution structure of NaK2CNG-Dm revealed a filter structure different from those of NaK and all other previously investigated NaK2CNG chimeric channels. Consistent with this structural difference, functional studies of the NaK2CNG-Dm chimeric channel demonstrated a loss of Ca2+ block compared with other NaK2CNG chimeras. Moreover, mutating the corresponding threonine (T318) to proline in Drosophila CNG channels increased Ca2+ block by 16 times. These results imply that a simple replacement of a threonine for a proline in Drosophila CNG channels has likely given rise to a distinct selectivity filter conformation that results in weak Ca2+ block. PMID:26283200

  1. Structural implications of weak Ca2+ block in Drosophila cyclic nucleotide-gated channels.

    PubMed

    Lam, Yee Ling; Zeng, Weizhong; Derebe, Mehabaw Getahun; Jiang, Youxing

    2015-09-01

    Calcium permeability and the concomitant calcium block of monovalent ion current ("Ca(2+) block") are properties of cyclic nucleotide-gated (CNG) channel fundamental to visual and olfactory signal transduction. Although most CNG channels bear a conserved glutamate residue crucial for Ca(2+) block, the degree of block displayed by different CNG channels varies greatly. For instance, the Drosophila melanogaster CNG channel shows only weak Ca(2+) block despite the presence of this glutamate. We previously constructed a series of chimeric channels in which we replaced the selectivity filter of the bacterial nonselective cation channel NaK with a set of CNG channel filter sequences and determined that the resulting NaK2CNG chimeras displayed the ion selectivity and Ca(2+) block properties of the parent CNG channels. Here, we used the same strategy to determine the structural basis of the weak Ca(2+) block observed in the Drosophila CNG channel. The selectivity filter of the Drosophila CNG channel is similar to that of most other CNG channels except that it has a threonine at residue 318 instead of a proline. We constructed a NaK chimera, which we called NaK2CNG-Dm, which contained the Drosophila selectivity filter sequence. The high resolution structure of NaK2CNG-Dm revealed a filter structure different from those of NaK and all other previously investigated NaK2CNG chimeric channels. Consistent with this structural difference, functional studies of the NaK2CNG-Dm chimeric channel demonstrated a loss of Ca(2+) block compared with other NaK2CNG chimeras. Moreover, mutating the corresponding threonine (T318) to proline in Drosophila CNG channels increased Ca(2+) block by 16 times. These results imply that a simple replacement of a threonine for a proline in Drosophila CNG channels has likely given rise to a distinct selectivity filter conformation that results in weak Ca(2+) block. © 2015 Lam et al.

  2. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Channel Islands Harbor, CA. 80...

  3. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Channel Islands Harbor, CA. 80...

  4. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Channel Islands Harbor, CA. 80...

  5. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Channel Islands Harbor, CA. 80...

  6. 33 CFR 80.1122 - Channel Islands Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1122 Channel Islands Harbor, CA. (a) A line drawn from Channel Islands Harbor South Jetty Light 2 to Channel Islands Harbor Breakwater... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Channel Islands Harbor, CA. 80...

  7. 47 CFR 73.128 - AM stereophonic broadcasting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... channel reversed. (iii) Left and Right Channel only, under all conditions of modulation for the... (NRSC-1). (2) The left and right channel audio signals shall conform to frequency response limitations...)=audio signal left channel, R(t)=audio signal right channel, m=modulation factor, and mpeak(L(t)+R(t))=1...

  8. 78 FR 64417 - Airworthiness Directives; Twin Commander Aircraft LLC Airplanes; Initial Regulatory Flexibility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... window channels, aft cabin pressure web, external wing to fuselage fillets, and fasteners; repair or..., the vertical channels, the upper picture window channels, aft cabin pressure web, external wing to... lower wing main spar, the vertical channels, the upper picture window channels, aft cabin pressure web...

  9. A framework for spatial and temporal analysis of hillslope-channel coupling in a dryland basin 2401

    USDA-ARS?s Scientific Manuscript database

    The long-term evolution of channel longitudinal profiles within drainage basins is partly determined by the relative balance of hillslope sediment supply to channels and the evacuation of channel sediment. However, the lack of theoretical understanding of the physical processes of hillslope-channel...

  10. Channel capacity of an array system for Gaussian channels with applications to combining and noise cancellation

    NASA Technical Reports Server (NTRS)

    Cheung, K. M.; Vilnrotter, V.

    1996-01-01

    A closed-form expression for the capacity of an array of correlated Gaussian channels is derived. It is shown that when signal and noise are independent, the array of observables can be replaced with a single observable without diminishing the capacity of the array channel. Examples are provided to illustrate the dependence of channel capacity on noise correlation for two- and three-channel arrays.

  11. Channel Capacity of an Array System for Gaussian Channels With Applications to Combining and Noise Cancellation

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Vilnrotter, V.

    1996-01-01

    A closed-form expression for the capacity of an array of correlated Gaussian channels is derived. It is shown that when signal and noise are independent, the array of observables can be replaced with a single observable without diminishing the capacity of the array channel. Examples are provided to illustrate the dependence of channel capacity on noise correlation for two- and three-channel arrays.

  12. 78 FR 73109 - Radio Broadcasting Services; Benjamin and Cisco, TX; De Beque, CO; Port Lions, AK; Rule and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-05

    ... Broadcasting Services; Benjamin and Cisco, TX; De Beque, CO; Port Lions, AK; Rule and Shamrock, TX AGENCY... 237C3 at Benjamin, Texas; Channel 261C3 at Cisco, Texas; Channel 288C2 at Rule, Texas; and Channel 225C2..., Channel 237C3; by removing Cisco, Channel 261C3; by removing Channel 288C2 at Rule; and by removing...

  13. Data management software concept for WEST plasma measurement system

    NASA Astrophysics Data System (ADS)

    Zienkiewicz, P.; Kasprowicz, G.; Byszuk, A.; Wojeński, A.; Kolasinski, P.; Cieszewski, R.; Czarski, T.; Chernyshova, M.; Pozniak, K.; Zabolotny, W.; Juszczyk, B.; Mazon, D.; Malard, P.

    2014-11-01

    This paper describes the concept of data management software for the multichannel readout system for the GEM detector used in WEST Plasma experiment. The proposed system consists of three separate communication channels: fast data channel, diagnostics channel, slow data channel. Fast data channel is provided by the FPGA with integrated ARM cores providing direct readout data from Analog Front Ends through 10GbE with short, guaranteed intervals. Slow data channel is provided by multiple, fast CPUs after data processing with detailed readout data with use of GNU/Linux OS and appropriate software. Diagnostic channel provides detailed feedback for control purposes.

  14. Evaluation of DCS III Transmission Alternatives. Phase 1A Report. Appendix A. Transmission Media.

    DTIC Science & Technology

    1980-05-26

    macNV to40 NOTES: Numbers in box indicate max. channel capacity. (No. of voice channels pier rf channel). (0 CCI R Rec. 383 and Rec. 387 channel capacity...is 1800 telephone channels. (2 MCR Rec. 384 channel capacity is 2700 or 1 260 telephone Channels. (3) CCIR Plec . 386 lAnneet chainel Capacity is 960...R + R" Rt + Rr +- (A.11-2)2 where R and Rr or R and Rr are distances from one end or the other end of the zone to the transmitter and receiver

  15. Two-ply channels for faster wicking in paper-based microfluidic devices.

    PubMed

    Camplisson, Conor K; Schilling, Kevin M; Pedrotti, William L; Stone, Howard A; Martinez, Andres W

    2015-12-07

    This article describes the development of porous two-ply channels for paper-based microfluidic devices that wick fluids significantly faster than conventional, porous, single-ply channels. The two-ply channels were made by stacking two single-ply channels on top of each other and were fabricated entirely out of paper, wax and toner using two commercially available printers, a convection oven and a thermal laminator. The wicking in paper-based channels was studied and modeled using a modified Lucas-Washburn equation to account for the effect of evaporation, and a paper-based titration device incorporating two-ply channels was demonstrated.

  16. Study of the interaction of potassium ion channel protein with micelle by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Shantappa, Anil; Talukdar, Keka

    2018-04-01

    Ion channels are proteins forming pore inside the body of all living organisms. This potassium ion channel known as KcsA channel and it is found in the each cell and nervous system. Flow of various ions is regulated by the function of the ion channels. The nerve ion channel protein with protein data bank entry 1BL8, which is basically an ion channel protein in Streptomyces Lividans and which is taken up to form micelle-protein system and the system is analyzed by using molecular dynamics simulation. Firstly, ion channel pore is engineered by CHARMM potential and then Micelle-protein system is subjected to molecular dynamics simulation. For some specific micelle concentration, the protein unfolding is observed.

  17. The Distribution of Lightning Channel Lengths in Northern Alabama Thunderstorms

    NASA Technical Reports Server (NTRS)

    Peterson, H. S.; Koshak, W. J.

    2010-01-01

    Lightning is well known to be a major source of tropospheric NOx, and in most cases is the dominant natural source (Huntreiser et al 1998, Jourdain and Hauglustaine 2001). Production of NOx by a segment of a lightning channel is a function of channel segment energy density and channel segment altitude. A first estimate of NOx production by a lightning flash can be found by multiplying production per segment [typically 104 J/m; Hill (1979)] by the total length of the flash s channel. The purpose of this study is to determine average channel length for lightning flashes near NALMA in 2008, and to compare average channel length of ground flashes to the average channel length of cloud flashes.

  18. Roughness characteristics of natural channels

    USGS Publications Warehouse

    Barnes, Harry Hawthorne

    1967-01-01

    Color photographs and descriptive data are presented for 50 stream channels for which roughness coefficients have been determined. All hydraulic computations involving flow in open channels require an evaluation of the roughness characteristics of the channel. In the absence of a satisfactory quantitative procedure this evaluation remains chiefly an art. The ability to evaluate roughness coefficients must be developed through experience. One means of gaining this experience is by examining and becoming acquainted with the appearance of some typical channels whose roughness coefficients are known. The photographs and data contained in this report represent a wide range of channel conditions. Familiarity with the appearance, geometry, and roughness characteristics of these channels will improve the engineer's ability to select roughness coefficients for other channels .

  19. Orientation independence of single-vacancy and single-ion permeability ratios.

    PubMed Central

    McGill, P; Schumaker, M F

    1995-01-01

    Single-vacancy models have been proposed as open channel permeation mechanisms for K+ channels. Single-ion models have been used to describe permeation through Na+ channels. This paper demonstrates that these models have a distinctive symmetry property. Their permeability ratios, measured under biionic conditions, are independent of channel orientation when the reversal potential is zero. This symmetry is a property of general m-site single-vacancy channels, m-site shaking-stack channels, as well as m-site single-ion channels. An experimental finding that the permeability ratios of a channel did not have this symmetry would provide evidence that a single-vacancy or single-ion model is an incorrect or incomplete description of permeation. Images FIGURE 1 PMID:7669913

  20. Channel coding in the space station data system network

    NASA Technical Reports Server (NTRS)

    Healy, T.

    1982-01-01

    A detailed discussion of the use of channel coding for error correction, privacy/secrecy, channel separation, and synchronization is presented. Channel coding, in one form or another, is an established and common element in data systems. No analysis and design of a major new system would fail to consider ways in which channel coding could make the system more effective. The presence of channel coding on TDRS, Shuttle, the Advanced Communication Technology Satellite Program system, the JSC-proposed Space Operations Center, and the proposed 30/20 GHz Satellite Communication System strongly support the requirement for the utilization of coding for the communications channel. The designers of the space station data system have to consider the use of channel coding.

  1. Hall effect mobility for SiC MOSFETs with increasing dose of nitrogen implantation into channel region

    NASA Astrophysics Data System (ADS)

    Noguchi, Munetaka; Iwamatsu, Toshiaki; Amishiro, Hiroyuki; Watanabe, Hiroshi; Kita, Koji; Yamakawa, Satoshi

    2018-04-01

    The Hall effect mobility (μHall) of the Si-face 4H-SiC metal–oxide–semiconductor field effect transistor (MOSFET) with a nitrogen (N)-implanted channel region was investigated by increasing the N dose. The μHall in the channel region was systematically examined regarding channel structures, that is, the surface and buried channels. It was experimentally demonstrated that increasing the N dose results in an improvement in μHall in the channel region due to the formation of the buried channel. However, further increase in N dose was found to decrease the μHall in the channel region, owing to the decrease in the electron mobility in the N-implanted bulk region.

  2. Signaling complexes of voltage-gated calcium channels

    PubMed Central

    Turner, Ray W; Anderson, Dustin

    2011-01-01

    Voltage-gated calcium channels are key mediators of depolarization induced calcium entry into electrically excitable cells. There is increasing evidence that voltage-gated calcium channels, like many other types of ionic channels, do not operate in isolation, but instead form complexes with signaling molecules, G protein coupled receptors, and other types of ion channels. Furthermore, there appears to be bidirectional signaling within these protein complexes, thus allowing not only for efficient translation of calcium signals into cellular responses, but also for tight control of calcium entry per se. In this review, we will focus predominantly on signaling complexes between G protein-coupled receptors and high voltage activated calcium channels, and on complexes of voltage-gated calcium channels and members of the potassium channel superfamily. PMID:21832880

  3. Bipolar Electrode Sample Preparation Devices

    NASA Technical Reports Server (NTRS)

    Song, Hongjun (Inventor); Wang, Yi (Inventor); Pant, Kapil (Inventor)

    2017-01-01

    An analyte selection device can include: a body defining a fluid channel having a channel inlet and channel outlet; a bipolar electrode (BPE) between the inlet and outlet; one of an anode or cathode electrically coupled with the BPE on a channel inlet side of the BPE and the other of the anode or cathode electrically coupled with the BPE on a channel outlet side of the BPE; and an electronic system operably coupled with the anode and cathode so as to polarize the BPE. The fluid channel can have any shape or dimension. The channel inlet and channel outlet can be longitudinal or lateral with respect to the longitudinal axis of the channel. The BPE can be any metallic member, such as a flat plate on a wall or mesh as a barrier BPE. The anode and cathode can be located at a position that polarizes the BPE.

  4. Two-Channel Transparency-Optimized Control Architectures in Bilateral Teleoperation With Time Delay.

    PubMed

    Kim, Jonghyun; Chang, Pyung Hun; Park, Hyung-Soon

    2013-01-01

    This paper introduces transparency-optimized control architectures (TOCAs) using two communication channels. Two classes of two-channel TOCAs are found, thereby showing that two channels are sufficient to achieve transparency. These TOCAs achieve a greater level of transparency but poorer stability than three-channel TOCAs and four-channel TOCAs. Stability of the two-channel TOCAs has been enhanced while minimizing transparency degradation by adding a filter; and a combined use of the two classes of two-channel TOCAs is proposed for both free space and constrained motion, which involve switching between two TOCAs for transition between free space and constrained motions. The stability condition of the switched teleoperation system is derived for practical applications. Through the one degree-of-freedom (DOF) experiment, the proposed two-channel TOCAs were shown to operate stably, while achieving better transparency under time delay than the other TOCAs.

  5. Two-Channel Transparency-Optimized Control Architectures in Bilateral Teleoperation With Time Delay

    PubMed Central

    Kim, Jonghyun; Chang, Pyung Hun; Park, Hyung-Soon

    2013-01-01

    This paper introduces transparency-optimized control architectures (TOCAs) using two communication channels. Two classes of two-channel TOCAs are found, thereby showing that two channels are sufficient to achieve transparency. These TOCAs achieve a greater level of transparency but poorer stability than three-channel TOCAs and four-channel TOCAs. Stability of the two-channel TOCAs has been enhanced while minimizing transparency degradation by adding a filter; and a combined use of the two classes of two-channel TOCAs is proposed for both free space and constrained motion, which involve switching between two TOCAs for transition between free space and constrained motions. The stability condition of the switched teleoperation system is derived for practical applications. Through the one degree-of-freedom (DOF) experiment, the proposed two-channel TOCAs were shown to operate stably, while achieving better transparency under time delay than the other TOCAs. PMID:23833548

  6. Joint channel estimation and multi-user detection for multipath fading channels in DS-CDMA systems

    NASA Astrophysics Data System (ADS)

    Wu, Sau-Hsuan; Kuo, C.-C. Jay

    2002-11-01

    The technique of joint blind channel estimation and multiple access interference (MAI) suppression for an asynchronous code-division multiple-access (CDMA) system is investigated in this research. To identify and track dispersive time-varying fading channels and to avoid the phase ambiguity that come with the second-order statistic approaches, a sliding-window scheme using the expectation maximization (EM) algorithm is proposed. The complexity of joint channel equalization and symbol detection for all users increases exponentially with system loading and the channel memory. The situation is exacerbated if strong inter-symbol interference (ISI) exists. To reduce the complexity and the number of samples required for channel estimation, a blind multiuser detector is developed. Together with multi-stage interference cancellation using soft outputs provided by this detector, our algorithm can track fading channels with no phase ambiguity even when channel gains attenuate close to zero.

  7. Channel MAC Protocol for Opportunistic Communication in Ad Hoc Wireless Networks

    NASA Astrophysics Data System (ADS)

    Ashraf, Manzur; Jayasuriya, Aruna; Perreau, Sylvie

    2008-12-01

    Despite significant research effort, the performance of distributed medium access control methods has failed to meet theoretical expectations. This paper proposes a protocol named "Channel MAC" performing a fully distributed medium access control based on opportunistic communication principles. In this protocol, nodes access the channel when the channel quality increases beyond a threshold, while neighbouring nodes are deemed to be silent. Once a node starts transmitting, it will keep transmitting until the channel becomes "bad." We derive an analytical throughput limit for Channel MAC in a shared multiple access environment. Furthermore, three performance metrics of Channel MAC—throughput, fairness, and delay—are analysed in single hop and multihop scenarios using NS2 simulations. The simulation results show throughput performance improvement of up to 130% with Channel MAC over IEEE 802.11. We also show that the severe resource starvation problem (unfairness) of IEEE 802.11 in some network scenarios is reduced by the Channel MAC mechanism.

  8. Three-player quantum Kolkata restaurant problem under decoherence

    NASA Astrophysics Data System (ADS)

    Ramzan, M.

    2013-01-01

    Effect of quantum decoherence in a three-player quantum Kolkata restaurant problem is investigated using tripartite entangled qutrit states. Different qutrit channels such as, amplitude damping, depolarizing, phase damping, trit-phase flip and phase flip channels are considered to analyze the behaviour of players payoffs. It is seen that Alice's payoff is heavily influenced by the amplitude damping channel as compared to the depolarizing and flipping channels. However, for higher level of decoherence, Alice's payoff is strongly affected by depolarizing noise. Whereas the behaviour of phase damping channel is symmetrical around 50% decoherence. It is also seen that for maximum decoherence ( p = 1), the influence of amplitude damping channel dominates over depolarizing and flipping channels. Whereas, phase damping channel has no effect on the Alice's payoff. Therefore, the problem becomes noiseless at maximum decoherence in case of phase damping channel. Furthermore, the Nash equilibrium of the problem does not change under decoherence.

  9. Bayesian sparse channel estimation

    NASA Astrophysics Data System (ADS)

    Chen, Chulong; Zoltowski, Michael D.

    2012-05-01

    In Orthogonal Frequency Division Multiplexing (OFDM) systems, the technique used to estimate and track the time-varying multipath channel is critical to ensure reliable, high data rate communications. It is recognized that wireless channels often exhibit a sparse structure, especially for wideband and ultra-wideband systems. In order to exploit this sparse structure to reduce the number of pilot tones and increase the channel estimation quality, the application of compressed sensing to channel estimation is proposed. In this article, to make the compressed channel estimation more feasible for practical applications, it is investigated from a perspective of Bayesian learning. Under the Bayesian learning framework, the large-scale compressed sensing problem, as well as large time delay for the estimation of the doubly selective channel over multiple consecutive OFDM symbols, can be avoided. Simulation studies show a significant improvement in channel estimation MSE and less computing time compared to the conventional compressed channel estimation techniques.

  10. Price competition and equilibrium analysis in multiple hybrid channel supply chain

    NASA Astrophysics Data System (ADS)

    Kuang, Guihua; Wang, Aihu; Sha, Jin

    2017-06-01

    The amazing boom of Internet and logistics industry prompts more and more enterprises to sell commodity through multiple channels. Such market conditions make the participants of multiple hybrid channel supply chain compete each other in traditional and direct channel at the same time. This paper builds a two-echelon supply chain model with a single manufacturer and a single retailer who both can choose different channel or channel combination for their own sales, then, discusses the price competition and calculates the equilibrium price under different sales channel selection combinations. Our analysis shows that no matter the manufacturer and retailer choose same or different channel price to compete, the equilibrium price does not necessarily exist the equilibrium price in the multiple hybrid channel supply chain and wholesale price change is not always able to coordinate supply chain completely. We also present the sufficient and necessary conditions for the existence of equilibrium price and coordination wholesale price.

  11. Salt marsh vegetation promotes efficient tidal channel networks

    PubMed Central

    Kearney, William S.; Fagherazzi, Sergio

    2016-01-01

    Tidal channel networks mediate the exchange of water, nutrients and sediment between an estuary and marshes. Biology feeds back into channel morphodynamics through the influence of vegetation on both flow and the cohesive strength of channel banks. Determining how vegetation affects channel networks is essential in understanding the biological functioning of intertidal ecosystems and their ecosystem services. However, the processes that control the formation of an efficient tidal channel network remain unclear. Here we compare the channel networks of vegetated salt marshes in Massachusetts and the Venice Lagoon to unvegetated systems in the arid environments of the Gulf of California and Yemen. We find that the unvegetated systems are dissected by less efficient channel networks than the vegetated salt marshes. These differences in network geometry reflect differences in the branching and meandering of the channels in the network, characteristics that are related to the density of vegetation on the marsh. PMID:27430165

  12. Insulin receptor regulates photoreceptor CNG channel activity

    PubMed Central

    Gupta, Vivek K.; Rajala, Ammaji

    2012-01-01

    Photoreceptor cyclic nucleotide gated (CNG) channels are critical elements in phototransduction and light adaptation. Here we report that insulin receptor (IR), an integral membrane protein, directly phosphorylates the CNGA1 subunit of CNG channels that in turn affects the function of these channels negatively. The IR phosphorylates Tyr498 and Tyr503 residues on CNGA1 that are situated at the membrane-cytoplasmic interface. The IR tyrosine kinase activity is essential for the inhibition of CNG channel. To maintain the channels in an off state, it is necessary not only to have a precise balance of the cGMP levels but also to have a control on the cGMP sensitivity of the CNG channels itself. In this study, we observed that the channel opens at a lower concentration of cGMP in IR−/− mice. These studies suggest that IR regulates the modulation of CNG channel activity in vivo. PMID:23032687

  13. Insulin receptor regulates photoreceptor CNG channel activity.

    PubMed

    Gupta, Vivek K; Rajala, Ammaji; Rajala, Raju V S

    2012-12-01

    Photoreceptor cyclic nucleotide gated (CNG) channels are critical elements in phototransduction and light adaptation. Here we report that insulin receptor (IR), an integral membrane protein, directly phosphorylates the CNGA1 subunit of CNG channels that in turn affects the function of these channels negatively. The IR phosphorylates Tyr(498) and Tyr(503) residues on CNGA1 that are situated at the membrane-cytoplasmic interface. The IR tyrosine kinase activity is essential for the inhibition of CNG channel. To maintain the channels in an off state, it is necessary not only to have a precise balance of the cGMP levels but also to have a control on the cGMP sensitivity of the CNG channels itself. In this study, we observed that the channel opens at a lower concentration of cGMP in IR(-/-) mice. These studies suggest that IR regulates the modulation of CNG channel activity in vivo.

  14. Characteristic analysis on UAV-MIMO channel based on normalized correlation matrix.

    PubMed

    Gao, Xi jun; Chen, Zi li; Hu, Yong Jiang

    2014-01-01

    Based on the three-dimensional GBSBCM (geometrically based double bounce cylinder model) channel model of MIMO for unmanned aerial vehicle (UAV), the simple form of UAV space-time-frequency channel correlation function which includes the LOS, SPE, and DIF components is presented. By the methods of channel matrix decomposition and coefficient normalization, the analytic formula of UAV-MIMO normalized correlation matrix is deduced. This formula can be used directly to analyze the condition number of UAV-MIMO channel matrix, the channel capacity, and other characteristic parameters. The simulation results show that this channel correlation matrix can be applied to describe the changes of UAV-MIMO channel characteristics under different parameter settings comprehensively. This analysis method provides a theoretical basis for improving the transmission performance of UAV-MIMO channel. The development of MIMO technology shows practical application value in the field of UAV communication.

  15. Characteristic Analysis on UAV-MIMO Channel Based on Normalized Correlation Matrix

    PubMed Central

    Xi jun, Gao; Zi li, Chen; Yong Jiang, Hu

    2014-01-01

    Based on the three-dimensional GBSBCM (geometrically based double bounce cylinder model) channel model of MIMO for unmanned aerial vehicle (UAV), the simple form of UAV space-time-frequency channel correlation function which includes the LOS, SPE, and DIF components is presented. By the methods of channel matrix decomposition and coefficient normalization, the analytic formula of UAV-MIMO normalized correlation matrix is deduced. This formula can be used directly to analyze the condition number of UAV-MIMO channel matrix, the channel capacity, and other characteristic parameters. The simulation results show that this channel correlation matrix can be applied to describe the changes of UAV-MIMO channel characteristics under different parameter settings comprehensively. This analysis method provides a theoretical basis for improving the transmission performance of UAV-MIMO channel. The development of MIMO technology shows practical application value in the field of UAV communication. PMID:24977185

  16. Secondary Channel Bifurcation Geometry: A Multi-dimensional Problem

    NASA Astrophysics Data System (ADS)

    Gaeuman, D.; Stewart, R. L.

    2017-12-01

    The construction of secondary channels (or side channels) is a popular strategy for increasing aquatic habitat complexity in managed rivers. Such channels, however, frequently experience aggradation that prevents surface water from entering the side channels near their bifurcation points during periods of relatively low discharge. This failure to maintain an uninterrupted surface water connection with the main channel can reduce the habitat value of side channels for fish species that prefer lotic conditions. Various factors have been proposed as potential controls on the fate of side channels, including water surface slope differences between the main and secondary channels, the presence of main channel secondary circulation, transverse bed slopes, and bifurcation angle. A quantitative assessment of more than 50 natural and constructed secondary channels in the Trinity River of northern California indicates that bifurcations can assume a variety of configurations that are formed by different processes and whose longevity is governed by different sets of factors. Moreover, factors such as bifurcation angle and water surface slope vary with discharge level and are continuously distributed in space, such that they must be viewed as a multi-dimensional field rather than a single-valued attribute that can be assigned to a particular bifurcation.

  17. Nonverbal channel use in communication of emotion: how may depend on why.

    PubMed

    App, Betsy; McIntosh, Daniel N; Reed, Catherine L; Hertenstein, Matthew J

    2011-06-01

    This study investigated the hypothesis that different emotions are most effectively conveyed through specific, nonverbal channels of communication: body, face, and touch. Experiment 1 assessed the production of emotion displays. Participants generated nonverbal displays of 11 emotions, with and without channel restrictions. For both actual production and stated preferences, participants favored the body for embarrassment, guilt, pride, and shame; the face for anger, disgust, fear, happiness, and sadness; and touch for love and sympathy. When restricted to a single channel, participants were most confident about their communication when production was limited to the emotion's preferred channel. Experiment 2 examined the reception or identification of emotion displays. Participants viewed videos of emotions communicated in unrestricted and restricted conditions and identified the communicated emotions. Emotion identification in restricted conditions was most accurate when participants viewed emotions displayed via the emotion's preferred channel. This study provides converging evidence that some emotions are communicated predominantly through different nonverbal channels. Further analysis of these channel-emotion correspondences suggests that the social function of an emotion predicts its primary channel: The body channel promotes social-status emotions, the face channel supports survival emotions, and touch supports intimate emotions.

  18. Spatial distribution of calcium-gated chloride channels in olfactory cilia.

    PubMed

    French, Donald A; Badamdorj, Dorjsuren; Kleene, Steven J

    2010-12-30

    In vertebrate olfactory receptor neurons, sensory cilia transduce odor stimuli into changes in neuronal membrane potential. The voltage changes are primarily caused by the sequential openings of two types of channel: a cyclic-nucleotide-gated (CNG) cationic channel and a calcium-gated chloride channel. In frog, the cilia are 25 to 200 µm in length, so the spatial distributions of the channels may be an important determinant of odor sensitivity. To determine the spatial distribution of the chloride channels, we recorded from single cilia as calcium was allowed to diffuse down the length of the cilium and activate the channels. A computational model of this experiment allowed an estimate of the spatial distribution of the chloride channels. On average, the channels were concentrated in a narrow band centered at a distance of 29% of the ciliary length, measured from the base of the cilium. This matches the location of the CNG channels determined previously. This non-uniform distribution of transduction proteins is consistent with similar findings in other cilia. On average, the two types of olfactory transduction channel are concentrated in the same region of the cilium. This may contribute to the efficient detection of weak stimuli.

  19. Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth

    PubMed Central

    Jackson, William F.

    2017-01-01

    Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+ and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. Vascular smooth muscle cells express multiple isoforms of at least five classes of K+ channels contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression and function of large-conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells. PMID:28212804

  20. 1/f-Noise of open bacterial porin channels.

    PubMed

    Wohnsland, F; Benz, R

    1997-07-01

    General diffusion pores and specific porin channels from outer membranes of gram-negative bacteria were reconstituted into lipid bilayer membranes. The current noise of the channels was investigated for the different porins in the open state and in the ligand-induced closed state using fast Fourier transformation. The open channel noise exhibited 1/f-noise for frequencies up to 200 Hz. The 1/f-noise was investigated using the Hooge formula (Hooge, Phys. Lett. 29A: 139-140 (1969)), and the Hooge parameter alpha was calculated for all bacterial porins used in this study. The 1/f-noise was in part caused by slow inactivation and activation of porin channels. However, when care was taken that during the noise measurement no opening or closing of porin channels occurred, the Hooge Parameter alpha was a meaningful number for a given channel. A linear relationship was observed between alpha and the single-channel conductance, g, of the different porins. This linear relation between single-channel conductance and the Hooge parameter alpha could be qualitatively explained by assuming that the passing of an ion through a bacterial porin channel is-to a certain extent-influenced by nonlinear effects between channel wall and passing ion.

  1. Enhanced Handoff Scheme for Downlink-Uplink Asymmetric Channels in Cellular Systems

    PubMed Central

    2013-01-01

    In the latest cellular networks, data services like SNS and UCC can create asymmetric packet generation rates over the downlink and uplink channels. This asymmetry can lead to a downlink-uplink asymmetric channel condition being experienced by cell edge users. This paper proposes a handoff scheme to cope effectively with downlink-uplink asymmetric channels. The proposed handoff scheme exploits the uplink channel quality as well as the downlink channel quality to determine the appropriate timing and direction of handoff. We first introduce downlink and uplink channel models that consider the intercell interference, to verify the downlink-uplink channel asymmetry. Based on these results, we propose an enhanced handoff scheme that exploits both the uplink and downlink channel qualities to reduce the handoff-call dropping probability and the service interruption time. The simulation results show that the proposed handoff scheme reduces the handoff-call dropping probability about 30% and increases the satisfaction of the service interruption time requirement about 7% under high-offered load, compared to conventional mobile-assisted handoff. Especially, the proposed handoff scheme is more efficient when the uplink QoS requirement is much stricter than the downlink QoS requirement or uplink channel quality is worse than downlink channel quality. PMID:24501576

  2. Identification and Analysis of Putative Homologues of Mechanosensitive Channels in Pathogenic Protozoa

    PubMed Central

    Prole, David L.; Taylor, Colin W.

    2013-01-01

    Mechanosensitive channels play important roles in the physiology of many organisms, and their dysfunction can affect cell survival. This suggests that they might be therapeutic targets in pathogenic organisms. Pathogenic protozoa lead to diseases such as malaria, dysentery, leishmaniasis and trypanosomiasis that are responsible for millions of deaths each year worldwide. We analyzed the genomes of pathogenic protozoa and show the existence within them of genes encoding putative homologues of mechanosensitive channels. Entamoeba histolytica, Leishmania spp., Trypanosoma cruzi and Trichomonas vaginalis have genes encoding homologues of Piezo channels, while most pathogenic protozoa have genes encoding homologues of mechanosensitive small-conductance (MscS) and K+-dependent (MscK) channels. In contrast, all parasites examined lack genes encoding mechanosensitive large-conductance (MscL), mini-conductance (MscM) and degenerin/epithelial Na+ (DEG/ENaC) channels. Multiple sequence alignments of evolutionarily distant protozoan, amoeban, plant, insect and vertebrate Piezo channel subunits define an absolutely conserved motif that may be involved in channel conductance or gating. MscS channels are not present in humans, and the sequences of protozoan and human homologues of Piezo channels differ substantially. This suggests the possibility for specific targeting of mechanosensitive channels of pathogens by therapeutic drugs. PMID:23785469

  3. Analysis of non-Gaussian laser mode guidance and evolution in leaky plasma channels

    NASA Astrophysics Data System (ADS)

    Djordjevic, Blagoje; Benedetti, Carlo; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2016-10-01

    The evolution and propagation of a non-Gaussian laser pulse under varying circumstances, including a typical matched parabolic channel as well as leaky channels, are investigated. It has previously been shown for a Gaussian pulse that matched guiding can be achieved using parabolic plasma channels. In the low power regime, it can be shown directly that for multi-mode pulses there is significant transverse beating. Given the adverse behavior of non-Gaussian pulses in traditional guiding designs, we examine the use of leaky channels to filter out higher modes as a means of optimizing laser conditions. The interaction between different modes can have an adverse effect on the laser pulse as it propagates through the primary channel. To improve guiding of the pulse we propose using leaky channels. Realistic plasma channel profiles are considered. Higher order mode content is lost through the leaky channel, while the fundamental mode remains well-guided. This is demonstrated using both numerical simulations as well as the source-dependent Laguerre-Gaussian modal expansion. In conclusion, an idealized plasma lens based on leaky channels is found to filter out the higher order modes and leave a near-Gaussian profile before the pulse enters the primary channel.

  4. STIM and Orai proteins and the non-capacitative ARC channels

    PubMed Central

    Shuttleworth, Trevor J.

    2012-01-01

    The ARC channel is a small conductance, highly Ca2+-selective ion channel whose activation is specifically dependent on low concentrations of arachidonic acid acting at an intracellular site. They are widely distributed in diverse cell types where they provide an alternative, store-independent pathway for agonist-activated Ca2+ entry. Although biophysically similar to the store-operated CRAC channels, these two conductances function under distinct conditions of agonist stimulation, with the ARC channels providing the predominant route of Ca2+ entry during the oscillatory signals generated at low agonist concentrations. Despite these differences in function, like the CRAC channel, activation of the ARC channels is dependent on STIM1, but it is the pool of STIM1 that constitutively resides in the plasma membrane that is responsible. Similarly, both channels are formed by Orai proteins but, whilst the CRAC channel pore is a tetrameric assembly of Orai1 subunits, the ARC channel pore is formed by a heteropentameric assembly of three Orai1 subunits and two Orai3 subunits. There is increasing evidence that the activity of these channels plays a critical role a variety of different cellular activities. PMID:22201777

  5. Pharmacology of the human red cell voltage-dependent cation channel; Part I. Activation by clotrimazole and analogues.

    PubMed

    Barksmann, Trine L; Kristensen, Berit I; Christophersen, Palle; Bennekou, Poul

    2004-01-01

    The activation and pharmacological modulation of the nonselective voltage-dependent cation (NSVDC) channel from human erythrocytes were studied. Basic channel activation was achieved by suspending red cells in a low Cl(-) Ringer (2 mM), where a positive membrane potential (V(m) = E(Cl)) immediately developed. Voltage- and time-dependent activation of the NSVDC channel occurred, reaching a cation conductance (g+) of 1.5-2.0 microS cm(-2). In the presence of the classical Gárdos channel blocker clotrimazole (0-50 microM), activation occurred faster, and g+ saturated dose-dependently (EC50 = 14 microM) at a value of about 4 microS cm(-2). The clotrimazole analogues TRAM-34, econazole, and miconazole also stimulated the channel, whereas the chemically more distant Gárdos channel inhibitors nitrendipine and cetiedil had no effects. Although the potency for modulation of the NSVDC channel is much lower than the IC50 value for Gárdos channel inhibition, clotrimazole (and its analogues) constitutes the first chemical class of positive modulators of the NSVDC channel. This may be an important pharmacological "fingerprint" in the identification of the cloned equivalent of the erythrocyte channel.

  6. Gating behavior of endoplasmic reticulum potassium channels of rat hepatocytes in diabetes.

    PubMed

    Ghasemi, Maedeh; Khodaei, Naser; Salari, Sajjad; Eliassi, Afsaneh; Saghiri, Reza

    2014-07-01

    Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic channel in endoplasmic reticulum. Therefore, in this study, we examined and compared the activities of this channel in control and diabetic rats using single-channel recording techniques. Male Wistar rats were made diabetic for 2 weeks with a single dose injection of streptozotocin (45 mg/kg). Ion channel incorporation of rough endoplasmic reticulum of diabetic hepatocytes into the bilayer lipid membrane allowed the characterization of K+ channel. Ion channel incorporation of rough endoplasmic reticulum vesicles into the bilayer lipid revealed that the channel current-voltage (I-V) relation with a mean slope conductance of 520 ± 19 pS was unaffected in diabetes. Interestingly, the channel Po-voltage relation was significantly lower in diabetic rats at voltages above +30 mV. We concluded that the endoplasmic reticulum cationic channel is involved in diabetes. Also, this finding could be considered as a goal for further therapeutic plans.

  7. Function and dysfunction of CNG channels: insights from channelopathies and mouse models.

    PubMed

    Biel, Martin; Michalakis, Stylianos

    2007-06-01

    Channels directly gated by cyclic nucleotides (CNG channels) are important cellular switches that mediate influx of Na+ and Ca2+ in response to increases in the intracellular concentration of cAMP and cGMP. In photoreceptors and olfactory receptor neurons, these channels serve as final targets for cGMP and cAMP signaling pathways that are initiated by the absorption of photons and the binding of odorants, respectively. CNG channels have been also found in other types of neurons and in non-excitable cells. However, in most of these cells, the physiological role of CNG channels has yet to be determined. CNG channels have a complex heteromeric structure. The properties of individual subunits that assemble in specific stoichiometries to the native channels have been extensively investigated in heterologous expression systems. Recently, mutations in human CNG channel genes leading to inherited diseases (so-called channelopathies) have been functionally characterized. Moreover, mouse knockout models were generated to define the role of CNG channel proteins in vivo. In this review, we will summarize recent insights into the physiological and pathophysiological role of CNG channel proteins that have emerged from genetic studies in mice and humans.

  8. VOLTAGE-GATED POTASSIUM CHANNELS AT THE CROSSROADS OF NEURONAL FUNCTION, ISCHEMIC TOLERANCE, AND NEURODEGENERATION

    PubMed Central

    Shah, Niyathi Hegde; Aizenman, Elias

    2013-01-01

    Voltage-gated potassium (Kv) channels are widely expressed in the central and peripheral nervous system, and are crucial mediators of neuronal excitability. Importantly, these channels also actively participate in cellular and molecular signaling pathways that regulate the life and death of neurons. Injury-mediated increased K+ efflux through Kv2.1 channels promotes neuronal apoptosis, contributing to widespread neuronal loss in neurodegenerative disorders such as Alzheimer’s disease and stroke. In contrast, some forms of neuronal activity can dramatically alter Kv2.1 channel phosphorylation levels and influence their localization. These changes are normally accompanied by modifications in channel voltage-dependence, which may be neuroprotective within the context of ischemic injury. Kv1 and Kv7 channel dysfunction leads to neuronal hyperexcitability that critically contributes to the pathophysiology of human clinical disorders such as episodic ataxia and epilepsy. This review summarizes the neurotoxic, neuroprotective, and neuroregulatory roles of Kv channels, and highlights the consequences of Kv channel dysfunction on neuronal physiology. The studies described in this review thus underscore the importance of normal Kv channel function in neurons, and emphasize the therapeutic potential of targeting Kv channels in the treatment of a wide range of neurological diseases. PMID:24323720

  9. S-acylation dependent post-translational cross-talk regulates large conductance calcium- and voltage- activated potassium (BK) channels

    PubMed Central

    Shipston, Michael J.

    2014-01-01

    Mechanisms that control surface expression and/or activity of large conductance calcium-activated potassium (BK) channels are important determinants of their (patho)physiological function. Indeed, BK channel dysfunction is associated with major human disorders ranging from epilepsy to hypertension and obesity. S-acylation (S-palmitoylation) represents a major reversible, post-translational modification controlling the properties and function of many proteins including ion channels. Recent evidence reveals that both pore-forming and regulatory subunits of BK channels are S-acylated and control channel trafficking and regulation by AGC-family protein kinases. The pore-forming α-subunit is S-acylated at two distinct sites within the N- and C-terminus, each site being regulated by different palmitoyl acyl transferases (zDHHCs) and acyl thioesterases (APTs). S-acylation of the N-terminus controls channel trafficking and surface expression whereas S-acylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. S-acylation of the regulatory β4-subunit controls ER exit and surface expression of BK channels but does not affect ion channel kinetics at the plasma membrane. Furthermore, a significant number of previously identified BK-channel interacting proteins have been shown, or are predicted to be, S-acylated. Thus, the BK channel multi-molecular signaling complex may be dynamically regulated by this fundamental post-translational modification and thus S-acylation likely represents an important determinant of BK channel physiology in health and disease. PMID:25140154

  10. Use of prototype two-channel endoscope with elevator enables larger lift-and-snare endoscopic mucosal resection in a porcine model

    PubMed Central

    Atkinson, Matthew; Chukwumah, Chike; Marks, Jeffrey; Chak, Amitabh

    2014-01-01

    Background: Flat and depressed lesions are becoming increasingly recognized in the esophagus, stomach, and colon. Various techniques have been described for endoscopic mucosal resection (EMR) of these lesions. Aims: To evaluate the efficacy of lift-grasp-cut EMR using a prototype dual-channel forward-viewing endoscope with an instrument elevator in one accessory channel (dual-channel elevator scope) as compared to standard dual-channel endoscopes. Methods: EMR was performed using a lift-grasp-cut technique on normal flat rectosigmoid or gastric mucosa in live porcine models after submucosal injection of 4 mL of saline using a dual-channel elevator scope or a standard dual-channel endoscope. With the dual-channel elevator scope, the elevator was used to attain further lifting of the mucosa. The primary endpoint was size of the EMR specimen and the secondary endpoint was number of complications. Results: Twelve experiments were performed (six gastric and six colonic). Mean specimen diameter was 2.27 cm with the dual-channel elevator scope and 1.34 cm with the dual-channel endoscope (P = 0.018). Two colonic perforations occurred with the dual-channel endoscope, vs no complications with the dual-channel elevator scope. Conclusions: The increased lift of the mucosal epithelium, through use of the dual-channel elevator scope, allows for larger EMR when using a lift-grasp-cut technique. Noting the thin nature of the porcine colonic wall, use of the elevator may also make this technique safer. PMID:24760237

  11. Amortized entanglement of a quantum channel and approximately teleportation-simulable channels

    NASA Astrophysics Data System (ADS)

    Kaur, Eneet; Wilde, Mark M.

    2018-01-01

    This paper defines the amortized entanglement of a quantum channel as the largest difference in entanglement between the output and the input of the channel, where entanglement is quantified by an arbitrary entanglement measure. We prove that the amortized entanglement of a channel obeys several desirable properties, and we also consider special cases such as the amortized relative entropy of entanglement and the amortized Rains relative entropy. These latter quantities are shown to be single-letter upper bounds on the secret-key-agreement and PPT-assisted quantum capacities of a quantum channel, respectively. Of especial interest is a uniform continuity bound for these latter two special cases of amortized entanglement, in which the deviation between the amortized entanglement of two channels is bounded from above by a simple function of the diamond norm of their difference and the output dimension of the channels. We then define approximately teleportation- and positive-partial-transpose-simulable (PPT-simulable) channels as those that are close in diamond norm to a channel which is either exactly teleportation- or PPT-simulable, respectively. These results then lead to single-letter upper bounds on the secret-key-agreement and PPT-assisted quantum capacities of channels that are approximately teleportation- or PPT-simulable, respectively. Finally, we generalize many of the concepts in the paper to the setting of general resource theories, defining the amortized resourcefulness of a channel and the notion of ν-freely-simulable channels, connecting these concepts in an operational way as well.

  12. The stretch-dependent potassium channel TREK-1 and its function in murine myometrium

    PubMed Central

    Monaghan, Kevin; Baker, Salah A; Dwyer, Laura; Hatton, William C; Sik Park, Kyung; Sanders, Kenton M; Koh, Sang Don

    2011-01-01

    Smooth muscle of the uterus stays remarkably quiescent during normal pregnancy to allow sufficient time for development of the fetus. At present the mechanisms leading to uterine quiescence during pregnancy and how the suppression of activity is relieved at term are poorly understood. Myometrial excitability is governed by ion channels, and a major hypothesis regarding the regulation of contractility during pregnancy has been that expression of certain channels is regulated by hormonal influences. We have explored the expression and function of stretch-dependent K+ (SDK) channels, which are likely to be due to TREK channels, in murine myometrial tissues and myocytes using PCR, Western blots, patch clamp, intracellular microelectrode and isometric force measurements. TREK-1 is more highly expressed than TREK-2 in myometrium, and there was no detectable expression of TRAAK. Expression of TREK-1 transcripts and protein was regulated during pregnancy and delivery. SDK channels were activated in response to negative pressure applied to patches. SDK channels were insensitive to a broad-spectrum of K+ channel blockers, including tetraethylammonium and 4-aminopyridine, and insensitive to intracellular Ca2+. SDK channels were activated by stretch and arachidonic acid and inhibited by reagents that block TREK-1 channels, l-methionine and/or methioninol. Our data suggest that uterine excitability and contractility during pregnancy is regulated by the expression of SDK/TREK-1 channels. Up-regulation of these channels stabilizes membrane potential and controls contraction during pregnancy and down-regulation of these channels induces the onset of delivery. PMID:21224218

  13. Use of micro-resistivity imaging tools in developing lower Pennsylvanian Morrow channel sandstone reservoirs, Cheyenne, Kiowa and Lincoln Counties, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germinario, M.P.

    1996-12-31

    In southeastern Colorado, Lower Pennsylvanian Morrow channel sandstones are part of complex valley-fill sequences incised into Morrow marine deposits. Morrow valleys are approximately {1/2} to 1 mile wide. Valley-fill consists of floodplain and channel filling shales, very fine-grained estuarine sandstones and fine- to coarse-grained channel sandstones that are up to 50` thick. Channel sandstones represent a sequence of stacked fluvial bars deposited in braided, anastomosing and meandering fluvial environments. Cross-stratification in channel sandstones can be imaged by micro-resistivity wireline logging tools and interpreted interactively on various workstation software packages. Recognition, interpretation and measurement of current, stoss face, and lateral accretionmore » beds in these sandstones can result in an estimated direction of paleocurrent flow of the channel. Determination of the channel`s local paleoflow direction can provide significant sand risk reduction in developmental drilling, especially in 80 acre or less spacing patterns. As the distance between offset drilling locations increases, the reliability of paleoflow prediction decreases, and the corresponding sand risk rises. Lateral accretion bedding in Morrow channel sandstones has proven to be a poor indicator of sand thickening direction, due to the complex stacking of multiple channel sandstones within any given valley-fill sequence. Micro-resistivity imaging reduces risk in Morrow channel sandstone development drilling programs. Furthermore, these interpretation techniques could be applicable in other fluvial channel sandstone plays.« less

  14. River channel adjustments in Southern Italy over the past 150 years and implications for channel recovery

    NASA Astrophysics Data System (ADS)

    Scorpio, Vittoria; Aucelli, Pietro P. C.; Giano, Salvatore I.; Pisano, Luca; Robustelli, Gaetano; Rosskopf, Carmen M.; Schiattarella, Marcello

    2015-12-01

    Multi-temporal GIS analysis of topographic maps and aerial photographs along with topographic and geomorphological surveys are used to assess evolutionary trends and key control factors of channel adjustments for five major rivers in southern Italy (the Trigno, Biferno, Volturno, Sinni and Crati rivers) to support assessment of channel recovery and river restoration. Three distinct phases of channel adjustment are identified over the past 150 years primarily driven by human disturbances. Firstly, slight channel widening dominated from the last decades of the nineteenth century to the 1950s. Secondly, from the 1950s to the end of the 1990s, altered sediment fluxes induced by in-channel mining and channel works brought about moderate to very intense incision (up to 6-7 m) accompanied by strong channel narrowing (up to 96%) and changes in channel configuration from multi-threaded to single-threaded patterns. Thirdly, the period from around 2000 to 2015 has been characterized by channel stabilization and local widening. Evolutionary trajectories of the rivers studied are quite similar to those reconstructed for other Italian rivers, particularly regarding the second phase of channel adjustments and ongoing transitions towards channel recovery in some reaches. Analyses of river dynamics, recovery potential and connectivity with sediment sources of the study reaches, framed in their catchment context, can be used as part of a wider interdisciplinary approach that views effective river restoration alongside sustainable and risk-reduced river management.

  15. An ion channel library for drug discovery and safety screening on automated platforms.

    PubMed

    Wible, Barbara A; Kuryshev, Yuri A; Smith, Stephen S; Liu, Zhiqi; Brown, Arthur M

    2008-12-01

    Ion channels represent the third largest class of targets in drug discovery after G-protein coupled receptors and kinases. In spite of this ranking, ion channels continue to be under exploited as drug targets compared with the other two groups for several reasons. First, with 400 ion channel genes and an even greater number of functional channels due to mixing and matching of individual subunits, a systematic collection of ion channel-expressing cell lines for drug discovery and safety screening has not been available. Second, the lack of high-throughput functional assays for ion channels has limited their use as drug targets. Now that automated electrophysiology has come of age and provided the technology to assay ion channels at medium to high throughput, we have addressed the need for a library of ion channel cell lines by constructing the Ion Channel Panel (ChanTest Corp., Cleveland, OH). From 400 ion channel genes, a collection of 82 of the most relevant human ion channels for drug discovery, safety, and human disease has been assembled.Each channel has been stably overexpressed in human embryonic kidney 293 or Chinese hamster ovary cells. Cell lines have been selected and validated on automated electrophysiology systems to facilitate cost-effective screening for safe and selective compounds at earlier stages in the drug development process. The screening and validation processes as well as the relative advantages of different screening platforms are discussed.

  16. Bupivacaine inhibits large conductance, voltage- and Ca2+- activated K+ channels in human umbilical artery smooth muscle cells

    PubMed Central

    Martín, Pedro; Enrique, Nicolás; Palomo, Ana R. Roldán; Rebolledo, Alejandro; Milesi, Veronica

    2012-01-01

    Bupivacaine is a local anesthetic compound belonging to the amino amide group. Its anesthetic effect is commonly related to its inhibitory effect on voltage-gated sodium channels. However, several studies have shown that this drug can also inhibit voltage-operated K+ channels by a different blocking mechanism. This could explain the observed contractile effects of bupivacaine on blood vessels. Up to now, there were no previous reports in the literature about bupivacaine effects on large conductance voltage- and Ca2+-activated K+ channels (BKCa). Using the patch-clamp technique, it is shown that bupivacaine inhibits single-channel and whole-cell K+ currents carried by BKCa channels in smooth muscle cells isolated from human umbilical artery (HUA). At the single-channel level bupivacaine produced, in a concentration- and voltage-dependent manner (IC50 324 µM at +80 mV), a reduction of single-channel current amplitude and induced a flickery mode of the open channel state. Bupivacaine (300 µM) can also block whole-cell K+ currents (~45% blockage) in which, under our working conditions, BKCa is the main component. This study presents a new inhibitory effect of bupivacaine on an ion channel involved in different cell functions. Hence, the inhibitory effect of bupivacaine on BKCa channel activity could affect different physiological functions where these channels are involved. Since bupivacaine is commonly used during labor and delivery, its effects on umbilical arteries, where this channel is highly expressed, should be taken into account. PMID:22688134

  17. Effect of Channel Thickness, Annealing Temperature and Channel Length on Nanoscale Ga2O3-In2O3-ZnO Thin Film Transistor Performance.

    PubMed

    Kumaresan, Yogeenth; Pak, Yusin; Lim, Namsoo; Lee, Ryeri; Song, Hui; Kim, Tae Heon; Choi, Boran; Jung, Gun Young

    2016-06-01

    We demonstrated the effect of active layer (channel) thickness and annealing temperature on the electrical performances of Ga2O3-In2O3-ZnO (GIZO) thin film transistor (TFT) having nanoscale channel width (W/L: 500 nm/100 μm). We found that the electron carrier concentration of the channel was decreased significantly with increasing the annealing temperature (100 degrees C to 300 degrees C). Accordingly, the threshold voltage (V(T)) was shifted towards positive voltage (-12.2 V to 10.8 V). In case of channel thickness, the V(T) was shifted towards negative voltage with increasing the channel thickness. The device with channel thickness of 90 nm annealed at 200 degrees C revealed the best device performances in terms of mobility (10.86 cm2/Vs) and V(T) (0.8 V). The effect of channel length was also studied, in which the channel width, thickness and annealing temperature were kept constant such as 500 nm, 90 nm and 200 degrees C, respectively. The channel length influenced the on-current level significantly with small variation of V(T), resulting in lower value of on/off current ratio with increasing the channel length. The device with channel length of 0.5 μm showed enhanced on/off current ratio of 10(6) with minimum V(T) of 0.26 V.

  18. Sedimentary links between hillslopes and channels in a dryland basin

    NASA Astrophysics Data System (ADS)

    Hollings, R.

    2016-12-01

    The interface between hillslopes and channels is recognised as playing an important role in basin evolution and functioning. However, this interaction has not been described well in landscapes such as drylands, in which the diffuse process of runoff-driven sediment transport is important for sediment communication to the channel and to the basin outlet. This paper combines field measurements of surface sediment grain sizes in channels and on hillslopes with high resolution topography, >60 years of rainfall and runoff data from the Walnut Gulch Experimental Watershed (WGEW) in Arizona, and simple calculations of spatial stress distributions for various hydrologic scenarios to explore the potential for sediment to move from hillslopes to channels and through channels across the entire basin. Here we generalise the net movement of sediment in to or out of channel reaches, at high resolution in WGEW, as the balance between hillslope sediment supply to the channel and channel evacuation, in response to a variety of storms and discharge events. Our results show that downstream of small, unit source area watersheds, the balance in the channel often switches from being supply-dominated to being evacuation dominated for all scenarios. The low frequency but high discharge event in the channel seems to control the long term evolution of the channel, as stress is far greater for this scenario than other scenarios tested. The results draw on the high variability of rainfall characteristics to drive runoff events and so provides a physical explanation for long-term evolution of the channel network in drylands.

  19. Deformation localization and dislocation channel dynamics in neutron-irradiated austenitic stainless steels

    DOE PAGES

    Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.

    2015-02-24

    We investigated dynamics of deformation localization and dislocation channel formation in situ in a neutron irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Channel formation was observed at 70% of the formal tensile yield stress for both alloys. It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the yield stress, channels often formed near the middle of the grain boundary. For amore » single grain, the role of elastic stiffness value (Young modulus) in the channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in soft grains with a high Schmid factor located near stiff grains with high elastic stiffness. Moreover, the spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. Finally, it was shown that in the AISI 304 steel, channels were twin-free in grains oriented close to [001] and [101] of standard unit triangle; [111]-grains and grains oriented close to Schmid factor maximum contained deformation twins.« less

  20. The role of varying flow on channel morphology: a flume experiment

    NASA Astrophysics Data System (ADS)

    Hempel, L. A.; Grant, G.; Eaton, B. C.; Hassan, M. A.; Lewis, S.

    2017-12-01

    Numerous studies have explored how alluvial channels develop under different sediment and flow conditions, yet we still know very little about how channels adjust and respond to changing flow conditions. One reason for this oversight is the long-held idea that channels with complex flow regimes are adjusted to a single, channel-forming discharge. But growing evidence shows that channel form reflects time-dependent processes occuring over multiple flows. To better understand how stream channels adjust to a range of flows, and identify the timescales associated with those adjustments, we conducted a series of hydrograph experiments in a freely-adjustable flume that developed a self-formed, meander pattern with pool-riffle morphology. Hydrographs had different shapes, magnitudes, and durations, but the total sediment volume fed under equilibrium conditions was kept constant among experiments. We found that hydrograph shape controlled channel morphology, the rate of channel development, and degree of regularity in the pool-riffle pattern. Hydrographs with slowly rising rates of rise and fall produced channels that were equivalent in size to channels generated from constant flow experiments, and had regularly spaced pool-riffle and meander patterns, while hydrographs with fast rates of rise and fall produced undersized channels with a chaotic bed structure and pool-riffle pattern. The latter suggests that during quickly rising hydrographs, the flow rate increases faster than the channel capacity and planform pattern adjusts. We confirmed these observations by comparing the timescales associated with pool-riffle and planform curvature development, which were identified under simple, constant flow conditions, to the total duration of the hydrograph. Hydrographs with step durations equal to or longer than the channel adjustment time produced channels with a more regular pool-riffle patterns compared to channels with step durations shorter than the adjustment time. This work points to the importance of the hydrograph as a fundamental control on channel adjustment and offers the prospect of better understanding of how changes in the flow regime, either through climate, land use, or dams, translate into morphodynamic changes.

  1. Store-depletion and hyperforin activate distinct types of Ca(2+)-conducting channels in cortical neurons.

    PubMed

    Gibon, Julien; Tu, Peng; Bouron, Alexandre

    2010-06-01

    Cortical neurons embryos (E13) from murine brain have a wide diversity of plasma membrane Ca(2+)-conducting channels. For instance, they express several types of transient receptor potential channels of C-type (TRPC) and hyperforin, a potent TRPC6-channel activator, controls the activity of TRPC6-like channels. In addition, E13 cortical neurons possess plasma membrane channels activated in response to the depletion of internal Ca(2+) pools. Since some TRPC channels seem to be involved in the activity of store-depletion-activated channels, we investigated whether hyperforin and the depletion of the Ca(2+) stores control similar or distinct Ca(2+) routes. Calcium imaging experiments performed with the fluorescent Ca(2+) indicator Fluo-4 showed that the TRPC3 channel blocker Pyr3 potently inhibits with an IC(50) of 0.5microM the entry of Ca(2+) triggered in response to the thapsigargin-dependent depletion of the Ca(2+) stores. On the other hand, Pyr3 does not block the hyperforin-sensitive Ca(2+) entry. In contrast to the hyperforin responses, the Ca(2+) entry through the store-depletion-activated channels is down-regulated by the competitive tyrosine kinase inhibitors genistein and PP2. In addition, the immunosuppressant FK506, known to modulate several classes of Ca(2+)-conducting channels, strongly attenuates the entry of Ca(2+) through the store-depletion-activated channels, leaving the hyperforin-sensitive responses unaffected. Hence, the Zn(2+) chelator TPEN markedly attenuated the hyperforin-sensitive responses without modifying the thapsigargin-dependent Ca(2+) signals. Pyr3-insensitive channels are key components of the hyperforin-sensitive channels, whereas the thapsigargin-dependent depletion of the Ca(2+) stores of the endoplasmic reticulum activates Pyr3-sensitive channels. Altogether, these data support the notion that hyperforin and the depletion of the Ca(2+) pools control distinct plasma membrane Ca(2+)-conducting channels. This report further illustrates that, at the beginning of the corticogenesis, immature cortical neurons express diverse functional Ca(2+) channels. 2010 Elsevier Ltd. All rights reserved.

  2. Design, modeling, and analysis of multi-channel demultiplexer/demodulator

    NASA Technical Reports Server (NTRS)

    Lee, David D.; Woo, K. T.

    1991-01-01

    Traditionally, satellites have performed the function of a simple repeater. Newer data distribution satellite architectures, however, require demodulation of many frequency division multiplexed uplink channels by a single demultiplexer/demodulator unit, baseband processing and routing of individual voice/data circuits, and remodulation into time division multiplexed (TDM) downlink carriers. The TRW MCDD (Multichannel Demultiplexer/Multirate Demodulator) operates on a 37.4 MHz composite input signal. Individual channel data rates are either 64 Kbps or 2.048 Mbps. The wideband demultiplexer divides the input signal into 1.44 MHz segments containing either a single 2.048 Mbps channel or thirty two 64 Kbps channels. In the latter case, the narrowband demultiplexer further divides the single 1.44 MHz wideband channel into thirty two 45 KHz narrowband channels. With this approach the time domain Fast Fourier Transformation (FFT) channelizer processing capacity is matched well to the bandwidth and number of channels to be demultiplexed. By using a multirate demodulator fewer demodulators are required while achieving greater flexibility. Each demodulator can process a wideband channel or thirty two narrowband channels. Either all wideband channels, a mixture of wideband and narrowband channels, or all narrowband channels can be demodulated. The multirate demodulator approach also has lower nonrecurring costs since only one design and development effort is needed. TRW has developed a proof of concept (POC) model which fully demonstrates the signal processing fuctions of MCDD. It is capable of processing either three 2.048 Mbps channels or two 2.048 Mbps channels and thirty two 64 Kbps channels. An overview of important MCDD system engineering issues is presented as well as discussion on some of the Block Oriented System Simulation analyses performed for design verification and selection of operational parameters of the POC model. Systems engineering analysis of the POC model confirmed that the MCDD concepts are not only achievable but also balance the joint goals of minimizing on-board complexity and cost of ground equipment, while retaining the flexibility needed to meet a wide range of system requirements.

  3. Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves

    PubMed Central

    Bierer, Julie Arenberg; Faulkner, Kathleen F.

    2010-01-01

    Objectives The goal of this study was to evaluate the ability of a threshold measure, made with a restricted electrode configuration, to identify channels exhibiting relatively poor spatial selectivity. With a restricted electrode configuration, channel-to-channel variability in threshold may reflect variations in the interface between the electrodes and auditory neurons (i.e., nerve survival, electrode placement, tissue impedance). These variations in the electrode-neuron interface should also be reflected in psychophysical tuning curve measurements. Specifically, it is hypothesized that high single-channel thresholds obtained with the spatially focused partial tripolar electrode configuration are predictive of wide or tip-shifted psychophysical tuning curves. Design Data were collected from five cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. Forward-masked psychophysical tuning curves were obtained for channels with the highest, lowest, and median tripolar (σ=1 or 0.9) thresholds. The probe channel and level were fixed and presented with either the monopolar (σ=0) or a more focused partial tripolar (σ ≥ 0.55) configuration. The masker channel and level were varied while the configuration was fixed to σ = 0.5. A standard, three-interval, two-alternative forced choice procedure was used for thresholds and masked levels. Results Single-channel threshold and variability in threshold across channels systematically increased as the compensating current, σ, increased and the presumed electrical field became more focused. Across subjects, channels with the highest single-channel thresholds, when measured with a narrow, partial tripolar stimulus, had significantly broader psychophysical tuning curves than the lowest threshold channels. In two subjects, the tips of the tuning curves were shifted away from the probe channel. Tuning curves were also wider for the monopolar probes than with partial tripolar probes, for both the highest and lowest threshold channels. Conclusions These results suggest that single-channel thresholds measured with a restricted stimulus can be used to identify cochlear implant channels with poor spatial selectivity. Channels having wide or tip-shifted tuning characteristics would likely not deliver the appropriate spectral information to the intended auditory neurons, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception. PMID:20090533

  4. Evolution of abandoned channels: Insights on controlling factors in a multi-pressure river system

    NASA Astrophysics Data System (ADS)

    Dépret, Thomas; Riquier, Jérémie; Piégay, Hervé

    2017-10-01

    In the second half of the 19th century, channelization of large multi-thread rivers such as the Rhine, the Danube, and the Rhône rivers induced artificial disconnection of most of their secondary channels. Compared to naturally abandoned channels, terrestrialization (i.e., the passage from the aquatic to the terrestrial stage, controlled by sediment deposits and/or lowering of the water level) patterns and rates of such artificially prematurely abandoned channels remain largely unknown. Moreover, factors controlling their evolutionary trajectories are complex owing to a set of pressures occurring throughout the 20th century within specific space-time windows. Through a case study of the Rhône River, this paper aims to assess and distinguish the effects of a set of potential controlling factors on abandoned channel terrestrialization dynamics and lifespan. We tested the influence of: (i) submersible embankments closing the entrance of abandoned channels, (ii) main channel degradation following its channelization or the water level lowering due to channel bypassing in the middle of the 20th century involving drastic water abstraction in these reaches, (iii) transverse dykes within the abandoned channels, (iv) the flooding regime of abandoned channels (i.e., frequency and magnitude of upstream connections producing lotic functioning), and (v) longitudinal variation in the suspended sediment concentration along the main channel. To this end, we studied 24 abandoned channels (16 artificially disconnected at their upstream end by submersible embankments and eight naturally disconnected by bar plug establishment) from the mid-19th to the beginning of the 20th century. Their terrestrialization rates were characterized through the reconstruction of their planimetric trajectories using historical maps and aerial photos. The results reveal a much longer lifespan of artificial abandoned channels compared to natural ones because of the truncation of the initial bedload infilling phase due to the artificial and imposed closing of their entrance. Moreover, terrestrialization occurred faster when water level lowering or channel degradation was greater. Surprisingly, terrestrialization rates were the highest in the most frequently connected artificial abandoned channels (i.e., channels with a high frequency of lotic functioning), probably in relation to the roughness induced by the presence of transversal dykes. Finally, it is difficult to rank all the factors tested because of their complex combinations, which can change in space and time.

  5. Incision of the Jezero Crater Outflow Channel by Fluvial Sediment Transport

    NASA Astrophysics Data System (ADS)

    Holo, S.; Kite, E. S.

    2017-12-01

    Jezero crater, the top candidate landing site for the Mars 2020 rover, once possessed a lake that over-spilled and eroded a large outflow channel into the Eastern rim. The Western deltaic sediments that would be the primary science target of the rover record a history of lake level, which is modulated by the inflow and outflow channels. While formative discharges for the Western delta exist ( 500 m3/s), little work has been done to see if these flows are the same responsible for outflow channel incision. Other models of the Jezero outflow channel incision assume that a single rapid flood (incision timescales of weeks), with unknown initial hydraulic head and no discharge into the lake (e.g. from the inflow channels or the subsurface), incised an open channel with discharge modulated by flow over a weir. We present an alternate model where, due to an instability at the threshold of sediment motion, the incision of the outflow channel occurs in concert with lake filling. In particular, we assume a simplified lake-channel-valley system geometry and that the channel is hydraulically connected to the filling/draining crater lake. Bed load sediment transport and water discharge through the channel are quantified using the Meyer-Peter and Mueller relation and Manning's law respectively. Mass is conserved for both water and sediment as the lake level rises/falls and the channel incises. This model does not resolve backwater effects or concavity in the alluvial system, but it does capture the non-linear feedbacks between lake draining, erosion rate, channel flow rate, and slope relaxation. We identify controls on incision of the outflow channel and estimate the time scale of outflow channel formation through a simple dynamical model. We find that the observed 300m of channel erosion can be reproduced in decades to centuries of progressive bed load as the delta forming flows fill the lake. This corresponds to time scales on the order of or smaller than the time scale required for the delta forming flows to fill the crater. Comparison with the outflow channel dimensions from other craters on Mars provides the potential to both test our hypothesis of contemporaneous lake filling/channel incision and also constrain the hydrologic sources responsible for filling crater lakes.

  6. Mechanosensitive channels are activated by stress in the actin stress fibres, and could be involved in gravity sensing in plants.

    PubMed

    Tatsumi, H; Furuichi, T; Nakano, M; Toyota, M; Hayakawa, K; Sokabe, M; Iida, H

    2014-01-01

    Mechanosensitive (MS) channels are expressed in a variety of cells. The molecular and biophysical mechanism involved in the regulation of MS channel activities is a central interest in basic biology. MS channels are thought to play crucial roles in gravity sensing in plant cells. To date, two mechanisms have been proposed for MS channel activation. One is that tension development in the lipid bilayer directly activates MS channels. The second mechanism proposes that the cytoskeleton is involved in the channel activation, because MS channel activities are modulated by pharmacological treatments that affect the cytoskeleton. We tested whether tension in the cytoskeleton activates MS channels. Mammalian endothelial cells were microinjected with phalloidin-conjugated beads, which bound to stress fibres, and a traction force to the actin cytoskeleton was applied by dragging the beads with optical tweezers. MS channels were activated when the force was applied, demonstrating that a sub-pN force to the actin filaments activates a single MS channel. Plants may use a similar molecular mechanism in gravity sensing, since the cytoplasmic Ca(2+) concentration increase induced by changes in the gravity vector was attenuated by potential MS channel inhibitors, and by actin-disrupting drugs. These results support the idea that the tension increase in actin filaments by gravity-dependent sedimentation of amyloplasts activates MS Ca(2+) -permeable channels, which can be the molecular mechanism of a Ca(2+) concentration increase through gravistimulation. We review recent progress in the study of tension sensing by actin filaments and MS channels using advanced biophysical methods, and discuss their possible roles in gravisensing. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. The hitchhiker’s guide to the voltage-gated sodium channel galaxy

    PubMed Central

    2016-01-01

    Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure–function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts. PMID:26712848

  8. TMEM16A Channels Contribute to the Myogenic Response in Cerebral Arteries

    PubMed Central

    Bulley, Simon; Neeb, Zachary P.; Burris, Sarah K.; Bannister, John P.; Thomas-Gatewood, Candice M.; Jangsangthong, Wanchana; Jaggar, Jonathan H.

    2013-01-01

    Rationale Pressure-induced arterial depolarization and constriction (the myogenic response), is a smooth muscle cell (myocyte)-specific mechanism that controls regional organ blood flow and systemic blood pressure. Several different non-selective cation channels contribute to pressure-induced depolarization, but signaling mechanisms involved are unclear. Similarly uncertain is the contribution of anion channels to the myogenic response and physiological functions and mechanisms of regulation of recently discovered transmembrane 16A (TMEM16A) chloride (Cl−) channels in arterial myocytes. Objective Investigate the hypothesis that myocyte TMEM16A channels control membrane potential and contractility and contribute to the myogenic response in cerebral arteries. Methods and Results Cell swelling induced by hyposmotic bath solution stimulated Cl− currents in arterial myocytes that were blocked by TMEM16A channel inhibitory antibodies, RNAi-mediated selective TMEM16A channel knockdown, removal of extracellular calcium (Ca2+), replacement of intracellular EGTA with BAPTA, a fast Ca2+ chelator, and Gd3+ and SKF-96365, non-selective cation channel blockers. In contrast, nimodipine, a voltage-dependent Ca2+ channel inhibitor, or thapsigargin, which depletes intracellular Ca2+ stores, did not alter swelling-activated TMEM16A currents. Pressure (−40 mmHg)-induced membrane stretch activated ion channels in arterial myocyte cell-attached patches that were inhibited by TMEM16A antibodies and were of similar amplitude to recombinant TMEM16A channels. TMEM16A knockdown reduced intravascular pressure-induced depolarization and vasoconstriction, but did not alter depolarization (60 mmol/L K+)-induced vasoconstriction. Conclusions Membrane stretch activates arterial myocyte TMEM16A channels, leading to membrane depolarization and vasoconstriction. Data also provide a mechanism by which a local Ca2+ signal generated by non-selective cation channels stimulates TMEM16A channels to induce myogenic constriction. PMID:22872152

  9. Selective activation of heteromeric SK channels contributes to action potential repolarization in mouse atrial myocytes.

    PubMed

    Hancock, Jane M; Weatherall, Kate L; Choisy, Stéphanie C; James, Andrew F; Hancox, Jules C; Marrion, Neil V

    2015-05-01

    Activation of small conductance calcium-activated potassium (SK) channels is proposed to contribute to repolarization of the action potential in atrial myocytes. This role is controversial, as these cardiac SK channels appear to exhibit an uncharacteristic pharmacology. The objectives of this study were to resolve whether activation of SK channels contributes to atrial action potential repolarization and to determine the likely subunit composition of the channel. The effect of 2 SK channel inhibitors was assessed on outward current evoked in voltage clamp and on action potential duration in perforated patch and whole-cell current clamp recording from acutely isolated mouse atrial myocytes. The presence of SK channel subunits was assessed using immunocytochemistry. A significant component of outward current was reduced by the SK channel blockers apamin and UCL1684. Block by apamin displayed a sensitivity indicating that this current was carried by homomeric SK2 channels. Action potential duration was significantly prolonged by UCL1684, but not by apamin. This effect was accompanied by an increase in beat-to-beat variability and action potential triangulation. This pharmacology was matched by that of expressed heteromeric SK2-SK3 channels in HEK293 cells. Immunocytochemistry showed that atrial myocytes express both SK2 and SK3 channels with an overlapping expression pattern. Only proposed heteromeric SK2-SK3 channels are physiologically activated to contribute to action potential repolarization, which is indicated by the difference in pharmacology of evoked outward current and prolongation of atrial action potential duration. The effect of blocking this channel on the action potential suggests that SK channel inhibition during cardiac function has the potential to be proarrhythmic. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  10. Down-regulation of voltage-dependent sodium channels initiated by sodium influx in developing neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dargent, B.; Couraud, F.

    1990-08-01

    To address the issue of whether regulatory feedback exists between the electrical activity of a neuron and ion-channel density, the authors investigated the effect of Na{sup +}-channel activators (scorpion {alpha} toxin, batrachotoxin, and veratridine) on the density of Na{sup +} channels in fetal rat brain neurons in vitro. A partial but rapid (t{sub 1/2}, 15 min) disappearance of surface Na{sup +} channels was observed as measured by a decrease in the specific binding of ({sup 3}H)saxitoxin and {sup 125}I-labeled scorpion {beta} toxin and a decrease in specific {sup 22}Na{sup +} uptake. Moreover, the increase in the number of Na{sup +}more » channels that normally occurs during neuronal maturation in vitro was inhibited by chronic channel activator treatment. The induced disappearance of Na{sup +} channels was abolished by tetrodotoxin, was found to be dependent on the external Na{sup +} concentration, and was prevented when either choline (a nonpermeant ion) or Li{sup +} (a permeant ion) was substituted for Na{sup +}. Amphotericin B, a Na{sup +} ionophore, and monensin were able to mimick the effect of Na{sup +}-channel activators, while a KCl depolarization failed to do this. This feedback regulation seems to be a neuronal property since Na{sup +}-channel density in cultured astrocytes was not affected by channel activator treatment or by amphotericin B. The present evidence suggests that an increase in intracellular Na{sup +} concentration, whether elicited by Na{sup +}-channel activators or mediated by a Na{sup +} ionophore, can induce a decrease in surface Na{sup +} channels and therefore is involved in down-regulation of Na{sup +}-channel density in fetal rat brain neurons in vitro.« less

  11. Optimal fractal tree-like microchannel networks with slip for laminar-flow-modified Murray's law.

    PubMed

    Jing, Dalei; Song, Shiyu; Pan, Yunlu; Wang, Xiaoming

    2018-01-01

    The fractal tree-like branched network is an effective channel design structure to reduce the hydraulic resistance as compared with the conventional parallel channel network. In order for a laminar flow to achieve minimum hydraulic resistance, it is believed that the optimal fractal tree-like channel network obeys the well-accepted Murray's law of β m = N -1/3 (β m is the optimal diameter ratio between the daughter channel and the parent channel and N is the branching number at every level), which is obtained under the assumption of no-slip conditions at the channel wall-liquid interface. However, at the microscale, the no-slip condition is not always reasonable; the slip condition should indeed be considered at some solid-liquid interfaces for the optimal design of the fractal tree-like channel network. The present work reinvestigates Murray's law for laminar flow in a fractal tree-like microchannel network considering slip condition. It is found that the slip increases the complexity of the optimal design of the fractal tree-like microchannel network to achieve the minimum hydraulic resistance. The optimal diameter ratio to achieve minimum hydraulic resistance is not only dependent on the branching number, as stated by Murray's law, but also dependent on the slip length, the level number, the length ratio between the daughter channel and the parent channel, and the diameter of the channel. The optimal diameter ratio decreases with the increasing slip length, the increasing level number and the increasing length ratio between the daughter channel and the parent channel, and decreases with decreasing channel diameter. These complicated relations were found to become relaxed and simplified to Murray's law when the ratio between the slip length and the diameter of the channel is small enough.

  12. Molecular Targets for Antiepileptic Drug Development

    PubMed Central

    Meldrum, Brian S.; Rogawski, Michael A.

    2007-01-01

    Summary This review considers how recent advances in the physiology of ion channels and other potential molecular targets, in conjunction with new information on the genetics of idiopathic epilepsies, can be applied to the search for improved antiepileptic drugs (AEDs). Marketed AEDs predominantly target voltage-gated cation channels (the α subunits of voltage-gated Na+ channels and also T-type voltage-gated Ca2+ channels) or influence GABA-mediated inhibition. Recently, α2–δ voltage-gated Ca2+ channel subunits and the SV2A synaptic vesicle protein have been recognized as likely targets. Genetic studies of familial idiopathic epilepsies have identified numerous genes associated with diverse epilepsy syndromes, including genes encoding Na+ channels and GABAA receptors, which are known AED targets. A strategy based on genes associated with epilepsy in animal models and humans suggests other potential AED targets, including various voltage-gated Ca2+ channel subunits and auxiliary proteins, A- or M-type voltage-gated K+ channels, and ionotropic glutamate receptors. Recent progress in ion channel research brought about by molecular cloning of the channel subunit proteins and studies in epilepsy models suggest additional targets, including G-protein-coupled receptors, such as GABAB and metabotropic glutamate receptors; hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits, responsible for hyperpolarization-activated current Ih; connexins, which make up gap junctions; and neurotransmitter transporters, particularly plasma membrane and vesicular transporters for GABA and glutamate. New information from the structural characterization of ion channels, along with better understanding of ion channel function, may allow for more selective targeting. For example, Na+ channels underlying persistent Na+ currents or GABAA receptor isoforms responsible for tonic (extrasynaptic) currents represent attractive targets. The growing understanding of the pathophysiology of epilepsy and the structural and functional characterization of the molecular targets provide many opportunities to create improved epilepsy therapies. PMID:17199015

  13. Reconstructive techniques for creation of catheterizable channels: tunneled and nipple valve channels

    PubMed Central

    Levy, Mya E.

    2016-01-01

    Cutaneous catheterizable channels allow for continent bladder emptying when an alternate route is desired. The goals of channel creation in the neurogenic bladder population are successful urine elimination, renal preservation, continence and lastly cosmesis. In addition to a particular surgeon’s comfort and experience with a given procedure, individual patient factors such as medical comorbidities, anatomic factors, and occupational function should be central to the selection of a surgical approach. An ideal channel is one that is short, straight, and well supported by associated blood supply and surrounding adventitia, so as to minimize difficulty with catheterization. Two types of channel continence mechanisms are discussed at length in this review—the tunneled channel, and the nipple valve. The appendicovesicostomy (Mitrofanoff), and reconfigured ileum (Yang-Monti) are both tunneled channels. The ileocecal valve is a commonly used nipple valve and provides continence when reinforced. The continent catheterizable ileal cecocystoplasty (CCIC) is an example of this channel technique. This method couples a tapered ileal limb as a catheterizable channel, the ileocecal valve as the continence mechanism, and the cecum and ascending colon as a bladder augmentation. While this procedure has higher perioperative complications relative to a simple tunneled channel, it has increased channel length flexibility and is also coupled with a bladder augment, which is completely performed using one bowel segment. Continent channel creation in adults can improve quality of life and minimize morbidity associated with neurogenic bladder. However, the decision to proceed with creation of a catheterizable channel should be made only after careful consideration of the patient’s medical comorbidities, physical abilities social support, and surgeon experience. PMID:26904419

  14. Ether-à-go-go family voltage-gated K+ channels evolved in an ancestral metazoan and functionally diversified in a cnidarian-bilaterian ancestor.

    PubMed

    Li, Xiaofan; Martinson, Alexandra S; Layden, Michael J; Diatta, Fortunay H; Sberna, Anna P; Simmons, David K; Martindale, Mark Q; Jegla, Timothy J

    2015-02-15

    We examined the evolutionary origins of the ether-à-go-go (EAG) family of voltage-gated K(+) channels, which have a strong influence on the excitability of neurons. The bilaterian EAG family comprises three gene subfamilies (Eag, Erg and Elk) distinguished by sequence conservation and functional properties. Searches of genome sequence indicate that EAG channels are metazoan specific, appearing first in ctenophores. However, phylogenetic analysis including two EAG family channels from the ctenophore Mnemiopsis leidyi indicates that the diversification of the Eag, Erg and Elk gene subfamilies occurred in a cnidarian/bilaterian ancestor after divergence from ctenophores. Erg channel function is highly conserved between cnidarians and mammals. Here we show that Eag and Elk channels from the sea anemone Nematostella vectensis (NvEag and NvElk) also share high functional conservation with mammalian channels. NvEag, like bilaterian Eag channels, has rapid kinetics, whereas NvElk activates at extremely hyperpolarized voltages, which is characteristic of Elk channels. Potent inhibition of voltage activation by extracellular protons is conserved between mammalian and Nematostella EAG channels. However, characteristic inhibition of voltage activation by Mg(2+) in Eag channels and Ca(2+) in Erg channels is reduced in Nematostella because of mutation of a highly conserved aspartate residue in the voltage sensor. This mutation may preserve sub-threshold activation of Nematostella Eag and Erg channels in a high divalent cation environment. mRNA in situ hybridization of EAG channels in Nematostella suggests that they are differentially expressed in distinct cell types. Most notable is the expression of NvEag in cnidocytes, a cnidarian-specific stinging cell thought to be a neuronal subtype. © 2015. Published by The Company of Biologists Ltd.

  15. Ginseng gintonin activates the human cardiac delayed rectifier K+ channel: involvement of Ca2+/calmodulin binding sites.

    PubMed

    Choi, Sun-Hye; Lee, Byung-Hwan; Kim, Hyeon-Joong; Jung, Seok-Won; Kim, Hyun-Sook; Shin, Ho-Chul; Lee, Jun-Hee; Kim, Hyoung-Chun; Rhim, Hyewhon; Hwang, Sung-Hee; Ha, Tal Soo; Kim, Hyun-Ji; Cho, Hana; Nah, Seung-Yeol

    2014-09-01

    Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits [Ca(2+)]i transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier K(+) (I(Ks)) channel is a cardiac K(+) channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating I(Ks) channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human I(Ks) channel activity by expressing human I(Ks) channels in Xenopus oocytes. We found that gintonin enhances IKs channel currents in concentration- and voltage-dependent manners. The EC50 for the I(Ks) channel was 0.05 ± 0.01 μg/ml. Gintonin-mediated activation of the I(Ks) channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an IP3 receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the I(Ks) channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 [Ca(2+)]i/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on I(Ks) channel. However, gintonin had no effect on hERG K(+) channel activity. These results show that gintonin-mediated enhancement of I(Ks) channel currents is achieved through binding of the [Ca(2+)]i/CaM complex to the C terminus of KCNQ1 subunit.

  16. Presynaptic excitability.

    PubMed

    Jackson, M B

    1995-01-01

    Based on functional characterizations with electrophysiological techniques, the channels in nerve terminals appear to be as diverse as channels in nerve cell bodies (Table I). While most presynaptic Ca2+ channels superficially resemble either N-type or L-type channels, variations in detail have necessitated the use of subscripts and other notations to indicate a nerve terminal-specific subtype (e.g., Wang et al., 1993). Variations such as these pose a serious obstacle to the identification of presynaptic channels based solely on the effects of channel blockers on synaptic transmission. Pharmacological sensitivity alone is not likely to help in determining functional properties. Crucial details, such as voltage sensitivity and inactivation, require direct examination. It goes without saying that every nerve terminal membrane contains Ca2+ channels as an entry pathway so that Ca2+ can trigger secretion. However, there appears to be no general specification of channel type, other than the exclusion of T-type Ca2+ channels. T-type Ca2+ channels are defined functionally by strong inactivation and low threshold. Some presynaptic Ca2+ channels inactivate (posterior pituitary and Xenopus nerve terminals), and others have a somewhat reduced voltage threshold (retinal bipolar neurons and squid giant synapse). Perhaps it is just a matter of time before a nerve terminal Ca2+ channel is found with both of these properties. The high threshold and strong inactivation of T-type Ca2+ channels are thought to be adaptations for oscillations and the regulation of bursting activity in nerve cell bodies. The nerve terminals thus far examined have no endogenous electrical activity, but rather are driven by the cell body. On functional grounds, it is then reasonable to anticipate finding T-type Ca2+ channels in nerve terminals that can generate electrical activity on their own. The rarity of such behavior in nerve terminals may be associated with the rarity of presynaptic T-type Ca2+ channels. In four of the five preparations reviewed in this chapter--motor nerve, squid giant synapse, ciliary ganglion, and retina bipolar neurons--evidence was presented that supports a location for Ca2+ channels that is very close to active zones of secretion. All of these synapses secrete from clear vesicles, and the speed and specificity of transduction provided by proximity may be a common feature of these rapid synapses. In contrast, the posterior pituitary secretion apparatus may be triggered by higher-affinity Ca2+ receptors and lower concentrations of Ca2+ (Lindau et al., 1992). This would correspond with the slower performance of peptidergic secretion, but because of the large stimuli needed to evoke release from neurosecretosomes, the possibility remains that the threshold for secretion is higher than that reported. While the role of Ca2+ as a trigger of secretion dictates a requirement for voltage-activated Ca2+ channels as universal components of the presynaptic membrane, the presence of other channels is more difficult to predict. Depolarizations caused by voltage-activated Na+ channels activate the presynaptic Ca2+ channels, but whether this depolarization requires Na+ channels in the presynaptic membrane itself may depend on the electrotonic length of the nerve terminal. Variations in density between motor nerve terminals may reflect species differences in geometry. The high Na+ channel density in the posterior pituitary reflects the great electrotonic length of this terminal arbor. Whether Na+ channels are abundant or not in a presynaptic membrane, K+ channels provide the most robust mechanism for limiting depolarization-induced Ca2+ entry. K+ channel blockers enhance transmission at most synapses. In general, K+ channels are abundant in nerve terminals, although their apparent lower priority compared to Ca2+ channels in the eyes of many investigators leaves us with fewer detailed investigations in some preparations. Most nerve terminals have more than

  17. Anastomosing rivers: a review of their classification, origin and sedimentary products

    NASA Astrophysics Data System (ADS)

    Makaske, Bart

    2001-04-01

    Anastomosing rivers constitute an important category of multi-channel rivers on alluvial plains. Most often they seem to form under relatively low-energetic conditions near a (local) base level. It appears to be impossible to define anastomosing rivers unambiguously on the basis of channel planform only. Therefore, the following definition, which couples floodplain geomorphology and channel pattern, is proposed in this paper: an anastomosing river is composed of two or more interconnected channels that enclose floodbasins. This definition explicitly excludes the phenomenon of channel splitting by convex-up bar-like forms that characterize braided channels. In present definitions of anastomosing rivers, lateral stability of channels is commonly coupled with their multi-channel character. Here, it is suggested that these two properties be uncoupled. At the scale of channel belts, the terms 'straight', 'meandering' and 'braided' apply, whereas at a larger scale, a river can be called anastomosing if it meets the definition given above. This means that, straight, meandering and braided channels may all be part of an anastomosing river system. Straight channels are defined by a sinuosity index; i.e., the ratio of the distance along the channel and the distance along the channel-belt axis is less than 1.3. They are the type of channel that most commonly occurs in combination with anastomosis. The occurrence of straight channels is favoured by low stream power, basically a product of discharge and gradient, and erosion-resistant banks. Anastomosing rivers are usually formed by avulsions, i.e., flow diversions that cause the formation of new channels on the floodplain. As a product of avulsion, anastomosing rivers essentially form in two ways: (1) by formation of bypasses, while bypassed older channel-belt segments remain active for some period; and (2) by splitting of the diverted avulsive flow, leading to contemporaneous scour of multiple channels on the floodplain. Both genetic types of anastomosis may coexist in one river system, but whereas the first may be a long-lived floodplain-wide phenomenon, the latter only represents a stage in the avulsion process on a restricted part of the floodplain. Long-lived anastomosis is caused by frequent avulsions and/or slow abandonment of old channels. Avulsions are primarily driven by aggradation of the channel belt and/or loss of channel capacity by in-channel deposition. Both processes are favoured by a low floodplain gradient. Also of influence are a number of avulsion triggers such as extreme floods, log and ice jams, and in-channel aeolian dunes. Although some of these triggers are associated with a specific climate, the occurrence of anastomosis is not. A rapid rise of base level is conductive to anastomosis, but is not a necessary condition. Anastomosing rivers can be considered an example of equifinality, since anastomosis may result from different combinations of processes or causes. Anastomosing river deposits have an alluvial architecture characterized by a large proportion of overbank deposits, which encase laterally connected channel sand bodies. Laterally extensive, thick lenses of lithologically heterogeneous, fine-grained avulsion deposits can be an important element of the overbank deposits of anastomosing rivers. These deposits may also fully surround anastomosing channel sandstones. Anastomosing channel sand bodies frequently have ribbon-like geometries and may possess poorly developed upward-fining trends, as well as abrupt flat tops. The overbank deposits commonly comprise abundant crevasse splay deposits and thick natural levee deposits. Lacustrine deposits and coal are common in association with anastomosing river deposits. None of these characteristics is unique to anastomosing river deposits, and in most cases, anastomosis (coexistence of channels) cannot be demonstrated in the stratigraphic record.

  18. The TiPS/TINS lecture: the molecular biology of mammalian glutamate receptor channels.

    PubMed

    Seeburg, P H

    1993-08-01

    In native brain membranes the principal excitatory neurotransmitter L-glutamate activates cation-conducting channels with distinct biophysical and pharmacological properties. Molecular cloning has revealed the existence of 16 channel subunits that can assemble in homomeric or heteromeric configurations in vitro to form receptor channels with disparate functional properties. This review describes the different channel types obtained by recombinant means and the genetic mechanisms controlling the expression of functionally important channel structures.

  19. The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels.

    PubMed

    Seeburg, P H

    1993-09-01

    In native brain membranes the principal excitatory neurotransmitter L-glutamate activates cation-conducting channels with distinct biophysical and pharmacological properties. Molecular cloning has revealed the existence of 16 channel subunits that can assemble in homomeric or heteromeric configurations in vitro to form receptor channels with disparate functional properties. This review describes the different channel types obtained by recombinant means and the genetic mechanisms controlling the expression of functionally important channel structures.

  20. Large-scale erosional and depositional features of the Channeled Scabland

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1978-01-01

    The channeled scabland is a great anastomosing complex of highly overfit stand channels eroded into the basalt bedrock and overlying sediments of the Columbia Plateau. Both the erosional and depositional bed forms in these channels are described according to a simple hierarchical classification. The catastrophic flood flows produced macroforms (scale controlled by channel width) through the erosion of rock and sediment and by deposition (bars). Mesoforms (scale controlled by channel depth) are also erosional and depositional.

  1. An RF Sensor for Gauging Screen-Channel Liquid Acquisition Devices for Cryogenic Propellants

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Metzger, Scott; Asipauskas, Marius

    2014-01-01

    A key requirement of a low-gravity screen-channel liquid acquisition device (LAD) is the need to retain 100% liquid in the channel in response to propellant outflow and spacecraft maneuvers. The point at which a screen-channel LAD ingests vapor is known as breakdown, and can be measured several different ways such as: visual observation of bubbles in the LAD channel outflow; a sudden change in pressure drop between the propellant tank and LAD sump outlet; or, an indication by wet-dry sensors placed in the LAD channel or outflow stream. Here we describe a new type of sensor for gauging a screen-channel LAD, the Radio Frequency Mass Gauge (RFMG). The RFMG measures the natural electromagnetic modes of the screen-channel LAD, which is very similar to an RF waveguide, to determine the amount of propellant in the channel. By monitoring several of the RF modes, we show that the RFMG acts as a global sensor of the LAD channel propellant fill level, and enables detection of LAD breakdown even in the absence of outflow. This paper presents the theory behind the RFMG-LAD sensor, measurements and simulations of the RF modes of a LAD channel, and RFMG detection of LAD breakdown in a channel using a simulant fluid during inverted outflow and long-term stability tests.

  2. Improving quality of arterial spin labeling MR imaging at 3 Tesla with a 32-channel coil and parallel imaging.

    PubMed

    Ferré, Jean-Christophe; Petr, Jan; Bannier, Elise; Barillot, Christian; Gauvrit, Jean-Yves

    2012-05-01

    To compare 12-channel and 32-channel phased-array coils and to determine the optimal parallel imaging (PI) technique and factor for brain perfusion imaging using Pulsed Arterial Spin labeling (PASL) at 3 Tesla (T). Twenty-seven healthy volunteers underwent 10 different PASL perfusion PICORE Q2TIPS scans at 3T using 12-channel and 32-channel coils without PI and with GRAPPA or mSENSE using factor 2. PI with factor 3 and 4 were used only with the 32-channel coil. Visual quality was assessed using four parameters. Quantitative analyses were performed using temporal noise, contrast-to-noise and signal-to-noise ratios (CNR, SNR). Compared with 12-channel acquisition, the scores for 32-channel acquisition were significantly higher for overall visual quality, lower for noise and higher for SNR and CNR. With the 32-channel coil, artifact compromise achieved the best score with PI factor 2. Noise increased, SNR and CNR decreased with PI factor. However mSENSE 2 scores were not always significantly different from acquisition without PI. For PASL at 3T, the 32-channel coil at 3T provided better quality than the 12-channel coil. With the 32-channel coil, mSENSE 2 seemed to offer the best compromise for decreasing artifacts without significantly reducing SNR, CNR. Copyright © 2012 Wiley Periodicals, Inc.

  3. The importance of sand in the formation of avulsion channels within experimental fans that develop from sediment mixtures of mud and sand

    NASA Astrophysics Data System (ADS)

    Iscen, N.; Strom, K.

    2017-12-01

    Autogenic channel migration and avulsion has long been recognized as important drivers of alluvial fan dynamics. In the literature, several field studies have documented that the presence and the amount of sand transport through a channel is important for channel incision in alluvial fans and deltas. In our experiments, we present the general autogenic avulsion cycle of experimental alluvial fans with mixtures of cohesive sediment and sand with a range of boundary conditions, and we detail the importance of mobile sand fraction in the development of channels that lead to avulsion. Experimental observations demonstrate that new channels form at topographically low regions within the floodplain providing that sand is transported to these topographic lows due to overbank flow or levee breaching. In addition to the sediment transported from upstream, erosion of a previous deposit and an ongoing backfilling nearby are observed as the possible sources of sand getting into the ghost channels. We explore whether the presence of sand is important for channel development because it increases abrasion of the channel or because it changes the roughness characteristics of the flow. We also examine the affect of sediment and water supply change on the newly described channelization process and link distinctive channel morphologies to different stages of described channel development and the avulsion process.

  4. Spatial and temporal patterns in channel change on the Snake River downstream from Jackson Lake dam, Wyoming

    NASA Astrophysics Data System (ADS)

    Nelson, Nicholas C.; Erwin, Susannah O.; Schmidt, John C.

    2013-10-01

    Operations of Jackson Lake dam (JLD) have altered the hydrology and sediment transport capacity of the Snake River in Grand Teton National Park. Prior research has provided conflicting assessments of whether the downstream river was perturbed into sediment surplus or sediment deficit. In this paper, we present the results of an aerial photo analysis designed to evaluate whether the history of channel change indicates either significant deficit or surplus of sediment that could be expressed as narrowing or expansion of the channel over time. We analyze changes in braid index, channel width, channel activity, and net channel change of the Snake River based on four series of aerial photographs. Between 1945 and 1969, a period of relatively small main-stem floods, widespread deposition, and up to 31% reduction in channel width occurred throughout the Snake River. Between 1969 and 2002, a period of large main-stem floods, the style of channel change reversed with a decrease in braid index and an increase in channel width of up to 31%. These substantial changes in the channel downstream from the dam primarily occurred in multithread reaches, regardless of proximity to tributaries, and no temporal progression of channel narrowing or widening was observed. We demonstrate that channel change downstream from JLD is more temporally and longitudinally complex than previously described.

  5. Channel evolution under changing hydrological regimes in anabranching reaches downstream of the Three Gorges Dam

    NASA Astrophysics Data System (ADS)

    Han, Jianqiao; Zhang, Wei; Yuan, Jing; Fan, Yongyang

    2018-03-01

    Elucidating the influence of dams on fluvial processes can benefit river protection and basin management. Based on hydrological and topographical data, we analyzed channel evolution in anabranching reaches under changing hydrological regimes influenced by the Three Gorges Dam. The main conclusions are as follows: 1) the channels of specific anabranching reaches were defined as flood trend channels or low-flow trend channels according to the distribution of their flow characteristics. The anabranching reaches were classified as T1 or T2. The former is characterized by the correspondence between the flood trend and branch channels, and the latter is characterized by the correspondence between the flood trend and main channels; 2) on the basis of the new classification, the discrepant patterns of channel evolution seen in anabranching reaches were unified into a pattern that showed flood trend channels shrinking and low-flow trend channels expanding; 3) flood abatement and the increased duration of moderate flow discharges are the main factors that affect channel adjustments in anabranching reaches after dam construction; and 4) in the next few decades, the pattern of channel evolution will remain the same as that of the Three Gorges Dam operation. That is, the morphology will fully adapt to a flow with a low coefficient of variation. Our results are of interest in the management of the Yangtze River and other rivers influenced by dams.

  6. Molecular Biology of Insect Sodium Channels and Pyrethroid Resistance

    PubMed Central

    Dong, Ke; Du, Yuzhe; Rinkevich, Frank; Nomura, Yoshiko; Xu, Peng; Wang, Lingxin; Silver, Kristopher; Zhorov, Boris S.

    2015-01-01

    Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Most of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors. PMID:24704279

  7. Evaluation of in-channel amperometric detection using a dual-channel microchip electrophoresis device and a two-electrode potentiostat for reverse polarity separations

    PubMed Central

    Meneses, Diogenes; Gunasekara, Dulan B.; Pichetsurnthorn, Pann; da Silva, José A. F.; de Abreu, Fabiane C.; Lunte, Susan M.

    2015-01-01

    In-channel amperometric detection combined with dual-channel microchip electrophoresis is evaluated using a two-electrode isolated potentiostat for reverse polarity separations. The device consists of two separate channels with the working and reference electrodes placed at identical positions relative to the end of the channel, enabling noise subtraction. In previous reports of this configuration, normal polarity and a three-electrode detection system were used. In the two-electrode detection system described here, the electrode in the reference channel acts as both the counter and reference. The effect of electrode placement in the channels on noise and detector response was investigated using nitrite, tyrosine, and hydrogen peroxide as model compounds. The effects of electrode material and size and type of reference electrode on noise and the potential shift of hydrodynamic voltammograms for the model compounds were determined. In addition, the performance of two- and three-electrode configurations using Pt and Ag/AgCl reference electrodes was compared. Although the signal was attenuated with the Pt reference, the noise was also significantly reduced. It was found that lower LOD were obtained for all three compounds with the dual-channel configuration compared to single-channel, in-channel detection. The dual-channel method was then used for the detection of nitrite in a dermal microdialysis sample obtained from a sheep following nitroglycerin administration. PMID:25256669

  8. Innate immune response of channel catfish (Ictalurus punctatus) mannose-binding lectin to channel catfish virus

    USDA-ARS?s Scientific Manuscript database

    The channel catfish virus (CCV) is a pathogenic herpesvirus that infects channel catfish (Ictalurus punctatus) in pond aquaculture in the Southeast USA. The innate immune protein mannose-binding lectin (MBL) could play an important role in the innate response of channel catfish by binding to the CC...

  9. 75 FR 65323 - The Tennis Channel, Inc. v. Comcast Cable Communications, LLC; File No. CSR-8258-P

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... FEDERAL COMMUNICATIONS COMMISSION [MB Docket No. 10-204; DA 10-1918] The Tennis Channel, Inc. v... Tennis Channel, Inc. (``The Tennis Channel'') and Comcast Cable Communications, LLC (``Comcast'') shall... Tennis Channel and Comcast, in person or by their attorneys, shall each file with the Commission, by...

  10. Evaluation of a stream channel-type system for southeast Alaska.

    Treesearch

    M.D. Bryant; P.E. Porter; S.J. Paustian

    1991-01-01

    Nine channel types within a hierarchical channel-type classification system (CTCS) were surveyed to determine relations between salmonid densities and species distribution, and channel type. Two other habitat classification systems and the amount of large woody debris also were compared to species distribution and salmonid densities, and to stream channel types....

  11. Symmetrization for redundant channels

    NASA Technical Reports Server (NTRS)

    Tulplue, Bhalchandra R. (Inventor); Collins, Robert E. (Inventor)

    1988-01-01

    A plurality of redundant channels in a system each contain a global image of all the configuration data bases in each of the channels in the system. Each global image is updated periodically from each of the other channels via cross channel data links. The global images of the local configuration data bases in each channel are separately symmetrized using a voting process to generate a system signal configuration data base which is not written into by any other routine and is available for indicating the status of the system within each channel. Equalization may be imposed on a suspect signal and a number of chances for that signal to heal itself are provided before excluding it from future votes. Reconfiguration is accomplished upon detecting a channel which is deemed invalid. A reset function is provided which permits an externally generated reset signal to permit a previously excluded channel to be reincluded within the system. The updating of global images and/or the symmetrization process may be accomplished at substantially the same time within a synchronized time frame common to all channels.

  12. Chaotic behavior of channeling particles.

    PubMed

    Chen, Ling; Kaloyeros, Alain E.; Wang, Guang-Hou

    1994-03-01

    Channeling describes the collimated motion of energetic charged particles along the lattice plane or axis in a crystal. The energetic particles are steered through the channels formed by strings of atomic constituents in the lattice. In the case of planar channeling, the motion of a charged particle between the atomic planes can be periodic or quasiperiodic, such as a simple oscillatory motion in the transverse direction. In practice, however, the periodic motion of the channeling particles can be accompanied by an irregular, chaotic behavior. In this paper, the Moliere potential, which is considered as a good analytical approximation for the interaction of channeling particles with the rows of atoms in the lattice, is used to simulate the channeling behavior of positively charged particles in a tungsten (100) crystal plane. By appropriate selection of channeling parameters, such as the projectile energy E(0) and incident angle psi(0), the transition of channeling particles from regular to chaotic motion is demonstrated. It is argued that the fine structures that appear in the angular scan channeling experiments are due to the particles' chaotic motion.

  13. Subunit stoichiometry of human muscle chloride channels.

    PubMed

    Fahlke, C; Knittle, T; Gurnett, C A; Campbell, K P; George, A L

    1997-01-01

    Voltage-gated Cl- channels belonging to the ClC family appear to function as homomultimers, but the number of subunits needed to form a functional channel is controversial. To determine subunit stoichiometry, we constructed dimeric human skeletal muscle Cl- channels in which one subunit was tagged by a mutation (D136G) that causes profound changes in voltage-dependent gating. Sucrose-density gradient centrifugation experiments indicate that both monomeric and dimeric hClC-1 channels in their native configurations exhibit similar sedimentation properties consistent with a multimeric complex having a molecular mass of a dimer. Expression of the heterodimeric channel in a mammalian cell line results in a homogenous population of Cl- channels exhibiting novel gating properties that are best explained by the formation of heteromultimeric channels with an even number of subunits. Heteromultimeric channels were not evident in cells cotransfected with homodimeric WT-WT and D136G-D136G constructs excluding the possibility that functional hClC-1 channels are assembled from more than two subunits. These results demonstrate that the functional hClC-1 unit consists of two subunits.

  14. Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derebe, Mehabaw G.; Sauer, David B.; Zeng, Weizhong

    2015-11-30

    Selective ion conduction across ion channel pores is central to cellular physiology. To understand the underlying principles of ion selectivity in tetrameric cation channels, we engineered a set of cation channel pores based on the nonselective NaK channel and determined their structures to high resolution. These structures showcase an ensemble of selectivity filters with a various number of contiguous ion binding sites ranging from 2 to 4, with each individual site maintaining a geometry and ligand environment virtually identical to that of equivalent sites in K{sup +} channel selectivity filters. Combined with single channel electrophysiology, we show that only themore » channel with four ion binding sites is K{sup +} selective, whereas those with two or three are nonselective and permeate Na{sup +} and K{sup +} equally well. These observations strongly suggest that the number of contiguous ion binding sites in a single file is the key determinant of the channel's selectivity properties and the presence of four sites in K{sup +} channels is essential for highly selective and efficient permeation of K{sup +} ions.« less

  15. The Control of Male Fertility by Spermatozoan Ion Channels

    PubMed Central

    Lishko, Polina V.; Kirichok, Yuriy; Ren, Dejian; Navarro, Betsy; Chung, Jean-Ju

    2014-01-01

    Ion channels control the sperm ability to fertilize the egg by regulating sperm maturation in the female reproductive tract and by triggering key sperm physiological responses required for successful fertilization such as hyperactivated motility, chemotaxis, and the acrosome reaction. CatSper, a pH-regulated, calcium-selective ion channel, and KSper (Slo3) are core regulators of sperm tail calcium entry and sperm hyperactivated motility. Many other channels had been proposed as regulating sperm activity without direct measurements. With the development of the sperm patch-clamp technique, CatSper and KSper have been confirmed as the primary spermatozoan ion channels. In addition, the voltage-gated proton channel Hv1 has been identified in human sperm tail, and the P2X2 ion channel has been identified in the midpiece of mouse sperm. Mutations and deletions in sperm-specific ion channels affect male fertility in both mice and humans without affecting other physiological functions. The uniqueness of sperm ion channels makes them ideal pharmaceutical targets for contraception. In this review we discuss how ion channels regulate sperm physiology. PMID:22017176

  16. Bio-inspired voltage-dependent calcium channel blockers.

    PubMed

    Yang, Tingting; He, Lin-Ling; Chen, Ming; Fang, Kun; Colecraft, Henry M

    2013-01-01

    Ca(2+) influx via voltage-dependent CaV1/CaV2 channels couples electrical signals to biological responses in excitable cells. CaV1/CaV2 channel blockers have broad biotechnological and therapeutic applications. Here we report a general method for developing novel genetically encoded calcium channel blockers inspired by Rem, a small G-protein that constitutively inhibits CaV1/CaV2 channels. We show that diverse cytosolic proteins (CaVβ, 14-3-3, calmodulin and CaMKII) that bind pore-forming α1-subunits can be converted into calcium channel blockers with tunable selectivity, kinetics and potency, simply by anchoring them to the plasma membrane. We term this method 'channel inactivation induced by membrane-tethering of an associated protein' (ChIMP). ChIMP is potentially extendable to small-molecule drug discovery, as engineering FK506-binding protein into intracellular sites within CaV1.2-α1C permits heterodimerization-initiated channel inhibition with rapamycin. The results reveal a universal method for developing novel calcium channel blockers that may be extended to develop probes for a broad cohort of unrelated ion channels.

  17. Malaria parasite mutants with altered erythrocyte permeability: a new drug resistance mechanism and important molecular tool

    PubMed Central

    Hill, David A; Desai, Sanjay A

    2010-01-01

    Erythrocytes infected with plasmodia, including those that cause human malaria, have increased permeability to a diverse collection of organic and inorganic solutes. While these increases have been known for decades, their mechanistic basis was unclear until electrophysiological studies revealed flux through one or more ion channels on the infected erythrocyte membrane. Current debates have centered on the number of distinct ion channels, which channels mediate the transport of each solute and whether the channels represent parasite-encoded proteins or human channels activated after infection. This article reviews the identification of the plasmodial surface anion channel and other proposed channels with an emphasis on two distinct channel mutants generated through in vitro selection. These mutants implicate parasite genetic elements in the parasite-induced permeability, reveal an important new antimalarial drug resistance mechanism and provide tools for molecular studies. We also critically examine the technical issues relevant to the detection of ion channels by electrophysiological methods; these technical considerations have general applicability for interpreting studies of various ion channels proposed for the infected erythrocyte membrane. PMID:20020831

  18. Threshold and channel interaction in cochlear implant users: evaluation of the tripolar electrode configuration.

    PubMed

    Bierer, Julie Arenberg

    2007-03-01

    The efficacy of cochlear implants is limited by spatial and temporal interactions among channels. This study explores the spatially restricted tripolar electrode configuration and compares it to bipolar and monopolar stimulation. Measures of threshold and channel interaction were obtained from nine subjects implanted with the Clarion HiFocus-I electrode array. Stimuli were biphasic pulses delivered at 1020 pulses/s. Threshold increased from monopolar to bipolar to tripolar stimulation and was most variable across channels with the tripolar configuration. Channel interaction, quantified by the shift in threshold between single- and two-channel stimulation, occurred for all three configurations but was largest for the monopolar and simultaneous conditions. The threshold shifts with simultaneous tripolar stimulation were slightly smaller than with bipolar and were not as strongly affected by the timing of the two channel stimulation as was monopolar. The subjects' performances on clinical speech tests were correlated with channel-to-channel variability in tripolar threshold, such that greater variability was related to poorer performance. The data suggest that tripolar channels with high thresholds may reveal cochlear regions of low neuron survival or poor electrode placement.

  19. The elusive character of discontinuous deep-water channels: New insights from Lucia Chica channel system, offshore California

    USGS Publications Warehouse

    Maier, K.L.; Fildani, A.; Paull, C.K.; Graham, S.A.; McHargue, T.R.; Caress, D.W.; McGann, M.

    2011-01-01

    New high-resolution autonomous underwater vehicle (AUV) seafloor images, with 1 m lateral resolution and 0.3 m vertical resolution, reveal unexpected seafloor rugosity and low-relief (<10 m), discontinuous conduits over ~70 km2. Continuous channel thalwegs were interpreted originally from lower-resolution images, but newly acquired AUV data indicate that a single sinuous channel fed a series of discontinuous lower-relief channels. These discontinuous channels were created by at least four avulsion events. Channel relief, defined as the height from the thalweg to the levee crest, controls avulsions and overall stratigraphic architecture of the depositional area. Flowstripped turbidity currents separated into and reactivated multiple channels to create a distributary pattern and developed discontinuous trains of cyclic scours and megaflutes, which may be erosional precursors to continuous channels. The diverse features now imaged in the Lucia Chica channel system (offshore California) are likely common in modern and ancient systems with similar overall morphologies, but have not been previously mapped with lower-resolution detection methods in any of these systems. ?? 2011 Geological Society of America.

  20. Interactions of Pannexin1 channels with purinergic and NMDA receptor channels.

    PubMed

    Li, Shuo; Bjelobaba, Ivana; Stojilkovic, Stanko S

    2018-01-01

    Pannexins are a three-member family of vertebrate plasma membrane spanning molecules that have homology to the invertebrate gap junction forming proteins, the innexins. However, pannexins do not form gap junctions but operate as plasma membrane channels. The best-characterized member of these proteins, Pannexin1 (Panx1) was suggested to be functionally associated with purinergic P2X and N-methyl-D-aspartate (NMDA) receptor channels. Activation of these receptor channels by their endogenous ligands leads to cross-activation of Panx1 channels. This in turn potentiates P2X and NMDA receptor channel signaling. Two potentiation concepts have been suggested: enhancement of the current responses and/or sustained receptor channel activation by ATP released through Panx1 pore and adenosine generated by ectonucleotidase-dependent dephosphorylation of ATP. Here we summarize the current knowledge and hypotheses about interactions of Panx1 channels with P2X and NMDA receptor channels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Published by Elsevier B.V.

  1. Phosphorylation-Dependent Regulation of Ryanodine Receptors

    PubMed Central

    Marx, Steven O.; Reiken, Steven; Hisamatsu, Yuji; Gaburjakova, Marta; Gaburjakova, Jana; Yang, Yi-Ming; Rosemblit, Nora; Marks, Andrew R.

    2001-01-01

    Ryanodine receptors (RyRs), intracellular calcium release channels required for cardiac and skeletal muscle contraction, are macromolecular complexes that include kinases and phosphatases. Phosphorylation/dephosphorylation plays a key role in regulating the function of many ion channels, including RyRs. However, the mechanism by which kinases and phosphatases are targeted to ion channels is not well understood. We have identified a novel mechanism involved in the formation of ion channel macromolecular complexes: kinase and phosphatase targeting proteins binding to ion channels via leucine/isoleucine zipper (LZ) motifs. Activation of kinases and phosphatases bound to RyR2 via LZs regulates phosphorylation of the channel, and disruption of kinase binding via LZ motifs prevents phosphorylation of RyR2. Elucidation of this new role for LZs in ion channel macromolecular complexes now permits: (a) rapid mapping of kinase and phosphatase targeting protein binding sites on ion channels; (b) predicting which kinases and phosphatases are likely to regulate a given ion channel; (c) rapid identification of novel kinase and phosphatase targeting proteins; and (d) tools for dissecting the role of kinases and phosphatases as modulators of ion channel function. PMID:11352932

  2. General Approach to Quantum Channel Impossibility by Local Operations and Classical Communication.

    PubMed

    Cohen, Scott M

    2017-01-13

    We describe a general approach to proving the impossibility of implementing a quantum channel by local operations and classical communication (LOCC), even with an infinite number of rounds, and find that this can often be demonstrated by solving a set of linear equations. The method also allows one to design a LOCC protocol to implement the channel whenever such a protocol exists in any finite number of rounds. Perhaps surprisingly, the computational expense for analyzing LOCC channels is not much greater than that for LOCC measurements. We apply the method to several examples, two of which provide numerical evidence that the set of quantum channels that are not LOCC is not closed and that there exist channels that can be implemented by LOCC either in one round or in three rounds that are on the boundary of the set of all LOCC channels. Although every LOCC protocol must implement a separable quantum channel, it is a very difficult task to determine whether or not a given channel is separable. Fortunately, prior knowledge that the channel is separable is not required for application of our method.

  3. Multiple pore conformations driven by asynchronous movements of voltage sensors in a eukaryotic sodium channel

    PubMed Central

    Goldschen-Ohm, Marcel P.; Capes, Deborah L.; Oelstrom, Kevin M.; Chanda, Baron

    2013-01-01

    Voltage-dependent Na+ channels are crucial for electrical signalling in excitable cells. Membrane depolarization initiates asynchronous movements in four non-identical voltage-sensing domains of the Na+ channel. It remains unclear to what extent this structural asymmetry influences pore gating as compared with outwardly rectifying K+ channels, where channel opening results from a final concerted transition of symmetric pore gates. Here we combine single channel recordings, cysteine accessibility and voltage clamp fluorimetry to probe the relationships between voltage sensors and pore conformations in an inactivation deficient Nav1.4 channel. We observe three distinct conductance levels such that DI-III voltage sensor activation is kinetically correlated with formation of a fully open pore, whereas DIV voltage sensor movement underlies formation of a distinct subconducting pore conformation preceding inactivation in wild-type channels. Our experiments reveal that pore gating in sodium channels involves multiple transitions driven by asynchronous movements of voltage sensors. These findings shed new light on the mechanism of coupling between activation and fast inactivation in voltage-gated sodium channels. PMID:23322038

  4. TRPV4 channels: physiological and pathological role in cardiovascular system.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2015-11-01

    TRPV4 channels are non-selective cation channels permeable to Ca(2+), Na(+), and Mg(2+) ions. Recently, TRPV4 channels have received considerable attention as these channels are widely expressed in the cardiovascular system including endothelial cells, cardiac fibroblasts, vascular smooth muscles, and peri-vascular nerves. Therefore, these channels possibly play a pivotal role in the maintenance of cardiovascular homeostasis. TRPV4 channels critically regulate flow-induced arteriogenesis, TGF-β1-induced differentiation of cardiac fibroblasts into myofibroblasts, and heart failure-induced pulmonary edema. These channels also mediate hypoxia-induced increase in proliferation and migration of pulmonary artery smooth muscle cells and progression of pulmonary hypertension. These channels also maintain flow-induced vasodilation and preserve vascular function by directly activating Ca(2+)-dependent KCa channels. Furthermore, these may also induce vasodilation and maintain blood pressure indirectly by evoking the release of NO, CGRP, and substance P. The present review discusses the evidences and the potential mechanisms implicated in diverse responses including arteriogenesis, cardiac remodeling, congestive heart failure-induced pulmonary edema, pulmonary hypertension, flow-induced dilation, regulation of blood pressure, and hypoxic preconditioning.

  5. The human red cell voltage-regulated cation channel. The interplay with the chloride conductance, the Ca(2+)-activated K(+) channel and the Ca(2+) pump.

    PubMed

    Bennekou, P; Kristensen, B I; Christophersen, P

    2003-09-01

    The activation/deactivation kinetics of the human erythrocyte voltage-dependent cation channel was characterized at the single-channel level using inside-out patches. It was found that the time dependence for voltage activation after steps to positive membrane potentials was slow ( t(1/2) about 30 s), whereas the deactivation was fast ( t(1/2) about 15 ms). Both activation and deactivation of this channel were also demonstrated in intact red cells in suspension. At very positive membrane potentials generated by suspension in extracellular low Cl(-) concentrations, the cation conductance switched on with a time constant of about 2 min. Deactivation of the cation channel was clearly demonstrated during transient activation of the Gárdos channel elicited by Ca(2+) influx via the cation channel and ensuing efflux via the Ca(2+) pump. Thus, the voltage-dependent cation channel, the Gárdos channel and the Ca(2+) pump constitute a coupled feedback-regulated system that may become operative under physiological conditions.

  6. A simple and highly sensitive spectroscopic fluorescence-detection system for multi-channel plastic-microchip electrophoresis based on side-entry laser-beam zigzag irradiation.

    PubMed

    Anazawa, Takashi; Uchiho, Yuichi; Yokoi, Takahide; Chalkidis, George; Yamazaki, Motohiro

    2017-06-27

    A five-color fluorescence-detection system for eight-channel plastic-microchip electrophoresis was developed. In the eight channels (with effective electrophoretic lengths of 10 cm), single-stranded DNA fragments were separated (with single-base resolution up to 300 bases within 10 min), and seventeen-loci STR genotyping for forensic human identification was successfully demonstrated. In the system, a side-entry laser beam is passed through the eight channels (eight A channels), with alternately arrayed seven sacrificial channels (seven B channels), by a technique called "side-entry laser-beam zigzag irradiation." Laser-induced fluorescence from the eight A channels and Raman-scattered light from the seven B channels are then simultaneously, uniformly, and spectroscopically detected, in the direction perpendicular to the channel array plane, through a transmission grating and a CCD camera. The system is therefore simple and highly sensitive. Because the microchip is fabricated by plastic-injection molding, it is inexpensive and disposable and thus suitable for actual use in various fields.

  7. Biochemical Characterization of Cone Cyclic Nucleotide-gated (CNG) Channel Using the Infrared Fluorescence Detection System

    PubMed Central

    Ding, Xi-Qin; Matveev, Alexander; Singh, Anil; Komori, Naoka; Matsumoto, Hiroyuki

    2012-01-01

    Cone vision mediated by photoreceptor cyclic nucleotide-gated (CNG) channel is essential for central and color vision and visual acuity. Cone CNG channel is composed of two structurally related subunit types, CNGA3 and CNGB3. Naturally occurring mutations in cone CNG channel are associated with a variety of cone diseases including achromatopsia, progressive cone dystrophy, and some maculopathies. Nevertheless, our understanding of the structure of cone CNG channel is quite limited. This is, in part, due to the challenge of studying cones in a rod-dominant mammalian retina. We have demonstrated a robust expression of cone CNG channel and lack of rod CNG channel in the cone-dominant Nrl−/− retina and shown that the Nrl−/− mouse line is a valuable model to study cone CNG channel. This work examined the complex structure of cone CNG channel using infrared fluorescence Western detection combined with chemical cross-linking and blue native-PAGE. Our results suggest that the native cone CNG channel is a heterotetrameric complex likely at a stoichiometry of three CNGA3 and one CNGB3. PMID:22183405

  8. High temperature sensitivity is intrinsic to voltage-gated potassium channels

    PubMed Central

    Yang, Fan; Zheng, Jie

    2014-01-01

    Temperature-sensitive transient receptor potential (TRP) ion channels are members of the large tetrameric cation channels superfamily but are considered to be uniquely sensitive to heat, which has been presumed to be due to the existence of an unidentified temperature-sensing domain. Here we report that the homologous voltage-gated potassium (Kv) channels also exhibit high temperature sensitivity comparable to that of TRPV1, which is detectable under specific conditions when the voltage sensor is functionally decoupled from the activation gate through either intrinsic mechanisms or mutations. Interestingly, mutations could tune Shaker channel to be either heat-activated or heat-deactivated. Therefore, high temperature sensitivity is intrinsic to both TRP and Kv channels. Our findings suggest important physiological roles of heat-induced variation in Kv channel activities. Mechanistically our findings indicate that temperature-sensing TRP channels may not contain a specialized heat-sensor domain; instead, non-obligatory allosteric gating permits the intrinsic heat sensitivity to drive channel activation, allowing temperature-sensitive TRP channels to function as polymodal nociceptors. DOI: http://dx.doi.org/10.7554/eLife.03255.001 PMID:25030910

  9. PIP₂ modulation of Slick and Slack K⁺ channels.

    PubMed

    de los Angeles Tejada, Maria; Jensen, Lars Jørn; Klaerke, Dan A

    2012-07-27

    Slick and Slack are members of the Slo family of high-conductance potassium channels. These channels are activated by Na(+) and Cl(-) and are highly expressed in the CNS, where they are believed to contribute to the resting membrane potential of neurons and the control of excitability. Herein, we provide evidence that Slick and Slack channels are regulated by the phosphoinositide PIP(2). Two stereoisomers of PIP(2) were able to exogenously activate Slick and Slack channels expressed in Xenopus oocytes, and in addition, it is shown that Slick and Slack channels are modulated by endogenous PIP(2). The activating effect of PIP(2) appears to occur by direct interaction with lysine 306 in Slick and lysine 339 in Slack, located at the proximal C-termini of both channels. Overall, our data suggest that PIP(2) is an important regulator of Slick and Slack channels, yet it is not involved in the recently described cell volume sensitivity of Slick channels, since mutated PIP(2)-insensitive Slick channels retained their sensitivity to cell volume. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Controlled injection using a channel pinch in a plasma-channel-guided laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Liu, Jiaqi; Zhang, Zhijun; Liu, Jiansheng; Li, Wentao; Wang, Wentao; Yu, Changhai; Qi, Rong; Qin, Zhiyong; Fang, Ming; Wu, Ying; Feng, Ke; Ke, Lintong; Wang, Cheng; Li, Ruxin

    2018-06-01

    Plasma-channel-guided laser plasma accelerators make it possible to drive high-brilliance compact radiation sources and have high-energy physics applications. Achieving tunable internal injection of the electron beam (e beam) inside the plasma channel, which realizes a tunable radiation source, is a challenging method to extend such applications. In this paper, we propose the use of a channel pinch, which is designed as an initial reduction followed by an expansion of the channel radius along the plasma channel, to achieve internal controlled off-axis e beam injection in a channel-guided laser plasma accelerator. The off-axis injection is triggered by bubble deformation in the expansion region. The dynamics of the plasma wake is explored, and the trapping threshold is found to be reduced radially in the channel pinch. Simulation results show that the channel pinch not only triggers injection process localized at the pinch but also modulates the parameters of the e beam by adjusting its density profile, which can additionally accommodate a tunable radiation source via betatron oscillation.

  11. Role of potassium ion channels in detrusor smooth muscle function and dysfunction

    PubMed Central

    Petkov, Georgi V.

    2013-01-01

    Contraction and relaxation of the detrusor smooth muscle (DSM), which makes up the wall of the urinary bladder, facilitates the storage and voiding of urine. Several families of K+ channels, including voltage-gated K+ (KV) channels, Ca2+-activated K+ (KCa) channels, inward-rectifying ATP-sensitive K+ (Kir, KATP) channels, and two-pore-domain K+ (K2P) channels, are expressed and functional in DSM. They control DSM excitability and contractility by maintaining the resting membrane potential and shaping the action potentials that determine the phasic nature of contractility in this tissue. Defects in DSM K+ channel proteins or in the molecules involved in their regulatory pathways may underlie certain forms of bladder dysfunction, such as overactive bladder. K+ channels represent an opportunity for novel pharmacological manipulation and therapeutic intervention in human DSM. Modulation of DSM K+ channels directly or indirectly by targeting their regulatory mechanisms has the potential to control urinary bladder function. This Review summarizes our current state of knowledge of the functional role of K+ channels in DSM in health and disease, with special emphasis on current advancements in the field. PMID:22158596

  12. Anion channels: master switches of stress responses.

    PubMed

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Optimal chroma-like channel design for passive color image splicing detection

    NASA Astrophysics Data System (ADS)

    Zhao, Xudong; Li, Shenghong; Wang, Shilin; Li, Jianhua; Yang, Kongjin

    2012-12-01

    Image splicing is one of the most common image forgeries in our daily life and due to the powerful image manipulation tools, image splicing is becoming easier and easier. Several methods have been proposed for image splicing detection and all of them worked on certain existing color channels. However, the splicing artifacts vary in different color channels and the selection of color model is important for image splicing detection. In this article, instead of finding an existing color model, we propose a color channel design method to find the most discriminative channel which is referred to as optimal chroma-like channel for a given feature extraction method. Experimental results show that both spatial and frequency features extracted from the designed channel achieve higher detection rate than those extracted from traditional color channels.

  14. El Tor hemolysin of Vibrio cholerae O1 forms channels in planar lipid bilayer membranes.

    PubMed

    Ikigai, H; Ono, T; Iwata, M; Nakae, T; Shimamura, T

    1997-05-15

    We investigated the channel formation by El Tor hemolysin (molecular mass, 65 kDa) of Vibrio cholerae O1 biotype El Tor in planar lipid bilayers. The El Tor hemolysin channel exhibited asymmetric and hyperbolic membrane current with increasing membrane potential, meaning that the channel is voltage dependent. The zero-current membrane potential measured in KCI solution showed that permeability ratio PK+/PCl- was 0.16, indicating that the channel is 6-fold more anion selective over cation. The hemolysin channel frequently flickered in the presence of divalent cations, suggesting that the channel spontaneously opens and closes. These data imply that the El Tor hemolysin damages target cells by the formation of transmembrane channels and, consequently, is the cause of osmotic cytolysis.

  15. Mechanisms of Gain Control by Voltage-Gated Channels in Intrinsically-Firing Neurons

    PubMed Central

    Patel, Ameera X.; Burdakov, Denis

    2015-01-01

    Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output) relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density) of voltage-gated channels increased (Ca2+ channel), reduced (K+ channels), or produced little effect (h-type channel) on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing). For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other nervous systems. PMID:25816008

  16. Mechanism of HERG potassium channel inhibition by tetra-n-octylammonium bromide and benzethonium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Yan; Lin, Zuoxian; Xia, Menghang

    Tetra-n-octylammonium bromide and benzethonium chloride are synthetic quaternary ammonium salts that are widely used in hospitals and industries for the disinfection and surface treatment and as the preservative agent. Recently, the activities of HERG channel inhibition by these compounds have been found to have potential risks to induce the long QT syndrome and cardiac arrhythmia, although the mechanism of action is still elusive. This study was conducted to investigate the mechanism of HERG channel inhibition by these compounds by using whole-cell patch clamp experiments in a CHO cell line stably expressing HERG channels. Tetra-n-octylammonium bromide and benzethonium chloride exhibited concentration-dependentmore » inhibitions of HERG channel currents with IC{sub 50} values of 4 nM and 17 nM, respectively, which were also voltage-dependent and use-dependent. Both compounds shifted the channel activation I–V curves in a hyperpolarized direction for 10–15 mV and accelerated channel activation and inactivation processes by 2-fold. In addition, tetra-n-octylammonium bromide shifted the inactivation I–V curve in a hyperpolarized direction for 24.4 mV and slowed the rate of channel deactivation by 2-fold, whereas benzethonium chloride did not. The results indicate that tetra-n-octylammonium bromide and benzethonium chloride are open-channel blockers that inhibit HERG channels in the voltage-dependent, use-dependent and state-dependent manners. - Highlights: ► Tetra-n-octylammonium and benzethonium are potent HERG channel inhibitors. ► Channel activation and inactivation processes are accelerated by the two compounds. ► Both compounds are the open-channel blockers to HERG channels. ► HERG channel inhibition by both compounds is use-, voltage- and state dependent. ► The in vivo risk of QT prolongation needs to be studied for the two compounds.« less

  17. Hydrodynamics and Connectivity of Channelized Floodplains: Insights from the Meandering East Fork White River, Indiana, USA

    NASA Astrophysics Data System (ADS)

    Czuba, J. A.; David, S. R.; Edmonds, D. A.

    2017-12-01

    High resolution topography reveals that meandering river floodplains in Indiana commonly have networks of channels. These floodplain channel networks are most prevalent in agricultural, low-gradient, wide floodplains. It appears that these networks are formed when floodplain channels connect oxbows to each other and the main river channel. Collectively, the channels in the floodplain create an interconnected network of pathways that convey water beginning at flows less than bankfull, and as stage increases, more of the floodplain becomes dissected by floodplain channels. In this work, we quantify the hydrodynamics and connectivity of the flow on the floodplain and in the main channel of the East Fork White River near Seymour, Indiana, USA. We constructed a two-dimensional numerical model using HECRAS of the river-floodplain system from LiDAR data and from main-channel river bathymetry to elucidate the behaviour of these floodplain channels across a range of flows. Model calibration and verification data included stage from a USGS gage, high-water marks at a high and medium flow, and an aerial photograph of inundation in the floodplain channels. The numerical model simulated flow depth and velocity, which was used to quantify connectivity of the floodplain channels, exchange between the main channel and floodplain channels, and residence time of water on the floodplain. Model simulations suggest that the floodplain channels convey roughly 50% of the total flow at what is typically considered "bankfull" flow. Overall, we present a process-based approach for analyzing complex floodplain-river systems where an individual floodplain-river system can be distilled down to a set of characteristic curves. Notably, we map the East Fork White River system to exchange-residence time space and argue that this characterization forms the basis for thinking about morphologic evolution (e.g., sediment deposition and erosion) and biogeochemistry (e.g., nitrate removal) in floodplain-river systems.

  18. Using Remote Sensing and High-Resolution Digital Elevation Models to Identify Potential Erosional Hotspots Along River Channels During High Discharge Storm Events

    NASA Astrophysics Data System (ADS)

    Orland, E. D.; Amidon, W. H.

    2017-12-01

    As global warming intensifies, large precipitation events and associated floods are becoming increasingly common. Channel adjustments during floods can occur by both erosion and deposition of sediment, often damaging infrastructure in the process. There is thus a need for predictive models that can help managers identify river reaches that are most prone to adjustment during storms. Because rivers in post-glacial landscapes often flow over a mixture of bedrock and alluvial substrates, the identification of bedrock vs. alluvial channel reaches is an important first step in predicting vulnerability to channel adjustment during flood events, especially because bedrock channels are unlikely to adjust significantly, even during floods. This study develops a semi-automated approach to predicting channel substrate using a high-resolution LiDAR-derived digital elevation model (DEM). The study area is the Middlebury River in Middlebury, VT-a well-studied watershed with a wide variety of channel substrates, including reaches with documented channel adjustments during recent flooding events. Multiple metrics were considered for reference—such as channel width and drainage area—but the study utilized channel slope as a key parameter for identifying morphological variations within the Middlebury River. Using data extracted from the DEM, a power law was fit to selected slope and drainage area values for each branch in order to model idealized slope-drainage area relationships, which were then compared with measured slope-drainage area relationships. Differences in measured slope minus predicted slope (called delta-slope) are shown to help predict river channel substrate. Compared with field observations, higher delta-slope values correlate with more stable, boulder rich channels or bedrock gorges; conversely the lowest delta-slope values correlate with flat, sediment rich alluvial channels. The delta-slope metric thus serves as a reliable first-order predictor of channel substrate in the Middlebury River, which in turn can be used to help identify local reaches that are most vulnerable to channel adjustment during large flood events.

  19. Use of multidimensional modeling to evaluate a channel restoration design for the Kootenai River, Idaho

    USGS Publications Warehouse

    Logan, B.L.; McDonald, R.R.; Nelson, J.M.; Kinzel, P.J.; Barton, G.J.

    2011-01-01

    River channel construction projects aimed at restoring or improving degraded waterways have become common but have been variously successful. In this report a methodology is proposed to evaluate channel designs before channels are built by using multidimensional modeling and analysis. This approach allows detailed analysis of water-surface profiles, sediment transport, and aquatic habitat that may result if the design is implemented. The method presented here addresses the need to model a range of potential stream-discharge and channel-roughness conditions to best assess the function of the design channel for a suite of possible conditions. This methodology is demonstrated by using a preliminary channel-restoration design proposed for a part of the Kootenai River in northern Idaho designated as critical habitat for the endangered white sturgeon (Acipenser transmontanus) and evaluating the design on the basis of simulations with the Flow and Sediment Transport with Morphologic Evolution of Channels (FaSTMECH) model. This evaluation indicated substantial problems with the preliminary design because boundary conditions used in the design were inconsistent with best estimates of future conditions. As a result, simulated water-surface levels did not meet target levels that corresponded to the designed bankfull surfaces; therefore, the flood plain would not function as intended. Sediment-transport analyses indicated that both the current channel of the Kootenai River and the design channel are largely unable to move the bed material through the reach at bankfull discharge. Therefore, sediment delivered to the design channel would likely be deposited within the reach instead of passing through it as planned. Consequently, the design channel geometry would adjust through time. Despite these issues, the design channel would provide more aquatic habitat suitable for spawning white sturgeon (Acipenser transmontanus) at lower discharges than is currently available in the Kootenai River. The evaluation methodology identified potential problems with the design channel that can be addressed through design modifications to better meet project objectives before channel construction.

  20. Enhancement and creation of secondary channel habitat: Review of project performance across a range of project types and settings

    NASA Astrophysics Data System (ADS)

    Epstein, J.; Lind, P.

    2017-12-01

    Secondary channels provide critical off-channel habitat for key life stages of aquatic species. In many systems, interruption of natural processes via anthropogenic influences have reduced the quantity of secondary channel habitat and have impaired the processes that help form and maintain them. Creation and enhancement of secondary channels is therefore a key component of stream rehabilitation, particularly in the Pacific Northwest where the focus has been on enhancement of habitat for ESA-listed salmonids. Secondary channel enhancement varies widely in scope, scale, and approach depending on species requirements, hydrology/hydraulics, geomorphologic setting, sediment dynamics, and human constraints. This presentation will review case studies from numerous secondary channel projects constructed over the last 20 years by different entities and in different settings. Lessons learned will be discussed that help to understand project performance and inform future project design. A variety of secondary channel project types will be reviewed, including mainstem flow splits, year-round flow through, seasonally activated, backwater alcove, natural groundwater-fed, and engineered groundwater-fed (i.e. groundwater collection galleries). Projects will be discussed that span a range of project construction intensities, such as full excavation of side channels, select excavation to increase flow, or utilizing mainstem structures to activate channels. Different configurations for connecting to the main channel, and their relative performance, will also be presented. A variety of connection types will be discussed including stabilized channel entrance, free-formed entrance, using bar apex jams to split flows, using `bleeder' jams to limit secondary channel flow, and obstructing the main channel to divert flows into secondary channels. The performance and longevity of projects will be discussed, particularly with respect to the response to sediment mobilizing events. Lessons learned from design, construction, and monitoring will be synthesized to share what worked and what didn't, and what key elements a practitioner should think about as part of enhancement project design.

  1. Molecular basis for the toxin insensitivity of scorpion voltage-gated potassium channel MmKv1.

    PubMed

    Zhang, Chuangeng; Xie, Zili; Li, Xinxin; Chen, Jing; Feng, Jing; Lang, Yange; Yang, Weishan; Li, Wenxin; Chen, Zongyun; Yao, Jing; Cao, Zhijian; Wu, Yingliang

    2016-05-01

    Scorpions are insensitive to their own venoms, which contain various neurotoxins specific for mammalian or insect ion channels, whose molecular mechanism remains unsolved. Using MmKv1, a potassium channel identified from the genome of the scorpion Mesobuthus martensii, channel kinetic experiments showed that MmKv1 was a classical voltage-gated potassium channel with a voltage-dependent fast activation and slow inactivation. Compared with the human Kv1.3 channel (hKv1.3), the MmKv1 channel exhibited a remarkable insensitivity to both scorpion venom and toxin. The chimaeric channels of MmKv1 and hKv1.3 revealed that both turret and filter regions of the MmKv1 channel were critical for the toxin insensitivity of MmKv1. Furthermore, mutagenesis of the chimaeric channel indicated that two basic residues (Arg(399) and Lys(403)) in the MmKv1 turret region and Arg(425) in the MmKv1 filter region significantly affected its toxin insensitivity. Moreover, when these three basic residues of MmKv1 were simultaneously substituted with the corresponding residues from hKv1.3, the MmKv1-R399T/K403S/R425H mutant channels exhibited similar sensitivity to both scorpion venom and toxin to hKv1.3, which revealed the determining role of these three basic residues in the toxin insensitivity of the MmKv1 channel. More strikingly, a similar triad sequence structure is present in all Shaker-like channels from venomous invertebrates, which suggested a possible convergent functional evolution of these channels to enable them to resist their own venoms. Together, these findings first illustrate the mechanism by which scorpions are insensitive to their own venoms at the ion channel receptor level and enrich our knowledge of the insensitivity of scorpions and other venomous animals to their own venoms. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  2. Transient bedrock channel evolution across a precipitation gradient: A case study from Kohala, Hawaii.

    NASA Astrophysics Data System (ADS)

    Gasparini, N. M.; Han, J.; Johnson, J. P.; Menking, J. A.

    2011-12-01

    This study uses observations from the Kohala Peninsula, on the Big Island of Hawaii, and numerical modeling, to explore how precipitation gradients may affect fluvial bedrock incision and channel morphology. Orographic precipitation patterns result in over 4 m/yr of rainfall on the wet side of the peninsula and less than 0.5 m/yr on the dry side. These precipitation patterns likely strongly contribute to the observed channel morphology. Further, the region is subsiding, leading to prolonged transient channel evolution. We explore changes in a number of channel morphologic parameters with watershed averaged precipitation rate. We use PRISM precipitation data and data from isohyets developed from historic rain gauge data. Not surprisingly, valley depth, measured from a 10 meter DEM, increases with spatially averaged precipitation rate. We also find that channel profile form varies with precipitation rate, with drier channels exhibiting a straight to slightly concave channel form and wetter channels exhibiting a convex to concave channel form. The precipitation value at which this transition in channel profile form occurs depends on the precipitation data-set used, highlighting the need for more accurate measurements of precipitation in settings with extreme precipitation patterns similar to our study area. The downstream pattern in precipitation is likely significant in the development of the convex-concave profile form. Numerical modeling results support that precipitation patterns such as those observed on the wet-side of the Kohala Peninsula may contribute to the convex-concave profile form. However, we emphasize that while precipitation patterns may contribute to the channel form, these channel features are transient and not expected to be sustained in steady-state landscapes. We also emphasize that it is fluvial discharge, as driven by precipitation, rather than precipitation alone, that drives the processes shaping the channel form. Because fluvial discharge is integrative, relatively extreme precipitation gradients are required to produce anomalous channel profile forms.

  3. Ion concentrations and velocity profiles in nanochannel electroosmotic flows

    NASA Astrophysics Data System (ADS)

    Qiao, R.; Aluru, N. R.

    2003-03-01

    Ion distributions and velocity profiles for electroosmotic flow in nanochannels of different widths are studied in this paper using molecular dynamics and continuum theory. For the various channel widths studied in this paper, the ion distribution near the channel wall is strongly influenced by the finite size of the ions and the discreteness of the solvent molecules. The classical Poisson-Boltzmann equation fails to predict the ion distribution near the channel wall as it does not account for the molecular aspects of the ion-wall and ion-solvent interactions. A modified Poisson-Boltzmann equation based on electrochemical potential correction is introduced to account for ion-wall and ion-solvent interactions. The electrochemical potential correction term is extracted from the ion distribution in a smaller channel using molecular dynamics. Using the electrochemical potential correction term extracted from molecular dynamics (MD) simulation of electroosmotic flow in a 2.22 nm channel, the modified Poisson-Boltzmann equation predicts the ion distribution in larger channel widths (e.g., 3.49 and 10.00 nm) with good accuracy. Detailed studies on the velocity profile in electro-osmotic flow indicate that the continuum flow theory can be used to predict bulk fluid flow in channels as small as 2.22 nm provided that the viscosity variation near the channel wall is taken into account. We propose a technique to embed the velocity near the channel wall obtained from MD simulation of electroosmotic flow in a narrow channel (e.g., 2.22 nm wide channel) into simulation of electroosmotic flow in larger channels. Simulation results indicate that such an approach can predict the velocity profile in larger channels (e.g., 3.49 and 10.00 nm) very well. Finally, simulation of electroosmotic flow in a 0.95 nm channel indicates that viscosity cannot be described by a local, linear constitutive relationship that the continuum flow theory is built upon and thus the continuum flow theory is not applicable for electroosmotic flow in such small channels.

  4. Is channel segmentation necessary to reach a multiethnic population with weight-related health promotion? An analysis of use and perception of communication channels

    PubMed Central

    Nierkens, Vera; Cremer, Stephan W.; Verhoeff, Arnoud; Stronks, Karien

    2014-01-01

    Objective To explore similarities and differences in the use and perception of communication channels to access weight-related health promotion among women in three ethnic minority groups. The ultimate aim was to determine whether similar channels might reach ethnic minority women in general or whether segmentation to ethnic groups would be required. Design Eight ethnically homogeneous focus groups were conducted among 48 women of Ghanaian, Antillean/Aruban, or Afro-Surinamese background living in Amsterdam. Our questions concerned which communication channels they usually used to access weight-related health advice or information about programs and whose information they most valued. The content analysis of data was performed. Results The participants mentioned four channels – regular and traditional healthcare, general or ethnically specific media, multiethnic and ethnic gatherings, and interpersonal communication with peers in the Netherlands and with people in the home country. Ghanaian women emphasized ethnically specific channels (e.g., traditional healthcare, Ghanaian churches). They were comfortable with these channels and trusted them. They mentioned fewer general channels – mainly limited to healthcare – and if discussed, negative perceptions were expressed. Antillean women mentioned the use of ethnically specific channels (e.g., communication with Antilleans in the home country) on balance with general audience–oriented channels (e.g., regular healthcare). Perceptions were mixed. Surinamese participants discussed, in a positive manner, the use of general audience–oriented channels, while they said they did not use traditional healthcare or advice from Surinam. Local language proficiency, time resided in the Netherlands, and approaches and messages received seemed to explain channel use and perception. Conclusion The predominant differences in channel use and perception among the ethnic groups indicate a need for channel segmentation to reach a multiethnic target group with weight-related health promotion. The study results reveal possible segmentation criteria besides ethnicity, such as local language proficiency and time since migration, worthy of further investigation. PMID:24750018

  5. Is channel segmentation necessary to reach a multiethnic population with weight-related health promotion? An analysis of use and perception of communication channels.

    PubMed

    Hartman, Marieke A; Nierkens, Vera; Cremer, Stephan W; Verhoeff, Arnoud; Stronks, Karien

    2015-01-01

    To explore similarities and differences in the use and perception of communication channels to access weight-related health promotion among women in three ethnic minority groups. The ultimate aim was to determine whether similar channels might reach ethnic minority women in general or whether segmentation to ethnic groups would be required. Eight ethnically homogeneous focus groups were conducted among 48 women of Ghanaian, Antillean/Aruban, or Afro-Surinamese background living in Amsterdam. Our questions concerned which communication channels they usually used to access weight-related health advice or information about programs and whose information they most valued. The content analysis of data was performed. The participants mentioned four channels - regular and traditional health care, general or ethnically specific media, multiethnic and ethnic gatherings, and interpersonal communication with peers in the Netherlands and with people in the home country. Ghanaian women emphasized ethnically specific channels (e.g., traditional health care, Ghanaian churches). They were comfortable with these channels and trusted them. They mentioned fewer general channels - mainly limited to health care - and if discussed, negative perceptions were expressed. Antillean women mentioned the use of ethnically specific channels (e.g., communication with Antilleans in the home country) on balance with general audience-oriented channels (e.g., regular health care). Perceptions were mixed. Surinamese participants discussed, in a positive manner, the use of general audience-oriented channels, while they said they did not use traditional health care or advice from Surinam. Local language proficiency, time resided in the Netherlands, and approaches and messages received seemed to explain channel use and perception. The predominant differences in channel use and perception among the ethnic groups indicate a need for channel segmentation to reach a multiethnic target group with weight-related health promotion. The study results reveal possible segmentation criteria besides ethnicity, such as local language proficiency and time since migration, worthy of further investigation.

  6. Progressive video coding for noisy channels

    NASA Astrophysics Data System (ADS)

    Kim, Beong-Jo; Xiong, Zixiang; Pearlman, William A.

    1998-10-01

    We extend the work of Sherwood and Zeger to progressive video coding for noisy channels. By utilizing a 3D extension of the set partitioning in hierarchical trees (SPIHT) algorithm, we cascade the resulting 3D SPIHT video coder with a rate-compatible punctured convolutional channel coder for transmission of video over a binary symmetric channel. Progressive coding is achieved by increasing the target rate of the 3D embedded SPIHT video coder as the channel condition improves. The performance of our proposed coding system is acceptable at low transmission rate and bad channel conditions. Its low complexity makes it suitable for emerging applications such as video over wireless channels.

  7. Monitoring inter-channel nonlinearity based on differential pilot

    NASA Astrophysics Data System (ADS)

    Wang, Wanli; Yang, Aiying; Guo, Peng; Lu, Yueming; Qiao, Yaojun

    2018-06-01

    We modify and simplify the inter-channel nonlinearity (NL) estimation method by using differential pilot. Compared to previous works, the inter-channel NL estimation method we propose has much lower complexity and does not need modification of the transmitter. The performance of inter-channel NL monitoring with different launch power is tested. For both QPSK and 16QAM systems with 9 channels, the estimation error of inter-channel NL is lower than 1 dB when the total launch power is bigger than 12 dBm after 1000 km optical transmission. At last, we compare our inter-channel NL estimation method with other methods.

  8. Effect of channel width variation on sediment transport in mixed alluvial-bedrock rivers - from case study to concept

    NASA Astrophysics Data System (ADS)

    Cook, Kristen; Turowski, Jens; Hovius, Niels

    2017-04-01

    In mixed bedrock-alluvial rivers, the response of the system to a flood event can be affected by a number of factors, including coarse sediment availability in the channel, sediment supply from the hillslopes, bedrock-controlled changes in channel width, and the shape of the hydrograph. Local hydraulics and therefore bedload transport capacity depend on discharge and channel geometry, typically quantified by channel width and bed slope. However, the influence of channel width on total bedload transport capacity depends on discharge. For a given slope, narrow channels are more efficient than wide ones at low discharges, while wider channels are more efficient at higher discharges. Therefore, abrupt changes in downstream channel width may affect bedload flux through a channel and have important influences on channel behavior. We use the model sedFlow (Heimann et al., 2014) to explore this effect. We ran the model in a 4.5 km long channel, the center of which contains a 1 km gorge section with a width of 15 m, bounded upstream and downstream by sections with widths of 50 m. We imposed a discharge time series with a random sequence of floods of different size. The channel responds to the imposed floods in complex ways. At high discharges, the gorge reach transports less total sediment than the wide reaches, leading to aggradation in the upper part of the gorge and upstream and erosion in the lower part of the gorge and downstream. At lower discharges, the gorge becomes more efficient at transporting sediment and the trends reverse. The channel may experience both of these regimes during the peak and recession periods of a single flood, leading to a highly dynamic channel bed. This is consistent with observations from the Daan River gorge in western Taiwan, where we observe substantial intra-flood variations in channel bed elevation. Our modeling suggests that width differences alone can drive substantial variations in sediment flux and bed response, without the need for variations in sediment supply or mobility. Because the relationship between channel width and sediment transport capacity depends on the discharge, the long-term response of a channel with variable width depends on the entire hydrograph, not just on the flood peak. In addition, the net effect of a flood depends strongly on the preceding sequence of floods, as the long profile and channel slopes are continually adjusting to different forcing. Therefore modeling studies that use uniform discharge or a step function discharge will miss these dynamics. The fluctuations in sediment transport rates that result from width variations can lead to intermittent bed exposure, driving incision in different segments of the channel during different segments of the hydrograph.

  9. Direct demonstration of persistent Na+ channel activity in dendritic processes of mammalian cortical neurones

    PubMed Central

    Magistretti, Jacopo; Ragsdale, David S; Alonso, Angel

    1999-01-01

    Single Na+ channel activity was recorded in patch-clamp, cell-attached experiments performed on dendritic processes of acutely isolated principal neurones from rat entorhinal-cortex layer II. The distances of the recording sites from the soma ranged from ≈20 to ≈100 μm.Step depolarisations from holding potentials of −120 to −100 mV to test potentials of −60 to +10 mV elicited Na+ channel openings in all of the recorded patches (n= 16).In 10 patches, besides transient Na+ channel openings clustered within the first few milliseconds of the depolarising pulses, prolonged and/or late Na+ channel openings were also regularly observed. This ‘persistent’ Na+ channel activity produced net inward, persistent currents in ensemble-average traces, and remained stable over the entire duration of the experiments (≈9 to 30 min).Two of these patches contained <= 3 channels. In these cases, persistent Na+ channel openings could be attributed to the activity of one single channel.The voltage dependence of persistent-current amplitude in ensemble-average traces closely resembled that of whole-cell, persistent Na+ current expressed by the same neurones, and displayed the same characteristic low threshold of activation.Dendritic, persistent Na+ channel openings had relatively high single-channel conductance (≈20 pS), similar to what is observed for somatic, persistent Na+ channels.We conclude that a stable, persistent Na+ channel activity is expressed by proximal dendrites of entorhinal-cortex layer II principal neurones, and can contribute a significant low-threshold, persistent Na+ current to the dendritic processing of excitatory synaptic inputs. PMID:10601494

  10. Sedimentary processes and architecture of Upper Cretaceous deep-sea channel deposits: a case from the Skole Nappe, Polish Outer Carpathians

    NASA Astrophysics Data System (ADS)

    Łapcik, Piotr

    2018-02-01

    Deep-sea channels are one of the architectonic elements, forming the main conduits for sand and gravel material in the turbidite depositional systems. Deep-sea channel facies are mostly represented by stacking of thick-bedded massive sandstones with abundant coarse-grained material, ripped-up clasts, amalgamation and large scale erosional structures. The Manasterz Quarry of the Ropianka Formation (Upper Cretaceous, Skole Nappe, Carpathians) contains a succession of at least 31 m of thick-bedded high-density turbidites alternated with clast-rich sandy debrites, which are interpreted as axial deposits of a deep-sea channel. The section studied includes 5 or 6 storeys with debrite basal lag deposits covered by amalgamated turbidite fills. The thickness of particular storeys varies from 2.5 to 13 m. Vertical stacking of similar facies through the whole thickness of the section suggest a hierarchically higher channel-fill or a channel complex set, with an aggradation rate higher than its lateral migration. Such channel axis facies cannot aggrade without simultaneous aggradation of levee confinement, which was distinguished in an associated section located to the NW from the Manasterz Quarry. Lateral offset of channel axis facies into channel margin or channel levee facies is estimated at less than 800 m. The Manasterz Quarry section represents mostly the filling and amalgamation stage of channel formation. The described channel architectural elements of the Ropianka Formation are located within the so-called Łańcut Channel Zone, which was previously thought to be Oligocene but may have been present already in the Late Cretaceous.

  11. IP3-gated channels and their occurrence relative to CNG channels in the soma and dendritic knob of rat olfactory receptor neurons.

    PubMed

    Kaur, R; Zhu, X O; Moorhouse, A J; Barry, P H

    2001-05-15

    Olfactory receptor neurons respond to odorants with G protein-mediated increases in the concentrations of cyclic adenosine 3',5'-monophosphate (cAMP) and/or inositol-1,4,5-trisphosphate (IP3). This study provides evidence that both second messengers can directly activate distinct ion channels in excised inside-out patches from the dendritic knob and soma membrane of rat olfactory receptor neurons (ORNs). The IP3-gated channels in the dendritic knob and soma membranes could be classified into two types, with conductances of 40 +/- 7 pS (n = 5) and 14 +/- 3 pS (n = 4), with the former having longer open dwell times. Estimated values of the densities of both channels from the same inside-out membrane patches were very much smaller for IP3-gated than for CNG channels. For example, in the dendritic knob membrane there were about 1000 CNG channels x microm(-2) compared to about 85 IP3-gated channels x microm(-2). Furthermore, only about 36% of the dendritic knob patches responded to IP3, whereas 83% of the same patches responded to cAMP. In the soma, both channel densities were lower, with the CNG channel density again being larger ( approximately 57 channels x microm(-2)) than that of the IP3-gated channels ( approximately 13 channels x microm(-2)), with again a much smaller fraction of patches responding to IP3 than to cAMP. These results were consistent with other evidence suggesting that the cAMP-pathway dominates the IP3 pathway in mammalian olfactory transduction.

  12. PI3-kinase promotes TRPV2 activity independently of channel translocation to the plasma membrane.

    PubMed

    Penna, Aubin; Juvin, Véronique; Chemin, Jean; Compan, Vincent; Monet, Michael; Rassendren, François-A

    2006-06-01

    Cellular or chemical activators for most transient receptor potential channels of the vanilloid subfamily (TRPV) have been identified in recent years. A remarkable exception to this is TRPV2, for which cellular events leading to channel activation are still a matter of debate. Diverse stimuli such as extreme heat or phosphatidylinositol-3 kinase (PI3-kinase) regulated membrane insertion have been shown to promote TRPV2 channel activity. However, some of these results have proved difficult to reproduce and may underlie different gating mechanisms depending on the cell type in which TRPV2 channels are expressed. Here, we show that expression of recombinant TRPV2 can induce cytotoxicity that is directly related to channel activity since it can be prevented by introducing a charge substitution in the pore-forming domain of the channel, or by reducing extracellular calcium. In stably transfected cells, TRPV2 expression results in an outwardly rectifying current that can be recorded at all potentials, and in an increase of resting intracellular calcium concentration that can be partly prevented by serum starvation. Using cytotoxicity as a read-out of channel activity and direct measurements of cell surface expression of TRPV2, we show that inhibition of the PI3-kinase decreases TRPV2 channel activity but does not affect the trafficking of the channel to the plasma membrane. It is concluded that PI3-kinase induces or modulates the activity of recombinant TRPV2 channels; in contrast to the previously proposed mechanism, activation of TRPV2 channels by PI3-kinase is not due to channel translocation to the plasma membrane.

  13. Channel Size Conversion of Phi29 DNA-Packaging Nanomotor for Discrimination of Single- and Double-Stranded Nucleic Acids

    PubMed Central

    Geng, Jia; Wang, Shaoying; Fang, Huaming; Guo, Peixuan

    2013-01-01

    Nanopores have been utilized to detect the conformation and dynamics of polymers, including DNA and RNA. Biological pores are extremely reproducible at the atomic level with uniform channel sizes. The channel of the bacterial virus phi29 DNA packaging motor is a natural conduit for the transportation of double-stranded DNA (dsDNA), and has the largest diameter among the well-studied biological channels. The larger channel facilitates translocation of dsDNA, and offers more space for further channel modification and conjugation. Interestingly, the relatively large wild type channel, which translocates dsDNA, cannot detect single-stranded nucleic acids (ssDNA or ssRNA) under the current experimental conditions. Herein, we reengineered this motor channel by removing the internal loop segment of the channel. The modification resulted in two classes of channels. One class was the same size as the wild type channel, while the other class had a cross-sectional area about 60% of the wild type. This smaller channel was able to detect the real-time translocation of single stranded nucleic acids at single-molecule level. While the wild type connector exhibited a one-way traffic property with respect to dsDNA translocation, the loop deleted connector was able to translocate ssDNA and ssRNA with equal competencies from both termini. This finding of size alterations in reengineered motor channels expands the potential application of the phi29 DNA packaging motor in nanomedicine, nanobiotechnology, and high-throughput single pore DNA sequencing. PMID:23488809

  14. Mechanism of hERG channel block by the psychoactive indole alkaloid ibogaine.

    PubMed

    Thurner, Patrick; Stary-Weinzinger, Anna; Gafar, Hend; Gawali, Vaibhavkumar S; Kudlacek, Oliver; Zezula, Juergen; Hilber, Karlheinz; Boehm, Stefan; Sandtner, Walter; Koenig, Xaver

    2014-02-01

    Ibogaine is a psychoactive indole alkaloid. Its use as an antiaddictive agent has been accompanied by QT prolongation and cardiac arrhythmias, which are most likely caused by human ether a go-go-related gene (hERG) potassium channel inhibition. Therefore, we studied in detail the interaction of ibogaine with hERG channels heterologously expressed in mammalian kidney tsA-201 cells. Currents through hERG channels were blocked regardless of whether ibogaine was applied via the extracellular or intracellular solution. The extent of inhibition was determined by the relative pH values. Block occurred during activation of the channels and was not observed for resting channels. With increasing depolarizations, ibogaine block grew and developed faster. Steady-state activation and inactivation of the channel were shifted to more negative potentials. Deactivation was slowed, whereas inactivation was accelerated. Mutations in the binding site reported for other hERG channel blockers (Y652A and F656A) reduced the potency of ibogaine, whereas an inactivation-deficient double mutant (G628C/S631C) was as sensitive as wild-type channels. Molecular drug docking indicated binding within the inner cavity of the channel independently of the protonation of ibogaine. Experimental current traces were fit to a kinetic model of hERG channel gating, revealing preferential binding of ibogaine to the open and inactivated state. Taken together, these findings show that ibogaine blocks hERG channels from the cytosolic side either in its charged form alone or in company with its uncharged form and alters the currents by changing the relative contribution of channel states over time.

  15. Applying the J-optimal channelized quadratic observer to SPECT myocardial perfusion defect detection

    NASA Astrophysics Data System (ADS)

    Kupinski, Meredith K.; Clarkson, Eric; Ghaly, Michael; Frey, Eric C.

    2016-03-01

    To evaluate performance on a perfusion defect detection task from 540 image pairs of myocardial perfusion SPECT image data we apply the J-optimal channelized quadratic observer (J-CQO). We compare AUC values of the linear Hotelling observer and J-CQO when the defect location is fixed and when it occurs in one of two locations. As expected, when the location is fixed a single channels maximizes AUC; location variability requires multiple channels to maximize the AUC. The AUC is estimated from both the projection data and reconstructed images. J-CQO is quadratic since it uses the first- and second- order statistics of the image data from both classes. The linear data reduction by the channels is described by an L x M channel matrix and in prior work we introduced an iterative gradient-based method for calculating the channel matrix. The dimensionality reduction from M measurements to L channels yields better estimates of these sample statistics from smaller sample sizes, and since the channelized covariance matrix is L x L instead of M x M, the matrix inverse is easier to compute. The novelty of our approach is the use of Jeffrey's divergence (J) as the figure of merit (FOM) for optimizing the channel matrix. We previously showed that the J-optimal channels are also the optimum channels for the AUC and the Bhattacharyya distance when the channel outputs are Gaussian distributed with equal means. This work evaluates the use of J as a surrogate FOM (SFOM) for AUC when these statistical conditions are not satisfied.

  16. On stimulated resonance radiation by channeled particles

    NASA Astrophysics Data System (ADS)

    Dabagov, S. B.; Kalashnikov, N. P.

    2017-07-01

    The channeled particles undergo quasiperiodic transverse bound motion along main crystallographic directions at either 1D planar or 2D axial channeling. This motion is accompanied by spontaneous radiation known as channeling radiation due to projectile's transmission between discrete quantum states. In this work we have presented preliminary evaluation of the processes of resonance scattering of external electromagnetic field when the external frequency becomes close to the channeled particle transition energies that might be of the source for induced radiation at channeling.

  17. Comparison between the effects of positive noncatastrophic HMB ESD stress in n-channel and p-channel power MOSFET's

    NASA Astrophysics Data System (ADS)

    Zupac, Dragan; Kosier, Steven L.; Schrimpf, Ronald D.; Galloway, Kenneth F.; Baum, Keith W.

    1991-10-01

    The effect of noncatastrophic positive human body model (HBM) electrostatic discharge (ESD) stress on n-channel power MOSFETs is radically different from that on p-channel MOSFETs. In n-channel transistors, the stress causes negative shifts of the current-voltage characteristics indicative of positive charge trapping in the gate oxide. In p-channel transistors, the stress increases the drain-to-source leakage current, probably due to localized avalanche electron injection from the p-doped drain.

  18. An inhibitor of TRPV1 channels isolated from funnel Web spider venom.

    PubMed

    Kitaguchi, Tetsuya; Swartz, Kenton J

    2005-11-29

    Capsaicin receptor channels (TRPV1) are nonselective cation channels that integrate multiple noxious stimuli in sensory neurons. In an effort to identify new inhibitors of these channels we screened a venom library for activity against TRPV1 channels and found robust inhibitory activity in venom from Agelenopsis aperta, a north American funnel web spider. Fractionation of the venom using reversed-phase HPLC resulted in the purification of two acylpolyamine toxins, AG489 and AG505, which inhibit TRPV1 channels from the extracellular side of the membrane. The activity of AG489 was characterized further, and the toxin was found to inhibit TRPV1 channels with a K(i) of 0.3 microM at -40 mV. Inhibition of TRPV1 channels by AG489 is strongly voltage-dependent, with relief of inhibition at positive voltages, consistent with the toxin inhibiting the channel through a pore-blocking mechanism. We used scanning mutagenesis throughout the TM5-TM6 linker, a region thought to form the outer pore of TRPV1 channels, to identify pore mutations that alter toxin affinity. Four mutants dramatically decrease toxin affinity and several mutants increase toxin affinity, consistent with the notion that the TM5-TM6 linker forms the outer vestibule of TRPV1 channels and that AG489 is a pore blocker.

  19. Mechanosensitive Piezo Channels in the Gastrointestinal Tract

    PubMed Central

    Alcaino, C.; Farrugia, G.; Beyder, A.

    2017-01-01

    Sensation of mechanical forces is critical for normal function of the gastrointestinal (GI) tract and abnormalities in mechanosensation are linked to GI pathologies. In the GI tract there are several mechanosensitive cell types—epithelial enterochromaffin cells, intrinsic and extrinsic enteric neurons, smooth muscle cells and interstitial cells of Cajal. These cells use mechanosensitive ion channels that respond to mechanical forces by altering transmembrane ionic currents in a process called mechanoelectrical coupling. Several mechanosensitive ionic conductances have been identified in the mechano-sensory GI cells, ranging from mechanosensitive voltage-gated sodium and calcium channels to the mechanogated ion channels, such as the two-pore domain potassium channels K2P (TREK-1) and nonselective cation channels from the transient receptor potential family. The recently discovered Piezo channels are increasingly recognized as significant contributors to cellular mechanosensitivity. Piezo1 and Piezo2 are nonselective cationic ion channels that are directly activated by mechanical forces and have well-defined biophysical and pharmacologic properties. The role of Piezo channels in the GI epithelium is currently under investigation and their role in the smooth muscle syncytium and enteric neurons is still not known. In this review, we outline the current state of knowledge on mechanosensitive ion channels in the GI tract, with a focus on the known and potential functions of the Piezo channels. PMID:28728818

  20. Ion channel remodeling in vascular smooth muscle during hypertension: Implications for novel therapeutic approaches

    PubMed Central

    Joseph, Biny K.; Thakali, Keshari M.; Moore, Christopher L.; Rhee, Sung W.

    2013-01-01

    Ion channels are multimeric, transmembrane proteins that selectively mediate ion flux across the plasma membrane in a variety of cells including vascular smooth muscle cells (VSMCs). The dynamic interplay of Ca2+ and K+ channels on the plasma membrane of VSMCs plays a pivotal role in modulating the vascular tone of small arteries and arterioles. The abnormally-elevated arterial tone observed in hypertension thus points to an aberrant expression and function of Ca2+ and K+ channels in the VSMCs. In this short review, we focus on the three well-studied ion channels in VSMCs, namely the L-type Ca2+ (CaV1.2) channels, the voltage-gated K+ (KV) channels, and the large-conductance Ca2+-activated K+ (BK) channels. First, we provide a brief overview on the physiological role of vascular CaV1.2, KV and BK channels in regulating arterial tone. Second, we discuss the current understanding of the expression changes and regulation of CaV1.2, KV and BK channels in the vasculature during hypertension. Third, based on available proof-of-concept studies, we describe the potential therapeutic approaches targeting these vascular ion channels in order to restore blood pressure to normotensive levels. PMID:23376354

  1. Gating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes

    PubMed Central

    Ghasemi, Maedeh; Khodaei, Naser; Salari, Sajjad; Eliassi, Afsaneh; Saghiri, Reza

    2014-01-01

    Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic channel in endoplasmic reticulum. Therefore, in this study, we examined and compared the activities of this channel in control and diabetic rats using single-channel recording techniques. Method: Male Wistar rats were made diabetic for 2 weeks with a single dose injection of streptozotocin (45 mg/kg). Ion channel incorporation of rough endoplasmic reticulum of diabetic hepatocytes into the bilayer lipid membrane allowed the characterization of K+ channel. Results: Ion channel incorporation of rough endoplasmic reticulum vesicles into the bilayer lipid revealed that the channel current-voltage (I-V) relation with a mean slope conductance of 520 ± 19 pS was unaffected in diabetes. Interestingly, the channel Po-voltage relation was significantly lower in diabetic rats at voltages above +30 mV. Conclusion: We concluded that the endoplasmic reticulum cationic channel is involved in diabetes. Also, this finding could be considered as a goal for further therapeutic plans. PMID:24842143

  2. Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate

    PubMed Central

    Gao, Haixia; Boillat, Aurélien; Huang, Dongyang; Liang, Ce; Peers, Chris

    2017-01-01

    M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP2). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP2. Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes. PMID:28716904

  3. Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Gao, Haixia; Boillat, Aurélien; Huang, Dongyang; Liang, Ce; Peers, Chris; Gamper, Nikita

    2017-08-01

    M-type (Kv7, KCNQ) potassium channels are proteins that control the excitability of neurons and muscle cells. Many physiological and pathological mechanisms of excitation operate via the suppression of M channel activity or expression. Conversely, pharmacological augmentation of M channel activity is a recognized strategy for the treatment of hyperexcitability disorders such as pain and epilepsy. However, physiological mechanisms resulting in M channel potentiation are rare. Here we report that intracellular free zinc directly and reversibly augments the activity of recombinant and native M channels. This effect is mechanistically distinct from the known redox-dependent KCNQ channel potentiation. Interestingly, the effect of zinc cannot be attributed to a single histidine- or cysteine-containing zinc-binding site within KCNQ channels. Instead, zinc dramatically reduces KCNQ channel dependence on its obligatory physiological activator, phosphatidylinositol 4,5-bisphosphate (PIP 2 ). We hypothesize that zinc facilitates interactions of the lipid-facing interface of a KCNQ protein with the inner leaflet of the plasma membrane in a way similar to that promoted by PIP 2 Because zinc is increasingly recognized as a ubiquitous intracellular second messenger, this discovery might represent a hitherto unknown native pathway of M channel modulation and provide a fresh strategy for the design of M channel activators for therapeutic purposes.

  4. Functional Characterization of Cnidarian HCN Channels Points to an Early Evolution of Ih.

    PubMed

    Baker, Emma C; Layden, Michael J; van Rossum, Damian B; Kamel, Bishoy; Medina, Monica; Simpson, Eboni; Jegla, Timothy

    2015-01-01

    HCN channels play a unique role in bilaterian physiology as the only hyperpolarization-gated cation channels. Their voltage-gating is regulated by cyclic nucleotides and phosphatidylinositol 4,5-bisphosphate (PIP2). Activation of HCN channels provides the depolarizing current in response to hyperpolarization that is critical for intrinsic rhythmicity in neurons and the sinoatrial node. Additionally, HCN channels regulate dendritic excitability in a wide variety of neurons. Little is known about the early functional evolution of HCN channels, but the presence of HCN sequences in basal metazoan phyla and choanoflagellates, a protozoan sister group to the metazoans, indicate that the gene family predates metazoan emergence. We functionally characterized two HCN channel orthologs from Nematostella vectensis (Cnidaria, Anthozoa) to determine which properties of HCN channels were established prior to the emergence of bilaterians. We find Nematostella HCN channels share all the major functional features of bilaterian HCNs, including reversed voltage-dependence, activation by cAMP and PIP2, and block by extracellular Cs+. Thus bilaterian-like HCN channels were already present in the common parahoxozoan ancestor of bilaterians and cnidarians, at a time when the functional diversity of voltage-gated K+ channels was rapidly expanding. NvHCN1 and NvHCN2 are expressed broadly in planulae and in both the endoderm and ectoderm of juvenile polyps.

  5. Identification of potential novel interaction partners of the sodium-activated potassium channels Slick and Slack in mouse brain.

    PubMed

    Rizzi, Sandra; Schwarzer, Christoph; Kremser, Leopold; Lindner, Herbert H; Knaus, Hans-Günther

    2015-12-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are paralogous channels of the Slo family of high-conductance potassium channels. Slick and Slack channels are widely distributed in the mammalian CNS and they play a role in slow afterhyperpolarization, generation of depolarizing afterpotentials and in setting and stabilizing the resting potential. In the present study we used a combined approach of (co)-immunoprecipitation studies, Western blot analysis, double immunofluorescence and mass spectrometric sequencing in order to investigate protein-protein interactions of the Slick and Slack channels. The data strongly suggest that Slick and Slack channels co-assemble into identical cellular complexes. Double immunofluorescence experiments revealed that Slick and Slack channels co-localize in distinct mouse brain regions. Moreover, we identified the small cytoplasmic protein beta-synuclein and the transmembrane protein 263 (TMEM 263) as novel interaction partners of both, native Slick and Slack channels. In addition, the inactive dipeptidyl-peptidase (DPP 10) and the synapse associated protein 102 (SAP 102) were identified as constituents of the native Slick and Slack channel complexes in the mouse brain. This study presents new insights into protein-protein interactions of native Slick and Slack channels in the mouse brain.

  6. Evaluation of a novel triple-channel radiochromic film analysis procedure using EBT2.

    PubMed

    van Hoof, Stefan J; Granton, Patrick V; Landry, Guillaume; Podesta, Mark; Verhaegen, Frank

    2012-07-07

    A novel approach to read out radiochromic film was introduced recently by the manufacturer of GafChromic film. In this study, the performance of this triple-channel film dosimetry method was compared against the conventional single-red-channel film dosimetry procedure, with and without inclusion of a pre-irradiation (pre-IR) film scan, using EBT2 film and kilo- and megavoltage photon beams up to 10 Gy. When considering regions of interest averaged doses, the triple-channel method and both single-channel methods produced equivalent results. Absolute dose discrepancies between the triple-channel method, both single-channel methods and the treatment planning system calculated dose values, were no larger than 5 cGy for dose levels up to 2.2 Gy. Signal to noise in triple-channel dose images was found to be similar to signal to noise in single-channel dose images. The accuracy of resulting dose images from the triple- and single-channel methods with inclusion of pre-IR film scan was found to be similar. Results of a comparison of EBT2 data from a kilovoltage depth dose experiment to corresponding Monte Carlo depth dose data produced dose discrepancies of 9.5 ± 12 cGy and 7.6 ± 6 cGy for the single-channel method with inclusion of a pre-IR film scan and the triple-channel method, respectively. EBT2 showed to be energy sensitive at low kilovoltage energies with response differences of 11.9% and 15.6% in the red channel at 2 Gy between 50-225 kVp and 80-225 kVp photon spectra, respectively. We observed that the triple-channel method resulted in non-uniformity corrections of ±1% and consistency values of 0-3 cGy for the batches and dose levels studied. Results of this study indicate that the triple-channel radiochromic film read-out method performs at least as well as the single-channel method with inclusion of a pre-IR film scan, reduces film non-uniformity and saves time with elimination of a pre-IR film scan.

  7. Coupling MAST-1D, a sediment routing model for channel-floodplain complexes, with channel migration relationships to predict reach-averaged river morphodynamics. Preliminary results

    NASA Astrophysics Data System (ADS)

    Viparelli, E.; Eke, E. C.; Lauer, J. W.

    2017-12-01

    Sediment exchange between the channel and floodplain can occur via meander migration, overbank deposition or erosion, and changes in channel geometry. Depending on channel and floodplain history, floodplains can act either as sources or sinks of bed material and/or wash load. Here we present preliminary modeling results that explicitly account for the feedbacks between the changes in floodplain geometry and sediment size distribution and the changes in channel geometry and migration. These results are obtained by coupling the Morphodynamics And Sediment Tracers in 1D (MAST-1D) program with the results of meander migration studies linking the bankfull flow depth and mean velocity to channel migration, sinuosity and channel geometry. MAST-1D is a numerical model built to describe grain size specific transport of sediment and tracers and the long-term - i.e. decadal and longer - evolution of channel floodplain complexes. MAST-1D differs from other 1D numerical models because it allows for 1) uneven exchange of sediment and tracers between the river channel and the floodplain, 2) temporal changes in channel geometry, bed elevation and floodplain thickness, which result in changes in the channel hydraulic capacity, and 3) temporal changes of size distribution and tracer content in the floodplain, in the load and in the underlying substrate. Under conditions of constant base level, water and sediment supply, the system evolves toward a steady state wherein the amount of sediment deposited through point bar deposition and overbank sedimentation is balanced by the erosion of sediment from the floodplain through lateral migration. The current formulation couples MAST-1D with empirical channel migration relationships that link bankfull flow depth and mean velocity to channel migration, sinuosity and channel geometry. Future development of this preliminary work will involve a fully coupled MAST-1D model with a standard meander migration model that will allow for the building of floodplain stratigraphy and tracking of the position of the meandering channel in space and time.

  8. A novel channel selection method for optimal classification in different motor imagery BCI paradigms.

    PubMed

    Shan, Haijun; Xu, Haojie; Zhu, Shanan; He, Bin

    2015-10-21

    For sensorimotor rhythms based brain-computer interface (BCI) systems, classification of different motor imageries (MIs) remains a crucial problem. An important aspect is how many scalp electrodes (channels) should be used in order to reach optimal performance classifying motor imaginations. While the previous researches on channel selection mainly focus on MI tasks paradigms without feedback, the present work aims to investigate the optimal channel selection in MI tasks paradigms with real-time feedback (two-class control and four-class control paradigms). In the present study, three datasets respectively recorded from MI tasks experiment, two-class control and four-class control experiments were analyzed offline. Multiple frequency-spatial synthesized features were comprehensively extracted from every channel, and a new enhanced method IterRelCen was proposed to perform channel selection. IterRelCen was constructed based on Relief algorithm, but was enhanced from two aspects: change of target sample selection strategy and adoption of the idea of iterative computation, and thus performed more robust in feature selection. Finally, a multiclass support vector machine was applied as the classifier. The least number of channels that yield the best classification accuracy were considered as the optimal channels. One-way ANOVA was employed to test the significance of performance improvement among using optimal channels, all the channels and three typical MI channels (C3, C4, Cz). The results show that the proposed method outperformed other channel selection methods by achieving average classification accuracies of 85.2, 94.1, and 83.2 % for the three datasets, respectively. Moreover, the channel selection results reveal that the average numbers of optimal channels were significantly different among the three MI paradigms. It is demonstrated that IterRelCen has a strong ability for feature selection. In addition, the results have shown that the numbers of optimal channels in the three different motor imagery BCI paradigms are distinct. From a MI task paradigm, to a two-class control paradigm, and to a four-class control paradigm, the number of required channels for optimizing the classification accuracy increased. These findings may provide useful information to optimize EEG based BCI systems, and further improve the performance of noninvasive BCI.

  9. Comparative production of channel catfish and channel x blue hybrid catfish subjected to two minimum dissolved oxygen concentrations

    USDA-ARS?s Scientific Manuscript database

    The effect of daily minimum dissolved oxygen concentration on growth and yield (kg/ha) of the channel catfish (Ictalurus punctatus) and the channel x blue hybrid catfish (I. punctatus female x I. furcatus male), which shared the Jubilee strain of channel catfish as the maternal parent, was evaluated...

  10. A Crash Course in Calcium Channels.

    PubMed

    Zamponi, Gerald W

    2017-12-20

    Much progress has been made in understanding the molecular physiology and pharmacology of calcium channels. Recently, there have been tremendous advances in learning about calcium channel structure and function through crystallography and cryo-electron microscopy studies. Here, I will give an overview of our knowledge about calcium channels, and highlight two recent studies that give important insights into calcium channel structure.

  11. Pool spacing in forest channels

    Treesearch

    David R. Montgomery; John M. Buffington; Richard D. Smith; Kevin M. Schmidt; George Pess

    1995-01-01

    Field surveys of stream channels in forested mountain drainage basins in southeast Alaska and Washington reveal that pool spacing depends on large woody debris (LWD) loading and channel type, slope, and width. Mean pool spacing in pool-riffle, plane-bed, and forced pool-riffle channels systematically decreases from greater than 13 channel widths per pool to less than 1...

  12. 47 CFR 90.621 - Selection and assignment of frequencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... channel(s) for which authorization for commercial use is sought that operate within 25 kHz of the center...-channel station that has been granted channel exclusivity and authorized 1 kW ERP on any of the following... been granted channel exclusivity and authorized 1 kW ERP on any of the following mountaintop sites...

  13. 47 CFR 90.621 - Selection and assignment of frequencies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... channel(s) for which authorization for commercial use is sought that operate within 25 kHz of the center...-channel station that has been granted channel exclusivity and authorized 1 kW ERP on any of the following... been granted channel exclusivity and authorized 1 kW ERP on any of the following mountaintop sites...

  14. TRP Channels

    NASA Astrophysics Data System (ADS)

    Voets, Thomas; Owsianik, Grzegorz; Nilius, Bernd

    The TRP superfamily represents a highly diverse group of cation-permeable ion channels related to the product of the Drosophila trp (transient receptor potential) gene. The cloning and characterization of members of this cation channel family has experienced a remarkable growth during the last decade, uncovering a wealth of information concerning the role of TRP channels in a variety of cell types, tissues, and species. Initially, TRP channels were mainly considered as phospholipase C (PLC)-dependent and/or store-operated Ca2+-permeable cation channels. More recent research has highlighted the sensitivity of TRP channels to a broad array of chemical and physical stimuli, allowing them to function as dedicated biological sensors involved in processes ranging from vision to taste, tactile sensation, and hearing. Moreover, the tailored selectivity of certain TRP channels enables them to play key roles in the cellular uptake and/or transepithelial transport of Ca2+, Mg2+, and trace metal ions. In this chapter we give a brief overview of the TRP channel superfamily followed by a survey of current knowledge concerning their structure and activation mechanisms.

  15. Population characteristics of channel catfish near the northern edge of their distribution: implications for management

    USGS Publications Warehouse

    Carter-Lynn, K. P.; Quist, Michael C.

    2015-01-01

    Channel catfish, Ictalurus punctatus (Rafinesque), populations in six lakes in northern Idaho, USA, were sampled to describe their population characteristics. During the summers of 2011 and 2012, 4864 channel catfish were sampled. Channel catfish populations had low to moderate catch rates, and length structure was dominated by fish <400 mm. Channel catfish were in good body condition. All populations were maintained by stocking age-1 or age-2 fish. Growth of fish reared in thermally enriched environments prior to stocking was fast compared to other North American channel catfish populations. After stocking, growth of channel catfish declined rapidly. Once stocked, cold water temperatures, prey resources and (or) genetic capabilities limited growth. Total annual mortality of age 2 and older channel catfish was generally <40%. Tag returns indicated that angler exploitation was low, varying from 0 to 43% among lakes. This research provides insight on factors regulating channel catfish population dynamics and highlights important considerations associated with their ecology and management.

  16. Prioritized packet video transmission over time-varying wireless channel using proactive FEC

    NASA Astrophysics Data System (ADS)

    Kumwilaisak, Wuttipong; Kim, JongWon; Kuo, C.-C. Jay

    2000-12-01

    Quality of video transmitted over time-varying wireless channels relies heavily on the coordinated effort to cope with both channel and source variations dynamically. Given the priority of each source packet and the estimated channel condition, an adaptive protection scheme based on joint source-channel criteria is investigated via proactive forward error correction (FEC). With proactive FEC in Reed Solomon (RS)/Rate-compatible punctured convolutional (RCPC) codes, we study a practical algorithm to match the relative priority of source packets and instantaneous channel conditions. The channel condition is estimated to capture the long-term fading effect in terms of the averaged SNR over a preset window. Proactive protection is performed for each packet based on the joint source-channel criteria with special attention to the accuracy, time-scale match, and feedback delay of channel status estimation. The overall gain of the proposed protection mechanism is demonstrated in terms of the end-to-end wireless video performance.

  17. Role of TRP ion channels in cancer and tumorigenesis.

    PubMed

    Shapovalov, George; Ritaine, Abigael; Skryma, Roman; Prevarskaya, Natalia

    2016-05-01

    Transient receptor potential (TRP) channels are recently identified proteins that form a versatile family of ion channels, the majority of which are calcium permeable and exhibit complex regulatory patterns with sensitivity to multiple environmental factors. While this sensitivity has captured early attention, leading to recognition of TRP channels as environmental and chemical sensors, many later studies concentrated on the regulation of intracellular calcium by TRP channels. Due to mutations, dysregulation of ion channel gating or expression levels, normal spatiotemporal patterns of local Ca(2+) distribution become distorted. This causes deregulation of downstream effectors sensitive to changes in Ca(2+) homeostasis that, in turn, promotes pathophysiological cancer hallmarks, such as enhanced survival, proliferation and invasion. These observations give rise to the appreciation of the important contributions that TRP channels make to many cellular processes controlling cell fate and positioning these channels as important players in cancer regulation. This review discusses the accumulated scientific knowledge focused on TRP channel involvement in regulation of cell fate in various transformed tissues.

  18. Distribution of small channels on the Martian surface

    NASA Technical Reports Server (NTRS)

    Pieri, D.

    1976-01-01

    The distribution of small channels on Mars has been mapped from Mariner 9 images at the 1:5,000,000 scale. The small channels referred to here are small valleys ranging in width from the resolution limit of the Mariner 9 wide-angle images (about 1 km) to about 10 km. The greatest density of small channels occurs in dark cratered terrain. This dark zone forms a broad subequatorial band around the planet. The observed distribution may be the result of decreased small-channel visibility in bright areas due to obscuration by a high albedo dust or sediment mantle. Crater densities within two small-channel segments show crater size-frequency distributions consistent with those of the oldest of the heavily cratered plains units. Such crater densities coupled with the almost exclusive occurrence of small channels in old cratered terrain and the generally degraded appearance of small channels in the high-resolution images (about 100 m) imply a major episode of small-channel formation early in Martian geologic history.

  19. Synchronous acquisition of multi-channel signals by single-channel ADC based on square wave modulation

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoqing; Hao, Liling; Jiang, Fangfang; Xu, Lisheng; Song, Shaoxiu; Li, Gang; Lin, Ling

    2017-08-01

    Synchronous acquisition of multi-channel biopotential signals, such as electrocardiograph (ECG) and electroencephalograph, has vital significance in health care and clinical diagnosis. In this paper, we proposed a new method which is using single channel ADC to acquire multi-channel biopotential signals modulated by square waves synchronously. In this method, a specific modulate and demodulate method has been investigated without complex signal processing schemes. For each channel, the sampling rate would not decline with the increase of the number of signal channels. More specifically, the signal-to-noise ratio of each channel is n times of the time-division method or an improvement of 3.01 ×log2n dB, where n represents the number of the signal channels. A numerical simulation shows the feasibility and validity of this method. Besides, a newly developed 8-lead ECG based on the new method has been introduced. These experiments illustrate that the method is practicable and thus is potential for low-cost medical monitors.

  20. Transient and Big Are Key Features of an Invertebrate T-type Channel (LCav3) from the Central Nervous System of Lymnaea stagnalis*

    PubMed Central

    Senatore, Adriano; Spafford, J. David

    2010-01-01

    Here we describe features of the first non-mammalian T-type calcium channel (LCav3) expressed in vitro. This molluscan channel possesses combined biophysical properties that are reminiscent of all mammalian T-type channels. It exhibits T-type features such as “transient” kinetics, but the “tiny” label, usually associated with Ba2+ conductance, is hard to reconcile with the “bigness” of this channel in many respects. LCav3 is 25% larger than any voltage-gated ion channel expressed to date. It codes for a massive, 322-kDa protein that conducts large macroscopic currents in vitro. LCav3 is also the most abundant Ca2+ channel transcript in the snail nervous system. A window current at typical resting potentials appears to be at least as large as that reported for mammalian channels. This distant gene provides a unique perspective to analyze the structural, functional, drug binding, and evolutionary aspects of T-type channels. PMID:20056611

  1. Adaptive spatio-temporal filtering of disturbed ECGs: a multi-channel approach to heartbeat detection in smart clothing.

    PubMed

    Wiklund, Urban; Karlsson, Marcus; Ostlund, Nils; Berglin, Lena; Lindecrantz, Kaj; Karlsson, Stefan; Sandsjö, Leif

    2007-06-01

    Intermittent disturbances are common in ECG signals recorded with smart clothing: this is mainly because of displacement of the electrodes over the skin. We evaluated a novel adaptive method for spatio-temporal filtering for heartbeat detection in noisy multi-channel ECGs including short signal interruptions in single channels. Using multi-channel database recordings (12-channel ECGs from 10 healthy subjects), the results showed that multi-channel spatio-temporal filtering outperformed regular independent component analysis. We also recorded seven channels of ECG using a T-shirt with textile electrodes. Ten healthy subjects performed different sequences during a 10-min recording: resting, standing, flexing breast muscles, walking and pushups. Using adaptive multi-channel filtering, the sensitivity and precision was above 97% in nine subjects. Adaptive multi-channel spatio-temporal filtering can be used to detect heartbeats in ECGs with high noise levels. One application is heartbeat detection in noisy ECG recordings obtained by integrated textile electrodes in smart clothing.

  2. Tuning the allosteric regulation of artificial muscarinic and dopaminergic ligand-gated potassium channels by protein engineering of G protein-coupled receptors

    PubMed Central

    Moreau, Christophe J.; Revilloud, Jean; Caro, Lydia N.; Dupuis, Julien P.; Trouchet, Amandine; Estrada-Mondragón, Argel; Nieścierowicz, Katarzyna; Sapay, Nicolas; Crouzy, Serge; Vivaudou, Michel

    2017-01-01

    Ligand-gated ion channels enable intercellular transmission of action potential through synapses by transducing biochemical messengers into electrical signal. We designed artificial ligand-gated ion channels by coupling G protein-coupled receptors to the Kir6.2 potassium channel. These artificial channels called ion channel-coupled receptors offer complementary properties to natural channels by extending the repertoire of ligands to those recognized by the fused receptors, by generating more sustained signals and by conferring potassium selectivity. The first artificial channels based on the muscarinic M2 and the dopaminergic D2L receptors were opened and closed by acetylcholine and dopamine, respectively. We find here that this opposite regulation of the gating is linked to the length of the receptor C-termini, and that C-terminus engineering can precisely control the extent and direction of ligand gating. These findings establish the design rules to produce customized ligand-gated channels for synthetic biology applications. PMID:28145461

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hyun-Sik; Jeon, Sanghun, E-mail: jeonsh@korea.ac.kr

    Upon light exposure, an indium-zinc-oxide (IZO) thin-film transistor (TFT) presents higher photoconductivity by several orders of magnitude at the negative gate bias region. Among various device geometrical factors, scaling down the channel length of the photo-transistor results in an anomalous increase in photoconductivity. To probe the origin of this high photoconductivity in short-channel device, we measured transient current, current–voltage, and capacitance–voltage characteristics of IZO–TFTs with various channel lengths and widths before and after illumination. Under the illumination, the equilibrium potential region which lies far from front interface exists only in short-channel devices, forming the un-depleted conducting back channel. This regionmore » plays an important role in carrier transport under the illumination, leading to high photoconductivity in short-channel devices. Photon exposure coupled with gate-modulated band bending for short-channel devices leads to the accumulation of V{sub o}{sup ++} at the front channel and screening negative gate bias, thereby generating high current flow in the un-depleted back-channel region.« less

  4. Channel characterization and empirical model for ergodic capacity of free-space optical communication link

    NASA Astrophysics Data System (ADS)

    Alimi, Isiaka; Shahpari, Ali; Ribeiro, Vítor; Sousa, Artur; Monteiro, Paulo; Teixeira, António

    2017-05-01

    In this paper, we present experimental results on channel characterization of single input single output (SISO) free-space optical (FSO) communication link that is based on channel measurements. The histograms of the FSO channel samples and the log-normal distribution fittings are presented along with the measured scintillation index. Furthermore, we extend our studies to diversity schemes and propose a closed-form expression for determining ergodic channel capacity of multiple input multiple output (MIMO) FSO communication systems over atmospheric turbulence fading channels. The proposed empirical model is based on SISO FSO channel characterization. Also, the scintillation effects on the system performance are analyzed and results for different turbulence conditions are presented. Moreover, we observed that the histograms of the FSO channel samples that we collected from a 1548.51 nm link have good fits with log-normal distributions and the proposed model for MIMO FSO channel capacity is in conformity with the simulation results in terms of normalized mean-square error (NMSE).

  5. A G-protein-activated inwardly rectifying K+ channel (GIRK4) from human hippocampus associates with other GIRK channels.

    PubMed

    Spauschus, A; Lentes, K U; Wischmeyer, E; Dissmann, E; Karschin, C; Karschin, A

    1996-02-01

    Transcripts of a gene, GIRK4, that encodes for a 419-amino-acid protein and shows high structural similarity to other subfamily members of G-protein-activated inwardly rectifying K+ channels (GIRK) have been identified in the human hippocampus. When expressed in Xenopus oocytes, GIRK4 yielded functional GIRK channels with activity that was enhanced by the stimulation of coexpressed serotonin 1A receptors. GIRK4 potentiated basal and agonist-induced currents mediated by other GIRK channels, possibly because of channel heteromerization. Despite the structural similarity to a putative rat KATP channel, no ATP sensitivity or KATP-typical pharmacology was observed for GIRK4 alone or GIRK4 transfected in conjunction with other GIRK channels in COS-7 cells. In rat brain, GIRK4 is expressed together with three other subfamily members, GIRK1-3, most likely in identical hippocampal neurons. Thus, heteromerization or an unknown molecular interaction may cause the physiological diversity observed within this class of K+ channels.

  6. Jamming of Cylindrical Grains in Featureless Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; Barr, Nicholas; Weible, Seth; Friedl, Nicholas

    2013-03-01

    We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel. With a grain height less than the grain diameter, these grains resemble aspirin tablets, poker chips, or coins. Unidisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. Channel widths are chosen so that no combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College

  7. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: bankfull and macrochannels in the Llano River watershed, central Texas, USA

    USGS Publications Warehouse

    Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.

    2015-01-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (< 1.5-year return periods) that mobilize channel-bed material and less frequent events that determine bankfull channel (1.5- to 3-year return periods) and macrochannel (10- to 40-year return periods) dimensions; (v) macrochannels with high f values (most ≤ 0.45) that develop at sites with unit stream power values in excess of 200 watts per square meter (W/m2); and (vi) downstream convergence of hydraulic geometry exponents for bankfull and macrochannels, explained by co-increases of flood magnitude and noncohesive sandy sediments that collectively minimize development of alluvial bankfull indicators. Collectively, these findings indicate that mixed alluvial–bedrock channels exhibit first-order lithologic controls (lithologic resistance and valley confinement) of channel geometry, second-order hydrologic (flow regime) control of channel dimensions, and third-order sedimentary controls that exert subsidiary influence on channel shape and bed configuration.

  8. 3D Seismic Stratigraphic Analysis of Gas Hydrate Bearing Turbidite Channel-Overbank System in Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Santra, M.; Flemings, P. B.; Scott, E.; Meazell, K.; Petrou, E. G.

    2017-12-01

    We present a depositional model for a gas hydrate bearing deepwater channel-overbank system in Green Canyon area (around Block 955) in northern Gulf of Mexico. The gas-hydrate bearing reservoir was tested by three wells drilled in 2009 as part of the Gulf of Mexico Gas Hydrate Joint Industry Project (JIP). The same reservoir was sampled during the recent UT-GOM2-1 pressure-coring expedition. Analysis of a newly available wide-azimuth 3D seismic data shows two distinct stages of development of the channel system that significantly impacted the reservoir characteristics. The study area is located near the present-day Green Canyon reentrant, where a succession of Miocene to recent clastic sediments overlies an extensive salt diapir connected to the autochthonous level. The entire supra-salt sedimentary section is intersected by a system of large-scale normal faults formed as a result of salt movement. The channel system containing the gas hydrate reservoir has a well-defined basal surface, and is capped by a channel abandonment surface. Seismic analysis shows at least two distinct phases of channel development. In the first phase, levees undergo progressive gravitational collapse along series of normal faults that dip towards the channel axis. The normal faults on either side of channel axis are linked to a zone of compression located at the channel axis by a decollement surface at the base of the channel. The compression is recorded by bulging and/or thrusting at the channel center. This compressional bulge was eroded at the channel axis. During this phase, no axial channel deposits have been preserved. However, the position of the channel axis is indicated by a prominent linear ridge of fine-grained material that represents the remnant of the compressional bulge. Mapping of gravitational failure surfaces shows significant rotation and displacement of levee deposits along them. The second phase of development of the channel system is marked by the termination of gravitational failure and the preservation of both channel deposits and flanking levees. Both gravitational failure of channel-levee system and large-scale normal faulting impacted hydrate reservoir configuration. The large-scale fault system may have been the major pathway for hydrocarbon migration.

  9. [Molecular and functional diversity of ATP-sensitive K+ channels: the pathophysiological roles and potential drug targets].

    PubMed

    Nakaya, Haruaki; Miki, Takashi; Seino, Susumu; Yamada, Katsuya; Inagaki, Nobuya; Suzuki, Masashi; Sato, Toshiaki; Yamada, Mitsuhiko; Matsushita, Kenji; Kurachi, Yoshihisa; Arita, Makoto

    2003-09-01

    ATP-sensitive K(+) (K(ATP)) channels comprise the pore-forming subunit (Kir6.1 or Kir6.2) and the regulatory subunit sulfonylurea receptors (SUR1 or SUR2). K(ATP) channels with different combinations of these subunits are present in various tissues and regulate cellular functions. From the analysis of mouse models with targeted deletion of the gene encoding the pore-forming subunit Kir6.1 or Kir6.2, functional roles of K(ATP) channels in various organs have been clarified. Kir6.1(-/-) mice showed sudden death associated with ST elevation and atrioventricular block in ECG, a phenotype resembling Prinzmetal angina in humans. Kir6.2(-/-) mice were more susceptible to generalized seizure during hypoxia than wild-type (WT) mice, suggesting that neuronal K(ATP) channels, probably composed of Kir6.2 and SUR1, play a crucial role for the protection of the brain against lethal damage due to seizure. In Kir6.2(-/-) mice lacking the sarcolemmal K(ATP) channel activity in cardiac cells, ischemic preconditioning failed to reduce the infarct size, suggesting that sarcolemmal K(ATP) channels play an important role in cardioprotection against ischemia/reperfusion injuries in the heart. Mitochondrial K(ATP) channels have been also proposed to play a crucial role in cardioprotection, although the molecular identity of the channel has not been established. Nicorandil and minoxidil, K(+) channel openers activating mitochondrial K(ATP) channels, decreased the mitochondrial membrane potential, thereby preventing the Ca(2+) overload in the mitochondria of guinea-pig ventricular cells. SURs are the receptors for K(+) channel openers and the activating effects on sarcolemmal K(ATP) channels in cardiovascular tissues could be modulated by the interaction of nucleotides. Due to the molecular diversity of the accessory and pore subunits of K(ATP) channels, there would be considerable differences in the tissue selectivity of K(ATP) channel-acting drugs. Studies of Kir6.1 and Kir6.2 knockout mice indicate that K(ATP) channels are involved in the mechanisms of the protection against metabolic stress. Further clarification of physiological as well as pathophysiological roles of K(ATP) channels may lead to a new therapeutic strategy to improve the quality of life.

  10. Ion channel blockers for the treatment of neuropathic pain.

    PubMed

    Colombo, Elena; Francisconi, Simona; Faravelli, Laura; Izzo, Emanuela; Pevarello, Paolo

    2010-05-01

    Neuropathic pain, a severe chronic pain condition characterized by a complex pathophysiology, is a largely unmet medical need. Ion channels, which underlie cell excitability, are heavily implicated in the biological mechanisms that generate and sustain neuropathic pain. This review highlights the biological evidence supporting the involvement of voltage-, proton- and ligand-gated ion channels in the neuropathic pain setting. Ion channel modulators at different research or development stages are reviewed and referenced. Ion channel modulation is one of the main avenues to achieve novel, improved neuropathic pain treatments. Voltage-gated sodium and calcium channel and glutamate receptor modulators are likely to produce new, improved agents in the future. Rationally targeting subtypes of known ion channels, tackling recently discovered ion channel targets or combining drugs with different mechanism of action will be primary sources of new drugs in the longer term.

  11. Human body and head characteristics as a communication medium for Body Area Network.

    PubMed

    Kifle, Yonatan; Hun-Seok Kim; Yoo, Jerald

    2015-01-01

    An in-depth investigation of the Body Channel Communication (BCC) under the environment set according to the IEEE 802.15.6 Body Area Network (BAN) standard is conducted to observe and characterize the human body as a communication medium. A thorough measurement of the human head as part of the human channel is also carried out. Human forehead, head to limb, and ear to ear channel is characterized. The channel gain of the human head follows the same bandpass profile of the human torso and limbs with the maximum channel gain occurring at 35MHz. The human body channel gain distribution histogram at given frequencies, while all the other parameters are held constant, exhibits a maximum variation of 2.2dB in the channel gain at the center frequency of the bandpass channel gain profile.

  12. Predictive Systems for Customer Interactions

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Ravi; Albert, Sam; Singh, Vinod Kumar; Kannan, Pallipuram V.

    With the coming of age of web as a mainstream customer service channel, B2C companies have invested substantial resources in enhancing their web presence. Today customers can interact with a company, not only through the traditional phone channel but also through chat, email, SMS or web self-service. Each of these channels is best suited for some services and ill-matched for others. Customer service organizations today struggle with the challenge of delivering seamlessly integrated services through these different channels. This paper will evaluate some of the key challenges in multi-channel customer service. It will address the challenge of creating the right channel mix i.e. providing the right choice of channels for a given customer/behavior/issue profile. It will also provide strategies for optimizing the performance of a given channel in creating the right customer experience.

  13. Theoretical and experimental studies of turbo product code with time diversity in free space optical communication.

    PubMed

    Han, Yaoqiang; Dang, Anhong; Ren, Yongxiong; Tang, Junxiong; Guo, Hong

    2010-12-20

    In free space optical communication (FSOC) systems, channel fading caused by atmospheric turbulence degrades the system performance seriously. However, channel coding combined with diversity techniques can be exploited to mitigate channel fading. In this paper, based on the experimental study of the channel fading effects, we propose to use turbo product code (TPC) as the channel coding scheme, which features good resistance to burst errors and no error floor. However, only channel coding cannot cope with burst errors caused by channel fading, interleaving is also used. We investigate the efficiency of interleaving for different interleaving depths, and then the optimum interleaving depth for TPC is also determined. Finally, an experimental study of TPC with interleaving is demonstrated, and we show that TPC with interleaving can significantly mitigate channel fading in FSOC systems.

  14. Second-Order Asymptotics for the Classical Capacity of Image-Additive Quantum Channels

    NASA Astrophysics Data System (ADS)

    Tomamichel, Marco; Tan, Vincent Y. F.

    2015-08-01

    We study non-asymptotic fundamental limits for transmitting classical information over memoryless quantum channels, i.e. we investigate the amount of classical information that can be transmitted when a quantum channel is used a finite number of times and a fixed, non-vanishing average error is permissible. In this work we consider the classical capacity of quantum channels that are image-additive, including all classical to quantum channels, as well as the product state capacity of arbitrary quantum channels. In both cases we show that the non-asymptotic fundamental limit admits a second-order approximation that illustrates the speed at which the rate of optimal codes converges to the Holevo capacity as the blocklength tends to infinity. The behavior is governed by a new channel parameter, called channel dispersion, for which we provide a geometrical interpretation.

  15. Simultaneous optical and electrical recording of a single ion-channel.

    PubMed

    Ide, Toru; Takeuchi, Yuko; Aoki, Takaaki; Yanagida, Toshio

    2002-10-01

    In recent years, the single-molecule imaging technique has proven to be a valuable tool in solving many basic problems in biophysics. The technique used to measure single-molecule functions was initially developed to study electrophysiological properties of channel proteins. However, the technology to visualize single channels at work has not received as much attention. In this study, we have for the first time, simultaneously measured the optical and electrical properties of single-channel proteins. The large conductance calcium-activated potassium channel (BK-channel) labeled with fluorescent dye molecules was incorporated into a planar bilayer membrane and the fluorescent image captured with a total internal reflection fluorescence microscope simultaneously with single-channel current recording. This innovative technology will greatly advance the study of channel proteins as well as signal transduction processes that involve ion permeation processes.

  16. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, Neil Reginald

    2016-04-12

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carriermore » fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.« less

  17. Intersecting Channels near Olympica Fossae

    NASA Image and Video Library

    2016-09-21

    This complicated area contains various types of channels, pits and fractures. We can determine the relative ages of the pits and channels based on which features cross-cut others. Older channels appear smooth-edged and shallow. Younger channels and pits are deeper and more sharp-edged, as well as less sinuous than the shallower channels. What caused this array of various channels and intersecting pits? This region is covered in vast lava flows. The collapse pits here may be collapsed lava tubes or where overlying rock "drained" into voids created by extensional faulting. The older smoother channel that seems to source from this region may have carried an outflow of groundwater. It continues on for over 100 kilometers (62 miles). The orientation and shapes of these features make an interesting geological puzzle. http://photojournal.jpl.nasa.gov/catalog/PIA21066

  18. Solids-based concentrated solar power receiver

    DOEpatents

    None

    2018-04-10

    A concentrated solar power (CSP) system includes channels arranged to convey a flowing solids medium descending under gravity. The channels form a light-absorbing surface configured to absorb solar flux from a heliostat field. The channels may be independently supported, for example by suspension, and gaps between the channels are sized to accommodate thermal expansion. The light absorbing surface may be sloped so that the inside surfaces of the channels proximate to the light absorbing surface define downward-slanting channel floors, and the flowing solids medium flows along these floors. Baffles may be disposed inside the channels and oriented across the direction of descent of the flowing solids medium. The channels may include wedge-shaped walls forming the light-absorbing surface and defining multiple-reflection light paths for solar flux from the heliostat field incident on the light-absorbing surface.

  19. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, Neil Reginald

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carriermore » fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.« less

  20. A Beacon Transmission Power Control Algorithm Based on Wireless Channel Load Forecasting in VANETs.

    PubMed

    Mo, Yuanfu; Yu, Dexin; Song, Jun; Zheng, Kun; Guo, Yajuan

    2015-01-01

    In a vehicular ad hoc network (VANET), the periodic exchange of single-hop status information broadcasts (beacon frames) produces channel loading, which causes channel congestion and induces information conflict problems. To guarantee fairness in beacon transmissions from each node and maximum network connectivity, adjustment of the beacon transmission power is an effective method for reducing and preventing channel congestion. In this study, the primary factors that influence wireless channel loading are selected to construct the KF-BCLF, which is a channel load forecasting algorithm based on a recursive Kalman filter and employs multiple regression equation. By pre-adjusting the transmission power based on the forecasted channel load, the channel load was kept within a predefined range; therefore, channel congestion was prevented. Based on this method, the CLF-BTPC, which is a transmission power control algorithm, is proposed. To verify KF-BCLF algorithm, a traffic survey method that involved the collection of floating car data along a major traffic road in Changchun City is employed. By comparing this forecast with the measured channel loads, the proposed KF-BCLF algorithm was proven to be effective. In addition, the CLF-BTPC algorithm is verified by simulating a section of eight-lane highway and a signal-controlled urban intersection. The results of the two verification process indicate that this distributed CLF-BTPC algorithm can effectively control channel load, prevent channel congestion, and enhance the stability and robustness of wireless beacon transmission in a vehicular network.

  1. Cysteine residues in the nucleotide binding domains regulate the conductance state of CFTR channels.

    PubMed Central

    Harrington, Melissa A; Kopito, Ron R

    2002-01-01

    Gating of cystic fibrosis transmembrane conductance regulator (CFTR) channels requires intermolecular or interdomain interactions, but the exact nature and physiological significance of those interactions remains uncertain. Subconductance states of the channel may result from alterations in interactions among domains, and studying mutant channels enriched for a single conductance type may elucidate those interactions. Analysis of CFTR channels in inside-out patches revealed that mutation of cysteine residues in NBD1 and NBD2 affects the frequency of channel opening to the full-size versus a 3-pS subconductance. Mutating cysteines in NBD1 resulted in channels that open almost exclusively to the 3-pS subconductance, while mutations of cysteines in NBD2 decreased the frequency of subconductance openings. Wild-type channels open to both size conductances and make fast transitions between them within a single open burst. Full-size and subconductance openings of both mutant and wild-type channels are similarly activated by ATP and phosphorylation. However, the different size conductances open very differently in the presence of a nonhydrolyzable ATP analog, with subconductance openings significantly shortened by ATPgammaS, while full-size channels are locked open. In wild-type channels, reducing conditions increase the frequency and decrease the open time of subconductance channels, while oxidizing conditions decrease the frequency of subconductance openings. In contrast, in the cysteine mutants studied, altering redox potential has little effect on gating of the subconductance. PMID:11867445

  2. Physically Modeling Stream Channel Adjustment to Woody Riparian Vegetation

    NASA Astrophysics Data System (ADS)

    Bennett, S. J.; Alonso, C. V.

    2003-12-01

    Stream restoration designs often use vegetation to promote bank and channel stability, to facilitate point-bar development, and to encourage natural colonization of riparian species. Here we examine the adjustment of an alluvial channel to in-stream and riparian vegetation using a distorted Froude-scale flume model with a movable boundary. A decimeter-scale trapezoidal channel comprised of 0.8-mm diameter sand was systematically vegetated with emergent, rigid dowels (3-mm in diameter) in rectangular and hemispherical patterns with varying vegetation densities while conserving the shape of the zone and the geometry of the vegetal patterns. Alternate sides of the channel were vegetated at the prescribed spacing of equilibrium alternate bars, ca. 5 to 7 times the channel width. Using flow conditions just below the threshold of sediment motion, flow obstruction, deflection, and acceleration caused bed erosion, bank failure, and morphologic channel adjustments that were wholly attributable to the managed plantings. As vegetation density increased, the magnitude and rate of scaled channel adjustment increased, which included increased channel widths, bankline steepening and meandering, and thalweg meandering. As the modeled channel began to meander, the stream bed aggraded and flow depth decreased markedly, creating a continuously connected, inter-reach complex of mid-channel bars. This study demonstrates the utility of using managed vegetations in stream corridor design and meander development, and it provides the practitioner with guidance on the magnitude of channel adjustment as it relates to vegetation density, shape, and spacing.

  3. A Beacon Transmission Power Control Algorithm Based on Wireless Channel Load Forecasting in VANETs

    PubMed Central

    Mo, Yuanfu; Yu, Dexin; Song, Jun; Zheng, Kun; Guo, Yajuan

    2015-01-01

    In a vehicular ad hoc network (VANET), the periodic exchange of single-hop status information broadcasts (beacon frames) produces channel loading, which causes channel congestion and induces information conflict problems. To guarantee fairness in beacon transmissions from each node and maximum network connectivity, adjustment of the beacon transmission power is an effective method for reducing and preventing channel congestion. In this study, the primary factors that influence wireless channel loading are selected to construct the KF-BCLF, which is a channel load forecasting algorithm based on a recursive Kalman filter and employs multiple regression equation. By pre-adjusting the transmission power based on the forecasted channel load, the channel load was kept within a predefined range; therefore, channel congestion was prevented. Based on this method, the CLF-BTPC, which is a transmission power control algorithm, is proposed. To verify KF-BCLF algorithm, a traffic survey method that involved the collection of floating car data along a major traffic road in Changchun City is employed. By comparing this forecast with the measured channel loads, the proposed KF-BCLF algorithm was proven to be effective. In addition, the CLF-BTPC algorithm is verified by simulating a section of eight-lane highway and a signal-controlled urban intersection. The results of the two verification process indicate that this distributed CLF-BTPC algorithm can effectively control channel load, prevent channel congestion, and enhance the stability and robustness of wireless beacon transmission in a vehicular network. PMID:26571042

  4. Use of micro-resistivity imaging tools in developing lower Pennsylvanian Morrow channel sandstone reservoirs, Cheyenne, Kiowa and Lincoln Counties, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germinario, M.P.

    1996-01-01

    In southeastern Colorado, Lower Pennsylvanian Morrow channel sandstones are part of complex valley-fill sequences incised into Morrow marine deposits. Morrow valleys are approximately [1/2] to 1 mile wide. Valley-fill consists of floodplain and channel filling shales, very fine-grained estuarine sandstones and fine- to coarse-grained channel sandstones that are up to 50' thick. Channel sandstones represent a sequence of stacked fluvial bars deposited in braided, anastomosing and meandering fluvial environments. Cross-stratification in channel sandstones can be imaged by micro-resistivity wireline logging tools and interpreted interactively on various workstation software packages. Recognition, interpretation and measurement of current, stoss face, and lateral accretionmore » beds in these sandstones can result in an estimated direction of paleocurrent flow of the channel. Determination of the channel's local paleoflow direction can provide significant sand risk reduction in developmental drilling, especially in 80 acre or less spacing patterns. As the distance between offset drilling locations increases, the reliability of paleoflow prediction decreases, and the corresponding sand risk rises. Lateral accretion bedding in Morrow channel sandstones has proven to be a poor indicator of sand thickening direction, due to the complex stacking of multiple channel sandstones within any given valley-fill sequence. Micro-resistivity imaging reduces risk in Morrow channel sandstone development drilling programs. Furthermore, these interpretation techniques could be applicable in other fluvial channel sandstone plays.« less

  5. Molecular biology of insect sodium channels and pyrethroid resistance.

    PubMed

    Dong, Ke; Du, Yuzhe; Rinkevich, Frank; Nomura, Yoshiko; Xu, Peng; Wang, Lingxin; Silver, Kristopher; Zhorov, Boris S

    2014-07-01

    Voltage-gated sodium channels are essential for the initiation and propagation of the action potential in neurons and other excitable cells. Because of their critical roles in electrical signaling, sodium channels are targets of a variety of naturally occurring and synthetic neurotoxins, including several classes of insecticides. This review is intended to provide an update on the molecular biology of insect sodium channels and the molecular mechanism of pyrethroid resistance. Although mammalian and insect sodium channels share fundamental topological and functional properties, most insect species carry only one sodium channel gene, compared to multiple sodium channel genes found in each mammalian species. Recent studies showed that two posttranscriptional mechanisms, alternative splicing and RNA editing, are involved in generating functional diversity of sodium channels in insects. More than 50 sodium channel mutations have been identified to be responsible for or associated with knockdown resistance (kdr) to pyrethroids in various arthropod pests and disease vectors. Elucidation of molecular mechanism of kdr led to the identification of dual receptor sites of pyrethroids on insect sodium channels. Many of the kdr mutations appear to be located within or close to the two receptor sites. The accumulating knowledge of insect sodium channels and their interactions with insecticides provides a foundation for understanding the neurophysiology of sodium channels in vivo and the development of new and safer insecticides for effective control of arthropod pests and human disease vectors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Hysteresis in voltage-gated channels.

    PubMed

    Villalba-Galea, Carlos A

    2017-03-04

    Ion channels constitute a superfamily of membrane proteins found in all living creatures. Their activity allows fast translocation of ions across the plasma membrane down the ion's transmembrane electrochemical gradient, resulting in a difference in electrical potential across the plasma membrane, known as the membrane potential. A group within this superfamily, namely voltage-gated channels, displays activity that is sensitive to the membrane potential. The activity of voltage-gated channels is controlled by the membrane potential, while the membrane potential is changed by these channels' activity. This interplay produces variations in the membrane potential that have evolved into electrical signals in many organisms. These signals are essential for numerous biological processes, including neuronal activity, insulin release, muscle contraction, fertilization and many others. In recent years, the activity of the voltage-gated channels has been observed not to follow a simple relationship with the membrane potential. Instead, it has been shown that the activity of voltage-gated channel displays hysteresis. In fact, a growing number of evidence have demonstrated that the voltage dependence of channel activity is dynamically modulated by activity itself. In spite of the great impact that this property can have on electrical signaling, hysteresis in voltage-gated channels is often overlooked. Addressing this issue, this review provides examples of voltage-gated ion channels displaying hysteretic behavior. Further, this review will discuss how Dynamic Voltage Dependence in voltage-gated channels can have a physiological role in electrical signaling. Furthermore, this review will elaborate on the current thoughts on the mechanism underlying hysteresis in voltage-gated channels.

  7. Conopeptide Vt3.1 preferentially inhibits BK potassium channels containing β4 subunits via electrostatic interactions.

    PubMed

    Li, Min; Chang, Shan; Yang, Longjin; Shi, Jingyi; McFarland, Kelli; Yang, Xiao; Moller, Alyssa; Wang, Chunguang; Zou, Xiaoqin; Chi, Chengwu; Cui, Jianmin

    2014-02-21

    BK channel β subunits (β1-β4) modulate the function of channels formed by slo1 subunits to produce tissue-specific phenotypes. The molecular mechanism of how the homologous β subunits differentially alter BK channel functions and the role of different BK channel functions in various physiologic processes remain unclear. By studying channels expressed in Xenopus laevis oocytes, we show a novel disulfide-cross-linked dimer conopeptide, Vt3.1 that preferentially inhibits BK channels containing the β4 subunit, which is most abundantly expressed in brain and important for neuronal functions. Vt3.1 inhibits the currents by a maximum of 71%, shifts the G-V relation by 45 mV approximately half-saturation concentrations, and alters both open and closed time of single channel activities, indicating that the toxin alters voltage dependence of the channel. Vt3.1 contains basic residues and inhibits voltage-dependent activation by electrostatic interactions with acidic residues in the extracellular loops of the slo1 and β4 subunits. These results suggest a large interaction surface between the slo1 subunit of BK channels and the β4 subunit, providing structural insight into the molecular interactions between slo1 and β4 subunits. The results also suggest that Vt3.1 is an excellent tool for studying β subunit modulation of BK channels and for understanding the physiological roles of BK channels in neurophysiology.

  8. Intracellular spermine blocks TRPC4 channel via electrostatic interaction with C-terminal negative amino acids.

    PubMed

    Kim, Jinsung; Moon, Sang Hui; Shin, Young-Cheul; Jeon, Ju-Hong; Park, Kyu Joo; Lee, Kyu Pil; So, Insuk

    2016-04-01

    Transient receptor potential canonical (TRPC) 4 channels are calcium-permeable, nonselective cation channels and are widely expressed in mammalian tissue, especially in the GI tract and brain. TRPC4 channels are known to be involved in neurogenic contraction of ileal smooth muscle cells via generating cationic current after muscarinic stimulation (muscarinic cationic current (mIcat)). Polyamines exist in numerous tissues and are believed to be involved in cell proliferation, differentiation, scar formation, wound healing, and carcinogenesis. Besides, physiological polyamines are essential to maintain inward rectification of cardiac potassium channels (Kir2.1). At membrane potentials more positive than equilibrium potential, intracellular polyamines plug the cytosolic surface of the Kir2.1 so that potassium ions cannot pass through the pore. Recently, it was reported that polyamines inhibit not only cardiac potassium channels but also nonselective cation channels that mediate the generation of mIcat. Here, we report that TRPC4, a definite mIcat mediator, is inhibited by intracellular spermine with great extent. The inhibition was specific to TRPC4 and TRPC5 channels but was not effective to TRPC1/4, TRPC1/5, and TRPC3 channels. For this inhibition to occur, we found that glutamates at 728th and 729th position of TRPC4 channels are essential whereby we conclude that spermine blocks the TRPC4 channel with electrostatic interaction between negative amino acids at the C-terminus of the channel.

  9. Amortization does not enhance the max-Rains information of a quantum channel

    NASA Astrophysics Data System (ADS)

    Berta, Mario; Wilde, Mark M.

    2018-05-01

    Given an entanglement measure E, the entanglement of a quantum channel is defined as the largest amount of entanglement E that can be generated from the channel, if the sender and receiver are not allowed to share a quantum state before using the channel. The amortized entanglement of a quantum channel is defined as the largest net amount of entanglement E that can be generated from the channel, if the sender and receiver are allowed to share an arbitrary state before using the channel. Our main technical result is that amortization does not enhance the entanglement of an arbitrary quantum channel, when entanglement is quantified by the max-Rains relative entropy. We prove this statement by employing semi-definite programming (SDP) duality and SDP formulations for the max-Rains relative entropy and a channel’s max-Rains information, found recently in Wang et al (arXiv:1709.00200). The main application of our result is a single-letter, strong converse, and efficiently computable upper bound on the capacity of a quantum channel for transmitting qubits when assisted by positive-partial-transpose preserving (PPT-P) channels between every use of the channel. As the class of local operations and classical communication (LOCC) is contained in PPT-P, our result establishes a benchmark for the LOCC-assisted quantum capacity of an arbitrary quantum channel, which is relevant in the context of distributed quantum computation and quantum key distribution.

  10. Contribution of Sialic Acid to the Voltage Dependence of Sodium Channel Gating

    PubMed Central

    Bennett, Eric; Urcan, Mary S.; Tinkle, Sally S.; Koszowski, Adam G.; Levinson, Simon R.

    1997-01-01

    A potential role for sialic acid in the voltage-dependent gating of rat skeletal muscle sodium channels (rSkM1) was investigated using Chinese hamster ovary (CHO) cells stably transfected with rSkM1. Changes in the voltage dependence of channel gating were observed after enzymatic (neuraminidase) removal of sialic acid from cells expressing rSkM1 and through the expression of rSkM1 in a sialylation-deficient cell line (lec2). The steady-state half-activation voltages (Va) of channels under each condition of reduced sialylation were ∼10 mV more depolarized than control channels. The voltage dependence of the time constants of channel activation and inactivation were also shifted in the same direction and by a similar magnitude. In addition, recombinant deletion of likely glycosylation sites from the rSkM1 sequence resulted in mutant channels that gated at voltages up to 10 mV more positive than wild-type channels. Thus three independent means of reducing channel sialylation show very similar effects on the voltage dependence of channel gating. Finally, steady-state activation voltages for channels subjected to reduced sialylation conditions were much less sensitive to the effects of external calcium than those measured under control conditions, indicating that sialic acid directly contributes to the negative surface potential. These results are consistent with an electrostatic mechanism by which external, negatively charged sialic acid residues on rSkM1 alter the electric field sensed by channel gating elements. PMID:9089440

  11. Conformational heterogeneity in closed and open states of the KcsA potassium channel in lipid bicelles

    PubMed Central

    Kim, Dorothy M.; Dikiy, Igor; Upadhyay, Vikrant; Posson, David J.

    2016-01-01

    The process of ion channel gating—opening and closing—involves local and global structural changes in the channel in response to external stimuli. Conformational changes depend on the energetic landscape that underlies the transition between closed and open states, which plays a key role in ion channel gating. For the prokaryotic, pH-gated potassium channel KcsA, closed and open states have been extensively studied using structural and functional methods, but the dynamics within each of these functional states as well as the transition between them is not as well understood. In this study, we used solution nuclear magnetic resonance (NMR) spectroscopy to investigate the conformational transitions within specific functional states of KcsA. We incorporated KcsA channels into lipid bicelles and stabilized them into a closed state by using either phosphatidylcholine lipids, known to favor the closed channel, or mutations designed to trap the channel shut by disulfide cross-linking. A distinct state, consistent with an open channel, was uncovered by the addition of cardiolipin lipids. Using selective amino acid labeling at locations within the channel that are known to move during gating, we observed at least two different slowly interconverting conformational states for both closed and open channels. The pH dependence of these conformations and the predictable disruptions to this dependence observed in mutant channels with altered pH sensing highlight the importance of conformational heterogeneity for KcsA gating. PMID:27432996

  12. A negative charge in transmembrane segment 1 of domain II of the cockroach sodium channel is critical for channel gating and action of pyrethroid insecticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Yuzhe; Song Weizhong; Groome, James R.

    2010-08-15

    Voltage-gated sodium channels are the primary target of pyrethroids, an important class of synthetic insecticides. Pyrethroids bind to a distinct receptor site on sodium channels and prolong the open state by inhibiting channel deactivation and inactivation. Recent studies have begun to reveal sodium channel residues important for pyrethroid binding. However, how pyrethroid binding leads to inhibition of sodium channel deactivation and inactivation remains elusive. In this study, we show that a negatively charged aspartic acid residue at position 802 (D802) located in the extracellular end of transmembrane segment 1 of domain II (IIS1) is critical for both the action ofmore » pyrethroids and the voltage dependence of channel activation. Charge-reversing or -neutralizing substitutions (K, G, or A) of D802 shifted the voltage dependence of activation in the depolarizing direction and reduced channel sensitivity to deltamethrin, a pyrethroid insecticide. The charge-reversing mutation D802K also accelerated open-state deactivation, which may have counteracted the inhibition of sodium channel deactivation by deltamethrin. In contrast, the D802G substitution slowed open-state deactivation, suggesting an additional mechanism for neutralizing the action of deltamethrin. Importantly, Schild analysis showed that D802 is not involved in pyrethroid binding. Thus, we have identified a sodium channel residue that is critical for regulating the action of pyrethroids on the sodium channel without affecting the receptor site of pyrethroids.« less

  13. Persistence of effects of high sediment loading in a salmon-bearing river, northern California

    USGS Publications Warehouse

    Madej, Mary Ann; Ozaki, V.

    2009-01-01

    Regional high-magnitude rainstorms have produced several large floods in north coastal California during the last century, which resulted in extensive massmovement activity and channel aggradation. Channel monitoring in Redwood Creek, through the use of cross-sectional surveys, thalweg profi les, and pebble counts, has documented the persistence and routing of channel-stored sediment following these large floods in the 1960s and 1970s. Channel response varied on the basis of timing of peak aggradation. Channel-stored sediment was evacuated rapidly from the upstream third of the Redwood Creek channel, and the channel bed stabilized by 1985 as the bed coarsened. Currently only narrow remnants of flood deposits remain and are well vegetated. In the downstream reach, channel aggradation peaked in the 1990s, and the channel is still incising. Channel-bed elevations throughout the watershed showed an approximate exponential decrease with time, but decay rates were highest in areas with the thickest flood deposits. Pool frequencies and depths generally increased from 1977 to 1995, as did median residual water depths, but a 10 yr flood in 1997 resulted in a moderate reversal of this trend. Channel aggradation generated during 25 yr return interval floods has persisted in Redwood Creek for more than 30 yr and has impacted many life cycles of salmon. Watershed restoration work is currently focused on correcting erosion problems on hillslopes to reduce future sediment supply to Redwood Creek instead of attempting in-channel manipulations. ?? 2009 Geological Society of America.

  14. The lysosomal potassium channel TMEM175 adopts a novel tetrameric architecture.

    PubMed

    Lee, Changkeun; Guo, Jiangtao; Zeng, Weizhong; Kim, Sunghoon; She, Ji; Cang, Chunlei; Ren, Dejian; Jiang, Youxing

    2017-07-27

    TMEM175 is a lysosomal K + channel that is important for maintaining the membrane potential and pH stability in lysosomes. It contains two homologous copies of a six-transmembrane-helix (6-TM) domain, which has no sequence homology to the canonical tetrameric K + channels and lacks the TVGYG selectivity filter motif found in these channels. The prokaryotic TMEM175 channel, which is present in a subset of bacteria and archaea, contains only a single 6-TM domain and functions as a tetramer. Here, we present the crystal structure of a prokaryotic TMEM175 channel from Chamaesiphon minutus, CmTMEM175, the architecture of which represents a completely different fold from that of canonical K + channels. All six transmembrane helices of CmTMEM175 are tightly packed within each subunit without undergoing domain swapping. The highly conserved TM1 helix acts as the pore-lining inner helix, creating an hourglass-shaped ion permeation pathway in the channel tetramer. Three layers of hydrophobic residues on the carboxy-terminal half of the TM1 helices form a bottleneck along the ion conduction pathway and serve as the selectivity filter of the channel. Mutagenesis analysis suggests that the first layer of the highly conserved isoleucine residues in the filter is primarily responsible for channel selectivity. Thus, the structure of CmTMEM175 represents a novel architecture of a tetrameric cation channel whose ion selectivity mechanism appears to be distinct from that of the classical K + channel family.

  15. Investigation of water droplet dynamics in PEM fuel cell gas channels

    NASA Astrophysics Data System (ADS)

    Gopalan, Preethi

    Water management in Proton Exchange Membrane Fuel Cell (PEMFC) has remained one of the most important issues that need to be addressed before its commercialization in automotive applications. Accumulation of water on the gas diffusion layer (GDL) surface in a PEMFC introduces a barrier for transport of reactant gases through the GDL to the catalyst layer. Despite the fact that the channel geometry is one of the key design parameters of a fluidic system, very limited research is available to study the effect of microchannel geometry on the two-phase flow structure. In this study, the droplet-wall dynamics and two-phase pressure drop across the water droplet present in a typical PEMFC channel, were examined in auto-competitive gas channel designs (0.4 x 0.7 mm channel cross section). The liquid water flow pattern inside the gas channel was analyzed for different air velocities. Experimental data was analyzed using the Concus-Finn condition to determine the wettability characteristics in the corner region. It was confirmed that the channel angle along with the air velocity and the channel material influences the water distribution and holdup within the channel. Dynamic contact angle emerged as an important parameter in controlling the droplet-wall interaction. Experiments were also performed to understand how the inlet location of the liquid droplet on the GDL surface affects the droplet dynamic behavior in the system. It was found that droplets emerging near the channel wall or under the land lead to corner filling of the channel. Improvements in the channel design has been proposed based on the artificial channel roughness created to act as capillary grooves to transport the liquid water away from the land area. For droplets emerging near the center of the channel, beside the filling and no-filling behavior reported in the literature, a new droplet jumping behavior was observed. As droplets grew and touched the sidewalls, they jumped off to the sidewall leaving the whole GDL exposed for gases to diffuse to the catalyst layer. A theoretical model was developed and a criterion was proposed to predict the droplet jumping behavior in the gas channel. A theoretical force balance model was proposed to predict the pressure force and air velocity required to remove the droplet from the channel to avoid complete channel blockage. The overall goal of this work was to identify the gas channel configuration that provides efficient water removal with a lower pressure drop in the system efficiency while meeting the US Department of Energy's specifications for a PEMFC for automotive application.

  16. Activation by intracellular GDP, metabolic inhibition and pinacidil of a glibenclamide-sensitive K-channel in smooth muscle cells of rat mesenteric artery.

    PubMed Central

    Zhang, H; Bolton, T B

    1995-01-01

    1. Single-channel recordings were made from cell-attached and isolated patches, and whole-cell currents were recorded under voltage clamp from single smooth muscle cells obtained by enzymic digestion of a small branch of the rat mesenteric artery. 2. In single voltage-clamped cells 1 mM uridine diphosphate (UDP) or guanidine diphosphate (GDP) added to the pipette solution, or pinacidil (100 microM) a K-channel opener (KCO) applied in the bathing solution, evoked an outward current of up to 100pA which was blocked by glibenclamide (10 microM). In single cells from which recordings were made by the 'perforated patch' (nystatin pipette) technique, metabolic inhibition by 1 mM NaCN and 10 mM 2-deoxy-glucose also evoked a similar glibenclamide-sensitive current. 3. Single K-channel activity was observed in cell-attached patches only infrequently unless the metabolism of the cell was inhibited, whereupon channel activity blocked by glibenclamide was seen; pinacidil applied to the cell evoked similar glibenclamide-sensitive channel activity. If the patch was pulled off the cell to form an isolated inside-out patch, similar glibenclamide-sensitive single-channel currents were observed in the presence of UDP and/or pinacidil to those seen in cell-attached mode; channel conductance was 20 pS (60:130 K-gradient) and openings showed no voltage-dependence and noisy inward currents, typical of the nucleoside diphosphate (NDP) activated K-channel (KNDP) seen previously in rabbit portal vein. 4. Formation of an isolated inside-out patch into an ATP-free solution did not increase the probability of channel opening which declined with time even when some single-channel activity had occurred in the cell-attached mode before detachment. However, application of 1 mM UDP or GDP, but not ATP, to inside-out patches evoked single-channel activity. Application of ATP-free solution to isolated patches, previously exposed to ATP and in which channel activity had been seen, did not evoke channel activity. 5. It is concluded that small conductance K-channels (KNDP) open in smooth muscle cells from this small artery in response to UDP or GDP acting from the inside, or pinacidil acting from the outside; the same channels open during inhibition of metabolism presumably mainly due to the rise in nucleoside diphosphates, but a fall in the ATP concentration on the inside of the channel did not by itself evoke channel activity.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7735693

  17. Faster voltage-dependent activation of Na+ channels in growth cones versus somata of neuroblastoma N1E-115 cells.

    PubMed Central

    Zhang, J; Loew, L M; Davidson, R M

    1996-01-01

    Kinetics of voltage-gated ionic channels fundamentally reflect the response of the channels to local electric fields. In this report cell-attached patch-clamp studies reveal that the voltage-dependent activation rate of sodium channels residing in the growth cone membrane differs from that of soma sodium channels in differentiating N1E-115 neuroblastoma cells. Because other electrophysiological properties of these channels do not differ, this finding may be a reflection of the difference in intramembrane electric field in these two regions of the cell. This represents a new mechanism for channels to attain a range of activities both within and between cells. PMID:8913589

  18. Faster voltage-dependent activation of Na+ channels in growth cones versus somata of neuroblastoma N1E-115 cells.

    PubMed

    Zhang, J; Loew, L M; Davidson, R M

    1996-11-01

    Kinetics of voltage-gated ionic channels fundamentally reflect the response of the channels to local electric fields. In this report cell-attached patch-clamp studies reveal that the voltage-dependent activation rate of sodium channels residing in the growth cone membrane differs from that of soma sodium channels in differentiating N1E-115 neuroblastoma cells. Because other electrophysiological properties of these channels do not differ, this finding may be a reflection of the difference in intramembrane electric field in these two regions of the cell. This represents a new mechanism for channels to attain a range of activities both within and between cells.

  19. Tuning energy relaxation along quantum Hall channels.

    PubMed

    Altimiras, C; le Sueur, H; Gennser, U; Cavanna, A; Mailly, D; Pierre, F

    2010-11-26

    The chiral edge channels in the quantum Hall regime are considered ideal ballistic quantum channels, and have quantum information processing potentialities. Here, we demonstrate experimentally, at a filling factor of ν(L)=2, the efficient tuning of the energy relaxation that limits quantum coherence and permits the return toward equilibrium. Energy relaxation along an edge channel is controllably enhanced by increasing its transmission toward a floating Ohmic contact, in quantitative agreement with predictions. Moreover, by forming a closed inner edge channel loop, we freeze energy exchanges in the outer channel. This result also elucidates the inelastic mechanisms at work at ν(L)=2, informing us, in particular, that those within the outer edge channel are negligible.

  20. Biophysical Properties of ATP-sensitive Potassium Channels in CA3 Hippocampal Neurons

    NASA Astrophysics Data System (ADS)

    Obregón-Herrera, Armando; Márquez-Gamiño, Sergio; Onetti, Carlos G.

    2004-09-01

    Single-channel activity of glucose-sensitive channels from CA3 neurons of the rat hippocampus, was studied in cell-attached membrane patches. Single-channel activity was totally abolished at 20 mM external glucose. Glucose-sensitive channels were selective to K+ ions; the unitary conductance was 170 pS in 140 mM K+, and the K+ permeability was 3.86×10-13 cmṡs-1. The open-state probability (PO) increased with membrane depolarization as a result of mean open time enhancement and shortening of the closure periods. The activation midpoint was -79 mV. Glucose-sensitive K+ channel of CA3 neurons could be considered as an ATP-sensitive potassium channel.

  1. Neurological perspectives on voltage-gated sodium channels

    PubMed Central

    Linley, John E.; Baker, Mark D.; Minett, Michael S.; Cregg, Roman; Werdehausen, Robert; Rugiero, François

    2012-01-01

    The activity of voltage-gated sodium channels has long been linked to disorders of neuronal excitability such as epilepsy and chronic pain. Recent genetic studies have now expanded the role of sodium channels in health and disease, to include autism, migraine, multiple sclerosis, cancer as well as muscle and immune system disorders. Transgenic mouse models have proved useful in understanding the physiological role of individual sodium channels, and there has been significant progress in the development of subtype selective inhibitors of sodium channels. This review will outline the functions and roles of specific sodium channels in electrical signalling and disease, focusing on neurological aspects. We also discuss recent advances in the development of selective sodium channel inhibitors. PMID:22961543

  2. Experimental demonstration of a measurement-based realisation of a quantum channel

    NASA Astrophysics Data System (ADS)

    McCutcheon, W.; McMillan, A.; Rarity, J. G.; Tame, M. S.

    2018-03-01

    We introduce and experimentally demonstrate a method for realising a quantum channel using the measurement-based model. Using a photonic setup and modifying the basis of single-qubit measurements on a four-qubit entangled cluster state, representative channels are realised for the case of a single qubit in the form of amplitude and phase damping channels. The experimental results match the theoretical model well, demonstrating the successful performance of the channels. We also show how other types of quantum channels can be realised using our approach. This work highlights the potential of the measurement-based model for realising quantum channels which may serve as building blocks for simulations of realistic open quantum systems.

  3. Dark matter annihilation with s-channel internal Higgsstrahlung

    DOE PAGES

    Kumar, Jason; Liao, Jiajun; Marfatia, Danny

    2016-05-31

    We study the scenario of fermionic dark matter that annihilates to standard model fermions through an s-channel axial vector mediator. We point out that the well-known chirality suppression of the annihilation cross section can be alleviated by s-channel internal Higgsstrahlung. The shapes of the cosmic ray spectra are identical to that of t-channel internal Higgsstrahlung in the limit of a heavy mediating particle. Unlike the general case of t-channel bremsstrahlung, s-channel Higgsstrahlung can be the dominant annihilation process even for Dirac dark matter. Finally, since the s-channel mediator can be a standard model singlet, collider searches for the mediator aremore » easily circumvented.« less

  4. Dark matter annihilation with s-channel internal Higgsstrahlung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Jason; Liao, Jiajun; Marfatia, Danny

    We study the scenario of fermionic dark matter that annihilates to standard model fermions through an s-channel axial vector mediator. We point out that the well-known chirality suppression of the annihilation cross section can be alleviated by s-channel internal Higgsstrahlung. The shapes of the cosmic ray spectra are identical to that of t-channel internal Higgsstrahlung in the limit of a heavy mediating particle. Unlike the general case of t-channel bremsstrahlung, s-channel Higgsstrahlung can be the dominant annihilation process even for Dirac dark matter. Finally, since the s-channel mediator can be a standard model singlet, collider searches for the mediator aremore » easily circumvented.« less

  5. Quantum-correlation breaking channels, quantum conditional probability and Perron-Frobenius theory

    NASA Astrophysics Data System (ADS)

    Chruściński, Dariusz

    2013-03-01

    Using the quantum analog of conditional probability and classical Bayes theorem we discuss some aspects of particular entanglement breaking channels: quantum-classical and classical-classical channels. Applying the quantum analog of Perron-Frobenius theorem we generalize the recent result of Korbicz et al. (2012) [8] on full and spectrum broadcasting from quantum-classical channels to arbitrary quantum channels.

  6. Detecting Lower Bounds to Quantum Channel Capacities.

    PubMed

    Macchiavello, Chiara; Sacchi, Massimiliano F

    2016-04-08

    We propose a method to detect lower bounds to quantum capacities of a noisy quantum communication channel by means of a few measurements. The method is easily implementable and does not require any knowledge about the channel. We test its efficiency by studying its performance for most well-known single-qubit noisy channels and for the generalized Pauli channel in an arbitrary finite dimension.

  7. 47 CFR 73.825 - Protection to reception of TV channel 6.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... stations authorized on TV Channel 6. FM channel number LPFM to TVchannel 6 (km) 201 98 202 97 203 95 204 94... RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.825 Protection to reception of TV channel 6. (a) LPFM stations will be authorized on Channels 201 through 220 only if the pertinent minimum...

  8. 47 CFR 73.825 - Protection to reception of TV channel 6.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... stations authorized on TV Channel 6. FM channel number LPFM to TVchannel 6 (km) 201 98 202 97 203 95 204 94... RADIO BROADCAST SERVICES Low Power FM Broadcast Stations (LPFM) § 73.825 Protection to reception of TV channel 6. (a) LPFM stations will be authorized on Channels 201 through 220 only if the pertinent minimum...

  9. Radar channel balancing with commutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  10. 47 CFR 95.629 - LPRS transmitter frequencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... is 25 kHz. Channel No. Center frequency (MHz) 1 216.0125 2 216.0375 3 216.0625 4 216.0875 5 216.1125... extra band frequencies. The channel bandwidth is 50 kHz. Channel No. Center frequency (MHz) 41 216.025... frequencies. The channel bandwidth is 5 kHz and the authorized bandwidth is 4 kHz. Channel No. Center...

  11. 47 CFR 95.629 - LPRS transmitter frequencies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... is 25 kHz. Channel No. Center frequency (MHz) 1 216.0125 2 216.0375 3 216.0625 4 216.0875 5 216.1125... extra band frequencies. The channel bandwidth is 50 kHz. Channel No. Center frequency (MHz) 41 216.025... frequencies. The channel bandwidth is 5 kHz and the authorized bandwidth is 4 kHz. Channel No. Center...

  12. 47 CFR 95.629 - LPRS transmitter frequencies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... is 25 kHz. Channel No. Center frequency (MHz) 1 216.0125 2 216.0375 3 216.0625 4 216.0875 5 216.1125... extra band frequencies. The channel bandwidth is 50 kHz. Channel No. Center frequency (MHz) 41 216.025... frequencies. The channel bandwidth is 5 kHz and the authorized bandwidth is 4 kHz. Channel No. Center...

  13. 47 CFR 95.629 - LPRS transmitter frequencies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... is 25 kHz. Channel No. Center frequency (MHz) 1 216.0125 2 216.0375 3 216.0625 4 216.0875 5 216.1125... extra band frequencies. The channel bandwidth is 50 kHz. Channel No. Center frequency (MHz) 41 216.025... frequencies. The channel bandwidth is 5 kHz and the authorized bandwidth is 4 kHz. Channel No. Center...

  14. 47 CFR 95.629 - LPRS transmitter frequencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... is 25 kHz. Channel No. Center frequency (MHz) 1 216.0125 2 216.0375 3 216.0625 4 216.0875 5 216.1125... extra band frequencies. The channel bandwidth is 50 kHz. Channel No. Center frequency (MHz) 41 216.025... frequencies. The channel bandwidth is 5 kHz and the authorized bandwidth is 4 kHz. Channel No. Center...

  15. Electrode channel selection based on backtracking search optimization in motor imagery brain-computer interfaces.

    PubMed

    Dai, Shengfa; Wei, Qingguo

    2017-01-01

    Common spatial pattern algorithm is widely used to estimate spatial filters in motor imagery based brain-computer interfaces. However, use of a large number of channels will make common spatial pattern tend to over-fitting and the classification of electroencephalographic signals time-consuming. To overcome these problems, it is necessary to choose an optimal subset of the whole channels to save computational time and improve the classification accuracy. In this paper, a novel method named backtracking search optimization algorithm is proposed to automatically select the optimal channel set for common spatial pattern. Each individual in the population is a N-dimensional vector, with each component representing one channel. A population of binary codes generate randomly in the beginning, and then channels are selected according to the evolution of these codes. The number and positions of 1's in the code denote the number and positions of chosen channels. The objective function of backtracking search optimization algorithm is defined as the combination of classification error rate and relative number of channels. Experimental results suggest that higher classification accuracy can be achieved with much fewer channels compared to standard common spatial pattern with whole channels.

  16. Time Domain and Frequency Domain Deterministic Channel Modeling for Tunnel/Mining Environments.

    PubMed

    Zhou, Chenming; Jacksha, Ronald; Yan, Lincan; Reyes, Miguel; Kovalchik, Peter

    2017-01-01

    Understanding wireless channels in complex mining environments is critical for designing optimized wireless systems operated in these environments. In this paper, we propose two physics-based, deterministic ultra-wideband (UWB) channel models for characterizing wireless channels in mining/tunnel environments - one in the time domain and the other in the frequency domain. For the time domain model, a general Channel Impulse Response (CIR) is derived and the result is expressed in the classic UWB tapped delay line model. The derived time domain channel model takes into account major propagation controlling factors including tunnel or entry dimensions, frequency, polarization, electrical properties of the four tunnel walls, and transmitter and receiver locations. For the frequency domain model, a complex channel transfer function is derived analytically. Based on the proposed physics-based deterministic channel models, channel parameters such as delay spread, multipath component number, and angular spread are analyzed. It is found that, despite the presence of heavy multipath, both channel delay spread and angular spread for tunnel environments are relatively smaller compared to that of typical indoor environments. The results and findings in this paper have application in the design and deployment of wireless systems in underground mining environments.

  17. Time Domain and Frequency Domain Deterministic Channel Modeling for Tunnel/Mining Environments

    PubMed Central

    Zhou, Chenming; Jacksha, Ronald; Yan, Lincan; Reyes, Miguel; Kovalchik, Peter

    2018-01-01

    Understanding wireless channels in complex mining environments is critical for designing optimized wireless systems operated in these environments. In this paper, we propose two physics-based, deterministic ultra-wideband (UWB) channel models for characterizing wireless channels in mining/tunnel environments — one in the time domain and the other in the frequency domain. For the time domain model, a general Channel Impulse Response (CIR) is derived and the result is expressed in the classic UWB tapped delay line model. The derived time domain channel model takes into account major propagation controlling factors including tunnel or entry dimensions, frequency, polarization, electrical properties of the four tunnel walls, and transmitter and receiver locations. For the frequency domain model, a complex channel transfer function is derived analytically. Based on the proposed physics-based deterministic channel models, channel parameters such as delay spread, multipath component number, and angular spread are analyzed. It is found that, despite the presence of heavy multipath, both channel delay spread and angular spread for tunnel environments are relatively smaller compared to that of typical indoor environments. The results and findings in this paper have application in the design and deployment of wireless systems in underground mining environments.† PMID:29457801

  18. Inactivation gating determines nicotine blockade of human HERG channels.

    PubMed

    Wang, H Z; Shi, H; Liao, S J; Wang, Z

    1999-09-01

    We have previously found that nicotine blocked multiple K+ currents, including the rapid component of delayed rectifier K+ currents (IKr), by interacting directly with the channels. To shed some light on the mechanisms of interaction between nicotine and channels, we performed detailed analysis on the human ether-à-go-go-related gene (HERG) channels, which are believed to be equivalent to the native I(Kr) when expressed in Xenopus oocytes. Nicotine suppressed the HERG channels in a concentration-dependent manner with greater potency with voltage protocols, which favor channel inactivation. Nicotine caused dramatic shifts of the voltage-dependent inactivation curve to more negative potentials and accelerated the inactivation process. Conversely, maneuvers that weakened the channel inactivation gating considerably relieved the blockade. Elevating the extracellular K+ concentration from 5 to 20 mM increased the nicotine concentration (by approximately 100-fold) needed to achieve the same degree of inhibition. Moreover, nicotine lost its ability to block the HERG channels when a single mutation was introduced to a residue located after transmembrane domain 6 (S631A) to remove the rapid channel inactivation. Our data suggest that the inactivation gating determines nicotine blockade of the HERG channels.

  19. Capacities of quantum amplifier channels

    NASA Astrophysics Data System (ADS)

    Qi, Haoyu; Wilde, Mark M.

    2017-01-01

    Quantum amplifier channels are at the core of several physical processes. Not only do they model the optical process of spontaneous parametric down-conversion, but the transformation corresponding to an amplifier channel also describes the physics of the dynamical Casimir effect in superconducting circuits, the Unruh effect, and Hawking radiation. Here we study the communication capabilities of quantum amplifier channels. Invoking a recently established minimum output-entropy theorem for single-mode phase-insensitive Gaussian channels, we determine capacities of quantum-limited amplifier channels in three different scenarios. First, we establish the capacities of quantum-limited amplifier channels for one of the most general communication tasks, characterized by the trade-off between classical communication, quantum communication, and entanglement generation or consumption. Second, we establish capacities of quantum-limited amplifier channels for the trade-off between public classical communication, private classical communication, and secret key generation. Third, we determine the capacity region for a broadcast channel induced by the quantum-limited amplifier channel, and we also show that a fully quantum strategy outperforms those achieved by classical coherent-detection strategies. In all three scenarios, we find that the capacities significantly outperform communication rates achieved with a naive time-sharing strategy.

  20. Channel geometry change of a first-order stream after a small debris flow in Ashio Mountains of central Japan

    NASA Astrophysics Data System (ADS)

    Hattanji, T.; Wasklewicz, T.

    2006-12-01

    We examined geometry change of a steep first-order channel with a laserscanner before and after a small debris flow. The study site is located in chert area, Ashio Mountains, Japan. On August 12, 2005, a 20-year storm event with maximum 1-hour rainfall of 75.4 mm/h triggered a small landslide at a steep channel head. The sliding material moved as a debris flow along the first-order channel (C3) to the mouth. We successfully measured high-resolution channel topography with the Leica Geosystems High-Definition Surveying Laser Scanner before (April 30) and after the debris-flow event (October 9-11). Width, depth and other related parameters were measured for 30 selected cross sections. Bankfull stage of this first-order channel after the debris-flow event is much higher than two-year flood stage. The magnitude of channel geometry change varies non-linearly in downstream direction. The non-linear variability is attributed to differences in stream bed and bank characteristics. Bedrock-channel reach is less impacted by the debris flow. The largest magnitude changes in the channel geometry parameters occur along colluvially confined channel reaches.

  1. In-Depth Study of the Interaction, Sensitivity, and Gating Modulation by PUFAs on K+ Channels; Interaction and New Targets

    PubMed Central

    Moreno, Cristina; de la Cruz, Alicia; Valenzuela, Carmen

    2016-01-01

    Voltage gated potassium channels (KV) are membrane proteins that allow selective flow of K+ ions in a voltage-dependent manner. These channels play an important role in several excitable cells as neurons, cardiomyocytes, and vascular smooth muscle. Over the last 20 years, it has been shown that omega-3 polyunsaturated fatty acids (PUFAs) enhance or decrease the activity of several cardiac KV channels. PUFAs-dependent modulation of potassium ion channels has been reported to be cardioprotective. However, the precise cellular mechanism underlying the cardiovascular benefits remained unclear in part because new PUFAs targets and signaling pathways continue being discovered. In this review, we will focus on recent data available concerning the following aspects of the KV channel modulation by PUFAs: (i) the exact residues involved in PUFAs-KV channels interaction; (ii) the structural PUFAs determinants important for their effects on KV channels; (iii) the mechanism of the gating modulation of KV channels and, finally, (iv) the PUFAs modulation of a few new targets present in smooth muscle cells (SMC), KCa1.1, K2P, and KATP channels, involved in vascular relaxation. PMID:27933000

  2. Potassium Channels and Uterine Vascular Adaptation to Pregnancy and Chronic Hypoxia

    PubMed Central

    Zhu, Ronghui; Xiao, DaLiao; Zhang, Lubo

    2014-01-01

    During a normal course of pregnancy, uterine vascular tone is significantly decreased resulting in a striking increase in uterine blood flow, which is essential for fetal development and fetal growth. Chronic hypoxia during gestation may adversely affect the normal adaptation of uterine vascular tone and increase the risk of preeclampsia and fetal intrauterine growth restriction. In this review, we present evidence that the regulation of K+ channels is an important mechanism in the adaptation of uterine vascular tone to pregnancy and hypoxia. There are four types of K+ channels identified in arterial smooth muscle cells: 1) voltage-dependent K+ (Kv) channels, 2) Ca2+-activated K+ (KCa) channels, 3) inward rectifier K+ (KIR) channels, and 4) ATP-sensitive K+ (KATP) channels. Pregnancy differentially augments the expression and activity of K+ channels via downregulation of protein kinase C signaling in uterine and other vascular beds, leading to decreased uterine vascular tone and increased uterine blood flow. Sex steroid hormones play an important role in the pregnancy-mediated alteration of K+ channels in the uterine vasculature. In addition, chronic hypoxia alters uterine vascular K+ channels expression and activities via modulation of steroid hormones/receptors-mediated signaling, resulting in increased uterine vascular tone during pregnancy. PMID:24063385

  3. Micro- and nanofabrication methods for ion channel reconstitution in bilayer lipid membranes

    NASA Astrophysics Data System (ADS)

    Tadaki, Daisuke; Yamaura, Daichi; Arata, Kohei; Ohori, Takeshi; Ma, Teng; Yamamoto, Hideaki; Niwano, Michio; Hirano-Iwata, Ayumi

    2018-03-01

    The self-assembled bilayer lipid membrane (BLM) forms the basic structure of the cell membrane and serves as a major barrier against ion movement. Ion channel proteins function as gated pores that permit ion permeation across the BLM. The reconstitution of ion channel proteins in artificially formed BLMs represents a well-defined system for investigating channel functions and screening drug effects on ion channels. In this review, we will discuss our recent microfabrication approaches to the formation of stable BLMs containing ion channel proteins as a potential platform for next-generation drug screening systems. BLMs formed in a microaperture having a tapered edge exhibited highly stable properties, such as a lifetime of ∼65 h and tolerance to solution changes even after the incorporation of the human ether-a-go-go-related gene (hERG) channel. We also explore a new method of efficiently incorporating human ion channels into BLMs by centrifugation. Our approaches to the formation of stable BLMs and efficient channel incorporation markedly improve the experimental efficiency of BLM reconstitution systems, leading to the realization of a BLM-based high-throughput platform for functional assays of various ion channels.

  4. Massively parallel processor networks with optical express channels

    DOEpatents

    Deri, R.J.; Brooks, E.D. III; Haigh, R.E.; DeGroot, A.J.

    1999-08-24

    An optical method for separating and routing local and express channel data comprises interconnecting the nodes in a network with fiber optic cables. A single fiber optic cable carries both express channel traffic and local channel traffic, e.g., in a massively parallel processor (MPP) network. Express channel traffic is placed on, or filtered from, the fiber optic cable at a light frequency or a color different from that of the local channel traffic. The express channel traffic is thus placed on a light carrier that skips over the local intermediate nodes one-by-one by reflecting off of selective mirrors placed at each local node. The local-channel-traffic light carriers pass through the selective mirrors and are not reflected. A single fiber optic cable can thus be threaded throughout a three-dimensional matrix of nodes with the x,y,z directions of propagation encoded by the color of the respective light carriers for both local and express channel traffic. Thus frequency division multiple access is used to hierarchically separate the local and express channels to eliminate the bucket brigade latencies that would otherwise result if the express traffic had to hop between every local node to reach its ultimate destination. 3 figs.

  5. Big-conductance Ca2+-activated K+ channels in physiological and pathophysiological urinary bladder smooth muscle cells

    PubMed Central

    Parajuli, Shankar P.; Zheng, Yun-Min; Levin, Robert; Wang, Yong-Xiao

    2016-01-01

    ABSTRACT Contraction and relaxation of urinary bladder smooth muscle cells (UBSMCs) represent the important physiological functions of the bladder. Contractile responses in UBSMCs are regulated by a number of ion channels including big-conductance Ca2+- activated K+ (BK) channels. Great progress has been made in studies of BK channels in UBSMCs. The intent of this review is to summarize recent exciting findings with respect to the functional interactions of BK channels with muscarinic receptors, ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) as well as their functional importance under normal and pathophysiological conditions. BK channels are highly expressed in UBSMCs. Activation of muscarinic M3 receptors inhibits the BK channel activity, facilitates opening of voltage-dependent Ca2+ (CaV) channels, and thereby enhances excitability and contractility of UBSMCs. Signaling molecules and regulatory mechanisms involving RyRs and IP3Rs have a significant effect on functions of BK channels and thereby regulate cellular responses in UBSMCs under normal and pathophysiological conditions including overactive bladders. Moreover, BK channels may represent a novel target for the treatment of bladder dysfunctions. PMID:27101440

  6. An Adaptive Channel Access Method for Dynamic Super Dense Wireless Sensor Networks.

    PubMed

    Lei, Chunyang; Bie, Hongxia; Fang, Gengfa; Zhang, Xuekun

    2015-12-03

    Super dense and distributed wireless sensor networks have become very popular with the development of small cell technology, Internet of Things (IoT), Machine-to-Machine (M2M) communications, Vehicular-to-Vehicular (V2V) communications and public safety networks. While densely deployed wireless networks provide one of the most important and sustainable solutions to improve the accuracy of sensing and spectral efficiency, a new channel access scheme needs to be designed to solve the channel congestion problem introduced by the high dynamics of competing nodes accessing the channel simultaneously. In this paper, we firstly analyzed the channel contention problem using a novel normalized channel contention analysis model which provides information on how to tune the contention window according to the state of channel contention. We then proposed an adaptive channel contention window tuning algorithm in which the contention window tuning rate is set dynamically based on the estimated channel contention level. Simulation results show that our proposed adaptive channel access algorithm based on fast contention window tuning can achieve more than 95 % of the theoretical optimal throughput and 0 . 97 of fairness index especially in dynamic and dense networks.

  7. Efficient universal quantum channel simulation in IBM's cloud quantum computer

    NASA Astrophysics Data System (ADS)

    Wei, Shi-Jie; Xin, Tao; Long, Gui-Lu

    2018-07-01

    The study of quantum channels is an important field and promises a wide range of applications, because any physical process can be represented as a quantum channel that transforms an initial state into a final state. Inspired by the method of performing non-unitary operators by the linear combination of unitary operations, we proposed a quantum algorithm for the simulation of the universal single-qubit channel, described by a convex combination of "quasi-extreme" channels corresponding to four Kraus operators, and is scalable to arbitrary higher dimension. We demonstrated the whole algorithm experimentally using the universal IBM cloud-based quantum computer and studied the properties of different qubit quantum channels. We illustrated the quantum capacity of the general qubit quantum channels, which quantifies the amount of quantum information that can be protected. The behavior of quantum capacity in different channels revealed which types of noise processes can support information transmission, and which types are too destructive to protect information. There was a general agreement between the theoretical predictions and the experiments, which strongly supports our method. By realizing the arbitrary qubit channel, this work provides a universally- accepted way to explore various properties of quantum channels and novel prospect for quantum communication.

  8. Massively parallel processor networks with optical express channels

    DOEpatents

    Deri, Robert J.; Brooks, III, Eugene D.; Haigh, Ronald E.; DeGroot, Anthony J.

    1999-01-01

    An optical method for separating and routing local and express channel data comprises interconnecting the nodes in a network with fiber optic cables. A single fiber optic cable carries both express channel traffic and local channel traffic, e.g., in a massively parallel processor (MPP) network. Express channel traffic is placed on, or filtered from, the fiber optic cable at a light frequency or a color different from that of the local channel traffic. The express channel traffic is thus placed on a light carrier that skips over the local intermediate nodes one-by-one by reflecting off of selective mirrors placed at each local node. The local-channel-traffic light carriers pass through the selective mirrors and are not reflected. A single fiber optic cable can thus be threaded throughout a three-dimensional matrix of nodes with the x,y,z directions of propagation encoded by the color of the respective light carriers for both local and express channel traffic. Thus frequency division multiple access is used to hierarchically separate the local and express channels to eliminate the bucket brigade latencies that would otherwise result if the express traffic had to hop between every local node to reach its ultimate destination.

  9. Hexadecameric structure of an invertebrate gap junction channel.

    PubMed

    Oshima, Atsunori; Matsuzawa, Tomohiro; Murata, Kazuyoshi; Tani, Kazutoshi; Fujiyoshi, Yoshinori

    2016-03-27

    Innexins are invertebrate-specific gap junction proteins with four transmembrane helices. These proteins oligomerize to constitute intercellular channels that allow for the passage of small signaling molecules associated with neural and muscular electrical activity. In contrast to the large number of structural and functional studies of connexin gap junction channels, few structural studies of recombinant innexin channels are reported. Here we show the three-dimensional structure of two-dimensionally crystallized Caenorhabditis elegans innexin-6 (INX-6) gap junction channels. The N-terminal deleted INX-6 proteins are crystallized in lipid bilayers. The three-dimensional reconstruction determined by cryo-electron crystallography reveals that a single INX-6 gap junction channel comprises 16 subunits, a hexadecamer, in contrast to chordate connexin channels, which comprise 12 subunits. The channel pore diameters at the cytoplasmic entrance and extracellular gap region are larger than those of connexin26. Two bulb densities are observed in each hemichannel, one in the pore and the other at the cytoplasmic side of the hemichannel in the channel pore pathway. These findings imply a structural diversity of gap junction channels among multicellular organisms. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels.

    PubMed

    Huang, Weiyun; Liu, Minhao; Yan, S Frank; Yan, Nieng

    2017-06-01

    Voltage-gated sodium (Na v ) channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Na v channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Na v channels, with Na v 1.1 and Na v 1.5 each harboring more than 400 mutations. Na v channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Na v channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Ca v ) channel Ca v 1.1 provides a template for homology-based structural modeling of the evolutionarily related Na v channels. In this Resource article, we summarized all the reported disease-related mutations in human Na v channels, generated a homologous model of human Na v 1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Na v channels, the analysis presented here serves as the base framework for mechanistic investigation of Na v channelopathies and for potential structure-based drug discovery.

  11. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets

    PubMed Central

    Vasconcelos, Luiz H. C.; Souza, Iara L. L.; Pinheiro, Lílian S.; Silva, Bagnólia A.

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation. PMID:27065858

  12. A serine residue in ClC-3 links phosphorylation-dephosphorylation to chloride channel regulation by cell volume.

    PubMed

    Duan, D; Cowley, S; Horowitz, B; Hume, J R

    1999-01-01

    In many mammalian cells, ClC-3 volume-regulated chloride channels maintain a variety of normal cellular functions during osmotic perturbation. The molecular mechanisms of channel regulation by cell volume, however, are unknown. Since a number of recent studies point to the involvement of protein phosphorylation/dephosphorylation in the control of volume-regulated ionic transport systems, we studied the relationship between channel phosphorylation and volume regulation of ClC-3 channels using site-directed mutagenesis and patch-clamp techniques. In native cardiac cells and when overexpressed in NIH/3T3 cells, ClC-3 channels were opened by cell swelling or inhibition of endogenous PKC, but closed by PKC activation, phosphatase inhibition, or elevation of intracellular Ca2+. Site-specific mutational studies indicate that a serine residue (serine51) within a consensus PKC-phosphorylation site in the intracellular amino terminus of the ClC-3 channel protein represents an important volume sensor of the channel. These results provide direct molecular and pharmacological evidence indicating that channel phosphorylation/dephosphorylation plays a crucial role in the regulation of volume sensitivity of recombinant ClC-3 channels and their native counterpart, ICl.vol.

  13. Optimum SNR data compression in hardware using an Eigencoil array.

    PubMed

    King, Scott B; Varosi, Steve M; Duensing, G Randy

    2010-05-01

    With the number of receivers available on clinical MRI systems now ranging from 8 to 32 channels, data compression methods are being explored to lessen the demands on the computer for data handling and processing. Although software-based methods of compression after reception lessen computational requirements, a hardware-based method before the receiver also reduces the number of receive channels required. An eight-channel Eigencoil array is constructed by placing a hardware radiofrequency signal combiner inline after preamplification, before the receiver system. The Eigencoil array produces signal-to-noise ratio (SNR) of an optimal reconstruction using a standard sum-of-squares reconstruction, with peripheral SNR gains of 30% over the standard array. The concept of "receiver channel reduction" or MRI data compression is demonstrated, with optimal SNR using only four channels, and with a three-channel Eigencoil, superior sum-of-squares SNR was achieved over the standard eight-channel array. A three-channel Eigencoil portion of a product neurovascular array confirms in vivo SNR performance and demonstrates parallel MRI up to R = 3. This SNR-preserving data compression method advantageously allows users of MRI systems with fewer receiver channels to achieve the SNR of higher-channel MRI systems. (c) 2010 Wiley-Liss, Inc.

  14. A Cytosolic Amphiphilic α-Helix Controls the Activity of the Bile Acid-sensitive Ion Channel (BASIC)*

    PubMed Central

    Schmidt, Axel; Löhrer, Daniel; Alsop, Richard J.; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Wirtz, Monika; Rheinstädter, Maikel C.; Gründer, Stefan; Wiemuth, Dominik

    2016-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the degenerin/epithelial Na+ channel (Deg/ENaC) family of ion channels. It is mainly found in bile duct epithelial cells, the intestinal tract, and the cerebellum and is activated by alterations of its membrane environment. Bile acids, one class of putative physiological activators, exert their effect by changing membrane properties, leading to an opening of the channel. The physiological function of BASIC, however, is unknown. Deg/ENaC channels are characterized by a trimeric subunit composition. Each subunit is composed of two transmembrane segments, which are linked by a large extracellular domain. The termini of the channels protrude into the cytosol. Many Deg/ENaC channels contain regulatory domains and sequence motifs within their cytosolic domains. In this study, we show that BASIC contains an amphiphilic α-helical structure within its N-terminal domain. This α-helix binds to the cytosolic face of the plasma membrane and stabilizes a closed state. Truncation of this domain renders the channel hyperactive. Collectively, we identify a cytoplasmic domain, unique to BASIC, that controls channel activity via membrane interaction. PMID:27679529

  15. Visual communications with side information via distributed printing channels: extended multimedia and security perspectives

    NASA Astrophysics Data System (ADS)

    Voloshynovskiy, Sviatoslav V.; Koval, Oleksiy; Deguillaume, Frederic; Pun, Thierry

    2004-06-01

    In this paper we address visual communications via printing channels from an information-theoretic point of view as communications with side information. The solution to this problem addresses important aspects of multimedia data processing, security and management, since printed documents are still the most common form of visual information representation. Two practical approaches to side information communications for printed documents are analyzed in the paper. The first approach represents a layered joint source-channel coding for printed documents. This approach is based on a self-embedding concept where information is first encoded assuming a Wyner-Ziv set-up and then embedded into the original data using a Gel'fand-Pinsker construction and taking into account properties of printing channels. The second approach is based on Wyner-Ziv and Berger-Flynn-Gray set-ups and assumes two separated communications channels where an appropriate distributed coding should be elaborated. The first printing channel is considered to be a direct visual channel for images ("analog" channel with degradations). The second "digital channel" with constrained capacity is considered to be an appropriate auxiliary channel. We demonstrate both theoretically and practically how one can benefit from this sort of "distributed paper communications".

  16. A Cytosolic Amphiphilic α-Helix Controls the Activity of the Bile Acid-sensitive Ion Channel (BASIC).

    PubMed

    Schmidt, Axel; Löhrer, Daniel; Alsop, Richard J; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Wirtz, Monika; Rheinstädter, Maikel C; Gründer, Stefan; Wiemuth, Dominik

    2016-11-18

    The bile acid-sensitive ion channel (BASIC) is a member of the degenerin/epithelial Na + channel (Deg/ENaC) family of ion channels. It is mainly found in bile duct epithelial cells, the intestinal tract, and the cerebellum and is activated by alterations of its membrane environment. Bile acids, one class of putative physiological activators, exert their effect by changing membrane properties, leading to an opening of the channel. The physiological function of BASIC, however, is unknown. Deg/ENaC channels are characterized by a trimeric subunit composition. Each subunit is composed of two transmembrane segments, which are linked by a large extracellular domain. The termini of the channels protrude into the cytosol. Many Deg/ENaC channels contain regulatory domains and sequence motifs within their cytosolic domains. In this study, we show that BASIC contains an amphiphilic α-helical structure within its N-terminal domain. This α-helix binds to the cytosolic face of the plasma membrane and stabilizes a closed state. Truncation of this domain renders the channel hyperactive. Collectively, we identify a cytoplasmic domain, unique to BASIC, that controls channel activity via membrane interaction. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Kizer, N.; Barry, E. L.; Friedman, P. A.; Hruska, K. A.

    1996-01-01

    By patch-clamp analysis, we have shown that chronic, intermittent mechanical strain (CMS) increases the activity of stretch-activated cation channels of osteoblast-like UMR-106.01 cells. CMS also produces a swelling-activated whole-cell conductance (Gm) regulated by varying strain levels. We questioned whether the swelling-activated conductance was produced by stretch-activated cation channel activity. We have identified a gene involved in the increase in conductance by using antisense oligodeoxynucleotides (ODN) derived from the alpha 1-subunit genes of calcium channels found in UMR-106.01 cells (alpha1S, alpha1C, and alpha1D). We demonstrate that alpha 1C antisense ODNs abolish the increase in Gm in response to hypotonic swelling following CMS. Antisense ODNs to alpha1S and alpha1D, sense ODNs to alpha1C, and sham permeabilization had no effect on the conductance increase. In addition, during cell-attached patch-clamp studies, antisense ODNs to alpha1c completely blocked the swelling-activated and stretch-activated nonselective cation channel response to strain. Antisense ODNs to alpha1S treatment produced no effect on either swelling-activated or stretch-activated cation channel activity. There were differences in the stretch-activated and swelling-activated cation channel activity, but whether they represent different channels could not be determined from our data. Our data indicate that the alpha1C gene product is involved in the Gm and the activation of the swelling-activated cation channels induced by CMS. The possibility that swelling-activated cation channel genes are members of the calcium channel superfamily exists, but if alpha1c is not the swelling-activated cation channel itself, then its expression is required for induction of swelling-activated cation channel activity by CMS.

  18. Cardiac transient outward potassium current: a pulse chemistry model of frequency-dependent properties.

    PubMed

    Liu, L; Krinsky, V I; Grant, A O; Starmer, C F

    1996-01-01

    Recent voltage-clamp studies of isolated myocytes have demonstrated widespread occurrence of a transient outward current (I(to)) carried by potassium ions. In the canine ventricle, this current is well developed in epicardial cells but not in endocardial cells. The resultant spatial dispersion of refractoriness is potentially proarrhythmic and may be amplified by channel blockade. The inactivation and recovery time constants of this channel are in excess of several hundred milliseconds, and consequently channel availability is frequency dependent at physiological stimulation rates. When the time constants associated with transitions between different channel conformations are rapid relative to drug binding kinetics, the interactions between drugs and an ion channel can be approximated by a sequence of first-order reactions, in which binding occurs in pulses in response to pulse train stimulation (pulse chemistry). When channel conformation transition time constants do not meet this constraint, analytical characterizations of the drug-channel interaction must then be modified to reflect the channel time-dependent properties. Here we report that the rate and steady-state amount of frequency-dependent inactivation of I(to) are consistent with a generalization of the channel blockade model: channel availability is reduced in a pulsatile exponential pattern as the stimulation frequency is increased, and the rate of reduction is a linear function of the pulse train depolarizing and recovery intervals. I(to) was reduced in the presence of quinidine. After accounting for the use-dependent availability of I(to) channels, we found little evidence of an additional use-dependent component of block after exposure to quinidine, suggesting that quinidine reacts with both open and closed I(to) channels as though the binding site is continuously accessible. The model provides a useful tool for assessing drug-channel interactions when the reaction cannot be continuously monitored.

  19. Chloride channels as tools for developing selective insecticides.

    PubMed

    Bloomquist, Jeffrey R

    2003-12-01

    Ligand-gated chloride channels underlie inhibition in excitable membranes and are proven target sites for insecticides. The gamma-aminobutyric acid (GABA(1)) receptor/chloride ionophore complex is the primary site of action for a number of currently used insecticides, such as lindane, endosulfan, and fipronil. These compounds act as antagonists by stabilizing nonconducting conformations of the chloride channel. Blockage of the GABA-gated chloride channel reduces neuronal inhibition, which leads to hyperexcitation of the central nervous system, convulsions, and death. We recently investigated the mode of action of the silphinenes, plant-derived natural compounds that structurally resemble picrotoxinin. These materials antagonize the action of GABA on insect neurons and block GABA-mediated chloride uptake into mouse brain synaptoneurosomes in a noncompetitive manner. In mammals, avermectins have a blocking action on the GABA-gated chloride channel consistent with a coarse tremor, whereas at longer times and higher concentrations, activation of the channel suppresses neuronal activity. Invertebrates display ataxia, paralysis, and death as the predominant signs of poisoning, with a glutamate-gated chloride channel playing a major role. Additional target sites for the avermectins or other chloride channel-directed compounds might include receptors gated by histamine, serotonin, or acetylcholine.The voltage-sensitive chloride channels form another large gene family of chloride channels. Voltage-dependent chloride channels are involved in a number of physiological processes including: maintenance of electrical excitability, chloride ion secretion and resorption, intravesicular acidification, and cell volume regulation. A subset of these channels is affected by convulsants and insecticides in mammals, although the role they play in acute lethality in insects is unclear. Given the wide range of functions that they mediate, these channels are also potential targets for insecticide development. Copyright 2003 Wiley-Liss, Inc.

  20. Bar dynamics and channel junctions in scale-experiments of estuaries

    NASA Astrophysics Data System (ADS)

    Leuven, J.; Braat, L.; van Dijk, W. M.; Haas, T. D.; Kleinhans, M. G.

    2017-12-01

    The evolution of channels and bars in estuaries has high socio-economic relevance, with strong implications for navigation, dredging and ecology. However, the spatial and temporal evolution of channels and bars in estuaries is poorly understood. Here, we study feedbacks of bar morphodynamics on widening and narrowing of estuaries. Therefore, we conducted an experiment in a 20 m long and 3 m wide tilting flume (the 'Metronome'), in which we monitored the evolution of a self-formed estuary that developed from an intial straight channel into an irregular planform with multiple channels, braided bars and a meandering ebb channel. At locations where the estuary width is confined, major channel junctions occur, while the zones between the junctions are characterised by high braiding indices, periodically migrating channels and a relatively large estuary width. The junction locations were forced by the in- and outflow locations on the sides of the ebb-tidal delta and at the location where the channel pattern transitions from multiple channels into a single channel. In the middle of the estuary, self-confinement occurred by sedimentation on the sides of the estuary, which caused another major junction. The channel orientation at the junctions steers the morphodynamics of channels and bars immediately landward and seaward, because the orientation of inflow from the ebb-tidal delta and landward river perpetually varies. In natural systems major junction locations are mostly forced by inherited geology or human engineering. However, this study concludes that even without external forcing, the estuary planform will not converge to an ideal shape but will self-confine at major junctions and widens in the adjacent zones, resulting in an irregular planform shape.

  1. Functional coupling between sodium-activated potassium channels and voltage-dependent persistent sodium currents in cricket Kenyon cells.

    PubMed

    Takahashi, Izumi; Yoshino, Masami

    2015-10-01

    In this study, we examined the functional coupling between Na(+)-activated potassium (KNa) channels and Na(+) influx through voltage-dependent Na(+) channels in Kenyon cells isolated from the mushroom body of the cricket Gryllus bimaculatus. Single-channel activity of KNa channels was recorded with the cell-attached patch configuration. The open probability (Po) of KNa channels increased with increasing Na(+) concentration in a bath solution, whereas it decreased by the substitution of Na(+) with an equimolar concentration of Li(+). The Po of KNa channels was also found to be reduced by bath application of a high concentration of TTX (1 μM) and riluzole (100 μM), which inhibits both fast (INaf) and persistent (INaP) Na(+) currents, whereas it was unaffected by a low concentration of TTX (10 nM), which selectively blocks INaf. Bath application of Cd(2+) at a low concentration (50 μM), as an inhibitor of INaP, also decreased the Po of KNa channels. Conversely, bath application of the inorganic Ca(2+)-channel blockers Co(2+) and Ni(2+) at high concentrations (500 μM) had little effect on the Po of KNa channels, although Cd(2+) (500 μM) reduced the Po of KNa channels. Perforated whole cell clamp analysis further indicated the presence of sustained outward currents for which amplitude was dependent on the amount of Na(+) influx. Taken together, these results indicate that KNa channels could be activated by Na(+) influx passing through voltage-dependent persistent Na(+) channels. The functional significance of this coupling mechanism was discussed in relation to the membrane excitability of Kenyon cells and its possible role in the formation of long-term memory. Copyright © 2015 the American Physiological Society.

  2. Channel Networks on Large Fans: Refining Analogs for the Ridge-forming Unit, Sinus Meridiani

    NASA Technical Reports Server (NTRS)

    Wilkinson, Justin

    2009-01-01

    Stream channels are generally thought of as forming within confined valley settings, separated by interfluves. Sinuous ridges on Mars and Earth are often interpreted as stream channels inverted by subsequent erosion of valley sides. In the case of the ridge-forming unit (RFU), this interpretation fails to explain the (i) close spacing of the ridges, which are (ii) organized in networks, and which (iii) cover large areas (approximately 175,000 km (exp 2)). Channel networks on terrestrial fans develop unconfined by valley slopes. Large fans (100s km long) are low-angle, fluvial features, documented worldwide, with characteristics that address these aspects of the RFU. Ridge patterns Channels on large fans provide an analog for the sinuous and elongated morphology of RFU ridges, but more especially for other patterns such as subparallel, branching and crossing networks. Branches are related to splays (delta-like distributaries are rare), whose channels can rejoin the main channel. Crossing patterns can be caused by even slight sinuosity splay-related side channels often intersect. An avulsion node distant from the fan apex, gives rise to channels with slightly different, and hence intersecting, orientations. Channels on neighboring fans intersect along the common fan margin. 2. Network density Channels are the dominant feature on large terrestrial fans (lakes and dune fields are minor). Inverted landscapes on subsequently eroded fans thus display indurated channels as networks of significantly close-spaced ridges. 3. Channel networks covering large areas Areas of individual large terrestrial fans can reach >200,000 km 2 (105-6 km 2 with nested fans), providing an analog for the wide area distribution of the RFU.

  3. Distribution of L-type calcium channels in rat thalamic neurones.

    PubMed

    Budde, T; Munsch, T; Pape, H C

    1998-02-01

    One major pathway for calcium entry into neurones is through voltage-activated calcium channels. The distribution of calcium channels over the membrane surface is important for their contribution to neuronal function. Electrophysiological recordings from thalamic cells in situ and after acute isolation demonstrated the presence of high-voltage activated calcium currents. The use of specific L-type calcium channel agonists and antagonists of the dihydropyridine type revealed an about 40% contribution of L-type channels to the total high-voltage-activated calcium current. In order to localize L-type calcium channels in thalamic neurones, fluorescent dihydropyridines were used. They were combined with the fluorescent dye RH414, which allowed the use of a ratio technique and thereby the determination of channel density. The distribution of L-type channels was analysed in the three main thalamic cell types: thalamocortical relay cells, local interneurones and reticular thalamic neurones. While channel density was highest in the soma and decreased significantly in the dendritic region, channels appeared to be clustered differentially in the three types of cells. In thalamocortical cells, L-type channels were clustered in high density around the base of dendrites, while they were more evenly distributed on the soma of interneurones. Reticular thalamic neurones exhibited high density of L-type channels in more central somatic regions. The differential localization of L-type calcium channels found in this study implies their predominate involvement in the regulation of somatic and proximal dendritic calcium-dependent processes, which may be of importance for specific thalamic functions, such as those mediating the transition from rhythmic burst activity during sleep to single spike activity during wakefulness or regulating the relay of visual information.

  4. Long-term impacts of land cover changes on stream channel loss.

    PubMed

    Julian, Jason P; Wilgruber, Nicholas A; de Beurs, Kirsten M; Mayer, Paul M; Jawarneh, Rana N

    2015-12-15

    Land cover change and stream channel loss are two related global environmental changes that are expanding and intensifying. Here, we examine how different types and transitions of land cover change impact stream channel loss across a large urbanizing watershed. We present historical land cover in the 666-km(2) Lake Thunderbird watershed in central Oklahoma (USA) over a 137 year period and coinciding stream channel length changes for the most recent 70 years of this period. Combining these two datasets allowed us to assess the interaction of land cover changes with stream channel loss. Over this period, the upper third of the watershed shifted from predominantly native grassland to an agricultural landscape, followed by widespread urbanization. The lower two-thirds of the watershed changed from a forested landscape to a mosaic of agriculture, urban, forest, and open water. Most channel length lost in the watershed over time was replaced by agriculture. Urban development gradually increased channel loss and disconnection from 1942 to 2011, particularly in the headwaters. Intensities of channel loss for both agriculture and urban increased over time. The two longest connected segments of channel loss came from the creation of two large impoundments, resulting in 46 km and 25 km of lost stream channel, respectively. Overall, the results from this study demonstrate that multiple and various land-use changes over long time periods can lead to rapid losses of large channel lengths as well as gradual (but increasing) losses of small channel lengths across all stream sizes. When these stream channel losses are taken into account, the environmental impacts of anthropogenic land-use change are compounded. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The K+ channel KZM2 is involved in stomatal movement by modulating inward K+ currents in maize guard cells.

    PubMed

    Gao, Yong-Qiang; Wu, Wei-Hua; Wang, Yi

    2017-11-01

    Stomata are the major gates in plant leaf that allow water and gas exchange, which is essential for plant transpiration and photosynthesis. Stomatal movement is mainly controlled by the ion channels and transporters in guard cells. In Arabidopsis, the inward Shaker K + channels, such as KAT1 and KAT2, are responsible for stomatal opening. However, the characterization of inward K + channels in maize guard cells is limited. In the present study, we identified two KAT1-like Shaker K + channels, KZM2 and KZM3, which were highly expressed in maize guard cells. Subcellular analysis indicated that KZM2 and KZM3 can localize at the plasma membrane. Electrophysiological characterization in HEK293 cells revealed that both KZM2 and KZM3 were inward K + (K in ) channels, but showing distinct channel kinetics. When expressed in Xenopus oocytes, only KZM3, but not KZM2, can mediate inward K + currents. However, KZM2 can interact with KZM3 forming heteromeric K in channel. In oocytes, KZM2 inhibited KZM3 channel conductance and negatively shifted the voltage dependence of KZM3. The activation of KZM2-KZM3 heteromeric channel became slower than the KZM3 channel. Patch-clamping results showed that the inward K + currents of maize guard cells were significantly increased in the KZM2 RNAi lines. In addition, the RNAi lines exhibited faster stomatal opening after light exposure. In conclusion, the presented results demonstrate that KZM2 functions as a negative regulator to modulate the K in channels in maize guard cells. KZM2 and KZM3 may form heteromeric K in channel and control stomatal opening in maize. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  6. BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization.

    PubMed

    Semenov, Iurii; Wang, Bin; Herlihy, Jeremiah T; Brenner, Robert

    2011-04-01

    The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges.

  7. BK channel β1 subunits regulate airway contraction secondary to M2 muscarinic acetylcholine receptor mediated depolarization

    PubMed Central

    Semenov, Iurii; Wang, Bin; Herlihy, Jeremiah T; Brenner, Robert

    2011-01-01

    Abstract The large conductance calcium- and voltage-activated potassium channel (BK channel) and its smooth muscle-specific β1 subunit regulate excitation–contraction coupling in many types of smooth muscle cells. However, the relative contribution of BK channels to control of M2- or M3-muscarinic acetylcholine receptor mediated airway smooth muscle contraction is poorly understood. Previously, we showed that knockout of the BK channel β1 subunit enhances cholinergic-evoked trachea contractions. Here, we demonstrate that the enhanced contraction of the BK β1 knockout can be ascribed to a defect in BK channel opposition of M2 receptor-mediated contractions. Indeed, the enhanced contraction of β1 knockout is eliminated by specific M2 receptor antagonism. The role of BK β1 to oppose M2 signalling is evidenced by a greater than fourfold increase in the contribution of L-type voltage-dependent calcium channels to contraction that otherwise does not occur with M2 antagonist or with β1 containing BK channels. The mechanism through which BK channels oppose M2-mediated recruitment of calcium channels is through a negative shift in resting voltage that offsets, rather than directly opposes, M2-mediated depolarization. The negative shift in resting voltage is reduced to similar extents by BK β1 knockout or by paxilline block of BK channels. Normalization of β1 knockout baseline voltage with low external potassium eliminated the enhanced M2-receptor mediated contraction. In summary, these findings indicate that an important function of BK/β1 channels is to oppose cholinergic M2 receptor-mediated depolarization and activation of calcium channels by restricting excitation–contraction coupling to more negative voltage ranges. PMID:21300746

  8. Trafficking Defect and Proteasomal Degradation Contribute to the Phenotype of a Novel KCNH2 Long QT Syndrome Mutation

    PubMed Central

    Mihic, Anton; Chauhan, Vijay S.; Gao, Xiaodong; Oudit, Gavin Y.; Tsushima, Robert G.

    2011-01-01

    The Kv11.1 (hERG) K+ channel plays a fundamental role in cardiac repolarization. Missense mutations in KCNH2, the gene encoding Kv11.1, cause long QT syndrome (LQTS) and frequently cause channel trafficking-deficiencies. This study characterized the properties of a novel KCNH2 mutation discovered in a LQT2 patient resuscitated from a ventricular fibrillation arrest. Proband genotyping was performed by SSCP and DNA sequencing. The electrophysiological and biochemical properties of the mutant channel were investigated after expression in HEK293 cells. The proband manifested a QTc of 554 ms prior to electrolyte normalization. Mutation analysis revealed an autosomal dominant frameshift mutation at proline 1086 (P1086fs+32X; 3256InsG). Co-immunoprecipitation demonstrated that wild-type Kv11.1 and mutant channels coassemble. Western blot showed that the mutation did not produce mature complex-glycosylated Kv11.1 channels and coexpression resulted in reduced channel maturation. Electrophysiological recordings revealed mutant channel peak currents to be similar to untransfected cells. Co-expression of channels in a 1∶1 ratio demonstrated dominant negative suppression of peak Kv11.1 currents. Immunocytochemistry confirmed that mutant channels were not present at the plasma membrane. Mutant channel trafficking rescue was attempted by incubation at reduced temperature or with the pharmacological agents E-4031. These treatments did not significantly increase peak mutant currents or induce the formation of mature complex-glycosylated channels. The proteasomal inhibitor lactacystin increased the protein levels of the mutant channels demonstrating proteasomal degradation, but failed to induce mutant Kv11.1 protein trafficking. Our study demonstrates a novel dominant-negative Kv11.1 mutation, which results in degraded non-functional channels leading to a LQT2 phenotype. PMID:21483829

  9. Genesis and sedimentary record of blind channel and islands of the anabranching river: An evolution model

    NASA Astrophysics Data System (ADS)

    Leli, Isabel T.; Stevaux, José C.; Assine, Mário L.

    2018-02-01

    Blind channel (BC) is a fluvial feature formed by attachment of a lateral sand bar to an island or riverbank. It consists of a 10- to 20-m wide and hundreds to thousands meters long channel, parallel to the island or bank, closed at its upstream end by accretion to the island. It is an important feature in anabranching rivers that plays an important role in both the island formation and river ecology. This paper discusses the formation processes, functioning, evolution, and the sedimentary record of a blind channel, related landforms, and its context on island development in the Upper Paraná River. The evolution of this morphologic feature involves (1) formation of a lateral or attachment bar beside an island with the development of a channel in between; (2) vertical accretion of mud deposits during the flood and vegetal development on the bar; (3) the upstream channel closure that generates the blind channel; and (4) annexation of the blind channel to the island. A blind channel is semilotic to lentic, that is not totally integrated to the dynamics of the main active channel and that acts as a nursery for fingerlings and macrophytes. The sedimentary facies succession of BCs are relatively simple and characterized by cross-stratified sand covered by organic muddy sediments. Based on facies analysis of 12 cores, we identified a succession of environments that contribute to the formation of islands: channel bar, blind channel, pond, and swamp. Blind channel formation and its related bar-island attachment are relevant processes associated with the growing of large island evolution in some anabranching rivers.

  10. Dual-color quantum dot detection of a heterotetrameric potassium channel (hKCa3.1).

    PubMed

    Waschk, Daniel E J; Fabian, Anke; Budde, Thomas; Schwab, Albrecht

    2011-04-01

    Potassium channels play a key role in establishing the cell membrane potential and are expressed ubiquitously. Today, more than 70 mammalian K(+) channel genes are known. The diversity of K(+) channels is further increased by the fact that different K(+) channel family members may assemble to form heterotetramers. We present a method based on fluorescence microscopy to determine the subunit composition of a tetrameric K(+) channel. We generated artificial "heteromers" of the K(+) channel hK(Ca)3.1 by coexpressing two differently tagged hK(Ca)3.1 constructs containing either an extracellular hemagglutinin (HA) or an intracellular V5 epitope. hK(Ca)3.1 channel subunits were detected in the plasma membrane of MDCK-F cells or HEK293 cells by labeling the extra- and intracellular epitopes with differently colored quantum dots (QDs). As previously shown for the extracellular part of hK(Ca)3.1 channels, its intracellular domain can also bind only one QD label at a time. When both channel subunits were coexpressed, 27.5 ± 1.8% and 24.9 ± 2.1% were homotetramers consisting of HA- and V5-tagged subunits, respectively. 47.6 ± 3.2% of the channels were heteromeric and composed of both subunits. The frequency distribution of HA- and V5-tagged homo- and heteromeric hK(Ca)3.1 channels is reminiscent of the binomial distribution (a + b)(2) = a(2) + 2ab + b(2). Along these lines, our findings are consistent with the notion that hK(Ca)3.1 channels are assembled from two homomeric dimers and not randomly from four independent subunits. We anticipate that our technique will be applicable to other heteromeric membrane proteins, too.

  11. Effect of chloride channel inhibitors on cytosolic Ca2+ levels and Ca2+-activated K+ (Gardos) channel activity in human red blood cells.

    PubMed

    Kucherenko, Yuliya V; Wagner-Britz, Lisa; Bernhardt, Ingolf; Lang, Florian

    2013-04-01

    DIDS, NPPB, tannic acid (TA) and AO1 are widely used inhibitors of Cl(-) channels. Some Cl(-) channel inhibitors (NPPB, DIDS, niflumic acid) were shown to affect phosphatidylserine (PS) scrambling and, thus, the life span of human red blood cells (hRBCs). Since a number of publications suggest Ca(2+) dependence of PS scrambling, we explored whether inhibitors of Cl(-) channels (DIDS, NPPB) or of Ca(2+)-activated Cl(-) channels (DIDS, NPPB, TA, AO1) modified intracellular free Ca(2+) concentration ([Ca(2+)]i) and activity of Ca(2+)-activated K(+) (Gardos) channel in hRBCs. According to Fluo-3 fluorescence in flow cytometry, a short treatment (15 min, +37 °C) with Cl(-) channels inhibitors decreased [Ca(2+)]i in the following order: TA > AO1 > DIDS > NPPB. According to forward scatter, the decrease of [Ca(2+)]i was accompanied by a slight but significant increase in cell volume following DIDS, NPPB and AO1 treatments. TA treatment resulted in cell shrinkage. According to whole-cell patch-clamp experiments, TA activated and NPPB and AO1 inhibited Gardos channels. The Cl(-) channel blockers further modified the alterations of [Ca(2+)]i following ATP depletion (glucose deprivation, iodoacetic acid, 6-inosine), oxidative stress (1 mM t-BHP) and treatment with Ca(2+) ionophore ionomycin (1 μM). The ability of the Cl(-) channel inhibitors to modulate PS scrambling did not correlate with their influence on [Ca(2+)]i as TA and AO1 had a particularly strong decreasing effect on [Ca(2+)]i but at the same time enhanced PS exposure. In conclusion, Cl(-) channel inhibitors affect Gardos channels, influence Ca(2+) homeostasis and induce PS exposure of hRBCs by Ca(2+)-independent mechanisms.

  12. Disease-associated mutations in CNGB3 promote cytotoxicity in photoreceptor-derived cells

    PubMed Central

    Liu, Chunming; Sherpa, Tshering

    2013-01-01

    Purpose To determine if achromatopsia associated F525N and T383fsX mutations in the CNGB3 subunit of cone photoreceptor cyclic nucleotide-gated (CNG) channels increases susceptibility to cell death in photoreceptor-derived cells. Methods Photoreceptor-derived 661W cells were transfected with cDNA encoding wild-type (WT) CNGA3 subunits plus WT or mutant CNGB3 subunits, and incubated with the membrane-permeable CNG channel activators 8-(4-chlorophenylthio) guanosine 3′,5′-cyclic monophosphate (CPT-cGMP) or CPT-adenosine 3′,5′-cyclic monophosphate (CPT-cAMP). Cell viability under these conditions was determined by measuring lactate dehydrogenase release. Channel ligand sensitivity was calibrated by patch-clamp recording after expression of WT or mutant channels in Xenopus oocytes. Results Coexpression of CNGA3 with CNGB3 subunits containing F525N or T383fsX mutations produced channels exhibiting increased apparent affinity for CPT-cGMP compared to WT channels. Consistent with these effects, cytotoxicity in the presence of 0.1 μM CPT-cGMP was enhanced relative to WT channels, and the increase in cell death was more pronounced for the mutation with the largest gain-of-function effect on channel gating, F525N. Increased susceptibility to cell death was prevented by application of the CNG channel blocker L-cis-diltiazem. Increased cytotoxicity was also found to be dependent on the presence of extracellular calcium. Conclusions These results indicate a connection between disease-associated mutations in cone CNG channel subunits, altered CNG channel-activation properties, and photoreceptor cytotoxicity. The rescue of cell viability via CNG channel block or removal of extracellular calcium suggests that cytotoxicity in this model depends on calcium entry through hyperactive CNG channels. PMID:23805033

  13. CNG channel subunit glycosylation regulates MMP-dependent changes in channel gating

    PubMed Central

    Meighan, Starla E.; Meighan, Peter C.; Rich, Elizabeth D.; Brown, R. Lane; Varnum, Michael D.

    2013-01-01

    Cyclic-nucleotide gated (CNG) channels are essential for phototransduction within retinal photoreceptors. We have demonstrated previously that enzymatic activity of matrix metalloproteinase-2 and -9, members of the MMP family of extracellular, Ca+2- and Zn+2-dependent proteases, enhances the ligand sensitivity of both rod (CNGA1 + CNGB1) and cone CNGA3 + CNGB3) CNG channels. Additionally, we have observed a decrease in maximal CNG channel current (IMAX) that begins late during MMP-directed gating changes. Here we demonstrate that CNG channels become non-conductive after prolonged MMP exposure. Concurrent with the loss of conductive channels is the increased relative contribution of channels exhibiting non-modified gating properties, suggesting the presence of a subpopulation of channels that are protected from MMP-induced gating effects. CNGA subunits are known to possess one extracellular core glycosylation site, located at one of two possible positions within the turret loop near the pore-forming region. Our results indicate that CNGA glycosylation can impede MMP-dependent modification of CNG channels. Furthermore, the relative position of the glycosylation site within the pore turret influences the extent of MMP-dependent proteolysis. Glycosylation at the site found in CNGA3 subunits was found to be protective, while glycosylation at the bovine CNGA1 site was not. Relocating the glycosylation site in CNGA1 to the position found in CNGA3 recapitulated CNGA3-like protection from MMP-dependent processing. Taken together, these data indicate that CNGA glycosylation may protect CNG channels from MMP-dependent proteolysis, consistent with MMP modification of channel function having a requirement for physical access to the extracellular face of the channel. PMID:24164424

  14. Molecular analysis of the Na+ channel blocking actions of the novel class I anti-arrhythmic agent RSD 921

    PubMed Central

    Pugsley, Michael K; Goldin, Alan L

    1999-01-01

    RSD 921 is a novel, structurally unique, class I Na+ channel blocking drug under development as a local anaesthetic agent and possibly for the treatment of cardiac arrhythmias. The effects of RSD 921 on wild-type heart, skeletal muscle, neuronal and non-inactivating IFMQ3 mutant neuronal Na+ channels expressed in Xenopus laevis oocytes were examined using a two-electrode voltage clamp.RSD 921 produced similarly potent tonic block of all three wild-type channel isoforms, with EC50 values between 35 and 47 μM, whereas the EC50 for block of the IFMQ3 mutant channel was 110±5.5 μM.Block of Na+ channels by RSD 921 was concentration and use-dependent, with marked frequency-dependent block of heart channels and mild frequency-dependent block of skeletal muscle, wild-type neuronal and IFMQ3 mutant channels.RSD 921 produced a minimal hyperpolarizing shift in the steady-state voltage-dependence of inactivation of all three wild-type channel isoforms.Open channel block of the IFMQ3 mutant channel was best fit with a first order blocking scheme with kon equal to 0.11±0.012×106 M−1 s−1 and koff equal to 12.5±2.5 s−1, resulting in KD of 117±31 μM. Recovery from open channel block occurred with a time constant of 14±2.7 s−1.These results suggest that RSD 921 preferentially interacts with the open state of the Na+ channel, and that the drug may produce potent local anaesthetic or anti-arrhythmic action under conditions of shortened action potentials, such as during anoxia or ischaemia. PMID:10369450

  15. Molecular analysis of the Na+ channel blocking actions of the novel class I anti-arrhythmic agent RSD 921.

    PubMed

    Pugsley, M K; Goldin, A L

    1999-05-01

    RSD 921 is a novel, structurally unique, class I Na+ channel blocking drug under development as a local anaesthetic agent and possibly for the treatment of cardiac arrhythmias. The effects of RSD 921 on wild-type heart, skeletal muscle, neuronal and non-inactivating IFMQ3 mutant neuronal Na+ channels expressed in Xenopus laevis oocytes were examined using a two-electrode voltage clamp. RSD 921 produced similarly potent tonic block of all three wild-type channel isoforms, with EC50 values between 35 and 47 microM, whereas the EC50 for block of the IFMQ3 mutant channel was 110+5.5 microM. Block of Na+ channels by RSD 921 was concentration and use-dependent, with marked frequency-dependent block of heart channels and mild frequency-dependent block of skeletal muscle, wild-type neuronal and IFMQ3 mutant channels. RSD 921 produced a minimal hyperpolarizing shift in the steady-state voltage-dependence of inactivation of all three wild-type channel isoforms. Open channel block of the IFMQ3 mutant channel was best fit with a first order blocking scheme with k(on) equal to 0.11+/-0.012x10(6) M(-1) s(-1) and k(off) equal to 12.5+/-2.5 s(-1), resulting in KD of 117+/-31 microM. Recovery from open channel block occurred with a time constant of 14+/-2.7 s(-1). These results suggest that RSD 921 preferentially interacts with the open state of the Na+ channel, and that the drug may produce potent local anaesthetic or anti-arrhythmic action under conditions of shortened action potentials, such as during anoxia or ischaemia.

  16. How Is Topographic Simplicity Maintained in Ephemeral, Dryland Channels?

    NASA Astrophysics Data System (ADS)

    Singer, M. B.; Michaelides, K.

    2014-12-01

    Topography in river channels reflects the time integral of streamflow-driven sediment flux mass balance. In dryland basins, infrequent and spatially heterogeneous rainfall generates a nonuniform sediment supply to ephemeral channels from hillslopes, and this sediment is subsequently sorted by spatially and temporally discontinuous channel flow. Paradoxically, the time integral of these interactions tends to produce simple topography, manifest in straight longitudinal profiles and symmetrical cross sections, which are distinct from bed morphology in perennial channels, but the controlling processes are unclear. We present a set of numerical modeling experiments based on field measurements and scenarios of uniform/nonuniform streamflow to investigate ephemeral channel bed-material flux and net sediment accumulation behavior in response to variations in channel hydrology, width, and grain size distribution. Coupled with variations in valley and channel width and frequent, yet discontinuous hillslope supply of coarse sediment, bed material becomes weakly sorted into coarse and fine sections that then affect rates of channel Qs. We identify three sediment transport thresholds relevant to poorly armored, dryland channels: 1) a low critical value required to entrain any grain sizes from the bed; 2) a value of ~4.5τ*c needed to move all grain sizes within a cross section with equal mobility; and 3) a value of ~50τ*c required to entrain gravel at nearly equivalent rates at all sections along a reach. The latter represents the 'geomorphically effective' event, which resets channel topography. We show that spatially variable flow below ~50τ*c creates and subsequently destroys incipient topography along ephemeral reaches and that large flood events above this threshold apparently dampen fluctuations in longitudinal sediment flux and thus smooth incipient channel bar forms. Both processes contribute to the maintenance of topographic simplicity in ephemeral dryland channels.

  17. Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels

    PubMed Central

    Xia, Menghang; Shahane, Sampada; Huang, Ruili; Titus, Steven A.; Shum, Enoch; Zhao, Yong; Southall, Noel; Zheng, Wei; Witt, Kristine L.; Tice, Raymond R.; Austin, Christopher P.

    2011-01-01

    The human ether-a-go-go-related gene (hERG) channel, a member of a family of voltage-gated potassium (K+) channels, plays a critical role in the repolarization of the cardiac action potential. The reduction of hERG channel activity as a result of adverse drug effects or genetic mutations may cause QT interval prolongation and potentially lead to acquired long QT syndrome. Thus, screening for hERG channel activity is important in drug development. Cardiotoxicity associated with the inhibition of hERG channels by environmental chemicals is also a public health concern. To assess the inhibitory effects of environmental chemicals on hERG channel function, we screened the National Toxicology Program (NTP) collection of 1408 compounds by measuring thallium influx into cells through hERG channels. Seventeen compounds with hERG channel inhibition were identified with IC50 potencies ranging from 0.26 to 22 μM. Twelve of these compounds were confirmed as hERG channel blockers in an automated whole cell patch clamp experiment. In addition, we investigated the structure-activity relationship of seven compounds belonging to the quaternary ammonium compound (QAC) series on hERG channel inhibition. Among four active QAC compounds, tetra-n-octylammonium bromide was the most potent with an IC50 value of 260 nM in the thallium influx assay and 80 nM in the patch clamp assay. The potency of this class of hERG channel inhibitors appears to depend on the number and length of their aliphatic side-chains surrounding the charged nitrogen. Profiling environmental compound libraries for hERG channel inhibition provides information useful in prioritizing these compounds for cardiotoxicity assessment in vivo. PMID:21362439

  18. Noble Gas Xenon Is a Novel Adenosine Triphosphate-sensitive Potassium Channel Opener

    PubMed Central

    Bantel, Carsten; Maze, Mervyn; Trapp, Stefan

    2010-01-01

    Background Adenosine triphosphate-sensitive potassium (KATP) channels in brain are involved in neuroprotective mechanisms. Pharmacologic activation of these channels is seen as beneficial, but clinical exploitation by using classic K+ channel openers is hampered by their inability to cross the blood–brain barrier. This is different with the inhalational anesthetic xenon, which recently has been suggested to activate KATP channels; it partitions freely into the brain. Methods To evaluate the type and mechanism of interaction of xenon with neuronal-type KATP channels, these channels, consisting of Kir6.2 pore-forming subunits and sulfonylurea receptor-1 regulatory subunits, were expressed in HEK293 cells and whole cell, and excised patch-clamp recordings were performed. Results Xenon, in contrast to classic KATP channel openers, acted directly on the Kir6.2 subunit of the channel. It had no effect on the closely related, adenosine triphosphate (ATP)-regulated Kir1.1 channel and failed to activate an ATP-insensitive mutant version of Kir6.2. Furthermore, concentration–inhibition curves for ATP obtained from inside-out patches in the absence or presence of 80% xenon revealed that xenon reduced the sensitivity of the KATP channel to ATP. This was reflected in an approximately fourfold shift of the concentration causing half-maximal inhibition (IC50) from 26 ± 4 to 96 ± 6 μm. Conclusions Xenon represents a novel KATP channel opener that increases KATP currents independently of the sulfonylurea receptor-1 subunit by reducing ATP inhibition of the channel. Through this action and by its ability to readily partition across the blood–brain barrier, xenon has considerable potential in clinical settings of neuronal injury, including stroke. PMID:20179498

  19. KV7 channels in the human detrusor: channel modulator effects and gene and protein expression.

    PubMed

    Bientinesi, Riccardo; Mancuso, Cesare; Martire, Maria; Bassi, Pier Francesco; Sacco, Emilio; Currò, Diego

    2017-02-01

    Voltage-gated type 7 K + (K V 7 or KCNQ) channels regulate the contractility of various smooth muscles. With this study, we aimed to assess the role of K V 7 channels in the regulation of human detrusor contractility, as well as the gene and protein expression of K V 7 channels in this tissue. For these purposes, the isolated organ technique, RT-qPCR, and Western blot were used, respectively. XE-991, a selective K V 7 channel blocker, concentration-dependently contracted the human detrusor; mean EC 50 and E max of XE-991-induced concentration-response curve were 14.1 μM and 28.8 % of the maximal bethanechol-induced contraction, respectively. Flupirtine and retigabine, selective K V 7.2-7.5 channel activators, induced concentration-dependent relaxations of bethanechol-precontracted strips, with maximal relaxations of 51.6 and 51.8 % of the precontraction, respectively. XE-991 blocked the relaxations induced by flupirtine and retigabine. All five KCNQ genes were found to be expressed in the detrusor with KCNQ4 being the most expressed among them. Different bands, having sizes similar to some of reported K V 7.1, 7.4, and 7.5 channel subunit isoforms, were detected in the detrusor by Western blot with the K V 7.4 band being the most intense among them. In conclusion, K V 7 channels contribute to set the basal tone of the human detrusor. In addition, K V 7 channel activators significantly relax the detrusor. The K V 7.4 channels are probably the most important K V 7 channels expressed in the human detrusor. These data suggest that selective K V 7.4 channel activators might represent new pharmacological tools for inducing therapeutic relaxation of the detrusor.

  20. Weighing the evidence for a ternary protein complex mediating A-type K+ currents in neurons.

    PubMed

    Maffie, Jonathon; Rudy, Bernardo

    2008-12-01

    The subthreshold-operating A-type K(+) current in neurons (I(SA)) has important roles in the regulation of neuronal excitability, the timing of action potential firing and synaptic integration and plasticity. The channels mediating this current (Kv4 channels) have been implicated in epilepsy, the control of dopamine release, and the regulation of pain plasticity. It has been proposed that Kv4 channels in neurons are ternary complexes of three types of protein: pore forming subunits of the Kv4 subfamily and two types of auxiliary subunits, the Ca(2+) binding proteins KChIPs and the dipeptidyl peptidase-like proteins (DPPLs) DPP6 (also known as DPPX) and DPP10 (4 molecules of each per channel for a total of 12 proteins in the complex). Here we consider the evidence supporting this hypothesis. Kv4 channels in many neurons are likely to be ternary complexes of these three types of protein. KChIPs and DPPLs are required to efficiently traffic Kv4 channels to the plasma membrane and regulate the functional properties of the channels. These proteins may also be important in determining the localization of the channels to specific neuronal compartments, their dynamics, and their response to neuromodulators. A surprisingly large number of additional proteins have been shown to modify Kv4 channels in heterologous expression systems, but their association with native Kv4 channels in neurons has not been properly validated. A critical consideration of the evidence suggests that it is unlikely that association of Kv4 channels with these additional proteins is widespread in the CNS. However, we cannot exclude that some of these proteins may associate with the channels transiently or in specific neurons or neuronal compartments, or that they may associate with the channels in other tissues.

  1. Effect of tyrphostin AG879 on Kv4.2 and Kv4.3 potassium channels

    PubMed Central

    Yu, Haibo; Zou, Beiyan; Wang, Xiaoliang; Li, Min

    2015-01-01

    Background and Purpose A-type potassium channels (IA) are important proteins for modulating neuronal membrane excitability. The expression and activity of Kv4.2 channels are critical for neurological functions and pharmacological inhibitors of Kv4.2 channels may have therapeutic potential for Fragile X syndrome. While screening various compounds, we identified tyrphostin AG879, a tyrosine kinase inhibitor, as a Kv4.2 inhibitor from. In the present study we characterized the effect of AG879 on cloned Kv4.2/Kv channel-interacting protein 2 (KChIP2) channels. Experimental Approach To screen the library of pharmacologically active compounds, the thallium flux assay was performed on HEK-293 cells transiently-transfected with Kv4.2 cDNA using the Maxcyte transfection system. The effects of AG879 were further examined on CHO-K1 cells expressing Kv4.2/KChIP2 channels using a whole-cell patch-clamp technique. Key Results Tyrphostin AG879 selectively and dose-dependently inhibited Kv4.2 and Kv4.3 channels. In Kv4.2/KChIP2 channels, AG879 induced prominent acceleration of the inactivation rate, use-dependent block and slowed the recovery from inactivation. AG879 induced a hyperpolarizing shift in the voltage-dependence of the steady-state inactivation of Kv4.2 channels without apparent effect on the V1/2 of the voltage-dependent activation. The blocking effect of AG879 was enhanced as channel inactivation increased. Furthermore, AG879 significantly inhibited the A-type potassium currents in the cultured hippocampus neurons. Conclusion and Implications AG879 was identified as a selective and potent inhibitor the Kv4.2 channel. AG879 inhibited Kv4.2 channels by preferentially interacting with the open state and further accelerating their inactivation. PMID:25752739

  2. Effect of tyrphostin AG879 on Kv 4.2 and Kv 4.3 potassium channels.

    PubMed

    Yu, Haibo; Zou, Beiyan; Wang, Xiaoliang; Li, Min

    2015-07-01

    A-type potassium channels (IA) are important proteins for modulating neuronal membrane excitability. The expression and activity of Kv 4.2 channels are critical for neurological functions and pharmacological inhibitors of Kv 4.2 channels may have therapeutic potential for Fragile X syndrome. While screening various compounds, we identified tyrphostin AG879, a tyrosine kinase inhibitor, as a Kv 4.2 inhibitor from. In the present study we characterized the effect of AG879 on cloned Kv 4.2/Kv channel-interacting protein 2 (KChIP2) channels. To screen the library of pharmacologically active compounds, the thallium flux assay was performed on HEK-293 cells transiently-transfected with Kv 4.2 cDNA using the Maxcyte transfection system. The effects of AG879 were further examined on CHO-K1 cells expressing Kv 4.2/KChIP2 channels using a whole-cell patch-clamp technique. Tyrphostin AG879 selectively and dose-dependently inhibited Kv 4.2 and Kv 4.3 channels. In Kv 4.2/KChIP2 channels, AG879 induced prominent acceleration of the inactivation rate, use-dependent block and slowed the recovery from inactivation. AG879 induced a hyperpolarizing shift in the voltage-dependence of the steady-state inactivation of Kv 4.2 channels without apparent effect on the V1/2 of the voltage-dependent activation. The blocking effect of AG879 was enhanced as channel inactivation increased. Furthermore, AG879 significantly inhibited the A-type potassium currents in the cultured hippocampus neurons. AG879 was identified as a selective and potent inhibitor the Kv 4.2 channel. AG879 inhibited Kv 4.2 channels by preferentially interacting with the open state and further accelerating their inactivation. © 2015 The British Pharmacological Society.

  3. Dalitz plot distributions in presence of triangle singularities

    DOE PAGES

    Szczepaniak, Adam P.

    2016-03-25

    We discuss properties of three-particle Dalitz distributions in coupled channel systems in presence of triangle singularities. The single channel case was discussed long ago where it was found that as a consequence of unitarity, effects of a triangle singularity seen in the Dalitz plot are not seen in Dalitz plot projections. In the coupled channel case we find the same is true for the sum of intensities of all interacting channels. As a result, unlike the single channel case, however, triangle singularities do remain visible in Dalitz plot projections of individual channels.

  4. Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels.

    PubMed

    Jarvis, Scott E; Zamponi, Gerald W

    2005-05-01

    Calcium entry through presynaptic voltage-gated calcium channels is essential for neurotransmitter release. The two major types of presynaptic calcium channels contain a synaptic protein interaction site that physically interacts with synaptic vesicle release proteins. This is thought to tighten the coupling between the sources of calcium entry and the neurotransmitter release machinery. Conversely, the binding of synaptic proteins to presynaptic calcium channels regulates calcium channel activity. Hence, presynaptic calcium channels act not only as the masters of the synaptic release process, but also as key targets for feedback inhibition.

  5. Microfluidic sieve using intertwined, free-standing carbon nanotube mesh as active medium

    DOEpatents

    Bakajin, Olgica; Noy, Aleksandr

    2007-11-06

    A microfluidic sieve having a substrate with a microfluidic channel, and a carbon nanotube mesh. The carbon nanotube mesh is formed from a plurality of intertwined free-standing carbon nanotubes which are fixedly attached within the channel for separating, concentrating, and/or filtering molecules flowed through the channel. In one embodiment, the microfluidic sieve is fabricated by providing a substrate having a microfluidic channel, and growing the intertwined free-standing carbon nanotubes from within the channel to produce the carbon nanotube mesh attached within the channel.

  6. Performance analysis of replication ALOHA for fading mobile communications channels

    NASA Technical Reports Server (NTRS)

    Yan, Tsun-Yee; Clare, Loren P.

    1986-01-01

    This paper describes an ALOHA random access protocol for fading communications channels. A two-state Markov model is used for the channel error process to account for the channel fading memory. The ALOHA protocol is modified to send multiple contiguous copies of a message at each transmission attempt. Both pure and slotted ALOHA channels are considered. The analysis is applicable to fading environments where the channel memory is short compared to the propagation delay. It is shown that smaller delay may be achieved using replications and, in noisy conditions, can also improve throughput.

  7. Modeling channel interference in an orbital angular momentum-multiplexed laser link

    NASA Astrophysics Data System (ADS)

    Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.

    2009-08-01

    We study the effects of optical turbulence on the energy crosstalk among constituent orbital angular momentum (OAM) states in a vortex-based multi-channel laser communication link and determine channel interference in terms of turbulence strength and OAM state separation. We characterize the channel interference as a function of C2n and transmit OAM state, and propose probability models to predict the random fluctuations in the received signals for such architecture. Simulations indicate that turbulence-induced channel interference is mutually correlated across receive channels.

  8. Dalitz plot distributions in presence of triangle singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczepaniak, Adam P.

    We discuss properties of three-particle Dalitz distributions in coupled channel systems in presence of triangle singularities. The single channel case was discussed long ago where it was found that as a consequence of unitarity, effects of a triangle singularity seen in the Dalitz plot are not seen in Dalitz plot projections. In the coupled channel case we find the same is true for the sum of intensities of all interacting channels. As a result, unlike the single channel case, however, triangle singularities do remain visible in Dalitz plot projections of individual channels.

  9. Relativistic laser channeling in plasmas for fast ignition

    NASA Astrophysics Data System (ADS)

    Lei, A. L.; Pukhov, A.; Kodama, R.; Yabuuchi, T.; Adumi, K.; Endo, K.; Freeman, R. R.; Habara, H.; Kitagawa, Y.; Kondo, K.; Kumar, G. R.; Matsuoka, T.; Mima, K.; Nagatomo, H.; Norimatsu, T.; Shorokhov, O.; Snavely, R.; Yang, X. Q.; Zheng, J.; Tanaka, K. A.

    2007-12-01

    We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.

  10. Influence of hillslope-channel coupling on two mountain headwater streams, Swiss National Park, Switzerland

    NASA Astrophysics Data System (ADS)

    Schoch, Anna; Hoffmann, Thomas; Dikau, Richard

    2014-05-01

    Sediment fluxes in mountain headwater streams are strongly conditioned by sediment supply from hillslopes and thus hillslope-channel coupling, defined as linkages connecting slopes and channels through sediment transport processes. Sediment supply from hillslopes can have major influences on channel characteristics. The main goal of my research is to achieve a better understanding of these influences on mountain headwater streams in two study areas. This is conducted through the investigation of "channel-reach morphology" according to MONTGOMERY AND BUFFINGTON (1997), morphometric and sedimentological characteristics of the channels and analysis of the slope-channel coupling system. The study was conducted in two valleys in the Swiss National Park, i.e. Val dal Botsch (VdB) and Val Mueschauns (VMu). In both headwaters slopes and channel are coupled effectively due to the small spatial vicinity and frequent debris flow processes connecting the two system components. Both catchments were glaciated in the Pleistocene but show contrasting glacial imprints today. While VdB has a V-shaped morphometry that is dominated by unconsolidated sediments (mainly talus and moraine material), VMu is U-shaped in the upper valley segments and the surface is mainly covered with bedrock. Several methods for data collection and analyses were used: (1) Channel-reach morphology classification, (2) DEM-based analysis of long profiles, ksn-values, slope-area plots and measurement of cross sections in the field, (3) investigation of sedimentological characteristics with pebble counts as well as (4) mapping of recent linkages between slopes and channel and determination of connectivity (effectivity of coupling) using a heuristic approach. The results show that sediment input into both headwater streams is dominated by debris flows. The debris flow catchments, as parts of the slope system, have the highest connectivity to the channels. Channel changes are greatest where debris flows cause massive sediment input. Channel changes include an increase in sediment size and density of boulders, a decline in grain roundness and particle sorting as well as slope steepening and alterations of cross sections due to channel incision into the deposited debris flow material. Channel-reach morphology can be modified as well, e.g. from step pool to cascade. The intensity of the influence on channels varies among the investigated debris flows. A comparison of the larger debris flows reveals that debris flows with catchments dominated by bedrock and large areal extend (absolute and relative to main channel drainage area) have the strongest influence on channels. These results suggest that the variable influence on the channel is linked to differences in the Pleistocene glacial imprint of the two study areas. Geomorphic heritage plays a crucial role in recent alpine systems. Reference: MONTGOMERY, D. R. AND J. M. BUFFINGTON (1997): Channel-reach morphology in mountain drainage basins. Geol. Soc. Am. Bull. 109 (5), 596-611.

  11. Differential regulation of a CLC anion channel by SPAK kinase ortholog-mediated multisite phosphorylation

    PubMed Central

    Miyazaki, Hiroaki

    2012-01-01

    Shrinkage-induced inhibition of the Caenorhabditis elegans cell volume and cell cycle-dependent CLC anion channel CLH-3b occurs by concomitant phosphorylation of S742 and S747, which are located on a 175 amino acid linker domain between cystathionine-β-synthase 1 (CBS1) and CBS2. Phosphorylation is mediated by the SPAK kinase homolog GCK-3 and is mimicked by substituting serine residues with glutamate. Type 1 serine/threonine protein phosphatases mediate swelling-induced channel dephosphorylation. S742E/S747E double mutant channels are constitutively inactive and cannot be activated by cell swelling. S742E and S747E mutant channels were fully active in the absence of GCK-3 and were inactive when coexpressed with the kinase. Both channels responded to cell volume changes. However, the S747E mutant channel activated and inactivated in response to cell swelling and shrinkage, respectively, much more slowly than either wild-type or S742E mutant channels. Slower activation and inactivation of S747E was not due to altered rates of dephosphorylation or dephosphorylation-dependent conformational changes. GCK-3 binds to the 175 amino acid inter-CBS linker domain. Coexpression of wild-type CLH-3b and GCK-3 with either wild-type or S742E linkers gave rise to similar channel activity and regulation. In contrast, coexpression with the S747E linker greatly enhanced basal channel activity and increased the rate of shrinkage-induced channel inactivation. Our findings suggest the intriguing possibility that the phosphorylation state of S742 in S747E mutant channels modulates GCK-3/channel interaction and hence channel phosphorylation. These results provide a foundation for further detailed studies of the role of multisite phosphorylation in regulating CLH-3b and GCK-3 activity. PMID:22357738

  12. Tetrameric subunit structure of the native brain inwardly rectifying potassium channel Kir 2.2.

    PubMed

    Raab-Graham, K F; Vandenberg, C A

    1998-07-31

    Strongly inwardly rectifying potassium channels of the Kir 2 subfamily (IRK1, IRK2, and IRK3) are involved in maintenance and modulation of cell excitability in brain and heart. Electrophysiological studies of channels expressed in heterologous systems have suggested that the pore-conducting pathway contains four subunits. However, inferences from electrophysiological studies have not been tested on native channels and do not address the possibility of nonconducting auxiliary subunits. Here, we investigate the subunit stoichiometry of endogenous inwardly rectifying potassium channel Kir 2.2 (IRK2) from rat brain. Using chemical cross-linking, immunoprecipitiation, and velocity sedimentation, we report physical evidence demonstrating the tetrameric organization of the native channel. Kir 2.2 was sequentially cross-linked to produce bands on SDS-polyacrylamide gel electrophoresis corresponding in size to monomer, dimer, trimer, and three forms of tetramer. Fully cross-linked channel was present as a single band of tetrameric size. Immunoprecipitation of biotinylated membranes revealed a single band corresponding to Kir 2.2, suggesting that the channel is composed of a single type of subunit. Hydrodynamic properties of 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonic acid-solubilized channel were used to calculate the molecular mass of the channel. Velocity sedimentation in H2O or D2O gave a sharp peak with a sedimentation coefficient of 17.3 S. Gel filtration yielded a Stokes radius of 5.92 nm. These data indicate a multisubunit protein with a molecular mass of 193 kDa, calculated to contain 3.98 subunits. Together, these results demonstrate that Kir 2.2 channels are formed by the homotetrameric association of Kir 2.2 subunits and do not contain tightly associated auxiliary subunits. These studies suggest that Kir 2.2 channels differ in structure from related heterooctomeric ATP-sensitive K channels and heterotetrameric G-protein-regulated inward rectifier K channels.

  13. Liposomal quercetin potentiates maxi-K channel openings in smooth muscles and restores its activity after oxidative stress.

    PubMed

    Melnyk, Mariia I; Dryn, Dariia O; Al Kury, Lina T; Zholos, Alexander V; Soloviev, Anatoly I

    2018-04-19

    The effects of quercetin-loaded liposomes (PCL-Q) and their constituents, that is, free quercetin (Q) and 'empty' phosphatidylcholine vesicles (PCL), on maxi-K channel activity were studied in single mouse ileal myocytes before and after H 2 O 2 -induced oxidative stress. Macroscopic Maxi-K channel currents were recorded using whole-cell patch clamp techniques, while single BK Ca channel currents were recorded in the cell-attached configuration. Bath application of PCL-Q (100 μg/ml of lipid and 3 μg/ml of quercetin) increased single Maxi-K channel activity more than threefold, from 0.010 ± 0.003 to 0.034 ± 0.004 (n = 5; p < 0.05), whereas single-channel conductance increased non-significantly from 138 to 146 pS. In the presence of PCL-Q multiple simultaneous channel openings were observed, with up to eight active channels in the membrane patch. Surprisingly, 'empty' PCL (100 μg/ml) also produced some channel activation, although it was less potent compared to PCL-Q, that is, these increased NPo from 0.010 ± 0.003 to 0.019 ± 0.003 (n = 5; p < 0.05) and did not affect single-channel conductance (139 pS). Application of PCL-Q restored macroscopic Maxi-K currents suppressed by H 2 O 2 -induced oxidative stress in ileal smooth muscle cells. We conclude that PCL-Q can activate Maxi-K channels in ileal myocytes mainly by increasing channel open probability, as well as maintain Maxi-K-mediated whole-cell current under the conditions of oxidative stress. While fusion of the 'pure' liposomes with the plasma membrane may indirectly activate Maxi-K channels by altering channel's phospholipids environment, the additional potentiating action of quercetin may be due to its better bioavailability.

  14. Modeling of dislocation channel width evolution in irradiated metals

    DOE PAGES

    Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.

    2017-11-08

    Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. And based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopymore » (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Furthermore, examinations of the effect of the so-called “source-broadening” mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel without affecting channel dependence on the given parameters.« less

  15. Exclusion of alternative exon 33 of CaV1.2 calcium channels in heart is proarrhythmogenic

    PubMed Central

    Li, Guang; Wang, Juejin; Liao, Ping; Bartels, Peter; Zhang, Hengyu; Yu, Dejie; Liang, Mui Cheng; Poh, Kian Keong; Yu, Chye Yun; Jiang, Fengli; Yong, Tan Fong; Wong, Yuk Peng; Hu, Zhenyu; Huang, Hua; Zhang, Guangqin; Galupo, Mary Joyce; Bian, Jin-Song; Ponniah, Sathivel; Trasti, Scott Lee; Foo, Roger; Hoppe, Uta C.; Herzig, Stefan; Soong, Tuck Wah

    2017-01-01

    Alternative splicing changes the CaV1.2 calcium channel electrophysiological property, but the in vivo significance of such altered channel function is lacking. Structure–function studies of heterologously expressed CaV1.2 channels could not recapitulate channel function in the native milieu of the cardiomyocyte. To address this gap in knowledge, we investigated the role of alternative exon 33 of the CaV1.2 calcium channel in heart function. Exclusion of exon 33 in CaV1.2 channels has been reported to shift the activation potential −10.4 mV to the hyperpolarized direction, and increased expression of CaV1.2Δ33 channels was observed in rat myocardial infarcted hearts. However, how a change in CaV1.2 channel electrophysiological property, due to alternative splicing, might affect cardiac function in vivo is unknown. To address these questions, we generated mCacna1c exon 33−/−-null mice. These mice contained CaV1.2Δ33 channels with a gain-of-function that included conduction of larger currents that reflects a shift in voltage dependence and a modest increase in single-channel open probability. This altered channel property underscored the development of ventricular arrhythmia, which is reflected in significantly more deaths of exon 33−/− mice from β-adrenergic stimulation. In vivo telemetric recordings also confirmed increased frequencies in premature ventricular contractions, tachycardia, and lengthened QT interval. Taken together, the significant decrease or absence of exon 33-containing CaV1.2 channels is potentially proarrhythmic in the heart. Of clinical relevance, human ischemic and dilated cardiomyopathy hearts showed increased inclusion of exon 33. However, the possible role that inclusion of exon 33 in CaV1.2 channels may play in the pathogenesis of human heart failure remains unclear. PMID:28490495

  16. Carbonate Channel-Levee Systems Influenced by Mass-Transport Deposition, Browse Basin, Australia

    NASA Astrophysics Data System (ADS)

    Dunlap, D.; Janson, X.; Sanchez-Phelps, C.; Covault, J. A.

    2017-12-01

    Submarine channels are primary conduits for clastic sediment transport to deep-water basins, thereby controlling the location of marine depocenters and sediment bypass. The evolution and depositional character of submarine channels have broad implications to sediment dispersal, sediment quality, and hydrocarbon exploration potential. Siliciclastic channel systems have been extensively studied in modern environments, seismic and outcrop; however, carbonate channel-levee deposits have only recently been explored. Here we utilize newly released high-resolution (90 Hz) seismic-reflection data from the Australian Browse Basin to document the influence of mass-transport complex (MTC) deposition on the stratigraphic architecture of carbonate channel-levee systems. The 2014 vintage seismic survey is 2500 km2 and hosts numerous large Miocene-age carbonate channel-levee complexes basinward of the shelf edge. Regional horizons and individual channel forms were mapped. Channels range from 200-300 m wide and are bounded by high-relief levee-overbank wedges (>100 ms TWTT). These channels extend across the survey area >70 km. The leveed-channels were sourced from middle and late Miocene slope gullies linked to platform carbonates. Slope-attached and locally derived MTC's are evident throughout the Miocene section likely related to periods of basin inversion and shelf-edge gully incision. We interpret that regionally extensive (>1000 km2) slope-attached MTC's can shut down a channel-levee system and trigger the initiation of a new system, whereas more locally derived (<100 km2) MTC's can promote changes in channel map-view pattern, including avulsion in some cases. The stratigraphic architectures of the carbonate channel-levee systems and their interactions with MTC's are similar to siliciclastic analogs. The similarity in stratigraphic patterns between siliciclastic and carbonate depositional systems suggests similar formative processes related to submarine mass wasting and turbidity currents, which informs depositional models of carbonate slope systems and calls for re-evaluation of the controls on stratigraphic patterns in mixed siliciclastic-carbonate deep-water basins.

  17. Capacity of Pulse-Position Modulation (PPM) on Gaussian and Webb Channels

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Divsalar, D.; Hamkins, J.; Pollara, F.

    2000-01-01

    This article computes the capacity of various idealized soft-decision channels modeling an optical channel using an avalanche photodiode detector (APD) and pulse-position modulation (PPM). The capacity of this optical channel depends in a complicated way on the physical parameters of the APD and the constraints imposed by the PPM orthogonal signaling set. This article attempts to identify and separate the effects of several fundamental parameters on the capacity of the APD-detected optical PPM channel. First, an overall signal-to-noise ratio (SNR) parameter is de ned such that the capacity as a function of a bit-normalized version of this SNR drops precipitously toward zero at quasi-brick-wall limits on bit SNR that are numerically the same as the well-understood brick-wall limits for the standard additive white Gaussian noise (AWGN) channel. A second parameter is used to quantify the effects on capacity of one unique facet of the optical PPM channel (as compared with the standard AWGN channel) that causes the noise variance to be higher in signal slots than in nonsignal slots. This nonuniform noise variance yields interesting capacity effects even when the channel model is AWGN. A third parameter is used to measure the effects on capacity of the difference between an AWGN model and a non-Gaussian model proposed by Webb (see reference in [2]) for approximating the statistics of the APD-detected optical channel. Finally, a fourth parameter is used to quantify the blending of a Webb model with a pure AWGN model to account for thermal noise. Numerical results show that the capacity of M-ary orthogonal signaling on the Webb channel exhibits the same brick-wall Shannon limit, (M ln 2)=(M 1), as on the AWGN channel ( 1:59 dB for large M). Results also compare the capacity obtained by hard- and soft-output channels and indicate that soft-output channels o er a 3-dB advantage.

  18. Thermal studies of Martian channels and valleys using Termoskan data: New results

    NASA Technical Reports Server (NTRS)

    Betts, B. H.; Murray, B. C.

    1993-01-01

    The Termoskan instrument onboard the Phobos '88 spacecraft acquired the highest-spatial-resolution thermal data ever obtained for Mars. Included in the thermal images are 2 km/pixel midday observations of several major channel and valley systems, including significant portions of Shalbatana Vallis, Ravi Vallis, Al-Qahira Vallis, Ma'adim Vallis, the channel connecting Valles Marineris with Hydraotes Chaos, and channel material in Eos Chasma. Termoskan also observed small portions of the southern beginnings of Simud, Tiu, and Ares Valles and some channel material in Gangis Chasma. Simultaneous broad band visible data were obtained for all but Ma'adim Vallis. We find that most of the channels and valleys have higher inertias than their surroundings, consistent with Viking IRTM-based thermal studies of Martian channels. We see for the first time that thermal inertia boundaries closely match all flat channel floor boundaries. Combining Termoskan thermal data, relative observations from Termoskan visible channel data, Viking absolute bolometric albedos, and a thermal model of the Mars surface, we have derived lower bounds on channel thermal inertias. Lower bounds on typical channel thermal inertias range from 8.4 to 12.5 (10(exp -3) cal cm(exp -2) s(exp -1/2)K(exp -1)) (352 to 523 in SI units). Lower bounds on inertia differences with the surrounding heavily cratered plains range from 1.1 to 3.5 (46 to 147 in SI units). Atmospheric and geometric effects are not sufficient to cause the inertia enhancements. We agree with previous researchers that localized, dark, high inertia areas within channels are likely eolian in nature. However, the Temloskan data show that eolian deposits do not fill the channels, nor are they responsible for the overall thermal inertia enhancement. Thermal homogeneity and strong correlation of thermal boundaries with the channel floor boundaries lead us to favor noneolian overall explanations.

  19. Downregulation of BK Channel Function and Protein Expression in Coronary Arteriolar Smooth Muscle Cells of Type 2 Diabetic Patients.

    PubMed

    Lu, Tong; Chai, Qiang; Jiao, Guoqing; Wang, Xiao-Li; Sun, Xiaojing; Furuseth, Jonathan D; Stulak, John M; Daly, Richard C; Greason, Kevin L; Cha, Yong-Mei; Lee, Hon-Chi

    2018-05-30

    Type 2 diabetes (T2D) is strongly associated with cardiovascular morbidity and mortality in patients. Vascular large conductance Ca2+-activated potassium (BK) channels, composed of four pore-forming α subunits (BK-α) and four regulatory β1 subunits (BK-β1), are densely expressed in coronary arterial smooth muscle cells (SMCs) and play an important role in regulating vascular tone and myocardial perfusion. However, the role of BK channels in coronary microvascular dysfunction of human subjects with diabetes is unclear. In this study, we examined BK channel function and protein expression, and BK channel-mediated vasodilation in freshly isolated coronary arterioles from T2D patients. Atrial tissues were obtained from 25 patients with T2D and 16 matched non-diabetic subjects during cardiopulmonary bypass procedure. Microvessel videomicroscopy and immunoblot analysis were performed in freshly dissected coronary arterioles and inside-out single BK channel currents was recorded in enzymatically isolated coronary arteriolar SMCs. We found that BK channel sensitivity to physiological Ca2+ concentration and voltage was downregulated in the coronary arteriolar SMCs of diabetic patients, compared with non-diabetic controls. BK channel kinetics analysis revealed that there was significant shortening of the mean open time and prolongation of the mean closed time in diabetic patients, resulting in a remarkable reduction of the channel open probability. Functional studies showed that BK channel activation by dehydrosoyasaponin-1 was diminished and that BK channel-mediated vasodilation in response to shear stress was impaired in diabetic coronary arterioles. Immunoblot experiments confirmed that the protein expressions of BK-α and BK-β1 subunits were significantly downregulated, but the ratio of BK-α/BK-β1 was unchanged in the coronary arterioles of T2D patients. Our results demonstrated for the first time that BK channel function and BK channel-mediated vasodilation were abnormal in the coronary microvasculature of diabetic patients, due to decreased protein expression and altered intrinsic properties of BK channels.

  20. Hydrograph Shape Controls Channel Morphology and Organization in a Sand-Gravel Flume

    NASA Astrophysics Data System (ADS)

    Hempel, L. A.; Grant, G.; Hassan, M. A.; Eaton, B. C.

    2016-12-01

    A fundamental research question in fluvial geomorphology is to understand what flows shape river channels. Historically, the prevailing view has been that channel dimensions adjust to a so-termed "dominant discharge", which is often approximated as the bankfull flow. But using a single flow to reference the geomorphic effectiveness of an entire flow regime discounts many observations showing that different flows control different channel processes. Some flows entrain fine sediment, some entrain the full size distribution of bed sediment; some destabilize or build bars, some erode the banks, and so forth. To explore the relation between the full flow regime and channel morphology, we conducted a series of flume experiments to examine how hydrographs with different shapes, durations, and magnitudes result in different degrees of channel organization, which we define in terms of the regularity, spacing and architecture of self-formed channel features, such as bed patches, geometry and spacing of bedforms, and channel planform. Our experiments were run in a 12m long adjustable-width flume that developed a self-formed meandering, pool-riffle pattern. We found that hydrograph shape does control channel organization. In particular, channels formed by hydrographs with slower rising limbs and broader peaks were more organized than those formed by flashier hydrographs. To become organized, hydrographs needed to exceed a minimum flow threshold, defined by the intensity of sediment transport; below which the channel lacked bedforms and a regular meander pattern. Above an upper flow threshold, bars became disorganized and the channel planform transitioned towards braiding. Field studies of channels with different flow regimes but located in a similar physiographic setting support our experimental findings. Taken together, this work points to the importance of the hydrograph as a fundamental control on channel morphology, and offers the prospect of better understanding how changing hydrologic regimes, either through climate, land use, or dams, translates into geomorphic changes.

Top