Argo, Paul E.; Fitzgerald, T. Joseph
1993-01-01
Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.
Cappola, Thomas P; Matkovich, Scot J; Wang, Wei; van Booven, Derek; Li, Mingyao; Wang, Xuexia; Qu, Liming; Sweitzer, Nancy K; Fang, James C; Reilly, Muredach P; Hakonarson, Hakon; Nerbonne, Jeanne M; Dorn, Gerald W
2011-02-08
Common heart failure has a strong undefined heritable component. Two recent independent cardiovascular SNP array studies identified a common SNP at 1p36 in intron 2 of the HSPB7 gene as being associated with heart failure. HSPB7 resequencing identified other risk alleles but no functional gene variants. Here, we further show no effect of the HSPB7 SNP on cardiac HSPB7 mRNA levels or splicing, suggesting that the SNP marks the position of a functional variant in another gene. Accordingly, we used massively parallel platforms to resequence all coding exons of the adjacent CLCNKA gene, which encodes the K(a) renal chloride channel (ClC-K(a)). Of 51 exonic CLCNKA variants identified, one SNP (rs10927887, encoding Arg83Gly) was common, in linkage disequilibrium with the heart failure risk SNP in HSPB7, and associated with heart failure in two independent Caucasian referral populations (n = 2,606 and 1,168; combined P = 2.25 × 10(-6)). Individual genotyping of rs10927887 in the two study populations and a third independent heart failure cohort (combined n = 5,489) revealed an additive allele effect on heart failure risk that is independent of age, sex, and prior hypertension (odds ratio = 1.27 per allele copy; P = 8.3 × 10(-7)). Functional characterization of recombinant wild-type Arg83 and variant Gly83 ClC-K(a) chloride channel currents revealed ≈ 50% loss-of-function of the variant channel. These findings identify a common, functionally significant genetic risk factor for Caucasian heart failure. The variant CLCNKA risk allele, telegraphed by linked variants in the adjacent HSPB7 gene, uncovers a previously overlooked genetic mechanism affecting the cardio-renal axis.
Torque-Summing Brushless Motor
NASA Technical Reports Server (NTRS)
Vaidya, J. G.
1986-01-01
Torque channels function cooperatively but electrically independent for reliability. Brushless, electronically-commutated dc motor sums electromagnetic torques on four channels and applies them to single shaft. Motor operates with any combination of channels and continues if one or more of channels fail electrically. Motor employs single stator and rotor and mechanically simple; however, each of channels electrically isolated from other so that failure of one does not adversely affect others.
Hepatitis C virus p7 mediates membrane-to-membrane adhesion.
Lee, Gi Young; Lee, Sora; Lee, Hye-Ra; Yoo, Young Do
2016-09-01
Viroporin p7 of the hepatitis C virus (HCV) acts as an ion channel for pH equilibration to stabilize HCV particles; most studies of p7 have focused on this role. However, pH equilibration by p7 via its ion channel activity does not fully explain the importance of p7 in HCV particle production. Indeed, several researchers have suggested p7 to have an unidentified ion channel-independent function. Here, we show that p7 has a novel role as a lipid raft adhesion factor, which is independent of its ion channel activity. We found that p7 targets not only the liquid-disordered (Ld) phase, but also the negatively-charged liquid-ordered (Lo) phase that can be represented as a lipid raft. p7 clusters at the phase boundary of the neutral Ld phase and the negatively-charged Lo phase. Interestingly, p7 targeting the Lo phase facilitates membrane-to-membrane adhesion, and this activity is not inhibited by p7 ion channel inhibitors. Our results demonstrated that HCV p7 has dual roles as a viroporin and as a lipid raft adhesion factor. This ion channel-independent function of p7 might be an attractive target for development of anti-HCV compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
A molecular imaging analysis of C×43 association with Cdo during skeletal myoblast differentiation
NASA Astrophysics Data System (ADS)
Nosi, Daniele; Mercatelli, Raffaella; Chellini, Flaminia; Soria, Silvia; Pini, Alessandro; Formigli, Lucia; Quercioli, Franco
2014-02-01
Cell-to-cell contacts are crucial for cell differentiation. The promyogenic cell surface protein, Cdo, functions as a component of multiprotein clusters to mediate cell adhesion signaling. Connexin43, the main connexin forming gap junctions, also plays a key role in myogenesis. At least part of its effects are independent of the intercellular channel function, but the mechanisms underlying are unknown. Here, using multiple optical approaches, we provided the first evidence that Cx43 physically interacts with Cdo to form dynamic complexes during myoblast differentiation, offering clues for considering this interaction a structural basis of the channel-independent function of Cx43.
Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi
2016-01-01
NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405
Response Errors Explain the Failure of Independent-Channels Models of Perception of Temporal Order
García-Pérez, Miguel A.; Alcalá-Quintana, Rocío
2012-01-01
Independent-channels models of perception of temporal order (also referred to as threshold models or perceptual latency models) have been ruled out because two formal properties of these models (monotonicity and parallelism) are not borne out by data from ternary tasks in which observers must judge whether stimulus A was presented before, after, or simultaneously with stimulus B. These models generally assume that observed responses are authentic indicators of unobservable judgments, but blinks, lapses of attention, or errors in pressing the response keys (maybe, but not only, motivated by time pressure when reaction times are being recorded) may make observers misreport their judgments or simply guess a response. We present an extension of independent-channels models that considers response errors and we show that the model produces psychometric functions that do not satisfy monotonicity and parallelism. The model is illustrated by fitting it to data from a published study in which the ternary task was used. The fitted functions describe very accurately the absence of monotonicity and parallelism shown by the data. These characteristics of empirical data are thus consistent with independent-channels models when response errors are taken into consideration. The implications of these results for the analysis and interpretation of temporal order judgment data are discussed. PMID:22493586
Differential Effects of TRPA and TRPV Channels on Behaviors of Caenorhabditis elegans
Thies, Jennifer; Neutzler, Vanessa; O’Leary, Fidelma; Liu, He
2016-01-01
TRPA and TRPV ion channels are members of the transient receptor potential (TRP) cation channel superfamily, which mediates various sensory transductions. In Caenorhabditis elegans, the TRPV channels are known to affect chemosensation, while the TRPA-1 channel is associated with thermosensation and mechanosensation. We examined thermosensation, chemosensation, and osmosensation in strains lacking TRPA-1 or TRPV channels. We found that TRPV channel knockout worms exhibited similar behavioral deficits associated with thermotaxis as the TRPA-1 channel knockout, suggesting a dual role for TRPV channels. In contrast, chemosensation responses, assessed by both avoidance reversal behavior and NaCl osmosensation, were dependent on TRPV channels but seemed independent of TRPA-1 channel. Our findings suggest that, in addition to TRPA-1 channel, TRPV channels are necessary for thermotaxis and may activate, or modulate, the function of TRPA-1 channels. In contrast, TRPA-1 channels do not have a dual responsibility, as they have no functional role in odorant avoidance or osmosensation. PMID:27168724
Moss, Arthur J.; Shimizu, Wataru; Wilde, Arthur A.M.; Towbin, Jeffrey A.; Zareba, Wojciech; Robinson, Jennifer L.; Qi, Ming; Vincent, G. Michael; Ackerman, Michael J.; Kaufman, Elizabeth S.; Hofman, Nynke; Seth, Rahul; Kamakura, Shiro; Miyamoto, Yoshihiro; Goldenberg, Ilan; Andrews, Mark L.; McNitt, Scott
2012-01-01
Background Type-1 long-QT syndrome (LQTS) is caused by loss-of-function mutations in the KCNQ1-encoded IKs cardiac potassium channel. We evaluated the effect of location, coding type, and biophysical function of KCNQ1 mutations on the clinical phenotype of this disorder. Methods and Results We investigated the clinical course in 600 patients with 77 different KCNQ1 mutations in 101 proband-identified families derived from the US portion of the International LQTS Registry (n=425), the Netherlands’ LQTS Registry (n=93), and the Japanese LQTS Registry (n=82). The Cox proportional hazards survivorship model was used to evaluate the independent contribution of clinical and genetic factors to the first occurrence of time-dependent cardiac events from birth through age 40 years. The clinical characteristics, distribution of mutations, and overall outcome event rates were similar in patients enrolled from the 3 geographic regions. Biophysical function of the mutations was categorized according to dominant-negative (>50%) or haploinsufficiency (≤50%) reduction in cardiac repolarizing IKs potassium channel current. Patients with transmembrane versus C-terminus mutations (hazard ratio, 2.06; P<0.001) and those with mutations having dominant-negative versus haploinsufficiency ion channel effects (hazard ratio, 2.26; P<0.001) were at increased risk for cardiac events, and these genetic risks were independent of traditional clinical risk factors. Conclusions This genotype–phenotype study indicates that in type-1 LQTS, mutations located in the transmembrane portion of the ion channel protein and the degree of ion channel dysfunction caused by the mutations are important independent risk factors influencing the clinical course of this disorder. PMID:17470695
Chao, Yu-Kai; Schludi, Verena; Chen, Cheng-Chang; Butz, Elisabeth; Nguyen, O N Phuong; Müller, Martin; Krüger, Jens; Kammerbauer, Claudia; Ben-Johny, Manu; Vollmar, Angelika M; Berking, Carola; Biel, Martin; Wahl-Schott, Christian A; Grimm, Christian
2017-10-10
Two-pore channels (TPCs) are endolysosomal cation channels. Two members exist in humans, TPC1 and TPC2. Functional roles associated with the ubiquitously expressed TPCs include VEGF-induced neoangiogenesis, LDL-cholesterol trafficking and degradation, physical endurance under fasting conditions, autophagy regulation, the acrosome reaction in sperm, cancer cell migration, and intracellular trafficking of pathogens such as Ebola virus or bacterial toxins (e.g., cholera toxin). In a genome-wide association study for variants associated with human pigmentation characteristics two coding variants of TPC2, rs35264875 (encoding M484L) and rs3829241 (encoding G734E), have been found to be associated with a shift from brown to blond hair color. In two recent follow-up studies a role for TPC2 in pigmentation has been further confirmed. However, these human polymorphic variants have not been functionally characterized until now. The development of endolysosomal patch-clamp techniques has made it possible to investigate directly ion channel activities and characteristics in isolated endolysosomal organelles. We applied this technique here to scrutinize channel characteristics of the polymorphic TPC2 variants in direct comparison with WT. We found that both polymorphisms lead to a gain of channel function by independent mechanisms. We next conducted a clinical study with more than 100 blond- and brown/black-haired individuals. We performed a genotype/phenotype analysis and subsequently isolated fibroblasts from WT and polymorphic variant carriers for endolysosomal patch-clamp experimentation to confirm key in vitro findings.
Functional diversity of potassium channel voltage-sensing domains.
Islas, León D
2016-01-01
Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.
Functional diversity of potassium channel voltage-sensing domains
Islas, León D.
2016-01-01
Abstract Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology. PMID:26794852
Gap junction- and hemichannel-independent actions of connexins.
Jiang, Jean X; Gu, Sumin
2005-06-10
Connexins have been known to be the protein building blocks of gap junctions and mediate cell-cell communication. In contrast to the conventional dogma, recent evidence suggests that in addition to forming gap junction channels, connexins possess gap junction-independent functions. One important gap junction-independent function for connexins is to serve as the major functional component for hemichannels, the un-apposed halves of gap junctions. Hemichannels, as independent functional units, play roles that are different from that of gap junctions in the cell. The other functions of connexins appear to be gap junction- and hemichannel-independent. Published studies implicate the latter functions of connexins in cell growth, differentiation, tumorigenicity, injury, and apoptosis, although the mechanistic aspects of these actions remain largely unknown. In this review, gap junction- and hemichannel-independent functions of connexins are summarized, and the molecular mechanisms underlying these connexin functions are speculated and discussed.
Yamaguchi, Soichiro; Jha, Archana; Li, Qin; Soyombo, Abigail A.; Dickinson, George D.; Churamani, Dev; Brailoiu, Eugen; Patel, Sandip; Muallem, Shmuel
2011-01-01
NAADP is a potent second messenger that mobilizes Ca2+ from acidic organelles such as endosomes and lysosomes. The molecular basis for Ca2+ release by NAADP, however, is uncertain. TRP mucolipins (TRPMLs) and two-pore channels (TPCs) are Ca2+-permeable ion channels present within the endolysosomal system. Both have been proposed as targets for NAADP. In the present study, we probed possible physical and functional association of these ion channels. Exogenously expressed TRPML1 showed near complete colocalization with TPC2 and partial colocalization with TPC1. TRPML3 overlap with TPC2 was more modest. TRPML1 and to some extent TRPML3 co-immunoprecipitated with TPC2 but less so with TPC1. Current recording, however, showed that TPC1 and TPC2 did not affect the activity of wild-type TRPML1 or constitutively active TRPML1(V432P). N-terminally truncated TPC2 (TPC2delN), which is targeted to the plasma membrane, also failed to affect TRPML1 and TRPML1(V432P) channel function or TRPML1(V432P)-mediated Ca2+ influx. Whereas overexpression of TPCs enhanced NAADP-mediated Ca2+ signals, overexpression of TRPML1 did not, and the dominant negative TRPML1(D471K) was without affect on endogenous NAADP-mediated Ca2+ signals. Furthermore, the single channel properties of NAADP-activated TPC2delN were not affected by TRPML1. Finally, NAADP-evoked Ca2+ oscillations in pancreatic acinar cells were identical in wild-type and TRPML1−/− cells. We conclude that although TRPML1 and TPCs are present in the same complex, they function as two independent organellar ion channels and that TPCs, not TRPMLs, are the targets for NAADP. PMID:21540176
Outage Probability of MRC for κ-μ Shadowed Fading Channels under Co-Channel Interference.
Chen, Changfang; Shu, Minglei; Wang, Yinglong; Yang, Ming; Zhang, Chongqing
2016-01-01
In this paper, exact closed-form expressions are derived for the outage probability (OP) of the maximal ratio combining (MRC) scheme in the κ-μ shadowed fading channels, in which both the independent and correlated shadowing components are considered. The scenario assumes the received desired signals are corrupted by the independent Rayleigh-faded co-channel interference (CCI) and background white Gaussian noise. To this end, first, the probability density function (PDF) of the κ-μ shadowed fading distribution is obtained in the form of a power series. Then the incomplete generalized moment-generating function (IG-MGF) of the received signal-to-interference-plus-noise ratio (SINR) is derived in the closed form. By using the IG-MGF results, closed-form expressions for the OP of MRC scheme are obtained over the κ-μ shadowed fading channels. Simulation results are included to validate the correctness of the analytical derivations. These new statistical results can be applied to the modeling and analysis of several wireless communication systems, such as body centric communications.
Outage Probability of MRC for κ-μ Shadowed Fading Channels under Co-Channel Interference
Chen, Changfang; Shu, Minglei; Wang, Yinglong; Yang, Ming; Zhang, Chongqing
2016-01-01
In this paper, exact closed-form expressions are derived for the outage probability (OP) of the maximal ratio combining (MRC) scheme in the κ-μ shadowed fading channels, in which both the independent and correlated shadowing components are considered. The scenario assumes the received desired signals are corrupted by the independent Rayleigh-faded co-channel interference (CCI) and background white Gaussian noise. To this end, first, the probability density function (PDF) of the κ-μ shadowed fading distribution is obtained in the form of a power series. Then the incomplete generalized moment-generating function (IG-MGF) of the received signal-to-interference-plus-noise ratio (SINR) is derived in the closed form. By using the IG-MGF results, closed-form expressions for the OP of MRC scheme are obtained over the κ-μ shadowed fading channels. Simulation results are included to validate the correctness of the analytical derivations. These new statistical results can be applied to the modeling and analysis of several wireless communication systems, such as body centric communications. PMID:27851817
Slow and fast visual motion channels have independent binocular-rivalry stages.
van de Grind, W. A.; van Hof, P.; van der Smagt, M. J.; Verstraten, F. A.
2001-01-01
We have previously reported a transparent motion after-effect indicating that the human visual system comprises separate slow and fast motion channels. Here, we report that the presentation of a fast motion in one eye and a slow motion in the other eye does not result in binocular rivalry but in a clear percept of transparent motion. We call this new visual phenomenon 'dichoptic motion transparency' (DMT). So far only the DMT phenomenon and the two motion after-effects (the 'classical' motion after-effect, seen after motion adaptation on a static test pattern, and the dynamic motion after-effect, seen on a dynamic-noise test pattern) appear to isolate the channels completely. The speed ranges of the slow and fast channels overlap strongly and are observer dependent. A model is presented that links after-effect durations of an observer to the probability of rivalry or DMT as a function of dichoptic velocity combinations. Model results support the assumption of two highly independent channels showing only within-channel rivalry, and no rivalry or after-effect interactions between the channels. The finding of two independent motion vision channels, each with a separate rivalry stage and a private line to conscious perception, might be helpful in visualizing or analysing pathways to consciousness. PMID:11270442
T-type calcium channels in synaptic plasticity
Lambert, Régis C.
2017-01-01
ABSTRACT The role of T-type calcium currents is rarely considered in the extensive literature covering the mechanisms of long-term synaptic plasticity. This situation reflects the lack of suitable T-type channel antagonists that till recently has hampered investigations of the functional roles of these channels. However, with the development of new pharmacological and genetic tools, a clear involvement of T-type channels in synaptic plasticity is starting to emerge. Here, we review a number of studies showing that T-type channels participate to numerous homo- and hetero-synaptic plasticity mechanisms that involve different molecular partners and both pre- and post-synaptic modifications. The existence of T-channel dependent and independent plasticity at the same synapse strongly suggests a subcellular localization of these channels and their partners that allows specific interactions. Moreover, we illustrate the functional importance of T-channel dependent synaptic plasticity in neocortex and thalamus. PMID:27653665
Independent and cooperative motions of the Kv1.2 channel: voltage sensing and gating.
Yeheskel, Adva; Haliloglu, Turkan; Ben-Tal, Nir
2010-05-19
Voltage-gated potassium (Kv) channels, such as Kv1.2, are involved in the generation and propagation of action potentials. The Kv channel is a homotetramer, and each monomer is composed of a voltage-sensing domain (VSD) and a pore domain (PD). We analyzed the fluctuations of a model structure of Kv1.2 using elastic network models. The analysis suggested a network of coupled fluctuations of eight rigid structural units and seven hinges that may control the transition between the active and inactive states of the channel. For the most part, the network is composed of amino acids that are known to affect channel activity. The results suggested allosteric interactions and cooperativity between the subunits in the coupling between the motion of the VSD and the selectivity filter of the PD, in accordance with recent empirical data. There are no direct contacts between the VSDs of the four subunits, and the contacts between these and the PDs are loose, suggesting that the VSDs are capable of functioning independently. Indeed, they manifest many inherent fluctuations that are decoupled from the rest of the structure. In general, the analysis suggests that the two domains contribute to the channel function both individually and cooperatively. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Stretch-induced Ca2+ independent ATP release in hippocampal astrocytes.
Xiong, Yingfei; Teng, Sasa; Zheng, Lianghong; Sun, Suhua; Li, Jie; Guo, Ning; Li, Mingli; Wang, Li; Zhu, Feipeng; Wang, Changhe; Rao, Zhiren; Zhou, Zhuan
2018-02-28
Similar to neurons, astrocytes actively participate in synaptic transmission via releasing gliotransmitters. The Ca 2+ -dependent release of gliotransmitters includes glutamate and ATP. Following an 'on-cell-like' mechanical stimulus to a single astrocyte, Ca 2+ independent single, large, non-quantal, ATP release occurs. Astrocytic ATP release is inhibited by either selective antagonist treatment or genetic knockdown of P2X7 receptor channels. Our work suggests that ATP can be released from astrocytes via two independent pathways in hippocampal astrocytes; in addition to the known Ca 2+ -dependent vesicular release, larger non-quantal ATP release depends on P2X7 channels following mechanical stretch. Astrocytic ATP release is essential for brain functions such as synaptic long-term potentiation for learning and memory. However, whether and how ATP is released via exocytosis remains hotly debated. All previous studies of non-vesicular ATP release have used indirect assays. By contrast, two recent studies report vesicular ATP release using more direct assays. In the present study, using patch clamped 'ATP-sniffer cells', we re-investigated astrocytic ATP release at single-vesicle resolution in hippocampal astrocytes. Following an 'on-cell-like' mechanical stimulus of a single astrocyte, a Ca 2+ independent single large non-quantal ATP release occurred, in contrast to the Ca 2+ -dependent multiple small quantal ATP release in a chromaffin cell. The mechanical stimulation-induced ATP release from an astrocyte was inhibited by either exposure to a selective antagonist or genetic knockdown of P2X7 receptor channels. Functional P2X7 channels were expressed in astrocytes in hippocampal brain slices. Thus, in addition to small quantal ATP release, larger non-quantal ATP release depends on P2X7 channels in astrocytes. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
An Efficient, Highly Flexible Multi-Channel Digital Downconverter Architecture
NASA Technical Reports Server (NTRS)
Goodhart, Charles E.; Soriano, Melissa A.; Navarro, Robert; Trinh, Joseph T.; Sigman, Elliott H.
2013-01-01
In this innovation, a digital downconverter has been created that produces a large (16 or greater) number of output channels of smaller bandwidths. Additionally, this design has the flexibility to tune each channel independently to anywhere in the input bandwidth to cover a wide range of output bandwidths (from 32 MHz down to 1 kHz). Both the flexibility in channel frequency selection and the more than four orders of magnitude range in output bandwidths (decimation rates from 32 to 640,000) presented significant challenges to be solved. The solution involved breaking the digital downconversion process into a two-stage process. The first stage is a 2 oversampled filter bank that divides the whole input bandwidth as a real input signal into seven overlapping, contiguous channels represented with complex samples. Using the symmetry of the sine and cosine functions in a similar way to that of an FFT (fast Fourier transform), this downconversion is very efficient and gives seven channels fixed in frequency. An arbitrary number of smaller bandwidth channels can be formed from second-stage downconverters placed after the first stage of downconversion. Because of the overlapping of the first stage, there is no gap in coverage of the entire input bandwidth. The input to any of the second-stage downconverting channels has a multiplexer that chooses one of the seven wideband channels from the first stage. These second-stage downconverters take up fewer resources because they operate at lower bandwidths than doing the entire downconversion process from the input bandwidth for each independent channel. These second-stage downconverters are each independent with fine frequency control tuning, providing extreme flexibility in positioning the center frequency of a downconverted channel. Finally, these second-stage downconverters have flexible decimation factors over four orders of magnitude The algorithm was developed to run in an FPGA (field programmable gate array) at input data sampling rates of up to 1,280 MHz. The current implementation takes a 1,280-MHz real input, and first breaks it up into seven 160-MHz complex channels, each spaced 80 MHz apart. The eighth channel at baseband was not required for this implementation, and led to more optimization. Afterwards, 16 second stage narrow band channels with independently tunable center frequencies and bandwidth settings are implemented A future implementation in a larger Xilinx FPGA will hold up to 32 independent second-stage channels.
Magupalli, Venkat G.; Mochida, Sumiko; Yan, Jin; Jiang, Xin; Westenbroek, Ruth E.; Nairn, Angus C.; Scheuer, Todd; Catterall, William A.
2013-01-01
Ca2+/calmodulin-dependent protein kinase II (CaMKII) forms a major component of the postsynaptic density where its functions in synaptic plasticity are well established, but its presynaptic actions are poorly defined. Here we show that CaMKII binds directly to the C-terminal domain of CaV2.1 channels. Binding is enhanced by autophosphorylation, and the kinase-channel signaling complex persists after dephosphorylation and removal of the Ca2+/CaM stimulus. Autophosphorylated CaMKII can bind the CaV2.1 channel and synapsin-1 simultaneously. CaMKII binding to CaV2.1 channels induces Ca2+-independent activity of the kinase, which phosphorylates the enzyme itself as well as the neuronal substrate synapsin-1. Facilitation and inactivation of CaV2.1 channels by binding of Ca2+/CaM mediates short term synaptic plasticity in transfected superior cervical ganglion neurons, and these regulatory effects are prevented by a competing peptide and the endogenous brain inhibitor CaMKIIN, which blocks binding of CaMKII to CaV2.1 channels. These results define the functional properties of a signaling complex of CaMKII and CaV2.1 channels in which both binding partners are persistently activated by their association, and they further suggest that this complex is important in presynaptic terminals in regulating protein phosphorylation and short term synaptic plasticity. PMID:23255606
Grolez, Guillaume P.; Bernardini, Michela; Richard, Elodie; Scianna, Marco; Lemonnier, Loic; Munaron, Luca; Mattot, Virginie; Prevarskaya, Natalia; Gkika, Dimitra
2017-01-01
Endothelial cell adhesion and migration are critical steps of the angiogenic process, whose dysfunction is associated with tumor growth and metastasis. The TRPM8 channel has recently been proposed to play a protective role in prostate cancer by impairing cell motility. However, the mechanisms by which it could influence vascular behavior are unknown. Here, we reveal a novel non-channel function for TRPM8 that unexpectedly acts as a Rap1 GTPase inhibitor, thereby inhibiting endothelial cell motility, independently of pore function. TRPM8 retains Rap1 intracellularly through direct protein–protein interaction, thus preventing its cytoplasm–plasma membrane trafficking. In turn, this mechanism impairs the activation of a major inside-out signaling pathway that triggers the conformational activation of integrin and, consequently, cell adhesion, migration, in vitro endothelial tube formation, and spheroid sprouting. Our results bring to light a novel, pore-independent molecular mechanism by which endogenous TRPM8 expression inhibits Rap1 GTPase and thus plays a critical role in the behavior of vascular endothelial cells by inhibiting migration. PMID:28550110
Subranging scheme for SQUID sensors
NASA Technical Reports Server (NTRS)
Penanen, Konstantin I. (Inventor)
2008-01-01
A readout scheme for measuring the output from a SQUID-based sensor-array using an improved subranging architecture that includes multiple resolution channels (such as a coarse resolution channel and a fine resolution channel). The scheme employs a flux sensing circuit with a sensing coil connected in series to multiple input coils, each input coil being coupled to a corresponding SQUID detection circuit having a high-resolution SQUID device with independent linearizing feedback. A two-resolution configuration (course and fine) is illustrated with a primary SQUID detection circuit for generating a fine readout, and a secondary SQUID detection circuit for generating a course readout, both having feedback current coupled to the respective SQUID devices via feedback/modulation coils. The primary and secondary SQUID detection circuits function and derive independent feedback. Thus, the SQUID devices may be monitored independently of each other (and read simultaneously) to dramatically increase slew rates and dynamic range.
BIOLOGICAL AND BIOPHYSICAL PROPERTIES OF VASCULAR CONNEXIN CHANNELS
Johnstone, Scott; Isakson, Brant; Locke, Darren
2010-01-01
Intercellular channels formed by connexin proteins play a pivotal role in the direct movement of ions and larger cytoplasmic solutes between vascular endothelial cells, between vascular smooth muscle cells, and between endothelial and smooth muscle cells. Multiple genetic and epigenetic factors modulate connexin expression levels and/or channel function, including cell type-independent and cell type-specific transcription factors, posttranslational modification and localized membrane targeting. Additionally, differences in protein-protein interactions, including those between connexins, significantly contribute to both vascular homeostasis and disease progression. The biophysical properties of the connexin channels identified in the vasculature, those formed by Cx37, Cx40, Cx43 and/or Cx45 proteins, are discussed in this review in the physiological and pathophysiological context of vessel function. PMID:19815177
Putting the pieces together: a crystal clear window into CLC anion channel regulation.
Strange, Kevin
2011-01-01
CLC anion transport proteins function as Cl (-) channels and Cl (-) /H (+) exchangers and are found in all major groups of life including archaebacteria. Early electrophysiological studies suggested that CLC anion channels have two pores that are opened and closed independently by a "fast" gating process operating on a millisecond timescale, and a "common" or "slow" gate that opens and closes both pores simultaneously with a timescale of seconds (Figure 1A). Subsequent biochemical and molecular experiments suggested that CLC channels/transporters are homodomeric proteins ( 1-3) .
Munemasa, Shintaro; Wang, Yong-Fei; Andreoli, Shannon; Tiriac, Hervé; Alonso, Jose M; Harper, Jeffery F; Ecker, Joseph R; Kwak, June M; Schroeder, Julian I
2006-01-01
Abscisic acid (ABA) signal transduction has been proposed to utilize cytosolic Ca2+ in guard cell ion channel regulation. However, genetic mutants in Ca2+ sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca2+-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs) have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell–expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca2+ activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca2+-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca2+-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca2+ oscillation experiments revealed that Ca2+-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca2+-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca2+-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling. PMID:17032064
The secret life of ion channels: Kv1.3 potassium channels and proliferation.
Pérez-García, M Teresa; Cidad, Pilar; López-López, José R
2018-01-01
Kv1.3 channels are involved in the switch to proliferation of normally quiescent cells, being implicated in the control of cell cycle in many different cell types and in many different ways. They modulate membrane potential controlling K + fluxes, sense changes in potential, and interact with many signaling molecules through their intracellular domains. From a mechanistic point of view, we can describe the role of Kv1.3 channels in proliferation with at least three different models. In the "membrane potential model," membrane hyperpolarization resulting from Kv1.3 activation provides the driving force for Ca 2+ influx required to activate Ca 2+ -dependent transcription. This model explains most of the data obtained from several cells from the immune system. In the "voltage sensor model," Kv1.3 channels serve mainly as sensors that transduce electrical signals into biochemical cascades, independently of their effect on membrane potential. Kv1.3-dependent proliferation of vascular smooth muscle cells (VSMCs) could fit this model. Finally, in the "channelosome balance model," the master switch determining proliferation may be related to the control of the Kv1.3 to Kv1.5 ratio, as described in glial cells and also in VSMCs. Since the three mechanisms cannot function independently, these models are obviously not exclusive. Nevertheless, they could be exploited differentially in different cells and tissues. This large functional flexibility of Kv1.3 channels surely gives a new perspective on their functions beyond their elementary role as ion channels, although a conclusive picture of the mechanisms involved in Kv1.3 signaling to proliferation is yet to be reached.
Delorme, Arnaud; Makeig, Scott
2004-03-15
We have developed a toolbox and graphic user interface, EEGLAB, running under the crossplatform MATLAB environment (The Mathworks, Inc.) for processing collections of single-trial and/or averaged EEG data of any number of channels. Available functions include EEG data, channel and event information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), independent component analysis (ICA) and time/frequency decompositions including channel and component cross-coherence supported by bootstrap statistical methods based on data resampling. EEGLAB functions are organized into three layers. Top-layer functions allow users to interact with the data through the graphic interface without needing to use MATLAB syntax. Menu options allow users to tune the behavior of EEGLAB to available memory. Middle-layer functions allow users to customize data processing using command history and interactive 'pop' functions. Experienced MATLAB users can use EEGLAB data structures and stand-alone signal processing functions to write custom and/or batch analysis scripts. Extensive function help and tutorial information are included. A 'plug-in' facility allows easy incorporation of new EEG modules into the main menu. EEGLAB is freely available (http://www.sccn.ucsd.edu/eeglab/) under the GNU public license for noncommercial use and open source development, together with sample data, user tutorial and extensive documentation.
A Co-operative Regulation of Neuronal Excitability by UNC-7 Innexin and NCA/NALCN Leak Channel
2011-01-01
Gap junctions mediate the electrical coupling and intercellular communication between neighboring cells. Some gap junction proteins, namely connexins and pannexins in vertebrates, and innexins in invertebrates, may also function as hemichannels. A conserved NCA/Dmα1U/NALCN family cation leak channel regulates the excitability and activity of vertebrate and invertebrate neurons. In the present study, we describe a genetic and functional interaction between the innexin UNC-7 and the cation leak channel NCA in Caenorhabditis elegans neurons. While the loss of the neuronal NCA channel function leads to a reduced evoked postsynaptic current at neuromuscular junctions, a simultaneous loss of the UNC-7 function restores the evoked response. The expression of UNC-7 in neurons reverts the effect of the unc-7 mutation; moreover, the expression of UNC-7 mutant proteins that are predicted to be unable to form gap junctions also reverts this effect, suggesting that UNC-7 innexin regulates neuronal activity, in part, through gap junction-independent functions. We propose that, in addition to gap junction-mediated functions, UNC-7 innexin may also form hemichannels to regulate C. elegans' neuronal activity cooperatively with the NCA family leak channels. PMID:21489288
Wells, Gregory D.; Tang, Qiong-Yao; Heler, Robert; Tompkins-MacDonald, Gabrielle J.; Pritchard, Erica N.; Leys, Sally P.; Logothetis, Diomedes E.; Boland, Linda M.
2012-01-01
SUMMARY A cDNA encoding a potassium channel of the two-pore domain family (K2P, KCNK) of leak channels was cloned from the marine sponge Amphimedon queenslandica. Phylogenetic analysis indicated that AquK2P cannot be placed into any of the established functional groups of mammalian K2P channels. We used the Xenopus oocyte expression system, a two-electrode voltage clamp and inside-out patch clamp electrophysiology to determine the physiological properties of AquK2P. In whole cells, non-inactivating, voltage-independent, outwardly rectifying K+ currents were generated by external application of micromolar concentrations of arachidonic acid (AA; EC50 ∼30 μmol l–1), when applied in an alkaline solution (≥pH 8.0). Prior activation of channels facilitated the pH-regulated, AA-dependent activation of AquK2P but external pH changes alone did not activate the channels. Unlike certain mammalian fatty-acid-activated K2P channels, the sponge K2P channel was not activated by temperature and was insensitive to osmotically induced membrane distortion. In inside-out patch recordings, alkalinization of the internal pH (pKa 8.18) activated the AquK2P channels independently of AA and also facilitated activation by internally applied AA. The gating of the sponge K2P channel suggests that voltage-independent outward rectification and sensitivity to pH and AA are ancient and fundamental properties of animal K2P channels. In addition, the membrane potential of some poriferan cells may be dynamically regulated by pH and AA. PMID:22723483
Wells, Gregory D; Tang, Qiong-Yao; Heler, Robert; Tompkins-MacDonald, Gabrielle J; Pritchard, Erica N; Leys, Sally P; Logothetis, Diomedes E; Boland, Linda M
2012-07-15
A cDNA encoding a potassium channel of the two-pore domain family (K(2P), KCNK) of leak channels was cloned from the marine sponge Amphimedon queenslandica. Phylogenetic analysis indicated that AquK(2P) cannot be placed into any of the established functional groups of mammalian K(2P) channels. We used the Xenopus oocyte expression system, a two-electrode voltage clamp and inside-out patch clamp electrophysiology to determine the physiological properties of AquK(2P). In whole cells, non-inactivating, voltage-independent, outwardly rectifying K(+) currents were generated by external application of micromolar concentrations of arachidonic acid (AA; EC(50) ∼30 μmol l(-1)), when applied in an alkaline solution (≥pH 8.0). Prior activation of channels facilitated the pH-regulated, AA-dependent activation of AquK(2P) but external pH changes alone did not activate the channels. Unlike certain mammalian fatty-acid-activated K(2P) channels, the sponge K(2P) channel was not activated by temperature and was insensitive to osmotically induced membrane distortion. In inside-out patch recordings, alkalinization of the internal pH (pK(a) 8.18) activated the AquK(2P) channels independently of AA and also facilitated activation by internally applied AA. The gating of the sponge K(2P) channel suggests that voltage-independent outward rectification and sensitivity to pH and AA are ancient and fundamental properties of animal K(2P) channels. In addition, the membrane potential of some poriferan cells may be dynamically regulated by pH and AA.
Soler-Llavina, Gilberto J; Chang, Tsg-Hui; Swartz, Kenton J
2006-11-22
Voltage-activated potassium (K(v)) channels contain a central pore domain that is partially surrounded by four voltage-sensing domains. Recent X-ray structures suggest that the two domains lack extensive protein-protein contacts within presumed transmembrane regions, but whether this is the case for functional channels embedded in lipid membranes remains to be tested. We investigated domain interactions in the Shaker K(v) channel by systematically mutating the pore domain and assessing tolerance by examining channel maturation, S4 gating charge movement, and channel opening. When mapped onto the X-ray structure of the K(v)1.2 channel the large number of permissive mutations support the notion of relatively independent domains, consistent with crystallographic studies. Inspection of the maps also identifies portions of the interface where residues are sensitive to mutation, an external cluster where mutations hinder voltage sensor activation, and an internal cluster where domain interactions between S4 and S5 helices from adjacent subunits appear crucial for the concerted opening transition.
Zhang, Qiaojuan; Hsia, Shao-Chung
2017-01-01
Infection of sensory neurons by herpes simplex virus (HSV)-1 disrupts electrical excitability, altering pain sensory transmission. Because of their low threshold for activation, functional expression of T-type Ca2+ channels regulates various cell functions, including neuronal excitability and neuronal communication. In this study, we have tested the effect of HSV-1 infection on the functional expression of T-type Ca2+ channels in differentiated ND7-23 sensory-like neurons. Voltage-gated Ca2+ currents were measured using whole cell patch clamp recordings in differentiated ND7-23 neurons under various culture conditions. Differentiation of ND7-23 cells evokes a significant increase in T-type Ca2+ current densities. Increased T-type Ca2+ channel expression promotes the morphological differentiation of ND7-23 cells and triggers a rebound depolarization. HSV-1 infection of differentiated ND7-23 cells causes a significant loss of T-type Ca2+ channels from the membrane. HSV-1 evoked reduction in the functional expression of T-type Ca2+ channels is mediated by several factors, including decreased expression of Cav3.2 T-type Ca2+ channel subunits and disruption of endocytic transport. Decreased functional expression of T-type Ca2+ channels by HSV-1 infection requires protein synthesis and viral replication, but occurs independently of Egr-1 expression. These findings suggest that infection of neuron-like cells by HSV-1 causes a significant disruption in the expression of T-type Ca2+ channels, which can results in morphological and functional changes in electrical excitability. PMID:28639215
Functional characterization of Kv11.1 (hERG) potassium channels split in the voltage-sensing domain.
de la Peña, Pilar; Domínguez, Pedro; Barros, Francisco
2018-03-23
Voltage-dependent KCNH family potassium channel functionality can be reconstructed using non-covalently linked voltage-sensing domain (VSD) and pore modules (split channels). However, the necessity of a covalent continuity for channel function has not been evaluated at other points within the two functionally independent channel modules. We find here that by cutting Kv11.1 (hERG, KCNH2) channels at the different loops linking the transmembrane spans of the channel core, not only channels split at the S4-S5 linker level, but also those split at the intracellular S2-S3 and the extracellular S3-S4 loops, yield fully functional channel proteins. Our data indicate that albeit less markedly, channels split after residue 482 in the S2-S3 linker resemble the uncoupled gating phenotype of those split at the C-terminal end of the VSD S4 transmembrane segment. Channels split after residues 514 and 518 in the S3-S4 linker show gating characteristics similar to those of the continuous wild-type channel. However, breaking the covalent link at this level strongly accelerates the voltage-dependent accessibility of a membrane impermeable methanethiosulfonate reagent to an engineered cysteine at the N-terminal region of the S4 transmembrane helix. Thus, besides that of the S4-S5 linker, structural integrity of the intracellular S2-S3 linker seems to constitute an important factor for proper transduction of VSD rearrangements to opening and closing the cytoplasmic gate. Furthermore, our data suggest that the short and probably rigid characteristics of the extracellular S3-S4 linker are not an essential component of the Kv11.1 voltage sensing machinery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vesely, P.; Michel, N.; Toivanen, J.
For over four decades, the Skyrme functional within various parametrizations has been used to calculate nuclear properties. In the last few years there was a number of attempts to improve its performance and introduce generalized forms. In particular, the most general phenomenological quasi-local energy density functional, which contains all combinations of density, spin-density, and their derivatives up to the sixth order (N{sup 3}LO), was proposed in reference [1]. Since in the phenomenological functional approaches the particle-particle (pp) interaction channel is treated independently from the particle-hole (ph) channel, there remains a question of what pairing interaction is suitable to use withinmore » the N{sup 3}LO energy functional. In our study, we use the separable, finite-range, translationally invariant form given in [2], which we generalize to the arbitrary angular momentum channel. We discuss the application of this pairing interaction within the N{sup 3}LO energy functional.« less
Alteration of Motor Network Function Following Injury
2012-10-01
mechanisms from neuromodulator- dependent corre- lations of mRNA and conductance levels. Ion channel conductances are correlated across channel types...de- pendent on intracellular calcium signaling mechanisms that depend on the release of intracellular calcium stores. Because relatively rapid changes...changes in K current mag- nitudes are independently regulated by distinct mechanisms . Compensatory increases in IKCa are calcium- dependent and due, at
Broadening roles for FMRP: big news for big potassium (BK) channels.
Contractor, Anis
2013-02-20
FMRP is an RNA-binding protein that negatively regulates translation and which is lost in fragile X syndrome. In this issue of Neuron, Deng et al. (2013) demonstrate a novel translation-independent function for FMRP as a regulator of presynaptic BK channels that modulate the dynamics of neurotransmitter release. Copyright © 2013 Elsevier Inc. All rights reserved.
STIM and Orai proteins and the non-capacitative ARC channels
Shuttleworth, Trevor J.
2012-01-01
The ARC channel is a small conductance, highly Ca2+-selective ion channel whose activation is specifically dependent on low concentrations of arachidonic acid acting at an intracellular site. They are widely distributed in diverse cell types where they provide an alternative, store-independent pathway for agonist-activated Ca2+ entry. Although biophysically similar to the store-operated CRAC channels, these two conductances function under distinct conditions of agonist stimulation, with the ARC channels providing the predominant route of Ca2+ entry during the oscillatory signals generated at low agonist concentrations. Despite these differences in function, like the CRAC channel, activation of the ARC channels is dependent on STIM1, but it is the pool of STIM1 that constitutively resides in the plasma membrane that is responsible. Similarly, both channels are formed by Orai proteins but, whilst the CRAC channel pore is a tetrameric assembly of Orai1 subunits, the ARC channel pore is formed by a heteropentameric assembly of three Orai1 subunits and two Orai3 subunits. There is increasing evidence that the activity of these channels plays a critical role a variety of different cellular activities. PMID:22201777
Chou, Chun-Hsiao; Gong, Chi-Li; Chao, Chia-Chia; Lin, Chia-Huei; Kwan, Chiu-Yin; Hsieh, Ching-Liang; Leung, Yuk-Man
2009-05-22
Rhynchophylline (1), a neuroprotective agent isolated from the traditional Chinese medicinal herb Uncaria rhynchophylla, was shown to affect voltage-gated K(+) (Kv) channel slow inactivation in mouse neuroblastoma N2A cells. Extracellular 1 (30 microM) accelerated the slow decay of Kv currents and shifted the steady-state inactivation curve to the left. Intracellular dialysis of 1 did not accelerate the slow current decay, suggesting that this compound acts extracellularly. In addition, the percent blockage of Kv currents by this substance was independent of the degree of depolarization and the intracellular K(+) concentration. Therefore, 1 did not appear to directly block the outer channel pore, with the results obtained suggesting that it drastically accelerated Kv channel slow inactivation. Interestingly, 1 also shifted the activation curve to the left. This alkaloid also strongly accelerated slow inactivation and caused a left shift of the activation curve of Kv1.2 channels heterologously expressed in HEK293 cells. Thus, this compound functionally turned delayed rectifiers into A-type K(+) channels.
Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo.
Katz, Ben; Oberacker, Tina; Richter, David; Tzadok, Hanan; Peters, Maximilian; Minke, Baruch; Huber, Armin
2013-07-15
Family members of the cationic transient receptor potential (TRP) channels serve as sensors and transducers of environmental stimuli. The ability of different TRP channel isoforms of specific subfamilies to form heteromultimers and the structural requirements for channel assembly are still unresolved. Although heteromultimerization of different mammalian TRP channels within single subfamilies has been described, even within a subfamily (such as TRPC) not all members co-assemble with each other. In Drosophila photoreceptors two TRPC channels, TRP and TRP-like protein (TRPL) are expressed together in photoreceptors where they generate the light-induced current. The formation of functional TRP-TRPL heteromultimers in cell culture and in vitro has been reported. However, functional in vivo assays have shown that each channel functions independently of the other. Therefore, the issue of whether TRP and TRPL form heteromultimers in vivo is still unclear. In the present study we investigated the ability of TRP and TRPL to form heteromultimers, and the structural requirements for channel assembly, by studying assembly of GFP-tagged TRP and TRPL channels and chimeric TRP and TRPL channels, in vivo. Interaction studies of tagged and native channels as well as native and chimeric TRP-TRPL channels using co-immunoprecipitation, immunocytochemistry and electrophysiology, critically tested the ability of TRP and TRPL to interact. We found that TRP and TRPL assemble exclusively as homomultimeric channels in their native environment. The above analyses revealed that the transmembrane regions of TRP and TRPL do not determine assemble specificity of these channels. However, the C-terminal regions of both TRP and TRPL predominantly specify the assembly of homomeric TRP and TRPL channels.
Muravyeva, Maria; Sedlic, Filip; Dolan, Nicholas; Bosnjak, Zeljko J; Stadnicka, Anna
2013-01-01
Cardiac mitochondria and the sarcolemmal (sarc)KATP channels contribute to cardioprotective signaling of anesthetic-induced preconditioning (APC). Changes in mitochondrial bioenergetics influence the sarcKATP channel function, but whether this channel has impacts on mitochondria is uncertain. We used the mouse model with deleted pore-forming Kir6.2 subunit of sarcKATP channel (Kir6.2 KO) to investigate whether the functional sarcKATP channels are necessary for isoflurane activation of mitochondrial protective mechanisms. Ventricular cardiomyocytes were isolated from C57Bl6 wild type (WT) and Kir6.2 KO mouse hearts. Flavoprotein autofluorescence, mitochondrial ROS production and mitochondrial membrane potential were monitored by laser-scanning confocal microscopy in intact cardiomyocytes. Cell survival was assessed using H2O2-induced stress. Isoflurane (0.5 mM) increased flavoprotein fluorescence to 180±14% and 190±15% and ROS production to 118±2% and 124±6% of baseline in WT and Kir6.2 KO myocytes, respectively. TMRE fluorescence decreased to 84±6% in WT and to 86±4% in Kir6.2 KO myocytes. This effect was abolished by 5HD. Pretreatment with isoflurane decreased the stress-induced cell death from 31±1% to 21±1% in WT and from 44±2% to 35±2% in Kir6.2 KO myocytes. In conclusion, Kir6.2 deletion increases sensitivity of intact cardiomyocytes t o oxidative stress, but does not alter the isoflurane-elicited protective mitochondrial mechanisms, suggesting independent roles for cardiac mitochondria and sarcKATP channels in APC by isoflurane. PMID:23318991
Bavencoffe, Alexis; Zhu, Michael Xi; Tian, Jin-Bin
2017-01-01
Transient receptor potential canonical (TRPC) proteins were identified as molecular candidates of receptor- and/or store-operated channels because of their close homology to the Drosophila TRP and TRPL. Functional studies have revealed that TRPC channels play an integrated part of phospholipase C-transduced cell signaling, mediating the influx of both Ca 2+ and Na + into cells. As a consequence, the TRPC channels have diverse functional roles in different cell types, including metabotropic receptor-evoked membrane depolarization and intracellular Ca 2+ concentration elevation. Depending on the cellular environment and the protein partners present in the channel complex, the TRPC channels display different biophysical properties and mechanisms of regulation, including but not limited to the Ca 2+ filling state of the endoplasmic reticulum. Despite the overwhelming focus on STIM-regulated Orai channels for store-operated Ca 2+ entry, evidence is growing for STIM-operated TRPC channel activities in various cell types, demonstrating both store-dependent and store-independent mechanisms of TRPC channel gating. The existence of physical and functional interactions between plasma membrane-localized TRPC channels and other proteins involved in sensing and regulating the intracellular Ca 2+ store contents, such as inositol trisphosphate receptors, Junctate, and Homer, further argues for the role of TRPC proteins in linking plasma membrane ion transport with intracellular Ca 2+ stores. The interplay among these proteins will likely define the functional significance of TRPC channel activation in different cellular contexts and under different modes of stimulations.
CNG and HCN channels: two peas, one pod.
Craven, Kimberley B; Zagotta, William N
2006-01-01
Cyclic nucleotide-activated ion channels play a fundamental role in a variety of physiological processes. By opening in response to intracellular cyclic nucleotides, they translate changes in concentrations of signaling molecules to changes in membrane potential. These channels belong to two families: the cyclic nucleotide-gated (CNG) channels and the hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels. The two families exhibit high sequence similarity and belong to the superfamily of voltage-gated potassium channels. Whereas HCN channels are activated by voltage and CNG channels are virtually voltage independent, both channels are activated by cyclic nucleotide binding. Furthermore, the channels are thought to have similar channel structures, leading to similar mechanisms of activation by cyclic nucleotides. However, although these channels are structurally and behaviorally similar, they have evolved to perform distinct physiological functions. This review describes the physiological roles and biophysical behavior of CNG and HCN channels. We focus on how similarities in structure and activation mechanisms result in common biophysical models, allowing CNG and HCN channels to be viewed as a single genre.
The TRPM6 Kinase Domain Determines the Mg·ATP Sensitivity of TRPM7/M6 Heteromeric Ion Channels*
Zhang, Zheng; Yu, Haijie; Huang, Junhao; Faouzi, Malika; Schmitz, Carsten; Penner, Reinhold; Fleig, Andrea
2014-01-01
The transient receptor potential melastatin member 7 (TRPM7) and member 6 (TRPM6) are divalent cation channel kinases essential for magnesium (Mg2+) homeostasis in vertebrates. It remains unclear how TRPM6 affects divalent cation transport and whether this involves functional homomeric TRPM6 plasma membrane channels or heteromeric channel assemblies with TRPM7. We show that homomeric TRPM6 is highly sensitive to intracellular free Mg2+ and therefore unlikely to be active at physiological levels of [Mg2+]i. Co-expression of TRPM7 and TRPM6 produces heteromeric TRPM7/M6 channels with altered pharmacology and sensitivity to intracellular Mg·ATP compared with homomeric TRPM7. Strikingly, the activity of heteromeric TRPM7/M6 channels is independent of intracellular Mg·ATP concentrations, essentially uncoupling channel activity from cellular energy status. Disruption of TRPM6 kinase phosphorylation activity re-introduces Mg·ATP sensitivity to the heteromeric channel similar to that of TRPM7. Thus, TRPM6 modulates the functionality of TRPM7, and the TRPM6 kinase plays a critical role in tuning the phenotype of the TRPM7·M6 channel complex. PMID:24385424
The TRPM6 kinase domain determines the Mg·ATP sensitivity of TRPM7/M6 heteromeric ion channels.
Zhang, Zheng; Yu, Haijie; Huang, Junhao; Faouzi, Malika; Schmitz, Carsten; Penner, Reinhold; Fleig, Andrea
2014-02-21
The transient receptor potential melastatin member 7 (TRPM7) and member 6 (TRPM6) are divalent cation channel kinases essential for magnesium (Mg(2+)) homeostasis in vertebrates. It remains unclear how TRPM6 affects divalent cation transport and whether this involves functional homomeric TRPM6 plasma membrane channels or heteromeric channel assemblies with TRPM7. We show that homomeric TRPM6 is highly sensitive to intracellular free Mg(2+) and therefore unlikely to be active at physiological levels of [Mg(2+)]i. Co-expression of TRPM7 and TRPM6 produces heteromeric TRPM7/M6 channels with altered pharmacology and sensitivity to intracellular Mg·ATP compared with homomeric TRPM7. Strikingly, the activity of heteromeric TRPM7/M6 channels is independent of intracellular Mg·ATP concentrations, essentially uncoupling channel activity from cellular energy status. Disruption of TRPM6 kinase phosphorylation activity re-introduces Mg·ATP sensitivity to the heteromeric channel similar to that of TRPM7. Thus, TRPM6 modulates the functionality of TRPM7, and the TRPM6 kinase plays a critical role in tuning the phenotype of the TRPM7·M6 channel complex.
An essential and NSF independent role for α-SNAP in store-operated calcium entry.
Miao, Yong; Miner, Cathrine; Zhang, Lei; Hanson, Phyllis I; Dani, Adish; Vig, Monika
2013-07-16
Store-operated calcium entry (SOCE) by calcium release activated calcium (CRAC) channels constitutes a primary route of calcium entry in most cells. Orai1 forms the pore subunit of CRAC channels and Stim1 is the endoplasmic reticulum (ER) resident Ca(2+) sensor. Upon store-depletion, Stim1 translocates to domains of ER adjacent to the plasma membrane where it interacts with and clusters Orai1 hexamers to form the CRAC channel complex. Molecular steps enabling activation of SOCE via CRAC channel clusters remain incompletely defined. Here we identify an essential role of α-SNAP in mediating functional coupling of Stim1 and Orai1 molecules to activate SOCE. This role for α-SNAP is direct and independent of its known activity in NSF dependent SNARE complex disassembly. Importantly, Stim1-Orai1 clustering still occurs in the absence of α-SNAP but its inability to support SOCE reveals that a previously unsuspected molecular re-arrangement within CRAC channel clusters is necessary for SOCE. DOI:http://dx.doi.org/10.7554/eLife.00802.001.
De Jesús-Pérez, José J; Cruz-Rangel, Silvia; Espino-Saldaña, Ángeles E; Martínez-Torres, Ataúlfo; Qu, Zhiqiang; Hartzell, H Criss; Corral-Fernandez, Nancy E; Pérez-Cornejo, Patricia; Arreola, Jorge
2018-03-01
The TMEM16A-mediated Ca 2+ -activated Cl - current drives several important physiological functions. Membrane lipids regulate ion channels and transporters but their influence on members of the TMEM16 family is poorly understood. Here we have studied the regulation of TMEM16A by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), cholesterol, and fatty acids using patch clamp, biochemistry and fluorescence microscopy. We found that depletion of membrane PI(4,5)P2 causes a decline in TMEM16A current that is independent of cytoskeleton, but is partially prevented by removing intracellular Ca 2+ . On the other hand, supplying PI(4,5)P2 to inside-out patches attenuated channel rundown and/or partially rescued activity after channel rundown. Also, depletion (with methyl-β-cyclodextrin M-βCD) or restoration (with M-βCD+cholesterol) of membrane cholesterol slows down the current decay observed after reduction of PI(4,5)P2. Neither depletion nor restoration of cholesterol change PI(4,5)P2 content. However, M-βCD alone transiently increases TMEM16A activity and dampens rundown whereas M-βCD+cholesterol increases channel rundown. Thus, PI(4,5)P2 is required for TMEM16A function while cholesterol directly and indirectly via a PI(4,5)P2-independent mechanism regulate channel function. Stearic, arachidonic, oleic, docosahexaenoic, and eicosapentaenoic fatty acids as well as methyl stearate inhibit TMEM16A in a dose- and voltage-dependent manner. Phosphatidylserine, a phospholipid whose hydrocarbon tails contain stearic and oleic acids also inhibits TMEM16A. Finally, we show that TMEM16A remains in the plasma membrane after treatment with M-βCD, M-βCD+cholesterol, oleic, or docosahexaenoic acids. Thus, we propose that lipids and fatty acids regulate TMEM16A channels through a membrane-delimited protein-lipid interaction. Copyright © 2017 Elsevier B.V. All rights reserved.
Elliott, J.G.; Cartier, K.D.
1986-01-01
The influence of streamflow and basin characteristics on channel geometry was investigated at 18 perennial and ephemeral stream reaches in the Piceance basin of northwestern Colorado. Results of stepwise multiple regression analyses indicated that the variabilities of mean bankfull depth (D) and bankfull cross-sectional flow area (Af) were predominantly a function of bankfull discharge (QB), and that most of the variability in channel slopes (S) could be explained by drainage area (DA). None of the independent variables selected for the study could account for a large part of the variability in bankfull channel width (W). (USGS)
Rissling, Anthony J.; Miyakoshi, Makoto; Sugar, Catherine A.; Braff, David L.; Makeig, Scott; Light, Gregory A.
2014-01-01
Although sensory processing abnormalities contribute to widespread cognitive and psychosocial impairments in schizophrenia (SZ) patients, scalp-channel measures of averaged event-related potentials (ERPs) mix contributions from distinct cortical source-area generators, diluting the functional relevance of channel-based ERP measures. SZ patients (n = 42) and non-psychiatric comparison subjects (n = 47) participated in a passive auditory duration oddball paradigm, eliciting a triphasic (Deviant−Standard) tone ERP difference complex, here termed the auditory deviance response (ADR), comprised of a mid-frontal mismatch negativity (MMN), P3a positivity, and re-orienting negativity (RON) peak sequence. To identify its cortical sources and to assess possible relationships between their response contributions and clinical SZ measures, we applied independent component analysis to the continuous 68-channel EEG data and clustered the resulting independent components (ICs) across subjects on spectral, ERP, and topographic similarities. Six IC clusters centered in right superior temporal, right inferior frontal, ventral mid-cingulate, anterior cingulate, medial orbitofrontal, and dorsal mid-cingulate cortex each made triphasic response contributions. Although correlations between measures of SZ clinical, cognitive, and psychosocial functioning and standard (Fz) scalp-channel ADR peak measures were weak or absent, for at least four IC clusters one or more significant correlations emerged. In particular, differences in MMN peak amplitude in the right superior temporal IC cluster accounted for 48% of the variance in SZ-subject performance on tasks necessary for real-world functioning and medial orbitofrontal cluster P3a amplitude accounted for 40%/54% of SZ-subject variance in positive/negative symptoms. Thus, source-resolved auditory deviance response measures including MMN may be highly sensitive to SZ clinical, cognitive, and functional characteristics. PMID:25379456
A novel PKD2L1 C-terminal domain critical for trimerization and channel function.
Zheng, Wang; Hussein, Shaimaa; Yang, JungWoo; Huang, Jun; Zhang, Fan; Hernandez-Anzaldo, Samuel; Fernandez-Patron, Carlos; Cao, Ying; Zeng, Hongbo; Tang, Jingfeng; Chen, Xing-Zhen
2015-03-30
As a transient receptor potential (TRP) superfamily member, polycystic kidney disease 2-like-1 (PKD2L1) is also called TRPP3 and has similar membrane topology as voltage-gated cation channels. PKD2L1 is involved in hedgehog signaling, intestinal development, and sour tasting. PKD2L1 and PKD1L3 form heterotetramers with 3:1 stoichiometry. C-terminal coiled-coil-2 (CC2) domain (G699-W743) of PKD2L1 was reported to be important for its trimerization but independent studies showed that CC2 does not affect PKD2L1 channel function. It thus remains unclear how PKD2L1 proteins oligomerize into a functional channel. By SDS-PAGE, blue native PAGE and mutagenesis we here identified a novel C-terminal domain called C1 (K575-T622) involved in stronger homotrimerization than the non-overlapping CC2, and found that the PKD2L1 N-terminus is critical for dimerization. By electrophysiology and Xenopus oocyte expression, we found that C1, but not CC2, is critical for PKD2L1 channel function. Our co-immunoprecipitation and dynamic light scattering experiments further supported involvement of C1 in trimerization. Further, C1 acted as a blocking peptide that inhibits PKD2L1 trimerization as well as PKD2L1 and PKD2L1/PKD1L3 channel function. Thus, our study identified C1 as the first PKD2L1 domain essential for both PKD2L1 trimerization and channel function, and suggest that PKD2L1 and PKD2L1/PKD1L3 channels share the PKD2L1 trimerization process.
Carroll, Jeff; Zeng, Fan-Gang
2007-01-01
Increasing the number of channels at low frequencies improves discrimination of fundamental frequency (F0) in cochlear implants [Geurts and Wouters 2004]. We conducted three experiments to test whether improved F0 discrimination can be translated into increased speech intelligibility in noise in a cochlear implant simulation. The first experiment measured F0 discrimination and speech intelligibility in quiet as a function of channel density over different frequency regions. The results from this experiment showed a tradeoff in performance between F0 discrimination and speech intelligibility with a limited number of channels. The second experiment tested whether improved F0 discrimination and optimizing this tradeoff could improve speech performance with a competing talker. However, improved F0 discrimination did not improve speech intelligibility in noise. The third experiment identified the critical number of channels needed at low frequencies to improve speech intelligibility in noise. The result showed that, while 16 channels below 500 Hz were needed to observe any improvement in speech intelligibility in noise, even 32 channels did not achieve normal performance. Theoretically, these results suggest that without accurate spectral coding, F0 discrimination and speech perception in noise are two independent processes. Practically, the present results illustrate the need to increase the number of independent channels in cochlear implants. PMID:17604581
Drosophila TRP and TRPL are assembled as homomultimeric channels in vivo
Katz, Ben; Oberacker, Tina; Richter, David; Tzadok, Hanan; Peters, Maximilian; Minke, Baruch; Huber, Armin
2013-01-01
Summary Family members of the cationic transient receptor potential (TRP) channels serve as sensors and transducers of environmental stimuli. The ability of different TRP channel isoforms of specific subfamilies to form heteromultimers and the structural requirements for channel assembly are still unresolved. Although heteromultimerization of different mammalian TRP channels within single subfamilies has been described, even within a subfamily (such as TRPC) not all members co-assemble with each other. In Drosophila photoreceptors two TRPC channels, TRP and TRP-like protein (TRPL) are expressed together in photoreceptors where they generate the light-induced current. The formation of functional TRP–TRPL heteromultimers in cell culture and in vitro has been reported. However, functional in vivo assays have shown that each channel functions independently of the other. Therefore, the issue of whether TRP and TRPL form heteromultimers in vivo is still unclear. In the present study we investigated the ability of TRP and TRPL to form heteromultimers, and the structural requirements for channel assembly, by studying assembly of GFP-tagged TRP and TRPL channels and chimeric TRP and TRPL channels, in vivo. Interaction studies of tagged and native channels as well as native and chimeric TRP–TRPL channels using co-immunoprecipitation, immunocytochemistry and electrophysiology, critically tested the ability of TRP and TRPL to interact. We found that TRP and TRPL assemble exclusively as homomultimeric channels in their native environment. The above analyses revealed that the transmembrane regions of TRP and TRPL do not determine assemble specificity of these channels. However, the C-terminal regions of both TRP and TRPL predominantly specify the assembly of homomeric TRP and TRPL channels. PMID:23687378
Jackson, Michael F
2015-12-15
Pannexin channels are recognized as important conduits for the release of ATP, which contributes to purinergic signalling. Pathologically, ATP release via these channels acts as a find-me signal for apoptotic cell clearance. Accordingly, there is considerable and growing interest in understanding the function and regulation of pannexin channels. In a recent issue of the Biochemical Journal, Boyce et al. provide evidence that the surface expression of pannexin channels is regulated by extracellular ATP. They propose a model in which ATP triggers pannexin channel internalization through a pathway involving clathrin- and caveolin-independent entry into early endosomes. Intriguingly, their evidence suggests that internalization is initiated through the association of ATP with pannexin channels themselves as well as ionotropic purinergic receptor 7 (P2X7) receptors. © 2015 Authors; published by Portland Press Limited.
Meighan, Peter C.; Peng, Changhong; Varnum, Michael D.
2015-01-01
Cyclic nucleotide gated (CNG) channels are a critical component of the visual transduction cascade in the vertebrate retina. Mutations in the genes encoding these channels have been associated with a spectrum of inherited retinal disorders. To gain insight into their pathophysiological mechanisms, we have investigated the functional consequences of several CNGB3 mutations, previously associated with macular degeneration (Y469D and L595F) or complete achromatopsia (S156F, P309L, and G558C), by expressing these subunits in combination with wild-type CNGA3 in Xenopus oocytes and characterizing them using patch-clamp recordings in the inside-out configuration. These mutations did not prevent the formation of functional heteromeric channels, as indicated by sensitivity to block by L-cis-diltiazem. With the exception of S156F, each of the mutant channels displayed electrophysiological properties reflecting enhanced channel activity at physiological concentrations of cGMP (i.e., a gain-of-function phenotype). The increased channel activity produced by these mutations resulted from either increased functional expression levels, or increased sensitivity to cyclic nucleotides. Furthermore, L595F increased the spontaneous open probability in the absence of activating ligand, signifying a ligand independent gain-of-function change. In addition to the CNGB3 disease-associate mutations, we characterized the effects of several common CNGB3 and CNGA3 single-nucleotide polymorphisms (SNPs) on heteromeric CNGA3+CNGB3 channel function. Two of the SNPs examined (A3-T153M, and B3-W234C) produced decreased ligand sensitivity for heteromeric CNG channels. These changes may contribute to background disease susceptibility when combined with other genetic or non-genetic factors. Together, these studies help to define the underlying molecular phenotype for mutations relating to CNG channel disease pathogenesis. PMID:26106334
Kobayashi, Toru; Washiyama, Kazuo; Ikeda, Kazutaka
2010-01-01
Atomoxetine and reboxetine are commonly used as selective norepinephrine reuptake inhibitors (NRIs) for the treatment of attention-deficit/hyperactivity disorder and depression, respectively. Furthermore, recent studies have suggested that NRIs may be useful for the treatment of several other psychiatric disorders. However, the molecular mechanisms underlying the various effects of NRIs have not yet been sufficiently clarified. G-protein-activated inwardly rectifying K+ (GIRK or Kir3) channels have an important function in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to be a potential treatment for several neuropsychiatric disorders and cardiac arrhythmias. In this study, we investigated the effects of atomoxetine and reboxetine on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2, GIRK2, or GIRK1/GIRK4 subunits, extracellular application of atomoxetine or reboxetine reversibly reduced GIRK currents. The inhibitory effects were concentration-dependent, but voltage-independent, and time-independent during each voltage pulse. However, Kir1.1 and Kir2.1 channels were insensitive to atomoxetine and reboxetine. Atomoxetine and reboxetine also inhibited GIRK currents induced by activation of cloned A1 adenosine receptors or by intracellularly applied GTPγS, a nonhydrolyzable GTP analogue. Furthermore, the GIRK currents induced by ethanol were concentration-dependently inhibited by extracellularly applied atomoxetine but not by intracellularly applied atomoxetine. The present results suggest that atomoxetine and reboxetine inhibit brain- and cardiac-type GIRK channels, revealing a novel characteristic of clinically used NRIs. GIRK channel inhibition may contribute to some of the therapeutic effects of NRIs and adverse side effects related to nervous system and heart function. PMID:20393461
de la Cruz, Ignacio Perez; Ma, Long; Horvitz, H. Robert
2014-01-01
Loss-of-function mutations in the Caenorhabditis elegans gene sup-18 suppress the defects in muscle contraction conferred by a gain-of-function mutation in SUP-10, a presumptive regulatory subunit of the SUP-9 two-pore domain K+ channel associated with muscle membranes. We cloned sup-18 and found that it encodes the C. elegans ortholog of mammalian iodotyrosine deiodinase (IYD), an NADH oxidase/flavin reductase that functions in iodine recycling and is important for the biosynthesis of thyroid hormones that regulate metabolism. The FMN-binding site of mammalian IYD is conserved in SUP-18, which appears to require catalytic activity to function. Genetic analyses suggest that SUP-10 can function with SUP-18 to activate SUP-9 through a pathway that is independent of the presumptive SUP-9 regulatory subunit UNC-93. We identified a novel evolutionarily conserved serine-cysteine-rich region in the C-terminal cytoplasmic domain of SUP-9 required for its specific activation by SUP-10 and SUP-18 but not by UNC-93. Since two-pore domain K+ channels regulate the resting membrane potentials of numerous cell types, we suggest that the SUP-18 IYD regulates the activity of the SUP-9 channel using NADH as a coenzyme and thus couples the metabolic state of muscle cells to muscle membrane excitability. PMID:24586202
Connexin channels and phospholipids: association and modulation
Locke, Darren; Harris, Andrew L
2009-01-01
Background For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood. Results Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred. Conclusion This study is the first to identify (endogenous) phospholipids that tightly associate with connexin channels. The finding that specific phospholipids are associated with different connexin isoforms suggests connexin-specific regulatory and/or structural interactions with lipid membranes. The results are interpreted in light of connexin channel function and cell biology, as informed by current knowledge of lipid-protein interactions and membrane biophysics. The intimate involvement of distinct phospholipids with different connexins contributes to channel structure and/or function, as well as plaque integrity, and to modulation of connexin channels by lipophilic agents. PMID:19686581
Questioning regulation of two-pore channels by NAADP
Marchant, Jonathan S.; Patel, Sandip
2014-01-01
NAADP is a potent Ca2+ mobilizing messenger [1–3]. Since its discovery in 1995 [4] a considerable volume of literature has shown that NAADP couples cell stimulation to endolysosomal Ca2+ release and thereby the regulation of many cellular functions [5]. However definition of its molecular mechanism of action has proved far from easy. Since 2009, a consensus emerged as several independent groups coalesced upon the two-pore channel (TPC) family as NAADP-activated channels essential for Ca2+ release from endolysosomal Ca2+ stores [6–8]. However this view has been recently challenged by data clearly showing that TPCs function as Na+-selective channels apparently insensitive to NAADP [9;10]. Given the two fundamental characteristics defining an ion channel comprise the opening stimulus and the nature of the permeant ions, scrutiny of these seeming irreconcilable viewpoints is essential. The purpose of this commentary is to distil the remaining consensus while interrogating these divergent viewpoints. From this analysis, critical experimental needs are identified. PMID:24829847
Constraint shapes convergence in tetrodotoxin-resistant sodium channels of snakes.
Feldman, Chris R; Brodie, Edmund D; Brodie, Edmund D; Pfrender, Michael E
2012-03-20
Natural selection often produces convergent changes in unrelated lineages, but the degree to which such adaptations occur via predictable genetic paths is unknown. If only a limited subset of possible mutations is fixed in independent lineages, then it is clear that constraint in the production or function of molecular variants is an important determinant of adaptation. We demonstrate remarkably constrained convergence during the evolution of resistance to the lethal poison, tetrodotoxin, in six snake species representing three distinct lineages from around the globe. Resistance-conferring amino acid substitutions in a voltage-gated sodium channel, Na(v)1.4, are clustered in only two regions of the protein, and a majority of the replacements are confined to the same three positions. The observed changes represent only a small fraction of the experimentally validated mutations known to increase Na(v)1.4 resistance to tetrodotoxin. These results suggest that constraints resulting from functional tradeoffs between ion channel function and toxin resistance led to predictable patterns of evolutionary convergence at the molecular level. Our data are consistent with theoretical predictions and recent microcosm work that suggest a predictable path is followed during an adaptive walk along a mutational landscape, and that natural selection may be frequently constrained to produce similar genetic outcomes even when operating on independent lineages.
Kayala, Kara M Neely; Dickinson, George D; Minassian, Anet; Walls, Ken C; Green, Kim N; LaFerla, Frank M
2012-01-01
Presenilins are necessary for calcium homeostasis and also for efficient proteolysis through the autophagy/lysosome system. Presenilin regulates both endoplasmic reticulum calcium stores and autophagic proteolysis in a γ-secretase independent fashion. The endo-lysosome system can also act as a calcium store, with calcium efflux channels being recently identified as two-pore channels 1 and 2. Here we investigated lysosomal calcium content and the channels that mediate calcium release from these acidic stores in presenilin knockout cells. We report that presenilin loss leads to a lower total lysosomal calcium store despite the buildup of lysosomes found in these cells. Additionally, we find alterations in two-pore calcium channel protein expression, with loss of presenilin preventing the formation of a high molecular weight species of TPC1 and TPC2. Finally, we find that treatments that disturb lysosomal calcium release lead to a reduction in autophagy function yet lysosomal inhibitors do not alter two-pore calcium channel expression. These data indicate that alterations in lysosomal calcium in the absence of presenilins might be leading to disruptions in autophagy. PMID:23103503
Autoimmune Channelopathies of the Nervous System
Kleopa, Kleopas A
2011-01-01
Ion channels are complex transmembrane proteins that orchestrate the electrical signals necessary for normal function of excitable tissues, including the central nervous system, peripheral nerve, and both skeletal and cardiac muscle. Progress in molecular biology has allowed cloning and expression of genes that encode channel proteins, while comparable advances in biophysics, including patch-clamp electrophysiology and related techniques, have made the functional assessment of expressed proteins at the level of single channel molecules possible. The role of ion channel defects in the pathogenesis of numerous disorders has become increasingly apparent over the last two decades. Neurological channelopathies are frequently genetically determined but may also be acquired through autoimmune mechanisms. All of these autoimmune conditions can arise as paraneoplastic syndromes or independent from malignancies. The pathogenicity of autoantibodies to ion channels has been demonstrated in most of these conditions, and patients may respond well to immunotherapies that reduce the levels of the pathogenic autoantibodies. Autoimmune channelopathies may have a good prognosis, especially if diagnosed and treated early, and if they are non-paraneoplastic. This review focuses on clinical, pathophysiologic and therapeutic aspects of autoimmune ion channel disorders of the nervous system. PMID:22379460
TMEM150C/Tentonin3 Is a Regulator of Mechano-gated Ion Channels.
Anderson, Evan O; Schneider, Eve R; Matson, Jon D; Gracheva, Elena O; Bagriantsev, Sviatoslav N
2018-04-17
Neuronal mechano-sensitivity relies on mechano-gated ion channels, but pathways regulating their activity remain poorly understood. TMEM150C was proposed to mediate mechano-activated current in proprioceptive neurons. Here, we studied functional interaction of TMEM150C with mechano-gated ion channels from different classes (Piezo2, Piezo1, and the potassium channel TREK-1) using two independent methods of mechanical stimulation. We found that TMEM150C significantly prolongs the duration of the mechano-current produced by all three channels, decreases apparent activation threshold in Piezo2, and induces persistent current in Piezo1. We also show that TMEM150C is co-expressed with Piezo2 in trigeminal neurons, expanding its role beyond proprioceptors. Finally, we cloned TMEM150C from the trigeminal neurons of the tactile-foraging domestic duck and showed that it functions similarly to the mouse ortholog, demonstrating evolutionary conservation among vertebrates. Our studies reveal TMEM150C as a general regulator of mechano-gated ion channels from different classes. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Evolution of the squeezing-enhanced vacuum state in the amplitude dissipative channel
NASA Astrophysics Data System (ADS)
Ren, Gang; Du, Jian-ming; Zhang, Wen-hai
2018-05-01
We study the evolution of the squeezing-enhanced vacuum state (SEVS) in the amplitude dissipative channel by using the two-mode entangled state in the Fock space and Kraus operator. The explicit formulation of the output state is also given. It is found that the output state does not exhibit sub-Poissonian behavior for the nonnegative value of the Mandel's Q-parameters in a wide range of values of squeezing parameter and dissipation factor. It is interesting to see that second-order correlation function is independent of the dissipation factor. However, the photon-number distribution of the output quantum state shows remarkable oscillations with respect to the dissipation factor. The shape of Wigner function and the degree of squeezing show that the initial SEVS is dissipated by the amplitude dissipative channel.
Schwiebert, Erik M; Liang, Lihua; Cheng, Nai-Lin; Williams, Clintoria Richards; Olteanu, Dragos; Welty, Elisabeth A; Zsembery, Akos
2005-12-01
In this review, we focus on two attributes of P2X receptor channel function, one essential and one novel. First, we propose that P2X receptors are extracellular sensors as well as receptors and ion channels. In particular, the large extracellular domain (that comprises 70% of the molecular mass of the receptor channel protein) lends itself to be a cellular sensor. Moreover, its exquisite sensitivity to extracellular pH, ionic strength, and multiple ligands evokes the function of a sensor. Second, we propose that P2X receptors are extracellular zinc receptors as well as receptors for nucleotides. We provide novel data in multiple publications and illustrative data in this invited review to suggest that zinc triggers ATP-independent activation of P2X receptor channel function. In this light, P2X receptors are the cellular site of integration between autocrine and paracrine zinc signaling and autocrine and paracrine purinergic signaling. P2X receptors may sense changes in these ligands as well as in extracellular pH and ionic strength and transduce these sensations via calcium and/or sodium entry and changes in membrane potential.
Endocytosis of hERG Is Clathrin-Independent and Involves Arf6
Abuarab, Nada; Smith, Andrew J.; Hardy, Matthew E. L.; Elliott, David J. S.; Sivaprasadarao, Asipu
2013-01-01
The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6. PMID:24392021
Vivas, Oscar; Arenas, Isabel; García, David E
2012-06-01
Neurotransmitters and hormones regulate Ca(V)2.2 channels through a voltage-independent pathway which is not well understood. It has been suggested that this voltage-independent inhibition is constant at all membrane voltages. However, changes in the percent of voltage-independent inhibition of Ca(V)2.2 have not been tested within a physiological voltage range. Here, we used a double-pulse protocol to isolate the voltage-independent inhibition of Ca(V)2.2 channels induced by noradrenaline in rat superior cervical ganglion neurons. To assess changes in the percent of the voltage-independent inhibition, the activation voltage of the channels was tested between -40 and +40 mV. We found that the percent of voltage-independent inhibition induced by noradrenaline changed with the activation voltage used. In addition, voltage-independent inhibition induced by oxo-M, a muscarinic agonist, exhibited the same dependence on activation voltage, which supports that this pattern is not exclusive for adrenergic activation. Our results suggested that voltage-independent inhibition of Ca(V)2.2 channels depends on the activation voltage of the channel in a physiological voltage range. This may have relevant implications in the understanding of the mechanism involved in voltage-independent inhibition.
BK channels in innate immune functions of neutrophils and macrophages
Essin, Kirill; Gollasch, Maik; Rolle, Susanne; Weissgerber, Patrick; Sausbier, Matthias; Bohn, Erwin; Autenrieth, Ingo B.; Ruth, Peter; Luft, Friedrich C.; Kettritz, Ralph
2009-01-01
Oxygen-dependent antimicrobial activity of human polymorphonuclear leukocytes (PMNs) relies on the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to generate oxidants. As the oxidase transfers electrons from NADPH the membrane will depolarize and concomitantly terminate oxidase activity, unless there is charge translocation to compensate. Most experimental data implicate proton channels as the effectors of this charge compensation, although large-conductance Ca2+-activated K+ (BK) channels have been suggested to be essential for normal PMN antimicrobial activity. To test this latter notion, we directly assessed the role of BK channels in phagocyte function, including the NADPH oxidase. PMNs genetically lacking BK channels (BK−/−) had normal intracellular and extracellular NADPH oxidase activity in response to both receptor-independent and phagocytic challenges. Furthermore, NADPH oxidase activity of human PMNs and macrophages was normal after treatment with BK channel inhibitors. Although BK channel inhibitors suppressed endotoxin-mediated tumor necrosis factor-α secretion by bone marrow-derived macrophages (BMDMs), BMDMs of BK−/− and wild-type mice responded identically and exhibited the same ERK, PI3K/Akt, and nuclear factor-κB activation. Based on these data, we conclude that the BK channel is not required for NADPH oxidase activity in PMNs or macrophages or for endotoxin-triggered tumor necrosis factor-α release and signal transduction BMDMs. PMID:19074007
Lisiecki, R S; Voigt, H F
1995-08-01
A 2-channel action-potential generator system was designed for use in testing neurophysiologic data acquisition/analysis systems. The system consists of a personal computer controlling an external hardware unit. This system is capable of generating 2 channels of simulated action potential (AP) waveshapes. The AP waveforms are generated from the linear combination of 2 principal-component template functions. Each channel generates randomly occurring APs with a specified rate ranging from 1 to 200 events per second. The 2 trains may be independent of one another or the second channel may be made to be excited or inhibited by the events from the first channel with user-specified probabilities. A third internal channel may be made to excite or inhibit events in both of the 2 output channels with user-specified rate parameters and probabilities. The system produces voltage waveforms that may be used to test neurophysiologic data acquisition systems for recording from 2 spike trains simultaneously and for testing multispike-train analysis (e.g., cross-correlation) software.
Giménez-Cassina, Alfredo; Martínez-François, Juan Ramón; Fisher, Jill K.; Szlyk, Benjamin; Polak, Klaudia; Wiwczar, Jessica; Tanner, Geoffrey R.; Lutas, Andrew; Yellen, Gary; Danial, Nika N.
2012-01-01
Summary Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phospho-regulation of BAD and are independent of its apoptotic function. BAD modifications that reduce glucose metabolism produce a marked increase in the activity of metabolically sensitive KATP channels in neurons, as well as resistance to behavioral and electrographic seizures in vivo. Seizure resistance is reversed by genetic ablation of the KATP channel, implicating the BAD-KATP axis in metabolic control of neuronal excitation and seizure responses. PMID:22632729
Cantú Syndrome Resulting from Activating Mutation in the KCNJ8 Gene
Cooper, Paige E.; Reutter, Heiko; Woelfle, Joachim; Engels, Hartmut; Grange, Dorothy K.; van Haaften, Gijs; van Bon, Bregje W.; Hoischen, Alexander; Nichols, Colin G.
2014-01-01
ATP-sensitive potassium (KATP) channels, composed of inward-rectifying potassium channel subunits (Kir6.1 and Kir6.2, encoded by KCNJ8 and KCNJ11, respectively) and regulatory sulfonylurea receptor (SUR1 and SUR2, encoded by ABCC8 and ABCC9, respectively), couple metabolism to excitability in multiple tissues. Mutations in ABCC9 cause Cantú syndrome, a distinct multi-organ disease, potentially via enhanced KATP channel activity. We screened KCNJ8 in an ABCC9 mutation-negative patient who also exhibited clinical hallmarks of Cantú syndrome (hypertrichosis, macrosomia, macrocephaly, coarse facial appearance, cardiomegaly, and skeletal abnormalities). We identified a de novo missense mutation encoding Kir6.1[p.Cys176Ser] in the patient. Kir6.1[p.Cys176Ser] channels exhibited markedly higher activity than wild-type channels, as a result of reduced ATP sensitivity, whether co-expressed with SUR1 or SUR2A subunits. Our results identify a novel causal gene in Cantú syndrome, but also demonstrate that the cardinal features of the disease result from gain of KATP channel function, not from Kir6-independent SUR2 function. PMID:24700710
Cantú syndrome resulting from activating mutation in the KCNJ8 gene.
Cooper, Paige E; Reutter, Heiko; Woelfle, Joachim; Engels, Hartmut; Grange, Dorothy K; van Haaften, Gijs; van Bon, Bregje W; Hoischen, Alexander; Nichols, Colin G
2014-07-01
ATP-sensitive potassium (KATP ) channels, composed of inward-rectifying potassium channel subunits (Kir6.1 and Kir6.2, encoded by KCNJ8 and KCNJ11, respectively) and regulatory sulfonylurea receptor (SUR1 and SUR2, encoded by ABCC8 and ABCC9, respectively), couple metabolism to excitability in multiple tissues. Mutations in ABCC9 cause Cantú syndrome (CS), a distinct multiorgan disease, potentially via enhanced KATP channel activity. We screened KCNJ8 in an ABCC9 mutation-negative patient who also exhibited clinical hallmarks of CS (hypertrichosis, macrosomia, macrocephaly, coarse facial appearance, cardiomegaly, and skeletal abnormalities). We identified a de novo missense mutation encoding Kir6.1[p.Cys176Ser] in the patient. Kir6.1[p.Cys176Ser] channels exhibited markedly higher activity than wild-type channels, as a result of reduced ATP sensitivity, whether coexpressed with SUR1 or SUR2A subunits. Our results identify a novel causal gene in CS, but also demonstrate that the cardinal features of the disease result from gain of KATP channel function, not from a Kir6-independent SUR2 function. © 2014 WILEY PERIODICALS, INC.
Systematic Onset of Periodic Patterns in Random Disk Packings
NASA Astrophysics Data System (ADS)
Topic, Nikola; Pöschel, Thorsten; Gallas, Jason A. C.
2018-04-01
We report evidence of a surprising systematic onset of periodic patterns in very tall piles of disks deposited randomly between rigid walls. Independently of the pile width, periodic structures are always observed in monodisperse deposits containing up to 1 07 disks. The probability density function of the lengths of disordered transient phases that precede the onset of periodicity displays an approximately exponential tail. These disordered transients may become very large when the channel width grows without bound. For narrow channels, the probability density of finding periodic patterns of a given period displays a series of discrete peaks, which, however, are washed out completely when the channel width grows.
Normann, Claus; Frase, Sibylle; Haug, Verena; von Wolff, Gregor; Clark, Kristin; Münzer, Patrick; Dorner, Alexandra; Scholliers, Jonas; Horn, Max; Vo Van, Tanja; Seifert, Gabriel; Serchov, Tsvetan; Biber, Knut; Nissen, Christoph; Klugbauer, Norbert; Bischofberger, Josef
2017-10-19
Long-term synaptic plasticity is a basic ability of the brain to dynamically adapt to external stimuli and regulate synaptic strength and ultimately network function. It is dysregulated by behavioral stress in animal models of depression and in humans with major depressive disorder. Antidepressants have been shown to restore disrupted synaptic plasticity in both animal models and humans; however, the underlying mechanism is unclear. We examined modulation of synaptic plasticity by selective serotonin reuptake inhibitors (SSRIs) in hippocampal brain slices from wild-type rats and serotonin transporter (SERT) knockout mice. Recombinant voltage-gated calcium (Ca 2+ ) channels in heterologous expression systems were used to determine the modulation of Ca 2+ channels by SSRIs. We tested the behavioral effects of SSRIs in the chronic behavioral despair model of depression both in the presence and in the absence of SERT. SSRIs selectively inhibited hippocampal long-term depression. The inhibition of long-term depression by SSRIs was mediated by a direct block of voltage-activated L-type Ca 2+ channels and was independent of SERT. Furthermore, SSRIs protected both wild-type and SERT knockout mice from behavioral despair induced by chronic stress. Finally, long-term depression was facilitated in animals subjected to the behavioral despair model, which was prevented by SSRI treatment. These results showed that antidepressants protected synaptic plasticity and neuronal circuitry from the effects of stress via a modulation of Ca 2+ channels and synaptic plasticity independent of SERT. Thus, L-type Ca 2+ channels might constitute an important signaling hub for stress response and for pathophysiology and treatment of depression. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
G(sup 4)FET Implementations of Some Logic Circuits
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad; Akarvardar, Kerem; Cristoleveanu, Sorin; Gentil, Paul; Blalock, Benjamin; Chen, Suhan
2009-01-01
Some logic circuits have been built and demonstrated to work substantially as intended, all as part of a continuing effort to exploit the high degrees of design flexibility and functionality of the electronic devices known as G(sup 4)FETs and described below. These logic circuits are intended to serve as prototypes of more complex advanced programmable-logicdevice-type integrated circuits, including field-programmable gate arrays (FPGAs). In comparison with prior FPGAs, these advanced FPGAs could be much more efficient because the functionality of G(sup 4)FETs is such that fewer discrete components are needed to perform a given logic function in G(sup 4)FET circuitry than are needed perform the same logic function in conventional transistor-based circuitry. The underlying concept of using G(sup 4)FETs as building blocks of programmable logic circuitry was also described, from a different perspective, in G(sup 4)FETs as Universal and Programmable Logic Gates (NPO-41698), NASA Tech Briefs, Vol. 31, No. 7 (July 2007), page 44. A G(sup 4)FET can be characterized as an accumulation-mode silicon-on-insulator (SOI) metal oxide/semiconductor field-effect transistor (MOSFET) featuring two junction field-effect transistor (JFET) gates. The structure of a G(sup 4)FET (see Figure 1) is the same as that of a p-channel inversion-mode SOI MOSFET with two body contacts on each side of the channel. The top gate (G1), the substrate emulating a back gate (G2), and the junction gates (JG1 and JG2) can be biased independently of each other and, hence, each can be used to independently control some aspects of the conduction characteristics of the transistor. The independence of the actions of the four gates is what affords the enhanced functionality and design flexibility of G(sup 4)FETs. The present G(sup 4)FET logic circuits include an adjustable-threshold inverter, a real-time-reconfigurable logic gate, and a dynamic random-access memory (DRAM) cell (see Figure 2). The configuration of the adjustable-threshold inverter is similar to that of an ordinary complementary metal oxide semiconductor (CMOS) inverter except that an NMOSFET (a MOSFET having an n-doped channel and a p-doped Si substrate) is replaced by an n-channel G(sup 4)FET
Pai, Vaibhav P.; Willocq, Valerie; Pitcairn, Emily J.; Lemire, Joan M.; Paré, Jean-François; Shi, Nian-Qing; McLaughlin, Kelly A.
2017-01-01
ABSTRACT Laterality is a basic characteristic of all life forms, from single cell organisms to complex plants and animals. For many metazoans, consistent left-right asymmetric patterning is essential for the correct anatomy of internal organs, such as the heart, gut, and brain; disruption of left-right asymmetry patterning leads to an important class of birth defects in human patients. Laterality functions across multiple scales, where early embryonic, subcellular and chiral cytoskeletal events are coupled with asymmetric amplification mechanisms and gene regulatory networks leading to asymmetric physical forces that ultimately result in distinct left and right anatomical organ patterning. Recent studies have suggested the existence of multiple parallel pathways regulating organ asymmetry. Here, we show that an isoform of the hyperpolarization-activated cyclic nucleotide-gated (HCN) family of ion channels (hyperpolarization-activated cyclic nucleotide-gated channel 4, HCN4) is important for correct left-right patterning. HCN4 channels are present very early in Xenopus embryos. Blocking HCN channels (Ih currents) with pharmacological inhibitors leads to errors in organ situs. This effect is only seen when HCN4 channels are blocked early (pre-stage 10) and not by a later block (post-stage 10). Injections of HCN4-DN (dominant-negative) mRNA induce left-right defects only when injected in both blastomeres no later than the 2-cell stage. Analysis of key asymmetric genes' expression showed that the sidedness of Nodal, Lefty, and Pitx2 expression is largely unchanged by HCN4 blockade, despite the randomization of subsequent organ situs, although the area of Pitx2 expression was significantly reduced. Together these data identify a novel, developmental role for HCN4 channels and reveal a new Nodal-Lefty-Pitx2 asymmetric gene expression-independent mechanism upstream of organ positioning during embryonic left-right patterning. PMID:28818840
Pai, Vaibhav P; Willocq, Valerie; Pitcairn, Emily J; Lemire, Joan M; Paré, Jean-François; Shi, Nian-Qing; McLaughlin, Kelly A; Levin, Michael
2017-10-15
Laterality is a basic characteristic of all life forms, from single cell organisms to complex plants and animals. For many metazoans, consistent left-right asymmetric patterning is essential for the correct anatomy of internal organs, such as the heart, gut, and brain; disruption of left-right asymmetry patterning leads to an important class of birth defects in human patients. Laterality functions across multiple scales, where early embryonic, subcellular and chiral cytoskeletal events are coupled with asymmetric amplification mechanisms and gene regulatory networks leading to asymmetric physical forces that ultimately result in distinct left and right anatomical organ patterning. Recent studies have suggested the existence of multiple parallel pathways regulating organ asymmetry. Here, we show that an isoform of the hyperpolarization-activated cyclic nucleotide-gated (HCN) family of ion channels (hyperpolarization-activated cyclic nucleotide-gated channel 4, HCN4) is important for correct left-right patterning. HCN4 channels are present very early in Xenopus embryos. Blocking HCN channels ( I h currents) with pharmacological inhibitors leads to errors in organ situs. This effect is only seen when HCN4 channels are blocked early (pre-stage 10) and not by a later block (post-stage 10). Injections of HCN4-DN (dominant-negative) mRNA induce left-right defects only when injected in both blastomeres no later than the 2-cell stage. Analysis of key asymmetric genes' expression showed that the sidedness of Nodal , Lefty , and Pitx2 expression is largely unchanged by HCN4 blockade, despite the randomization of subsequent organ situs, although the area of Pitx2 expression was significantly reduced. Together these data identify a novel, developmental role for HCN4 channels and reveal a new Nodal-Lefty-Pitx2 asymmetric gene expression-independent mechanism upstream of organ positioning during embryonic left-right patterning. © 2017. Published by The Company of Biologists Ltd.
Joint diseases: from connexins to gap junctions.
Donahue, Henry J; Qu, Roy W; Genetos, Damian C
2017-12-19
Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.
A linkage analysis toolkit for studying allosteric networks in ion channels
2013-01-01
A thermodynamic approach to studying allosterically regulated ion channels such as the large-conductance voltage- and Ca2+-dependent (BK) channel is presented, drawing from principles originally introduced to describe linkage phenomena in hemoglobin. In this paper, linkage between a principal channel component and secondary elements is derived from a four-state thermodynamic cycle. One set of parallel legs in the cycle describes the “work function,” or the free energy required to activate the principal component. The second are “lever operations” activating linked elements. The experimental embodiment of this linkage cycle is a plot of work function versus secondary force, whose asymptotes are a function of the parameters (displacements and interaction energies) of an allosteric network. Two essential work functions play a role in evaluating data from voltage-clamp experiments. The first is the conductance Hill energy WH[g], which is a “local” work function for pore activation, and is defined as kT times the Hill transform of the conductance (G-V) curve. The second is the electrical capacitance energy WC[q], representing “global” gating charge displacement, and is equal to the product of total gating charge per channel times the first moment (VM) of normalized capacitance (slope of Q-V curve). Plots of WH[g] and WC[q] versus voltage and Ca2+ potential can be used to measure thermodynamic parameters in a model-independent fashion of the core gating constituents (pore, voltage-sensor, and Ca2+-binding domain) of BK channel. The method is easily generalized for use in studying other allosterically regulated ion channels. The feasibility of performing linkage analysis from patch-clamp data were explored by simulating gating and ionic currents of a 17-particle model BK channel in response to a slow voltage ramp, which yielded interaction energies deviating from their given values in the range of 1.3 to 7.2%. PMID:23250867
Sinha, Devanjan; Srivastava, Shubhi; D'Silva, Patrick
2016-08-12
Mitochondrial J-proteins play a critical role in governing Hsp70 activity and, hence, are essential for organellar protein translocation and folding. In contrast to yeast, which has a single J-protein Pam18, humans involve two J-proteins, DnaJC15 and DnaJC19, associated with contrasting cellular phenotype, to transport proteins into the mitochondria. Mutation in DnaJC19 results in dilated cardiomyopathy and ataxia syndrome, whereas expression of DnaJC15 regulates the response of cancer cells to chemotherapy. In the present study we have comparatively assessed the biochemical properties of the J-protein paralogs in relation to their association with the import channel. Both DnaJC15 and DnaJC19 formed two distinct subcomplexes with Magmas at the import channel. Knockdown analysis suggested an essential role for Magmas and DnaJC19 in organellar protein translocation and mitochondria biogenesis, whereas DnaJC15 had dispensable supportive function. The J-proteins were found to have equal affinity for Magmas and could stimulate mitochondrial Hsp70 ATPase activity by equivalent levels. Interestingly, we observed that DnaJC15 exhibits bifunctional properties. At the translocation channel, it involves conserved interactions and mechanism to translocate the precursors into mitochondria. In addition to protein transport, DnaJC15 also showed a dual role in yeast where its expression elicited enhanced sensitivity of cells to cisplatin that required the presence of a functional J-domain. The amount of DnaJC15 expressed in the cell was directly proportional to the sensitivity of cells. Our analysis indicates that the differential cellular phenotype displayed by human mitochondrial J-proteins is independent of their activity and association with Magmas at the translocation channel. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Two-sided block of a dual-topology F- channel.
Turman, Daniel L; Nathanson, Jacob T; Stockbridge, Randy B; Street, Timothy O; Miller, Christopher
2015-05-05
The Fluc family is a set of small membrane proteins forming F(-)-specific electrodiffusive ion channels that rescue microorganisms from F(-) toxicity during exposure to weakly acidic environments. The functional channel is built as a dual-topology homodimer with twofold symmetry parallel to the membrane plane. Fluc channels are blocked by nanomolar-affinity fibronectin-domain monobodies originally selected from phage-display libraries. The unusual symmetrical antiparallel dimeric architecture of Flucs demands that the two chemically equivalent monobody-binding epitopes reside on opposite ends of the channel, a double-sided blocking situation that has never before presented itself in ion channel biophysics. However, it is not known if both sites can be simultaneously occupied, and if so, whether monobodies bind independently or cooperatively to their transmembrane epitopes. Here, we use direct monobody-binding assays and single-channel recordings of a Fluc channel homolog to reveal a novel trimolecular blocking behavior that reveals a doubly occupied blocked state. Kinetic analysis of single-channel recordings made with monobody on both sides of the membrane shows substantial negative cooperativity between the two blocking sites.
Recent Advances in Oncogenic Roles of the TRPM7 Chanzyme.
Gautier, Mathieu; Perrière, Marianne; Monet, Michael; Vanlaeys, Alison; Korichneva, Irina; Dhennin-Duthille, Isabelle; Ouadid-Ahidouch, Halima
2016-01-01
Transient Receptor Potential Melastatin-related 7 (TRPM7) is a non-selective cation channel fused with a functional kinase domain. Physiologically, TRPM7 channel is involved in magnesium homeostasis, cell survival and gastrulation. The channel part is responsible for calcium, magnesium, and metal trace entries. Cation current through TRPM7 channel is inhibited by both intracellular magnesium and magnesium complexed with nucleotides. In parallel, the kinase is able to phosphorylate cytoskeleton proteins like myosin chain regulating cell tension and motility. Moreover, TRPM7 kinase domain can be cleaved by caspase and participates to apoptosis signaling. Importantly, TRPM7 channel expression is aberrant in numerous cancers including breast, glioblastoma, nasopharynx, ovarian, and pancreatic. Moreover, TRPM7 high expression is an independent biomarker of poor outcome in breast cancer. Pharmacological modulation or silencing of TRPM7 strongly affects proliferation, adhesion, migration or invasion in cancer cell lines. Nevertheless, it is still not clear by which mechanism TRPM7 channels may disturb cancer cell hallmarks. In the present review, we will discuss the role of TRPM7 channels in malignancies. In particular, we will distinguish the role of cation signaling from kinase function in order to better understand how TRPM7 channels may play a central role in cancer progression. We will also discuss the recent advances in pharmacological blockers of TRPM7 and their potential use for cancer therapy.
Giménez-Cassina, Alfredo; Martínez-François, Juan Ramón; Fisher, Jill K; Szlyk, Benjamin; Polak, Klaudia; Wiwczar, Jessica; Tanner, Geoffrey R; Lutas, Andrew; Yellen, Gary; Danial, Nika N
2012-05-24
Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phosphoregulation of BAD and are independent of its apoptotic function. BAD modifications that reduce glucose metabolism produce a marked increase in the activity of metabolically sensitive K(ATP) channels in neurons, as well as resistance to behavioral and electrographic seizures in vivo. Seizure resistance is reversed by genetic ablation of the K(ATP) channel, implicating the BAD-K(ATP) axis in metabolic control of neuronal excitation and seizure responses. Copyright © 2012 Elsevier Inc. All rights reserved.
A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models.
Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S; Wu, Xiaowei; Müller, Rolf
2018-01-01
Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design.
A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models
Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S.; Wu, Xiaowei; Müller, Rolf
2017-01-01
Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design. PMID:29749977
Pharmacological analysis of epithelial chloride secretion mechanisms in adult murine airways.
Gianotti, Ambra; Ferrera, Loretta; Philp, Amber R; Caci, Emanuela; Zegarra-Moran, Olga; Galietta, Luis J V; Flores, Carlos A
2016-06-15
Defective epithelial chloride secretion occurs in humans with cystic fibrosis (CF), a genetic defect due to loss of function of CFTR, a cAMP-activated chloride channel. In the airways, absence of an active CFTR causes a severe lung disease. In mice, genetic ablation of CFTR function does not result in similar lung pathology. This may be due to the expression of an alternative chloride channel which is activated by calcium. The most probable protein performing this function is TMEM16A, a calcium-activated chloride channel (CaCC). Our aim was to assess the relative contribution of CFTR and TMEM16A to chloride secretion in adult mouse trachea. For this purpose we tested pharmacological inhibitors of chloride channels in normal and CF mice. The amplitude of the cAMP-activated current was similar in both types of animals and was not affected by a selective CFTR inhibitor. In contrast, a CaCC inhibitor (CaCCinh-A01) strongly blocked the cAMP-activated current as well as the calcium-activated chloride secretion triggered by apical UTP. Although control experiments revealed that CaCCinh-A01 also shows inhibitory activity on CFTR, our results indicate that transepithelial chloride secretion in adult mouse trachea is independent of CFTR and that another channel, possibly TMEM16A, performs both cAMP- and calcium-activated chloride transport. The prevalent function of a non-CFTR channel may explain the absence of a defect in chloride transport in CF mice. Copyright © 2016. Published by Elsevier B.V.
Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth
Jackson, William F.
2017-01-01
Potassium channels importantly contribute to the regulation of vascular smooth muscle (VSM) contraction and growth. They are the dominant ion conductance of the VSM cell membrane and importantly determine and regulate membrane potential. Membrane potential, in turn, regulates the open-state probability of voltage-gated Ca2+ channels (VGCC), Ca2+ influx through VGCC, intracellular Ca2+ and VSM contraction. Membrane potential also affects release of Ca2+ from internal stores and the Ca2+ sensitivity of the contractile machinery such that K+ channels participate in all aspects of regulation of VSM contraction. Potassium channels also regulate proliferation of VSM cells through membrane potential-dependent and membrane potential-independent mechanisms. Vascular smooth muscle cells express multiple isoforms of at least five classes of K+ channels contribute to the regulation of contraction and cell proliferation (growth). This review will examine the structure, expression and function of large-conductance, Ca2+-activated K+ (BKCa) channels, intermediate-conductance Ca2+-activated K+ (KCa3.1) channels, multiple isoforms of voltage-gated K+ (KV) channels, ATP-sensitive K+ (KATP) channels, and inward-rectifier K+ (KIR) channels in both contractile and proliferating VSM cells. PMID:28212804
Bonfiglio, F; Henström, M; Nag, A; Hadizadeh, F; Zheng, T; Cenit, M C; Tigchelaar, E; Williams, F; Reznichenko, A; Ek, W E; Rivera, N V; Homuth, G; Aghdassi, A A; Kacprowski, T; Männikkö, M; Karhunen, V; Bujanda, L; Rafter, J; Wijmenga, C; Ronkainen, J; Hysi, P; Zhernakova, A; D'Amato, M
2018-04-19
Irritable bowel syndrome (IBS) shows genetic predisposition, however, large-scale, powered gene mapping studies are lacking. We sought to exploit existing genetic (genotype) and epidemiological (questionnaire) data from a series of population-based cohorts for IBS genome-wide association studies (GWAS) and their meta-analysis. Based on questionnaire data compatible with Rome III Criteria, we identified a total of 1335 IBS cases and 9768 asymptomatic individuals from 5 independent European genotyped cohorts. Individual GWAS were carried out with sex-adjusted logistic regression under an additive model, followed by meta-analysis using the inverse variance method. Functional annotation of significant results was obtained via a computational pipeline exploiting ontology and interaction networks, and tissue-specific and gene set enrichment analyses. Suggestive GWAS signals (P ≤ 5.0 × 10 -6 ) were detected for 7 genomic regions, harboring 64 gene candidates to affect IBS risk via functional or expression changes. Functional annotation of this gene set convincingly (best FDR-corrected P = 3.1 × 10 -10 ) highlighted regulation of ion channel activity as the most plausible pathway affecting IBS risk. Our results confirm the feasibility of population-based studies for gene-discovery efforts in IBS, identify risk genes and loci to be prioritized in independent follow-ups, and pinpoint ion channels as important players and potential therapeutic targets warranting further investigation. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Singh, D.; Linda, Sneha B.; Giri, Pankaj K.; Mahato, Amritraj; Tripathi, R.; Kumar, Harish; Tali, Suhail A.; Parashari, Siddharth; Ali, Asif; Dubey, Rakesh; Ansari, M. Afzal; Kumar, R.; Muralithar, S.; Singh, R. P.
2018-06-01
Excitation functions for the 11 evaporation residues populated through complete and/or incomplete fusion in 16O+124Sn system at low projectile energies ≈3 -7 MeV /nucleon have been measured. Recoil catcher activation technique followed by offline γ -ray spectrometry has been employed. Some of the evaporation residues are found to have contributions from precursor decays. The precursor contributions have been separated out from the measured cumulative cross-sections of evaporation residues. Independent cross-sections are compared with statistical model code PACE-4 predictions. The evaporation residues produced through x n and pxn channels are found to be well reproduced with the PACE-4 predictions after subtraction of precursor decay contributions. A substantial enhancement in the measured excitation functions over their theoretical predictions for the evaporation residues produced in α -emitting channels has been observed, which is attributed to the presence of incomplete fusion of projectile with target at these low energies. The present study shows that the incomplete fusion and the break-up probability of the incident 16O into α clusters (i.e., break-up of 16O into 12C+α and/or 8Be+8Be ) increases with projectile energy. The present data suggests that the deformation of target is highlighting the important role to affect the ICF reactions independently with different projectiles. The comparison of the present study with literature data also shows that the ICF probability depends on various entrance channel parameters, namely, projectile energy, entrance channel mass-asymmetry, α -Q value, Coulomb factor (ZPZT) , deformation parameter (β2), and their combinations. Moreover, the combined parameters ZPZT.β2 and μECAS.β2 are not found suitable to explain whole ICF characteristics, particularly for spherical and slightly deformed targets. On the other hand, the combined parameter ZPZT.μECAS has been found to explain more precisely the ICF dynamics as compared to other single and combined entrance channel parameters.
Boscardin, Emilie; Alijevic, Omar; Hummler, Edith
2016-01-01
Acid‐sensing ion channels (ASICs) and the epithelial Na+ channel (ENaC) are both members of the ENaC/degenerin family of amiloride‐sensitive Na+ channels. ASICs act as proton sensors in the nervous system where they contribute, besides other roles, to fear behaviour, learning and pain sensation. ENaC mediates Na+ reabsorption across epithelia of the distal kidney and colon and of the airways. ENaC is a clinically used drug target in the context of hypertension and cystic fibrosis, while ASIC is an interesting potential target. Following a brief introduction, here we will review selected aspects of ASIC and ENaC function. We discuss the origin and nature of pH changes in the brain and the involvement of ASICs in synaptic signalling. We expose how in the peripheral nervous system, ASICs cover together with other ion channels a wide pH range as proton sensors. We introduce the mechanisms of aldosterone‐dependent ENaC regulation and the evidence for an aldosterone‐independent control of ENaC activity, such as regulation by dietary K+. We then provide an overview of the regulation of ENaC by proteases, a topic of increasing interest over the past few years. In spite of the profound differences in the physiological and pathological roles of ASICs and ENaC, these channels share many basic functional and structural properties. It is likely that further research will identify physiological contexts in which ASICs and ENaC have similar or overlapping roles. PMID:27278329
Gene expression links functional networks across cortex and striatum.
Anderson, Kevin M; Krienen, Fenna M; Choi, Eun Young; Reinen, Jenna M; Yeo, B T Thomas; Holmes, Avram J
2018-04-12
The human brain is comprised of a complex web of functional networks that link anatomically distinct regions. However, the biological mechanisms supporting network organization remain elusive, particularly across cortical and subcortical territories with vastly divergent cellular and molecular properties. Here, using human and primate brain transcriptional atlases, we demonstrate that spatial patterns of gene expression show strong correspondence with limbic and somato/motor cortico-striatal functional networks. Network-associated expression is consistent across independent human datasets and evolutionarily conserved in non-human primates. Genes preferentially expressed within the limbic network (encompassing nucleus accumbens, orbital/ventromedial prefrontal cortex, and temporal pole) relate to risk for psychiatric illness, chloride channel complexes, and markers of somatostatin neurons. Somato/motor associated genes are enriched for oligodendrocytes and markers of parvalbumin neurons. These analyses indicate that parallel cortico-striatal processing channels possess dissociable genetic signatures that recapitulate distributed functional networks, and nominate molecular mechanisms supporting cortico-striatal circuitry in health and disease.
Parallel array of independent thermostats for column separations
Foret, Frantisek; Karger, Barry L.
2005-08-16
A thermostat array including an array of two or more capillary columns (10) or two or more channels in a microfabricated device is disclosed. A heat conductive material (12) surrounded each individual column or channel in array, each individual column or channel being thermally insulated from every other individual column or channel. One or more independently controlled heating or cooling elements (14) is positioned adjacent to individual columns or channels within the heat conductive material, each heating or cooling element being connected to a source of heating or cooling, and one or more independently controlled temperature sensing elements (16) is positioned adjacent to the individual columns or channels within the heat conductive material. Each temperature sensing element is connected to a temperature controller.
Sokolovski, Sergei; Hills, Adrian; Gay, Robert A; Blatt, Michael R
2008-03-01
There is now growing evidence that membrane vesicle trafficking proteins, especially of the superfamily of SNAREs, are critical for cellular signalling in plants. Work from this laboratory first demonstrated that a soluble, inhibitory (dominant-negative) fragment of the SNARE NtSyp121 blocked K+ and Cl- channel responses to the stress-related hormone abscisic acid (ABA), but left open a question about functional impacts on signal intermediates, especially on Ca2+-mediated signalling events. Here, we report one mode of action for the SNARE mediated directly through alterations in Ca2+ channel gating and its consequent effects on cytosolic-free [Ca2+] ([Ca2+]i) elevation. We find that expressing the same inhibitory fragment of NtSyp121 blocks ABA-evoked stomatal closure, but only partially suppresses stomatal closure in the presence of the NO donor, SNAP, which promotes [Ca2+]i elevation independently of the plasma membrane Ca2+ channels. Consistent with these observations, Ca2+ channel gating at the plasma membrane is altered by the SNARE fragment in a manner effective in reducing the potential for triggering a rise in [Ca2+]i, and we show directly that its expression in vivo leads to a pronounced suppression of evoked [Ca2+]i transients. These observations offer primary evidence for the functional coupling of the SNARE with Ca2+ channels at the plant cell plasma membrane and, because [Ca2+]i plays a key role in the control of K+ and Cl- channel currents in guard cells, they underscore an important mechanism for SNARE integration with ion channel regulation during stomatal closure.
Xu, Jianhua; Morris, Lynsie; Thapa, Arjun; Ma, Hongwei; Michalakis, Stylianos; Biel, Martin; Baehr, Wolfgang; Peshenko, Igor V; Dizhoor, Alexander M; Ding, Xi-Qin
2013-09-11
Photoreceptor cyclic nucleotide-gated (CNG) channels regulate Ca(2+) influx in rod and cone photoreceptors. cGMP, the native ligand of the photoreceptor CNG channels, has been associated with cytotoxicity when its levels rise above normal due to defects in photoreceptor phosphodiesterase (PDE6) or regulation of retinal guanylyl cyclase (retGC). We found a massive accumulation of cGMP in CNGA3-deficient retina and investigated whether cGMP accumulation plays a role in cone degeneration in CNG channel deficiency. The time course study showed that the retinal cGMP level in Cnga3(-/-);Nrl(-/-) mice with CNGA3 deficiency on a cone-dominant background was sharply increased at postnatal day 8 (P8), peaked around P10-P15, remained high through P30-P60, and returned to near control level at P90. This elevation pattern correlated with photoreceptor apoptotic death, which peaked around P15-P20. In Cnga3(-/-);Gucy2e(-/-) mice lacking retGC1, cone density and expression levels of cone-specific proteins were significantly increased compared with Cnga3(-/-), consistent with a role of cGMP accumulation as the major contributor to cone death caused by CNG channel deficiency. The activity and expression levels of cGMP-dependent protein kinase G (PKG) were significantly increased in Cnga3(-/-);Nrl(-/-) retina compared with Nrl(-/-), suggesting an involvement of PKG regulation in cell death. Our results indicate that cGMP accumulation in photoreceptors can itself exert cytotoxic effect in cones, independently of CNG channel activity and Ca(2+) influx.
Opioid inhibition of N-type Ca2+ channels and spinal analgesia couple to alternative splicing.
Andrade, Arturo; Denome, Sylvia; Jiang, Yu-Qiu; Marangoudakis, Spiro; Lipscombe, Diane
2010-10-01
Alternative pre-mRNA splicing occurs extensively in the nervous systems of complex organisms, including humans, considerably expanding the potential size of the proteome. Cell-specific alternative pre-mRNA splicing is thought to optimize protein function for specialized cellular tasks, but direct evidence for this is limited. Transmission of noxious thermal stimuli relies on the activity of N-type Ca(V)2.2 calcium channels in nociceptors. Using an exon-replacement strategy in mice, we show that mutually exclusive splicing patterns in the Ca(V)2.2 gene modulate N-type channel function in nociceptors, leading to a change in morphine analgesia. Exon 37a (e37a) enhances μ-opioid receptor-mediated inhibition of N-type calcium channels by promoting activity-independent inhibition. In the absence of e37a, spinal morphine analgesia is weakened in vivo but the basal response to noxious thermal stimuli is not altered. Our data suggest that highly specialized, discrete cellular responsiveness in vivo can be attributed to alternative splicing events regulated at the level of individual neurons.
Vivas, Oscar; Castro, Hector; Arenas, Isabel; Elías-Viñas, David; García, David E
2013-03-08
GPCRs regulate Ca(V)2.2 channels through both voltage dependent and independent inhibition pathways. The aim of the present work was to assess the phosphatidylinositol-4,5-bisphosphate (PIP2) as the molecule underlying the voltage independent inhibition of Ca(V)2.2 channels in SCG neurons. We used a double pulse protocol to study the voltage independent inhibition and changed the PIP(2) concentration by means of blocking the enzyme PLC, filling the cell with a PIP(2) analogue and preventing the PIP(2) resynthesis with wortmannin. We found that voltage independent inhibition requires the activation of PLC and can be hampered by internal dialysis of exogenous PIP(2). In addition, the recovery from voltage independent inhibition is blocked by inhibition of the enzymes involved in the resynthesis of PIP(2). These results support that the hydrolysis of PIP(2) is responsible for the voltage independent inhibition of Ca(V)2.2 channels. Copyright © 2013 Elsevier Inc. All rights reserved.
Soldovieri, Maria Virginia; Ambrosino, Paolo; Mosca, Ilaria; De Maria, Michela; Moretto, Edoardo; Miceli, Francesco; Alaimo, Alessandro; Iraci, Nunzio; Manocchio, Laura; Medoro, Alessandro; Passafaro, Maria; Taglialatela, Maurizio
2016-01-01
Kv7.2 and Kv7.3 subunits underlie the M-current, a neuronal K+ current characterized by an absolute functional requirement for phosphatidylinositol 4,5-bisphosphate (PIP2). Kv7.2 gene mutations cause early-onset neonatal seizures with heterogeneous clinical outcomes, ranging from self-limiting benign familial neonatal seizures to severe early-onset epileptic encephalopathy (Kv7.2-EE). In this study, the biochemical and functional consequences prompted by a recurrent variant (R325G) found independently in four individuals with severe forms of neonatal-onset EE have been investigated. Upon heterologous expression, homomeric Kv7.2 R325G channels were non-functional, despite biotin-capture in Western blots revealed normal plasma membrane subunit expression. Mutant subunits exerted dominant-negative effects when incorporated into heteromeric channels with Kv7.2 and/or Kv7.3 subunits. Increasing cellular PIP2 levels by co-expression of type 1γ PI(4)P5-kinase (PIP5K) partially recovered homomeric Kv7.2 R325G channel function. Currents carried by heteromeric channels incorporating Kv7.2 R325G subunits were more readily inhibited than wild-type channels upon activation of a voltage-sensitive phosphatase (VSP), and recovered more slowly upon VSP switch-off. These results reveal for the first time that a mutation-induced decrease in current sensitivity to PIP2 is the primary molecular defect responsible for Kv7.2-EE in individuals carrying the R325G variant, further expanding the range of pathogenetic mechanisms exploitable for personalized treatment of Kv7.2-related epilepsies. PMID:27905566
Soldovieri, Maria Virginia; Ambrosino, Paolo; Mosca, Ilaria; De Maria, Michela; Moretto, Edoardo; Miceli, Francesco; Alaimo, Alessandro; Iraci, Nunzio; Manocchio, Laura; Medoro, Alessandro; Passafaro, Maria; Taglialatela, Maurizio
2016-12-01
Kv7.2 and Kv7.3 subunits underlie the M-current, a neuronal K + current characterized by an absolute functional requirement for phosphatidylinositol 4,5-bisphosphate (PIP 2 ). Kv7.2 gene mutations cause early-onset neonatal seizures with heterogeneous clinical outcomes, ranging from self-limiting benign familial neonatal seizures to severe early-onset epileptic encephalopathy (Kv7.2-EE). In this study, the biochemical and functional consequences prompted by a recurrent variant (R325G) found independently in four individuals with severe forms of neonatal-onset EE have been investigated. Upon heterologous expression, homomeric Kv7.2 R325G channels were non-functional, despite biotin-capture in Western blots revealed normal plasma membrane subunit expression. Mutant subunits exerted dominant-negative effects when incorporated into heteromeric channels with Kv7.2 and/or Kv7.3 subunits. Increasing cellular PIP 2 levels by co-expression of type 1γ PI(4)P5-kinase (PIP5K) partially recovered homomeric Kv7.2 R325G channel function. Currents carried by heteromeric channels incorporating Kv7.2 R325G subunits were more readily inhibited than wild-type channels upon activation of a voltage-sensitive phosphatase (VSP), and recovered more slowly upon VSP switch-off. These results reveal for the first time that a mutation-induced decrease in current sensitivity to PIP 2 is the primary molecular defect responsible for Kv7.2-EE in individuals carrying the R325G variant, further expanding the range of pathogenetic mechanisms exploitable for personalized treatment of Kv7.2-related epilepsies.
Glucose recruits K(ATP) channels via non-insulin-containing dense-core granules.
Yang, Shao-Nian; Wenna, Nancy Dekki; Yu, Jia; Yang, Guang; Qiu, Hua; Yu, Lina; Juntti-Berggren, Lisa; Köhler, Martin; Berggren, Per-Olof
2007-09-01
beta cells rely on adenosine triphosphate-sensitive potassium (K(ATP)) channels to initiate and end glucose-stimulated insulin secretion through changes in membrane potential. These channels may also act as a constituent of the exocytotic machinery to mediate insulin release independent of their electrical function. However, the molecular mechanisms whereby the beta cell plasma membrane maintains an appropriate number of K(ATP) channels are not known. We now show that glucose increases K(ATP) current amplitude by increasing the number of K(ATP) channels in the beta cell plasma membrane. The effect was blocked by inhibition of protein kinase A (PKA) as well as by depletion of extracellular or intracellular Ca(2+). Furthermore, glucose promoted recruitment of the potassium inward rectifier 6.2 to the plasma membrane, and intracellular K(ATP) channels localized in chromogranin-positive/insulin-negative dense-core granules. Our data suggest that glucose can recruit K(ATP) channels to the beta cell plasma membrane via non-insulin-containing dense-core granules in a Ca(2+)- and PKA-dependent manner.
Distributed Joint Source-Channel Coding in Wireless Sensor Networks
Zhu, Xuqi; Liu, Yu; Zhang, Lin
2009-01-01
Considering the fact that sensors are energy-limited and the wireless channel conditions in wireless sensor networks, there is an urgent need for a low-complexity coding method with high compression ratio and noise-resisted features. This paper reviews the progress made in distributed joint source-channel coding which can address this issue. The main existing deployments, from the theory to practice, of distributed joint source-channel coding over the independent channels, the multiple access channels and the broadcast channels are introduced, respectively. To this end, we also present a practical scheme for compressing multiple correlated sources over the independent channels. The simulation results demonstrate the desired efficiency. PMID:22408560
Clathrin-independent internalization and recycling
Gong, Qiang; Huntsman, Christopher; Ma, Dzwokai
2008-01-01
Abstract The functionality of receptor and channel proteins depends directly upon their expression level on the plasma membrane. Therefore, the ability to selectively adjust the surface level of a particular receptor or channel protein is pivotal to many cellular signalling events. The internalization and recycling pathway plays a major role in the regulation of protein surface level, and thus has been a focus of research for many years. Although several endocytic pathways have been identified, most of our knowledge has come from the clathrin-dependent pathway, while the other pathways remain much less well defined. Considering that clathrin-independent internalization may account for as much as 50% of the total endocytic activity in the cell, the lack of such knowledge constitutes a major gap in our efforts to understand how different internalization pathways are utilized and co-ordinated. Recent studies have provided valuable insights into this area, yet many more questions still remain. In this review, we will give a panoramic introduction to the current knowledge of various internalization and recycling pathways, with an emphasis on the latest findings that have broadened our view of the clathrin-independent pathways. We will also dedicate one section to the emerging studies of the clathrin-independent internalization pathways in neuronal cells. PMID:18039352
Hull, Jacob M; Isom, Lori L
2018-04-01
Voltage gated sodium channels (VGSCs) were first identified in terms of their role in the upstroke of the action potential. The underlying proteins were later identified as saxitoxin and scorpion toxin receptors consisting of α and β subunits. We now know that VGSCs are heterotrimeric complexes consisting of a single pore forming α subunit joined by two β subunits; a noncovalently linked β1 or β3 and a covalently linked β2 or β4 subunit. VGSC α subunits contain all the machinery necessary for channel cell surface expression, ion conduction, voltage sensing, gating, and inactivation, in one central, polytopic, transmembrane protein. VGSC β subunits are more than simple accessories to α subunits. In the more than two decades since the original cloning of β1, our knowledge of their roles in physiology and pathophysiology has expanded immensely. VGSC β subunits are multifunctional. They confer unique gating mechanisms, regulate cellular excitability, affect brain development, confer distinct channel pharmacology, and have functions that are independent of the α subunits. The vast array of functions of these proteins stems from their special station in the channelome: being the only known constituents that are cell adhesion and intra/extracellular signaling molecules in addition to being part of channel complexes. This functional trifecta and how it goes awry demonstrates the power outside the pore in ion channel signaling complexes, broadening the term channelopathy beyond defects in ion conduction. This article is part of the Special Issue entitled 'Channelopathies.' Copyright © 2017 Elsevier Ltd. All rights reserved.
Motion vision is independent of color in Drosophila
Yamaguchi, Satoko; Wolf, Reinhard; Desplan, Claude; Heisenberg, Martin
2008-01-01
Whether motion vision uses color contrast is a controversial issue that has been investigated in several species, from insects to humans. We used Drosophila to answer this question, monitoring the optomotor response to moving color stimuli in WT and genetic variants. In the fly eye, a motion channel (outer photoreceptors R1–R6) and a color channel (inner photoreceptors R7 and R8) have been distinguished. With moving bars of alternating colors and high color contrast, a brightness ratio of the two colors can be found, at which the optomotor response is largely missing (point of equiluminance). Under these conditions, mutant flies lacking functional rhodopsin in R1–R6 cells do not respond at all. Furthermore, genetically eliminating the function of photoreceptors R7 and R8 neither alters the strength of the optomotor response nor shifts the point of equiluminance. We conclude that the color channel (R7/R8) does not contribute to motion detection as monitored by the optomotor response. PMID:18353989
Motion vision is independent of color in Drosophila.
Yamaguchi, Satoko; Wolf, Reinhard; Desplan, Claude; Heisenberg, Martin
2008-03-25
Whether motion vision uses color contrast is a controversial issue that has been investigated in several species, from insects to humans. We used Drosophila to answer this question, monitoring the optomotor response to moving color stimuli in WT and genetic variants. In the fly eye, a motion channel (outer photoreceptors R1-R6) and a color channel (inner photoreceptors R7 and R8) have been distinguished. With moving bars of alternating colors and high color contrast, a brightness ratio of the two colors can be found, at which the optomotor response is largely missing (point of equiluminance). Under these conditions, mutant flies lacking functional rhodopsin in R1-R6 cells do not respond at all. Furthermore, genetically eliminating the function of photoreceptors R7 and R8 neither alters the strength of the optomotor response nor shifts the point of equiluminance. We conclude that the color channel (R7/R8) does not contribute to motion detection as monitored by the optomotor response.
Optimized Multi-Spectral Filter Array Based Imaging of Natural Scenes.
Li, Yuqi; Majumder, Aditi; Zhang, Hao; Gopi, M
2018-04-12
Multi-spectral imaging using a camera with more than three channels is an efficient method to acquire and reconstruct spectral data and is used extensively in tasks like object recognition, relighted rendering, and color constancy. Recently developed methods are used to only guide content-dependent filter selection where the set of spectral reflectances to be recovered are known a priori. We present the first content-independent spectral imaging pipeline that allows optimal selection of multiple channels. We also present algorithms for optimal placement of the channels in the color filter array yielding an efficient demosaicing order resulting in accurate spectral recovery of natural reflectance functions. These reflectance functions have the property that their power spectrum statistically exhibits a power-law behavior. Using this property, we propose power-law based error descriptors that are minimized to optimize the imaging pipeline. We extensively verify our models and optimizations using large sets of commercially available wide-band filters to demonstrate the greater accuracy and efficiency of our multi-spectral imaging pipeline over existing methods.
Optimized Multi-Spectral Filter Array Based Imaging of Natural Scenes
Li, Yuqi; Majumder, Aditi; Zhang, Hao; Gopi, M.
2018-01-01
Multi-spectral imaging using a camera with more than three channels is an efficient method to acquire and reconstruct spectral data and is used extensively in tasks like object recognition, relighted rendering, and color constancy. Recently developed methods are used to only guide content-dependent filter selection where the set of spectral reflectances to be recovered are known a priori. We present the first content-independent spectral imaging pipeline that allows optimal selection of multiple channels. We also present algorithms for optimal placement of the channels in the color filter array yielding an efficient demosaicing order resulting in accurate spectral recovery of natural reflectance functions. These reflectance functions have the property that their power spectrum statistically exhibits a power-law behavior. Using this property, we propose power-law based error descriptors that are minimized to optimize the imaging pipeline. We extensively verify our models and optimizations using large sets of commercially available wide-band filters to demonstrate the greater accuracy and efficiency of our multi-spectral imaging pipeline over existing methods. PMID:29649114
Outward Rectification of Voltage-Gated K+ Channels Evolved at Least Twice in Life History
Riedelsberger, Janin; Dreyer, Ingo; Gonzalez, Wendy
2015-01-01
Voltage-gated potassium (K+) channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD), this K+ channel type segregates into at least two main functional categories—hyperpolarization-activated, inward-rectifying (Kin) and depolarization-activated, outward-rectifying (Kout) channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom. PMID:26356684
Outward Rectification of Voltage-Gated K+ Channels Evolved at Least Twice in Life History.
Riedelsberger, Janin; Dreyer, Ingo; Gonzalez, Wendy
2015-01-01
Voltage-gated potassium (K+) channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD), this K+ channel type segregates into at least two main functional categories-hyperpolarization-activated, inward-rectifying (Kin) and depolarization-activated, outward-rectifying (Kout) channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom.
Eckford, Paul D. W.; Li, Canhui; Ramjeesingh, Mohabir; Bear, Christine E.
2012-01-01
The cystic fibrosis transmembrane conductance regulator (CFTR) acts as a channel on the apical membrane of epithelia. Disease-causing mutations in the cystic fibrosis gene can lead to CFTR protein misfolding as in the case of the F508del mutation and/or channel dysfunction. Recently, a small molecule, VX-770 (ivacaftor), has shown efficacy in restoring lung function in patients bearing the G551D mutation, and this has been linked to repair of its channel gating defect. However, these studies did not reveal the mechanism of action of VX-770 in detail. Normally, CFTR channel activity is regulated by phosphorylation, ATP binding, and hydrolysis. Hence, it has been hypothesized that VX-770 modifies one or more of these metabolic events. In this study, we examined VX-770 activity using a reconstitution system for purified CFTR protein, a system that enables control of known regulatory factors. We studied the consequences of VX-770 interaction with CFTR incorporated in planar lipid bilayers and in proteoliposomes, using a novel flux-based assay. We found that purified and phosphorylated CFTR was potentiated in the presence of Mg-ATP, suggesting that VX-770 bound directly to the CFTR protein, rather than associated kinases or phosphatases. Interestingly, we also found that VX-770 enhanced the channel activity of purified and mutant CFTR in the nominal absence of Mg-ATP. These findings suggest that VX-770 can cause CFTR channel opening through a nonconventional ATP-independent mechanism. This work sets the stage for future studies of the structural properties that mediate CFTR gating using VX-770 as a probe. PMID:22942289
Eckford, Paul D W; Li, Canhui; Ramjeesingh, Mohabir; Bear, Christine E
2012-10-26
The cystic fibrosis transmembrane conductance regulator (CFTR) acts as a channel on the apical membrane of epithelia. Disease-causing mutations in the cystic fibrosis gene can lead to CFTR protein misfolding as in the case of the F508del mutation and/or channel dysfunction. Recently, a small molecule, VX-770 (ivacaftor), has shown efficacy in restoring lung function in patients bearing the G551D mutation, and this has been linked to repair of its channel gating defect. However, these studies did not reveal the mechanism of action of VX-770 in detail. Normally, CFTR channel activity is regulated by phosphorylation, ATP binding, and hydrolysis. Hence, it has been hypothesized that VX-770 modifies one or more of these metabolic events. In this study, we examined VX-770 activity using a reconstitution system for purified CFTR protein, a system that enables control of known regulatory factors. We studied the consequences of VX-770 interaction with CFTR incorporated in planar lipid bilayers and in proteoliposomes, using a novel flux-based assay. We found that purified and phosphorylated CFTR was potentiated in the presence of Mg-ATP, suggesting that VX-770 bound directly to the CFTR protein, rather than associated kinases or phosphatases. Interestingly, we also found that VX-770 enhanced the channel activity of purified and mutant CFTR in the nominal absence of Mg-ATP. These findings suggest that VX-770 can cause CFTR channel opening through a nonconventional ATP-independent mechanism. This work sets the stage for future studies of the structural properties that mediate CFTR gating using VX-770 as a probe.
Mintert, Elisa; Bösche, Leif I; Rinne, Andreas; Timpert, Mathias; Kienitz, Marie-Cécile; Pott, Lutz; Bender, Kirsten
2007-11-15
Apart from gating by interaction with betagamma subunits from heterotrimeric G proteins upon stimulation of appropriate receptors, Kir.3 channels have been shown to be gated by intracellular Na+. However, no information is available on how Na+-dependent gating affects endogenous Kir3.1/Kir3.4 channels in mammalian atrial myocytes. We therefore studied how loading of adult atrial myocytes from rat hearts via the patch pipette filling solution with different concentrations of Na+ ([Na+]pip) affects Kir3 current. Surprisingly, in a range between 0 and 60 mm, Na+ neither had an effect on basal inward-rectifier current nor on the current activated by acetylcholine. Overexpression of Kir3.4 in adult atrial myocytes forced by adenoviral gene transfer results in formation of functional homomeric channels that interact with betagamma subunits upon activation of endogenous muscarinic receptors. These channels are activated at [Na+]pip >or= 15 mm, resulting in a receptor-independent basal inward rectifier current (I bir). I bir was neither affected by pertussis toxin nor by GDP-beta-S, suggesting G-protein-independent activation. PIP(2) depletion via endogenous PLC-coupled alpha1 adrenergic receptors causes inhibition of endogenous Kir3.1/3.4 channel currents by about 75%. In contrast, inhibition of Na+-activated I bir amounts to < 20%. The effect of the Kir3 channel blocker tertiapin-Q can be described using an IC50 of 12 nm (endogenous I K(ACh)) and 0.61 nm (I bir). These data clearly identify I bir as a homotetrameric Kir3.4 channel current with novel properties of regulation and pharmacology. Ibir shares some properties with a basal current recently described in atrial myocytes from an animal model of atrial fibrillation (AF) and AF patients.
Fontes, Joseph D.; Ramsey, Jon; Polk, Jeremy M; Koop, Andre; Denisova, Janna V.; Belousov, Andrei B.
2015-01-01
Pharmacological blockade or genetic knockout of neuronal connexin 36 (Cx36)-containing gap junctions reduces neuronal death caused by ischemia, traumatic brain injury and NMDA receptor (NMDAR)-mediated excitotoxicity. However, whether Cx36 gap junctions contribute to neuronal death via channel-dependent or channel-independent mechanism remains an open question. To address this, we manipulated connexin protein expression via lentiviral transduction of mouse neuronal cortical cultures and analyzed neuronal death twenty-four hours following administration of NMDA (a model of NMDAR excitotoxicity) or oxygen-glucose deprivation (a model of ischemic injury). In cultures prepared from wild-type mice, over-expression and knockdown of Cx36-containing gap junctions augmented and prevented, respectively, neuronal death from NMDAR-mediated excitotoxicity and ischemia. In cultures obtained form from Cx36 knockout mice, re-expression of functional gap junction channels, containing either neuronal Cx36 or non-neuronal Cx43 or Cx31, resulted in increased neuronal death following insult. In contrast, the expression of communication-deficient gap junctions (containing mutated connexins) did not have this effect. Finally, the absence of ethidium bromide uptake in non-transduced wild-type neurons two hours following NMDAR excitotoxicity or ischemia suggested the absence of active endogenous hemichannels in those neurons. Taken together, these results suggest a role for neuronal gap junctions in cell death via a connexin type-independent mechanism that likely relies on channel activities of gap junctional complexes among neurons. A possible contribution of gap junction channel-permeable death signals in neuronal death is discussed. PMID:26017008
Variants of Independence in the Perception of Facial Identity and Expression
ERIC Educational Resources Information Center
Fitousi, Daniel; Wenger, Michael J.
2013-01-01
A prominent theory in the face perception literature--the parallel-route hypothesis (Bruce & Young, 1986)--assumes a dedicated channel for the processing of identity that is separate and independent from the channel(s) in which nonidentity information is processed (e.g., expression, eye gaze). The current work subjected this assumption to…
KCNE1 divides the voltage sensor movement in KCNQ1/KCNE1 channels into two steps
NASA Astrophysics Data System (ADS)
Barro-Soria, Rene; Rebolledo, Santiago; Liin, Sara I.; Perez, Marta E.; Sampson, Kevin J.; Kass, Robert S.; Larsson, H. Peter
2014-04-01
The functional properties of KCNQ1 channels are highly dependent on associated KCNE-β subunits. Mutations in KCNQ1 or KCNE subunits can cause congenital channelopathies, such as deafness, cardiac arrhythmias and epilepsy. The mechanism by which KCNE1-β subunits slow the kinetics of KCNQ1 channels is a matter of current controversy. Here we show that KCNQ1/KCNE1 channel activation occurs in two steps: first, mutually independent voltage sensor movements in the four KCNQ1 subunits generate the main gating charge movement and underlie the initial delay in the activation time course of KCNQ1/KCNE1 currents. Second, a slower and concerted conformational change of all four voltage sensors and the gate, which opens the KCNQ1/KCNE1 channel. Our data show that KCNE1 divides the voltage sensor movement into two steps with widely different voltage dependences and kinetics. The two voltage sensor steps in KCNQ1/KCNE1 channels can be pharmacologically isolated and further separated by a disease-causing mutation.
Calculation of the transverse parton distribution functions at next-to-next-to-leading order
NASA Astrophysics Data System (ADS)
Gehrmann, Thomas; Lübbert, Thomas; Yang, Li Lin
2014-06-01
We describe the perturbative calculation of the transverse parton distribution functions in all partonic channels up to next-to-next-to-leading order based on a gauge invariant operator definition. We demonstrate the cancellation of light-cone divergences and show that universal process-independent transverse parton distribution functions can be obtained through a refactorization. Our results serve as the first explicit higher-order calculation of these functions starting from first principles, and can be used to perform next-to-next-to-next-to-leading logarithmic q T resummation for a large class of processes at hadron colliders.
KCa2 and KCa3 Channels in Learning and Memory Processes, and Neurodegeneration
Kuiper, Els F. E.; Nelemans, Ad; Luiten, Paul; Nijholt, Ingrid; Dolga, Amalia; Eisel, Uli
2012-01-01
Calcium-activated potassium (KCa) channels are present throughout the central nervous system as well as many peripheral tissues. Activation of KCa channels contribute to maintenance of the neuronal membrane potential and was shown to underlie the afterhyperpolarization (AHP) that regulates action potential firing and limits the firing frequency of repetitive action potentials. Different subtypes of KCa channels were anticipated on the basis of their physiological and pharmacological profiles, and cloning revealed two well defined but phylogenetic distantly related groups of channels. The group subject of this review includes both the small conductance KCa2 channels (KCa2.1, KCa2.2, and KCa2.3) and the intermediate-conductance (KCa3.1) channel. These channels are activated by submicromolar intracellular Ca2+ concentrations and are voltage independent. Of all KCa channels only the KCa2 channels can be potently but differentially blocked by the bee-venom apamin. In the past few years modulation of KCa channel activation revealed new roles for KCa2 channels in controlling dendritic excitability, synaptic functioning, and synaptic plasticity. Furthermore, KCa2 channels appeared to be involved in neurodegeneration, and learning and memory processes. In this review, we focus on the role of KCa2 and KCa3 channels in these latter mechanisms with emphasis on learning and memory, Alzheimer’s disease and on the interplay between neuroinflammation and different neurotransmitters/neuromodulators, their signaling components and KCa channel activation. PMID:22701424
Orientation independence of single-vacancy and single-ion permeability ratios.
McGill, P; Schumaker, M F
1995-01-01
Single-vacancy models have been proposed as open channel permeation mechanisms for K+ channels. Single-ion models have been used to describe permeation through Na+ channels. This paper demonstrates that these models have a distinctive symmetry property. Their permeability ratios, measured under biionic conditions, are independent of channel orientation when the reversal potential is zero. This symmetry is a property of general m-site single-vacancy channels, m-site shaking-stack channels, as well as m-site single-ion channels. An experimental finding that the permeability ratios of a channel did not have this symmetry would provide evidence that a single-vacancy or single-ion model is an incorrect or incomplete description of permeation. Images FIGURE 1 PMID:7669913
Device-independent tests of quantum channels
NASA Astrophysics Data System (ADS)
Dall'Arno, Michele; Brandsen, Sarah; Buscemi, Francesco
2017-03-01
We develop a device-independent framework for testing quantum channels. That is, we falsify a hypothesis about a quantum channel based only on an observed set of input-output correlations. Formally, the problem consists of characterizing the set of input-output correlations compatible with any arbitrary given quantum channel. For binary (i.e. two input symbols, two output symbols) correlations, we show that extremal correlations are always achieved by orthogonal encodings and measurements, irrespective of whether or not the channel preserves commutativity. We further provide a full, closed-form characterization of the sets of binary correlations in the case of: (i) any dihedrally covariant qubit channel (such as any Pauli and amplitude-damping channels) and (ii) any universally-covariant commutativity-preserving channel in an arbitrary dimension (such as any erasure, depolarizing, universal cloning and universal transposition channels).
Device-independent tests of quantum channels.
Dall'Arno, Michele; Brandsen, Sarah; Buscemi, Francesco
2017-03-01
We develop a device-independent framework for testing quantum channels. That is, we falsify a hypothesis about a quantum channel based only on an observed set of input-output correlations. Formally, the problem consists of characterizing the set of input-output correlations compatible with any arbitrary given quantum channel. For binary (i.e. two input symbols, two output symbols) correlations, we show that extremal correlations are always achieved by orthogonal encodings and measurements, irrespective of whether or not the channel preserves commutativity. We further provide a full, closed-form characterization of the sets of binary correlations in the case of: (i) any dihedrally covariant qubit channel (such as any Pauli and amplitude-damping channels) and (ii) any universally-covariant commutativity-preserving channel in an arbitrary dimension (such as any erasure, depolarizing, universal cloning and universal transposition channels).
Ion channel gene expression predicts survival in glioma patients
Wang, Rong; Gurguis, Christopher I.; Gu, Wanjun; Ko, Eun A; Lim, Inja; Bang, Hyoweon; Zhou, Tong; Ko, Jae-Hong
2015-01-01
Ion channels are important regulators in cell proliferation, migration, and apoptosis. The malfunction and/or aberrant expression of ion channels may disrupt these important biological processes and influence cancer progression. In this study, we investigate the expression pattern of ion channel genes in glioma. We designate 18 ion channel genes that are differentially expressed in high-grade glioma as a prognostic molecular signature. This ion channel gene expression based signature predicts glioma outcome in three independent validation cohorts. Interestingly, 16 of these 18 genes were down-regulated in high-grade glioma. This signature is independent of traditional clinical, molecular, and histological factors. Resampling tests indicate that the prognostic power of the signature outperforms random gene sets selected from human genome in all the validation cohorts. More importantly, this signature performs better than the random gene signatures selected from glioma-associated genes in two out of three validation datasets. This study implicates ion channels in brain cancer, thus expanding on knowledge of their roles in other cancers. Individualized profiling of ion channel gene expression serves as a superior and independent prognostic tool for glioma patients. PMID:26235283
Vaisey, George; Miller, Alexandria N; Long, Stephen B
2016-11-22
Cytoplasmic calcium (Ca 2+ ) activates the bestrophin anion channel, allowing chloride ions to flow down their electrochemical gradient. Mutations in bestrophin 1 (BEST1) cause macular degenerative disorders. Previously, we determined an X-ray structure of chicken BEST1 that revealed the architecture of the channel. Here, we present electrophysiological studies of purified wild-type and mutant BEST1 channels and an X-ray structure of a Ca 2+ -independent mutant. From these experiments, we identify regions of BEST1 responsible for Ca 2+ activation and ion selectivity. A "Ca 2+ clasp" within the channel's intracellular region acts as a sensor of cytoplasmic Ca 2+ . Alanine substitutions within a hydrophobic "neck" of the pore, which widen it, cause the channel to be constitutively active, irrespective of Ca 2+ . We conclude that the primary function of the neck is as a "gate" that controls chloride permeation in a Ca 2+ -dependent manner. In contrast to what others have proposed, we find that the neck is not a major contributor to the channel's ion selectivity. We find that mutation of a cytosolic "aperture" of the pore does not perturb the Ca 2+ dependence of the channel or its preference for anions over cations, but its mutation dramatically alters relative permeabilities among anions. The data suggest that the aperture functions as a size-selective filter that permits the passage of small entities such as partially dehydrated chloride ions while excluding larger molecules such as amino acids. Thus, unlike ion channels that have a single "selectivity filter," in bestrophin, distinct regions of the pore govern anion-vs.-cation selectivity and the relative permeabilities among anions.
Atrial fibrillation: Therapeutic potential of atrial K+ channel blockers.
Ravens, Ursula; Odening, Katja E
2017-08-01
Despite the epidemiological scale of atrial fibrillation, current treatment strategies are of limited efficacy and safety. Ideally, novel drugs should specifically correct the pathophysiological mechanisms responsible for atrial fibrillation with no other cardiac or extracardiac actions. Atrial-selective drugs are directed toward cellular targets with sufficiently different characteristics in atria and ventricles to modify only atrial function. Several potassium (K + ) channels with either predominant expression in atria or distinct electrophysiological properties in atria and ventricles can serve as atrial-selective drug targets. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting I Kur , the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting I K,ACh , the Ca 2+ -activated K + channels of small conductance (SK) conducting I SK , and the two pore domain K + (K2P) channels TWIK-1, TASK-1 and TASK-3 that are responsible for voltage-independent background currents I TWIK-1 , I TASK-1 , and I TASK-3 . Here, we briefly review the characteristics of these K + channels and their roles in atrial fibrillation. The antiarrhythmic potential of drugs targeting the described channels is discussed as well as their putative value in treatment of atrial fibrillation. Copyright © 2016 Elsevier Inc. All rights reserved.
Scholl, Elizabeth Storer; Pirone, Antonella; Cox, Daniel H; Duncan, R Keith; Jacob, Michele H
2014-01-01
Small conductance Ca2+-sensitive potassium (SK2) channels are voltage-independent, Ca2+-activated ion channels that conduct potassium cations and thereby modulate the intrinsic excitability and synaptic transmission of neurons and sensory hair cells. In the cochlea, SK2 channels are functionally coupled to the highly Ca2+ permeant α9/10-nicotinic acetylcholine receptors (nAChRs) at olivocochlear postsynaptic sites. SK2 activation leads to outer hair cell hyperpolarization and frequency-selective suppression of afferent sound transmission. These inhibitory responses are essential for normal regulation of sound sensitivity, frequency selectivity, and suppression of background noise. However, little is known about the molecular interactions of these key functional channels. Here we show that SK2 channels co-precipitate with α9/10-nAChRs and with the actin-binding protein α-actinin-1. SK2 alternative splicing, resulting in a 3 amino acid insertion in the intracellular 3′ terminus, modulates these interactions. Further, relative abundance of the SK2 splice variants changes during developmental stages of synapse maturation in both the avian cochlea and the mammalian forebrain. Using heterologous cell expression to separately study the 2 distinct isoforms, we show that the variants differ in protein interactions and surface expression levels, and that Ca2+ and Ca2+-bound calmodulin differentially regulate their protein interactions. Our findings suggest that the SK2 isoforms may be distinctly modulated by activity-induced Ca2+ influx. Alternative splicing of SK2 may serve as a novel mechanism to differentially regulate the maturation and function of olivocochlear and neuronal synapses. PMID:24394769
Martínez, Javier; Moreno, Juan J
2005-09-01
Store-operated calcium (SOC) channels and capacitative Ca2+ entry play a key role in cellular functions, but their mechanism of activation remains unclear. Here, we show that thapsigargin induces [3H] arachidonic acid (AA) release, 45Ca2+ influx and a subsequent enhancement of intracellular calcium concentration ([Ca2+]i. Thapsigargin-induced elevation of [Ca2+]i was inhibited by cytochrome P-450 inhibitors and by cytochrome P-450 epoxygenase inhibitor and was reverted by 11,12 EET addition. However, cyclooxygenase and lipoxygenase inhibitors have no effect. Moreover, we observed that four EETs were able to induce 45Ca2+ influx. Finally, we reported that the effect of 11,12 EET on 45Ca2+ influx was sensible to receptor-operated Ca2+ channel blockers (NiCl2, LaCl3) but not to voltage-dependent Ca2+ channel blocker as verapamil. Thus, AA released by Ca2+-independent phospholipase A2 and AA metabolism through cytochrome P-450 pathway may be crucial molecular determinant in thapsigargin activation of SOC channels and store-operated Ca2+ entry pathway in 3T6 fibroblasts. Moreover, EETs, the main cytochrome P-450 epoxygenase metabolites of AA, are involved in thapsigargin-stimulated Ca2+ influx. In summary, our results suggest that EETs are components of calcium influx factor(s).
Miranda, Pablo; Giraldez, Teresa; Holmgren, Miguel
2016-12-06
Large-conductance voltage- and calcium-activated K + (BK) channels are key physiological players in muscle, nerve, and endocrine function by integrating intracellular Ca 2+ and membrane voltage signals. The open probability of BK channels is regulated by the intracellular concentration of divalent cations sensed by a large structure in the BK channel called the "gating ring," which is formed by four tandems of regulator of conductance for K + (RCK1 and RCK2) domains. In contrast to Ca 2+ that binds to both RCK domains, Mg 2+ , Cd 2+ , or Ba 2+ interact preferentially with either one or the other. Interaction of cations with their binding sites causes molecular rearrangements of the gating ring, but how these motions occur remains elusive. We have assessed the separate contributions of each RCK domain to the cation-induced gating-ring structural rearrangements, using patch-clamp fluorometry. Here we show that Mg 2+ and Ba 2+ selectively induce structural movement of the RCK2 domain, whereas Cd 2+ causes motions of RCK1, in all cases substantially smaller than those elicited by Ca 2+ By combining divalent species interacting with unique sites, we demonstrate that RCK1 and RCK2 domains move independently when their specific binding sites are occupied. Moreover, binding of chemically distinct cations to both RCK domains is additive, emulating the effect of fully occupied Ca 2+ binding sites.
Myrick, Leila K.; Deng, Pan-Yue; Hashimoto, Hideharu; Oh, Young Mi; Cho, Yongcheol; Poidevin, Mickael J.; Suhl, Joshua A.; Visootsak, Jeannie; Cavalli, Valeria; Jin, Peng; Cheng, Xiaodong; Warren, Stephen T.; Klyachko, Vitaly A.
2015-01-01
Fragile X syndrome (FXS) results in intellectual disability (ID) most often caused by silencing of the fragile X mental retardation 1 (FMR1) gene. The resulting absence of fragile X mental retardation protein 1 (FMRP) leads to both pre- and postsynaptic defects, yet whether the pre- and postsynaptic functions of FMRP are independent and have distinct roles in FXS neuropathology remain poorly understood. Here, we demonstrate an independent presynaptic function for FMRP through the study of an ID patient with an FMR1 missense mutation. This mutation, c.413G > A (R138Q), preserves FMRP’s canonical functions in RNA binding and translational regulation, which are traditionally associated with postsynaptic compartments. However, neuronally driven expression of the mutant FMRP is unable to rescue structural defects at the neuromuscular junction in fragile x mental retardation 1 (dfmr1)-deficient Drosophila, suggesting a presynaptic-specific impairment. Furthermore, mutant FMRP loses the ability to rescue presynaptic action potential (AP) broadening in Fmr1 KO mice. The R138Q mutation also disrupts FMRP’s interaction with the large-conductance calcium-activated potassium (BK) channels that modulate AP width. These results reveal a presynaptic- and translation-independent function of FMRP that is linked to a specific subset of FXS phenotypes. PMID:25561520
The amiodarone derivative KB130015 activates hERG1 potassium channels via a novel mechanism
Gessner, Guido; Macianskiene, Regina; Starkus, John G.; Schönherr, Roland; Heinemann, Stefan H.
2010-01-01
Human ether à go-go related gene (hERG1) potassium channels underlie the repolarizing IKr current in the heart. Since they are targets of various drugs with cardiac side effects we tested whether the amiodarone derivative 2-methyl-3-(3,5-diiodo-4-carboxymethoxybenzyl)benzofuran (KB130015) blocks hERG1 channels like its parent compound. Using patch-clamp and two-electrode voltage-clamp techniques we found that KB130015 blocks native and recombinant hERG1 channels at high voltages, but it activates them at low voltages. The activating effect has an apparent EC50 value of 12 μM and is brought about by an about 4-fold acceleration of activation kinetics and a shift in voltage-dependent activation by −16 mV. Channel activation was not use-dependent and was independent of inactivation gating. KB130015 presumably binds to the hERG1 pore from the cytosolic side and functionally competes with hERG1 block by amiodarone, E4031 (N-[4-[[1-[2-(6-methyl-2-pyridinyl)ethyl] -4-piperidinyl] carbonyl] phenyl] methanesulfonamide dihydrochloride), and sertindole. Vice versa, amiodarone attenuates hERG1 activation by KB130015. Based on synergic channel activation by mallotoxin and KB130015 we conclude that the hERG1 pore contains at least two sites for activators that are functionally coupled among each other and to the cavity-blocker site. KB130015 and amiodarone may serve as lead structures for the identification of hERG1 pore-interacting drugs favoring channel activation vs. block. PMID:20097192
Yang, Xiao-Na; Niu, You-Ya; Liu, Yan; Yang, Yang; Wang, Jin; Cheng, Xiao-Yang; Liang, Hong; Wang, Heng-Shan; Hu, You-Min; Lu, Xiang-Yang; Zhu, Michael X; Xu, Tian-Le; Tian, Yun; Yu, Ye
2017-12-29
The degenerin/epithelial sodium channel (DEG/ENaC) superfamily of ion channels contains subfamilies with diverse functions that are fundamental to many physiological and pathological processes, ranging from synaptic transmission to epileptogenesis. The absence in mammals of some DEG/ENaCs subfamily orthologues such as FMRFamide peptide-activated sodium channels (FaNaCs), which have been identified only in mollusks, indicates that the various subfamilies diverged early in evolution. We recently reported that the nonproton agonist 2-guanidine-4-methylquinazoline (GMQ) activates acid-sensing ion channels (ASICs), a DEG/ENaC subfamily mainly in mammals, in the absence of acidosis. Here, we show that GMQ also could directly activate the mollusk-specific FaNaCs. Differences in ion selectivity and unitary conductance and effects of substitutions at key residues revealed that GMQ and FMRFamide activate FaNaCs via distinct mechanisms. The presence of two activation mechanisms in the FaNaC subfamily diverging early in the evolution of DEG/ENaCs suggested that dual gating is an ancient feature in this superfamily. Notably, the GMQ-gating mode is still preserved in the mammalian ASIC subfamily, whereas FMRFamide-mediated channel gating was lost during evolution. This implied that GMQ activation may be essential for the functions of mammalian DEG/ENaCs. Our findings provide new insights into the evolution of DEG/ENaCs and may facilitate the discovery and characterization of their endogenous agonists. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Single-residue molecular switch for high-temperature dependence of vanilloid receptor TRPV3
Liu, Beiying; Qin, Feng
2017-01-01
Thermal transient receptor potential (TRP) channels, a group of ion channels from the transient receptor potential family, play important functions in pain and thermal sensation. These channels are directly activated by temperature and possess strong temperature dependence. Furthermore, their temperature sensitivity can be highly dynamic and use-dependent. For example, the vanilloid receptor transient receptor potential 3 (TRPV3), which has been implicated as a warmth detector, becomes responsive to warm temperatures only after intensive stimulation. Upon initial activation, the channel exhibits a high-temperature threshold in the noxious temperature range above 50 °C. This use dependence of heat sensitivity thus provides a mechanism for sensitization of thermal channels. However, how the channels acquire the use dependence remains unknown. Here, by comparative studies of chimeric channels between use-dependent and use-independent homologs, we have determined the molecular basis that underlies the use dependence of temperature sensitivity of TRPV3. Remarkably, the restoration of a single residue that is apparently missing in the use-dependent homologs could largely eliminate the use dependence of heat sensitivity of TRPV3. The location of the region suggests a mechanism of temperature-dependent gating of thermal TRP channels involving an intracellular region assembled around the TRP domain. PMID:28154143
Topological Nodal Cooper Pairing in Doped Weyl Metals
NASA Astrophysics Data System (ADS)
Li, Yi; Haldane, F. D. M.
2018-02-01
We generalize the concept of Berry connection of the single-electron band structure to that of a two-particle Cooper pairing state between two Fermi surfaces with opposite Chern numbers. Because of underlying Fermi surface topology, the pairing Berry phase acquires nontrivial monopole structure. Consequently, pairing gap functions have topologically protected nodal structure as vortices in the momentum space with the total vorticity solely determined by the pair monopole charge qp. The nodes of gap function behave as the Weyl-Majorana points of the Bogoliubov-de Gennes pairing Hamiltonian. Their relation with the connection patterns of the surface modes from the Weyl band structure and the Majorana surface modes inside the pairing gap is also discussed. Under the approximation of spherical Fermi surfaces, the pairing symmetry are represented by monopole harmonic functions. The lowest possible pairing channel carries angular momentum number j =|qp|, and the corresponding gap functions are holomorphic or antiholomorphic functions on Fermi surfaces. After projected on the Fermi surfaces with nontrivial topology, all the partial-wave channels of pairing interactions acquire the monopole charge qp independent of concrete pairing mechanism.
NASA Astrophysics Data System (ADS)
Liang, Chunshuang; Jiang, Shimei
2017-08-01
A Schiff-base, (2,4-di-tert-butyl-6-((2-hydroxyphenyl-imino)-methyl)phenol) (L), has been improved to function as a simultaneous multi-ion probe in different optical channel. The probe changes from colorless to orangish upon being deprotonated by F-, while the presence of Al3+ significantly enhances the fluorescence of the probe due to the inhibition of Cdbnd N isomerization, cation-induced inhibition of excited-state intramolecular proton transfer (ESIPT), and chelation enhanced fluorescence (CHEF). Dual-channel "off-on" switching behavior resulted from the sequential input of F- and Al3+, reflecting the balance of independent reactions of Al3+ and F- with L and with one another. This sensing phenomenon realizes transformation between multiple states and beautifully mimics a "Write-Read-Erase-Read" logic circuit with two feedback loops.
Multichannel optical mapping: investigation of depth information
NASA Astrophysics Data System (ADS)
Sase, Ichiro; Eda, Hideo; Seiyama, Akitoshi; Tanabe, Hiroki C.; Takatsuki, Akira; Yanagida, Toshio
2001-06-01
Near infrared (NIR) light has become a powerful tool for non-invasive imaging of human brain activity. Many systems have been developed to capture the changes in regional brain blood flow and hemoglobin oxygenation, which occur in the human cortex in response to neural activity. We have developed a multi-channel reflectance imaging system, which can be used as a `mapping device' and also as a `multi-channel spectrophotometer'. In the present study, we visualized changes in the hemodynamics of the human occipital region in multiple ways. (1) Stimulating left and right primary visual cortex independently by showing sector shaped checkerboards sequentially over the contralateral visual field, resulted in corresponding changes in the hemodynamics observed by `mapping' measurement. (2) Simultaneous measurement of functional-MRI and NIR (changes in total hemoglobin) during visual stimulation showed good spatial and temporal correlation with each other. (3) Placing multiple channels densely over the occipital region demonstrated spatial patterns more precisely, and depth information was also acquired by placing each pair of illumination and detection fibers at various distances. These results indicate that optical method can provide data for 3D analysis of human brain functions.
Infrared dynamics of cold atoms on hot graphene membranes
NASA Astrophysics Data System (ADS)
Sengupta, Sanghita; Kotov, Valeri N.; Clougherty, Dennis P.
2016-06-01
We study the infrared dynamics of low-energy atoms interacting with a sample of suspended graphene at finite temperature. The dynamics exhibits severe infrared divergences order by order in perturbation theory as a result of the singular nature of low-energy flexural phonon emission. Our model can be viewed as a two-channel generalization of the independent boson model with asymmetric atom-phonon coupling. This allows us to take advantage of the exact nonperturbative solution of the independent boson model in the stronger channel while treating the weaker one perturbatively. In the low-energy limit, the exact solution can be viewed as a resummation (exponentiation) of the most divergent diagrams in the perturbative expansion. As a result of this procedure, we obtain the atom's Green function which we use to calculate the atom damping rate, a quantity equal to the quantum sticking rate. A characteristic feature of our results is that the Green's function retains a weak, infrared cutoff dependence that reflects the reduced dimensionality of the problem. As a consequence, we predict a measurable dependence of the sticking rate on graphene sample size. We provide detailed predictions for the sticking rate of atomic hydrogen as a function of temperature and sample size. The resummation yields an enhanced sticking rate relative to the conventional Fermi golden rule result (equivalent to the one-loop atom self-energy), as higher-order processes increase damping at finite temperature.
He, Zhixue; Li, Xiang; Luo, Ming; Hu, Rong; Li, Cai; Qiu, Ying; Fu, Songnian; Yang, Qi; Yu, Shaohua
2016-05-02
We propose and experimentally demonstrate two independent component analysis (ICA) based channel equalizers (CEs) for 6 × 6 MIMO-OFDM transmission over few-mode fiber. Compared with the conventional channel equalizer based on training symbols (TSs-CE), the proposed two ICA-based channel equalizers (ICA-CE-I and ICA-CE-II) can achieve comparable performances, while requiring much less training symbols. Consequently, the overheads for channel equalization can be substantially reduced from 13.7% to 0.4% and 2.6%, respectively. Meanwhile, we also experimentally investigate the convergence speed of the proposed ICA-based CEs.
Dynamics of internal pore opening in KV channels probed by a fluorescent unnatural amino acid
Kalstrup, Tanja; Blunck, Rikard
2013-01-01
Atomic-scale models on the gating mechanism of voltage-gated potassium channels (Kv) are based on linear interpolations between static structures of their initial and final state derived from crystallography and molecular dynamics simulations, and, thus, lack dynamic structural information. The lack of information on dynamics and intermediate states makes it difficult to associate the structural with the dynamic functional data obtained with electrophysiology. Although voltage-clamp fluorometry fills this gap, it is limited to sites extracellularly accessible, when the key region for gating is located at the cytosolic side of the channels. Here, we solved this problem by performing voltage-clamp fluorometry with a fluorescent unnatural amino acid. By using an orthogonal tRNA-synthetase pair, the fluorescent unnatural amino acid was incorporated in the Shaker voltage-gated potassium channel at key regions that were previously inaccessible. Thus, we defined which parts act independently and which parts act cooperatively and found pore opening to occur in two sequential transitions. PMID:23630265
Channel-wing System for Thrust Deflection and Force/Moment Generation
NASA Technical Reports Server (NTRS)
Englar, Robert J. (Inventor); Bushnell, Dennis M. (Inventor)
2006-01-01
An aircraft comprising a Channel Wing having blown c h - ne1 circulation control wings (CCW) for various functions. The blown channel CCW includes a channel that has a rounded or near-round trailing edge. The channel further has a trailing-edge slot that is adjacent to the rounded trailing edge of the channel. The trailing-edge slot has an inlet connected to a source of pressurized air and is capable of tangentially discharging pressurized air over the rounded trailing edge. The aircraft further has a propeller that is located in the channel and ahead of the rounded trailing edge of the channel. The propeller provides a propeller thrust exhaust stream across the channel wing to propel the aircraft through the air and to provide high lift. The pressurized air being discharged over the rounded trailing edge provides a high lift that is obtained independent of an aircraft angle of attack, thus preventing the asymmetry. separated flow, and stall experienced by the CC wing at the high angle of attack it required for high lift generation. The aircraft can further include blown outboard circulation control wings (CCW) that are synergistically connected to the blown channel CCWs. The blown outboard CCWs provide additional high lift, control thrust/drag interchange, and can provide all three aerodynamic moments when differential blowing is applied front-to-rear or left-to-right. Both the blown channel CCW and the outboard CCW also have leading-edge blowing slots to prevent flow separation or to provide aerodynamic moments for control.
Longterm infrared neural stimulation in the chronic implanted cat
NASA Astrophysics Data System (ADS)
Matic, Agnella Izzo; Robinson, Alan M.; Young, Hunter K.; Badofsky, Ben; Rajguru, Suhrud M.; Richter, Claus-Peter
2013-03-01
Among neural prostheses cochlear implants (CIs) are considered the most successful devices. They restore some hearing to 210,000 severe-to-profound hearing impaired people. Despite the devices' success, the performance of the implanted individuals in noisy environments is poor and music perception is rudimentary. It has been argued that increasing the number of independent channels for stimulation can improve the performance of a CI user in challenging hearing environments. An optical method, stimulating neurons with infrared radiation, has been suggested as a novel approach to increase the number of independent channels. Infrared neural stimulation (INS) works through the deposition of heat into the tissue. Thermal damage is therefore a potential risk, particularly for longterm exposure. To verify the efficacy and safety of INS, cats were implanted for about 4 weeks and were continuously stimulated daily for 6-8 hours. Cochlear function did not change during the stimulation, and histology did not reveal signs of damage. Tissue growth following the implantation was largely localized at the cochleostomy.
Evaluation of Vertically Resolved Water Winds from AIRS using Hurricane Katrina
NASA Technical Reports Server (NTRS)
Aumann, Hartmut H.; Dobkowski, Edwin C.; Gregorich, David T.
2005-01-01
The knowledge of wind velocity as a function of altitude is key to weather forecast improvements. The ability of hyperspectral sounders in principle to measure vertically resolved water winds, which has long been recognized, has been tested with Atmospheric Infrared Sounder (AIRS) data. AIRS retrievals of total column water above 300 mb have been correlated with the radiosonde upper-tropospheric wind velocity and moisture data. The excellent correlation is illustrated with results obtained from hurricane Katrina and from the western United States. AIRS is a hyperspectral infrared sounder in low Earth orbit. It was launched in May 2002. We illustrate the use of AIRS data for the measurement of upper tropospheric water by using the 2387/cm CO2 R-branch channel and the 1551/cm water vapor channel. The 2387/cm channel measures the temperature at 300 mb totally independent of water vapor. The weighting function of the 1551/cm channel peaks at 300 mb only under moist conditions; the peak shifts downward (higher temperature) for less water and upward (lower temperature) for more water. The difference between the brightness temperatures bt2387 and bt1551 cancels the local several degree weather related variability of the temperature and measures the component due to the water vapor at 300 mb.
Beltless translocation domain of botulinum neurotoxin A embodies a minimum ion-conductive channel.
Fischer, Audrey; Sambashivan, Shilpa; Brunger, Axel T; Montal, Mauricio
2012-01-13
Botulinum neurotoxin, the causative agent of the paralytic disease botulism, is an endopeptidase composed of a catalytic domain (or light chain (LC)) and a heavy chain (HC) encompassing the translocation domain (TD) and receptor-binding domain. Upon receptor-mediated endocytosis, the LC and TD are proposed to undergo conformational changes in the acidic endocytic environment resulting in the formation of an LC protein-conducting TD channel. The mechanism of channel formation and the conformational changes in the toxin upon acidification are important but less well understood aspects of botulinum neurotoxin intoxication. Here, we have identified a minimum channel-forming truncation of the TD, the "beltless" TD, that forms transmembrane channels with ion conduction properties similar to those of the full-length TD. At variance with the holotoxin and the HC, channel formation for both the TD and the beltless TD occurs independent of a transmembrane pH gradient. Furthermore, acidification in solution induces moderate secondary structure changes. The subtle nature of the conformational changes evoked by acidification on the TD suggests that, in the context of the holotoxin, larger structural rearrangements and LC unfolding occur preceding or concurrent to channel formation. This notion is consistent with the hypothesis that although each domain of the holotoxin functions individually, each domain serves as a chaperone for the others.
CO-independent modification of K+ channels by tricarbonyldichlororuthenium(II) dimer (CORM-2).
Gessner, Guido; Sahoo, Nirakar; Swain, Sandip M; Hirth, Gianna; Schönherr, Roland; Mede, Ralf; Westerhausen, Matthias; Brewitz, Hans Henning; Heimer, Pascal; Imhof, Diana; Hoshi, Toshinori; Heinemann, Stefan H
2017-11-15
Although toxic when inhaled in high concentrations, the gas carbon monoxide (CO) is endogenously produced in mammals, and various beneficial effects are reported. For potential medicinal applications and studying the molecular processes underlying the pharmacological action of CO, so-called CO-releasing molecules (CORMs), such as tricabonyldichlororuthenium(II) dimer (CORM-2), have been developed and widely used. Yet, it is not readily discriminated whether an observed effect of a CORM is caused by the released CO gas, the CORM itself, or any of its intermediate or final breakdown products. Focusing on Ca 2+ - and voltage-dependent K + channels (K Ca 1.1) and voltage-gated K + channels (Kv1.5, Kv11.1) relevant for cardiac safety pharmacology, we demonstrate that, in most cases, the functional impacts of CORM-2 on these channels are not mediated by CO. Instead, when dissolved in aqueous solutions, CORM-2 has the propensity of forming Ru(CO) 2 adducts, preferentially to histidine residues, as demonstrated with synthetic peptides using mass-spectrometry analysis. For K Ca 1.1 channels we show that H365 and H394 in the cytosolic gating ring structure are affected by CORM-2. For Kv11.1 channels (hERG1) the extracellularly accessible histidines H578 and H587 are CORM-2 targets. The strong CO-independent action of CORM-2 on Kv11.1 and Kv1.5 channels can be completely abolished when CORM-2 is applied in the presence of an excess of free histidine or human serum albumin; cysteine and methionine are further potential targets. Off-site effects similar to those reported here for CORM-2 are found for CORM-3, another ruthenium-based CORM, but are diminished when using iron-based CORM-S1 and absent for manganese-based CORM-EDE1. Copyright © 2017 Elsevier B.V. All rights reserved.
Calculating tracer currents through narrow ion channels: Beyond the independent particle model.
Coalson, Rob D; Jasnow, David
2018-06-01
Discrete state models of single-file ion permeation through a narrow ion channel pore are employed to analyze the ratio of forward to backward tracer current. Conditions under which the well-known Ussing formula for this ratio hold are explored in systems where ions do not move independently through the channel. Building detailed balance into the rate constants for the model in such a way that under equilibrium conditions (equal rate of forward vs. backward permeation events) the Nernst Equation is satisfied, it is found that in a model where only one ion can occupy the channel at a time, the Ussing formula is always obeyed for any number of binding sites, reservoir concentrations of the ions and electric potential difference across the membrane which the ion channel spans, independent of the internal details of the permeation pathway. However, numerical analysis demonstrates that when multiple ions can occupy the channel at once, the nonequilibrium forward/backward tracer flux ratio deviates from the prediction of the Ussing model. Assuming an appropriate effective potential experienced by ions in the channel, we provide explicit formulae for the rate constants in these models. © 2018 IOP Publishing Ltd.
Single-channel mixed signal blind source separation algorithm based on multiple ICA processing
NASA Astrophysics Data System (ADS)
Cheng, Xiefeng; Li, Ji
2017-01-01
Take separating the fetal heart sound signal from the mixed signal that get from the electronic stethoscope as the research background, the paper puts forward a single-channel mixed signal blind source separation algorithm based on multiple ICA processing. Firstly, according to the empirical mode decomposition (EMD), the single-channel mixed signal get multiple orthogonal signal components which are processed by ICA. The multiple independent signal components are called independent sub component of the mixed signal. Then by combining with the multiple independent sub component into single-channel mixed signal, the single-channel signal is expanded to multipath signals, which turns the under-determined blind source separation problem into a well-posed blind source separation problem. Further, the estimate signal of source signal is get by doing the ICA processing. Finally, if the separation effect is not very ideal, combined with the last time's separation effect to the single-channel mixed signal, and keep doing the ICA processing for more times until the desired estimated signal of source signal is get. The simulation results show that the algorithm has good separation effect for the single-channel mixed physiological signals.
NASA Astrophysics Data System (ADS)
Krishnamoorthy, C.; Balaji, C.
2016-05-01
In the present study, the effect of horizontal and vertical localization scales on the assimilation of direct SAPHIR radiances is studied. An Artificial Neural Network (ANN) has been used as a surrogate for the forward radiative calculations. The training input dataset for ANN consists of vertical layers of atmospheric pressure, temperature, relative humidity and other hydrometeor profiles with 6 channel Brightness Temperatures (BTs) as output. The best neural network architecture has been arrived at, by a neuron independence study. Since vertical localization of radiance data requires weighting functions, a ANN has been trained for this purpose. The radiances were ingested into the NWP using the Ensemble Kalman Filter (EnKF) technique. The horizontal localization has been taken care of, by using a Gaussian localization function centered around the observed coordinates. Similarly, the vertical localization is accomplished by assuming a function which depends on the weighting function of the channel to be assimilated. The effect of both horizontal and vertical localizations has been studied in terms of ensemble spread in the precipitation. Aditionally, improvements in 24 hr forecast from assimilation are also reported.
NASA Astrophysics Data System (ADS)
Li, Xiang; Luo, Ming; Qiu, Ying; Alphones, Arokiaswami; Zhong, Wen-De; Yu, Changyuan; Yang, Qi
2018-02-01
In this paper, channel equalization techniques for coherent optical fiber transmission systems based on independent component analysis (ICA) are reviewed. The principle of ICA for blind source separation is introduced. The ICA based channel equalization after both single-mode fiber and few-mode fiber transmission for single-carrier and orthogonal frequency division multiplexing (OFDM) modulation formats are investigated, respectively. The performance comparisons with conventional channel equalization techniques are discussed.
Temperature independent quantum well FET with delta channel doping
NASA Technical Reports Server (NTRS)
Young, P. G.; Mena, R. A.; Alterovitz, S. A.; Schacham, S. E.; Haugland, E. J.
1992-01-01
A temperature independent device is presented which uses a quantum well structure and delta doping within the channel. The device requires a high delta doping concentration within the channel to achieve a constant Hall mobility and carrier concentration across the temperature range 300-1.4 K. Transistors were RF tested using on-wafer probing and a constant G sub max and F sub max were measured over the temperature range 300-70 K.
RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose.
Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P; Campanucci, Verónica A
2018-01-01
Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes.
RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose
Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P.
2018-01-01
Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes. PMID:29474476
NASA Astrophysics Data System (ADS)
Yoshioka, Hironori; Hirata, Kazuto
2018-04-01
The characteristics of SiC MOSFETs (drain current vs. gate voltage) were measured at 0.14-350 K and analyzed considering variable-range hopping conduction through interface states. The total interface state density was determined to be 5.4×1012 cm-2 from the additional shift in the threshold gate voltage with a temperature change. The wave-function size of interface states was determined from the temperature dependence of the measured hopping current and was comparable to the theoretical value. The channel mobility was approximately 100 cm2V-1s-1 and was almost independent of temperature.
Atrial-selective K+ channel blockers: potential antiarrhythmic drugs in atrial fibrillation?
Ravens, Ursula
2017-11-01
In the wake of demographic change in Western countries, atrial fibrillation has reached an epidemiological scale, yet current strategies for drug treatment of the arrhythmia lack sufficient efficacy and safety. In search of novel medications, atrial-selective drugs that specifically target atrial over other cardiac functions have been developed. Here, I will address drugs acting on potassium (K + ) channels that are either predominantly expressed in atria or possess electrophysiological properties distinct in atria from ventricles. These channels include the ultra-rapidly activating, delayed outward-rectifying Kv1.5 channel conducting I Kur , the acetylcholine-activated inward-rectifying Kir3.1/Kir3.4 channel conducting I K,ACh , the Ca 2+ -activated K + channels of small conductance (SK) conducting I SK , and the two-pore domain K + (K2P) channels (tandem of P domains, weak inward-rectifying K + channels (TWIK-1), TWIK-related acid-sensitive K + channels (TASK-1 and TASK-3)) that are responsible for voltage-independent background currents I TWIK-1 , I TASK-1 , and I TASK-3 . Direct drug effects on these channels are described and their putative value in treatment of atrial fibrillation is discussed. Although many potential drug targets have emerged in the process of unravelling details of the pathophysiological mechanisms responsible for atrial fibrillation, we do not know whether novel antiarrhythmic drugs will be more successful when modulating many targets or a single specific one. The answer to this riddle can only be solved in a clinical context.
Measurement of Single Channel Currents from Cardiac Gap Junctions
NASA Astrophysics Data System (ADS)
Veenstra, Richard D.; Dehaan, Robert L.
1986-08-01
Cardiac gap junctions consist of arrays of integral membrane proteins joined across the intercellular cleft at points of cell-to-cell contact. These junctional proteins are thought to form pores through which ions can diffuse from cytosol to cytosol. By monitoring whole-cell currents in pairs of embryonic heart cells with two independent patch-clamp circuits, the properties of single gap junction channels have been investigated. These channels had a conductance of about 165 picosiemens and underwent spontaneous openings and closings that were independent of voltage. Channel activity and macroscopic junctional conductance were both decreased by the uncoupling agent 1-octanol.
NASA Astrophysics Data System (ADS)
Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Aljedaani, Abdulrahman B.; Hussain, Muhammad M.
2015-10-01
Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal-oxide-semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.
Control of soft machines using actuators operated by a Braille display.
Mosadegh, Bobak; Mazzeo, Aaron D; Shepherd, Robert F; Morin, Stephen A; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M
2014-01-07
One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds-often built for a single purpose-are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled Braille display and a micropneumatic device. The Braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface.
Control of Soft Machines using Actuators Operated by a Braille Display
Mosadegh, Bobak; Mazzeo, Aaron D.; Shepherd, Robert F.; Morin, Stephen A.; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M.
2013-01-01
One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds—often built for a single purpose—are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled braille display and a micropneumatic device. The braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface. PMID:24196070
NASA Astrophysics Data System (ADS)
Murshid, Syed H.; Chakravarty, Abhijit
2011-06-01
Spatial domain multiplexing (SDM) utilizes co-propagation of exactly the same wavelength in optical fibers to increase the bandwidth by integer multiples. Input signals from multiple independent single mode pigtail laser sources are launched at different input angles into a single multimode carrier fiber. The SDM channels follow helical paths and traverse through the carrier fiber without interfering with each other. The optical energy from the different sources is spatially distributed and takes the form of concentric circular donut shaped rings, where each ring corresponds to an independent laser source. At the output end of the fiber these donut shaped independent channels can be separated either with the help of bulk optics or integrated concentric optical detectors. This presents the experimental setup and results for a four channel SDM system. The attenuation and bit error rate for individual channels of such a system is also presented.
Easy Come, Easy Go: Capillary Forces Enable Rapid Refilling of Embolized Primary Xylem Vessels.
Rolland, Vivien; Bergstrom, Dana M; Lenné, Thomas; Bryant, Gary; Chen, Hua; Wolfe, Joe; Holbrook, N Michele; Stanton, Daniel E; Ball, Marilyn C
2015-08-01
Protoxylem plays an important role in the hydraulic function of vascular systems of both herbaceous and woody plants, but relatively little is known about the processes underlying the maintenance of protoxylem function in long-lived tissues. In this study, embolism repair was investigated in relation to xylem structure in two cushion plant species, Azorella macquariensis and Colobanthus muscoides, in which vascular water transport depends on protoxylem. Their protoxylem vessels consisted of a primary wall with helical thickenings that effectively formed a pit channel, with the primary wall being the pit channel membrane. Stem protoxylem was organized such that the pit channel membranes connected vessels with paratracheal parenchyma or other protoxylem vessels and were not exposed directly to air spaces. Embolism was experimentally induced in excised vascular tissue and detached shoots by exposing them briefly to air. When water was resupplied, embolized vessels refilled within tens of seconds (excised tissue) to a few minutes (detached shoots) with water sourced from either adjacent parenchyma or water-filled vessels. Refilling occurred in two phases: (1) water refilled xylem pit channels, simplifying bubble shape to a rod with two menisci; and (2) the bubble contracted as the resorption front advanced, dissolving air along the way. Physical properties of the protoxylem vessels (namely pit channel membrane porosity, hydrophilic walls, vessel dimensions, and helical thickenings) promoted rapid refilling of embolized conduits independent of root pressure. These results have implications for the maintenance of vascular function in both herbaceous and woody species, because protoxylem plays a major role in the hydraulic systems of leaves, elongating stems, and roots. © 2015 American Society of Plant Biologists. All Rights Reserved.
Jerng, Henry H; Pfaffinger, Paul J
2012-01-01
Dipeptidyl peptidase-like protein 6 (DPP6) proteins co-assemble with Kv4 channel α-subunits and Kv channel-interacting proteins (KChIPs) to form channel protein complexes underlying neuronal somatodendritic A-type potassium current (I(SA)). DPP6 proteins are expressed as N-terminal variants (DPP6a, DPP6K, DPP6S, DPP6L) that result from alternative mRNA initiation and exhibit overlapping expression patterns. Here, we study the role DPP6 variants play in shaping the functional properties of I(SA) found in cerebellar granule (CG) cells using quantitative RT-PCR and voltage-clamp recordings of whole-cell currents from reconstituted channel complexes and native I(SA) channels. Differential expression of DPP6 variants was detected in rat CG cells, with DPP6K (41 ± 3%)>DPP6a (33 ± 3%)>DPP6S (18 ± 2%)>DPP6L (8 ± 3%). To better understand how DPP6 variants shape native neuronal I(SA), we focused on studying interactions between the two dominant variants, DPP6K and DPP6a. Although previous studies did not identify unique functional effects of DPP6K, we find that the unique N-terminus of DPP6K modulates the effects of KChIP proteins, slowing recovery and producing a negative shift in the steady-state inactivation curve. By contrast, DPP6a uses its distinct N-terminus to directly confer rapid N-type inactivation independently of KChIP3a. When DPP6a and DPP6K are co-expressed in ratios similar to those found in CG cells, their distinct effects compete in modulating channel function. The more rapid inactivation from DPP6a dominates during strong depolarization; however, DPP6K produces a negative shift in the steady-state inactivation curve and introduces a slow phase of recovery from inactivation. A direct comparison to the native CG cell I(SA) shows that these mixed effects are present in the native channels. Our results support the hypothesis that the precise expression and co-assembly of different auxiliary subunit variants are important factors in shaping the I(SA) functional properties in specific neuronal populations.
Rifai Chai; Naik, Ganesh R; Sai Ho Ling; Tran, Yvonne; Craig, Ashley; Nguyen, Hung T
2017-07-01
This paper presents a classification of driver fatigue with electroencephalography (EEG) channels selection analysis. The system employs independent component analysis (ICA) with scalp map back projection to select the dominant of EEG channels. After channel selection, the features of the selected EEG channels were extracted based on power spectral density (PSD), and then classified using a Bayesian neural network. The results of the ICA decomposition with the back-projected scalp map and a threshold showed that the EEG channels can be reduced from 32 channels into 16 dominants channels involved in fatigue assessment as chosen channels, which included AF3, F3, FC1, FC5, T7, CP5, P3, O1, P4, P8, CP6, T8, FC2, F8, AF4, FP2. The result of fatigue vs. alert classification of the selected 16 channels yielded a sensitivity of 76.8%, specificity of 74.3% and an accuracy of 75.5%. Also, the classification results of the selected 16 channels are comparable to those using the original 32 channels. So, the selected 16 channels is preferable for ergonomics improvement of EEG-based fatigue classification system.
47 CFR 15.123 - Labeling of digital cable ready products.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Allows navigation of channels based on channel information (virtual channel map and source names... independent laboratory with personnel knowledgeable with respect to the standards referenced in paragraph (b...
Schmidt, Johan A; Johnson, Matthew S; Schinke, Reinhard
2013-10-29
We present a first principles study of the carbon dioxide (CO2) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + singlet channel threshold at ~167 nm. The calculations reproduce experimental absorption cross-sections at a resolution of ~0.5 nm without scaling the intensity. The observed structure in the 150- to 210-nm range is caused by excitation of bending motion supported by the deep wells at bent geometries in the and potential energy surfaces. Predissociation below the singlet channel threshold occurs via spin-orbit coupling to nearby repulsive triplet states. Carbon monoxide vibrational and rotational state distributions in the singlet channel as well as the triplet channel for excitation at 157 nm satisfactorily reproduce experimental data. The cross-sections of individual CO2 isotopologues ((12)C(16)O2, (12)C(17)O(16)O, (12)C(18)O(16)O, (13)C(16)O2, and (13)C(18)O(16)O) are calculated, demonstrating that strong isotopic fractionation will occur as a function of wavelength. The calculations provide accurate, detailed insight into CO2 photoabsorption and dissociation dynamics, and greatly extend knowledge of the temperature dependence of the cross-section to cover the range from 0 to 400 K that is useful for calculations of propagation of stellar light in planetary atmospheres. The model is also relevant for the interpretation of laboratory experiments on mass-independent isotopic fractionation. Finally, the model shows that the mass-independent fractionation observed in a series of Hg lamp experiments is not a result of hyperfine interactions making predissociation of (17)O containing CO2 more efficient.
Schmidt, Johan A.; Johnson, Matthew S.; Schinke, Reinhard
2013-01-01
We present a first principles study of the carbon dioxide (CO2) photodissociation process in the 150- to 210-nm wavelength range, with emphasis on photolysis below the carbon monoxide + singlet channel threshold at ∼167 nm. The calculations reproduce experimental absorption cross-sections at a resolution of ∼0.5 nm without scaling the intensity. The observed structure in the 150- to 210-nm range is caused by excitation of bending motion supported by the deep wells at bent geometries in the and potential energy surfaces. Predissociation below the singlet channel threshold occurs via spin-orbit coupling to nearby repulsive triplet states. Carbon monoxide vibrational and rotational state distributions in the singlet channel as well as the triplet channel for excitation at 157 nm satisfactorily reproduce experimental data. The cross-sections of individual CO2 isotopologues (12C16O2, 12C17O16O, 12C18O16O, 13C16O2, and 13C18O16O) are calculated, demonstrating that strong isotopic fractionation will occur as a function of wavelength. The calculations provide accurate, detailed insight into CO2 photoabsorption and dissociation dynamics, and greatly extend knowledge of the temperature dependence of the cross-section to cover the range from 0 to 400 K that is useful for calculations of propagation of stellar light in planetary atmospheres. The model is also relevant for the interpretation of laboratory experiments on mass-independent isotopic fractionation. Finally, the model shows that the mass-independent fractionation observed in a series of Hg lamp experiments is not a result of hyperfine interactions making predissociation of 17O containing CO2 more efficient. PMID:23776249
Riluzole activates TRPC5 channels independently of PLC activity
Richter, Julia M; Schaefer, Michael; Hill, Kerstin
2014-01-01
BACKGROUND AND PURPOSE The transient receptor potential channel C5 (TRPC5) is a Ca2+-permeable cation channel, which is predominantly expressed in the brain. TRPC5 is activated in a PLC-dependent manner by, as yet, unidentified endogenous messengers. Recently, modulators of TRPC5, like Ca2+, pH and phospholipids, have been identified. However, the role of TRPC5 in vivo is only poorly understood. Novel specific modulators of TRPC5 might help to elucidate its function. EXPERIMENTAL APPROACH Novel modulators of TRPC5 were identified in a compound screening of approved drugs and natural compounds. The potency and selectivity of TRPC5-activating compounds were determined by fluorometric calcium imaging. The biophysical properties of channel activation by these compounds were analysed using electrophysiological measurements. KEY RESULTS Riluzole was identified as a novel activator of TRPC5 (EC50 9.2 ± 0.5 μM) and its mechanism of action was shown to be independent of G protein signalling and PLC activity. Riluzole-induced TRPC5 currents were potentiated by La3+ and, utilizing TRPC5 mutants that lack La3+ binding sites, it was confirmed that riluzole and La3+ activate TRPC5 by different mechanisms. Recordings of excised inside-out patches revealed a relatively direct effect of riluzole on TRPC5. CONCLUSIONS AND IMPLICATIONS Riluzole can activate TRPC5 heterologously expressed in HEK293 cells as well as those endogenously expressed in the U-87 glioblastoma cell line. Riluzole does not activate any other member of the TRPC family and could, therefore, despite its action on other ion channels, be a useful pharmacological tool for identifying TRPC5-specific currents in immortalized cell lines or in acutely isolated primary cells. PMID:24117252
Klaiber, Michael; Dankworth, Beatrice; Kruse, Martin; Hartmann, Michael; Nikolaev, Viacheslav O.; Yang, Ruey-Bing; Völker, Katharina; Gaßner, Birgit; Oberwinkler, Heike; Feil, Robert; Freichel, Marc; Groschner, Klaus; Skryabin, Boris V.; Frantz, Stefan; Birnbaumer, Lutz; Pongs, Olaf; Kuhn, Michaela
2011-01-01
Cardiac atrial natriuretic peptide (ANP) regulates arterial blood pressure, moderates cardiomyocyte growth, and stimulates angiogenesis and metabolism. ANP binds to the transmembrane guanylyl cyclase (GC) receptor, GC-A, to exert its diverse functions. This process involves a cGMP-dependent signaling pathway preventing pathological [Ca2+]i increases in myocytes. In chronic cardiac hypertrophy, however, ANP levels are markedly increased and GC-A/cGMP responses to ANP are blunted due to receptor desensitization. Here we show that, in this situation, ANP binding to GC-A stimulates a unique cGMP-independent signaling pathway in cardiac myocytes, resulting in pathologically elevated intracellular Ca2+ levels. This pathway involves the activation of Ca2+‐permeable transient receptor potential canonical 3/6 (TRPC3/C6) cation channels by GC-A, which forms a stable complex with TRPC3/C6 channels. Our results indicate that the resulting cation influx activates voltage-dependent L-type Ca2+ channels and ultimately increases myocyte Ca2+i levels. These observations reveal a dual role of the ANP/GC-A–signaling pathway in the regulation of cardiac myocyte Ca2+i homeostasis. Under physiological conditions, activation of a cGMP-dependent pathway moderates the Ca2+i-enhancing action of hypertrophic factors such as angiotensin II. By contrast, a cGMP-independent pathway predominates under pathophysiological conditions when GC-A is desensitized by high ANP levels. The concomitant rise in [Ca2+]i might increase the propensity to cardiac hypertrophy and arrhythmias. PMID:22027011
1996-01-01
Dihydropyridine (DHP) receptors of the transverse tubule membrane play two roles in excitation-contraction coupling in skeletal muscle: (a) they function as the voltage sensor which undergoes fast transition to control release of calcium from sarcoplasmic reticulum, and (b) they provide the conducting unit of a slowly activating L-type calcium channel. To understand this dual function of the DHP receptor, we studied the effect of depolarizing conditioning pulse on the activation kinetics of the skeletal muscle DHP-sensitive calcium channels reconstituted into lipid bilayer membranes. Activation of the incorporated calcium channel was imposed by depolarizing test pulses from a holding potential of -80 mV. The gating kinetics of the channel was studied with ensemble averages of repeated episodes. Based on a first latency analysis, two distinct classes of channel openings occurred after depolarization: most had delayed latencies, distributed with a mode of 70 ms (slow gating); a small number of openings had short first latencies, < 12 ms (fast gating). A depolarizing conditioning pulse to +20 mV placed 200 ms before the test pulse (-10 mV), led to a significant increase in the activation rate of the ensemble averaged-current; the time constant of activation went from tau m = 110 ms (reference) to tau m = 45 ms after conditioning. This enhanced activation by the conditioning pulse was due to the increase in frequency of fast open events, which was a steep function of the intermediate voltage and the interval between the conditioning pulse and the test pulse. Additional analysis demonstrated that fast gating is the property of the same individual channels that normally gate slowly and that the channels adopt this property after a sojourn in the open state. The rapid secondary activation seen after depolarizing prepulses is not compatible with a linear activation model for the calcium channel, but is highly consistent with a cyclical model. A six- state cyclical model is proposed for the DHP-sensitive Ca channel, which pictures the normal pathway of activation of the calcium channel as two voltage-dependent steps in sequence, plus a voltage-independent step which is rate limiting. The model reproduced well the fast and slow gating models of the calcium channel, and the effects of conditioning pulses. It is possible that the voltage-sensitive gating transitions of the DHP receptor, which occur early in the calcium channel activation sequence, could underlie the role of the voltage sensor and yield the rapid excitation-contraction coupling in skeletal muscle, through either electrostatic or allosteric linkage to the ryanodine receptors/calcium release channels. PMID:8882865
Reilly-O'Donnell, Benedict; Robertson, Gavin B; Karumbi, Angela; McIntyre, Connor; Bal, Wojciech; Nishi, Miyuki; Takeshima, Hiroshi; Stewart, Alan J; Pitt, Samantha J
2017-08-11
Aberrant Zn 2+ homeostasis is associated with dysregulated intracellular Ca 2+ release, resulting in chronic heart failure. In the failing heart a small population of cardiac ryanodine receptors (RyR2) displays sub-conductance-state gating leading to Ca 2+ leakage from sarcoplasmic reticulum (SR) stores, which impairs cardiac contractility. Previous evidence suggests contribution of RyR2-independent Ca 2+ leakage through an uncharacterized mechanism. We sought to examine the role of Zn 2+ in shaping intracellular Ca 2+ release in cardiac muscle. Cardiac SR vesicles prepared from sheep or mouse ventricular tissue were incorporated into phospholipid bilayers under voltage-clamp conditions, and the direct action of Zn 2+ on RyR2 channel function was examined. Under diastolic conditions, the addition of pathophysiological concentrations of Zn 2+ (≥2 nm) caused dysregulated RyR2-channel openings. Our data also revealed that RyR2 channels are not the only SR Ca 2+ -permeable channels regulated by Zn 2+ Elevating the cytosolic Zn 2+ concentration to 1 nm increased the activity of the transmembrane protein mitsugumin 23 (MG23). The current amplitude of the MG23 full-open state was consistent with that previously reported for RyR2 sub-conductance gating, suggesting that in heart failure in which Zn 2+ levels are elevated, RyR2 channels do not gate in a sub-conductance state, but rather MG23-gating becomes more apparent. We also show that in H9C2 cells exposed to ischemic conditions, intracellular Zn 2+ levels are elevated, coinciding with increased MG23 expression. In conclusion, these data suggest that dysregulated Zn 2+ homeostasis alters the function of both RyR2 and MG23 and that both ion channels play a key role in diastolic SR Ca 2+ leakage. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Ilkan, Zeki; Wright, Joy R; Goodall, Alison H; Gibbins, Jonathan M; Jones, Chris I; Mahaut-Smith, Martyn P
2017-06-02
The role of mechanosensitive (MS) Ca 2+ -permeable ion channels in platelets is unclear, despite the importance of shear stress in platelet function and life-threatening thrombus formation. We therefore sought to investigate the expression and functional relevance of MS channels in human platelets. The effect of shear stress on Ca 2+ entry in human platelets and Meg-01 megakaryocytic cells loaded with Fluo-3 was examined by confocal microscopy. Cells were attached to glass coverslips within flow chambers that allowed applications of physiological and pathological shear stress. Arterial shear (1002.6 s -1 ) induced a sustained increase in [Ca 2+ ] i in Meg-01 cells and enhanced the frequency of repetitive Ca 2+ transients by 80% in platelets. These Ca 2+ increases were abrogated by the MS channel inhibitor Grammostola spatulata mechanotoxin 4 (GsMTx-4) or by chelation of extracellular Ca 2+ Thrombus formation was studied on collagen-coated surfaces using DiOC 6 -stained platelets. In addition, [Ca 2+ ] i and functional responses of washed platelet suspensions were studied with Fura-2 and light transmission aggregometry, respectively. Thrombus size was reduced 50% by GsMTx-4, independently of P2X1 receptors. In contrast, GsMTx-4 had no effect on collagen-induced aggregation or on Ca 2+ influx via TRPC6 or Orai1 channels and caused only a minor inhibition of P2X1-dependent Ca 2+ entry. The Piezo1 agonist, Yoda1, potentiated shear-dependent platelet Ca 2+ transients by 170%. Piezo1 mRNA transcripts and protein were detected with quantitative RT-PCR and Western blotting, respectively, in both platelets and Meg-01 cells. We conclude that platelets and Meg-01 cells express the MS cation channel Piezo1, which may contribute to Ca 2+ entry and thrombus formation under arterial shear. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Nicotine depresses the functions of multiple cardiac potassium channels.
Wang, H; Shi, H; Wang, Z
1999-01-01
Nicotine is the main constituent of tobacco smoke responsible for the elevated risk of the cardiovascular disease and sudden coronary death associated with smoking, presumably by provoking cardiac arrhythmias. The cellular mechanisms may be related to the ability of nicotine to prolong action potentials and to depolarize membrane potential. However, the underlying ionic mechanisms remained unknown. We showed here that nicotine blocked multiple types of K+ currents, including the native currents in canine ventricular myocytes and the cloned channels expressed in Xenopus oocytes: A-type K+ currents (I(to)/Kv4.3), delayed rectifier K+ currents (I(Kr)/HERG) and inward rectifier K+ currents (I(K1)/Kir2.1). Most noticeably, nicotine at a concentration as low as of 10 nM significantly suppressed I(to) and Kv4.3 by approximately 20%. The effects of nicotine were independent of nicotinic receptor simulation or catecholamine release. Our results indicate that nicotine is a non-specific blocker of K+ channels and the inhibitory effects are the consequence of direct interactions between nicotine molecules and the channel proteins. Our study provided for the first time the evidence for the direct inhibition of cardiac K+ channels by nicotine and established a novel aspect of nicotine pharmacology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmandt, Nicolaus; Velisetty, Phanindra; Chalamalasetti, Sreevatsa V.
Recent high resolution structures of several pentameric ligand–gated ion channels have provided unprecedented details of their molecular architecture. However, the conformational dynamics and structural rearrangements that underlie gating and allosteric modulation remain poorly understood. We used a combination of electrophysiology, double electron–electron resonance (DEER) spectroscopy, and x-ray crystallography to investigate activation mechanisms in a novel functional chimera with the extracellular domain (ECD) of amine-gated Erwinia chrysanthemi ligand–gated ion channel, which is activated by primary amines, and the transmembrane domain of Gloeobacter violaceus ligand–gated ion channel, which is activated by protons. We found that the chimera was independently gated by primarymore » amines and by protons. The crystal structure of the chimera in its resting state, at pH 7.0 and in the absence of primary amines, revealed a closed-pore conformation and an ECD that is twisted with respect to the transmembrane region. Amine- and pH-induced conformational changes measured by DEER spectroscopy showed that the chimera exhibits a dual mode of gating that preserves the distinct conformational changes of the parent channels. Collectively, our findings shed light on both conserved and divergent features of gating mechanisms in this class of channels, and will facilitate the design of better allosteric modulators.« less
A chimeric prokaryotic pentameric ligand–gated channel reveals distinct pathways of activation
Schmandt, Nicolaus; Velisetty, Phanindra; Chalamalasetti, Sreevatsa V.; ...
2015-09-28
Recent high resolution structures of several pentameric ligand–gated ion channels have provided unprecedented details of their molecular architecture. However, the conformational dynamics and structural rearrangements that underlie gating and allosteric modulation remain poorly understood. We used a combination of electrophysiology, double electron–electron resonance (DEER) spectroscopy, and x-ray crystallography to investigate activation mechanisms in a novel functional chimera with the extracellular domain (ECD) of amine-gated Erwinia chrysanthemi ligand–gated ion channel, which is activated by primary amines, and the transmembrane domain of Gloeobacter violaceus ligand–gated ion channel, which is activated by protons. We found that the chimera was independently gated by primarymore » amines and by protons. The crystal structure of the chimera in its resting state, at pH 7.0 and in the absence of primary amines, revealed a closed-pore conformation and an ECD that is twisted with respect to the transmembrane region. Amine- and pH-induced conformational changes measured by DEER spectroscopy showed that the chimera exhibits a dual mode of gating that preserves the distinct conformational changes of the parent channels. Collectively, our findings shed light on both conserved and divergent features of gating mechanisms in this class of channels, and will facilitate the design of better allosteric modulators.« less
A chimeric prokaryotic pentameric ligand–gated channel reveals distinct pathways of activation
Schmandt, Nicolaus; Velisetty, Phanindra; Chalamalasetti, Sreevatsa V.; Stein, Richard A.; Bonner, Ross; Talley, Lauren; Parker, Mark D.; Mchaourab, Hassane S.; Yee, Vivien C.; Lodowski, David T.
2015-01-01
Recent high resolution structures of several pentameric ligand–gated ion channels have provided unprecedented details of their molecular architecture. However, the conformational dynamics and structural rearrangements that underlie gating and allosteric modulation remain poorly understood. We used a combination of electrophysiology, double electron–electron resonance (DEER) spectroscopy, and x-ray crystallography to investigate activation mechanisms in a novel functional chimera with the extracellular domain (ECD) of amine-gated Erwinia chrysanthemi ligand–gated ion channel, which is activated by primary amines, and the transmembrane domain of Gloeobacter violaceus ligand–gated ion channel, which is activated by protons. We found that the chimera was independently gated by primary amines and by protons. The crystal structure of the chimera in its resting state, at pH 7.0 and in the absence of primary amines, revealed a closed-pore conformation and an ECD that is twisted with respect to the transmembrane region. Amine- and pH-induced conformational changes measured by DEER spectroscopy showed that the chimera exhibits a dual mode of gating that preserves the distinct conformational changes of the parent channels. Collectively, our findings shed light on both conserved and divergent features of gating mechanisms in this class of channels, and will facilitate the design of better allosteric modulators. PMID:26415570
A low-cost, portable, micro-controlled device for multi-channel LED visual stimulation.
Pinto, Marcos Antonio da Silva; de Souza, John Kennedy Schettino; Baron, Jerome; Tierra-Criollo, Carlos Julio
2011-04-15
Light emitting diodes (LEDs) are extensively used as light sources to investigate visual and visually related function and dysfunction. Here, we describe the design of a compact, low-cost, stand-alone LED-based system that enables the configuration, storage and presentation of elaborate visual stimulation paradigms. The core functionality of this system is provided by a microcontroller whose ultra-low power consumption makes it well suited for long lasting battery applications. The effective use of hardware resources is managed by multi-layered architecture software that provides an intuitive and user-friendly interface. In the configuration mode, different stimulation sequences can be created and memorized for ten channels, independently. LED-driving current output can be set either as continuous or pulse modulated, up to 500 Hz, by duty cycle adjustments. In run mode, multiple-channel stimulus sequences are automatically applied according to the pre-programmed protocol. Steady state visual evoked potentials were successfully recorded in five subjects with no visible electromagnetic interferences from the stimulator, demonstrating the efficacy of combining our prototyped equipment with electrophysiological techniques. Finally, we discuss a number of possible improvements for future development of our project. Copyright © 2011 Elsevier B.V. All rights reserved.
Blomster, Linda V; Strøbaek, Dorte; Hougaard, Charlotte; Klein, Jessica; Pinborg, Lars H; Mikkelsen, Jens D; Christophersen, Palle
2016-12-01
The K Ca 3.1 channel (KCNN4) is an important modulator of microglia responses in rodents, but no information exists on functional expression on microglia from human adults. We isolated and cultured microglia (max 1% astrocytes, no neurons or oligodendrocytes) from neocortex surgically removed from epilepsy patients and employed electrophysiological whole-cell measurements and selective pharmacological tools to elucidate functional expression of K Ca 3.1. The channel expression was demonstrated as a significant increase in the voltage-independent current by NS309, a K Ca 3.1/K Ca 2 activator, followed by full inhibition upon co-application with NS6180, a highly selective K Ca 3.1 inhibitor. A major fraction (79%) of unstimulated human microglia expressed K Ca 3.1, and the difference in current between full activation and inhibition (ΔK Ca 3.1) was estimated at 292 ± 48 pA at -40 mV (n = 75), which equals at least 585 channels per cell. Serial K Ca 3.1 activation/inhibition significantly hyperpolarized/depolarized the membrane potential. The isolated human microglia were potently activated by lipopolysaccharide (LPS) shown as a prominent increase in TNF-α production. However, incubation with LPS neither changed the K Ca 3.1 current nor the fraction of K Ca 3.1 expressing cells. In contrast, the anti-inflammatory cytokine IL-4 slightly increased the K Ca 3.1 current per cell, but as the membrane area also increased, there was no significant change in channel density. A large fraction of the microglia also expressed a voltage-dependent current sensitive to the K Ca 1.1 modulators NS1619 and Paxilline and an inward-rectifying current with the characteristics of a K ir channel. The high functional expression of K Ca 3.1 in microglia from epilepsy patients accentuates the need for further investigations of its role in neuropathological processes. GLIA 2016;64:2065-2078. © 2016 Wiley Periodicals, Inc.
A Conserved Bicycle Model for Circadian Clock Control of Membrane Excitability
Flourakis, Matthieu; Kula-Eversole, Elzbieta; Hutchison, Alan L.; Han, Tae Hee; Aranda, Kimberly; Moose, Devon L.; White, Kevin P.; Dinner, Aaron R.; Lear, Bridget C.; Ren, Dejian; Diekman, Casey O.; Raman, Indira M.; Allada, Ravi
2015-01-01
Summary Circadian clocks regulate membrane excitability in master pacemaker neurons to control daily rhythms of sleep and wake. Here we find that two distinctly timed electrical drives collaborate to impose rhythmicity on Drosophila clock neurons. In the morning, a voltage-independent sodium conductance via the NA/NALCN ion channel depolarizes these neurons. This current is driven by the rhythmic expression of NCA localization factor-1, linking the molecular clock to ion channel function. In the evening, basal potassium currents peak to silence clock neurons. Remarkably, daily antiphase cycles of sodium and potassium currents also drive mouse clock neuron rhythms. Thus, we reveal an evolutionarily ancient strategy for the neural mechanisms that govern daily sleep and wake. PMID:26276633
Solvable continuous-time random walk model of the motion of tracer particles through porous media.
Fouxon, Itzhak; Holzner, Markus
2016-08-01
We consider the continuous-time random walk (CTRW) model of tracer motion in porous medium flows based on the experimentally determined distributions of pore velocity and pore size reported by Holzner et al. [M. Holzner et al., Phys. Rev. E 92, 013015 (2015)PLEEE81539-375510.1103/PhysRevE.92.013015]. The particle's passing through one channel is modeled as one step of the walk. The step (channel) length is random and the walker's velocity at consecutive steps of the walk is conserved with finite probability, mimicking that at the turning point there could be no abrupt change of velocity. We provide the Laplace transform of the characteristic function of the walker's position and reductions for different cases of independence of the CTRW's step duration τ, length l, and velocity v. We solve our model with independent l and v. The model incorporates different forms of the tail of the probability density of small velocities that vary with the model parameter α. Depending on that parameter, all types of anomalous diffusion can hold, from super- to subdiffusion. In a finite interval of α, ballistic behavior with logarithmic corrections holds, which was observed in a previously introduced CTRW model with independent l and τ. Universality of tracer diffusion in the porous medium is considered.
Khozani, Zohreh Sheikh; Bonakdari, Hossein; Zaji, Amir Hossein
2016-01-01
Two new soft computing models, namely genetic programming (GP) and genetic artificial algorithm (GAA) neural network (a combination of modified genetic algorithm and artificial neural network methods) were developed in order to predict the percentage of shear force in a rectangular channel with non-homogeneous roughness. The ability of these methods to estimate the percentage of shear force was investigated. Moreover, the independent parameters' effectiveness in predicting the percentage of shear force was determined using sensitivity analysis. According to the results, the GP model demonstrated superior performance to the GAA model. A comparison was also made between the GP program determined as the best model and five equations obtained in prior research. The GP model with the lowest error values (root mean square error ((RMSE) of 0.0515) had the best function compared with the other equations presented for rough and smooth channels as well as smooth ducts. The equation proposed for rectangular channels with rough boundaries (RMSE of 0.0642) outperformed the prior equations for smooth boundaries.
NASA Astrophysics Data System (ADS)
Yan, Jiawei; Wang, Shizhuo; Xia, Ke; Ke, Youqi
2018-01-01
We present first-principles analysis of interfacial disorder effects on spin-dependent tunneling statistics in thin Fe/MgO/Fe magnetic tunnel junctions. We find that interfacial disorder scattering can significantly modulate the tunneling statistics in the minority spin of the parallel configuration (PC) while all other spin channels remain dominated by the Poissonian process. For the minority-spin channel of PC, interfacial disorder scattering favors the formation of resonant tunneling channels by lifting the limitation of symmetry conservation at low concentration, presenting an important sub-Poissonian process in PC, but is destructive to the open channels at high concentration. We find that the important modulation of tunneling statistics is independent of the type of interfacial disorder. A bimodal distribution function of transmission with disorder dependence is introduced and fits very well our first-principles results. The increase of MgO thickness can quickly change the tunneling from a sub-Poissonian to Poissonian dominated process in the minority spin of PC with disorder. Our results provide a sensitive detection method of an ultralow concentration of interfacial defects.
Calcium-activated potassium (BK) channels are encoded by duplicate slo1 genes in teleost fishes.
Rohmann, Kevin N; Deitcher, David L; Bass, Andrew H
2009-07-01
Calcium-activated, large conductance potassium (BK) channels in tetrapods are encoded by a single slo1 gene, which undergoes extensive alternative splicing. Alternative splicing generates a high level of functional diversity in BK channels that contributes to the wide range of frequencies electrically tuned by the inner ear hair cells of many tetrapods. To date, the role of BK channels in hearing among teleost fishes has not been investigated at the molecular level, although teleosts account for approximately half of all extant vertebrate species. We identified slo1 genes in teleost and nonteleost fishes using polymerase chain reaction and genetic sequence databases. In contrast to tetrapods, all teleosts examined were found to express duplicate slo1 genes in the central nervous system, whereas nonteleosts that diverged prior to the teleost whole-genome duplication event express a single slo1 gene. Phylogenetic analyses further revealed that whereas other slo1 duplicates were the result of a single duplication event, an independent duplication occurred in a basal teleost (Anguilla rostrata) following the slo1 duplication in teleosts. A third, independent slo1 duplication (autotetraploidization) occurred in salmonids. Comparison of teleost slo1 genomic sequences to their tetrapod orthologue revealed a reduced number of alternative splice sites in both slo1 co-orthologues. For the teleost Porichthys notatus, a focal study species that vocalizes with maximal spectral energy in the range electrically tuned by BK channels in the inner ear, peripheral tissues show the expression of either one (e.g., vocal muscle) or both (e.g., inner ear) slo1 paralogues with important implications for both auditory and vocal physiology. Additional loss of expression of one slo1 paralogue in nonneural tissues in P. notatus suggests that slo1 duplicates were retained via subfunctionalization. Together, the results predict that teleost fish achieve a diversity of BK channel subfunction via gene duplication, rather than increased alternative splicing as witnessed for the tetrapod and invertebrate orthologue.
Calcium-Activated Potassium (BK) Channels Are Encoded by Duplicate slo1 Genes in Teleost Fishes
Deitcher, David L.; Bass, Andrew H.
2009-01-01
Calcium-activated, large conductance potassium (BK) channels in tetrapods are encoded by a single slo1 gene, which undergoes extensive alternative splicing. Alternative splicing generates a high level of functional diversity in BK channels that contributes to the wide range of frequencies electrically tuned by the inner ear hair cells of many tetrapods. To date, the role of BK channels in hearing among teleost fishes has not been investigated at the molecular level, although teleosts account for approximately half of all extant vertebrate species. We identified slo1 genes in teleost and nonteleost fishes using polymerase chain reaction and genetic sequence databases. In contrast to tetrapods, all teleosts examined were found to express duplicate slo1 genes in the central nervous system, whereas nonteleosts that diverged prior to the teleost whole-genome duplication event express a single slo1 gene. Phylogenetic analyses further revealed that whereas other slo1 duplicates were the result of a single duplication event, an independent duplication occurred in a basal teleost (Anguilla rostrata) following the slo1 duplication in teleosts. A third, independent slo1 duplication (autotetraploidization) occurred in salmonids. Comparison of teleost slo1 genomic sequences to their tetrapod orthologue revealed a reduced number of alternative splice sites in both slo1 co-orthologues. For the teleost Porichthys notatus, a focal study species that vocalizes with maximal spectral energy in the range electrically tuned by BK channels in the inner ear, peripheral tissues show the expression of either one (e.g., vocal muscle) or both (e.g., inner ear) slo1 paralogues with important implications for both auditory and vocal physiology. Additional loss of expression of one slo1 paralogue in nonneural tissues in P. notatus suggests that slo1 duplicates were retained via subfunctionalization. Together, the results predict that teleost fish achieve a diversity of BK channel subfunction via gene duplication, rather than increased alternative splicing as witnessed for the tetrapod and invertebrate orthologue. PMID:19321796
Zhang, Ning; Song, Yuechun; Ruan, Xuehua; Yan, Xiaoming; Liu, Zhao; Shen, Zhuanglin; Wu, Xuemei; He, Gaohong
2016-09-21
The relationship between the proton conductive channel and the hydrated proton structure is of significant importance for understanding the deformed hydrogen bonding network of the confined protons which matches the nanochannel. In general, the structure of hydrated protons in the nanochannel of the proton exchange membrane is affected by several factors. To investigate the independent effect of each factor, it is necessary to eliminate the interference of other factors. In this paper, a one-dimensional carbon nanotube decorated with fluorine was built to investigate the independent effects of nanoscale confinement and fluorination on the structural properties of hydrated protons in the nanochannel using classical molecular dynamics simulation. In order to characterize the structure of hydrated protons confined in the channel, the hydrogen bonding interaction between water and the hydrated protons has been studied according to suitable hydrogen bond criteria. The hydrogen bond criteria were proposed based on the radial distribution function, angle distribution and pair-potential energy distribution. It was found that fluorination leads to an ordered hydrogen bonding structure of the hydrated protons near the channel surface, and confinement weakens the formation of the bifurcated hydrogen bonds in the radial direction. Besides, fluorination lowers the free energy barrier of hydronium along the nanochannel, but slightly increases the barrier for water. This leads to disintegration of the sequential hydrogen bond network in the fluorinated CNTs with small size. In the fluorinated CNTs with large diameter, the lower degree of confinement produces a spiral-like sequential hydrogen bond network with few bifurcated hydrogen bonds in the central region. This structure might promote unidirectional proton transfer along the channel without random movement. This study provides the cooperative effect of confinement dimension and fluorination on the structure and hydrogen bonding of the slightly acidic water in the nanoscale channel.
Sodium Channel β2 Subunits Prevent Action Potential Propagation Failures at Axonal Branch Points.
Cho, In Ha; Panzera, Lauren C; Chin, Morven; Hoppa, Michael B
2017-09-27
Neurotransmitter release depends on voltage-gated Na + channels (Na v s) to propagate an action potential (AP) successfully from the axon hillock to a synaptic terminal. Unmyelinated sections of axon are very diverse structures encompassing branch points and numerous presynaptic terminals with undefined molecular partners of Na + channels. Using optical recordings of Ca 2+ and membrane voltage, we demonstrate here that Na + channel β2 subunits (Na v β2s) are required to prevent AP propagation failures across the axonal arborization of cultured rat hippocampal neurons (mixed male and female). When Na v β2 expression was reduced, we identified two specific phenotypes: (1) membrane excitability and AP-evoked Ca 2+ entry were impaired at synapses and (2) AP propagation was severely compromised with >40% of axonal branches no longer responding to AP-stimulation. We went on to show that a great deal of electrical signaling heterogeneity exists in AP waveforms across the axonal arborization independent of axon morphology. Therefore, Na v β2 is a critical regulator of axonal excitability and synaptic function in unmyelinated axons. SIGNIFICANCE STATEMENT Voltage-gated Ca 2+ channels are fulcrums of neurotransmission that convert electrical inputs into chemical outputs in the form of vesicle fusion at synaptic terminals. However, the role of the electrical signal, the presynaptic action potential (AP), in modulating synaptic transmission is less clear. What is the fidelity of a propagating AP waveform in the axon and what molecules shape it throughout the axonal arborization? Our work identifies several new features of AP propagation in unmyelinated axons: (1) branches of a single axonal arborization have variable AP waveforms independent of morphology, (2) Na + channel β2 subunits modulate AP-evoked Ca 2+ -influx, and (3) β2 subunits maintain successful AP propagation across the axonal arbor. These findings are relevant to understanding the flow of excitation in the brain. Copyright © 2017 the authors 0270-6474/17/379519-15$15.00/0.
NASA Astrophysics Data System (ADS)
Morel, X.; Berthomier, M.; Berthelier, J.-J.
2017-03-01
We describe the concept and properties of a new electrostatic optic which aims to provide a 2π sr instantaneous field of view to characterize space plasmas. It consists of a set of concentric toroidal electrodes that form a number of independent energy-selective channels. Charged particles are deflected toward a common imaging planar detector. The full 3-D distribution function of charged particles is obtained through a single energy sweep. Angle and energy resolution of the optics depends on the number of toroidal electrodes, on their radii of curvature, on their spacing, and on the angular aperture of the channels. We present the performances, as derived from numerical simulations, of an initial implementation of this concept that would fit the need of many space plasma physics applications. The proposed instrument has 192 entrance windows corresponding to eight polar channels each with 24 azimuthal sectors. The initial version of this 3-D plasma analyzer may cover energies from a few eV up to 30 keV, typically with a channel-dependent energy resolution varying from 10% to 7%. The angular acceptance varies with the direction of the incident particle from 3° to 12°. With a total geometric factor of two sensor heads reaching 0.23 cm2 sr eV/eV, this "donut" shape analyzer has enough sensitivity to allow very fast measurements of plasma distribution functions in most terrestrial and planetary environments on three-axis stabilized as well as on spinning satellites.
Poplar potassium transporters capable of controlling K+ homeostasis and K+-dependent xylogenesis.
Langer, Katharina; Ache, Peter; Geiger, Dietmar; Stinzing, Andrea; Arend, Matthias; Wind, Christa; Regan, Sharon; Fromm, Jörg; Hedrich, Rainer
2002-12-01
The cambial K+ content of poplar increases during the growth period in a K+ supply dependent manner. Upon K+ starvation or application of tetraethylammoniumchloride (TEA+), a K+ channel blocker, the average vessel lumen and expansion zone area were significantly reduced. In search for the molecular basis of potassium-dependent xylogenesis in poplar, K+ transporters homologous to those of known function in Arabidopis phloem- and xylem-physiology were isolated from a poplar wood EST library. The expression profile of three distinct K+ channel types and one K+ transporter, Populus tremula K+ uptake transporter 1 (PtKUP1), was analysed by quantitative RT-PCR. Thereby, we found P. tremula outward rectifying K+ channel (PTORK) and P. tremula K+ channel 2 (PTK2) correlated with the seasonal wood production. K+ transporter P. tremula 1 (KPT1) was predominantly found in guard cells. Following the heterologous expression in Xenopus oocytes the biophysical properties of the different channels were determined. PTORK, upon membrane de-polarization mediates potassium release. PTK2 is almost voltage independent, carrying inward K+ flux at hyperpolarized potential and K+ release upon de-polarization. PtKUP1 was expressed in a K+ uptake-deficient Escherichia coli strain, where this K+ transporter rescued K+-dependent growth. In order to link the different K+ transporters to the cambial activity and wood production, we compared the expression profiles to seasonal changes in the K+ content of the bark as well as xylem vessel diameter. Thereby, we found PTORK and PTK2 transcripts to follow the annual K+ variations in poplar branches. PtKUP1 was expressed at a low level throughout the year, suggesting a housekeeping function. From these data, we conclude that K+ channels are involved in the regulation of K+-dependent wood production.
Sodium channel blockers for cystic fibrosis.
Burrows, E; Southern, K W; Noone, P
2006-07-19
People with cystic fibrosis (CF) have increased transport of the salt, sodium across their airway lining. Over-absorption of sodium results in the dehydration of the liquid that lines the airway surface and is a primary defect in people with CF. To determine whether the topical administration of drugs that block sodium transport improves the respiratory condition of people with CF. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearching relevant journals and abstract books of conference proceedings. We contacted principal investigators known to work in the field, previous authors and pharmaceutical companies who manufacture ion transport agents for unpublished or follow-up data. Most recent search of the Group's register: March 2006 Published or unpublished randomised controlled trials (RCTs) or quasi-randomised controlled trials of sodium channel blockers compared to placebo or another sodium channel blocker or the same sodium channel blocker at a different dosing regimen. Two authors independently extracted data. Meta-analysis was limited due to differing study designs. Four RCTs, with a total of 205 participants, examining the topical administration of the short-acting sodium channel blocker, amiloride, compared to placebo were identified as eligible for inclusion in the review. For three studies, interventions for six months were completed and it was possible to calculate relative change in respiratory function (FVC). There was a significant difference found in relative change in FVC in favour of placebo (GIV analysis of weighted mean difference for FVC; 1.51% (95% confidence interval -2.77 to -0.25). There were no significant differences identified in other clinically relevant outcomes. We found no evidence that the topical administration of a short-acting sodium channel blocker improves respiratory condition in people with cystic fibrosis and some limited evidence of deterioration in lung function.
Tarvin, Rebecca D; Santos, Juan C; O'Connell, Lauren A; Zakon, Harold H; Cannatella, David C
2016-04-01
Complex phenotypes typically have a correspondingly multifaceted genetic component. However, the genotype-phenotype association between chemical defense and resistance is often simple: genetic changes in the binding site of a toxin alter how it affects its target. Some toxic organisms, such as poison frogs (Anura: Dendrobatidae), have defensive alkaloids that disrupt the function of ion channels, proteins that are crucial for nerve and muscle activity. Using protein-docking models, we predict that three major classes of poison frog alkaloids (histrionicotoxins, pumiliotoxins, and batrachotoxins) bind to similar sites in the highly conserved inner pore of the muscle voltage-gated sodium channel, Nav1.4. We predict that poison frogs are somewhat resistant to these compounds because they have six types of amino acid replacements in the Nav1.4 inner pore that are absent in all other frogs except for a distantly related alkaloid-defended frog from Madagascar, Mantella aurantiaca. Protein-docking models and comparative phylogenetics support the role of these replacements in alkaloid resistance. Taking into account the four independent origins of chemical defense in Dendrobatidae, phylogenetic patterns of the amino acid replacements suggest that 1) alkaloid resistance in Nav1.4 evolved independently at least seven times in these frogs, 2) variation in resistance-conferring replacements is likely a result of differences in alkaloid exposure across species, and 3) functional constraint shapes the evolution of the Nav1.4 inner pore. Our study is the first to demonstrate the genetic basis of autoresistance in frogs with alkaloid defenses. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
1986-01-01
Functional calcium channels present in purified skeletal muscle transverse tubules were inserted into planar phospholipid bilayers composed of the neutral lipid phosphatidylethanolamine (PE), the negatively charged lipid phosphatidylserine (PS), and mixtures of both. The lengthening of the mean open time and stabilization of single channel fluctuations under constant holding potentials was accomplished by the use of the agonist Bay K8644. It was found that the barium current carried through the channel saturates as a function of the BaCl2 concentration at a maximum current of 0.6 pA (at a holding potential of 0 mV) and a half-saturation value of 40 mM. Under saturation, the slope conductance of the channel is 20 pS at voltages more negative than -50 mV and 13 pS at a holding potential of 0 mV. At barium concentrations above and below the half-saturation point, the open channel currents were independent of the bilayer mole fraction of PS from XPS = 0 (pure PE) to XPS = 1.0 (pure PS). It is shown that in the absence of barium, the calcium channel transports sodium or potassium ions (P Na/PK = 1.4) at saturating rates higher than those for barium alone. The sodium conductance in pure PE bilayers saturates as a function of NaCl concentration, following a curve that can be described as a rectangular hyperbola with a half-saturation value of 200 mM and a maximum conductance of 68 pS (slope conductance at a holding potential of 0 mV). In pure PS bilayers, the sodium conductance is about twice that measured in PE at concentrations below 100 mM NaCl. The maximum channel conductance at high ionic strength is unaffected by the lipid charge. This effect at low ionic strength was analyzed according to J. Bell and C. Miller (1984. Biophysical Journal. 45:279- 287) and interpreted as if the conduction pathway of the calcium channel were separated from the bilayer lipid by approximately 20 A. This distance thereby effectively insulates the ion entry to the channel from the bulk of the bilayer lipid surface charge. Current vs. voltage curves measured in NaCl in pure PE and pure PS show that similarly small surface charge effects are present in both inward and outward currents. This suggests that the same conduction insulation is present at both ends of the calcium channel. PMID:2425043
Almli, Lynn M; Lori, Adriana; Meyers, Jacquelyn L; Shin, Jaemin; Fani, Negar; Maihofer, Adam X; Nievergelt, Caroline M; Smith, Alicia K; Mercer, Kristina B; Kerley, Kimberly; Leveille, Jennifer M; Feng, Hao; Abu-Amara, Duna; Flory, Janine D; Yehuda, Rachel; Marmar, Charles R; Baker, Dewleen G; Bradley, Bekh; Koenen, Karestan C; Conneely, Karen N; Ressler, Kerry J
2017-10-30
Excessive alcohol use is extremely prevalent in the United States, particularly among trauma-exposed individuals. While several studies have examined genetic influences on alcohol use and related problems, this has not been studied in the context of trauma-exposed populations. We report results from a genome-wide association study of alcohol consumption and associated problems as measured by the alcohol use disorders identification test (AUDIT) in a trauma-exposed cohort. Results indicate a genome-wide significant association between total AUDIT score and rs1433375 [N = 1036, P = 2.61 × 10 -8 (dominant model), P = 7.76 × 10 -8 (additive model)], an intergenic single-nucleotide polymorphism located 323 kb upstream of the sodium channel and clathrin linker 1 (SCLT1) at 4q28. rs1433375 was also significant in a meta-analysis of two similar, but independent, cohorts (N = 1394, P = 0.0004), the Marine Resiliency Study and Systems Biology PTSD Biomarkers Consortium. Functional analysis indicated that rs1433375 was associated with SCLT1 gene expression and cortical-cerebellar functional connectivity measured via resting state functional magnetic resonance imaging. Together, findings suggest a role for sodium channel regulation and cerebellar functioning in alcohol use behavior. Identifying mechanisms underlying risk for problematic alcohol use in trauma-exposed populations is critical for future treatment and prevention efforts. © 2017 Society for the Study of Addiction.
NASA Astrophysics Data System (ADS)
Medvedev, Andrei V.; Kainerstorfer, Jana M.; Borisov, Sergey V.; Vanmeter, John
2011-01-01
Near-infrared spectroscopy (NIRS) is a developing technology for low-cost noninvasive functional brain imaging. With multichannel optical instruments, it becomes possible to measure not only local changes in hemoglobin concentrations but also temporal correlations of those changes in different brain regions which gives an optical analog of functional connectivity traditionally measured by fMRI. We recorded hemodynamic activity during the Go-NoGo task from 11 right-handed subjects with probes placed bilaterally over prefrontal areas. Subjects were detecting animals as targets in natural scenes pressing a mouse button. Data were low-pass filtered <1 Hz and cardiac/respiration/superficial layers artifacts were removed using Independent Component Analysis. Fisher's transformed correlations of poststimulus responses (30 s) were averaged over groups of channels unilaterally in each hemisphere (intrahemispheric connectivity) and the corresponding channels between hemispheres (interhemispheric connectivity). The hemodynamic response showed task-related activation (an increase/decrease in oxygenated/deoxygenated hemoglobin, respectively) greater in the right versus left hemisphere. Intra- and interhemispheric functional connectivity was also significantly stronger during the task compared to baseline. Functional connectivity between the inferior and the middle frontal regions was significantly stronger in the right hemisphere. Our results demonstrate that optical methods can be used to detect transient changes in functional connectivity during rapid cognitive processes.
Measurement-device-independent quantum key distribution.
Lo, Hoi-Kwong; Curty, Marcos; Qi, Bing
2012-03-30
How to remove detector side channel attacks has been a notoriously hard problem in quantum cryptography. Here, we propose a simple solution to this problem--measurement-device-independent quantum key distribution (QKD). It not only removes all detector side channels, but also doubles the secure distance with conventional lasers. Our proposal can be implemented with standard optical components with low detection efficiency and highly lossy channels. In contrast to the previous solution of full device independent QKD, the realization of our idea does not require detectors of near unity detection efficiency in combination with a qubit amplifier (based on teleportation) or a quantum nondemolition measurement of the number of photons in a pulse. Furthermore, its key generation rate is many orders of magnitude higher than that based on full device independent QKD. The results show that long-distance quantum cryptography over say 200 km will remain secure even with seriously flawed detectors.
Assessment of Durable SiC JFET Technology for +600 C to -125 C Integrated Circuit Operation
NASA Technical Reports Server (NTRS)
Neudeck, P. G.; Krasowski, M. J.; Prokop, N. F.
2011-01-01
Electrical characteristics and circuit design considerations for prototype 6H-SiC JFET integrated circuits (ICs) operating over the broad temperature range of -125 C to +600 C are described. Strategic implementation of circuits with transistors and resistors in the same 6H-SiC n-channel layer enabled ICs with nearly temperature-independent functionality to be achieved. The frequency performance of the circuits declined at temperatures increasingly below or above room temperature, roughly corresponding to the change in 6H-SiC n-channel resistance arising from incomplete carrier ionization at low temperature and decreased electron mobility at high temperature. In addition to very broad temperature functionality, these simple digital and analog demonstration integrated circuits successfully operated with little change in functional characteristics over the course of thousands of hours at 500 C before experiencing interconnect-related failures. With appropriate further development, these initial results establish a new technology foundation for realizing durable 500 C ICs for combustion engine sensing and control, deep-well drilling, and other harsh-environment applications.
Anion-Cation Permeability Correlates with Hydrated Counterion Size in Glycine Receptor Channels
Sugiharto, Silas; Lewis, Trevor M.; Moorhouse, Andrew J.; Schofield, Peter R.; Barry, Peter H.
2008-01-01
The functional role of ligand-gated ion channels depends critically on whether they are predominantly permeable to cations or anions. However, these, and other ion channels, are not perfectly selective, allowing some counterions to also permeate. To address the mechanisms by which such counterion permeation occurs, we measured the anion-cation permeabilities of different alkali cations, Li+ Na+, and Cs+, relative to either Cl− or \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{NO}}_{3}^{-}\\end{equation*}\\end{document} anions in both a wild-type glycine receptor channel (GlyR) and a mutant GlyR with a wider pore diameter. We hypothesized and showed that counterion permeation in anionic channels correlated inversely with an equivalent or effective hydrated size of the cation relative to the channel pore radius, with larger counterion permeabilities being observed in the wider pore channel. We also showed that the anion component of conductance was independent of the nature of the cation. We suggest that anions and counterion cations can permeate through the pore as neutral ion pairs, to allow the cations to overcome the large energy barriers resulting from the positively charged selectivity filter in small GlyR channels, with the permeability of such ion pairs being dependent on the effective hydrated diameter of the ion pair relative to the pore diameter. PMID:18708455
1993-01-01
A contact interaction is proposed to exist between the voltage sensor of the transverse tubular membrane of skeletal muscle and the calcium release channel of the sarcoplasmic reticulum. This interaction is given a quantitative formulation inspired in the Monod, Wyman, and Changeux model of allosteric transitions in hemoglobin (Monod, J., J. Wyman, and J.-P. Changeux. 1965. Journal of Molecular Biology. 12:88- 118), and analogous to one proposed by Marks and Jones for voltage- dependent Ca channels (Marks, T. N., and S. W. Jones. 1992. Journal of General Physiology. 99:367-390). The allosteric protein is the calcium release channel, a homotetramer, with two accessible states, closed and open. The kinetics and equilibrium of this transition are modulated by voltage sensors (dihydropyridine receptors) pictured as four units per release channel, each undergoing independent voltage-driven transitions between two states (resting and activating). For each voltage sensor that moves to the activating state, the tendency of the channel to open increases by an equal (large) factor. The equilibrium and kinetic equations of the model are solved and shown to reproduce well a number of experimentally measured relationships including: charge movement (Q) vs. voltage, open probability of the release channel (Po) vs. voltage, the transfer function relationship Po vs. Q, and the kinetics of charge movement, release activation, and deactivation. The main consequence of the assumption of allosteric coupling is that primary effects on the release channel are transmitted backward to the voltage sensor and give secondary effects. Thus, the model reproduces well the effects of perchlorate, described in the two previous articles, under the assumption that the primary effect is to increase the intrinsic tendency of the release channel to open, with no direct effects on the voltage sensor. This modification of the open-closed equilibrium of the release channel causes a shift in the equilibrium dependency of charge movement with voltage. The paradoxical slowing of charge movement by perchlorate also results from reciprocal effects of the channel on the allosterically coupled voltage sensors. The observations of the previous articles plus the simulations in this article constitute functional evidence of allosteric transmission. PMID:8245819
Control of neuronal excitability by Group I metabotropic glutamate receptors.
Correa, Ana Maria Bernal; Guimarães, Jennifer Diniz Soares; Dos Santos E Alhadas, Everton; Kushmerick, Christopher
2017-10-01
Metabotropic glutamate (mGlu) receptors couple through G proteins to regulate a large number of cell functions. Eight mGlu receptor isoforms have been cloned and classified into three Groups based on sequence, signal transduction mechanisms and pharmacology. This review will focus on Group I mGlu receptors, comprising the isoforms mGlu 1 and mGlu 5 . Activation of these receptors initiates both G protein-dependent and -independent signal transduction pathways. The G-protein-dependent pathway involves mainly Gα q , which can activate PLCβ, leading initially to the formation of IP 3 and diacylglycerol. IP 3 can release Ca 2+ from cellular stores resulting in activation of Ca 2+ -dependent ion channels. Intracellular Ca 2+ , together with diacylglycerol, activates PKC, which has many protein targets, including ion channels. Thus, activation of the G-protein-dependent pathway affects cellular excitability though several different effectors. In parallel, G protein-independent pathways lead to activation of non-selective cationic currents and metabotropic synaptic currents and potentials. Here, we provide a survey of the membrane transport proteins responsible for these electrical effects of Group I metabotropic glutamate receptors.
Derivative expansion of wave function equivalent potentials
NASA Astrophysics Data System (ADS)
Sugiura, Takuya; Ishii, Noriyoshi; Oka, Makoto
2017-04-01
Properties of the wave function equivalent potentials introduced by the HAL QCD collaboration are studied in a nonrelativistic coupled-channel model. The derivative expansion is generalized, and then applied to the energy-independent and nonlocal potentials. The expansion coefficients are determined from analytic solutions to the Nambu-Bethe-Salpeter wave functions. The scattering phase shifts computed from these potentials are compared with the exact values to examine the convergence of the expansion. It is confirmed that the generalized derivative expansion converges in terms of the scattering phase shift rather than the functional structure of the non-local potentials. It is also found that the convergence can be improved by tuning either the choice of interpolating fields or expansion scale in the generalized derivative expansion.
NASA Technical Reports Server (NTRS)
Darcy, Eric; Davies, Frank
2009-01-01
Charger design that is 2-fault tolerant to catastrophic has been achieved for the Spacesuit Li-ion Battery with key features. Power supply control circuit and 2 microprocessors independently control against overcharge. 3 microprocessor control against undercharge (false positive: Go for EVA) conditions. 2 independent channels provide functional redundancy. Capable of charge balancing cell banks in series. Cell manufacturing and performance uniformity is excellent with both designs. Once a few outliers are removed, LV cells are slightly more uniform than MoliJ cells. If cell balance feature of charger is ever invoked, it will be an indication of a significant degradation issue, not a nominal condition.
Tic20 forms a channel independent of Tic110 in chloroplasts
2011-01-01
Background The Tic complex (Translocon at the inner envelope membrane of chloroplasts) mediates the translocation of nuclear encoded chloroplast proteins across the inner envelope membrane. Tic110 forms one prominent protein translocation channel. Additionally, Tic20, another subunit of the complex, was proposed to form a protein import channel - either together with or independent of Tic110. However, no experimental evidence for Tic20 channel activity has been provided so far. Results We performed a comprehensive biochemical and electrophysiological study to characterize Tic20 in more detail and to gain a deeper insight into its potential role in protein import into chloroplasts. Firstly, we compared transcript and protein levels of Tic20 and Tic110 in both Pisum sativum and Arabidopsis thaliana. We found the Tic20 protein to be generally less abundant, which was particularly pronounced in Arabidopsis. Secondly, we demonstrated that Tic20 forms a complex larger than 700 kilodalton in the inner envelope membrane, which is clearly separate from Tic110, migrating as a dimer at about 250 kilodalton. Thirdly, we defined the topology of Tic20 in the inner envelope, and found its N- and C-termini to be oriented towards the stromal side. Finally, we successfully reconstituted overexpressed and purified full-length Tic20 into liposomes. Using these Tic20-proteoliposomes, we could demonstrate for the first time that Tic20 can independently form a cation selective channel in vitro. Conclusions The presented data provide first biochemical evidence to the notion that Tic20 can act as a channel protein within the chloroplast import translocon complex. However, the very low abundance of Tic20 in the inner envelope membranes indicates that it cannot form a major protein translocation channel. Furthermore, the independent complex formation of Tic20 and Tic110 argues against a joint channel formation. Thus, based on the observed channel activity of Tic20 in proteoliposomes, we speculate that the chloroplast inner envelope contains multiple (at least two) translocation channels: Tic110 as the general translocation pore, whereas Tic20 could be responsible for translocation of a special subset of proteins. PMID:21961525
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.
Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrappedmore » around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.« less
NASA Technical Reports Server (NTRS)
Shambayati, Shervin
2001-01-01
In order to evaluate performance of strong channel codes in presence of imperfect carrier phase tracking for residual carrier BPSK modulation in this paper an approximate 'brick wall' model is developed which is independent of the channel code type for high data rates. It is shown that this approximation is reasonably accurate (less than 0.7dB for low FERs for (1784,1/6) code and less than 0.35dB for low FERs for (5920,1/6) code). Based on the approximation's accuracy, it is concluded that the effects of imperfect carrier tracking are more or less independent of the channel code type for strong channel codes. Therefore, the advantage that one strong channel code has over another with perfect carrier tracking translates to nearly the same advantage under imperfect carrier tracking conditions. This will allow the link designers to incorporate projected channel code performance of strong channel codes into their design tables without worrying about their behavior in the face of imperfect carrier phase tracking.
Zhang, Z R; McDonough, S I; McCarty, N A
2000-01-01
The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel with distinctive kinetics. At the whole-cell level, CFTR currents in response to voltage steps are time independent for wild type and for the many mutants reported so far. Single channels open for periods lasting up to tens of seconds; the openings are interrupted by brief closures at hyperpolarized, but not depolarized, potentials. Here we report a serine-to-phenylalanine mutation (S1118F) in the 11th transmembrane domain that confers voltage-dependent, single-exponential current relaxations and moderate inward rectification of the macroscopic currents upon expression in Xenopus oocytes. At steady state, the S1118F-CFTR single-channel conductance rectifies, corresponding to the whole-cell rectification. In addition, the open-channel burst duration is decreased 10-fold compared with wild-type channels. S1118F-CFTR currents are blocked in a voltage-dependent manner by diphenylamine-2-carboxylate (DPC); the affinity of S1118F-CFTR for DPC is similar to that of the wild-type channel, but blockade exhibits moderately reduced voltage dependence. Selectivity of the channel to a range of anions is also affected by this mutation. Furthermore, the permeation properties change during the relaxations, which suggests that there is an interaction between gating and permeation in this mutant. The existence of a mutation that confers voltage dependence upon CFTR currents and that changes kinetics and permeation properties of the channel suggests a functional role for the 11th transmembrane domain in the pore in the wild-type channel. PMID:10866956
L-Type Calcium Channels Modulation by Estradiol.
Vega-Vela, Nelson E; Osorio, Daniel; Avila-Rodriguez, Marco; Gonzalez, Janneth; García-Segura, Luis Miguel; Echeverria, Valentina; Barreto, George E
2017-09-01
Voltage-gated calcium channels are key regulators of brain function, and their dysfunction has been associated with multiple conditions and neurodegenerative diseases because they couple membrane depolarization to the influx of calcium-and other processes such as gene expression-in excitable cells. L-type calcium channels, one of the three major classes and probably the best characterized of the voltage-gated calcium channels, act as an essential calcium binding proteins with a significant biological relevance. It is well known that estradiol can activate rapidly brain signaling pathways and modulatory/regulatory proteins through non-genomic (or non-transcriptional) mechanisms, which lead to an increase of intracellular calcium that activate multiple kinases and signaling cascades, in the same way as L-type calcium channels responses. In this context, estrogens-L-type calcium channels signaling raises intracellular calcium levels and activates the same signaling cascades in the brain probably through estrogen receptor-independent modulatory mechanisms. In this review, we discuss the available literature on this area, which seems to suggest that estradiol exerts dual effects/modulation on these channels in a concentration-dependent manner (as a potentiator of these channels in pM concentrations and as an inhibitor in nM concentrations). Indeed, estradiol may orchestrate multiple neurotrophic responses, which open a new avenue for the development of novel estrogen-based therapies to alleviate different neuropathologies. We also highlight that it is essential to determine through computational and/or experimental approaches the interaction between estradiol and L-type calcium channels to assist these developments, which is an interesting area of research that deserves a closer look in future biomedical research.
Zhang, Xuemei; Li, Fangping; Guo, Lin; Hei, Hongya; Tian, Lulu; Peng, Wen; Cai, Hui
2015-01-01
Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells.
Guo, Lin; Hei, Hongya; Tian, Lulu; Peng, Wen; Cai, Hui
2015-01-01
Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells. PMID:25902045
River channel patterns: Braided, meandering, and straight
Leopold, Luna Bergere; Wolman, M. Gordon
1957-01-01
Channel pattern is used to describe the plan view of a reach of river as seen from an airplane, and includes meandering, braiding, or relatively straight channels.Natural channels characteristically exhibit alternating pools or deep reaches and riffles or shallow reaches, regardless of the type of pattern. The length of the pool or distance between riffles in a straight channel equals the straight line distance between successive points of inflection in the wave pattern of a meandering river of the same width. The points of inflection are also shallow points and correspond to riffles in the straight channel. This distance, which is half the wavelength of the meander, varies approximately as a linear function of channel width. In the data we analysed the meander wavelength, or twice the distance between successive riffles, is from 7 to 12 times the channel width. It is concluded that the mechanics which may lead to meandering operate in straight channels.River braiding is characterized by channel division around alluvial islands. The growth of an island begins as the deposition of a central bar which results from sorting and deposition of the coarser fractions of the load which locally cannot be transported. The bar grows downstream and in height by continued deposition on its surface, forcing the water into the flanking channels, which, to carry the flow, deepen and cut laterally into the original banks. Such deepening locally lowers the water surface and the central bar emerges as an island which becomes stabilized by vegetation. Braiding was observed in a small river in a laboratory. Measurements of the adjustments of velocity, depth, width, and slope associated with island development lead to the conclusion that braiding is one of the many patterns which can maintain quasi-equilibrium among discharge, load, and transporting ability. Braiding does not necessarily indicate an excess of total load.Channel cross section and pattern are ultimately controlled by the discharge and load provided by the drainage basin. It is important, therefore, to develop a picture of how the several variables involved in channel shape interact to result in observed channel characteristics. Such a rationale is summarized as follows:Channel width appears to be primarily a function of near-bankfull discharge, in conjunction with the inherent resistance of bed and bank to scour. Excessive width increases the shear on the bed at the expense of that on the bank and the reverse is true for very narrow widths. Because at high stages width adjustment can take place rapidly and with the evacuation or deposition of relatively small volumes of debris, achievement of a ,relatively stable width at high flow is a primary adjustment to which the further interadjustments between depth, velocity, slope, and roughness tend to accommodate.Channel roughness, to the extent that it is determined by particle size, is an independent factor related to the drainage basin rather than to the channel. Roughness in streams carrying fine material, however, is also a function of the dunes or other characteristics of bed configuration. Where roughness is independently determined as well as discharge and load, these studies indicate that a particular slope is associated with the roughness. At the width determined by the discharge, velocity and depth must be adjusted to satisfy quasi-equilibrium in accord with the particular slope. But if roughness also is variable, depending on the transitory configuration of the bed, then a number of combinations of velocity, depth, and slope will satisfy equilibrium.An increase in load at constant discharge, width, and caliber of load tends to be associated with an increasing slope if the roughness (dune or bed configuration) changes with the load. In the laboratory river an increase of load at constant discharge, width, and caliber resulted in progressive aggradation of long reaches of channel at constant slope.The adjustments of several variables tending toward the establishment of quasi-equilibrium in river channels lead to the different channel patterns observed in nature. For example, the data indicate that at a given discharge, meanders occur at smaller values of slope than do’ braids. Further, at the same slope braided channels are associated with higher bankfull discharges than are meanders. An additional example is provided by the division of discharge around islands in braided rivers which produces numerous small channels. The changes in slope, roughness, and channel shape which accompany this division are in accord with quasi-equilibrium adjustments observed in the comparison of large and small rivers.
NASA Technical Reports Server (NTRS)
Cheung, K. M.; Vilnrotter, V.
1996-01-01
A closed-form expression for the capacity of an array of correlated Gaussian channels is derived. It is shown that when signal and noise are independent, the array of observables can be replaced with a single observable without diminishing the capacity of the array channel. Examples are provided to illustrate the dependence of channel capacity on noise correlation for two- and three-channel arrays.
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Vilnrotter, V.
1996-01-01
A closed-form expression for the capacity of an array of correlated Gaussian channels is derived. It is shown that when signal and noise are independent, the array of observables can be replaced with a single observable without diminishing the capacity of the array channel. Examples are provided to illustrate the dependence of channel capacity on noise correlation for two- and three-channel arrays.
A 24-ch Phased-Array System for Hyperpolarized Helium Gas Parallel MRI to Evaluate Lung Functions.
Lee, Ray; Johnson, Glyn; Stefanescu, Cornel; Trampel, Robert; McGuinness, Georgeann; Stoeckel, Bernd
2005-01-01
Hyperpolarized 3He gas MRI has a serious potential for assessing pulmonary functions. Due to the fact that the non-equilibrium of the gas results in a steady depletion of the signal level over the course of the excitations, the signal-tonoise ratio (SNR) can be independent of the number of the data acquisitions under certain circumstances. This provides a unique opportunity for parallel MRI for gaining both temporal and spatial resolution without reducing SNR. We have built a 24-channel receive / 2-channel transmit phased array system for 3He parallel imaging. Our in vivo experimental results proved that the significant temporal and spatial resolution can be gained at no cost to the SNR. With 3D data acquisition, eight fold (2x4) scan time reduction can be achieved without any aliasing in images. Additionally, a rigid analysis using the low impedance preamplifier for decoupling presented evidence of strong coupling.
Detection of content adaptive LSB matching: a game theory approach
NASA Astrophysics Data System (ADS)
Denemark, Tomáš; Fridrich, Jessica
2014-02-01
This paper is an attempt to analyze the interaction between Alice and Warden in Steganography using the Game Theory. We focus on the modern steganographic embedding paradigm based on minimizing an additive distortion function. The strategies of both players comprise of the probabilistic selection channel. The Warden is granted the knowledge of the payload and the embedding costs, and detects embedding using the likelihood ratio. In particular, the Warden is ignorant about the embedding probabilities chosen by Alice. When adopting a simple multivariate Gaussian model for the cover, the payoff function in the form of the Warden's detection error can be numerically evaluated for a mutually independent embedding operation. We demonstrate on the example of a two-pixel cover that the Nash equilibrium is different from the traditional Alice's strategy that minimizes the KL divergence between cover and stego objects under an omnipotent Warden. Practical implications of this case study include computing the loss per pixel of Warden's ability to detect embedding due to her ignorance about the selection channel.
Multichannel Negative Pressure Wound Therapy Vacuum Assisted Closure (V.A.C.)
2016-10-01
Concepts, Inc. (KCI) Innovation & Strategic Marketing 12930 W Interstate 10 San Antonio, TX 78249-2248 8. PERFORMING ORGANIZATION REPORT...canisters. It was also designed to have four independently controlled NPWT channels . 15. SUBJECT TERMS Wound therapy, multichannel negative...wound dressings and wound exudate canisters. It was also designed to have four independently controlled NPWT channels . 2.0 INTRODUCTION The
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guha, Saikat; Shapiro, Jeffrey H.; Erkmen, Baris I.
Previous work on the classical information capacities of bosonic channels has established the capacity of the single-user pure-loss channel, bounded the capacity of the single-user thermal-noise channel, and bounded the capacity region of the multiple-access channel. The latter is a multiple-user scenario in which several transmitters seek to simultaneously and independently communicate to a single receiver. We study the capacity region of the bosonic broadcast channel, in which a single transmitter seeks to simultaneously and independently communicate to two different receivers. It is known that the tightest available lower bound on the capacity of the single-user thermal-noise channel is thatmore » channel's capacity if, as conjectured, the minimum von Neumann entropy at the output of a bosonic channel with additive thermal noise occurs for coherent-state inputs. Evidence in support of this minimum output entropy conjecture has been accumulated, but a rigorous proof has not been obtained. We propose a minimum output entropy conjecture that, if proved to be correct, will establish that the capacity region of the bosonic broadcast channel equals the inner bound achieved using a coherent-state encoding and optimum detection. We provide some evidence that supports this conjecture, but again a full proof is not available.« less
Strong G-Protein-Mediated Inhibition of Sodium Channels.
Mattheisen, Glynis B; Tsintsadze, Timur; Smith, Stephen M
2018-05-29
Voltage-gated sodium channels (VGSCs) are strategically positioned to mediate neuronal plasticity because of their influence on action potential waveform. VGSC function may be strongly inhibited by local anesthetic and antiepileptic drugs and modestly modulated via second messenger pathways. Here, we report that the allosteric modulators of the calcium-sensing receptor (CaSR) cinacalcet, calindol, calhex, and NPS 2143 completely inhibit VGSC current in the vast majority of cultured mouse neocortical neurons. This form of VGSC current block persisted in CaSR-deficient neurons, indicating a CaSR-independent mechanism. Cinacalcet-mediated blockade of VGSCs was prevented by the guanosine diphosphate (GDP) analog GDPβs, indicating that G-proteins mediated this effect. Cinacalcet inhibited VGSCs by increasing channel inactivation, and block was reversed by prolonged hyperpolarization. Strong cinacalcet inhibition of VGSC currents was also present in acutely isolated mouse cortical neurons. These data identify a dynamic signaling pathway by which G-proteins regulate VGSC current to indirectly modulate central neuronal excitability. Published by Elsevier Inc.
First Deminsys (high speed FBG interrogator) flight
NASA Astrophysics Data System (ADS)
van Els, Thomas J.
2009-03-01
Deminsys is the world's fastest multi sensor / multi channel FBG interrogator, identifies one till four channels with typically 8 sensors per channel. The system is especially developed for the interrogation of signals up to 19,3 kHz for each sensor and the sample frequency is independent of the number of sensors. By having multiple sensors per fibre you can create a very compact network of sensors. Due to its revolutionary (light weight, compact and solid state) design, Deminsys seems to fit perfectly into (research) programs for aerospace, medic & life science, maritime, industrial, crash test and all other fast detection applications. Technobis Fibre Technologies (TFT) and NLR made a first test flight with the Deminsys optical fibre measurement system using the NLR test aircraft on October 24th 2008. This flight was a first step in the further development of the current system in order to make it suitable for operation on-board an aircraft and bring it from TRL3 towards TRL5, a functional model for aerospace applications.
Adiabatic perturbation theory of electronic stopping in insulators
Horsfield, Andrew P.; Lim, Anthony; Foulkes, W. M. C.; ...
2016-06-02
A model able to explain the complicated structure of electronic stopping at low velocities in insulating materials is presented. It is shown to be in good agreement with results obtained from time-dependent density-functional theory for the stopping of a channeling Si atom in a Si crystal. If we define the repeat frequency f=v/λ, where λ is the periodic repeat length of the crystal along the direction the channeling atom is traveling, and v is the velocity of the channeling atom, we find that electrons experience a perturbing force that varies in time at integer multiples l of f. This enablesmore » electronic excitations at low atom velocity, but their contributions diminish rapidly with increasing values of l. The expressions for stopping power are derived using adiabatic perturbation theory for many-electron systems, and they are then specialized to the case of independent electrons. Lastly, a simple model for the nonadiabatic matrix elements is described, along with the procedure for determining its parameters.« less
Intercalibration between HIRS/2 and HIRS/3 channel 12 based on physical considerations
NASA Astrophysics Data System (ADS)
Gierens, Klaus; Eleftheratos, Kostas; Sausen, Robert
2018-02-01
High-resolution Infrared Radiation Sounder (HIRS) brightness temperatures at channel 12 (T12) can be used to assess the water vapour content of the upper troposphere. The transition from HIRS/2 to HIRS/3 in 1999 involved a shift in the central wavelength of channel 12 from 6.7 to 6.5 µm, causing a discontinuity in the time series of T12. To understand the impact of this change in the measured brightness temperatures, we have performed radiative transfer calculations for channel 12 of HIRS/2 and HIRS/3 instruments, using a large set of radiosonde profiles of temperature and relative humidity from three different sites. Other possible changes within the instrument, apart from the changed spectral response function, have been assumed to be of minor importance, and in fact, it was necessary to assume as a working hypothesis that the spectral and radiometric calibration of the two instruments did not change during the relatively short period of their common operation. For each radiosonde profile we performed two radiative transfer calculations, one using the HIRS/2 channel response function of NOAA 14 and one using the HIRS/3 channel response function of NOAA 15, resulting in negative differences of T12 (denoted as ΔT12 := T12/15 - T12/14) ranging between -12 and -2 K. Inspection of individual profiles for large, medium and small values of ΔT12 pointed to the role of the mid-tropospheric humidity. This guided us to investigate the relation between ΔT12 and the channel 11 brightness temperatures which are typically used to detect signals from the mid-troposphere. This allowed us to construct a correction for the HIRS/3 T12, which leads to a pseudo-channel 12 brightness temperature as if a HIRS/2 instrument had measured it. By applying this correction we find an excellent agreement between the original HIRS/2 T12 and the HIRS/3 data inferred from the correction method with R = 0.986. Upper-tropospheric humidity (UTH) derived from the pseudo HIRS/2 T12 data compared well with that calculated from intersatellite-calibrated data, providing independent justification for using the two intercalibrated time series (HIRS/2 and HIRS/3) as a continuous HIRS time series for long-term UTH analyses.
Kourie, Joseph I
1999-01-01
The lipid bilayer technique is used to characterize the biophysical and pharmacological properties of a novel, fast, cation-selective channel formed by incorporating platypus (Ornithorhynchus anatinus) venom (OaV) into lipid membranes.A synthetic C-type natriuretic peptide OaCNP-39, which is identical to that present in platypus venom, mimics the conductance, kinetics, selectivity and pharmacological properties of the OaV-formed fast cation-selective channel. The N-terminal fragment containing residues 1-17, i.e. OaCNP-39(1-17), induces the channel activity.The current amplitude of the TEACl-insensitive fast cation-selective channel is dependent on cytoplasmic K+, [K+]cis. The increase in the current amplitude, as a function of increasing [K+]cis, is non-linear and can be described by the Michaelis-Menten equation. At +140 mV, the values of γmax and KS are 63·1 pS and 169 mM, respectively, whereas at 0 mV the values of γmax and KS are 21·1 pS and 307 mM, respectively. γmax and KS are maximal single channel conductance and concentration for half-maximal γ, respectively. The calculated permeability ratios, PK:PRb:PNa: PCs:PLi, were 1:0·76:0·21:0·09:0·03, respectively.The probability of the fast channel being open, Po, increases from 0·15 at 0 mV to 0·75 at +140 mV. In contrast, the channel frequency, Fo, decreases from 400 to 180 events per second for voltages between 0 mV and +140. The mean open time, To, increases as the bilayer is made more positive, between 0 and +140 mV. The mean values of the voltage-dependent kinetic parameters, Po, Fo, To and mean closed time (Tc), are independent of [KCl]cis between 50 and 750 mM (P > 0·05).It is proposed that some of the symptoms of envenomation by platypus venom may be caused partly by changes in cellular functions mediated via the OaCNP-39-formed fast cation-selective channel, which affects signal transduction. PMID:10381585
Busquet, Perrine; Nguyen, Ngoc Khoi; Schmid, Eduard; Tanimoto, Naoyuki; Seeliger, Mathias W; Ben-Yosef, Tamar; Mizuno, Fengxia; Akopian, Abram; Striessnig, Jörg; Singewald, Nicolas
2010-05-01
Mounting evidence suggests that voltage-gated L-type Ca2+ channels can modulate affective behaviour. We therefore explored the role of CaV1.3 L-type Ca2+ channels in depression- and anxiety-like behaviours using CaV1.3-deficient mice (CaV1.3-/-). We showed that CaV1.3-/- mice displayed less immobility in the forced swim test as well as in the tail suspension test, indicating an antidepressant-like phenotype. Locomotor activity in the home cage or a novel open-field test was not influenced. In the elevated plus maze (EPM), CaV1.3-/- mice entered the open arms more frequently and spent more time there indicating an anxiolytic-like phenotype which was, however, not supported in the stress-induced hyperthermia test. By performing parallel experiments in Claudin 14 knockout mice (Cldn14-/-), which like CaV1.3-/- mice are congenitally deaf, an influence of deafness on the antidepressant-like phenotype could be ruled out. On the other hand, a similar EPM behaviour indicative of an anxiolytic phenotype was also found in the Cldn14-/- animals. Using electroretinography and visual behavioural tasks we demonstrated that at least in mice, CaV1.3 channels do not significantly contribute to visual function. However, marked morphological changes were revealed in synaptic ribbons in the outer plexiform layer of CaV1.3-/- retinas by immunohistochemistry suggesting a possible role of this channel type in structural plasticity at the ribbon synapse. Taken together, our findings indicate that CaV1.3 L-type Ca2+ channels modulate depression-like behaviour but are not essential for visual function. The findings raise the possibility that selective modulation of CaV1.3 channels could be a promising new therapeutic concept for the treatment of mood disorders.
Direct modulation of TRPM4 and TRPM3 channels by the phospholipase C inhibitor U73122
Michel, Niklas; Behrendt, Marc; Dierich, Marlen; Dembla, Sandeep; Wilke, Bettina U; Konrad, Maik; Lindner, Moritz; Oberwinkler, Johannes; Oliver, Dominik
2016-01-01
Background and Purpose Signalling through phospholipase C (PLC) controls many cellular processes. Much information on the relevance of this important pathway has been derived from pharmacological inhibition of the enzymatic activity of PLC. We found that the most frequently employed PLC inhibitor, U73122, activates endogenous ionic currents in widely used cell lines. Given the extensive use of U73122 in research, we set out to identify these U73122‐sensitive ion channels. Experimental Approach We performed detailed biophysical analysis of the U73122‐induced currents in frequently used cell lines. Key Results At concentrations required to inhibit PLC, U73122 modulated the activity of transient receptor potential melastatin (TRPM) channels through covalent modification. U73122 was shown to be a potent agonist of ubiquitously expressed TRPM4 channels and activated endogenous TRPM4 channels in CHO cells independently of PLC and of the downstream second messengers PI(4,5)P2 and Ca2+. U73122 also potentiated Ca2 +‐dependent TRPM4 currents in human Jurkat T‐cells, endogenous TRPM4 in HEK293T cells and recombinant human TRPM4. In contrast to TRPM4, TRPM3 channels were inhibited whereas the closely related TRPM5 channels were insensitive to U73122, showing that U73122 exhibits high specificity within the TRPM channel family. Conclusions and Implications Given the widespread expression of TRPM4 and TRPM3 channels, these actions of U73122 must be considered when interpreting its effects on cell function. U73122 may also be useful for identifying and characterizing TRPM channels in native tissue, thus facilitating the analysis of their physiology. PMID:27328745
Optimizing Within-Subject Experimental Designs for jICA of Multi-Channel ERP and fMRI
Mangalathu-Arumana, Jain; Liebenthal, Einat; Beardsley, Scott A.
2018-01-01
Joint independent component analysis (jICA) can be applied within subject for fusion of multi-channel event-related potentials (ERP) and functional magnetic resonance imaging (fMRI), to measure brain function at high spatiotemporal resolution (Mangalathu-Arumana et al., 2012). However, the impact of experimental design choices on jICA performance has not been systematically studied. Here, the sensitivity of jICA for recovering neural sources in individual data was evaluated as a function of imaging SNR, number of independent representations of the ERP/fMRI data, relationship between instantiations of the joint ERP/fMRI activity (linear, non-linear, uncoupled), and type of sources (varying parametrically and non-parametrically across representations of the data), using computer simulations. Neural sources were simulated with spatiotemporal and noise attributes derived from experimental data. The best performance, maximizing both cross-modal data fusion and the separation of brain sources, occurred with a moderate number of representations of the ERP/fMRI data (10–30), as in a mixed block/event related experimental design. Importantly, the type of relationship between instantiations of the ERP/fMRI activity, whether linear, non-linear or uncoupled, did not in itself impact jICA performance, and was accurately recovered in the common profiles (i.e., mixing coefficients). Thus, jICA provides an unbiased way to characterize the relationship between ERP and fMRI activity across brain regions, in individual data, rendering it potentially useful for characterizing pathological conditions in which neurovascular coupling is adversely affected. PMID:29410611
Decision on risk-averse dual-channel supply chain under demand disruption
NASA Astrophysics Data System (ADS)
Yan, Bo; Jin, Zijie; Liu, Yanping; Yang, Jianbo
2018-02-01
We studied dual-channel supply chains using centralized and decentralized decision-making models. We also conducted a comparative analysis of the decisions before and after demand disruption. The study shows that the amount of change in decision-making is a linear function of the amount of demand disruption, and it is independent of the risk-averse coefficient. The optimal sales volume decision of the disturbing supply chain is related to market share and demand disruption in the decentralized decision-making model. The optimal decision is only influenced by demand disruption in the centralized decision-making model. The stability of the sales volume of the two models is related to market share and demand disruption. The optimal system production of the two models shows robustness, but their stable internals are different.
Speedup of quantum evolution of multiqubit entanglement states
Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Tian, Jian-Xiang; Fan, Heng
2016-01-01
As is well known, quantum speed limit time (QSLT) can be used to characterize the maximal speed of evolution of quantum systems. We mainly investigate the QSLT of generalized N-qubit GHZ-type states and W-type states in the amplitude-damping channels. It is shown that, in the case N qubits coupled with independent noise channels, the QSLT of the entangled GHZ-type state is closely related to the number of qubits in the small-scale system. And the larger entanglement of GHZ-type states can lead to the shorter QSLT of the evolution process. However, the QSLT of the W-type states are independent of the number of qubits and the initial entanglement. Furthermore, by considering only M qubits among the N-qubit system respectively interacting with their own noise channels, QSLTs for these two types states are shorter than in the case N qubits coupled with independent noise channels. We therefore reach the interesting result that the potential speedup of quantum evolution of a given N-qubit GHZ-type state or W-type state can be realized in the case the number of the applied noise channels satisfying M < N. PMID:27283757
Ehrhardt, Annette; Chung, W Joon; Pyle, Louise C; Wang, Wei; Nowotarski, Krzysztof; Mulvihill, Cory M; Ramjeesingh, Mohabir; Hong, Jeong; Velu, Sadanandan E; Lewis, Hal A; Atwell, Shane; Aller, Steve; Bear, Christine E; Lukacs, Gergely L; Kirk, Kevin L; Sorscher, Eric J
2016-01-22
In this study, we present data indicating a robust and specific domain interaction between the cystic fibrosis transmembrane conductance regulator (CFTR) first cytosolic loop (CL1) and nucleotide binding domain 1 (NBD1) that allows ion transport to proceed in a regulated fashion. We used co-precipitation and ELISA to establish the molecular contact and showed that binding kinetics were not altered by the common clinical mutation F508del. Both intrinsic ATPase activity and CFTR channel gating were inhibited severely by CL1 peptide, suggesting that NBD1/CL1 binding is a crucial requirement for ATP hydrolysis and channel function. In addition to cystic fibrosis, CFTR dysregulation has been implicated in the pathogenesis of prevalent diseases such as chronic obstructive pulmonary disease, acquired rhinosinusitis, pancreatitis, and lethal secretory diarrhea (e.g. cholera). On the basis of clinical relevance of the CFTR as a therapeutic target, a cell-free drug screen was established to identify modulators of NBD1/CL1 channel activity independent of F508del CFTR and pharmacologic rescue. Our findings support a targetable mechanism of CFTR regulation in which conformational changes in the NBDs cause reorientation of transmembrane domains via interactions with CL1 and result in channel gating. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels
NASA Astrophysics Data System (ADS)
DeCoursey, Thomas E.; Morgan, Deri; Cherny, Vladimir V.
2003-04-01
The enzyme NADPH oxidase in phagocytes is important in the body's defence against microbes: it produces superoxide anions (O2-, precursors to bactericidal reactive oxygen species). Electrons move from intracellular NADPH, across a chain comprising FAD (flavin adenine dinucleotide) and two haems, to reduce extracellular O2 to O2-. NADPH oxidase is electrogenic, generating electron current (Ie) that is measurable under voltage-clamp conditions. Here we report the complete current-voltage relationship of NADPH oxidase, the first such measurement of a plasma membrane electron transporter. We find that Ie is voltage-independent from -100mV to >0mV, but is steeply inhibited by further depolarization, and is abolished at about +190mV. It was proposed that H+ efflux mediated by voltage-gated proton channels compensates Ie, because Zn2+ and Cd2+ inhibit both H+ currents and O2- production. Here we show that COS-7 cells transfected with four NADPH oxidase components, but lacking H+ channels, produce O2- in the presence of Zn2+ concentrations that inhibit O2- production in neutrophils and eosinophils. Zn2+ does not inhibit NADPH oxidase directly, but through effects on H+ channels. H+ channels optimize NADPH oxidase function by preventing membrane depolarization to inhibitory voltages.
Yurtsever, Zeynep; Sala-Rabanal, Monica; Randolph, David T; Scheaffer, Suzanne M; Roswit, William T; Alevy, Yael G; Patel, Anand C; Heier, Richard F; Romero, Arthur G; Nichols, Colin G; Holtzman, Michael J; Brett, Tom J
2012-12-07
The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface.
Yurtsever, Zeynep; Sala-Rabanal, Monica; Randolph, David T.; Scheaffer, Suzanne M.; Roswit, William T.; Alevy, Yael G.; Patel, Anand C.; Heier, Richard F.; Romero, Arthur G.; Nichols, Colin G.; Holtzman, Michael J.; Brett, Tom J.
2012-01-01
The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface. PMID:23112050
Channel function reconstitution and re-animation: a single-channel strategy in the postcrystal age
Oiki, Shigetoshi
2015-01-01
The most essential properties of ion channels for their physiologically relevant functions are ion-selective permeation and gating. Among the channel species, the potassium channel is primordial and the most ubiquitous in the biological world, and knowledge of this channel underlies the understanding of features of other ion channels. The strategy applied to studying channels changed dramatically after the crystal structure of the potassium channel was resolved. Given the abundant structural information available, we exploited the bacterial KcsA potassium channel as a simple model channel. In the postcrystal age, there are two effective frameworks with which to decipher the functional codes present in the channel structure, namely reconstitution and re-animation. Complex channel proteins are decomposed into essential functional components, and well-examined parts are rebuilt for integrating channel function in the membrane (reconstitution). Permeation and gating are dynamic operations, and one imagines the active channel by breathing life into the ‘frozen’ crystal (re-animation). Capturing the motion of channels at the single-molecule level is necessary to characterize the behaviour of functioning channels. Advanced techniques, including diffracted X-ray tracking, lipid bilayer methods and high-speed atomic force microscopy, have been used. Here, I present dynamic pictures of the KcsA potassium channel from the submolecular conformational changes to the supramolecular collective behaviour of channels in the membrane. These results form an integrated picture of the active channel and offer insights into the processes underlying the physiological function of the channel in the cell membrane. PMID:25833254
Channel function reconstitution and re-animation: a single-channel strategy in the postcrystal age.
Oiki, Shigetoshi
2015-06-15
The most essential properties of ion channels for their physiologically relevant functions are ion-selective permeation and gating. Among the channel species, the potassium channel is primordial and the most ubiquitous in the biological world, and knowledge of this channel underlies the understanding of features of other ion channels. The strategy applied to studying channels changed dramatically after the crystal structure of the potassium channel was resolved. Given the abundant structural information available, we exploited the bacterial KcsA potassium channel as a simple model channel. In the postcrystal age, there are two effective frameworks with which to decipher the functional codes present in the channel structure, namely reconstitution and re-animation. Complex channel proteins are decomposed into essential functional components, and well-examined parts are rebuilt for integrating channel function in the membrane (reconstitution). Permeation and gating are dynamic operations, and one imagines the active channel by breathing life into the 'frozen' crystal (re-animation). Capturing the motion of channels at the single-molecule level is necessary to characterize the behaviour of functioning channels. Advanced techniques, including diffracted X-ray tracking, lipid bilayer methods and high-speed atomic force microscopy, have been used. Here, I present dynamic pictures of the KcsA potassium channel from the submolecular conformational changes to the supramolecular collective behaviour of channels in the membrane. These results form an integrated picture of the active channel and offer insights into the processes underlying the physiological function of the channel in the cell membrane. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Role of Cyclic Nucleotide-Gated Channels in the Modulation of Mouse Hippocampal Neurogenesis
Podda, Maria Vittoria; Piacentini, Roberto; Barbati, Saviana Antonella; Mastrodonato, Alessia; Puzzo, Daniela; D’Ascenzo, Marcello; Leone, Lucia; Grassi, Claudio
2013-01-01
Neural stem cells generate neurons in the hippocampal dentate gyrus in mammals, including humans, throughout adulthood. Adult hippocampal neurogenesis has been the focus of many studies due to its relevance in processes such as learning and memory and its documented impairment in some neurodegenerative diseases. However, we are still far from having a complete picture of the mechanism regulating this process. Our study focused on the possible role of cyclic nucleotide-gated (CNG) channels. These voltage-independent channels activated by cyclic nucleotides, first described in retinal and olfactory receptors, have been receiving increasing attention for their involvement in several brain functions. Here we show that the rod-type, CNGA1, and olfactory-type, CNGA2, subunits are expressed in hippocampal neural stem cells in culture and in situ in the hippocampal neurogenic niche of adult mice. Pharmacological blockade of CNG channels did not affect cultured neural stem cell proliferation but reduced their differentiation towards the neuronal phenotype. The membrane permeant cGMP analogue, 8-Br-cGMP, enhanced neural stem cell differentiation to neurons and this effect was prevented by CNG channel blockade. In addition, patch-clamp recording from neuron-like differentiating neural stem cells revealed cGMP-activated currents attributable to ion flow through CNG channels. The current work provides novel insights into the role of CNG channels in promoting hippocampal neurogenesis, which may prove to be relevant for stem cell-based treatment of cognitive impairment and brain damage. PMID:23991183
Peptides and genes coding for scorpion toxins that affect ion-channels.
Possani, L D; Merino, E; Corona, M; Bolivar, F; Becerril, B
2000-01-01
Most scorpion toxins are ligand peptides that recognize and bind to integral membrane proteins known as ion-channels. To date there are at least 202 distinct sequences described, obtained from 30 different species of scorpions, 27 from the family Buthidae and three from the family Scorpionidae. Toxins that recognize potassium and chloride channels are usually from 29 to 41 amino acids long, stabilized by three or four disulfide bridges, whereas those that recognize sodium channels are longer, 60 to 76 amino acid residues, compacted by four disulfide bridges. Toxins specific for calcium channels are scarcely known and have variable amino acid lengths. The entire repertoire of toxins, independently of their specificity, was analyzed together by computational programs and a phylogenetic tree was built showing two separate branches. The K(+) and Cl(-) channel specific toxins are clustered into 14 subfamilies, whereas those of Na(+) and Ca(2+) specific toxins comprise at least 12 subfamilies. There are clear similarities among them, both in terms of primary sequence and the main three-dimensional folding pattern. A dense core formed by a short alpha helix segment and several antiparallel beta-sheet stretches, maintained by disulfide pairing, seems to be a common structural feature present in all toxins. The physiological function of these peptides is manifested by a blockage of ion passage through the channels or by a modification of the gating mechanism that controls opening and closing of the ion pore.
A novel type of ATP block on a Ca(2+)-activated K(+) channel from bullfrog erythrocytes.
Shindo, M; Imai, Y; Sohma, Y
2000-07-01
Using the patch-clamp technique, we have identified an intermediate conductance Ca(2+)-activated K(+) channel from bullfrog (Rana catesbeiana) erythrocytes and have investigated the regulation of channel activity by cytosolic ATP. The channel was highly selective for K(+) over Na(+), gave a linear I-V relationship with symmetrical 117.5 mM K(+) solutions and had a single-channel conductance of 60 pS. Channel activity was dependent on Ca(2+) concentration (K(1/2) = 600 nM) but voltage-independent. These basic characteristics are similar to those of human and frog erythrocyte Ca(2+)-activated K(+) (Gardos) channels previously reported. However, cytoplasmic application of ATP reduced channel activity with block exhibiting a novel bell-shaped concentration dependence. The channel was inhibited most by approximately 10 microM ATP (P(0) reduced to 5% of control) but less blocked by lower and higher concentrations of ATP. Moreover, the novel type of ATP block did not require Mg(2+), was independent of PKA or PKC, and was mimicked by a nonhydrolyzable ATP analog, AMP-PNP. This suggests that ATP exerts its effect by direct binding to sites on the channel or associated regulatory proteins, but not by phosphorylation of either of these components.
Design of a Software Configuration for Real-Time Multimedia Group Communication; HNUMTP
NASA Astrophysics Data System (ADS)
Park, Gil-Cheol
This paper designs transport protocol of multi-session/channel method for real time multimedia group telecommunication and realizes it. The special features of the designed and realized protocol are first, that it solved the sync problem which is the specific character of multimedia telecommunication by using multi-channel method protocol. Usual multimedia telecommunication is assigned one channel by each media data. This paper shortened the phenomenon that waits data for sync of receiving part by assigning more than one channel for the channel that has a lot of data per hour as video data. The problem of intermedia synchronization that happens then could be solved by sending temporal/spacial related data among data assigning extra control channel. Second, that it does integrated management for sessions. Each session is one group telecommunication unit which supports mutual working environment that is independent. Each session communicates the participants in the group independently, the session manager manages all the communication among groups and lets media sources connected with all network be operated efficiently.
Regulation of CaV2 calcium channels by G protein coupled receptors
Zamponi, Gerald W.; Currie, Kevin P.M.
2012-01-01
Voltage gated calcium channels (Ca2+ channels) are key mediators of depolarization induced calcium influx into excitable cells, and thereby play pivotal roles in a wide array of physiological responses. This review focuses on the inhibition of CaV2 (N- and P/Q-type) Ca2+-channels by G protein coupled receptors (GPCRs), which exerts important autocrine/paracrine control over synaptic transmission and neuroendocrine secretion. Voltage-dependent inhibition is the most widespread mechanism, and involves direct binding of the G protein βγ dimer (Gβγ) to the α1 subunit of CaV2 channels. GPCRs can also recruit several other distinct mechanisms including phosphorylation, lipid signaling pathways, and channel trafficking that result in voltage-independent inhibition. Current knowledge of Gβγ-mediated inhibition is reviewed, including the molecular interactions involved, determinants of voltage-dependence, and crosstalk with other cell signaling pathways. A summary of recent developments in understanding the voltage-independent mechanisms prominent in sympathetic and sensory neurons is also included. PMID:23063655
Tetrachromacy of human vision: spectral channels and primary colors
NASA Astrophysics Data System (ADS)
Gavrik, Vitali V.
2002-06-01
Full-color imaging requires four channels as, in contrast to a colorimeter, can add no primary to matched scene colors themselves. An ideal imaging channel should have the same spectral sensitivity of scene recording as a retinal receptor and evoke the same primary color sensation. The alternating matching functions of a triad of real primaries are inconsistent with the three cones but explicable of two pairs of independent opponent receptors with their alternating blue-yellow and green-red chromatic axes in the color space. Much other controversy of trichromatic approach can also be explained with the recently proposed intra- receptor processes in the photopic rod and cone, respectively. Each of their four primary sensations, unmixed around 465, 495, 575, and 650 nm, is evoked within a different spectral region. The current trichromatic photographic systems have been found separately to approximate the blue and red receptors, as well as their spectral opponency against the respective yellow and blue- green receptors simulated with a single middle-wave imaging channel. The channel sensitivities are delimited by the neutral points of rod and cone and cannot simulate the necessary overlap of non-opponent channels for properly to render some mixed colors. The yellow and cyan positive dyes closely control the brightness of blue and red sensations, respectively. Those red and blue respectively to control the yellow and blue-green sensations on brightness scales are replaced by magenta dye, controlling them together. Accurate rendering of natural saturation metameric colors, problematic blue-green, purple-red, and low-illumination colors requires to replace the hybrid 'green' channel with the blue-green and yellow channels.
Automated Electrophysiology Makes the Pace for Cardiac Ion Channel Safety Screening
Möller, Clemens; Witchel, Harry
2011-01-01
The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry’s need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and torsades de pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the “gold-standard” for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive) for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions. This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology – much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening. PMID:22131974
Channelopathy pathogenesis in autism spectrum disorders.
Schmunk, Galina; Gargus, J Jay
2013-11-05
Autism spectrum disorder (ASD) is a syndrome that affects normal brain development and is characterized by impaired social interaction as well as verbal and non-verbal communication and by repetitive, stereotypic behavior. ASD is a complex disorder arising from a combination of multiple genetic and environmental factors that are independent from racial, ethnic and socioeconomical status. The high heritability of ASD suggests a strong genetic basis for the disorder. Furthermore, a mounting body of evidence implies a role of various ion channel gene defects (channelopathies) in the pathogenesis of autism. Indeed, recent genome-wide association, and whole exome- and whole-genome resequencing studies linked polymorphisms and rare variants in calcium, sodium and potassium channels and their subunits with susceptibility to ASD, much as they do with bipolar disorder, schizophrenia and other neuropsychiatric disorders. Moreover, animal models with these genetic variations recapitulate endophenotypes considered to be correlates of autistic behavior seen in patients. An ion flux across the membrane regulates a variety of cell functions, from generation of action potentials to gene expression and cell morphology, thus it is not surprising that channelopathies have profound effects on brain functions. In the present work, we summarize existing evidence for the role of ion channel gene defects in the pathogenesis of autism with a focus on calcium signaling and its downstream effects.
Channelopathy pathogenesis in autism spectrum disorders
Schmunk, Galina; Gargus, J. Jay
2013-01-01
Autism spectrum disorder (ASD) is a syndrome that affects normal brain development and is characterized by impaired social interaction as well as verbal and non-verbal communication and by repetitive, stereotypic behavior. ASD is a complex disorder arising from a combination of multiple genetic and environmental factors that are independent from racial, ethnic and socioeconomical status. The high heritability of ASD suggests a strong genetic basis for the disorder. Furthermore, a mounting body of evidence implies a role of various ion channel gene defects (channelopathies) in the pathogenesis of autism. Indeed, recent genome-wide association, and whole exome- and whole-genome resequencing studies linked polymorphisms and rare variants in calcium, sodium and potassium channels and their subunits with susceptibility to ASD, much as they do with bipolar disorder, schizophrenia and other neuropsychiatric disorders. Moreover, animal models with these genetic variations recapitulate endophenotypes considered to be correlates of autistic behavior seen in patients. An ion flux across the membrane regulates a variety of cell functions, from generation of action potentials to gene expression and cell morphology, thus it is not surprising that channelopathies have profound effects on brain functions. In the present work, we summarize existing evidence for the role of ion channel gene defects in the pathogenesis of autism with a focus on calcium signaling and its downstream effects. PMID:24204377
Au, Chak Leung; Tsang, Suk Ying; Lau, Chi Wai; Yao, Xiaoqiang; Cai, Zongwei
2017-01-01
Background and Purpose Raloxifene can induce both endothelium‐dependent and ‐independent relaxation in different arteries. However, the underlying mechanisms by which raloxifene triggers endothelium‐independent relaxation are still incompletely understood. The purpose of present study was to examine the roles of NOSs and Ca2+ channels in the relaxant response to raloxifene in the rat isolated, endothelium‐denuded aorta. Experimental Approach Changes in isometric tension, cGMP, nitrite, inducible NOS protein expression and distribution in response to raloxifene in endothelium‐denuded aortic rings were studied by organ baths, radioimmunoassay, Griess reaction, western blot and immunohistochemistry respectively. Key Results Raloxifene reduced the contraction to CaCl2 in a Ca2+‐free, high K+‐containing solution in intact aortic rings. Raloxifene also acutely relaxed the aorta primarily through an endothelium‐independent mechanism involving NO, mostly from inducible NOS (iNOS) in vascular smooth muscle layers. This effect of raloxifene involved the generation of cGMP and nitrite. Also, it was genomic in nature, as it was inhibited by a classical oestrogen receptor antagonist and inhibitors of RNA and protein synthesis. Raloxifene‐induced stimulation of iNOS gene expression was partly mediated through activation of the NF‐κB pathway. Raloxifene was more potent than 17β‐estradiol or tamoxifen at relaxing endothelium‐denuded aortic rings by stimulation of iNOS. Conclusions and Implications Raloxifene‐mediated vasorelaxation in rat aorta is independent of a functional endothelium and is mediated by oestrogen receptors and NF‐κB. This effect is mainly mediated through an enhanced production of NO, cGMP and nitrite, via the induction of iNOS and inhibition of calcium influx through Ca2+ channels in rat aortic smooth muscle. PMID:28138957
Thompson, Jill L; Shuttleworth, Trevor J
2013-01-01
Currently, Orai proteins are known to encode two distinct agonist-activated, highly calcium-selective channels: the store-operated Ca2+ release-activated Ca2+ (CRAC) channels, and the store-independent, arachidonic acid-activated ARC channels. Surprisingly, whilst the trigger for activation of these channels is entirely different, both depend on stromal interacting molecule 1 (STIM1). However, whilst STIM1 in the endoplasmic reticulum membrane is the critical sensor for the depletion of this calcium store that triggers CRAC channel activation, it is the pool of STIM1 constitutively resident in the plasma membrane that is essential for activation of the ARC channels. Here, using a variety of approaches, we show that the key domains within the cytosolic part of STIM1 identified as critical for the activation of CRAC channels are also key for activation of the ARC channels. However, examination of the actual steps involved in such activation reveal marked differences between these two Orai channel types. Specifically, loss of calcium from the EF-hand of STIM1 that forms the key initiation point for activation of the CRAC channels has no effect on ARC channel activity. Secondly, in marked contrast to the dynamic and labile nature of interactions between STIM1 and the CRAC channels, STIM1 in the plasma membrane appears to be constitutively associated with the ARC channels. Finally, specific mutations in STIM1 that induce an extended, constitutively active, conformation for the CRAC channels actually prevent activation of the ARC channels by arachidonic acid. Based on these findings, we propose that the likely role of arachidonic acid lies in inducing the actual gating of the channel. PMID:23690558
Characteristics of camel-gate structures with active doping channel profiles
NASA Astrophysics Data System (ADS)
Tsai, Jung-Hui; Lour, Wen-Shiung; Laih, Lih-Wen; Liu, Rong-Chau; Liu, Wen-Chau
1996-03-01
In this paper, we demonstrate the influence of channel doping profile on the performances of camel-gate field effect transistors (CAMFETs). For comparison, single and tri-step doping channel structures with identical doping thickness products are employed, while other parameters are kept unchanged. The results of a theoretical analysis show that the single doping channel FET with lightly doping active layer has higher barrier height and drain-source saturation current. However, the transconductance is decreased. For a tri-step doping channel structure, it is found that the output drain-source saturation current and the barrier height are enhanced. Furthermore, the relatively voltage independent performances are improved. Two CAMFETs with single and tri-step doping channel structures have been fabricated and discussed. The devices exhibit nearly voltage independent transconductances of 144 mS mm -1 and 222 mS mm -1 for single and tri-step doping channel CAMFETs, respectively. The operation gate voltage may extend to ± 1.5 V for a tri-step doping channel CAMFET. In addition, the drain current densities of > 750 and 405 mA mm -1 are obtained for the tri-step and single doping CAMFETs. These experimental results are inconsistent with theoretical analysis.
Sánchez, Manuel; Suárez, Lorena; Cantabrana, Begoña; Bordallo, Javier
2017-01-01
Estrogens facilitate prolactin (PRL) secretion acting on pituitary cells. In GH 3 cells, estradiol induces acute action potentials and oscillations of intracellular Ca 2+ associated with the secretagogue function. Estradiol modulates several ion channels which may affect the action potential rate and the release of PRL in lactotroph cells, which might depend on its concentration. The aims were to characterize the acute effect of supraphysiological concentrations of estradiol on Ca 2+ and noninactivating K + currents and measure the effect on the spontaneous action potentials and PRL release in the somatolactotroph cell line, GH 3 . Electrophysiological studies were carried out by voltage- and current-clamp techniques and ELISA determination of PRL secretion. Pharmacological concentrations of estradiol (above 1 μM), without a latency period, blocked Ca 2+ channels and noninactivating K + currents, including the large-conductance voltage- and Ca 2+ -activated K + channels (BK), studied in whole-cell nystatin perforated and in excided inside-out patches of GH 3 and CHO cells, transiently transfected with the human α-pore forming subunit of BK. The effect on BK was contrary to the agonist effect associated with the regulatory β 1 -subunits of the BK, which GH 3 cells lack, but its transient transfection did not modify the noninactivating current blockade, suggesting a different mechanism of regulation. Estradiol, at the same concentration range, acutely decreased the frequency of action potentials, an expected effect as consequence of the Ca 2+ channel blockade. Despite this, PRL secretion initially increased, followed by a decrease in long-term incubations. This suggests that, in GH 3 cells, supraphysiological concentrations of estradiol modulating PRL secretion are partially independent of extracellular Ca 2+ influx.
NASA Astrophysics Data System (ADS)
Fauchez, T.; Platnick, S. E.; Sourdeval, O.; Wang, C.; Meyer, K.; Cornet, C.; Szczap, F.
2017-12-01
Cirrus are an important part of the Earth radiation budget but an assessment of their role yet remains highly uncertain. Cirrus optical properties such as Cloud Optical Thickness (COT) and ice crystal effective particle size (Re) are often retrieved with a combination of Visible/Near InfraRed (VNIR) and ShortWave-InfraRed (SWIR) reflectance channels. Alternatively, Thermal InfraRed (TIR) techniques, such as the Split Window Technique (SWT), have demonstrated better sensitivity to thin cirrus. However, current satellite operational products for both retrieval methods assume that cloudy pixels are horizontally homogeneous (Plane Parallel and Homogeneous Approximation (PPHA)) and independent (Independent Pixel Approximation (IPA)). The impact of these approximations on cirrus retrievals needs to be understood and, as far as possible, corrected. Horizontal heterogeneity effects can be more easily estimated and corrected in the TIR range because they are mainly dominated by the PPA bias, which primarily depends on the COT subpixel heterogeneity. For solar reflectance channels, in addition to the PPHA bias, the IPA can lead to significant retrieval errors if there is large photon transport between cloudy columns in addition to brightening and shadowing effects that are more difficult to quantify.The effects of cirrus horizontal heterogeneity are here studied on COT and Re retrievals obtained using simulated MODIS reflectances at 0.86 and 2.11 μm and radiances at 8.5, 11.0 and 12.0 μm, for spatial resolutions ranging from 50 m to 10 km. For each spatial resolution, simulated TOA reflectances and radiances are combined for cloud optical property retrievals with a research-level optimal estimation retrieval method (OEM). The impact of horizontal heterogeneity on the retrieved products is assessed for different solar geometries and various combinations of the five channels.
Analyses of electron runaway in front of the negative streamer channel
NASA Astrophysics Data System (ADS)
Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.; Neubert, T.; Chanrion, O.
2017-08-01
X-ray and γ-ray emissions, observed in correlation with negative leaders of lightning and long sparks of high-voltage laboratory experiments, are conventionally connected with the bremsstrahlung of high-energy runaway electrons (REs). Here we extend a focusing mechanism, analyzed in our previous paper, which allows the electric field to reach magnitudes, required for a generation of significant RE fluxes and associated bremsstrahlung, when the ionization wave propagates in a narrow, ionized channel created by a previous streamer. Under such conditions we compute the production rate of REs per unit streamer length as a function of the streamer velocity and predict that, once a streamer is formed with the electric field capable of producing REs ahead of the streamer front, the ionization induced by the REs is capable of creating an ionized channel that allows for self-sustained propagation of the RE-emitting ionization wave independent of the initial electron concentration. Thus, the streamer coronas of the leaders are probable sources of REs producing the observed high-energy radiation. To prove these predictions, new simulations are planned, which would show explicitly that the preionization in front of the channel via REs will lead to the ionization wave propagation self-consistent with RE generation.
Bit error rate performance of pi/4-DQPSK in a frequency-selective fast Rayleigh fading channel
NASA Technical Reports Server (NTRS)
Liu, Chia-Liang; Feher, Kamilo
1991-01-01
The bit error rate (BER) performance of pi/4-differential quadrature phase shift keying (DQPSK) modems in cellular mobile communication systems is derived and analyzed. The system is modeled as a frequency-selective fast Rayleigh fading channel corrupted by additive white Gaussian noise (AWGN) and co-channel interference (CCI). The probability density function of the phase difference between two consecutive symbols of M-ary differential phase shift keying (DPSK) signals is first derived. In M-ary DPSK systems, the information is completely contained in this phase difference. For pi/4-DQPSK, the BER is derived in a closed form and calculated directly. Numerical results show that for the 24 kBd (48 kb/s) pi/4-DQPSK operated at a carrier frequency of 850 MHz and C/I less than 20 dB, the BER will be dominated by CCI if the vehicular speed is below 100 mi/h. In this derivation, frequency-selective fading is modeled by two independent Rayleigh signal paths. Only one co-channel is assumed in this derivation. The results obtained are also shown to be valid for discriminator detection of M-ary DPSK signals.
Voltage-Dependent Gating of hERG Potassium Channels
Cheng, Yen May; Claydon, Tom W.
2012-01-01
The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4–S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure–function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4–S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4–S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor. PMID:22586397
NASA Astrophysics Data System (ADS)
Buchholz, Bernhard; Afchine, Armin; Klein, Alexander; Schiller, Cornelius; Krämer, Martina; Ebert, Volker
2017-01-01
The novel Hygrometer for Atmospheric Investigation (HAI) realizes a unique concept for simultaneous gas-phase and total (gas-phase + evaporated cloud particles) water measurements. It has been developed and successfully deployed for the first time on the German HALO research aircraft. This new instrument combines direct tunable diode laser absorption spectroscopy (dTDLAS) with a first-principle evaluation method to allow absolute water vapor measurements without any initial or repetitive sensor calibration using a reference gas or a reference humidity generator. HAI contains two completely independent dual-channel (closed-path, open-path) spectrometers, one at 1.4 and one at 2.6 µm, which together allow us to cover the entire atmospheric H2O range from 1 to 40 000 ppmv with a single instrument. Both spectrometers each comprise a separate, wavelength-individual extractive, closed-path cell for total water (ice and gas-phase) measurements. Additionally, both spectrometers couple light into a common open-path cell outside of the aircraft fuselage for a direct, sampling-free, and contactless determination of the gas-phase water content. This novel twin dual-channel setup allows for the first time multiple self-validation functions, in particular a reliable, direct, in-flight validation of the open-path channels. During the first field campaigns, the in-flight deviations between the independent and calibration-free channels (i.e., closed-path to closed-path and open-path to closed-path) were on average in the 2 % range. Further, the fully autonomous HAI hygrometer allows measurements up to 240 Hz with a minimal integration time of 1.4 ms. The best precision is achieved by the 1.4 µm closed-path cell at 3.8 Hz (0.18 ppmv) and by the 2.6 µm closed-path cell at 13 Hz (0.055 ppmv). The requirements, design, operation principle, and first in-flight performance of the hygrometer are described and discussed in this work.
TUKAN—An 8K Pulse Height Analyzer and Multi-Channel Scaler With a PCI or a USB Interface
NASA Astrophysics Data System (ADS)
Guzik, Z.; Borsuk, S.; Traczyk, K.; Plominski, M.
2006-02-01
In this paper we present two types of 8K-channel analyzers designed for spectroscopy and intensity versus time measurements. The first type (Tukan-8K-PCI) incorporates a PCI interface and is designed to be plugged into a PCI slot of a normal PC. The second type (Tukan-8K-USB) incorporates a USB interface. It is mounted in a separate screened box and can be powered either directly from the USB port or from an external dc source (wall adapter or battery). Each type of device may operate in either of two independent operational modes: Multi Channel Analysis (MCA) and Multi-Channel Scaling (MCS). The most crucial component for the MCA mode-the Peak Detect and Hold circuit-is featuring a novel architecture based on a diamond transistor. Its analog stage can accept analog pulses with rise times as short as 100 ns and has a differential linearity below 1% with sliding scale averaging over the full scale. The functionality includes automatic stop on a programmable count in the Region-Of-Interest (ROI) and on preset live- or real time. The MCS mode works at medium counting rates of up to 8 MHz. The dwell time, the number of channels and single or multi-sweep mode may be preset. Each of these parameters can also be controlled externally via four user configurable logical I/O lines. A single Altera FLEX 10KE30 FPGA provides all control functions and incorporates PCI interface. The USB interface is based on FTDI FIFO controller. Advanced and user-friendly software has been developed for the analyzer
Characterization of the Functional Domains of a Mammalian Voltage-Sensitive Phosphatase.
Rosasco, Mario G; Gordon, Sharona E; Bajjalieh, Sandra M
2015-12-15
Voltage-sensitive phosphatases (VSPs) are proteins that directly couple changes in membrane electrical potential to inositol lipid phosphatase activity. VSPs thus couple two signaling pathways that are critical for cellular functioning. Although a number of nonmammalian VSPs have been characterized biophysically, mammalian VSPs are less well understood at both the physiological and biophysical levels. In this study, we aimed to address this gap in knowledge by determining whether the VSP from mouse, Mm-VSP, is expressed in the brain and contains a functional voltage-sensing domain (VSD) and a phosphatase domain. We report that Mm-VSP is expressed in neurons and is developmentally regulated. To address whether the functions of the VSD and phosphatase domain are retained in Mm-VSP, we took advantage of the modular nature of these domains and expressed each independently as a chimeric protein in a heterologous expression system. We found that the Mm-VSP VSD, fused to a viral potassium channel, was able to drive voltage-dependent gating of the channel pore. The Mm-VSP phosphatase domain, fused to the VSD of a nonmammalian VSP, was also functional: activation resulted in PI(4,5)P2 depletion that was sufficient to inhibit the PI(4,5)P2-regulated KCNQ2/3 channels. While testing the functionality of the VSD and phosphatase domain, we observed slight differences between the activities of Mm-VSP-based chimeras and those of nonmammalian VSPs. Although the properties of VSP chimeras may not completely reflect the properties of native VSPs, the differences we observed in voltage-sensing and phosphatase activity provide a starting point for future experiments to investigate the function of Mm-VSP and other mammalian VSPs. In conclusion, our data reveal that both the VSD and the lipid phosphatase domain of Mm-VSP are functional, indicating that Mm-VSP likely plays an important role in mouse neurophysiology. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Changes in IP3 Receptor Expression and Function in Aortic Smooth Muscle of Atherosclerotic Mice
Ewart, Marie-Ann; Ugusman, Azizah; Vishwanath, Anisha; Almabrouk, Tarek A.M.; Alganga, Husam; Katwan, Omar J.; Hubanova, Pavlina; Currie, Susan; Kennedy, Simon
2017-01-01
Peroxynitrite is an endothelium-independent vasodilator that induces relaxation via membrane hyperpolarization. The activation of IP3 receptors triggers the opening of potassium channels and hyperpolarization. Previously we found that relaxation to peroxynitrite was maintained during the development of atherosclerosis due to changes in the expression of calcium-regulatory proteins. In this study we investigated: (1) the mechanism of peroxynitrite-induced relaxation in the mouse aorta, (2) the effect of atherosclerosis on relaxation to peroxynitrite and other vasodilators, and (3) the effect of atherosclerosis on the expression and function of the IP3 receptor. Aortic function was studied using wire myography, and atherosclerosis was induced by fat-feeding ApoE−/− mice. The expression of IP3 receptors was studied using Western blotting and immunohistochemistry. Relaxation to peroxynitrite was attenuated by the IP3 antagonists 2-APB and xestospongin C and also the Kv channel blocker 4-aminopyridine (4-AP). Atherosclerosis attenuated vasodilation to cromakalim and the AMPK activator A769662 but not peroxynitrite. Relaxation was attenuated to a greater extent by 2-APB in atherosclerotic aortae despite the reduced expression of IP3 receptors. 4-AP was less effective in ApoE−/− mice fat-fed for 4 months. Peroxynitrite relaxation involves an IP3-induced calcium release and KV channel activation. This mechanism becomes less important as atherosclerosis develops, and relaxation to peroxynitrite may be maintained by increased calcium extrusion. PMID:28365690
Burgess, Don E.; Bartos, Daniel C.; Reloj, Allison R.; Campbell, Kenneth S.; Johnson, Jonathan N.; Tester, David J.; Ackerman, Michael J.; Fressart, Véronique; Denjoy, Isabelle; Guicheney, Pascale; Moss, Arthur J.; Ohno, Seiko; Horie, Minoru; Delisle, Brian P.
2012-01-01
Type 1 long QT syndrome (LQT1) syndrome is caused by loss-of-function mutations in the KCNQ1, which encodes the K+ channel (Kv7.1) that underlies the slowly activating delayed rectifier K+ current in the heart. Intragenic risk stratification suggests LQT1 mutations that disrupt conserved amino acid residues in the pore are an independent risk factor for LQT1-related cardiac events. The purpose of this study is to determine possible molecular mechanisms that underlie the loss-of-function for these high-risk mutations. Extensive genotype-phenotype analyses of LQT1 patients showed that T322M-, T322A-, or G325R-Kv7.1 confer a high risk for LQT1-related cardiac events. Heterologous expression of these mutations with KCNE1 revealed they generated non-functional channels and caused dominant negative suppression of WT-Kv7.1 current. Molecular dynamic simulations (MDS) of analogous mutations in KcsA (T85M-, T85A-, and G88R-KcsA) demonstrated that they disrupted the symmetrical distribution of the carbonyl oxygen atoms in the selectivity filter, which upset the balance between the strong attractive and K+-K+ repulsive forces required for rapid K+ permeation. We conclude high-risk LQT1 mutations in the pore likely disrupt the architectural and physical properties of the K+ channel selectivity filter. PMID:23092362
Atia, Jolene; McCloskey, Conor; Shmygol, Anatoly S.; Rand, David A.; van den Berg, Hugo A.; Blanks, Andrew M.
2016-01-01
Uterine smooth muscle cells remain quiescent throughout most of gestation, only generating spontaneous action potentials immediately prior to, and during, labor. This study presents a method that combines transcriptomics with biophysical recordings to characterise the conductance repertoire of these cells, the ‘conductance repertoire’ being the total complement of ion channels and transporters expressed by an electrically active cell. Transcriptomic analysis provides a set of potential electrogenic entities, of which the conductance repertoire is a subset. Each entity within the conductance repertoire was modeled independently and its gating parameter values were fixed using the available biophysical data. The only remaining free parameters were the surface densities for each entity. We characterise the space of combinations of surface densities (density vectors) consistent with experimentally observed membrane potential and calcium waveforms. This yields insights on the functional redundancy of the system as well as its behavioral versatility. Our approach couples high-throughput transcriptomic data with physiological behaviors in health and disease, and provides a formal method to link genotype to phenotype in excitable systems. We accurately predict current densities and chart functional redundancy. For example, we find that to evoke the observed voltage waveform, the BK channel is functionally redundant whereas hERG is essential. Furthermore, our analysis suggests that activation of calcium-activated chloride conductances by intracellular calcium release is the key factor underlying spontaneous depolarisations. PMID:27105427
α-SNAP regulates dynamic, on-site assembly and calcium selectivity of Orai1 channels
Li, Peiyao; Miao, Yong; Dani, Adish; Vig, Monika
2016-01-01
Orai1 forms a highly calcium-selective pore of the calcium release activated channel, and α-SNAP is necessary for its function. Here we show that α-SNAP regulates on-site assembly of Orai1 dimers into calcium-selective multimers. We find that Orai1 is a dimer in resting primary mouse embryonic fibroblasts but displays variable stoichiometry in the plasma membrane of store-depleted cells. Remarkably, α-SNAP depletion induces formation of higher-order Orai1 oligomers, which permeate significant levels of sodium via Orai1 channels. Sodium permeation in α-SNAP–deficient cells cannot be corrected by tethering multiple Stim1 domains to Orai1 C-terminal tail, demonstrating that α-SNAP regulates functional assembly and calcium selectivity of Orai1 multimers independently of Stim1 levels. Fluorescence nanoscopy reveals sustained coassociation of α-SNAP with Stim1 and Orai1, and α-SNAP–depleted cells show faster and less constrained mobility of Orai1 within ER-PM junctions, suggesting Orai1 and Stim1 coentrapment without stable contacts. Furthermore, α-SNAP depletion significantly reduces fluorescence resonance energy transfer between Stim1 and Orai1 N-terminus but not C-terminus. Taken together, these data reveal a unique role of α-SNAP in the on-site functional assembly of Orai1 subunits and suggest that this process may, in part, involve enabling crucial low-affinity interactions between Orai1 N-terminus and Stim1. PMID:27335124
Channel interaction limits melodic pitch perception in simulated cochlear implants
Crew, Joseph D.; Galvin, John J.; Fu, Qian-Jie
2012-01-01
In cochlear implants (CIs), melodic pitch perception is limited by the spectral resolution, which in turn is limited by the number of spectral channels as well as interactions between adjacent channels. This study investigated the effect of channel interaction on melodic contour identification (MCI) in normal-hearing subjects listening to novel 16-channel sinewave vocoders that simulated channel interaction in CI signal processing. MCI performance worsened as the degree of channel interaction increased. Although greater numbers of spectral channels may be beneficial to melodic pitch perception, the present data suggest that it is also important to improve independence among spectral channels. PMID:23145706
Complex role of STIM1 in the activation of store-independent Orai1/3 channels
Zhang, Wei; González-Cobos, José C.; Jardin, Isaac; Romanin, Christoph; Matrougui, Khalid
2014-01-01
Orai proteins contribute to Ca2+ entry into cells through both store-dependent, Ca2+ release–activated Ca2+ (CRAC) channels (Orai1) and store-independent, arachidonic acid (AA)-regulated Ca2+ (ARC) and leukotriene C4 (LTC4)-regulated Ca2+ (LRC) channels (Orai1/3 heteromultimers). Although activated by fundamentally different mechanisms, CRAC channels, like ARC and LRC channels, require stromal interacting molecule 1 (STIM1). The role of endoplasmic reticulum–resident STIM1 (ER-STIM1) in CRAC channel activation is widely accepted. Although ER-STIM1 is necessary and sufficient for LRC channel activation in vascular smooth muscle cells (VSMCs), the minor pool of STIM1 located at the plasma membrane (PM-STIM1) is necessary for ARC channel activation in HEK293 cells. To determine whether ARC and LRC conductances are mediated by the same or different populations of STIM1, Orai1, and Orai3 proteins, we used whole-cell and perforated patch-clamp recording to compare AA- and LTC4-activated currents in VSMCs and HEK293 cells. We found that both cell types show indistinguishable nonadditive LTC4- and AA-activated currents that require both Orai1 and Orai3, suggesting that both conductances are mediated by the same channel. Experiments using a nonmetabolizable form of AA or an inhibitor of 5-lipooxygenase suggested that ARC and LRC currents in both cell types could be activated by either LTC4 or AA, with LTC4 being more potent. Although PM-STIM1 was required for current activation by LTC4 and AA under whole-cell patch-clamp recordings in both cell types, ER-STIM1 was sufficient with perforated patch recordings. These results demonstrate that ARC and LRC currents are mediated by the same cellular populations of STIM1, Orai1, and Orai3, and suggest a complex role for both ER-STIM1 and PM-STIM1 in regulating these store-independent Orai1/3 channels. PMID:24567509
Variation of alluvial-channel width with discharge and character of sediment
Osterkamp, W.R.
1979-01-01
Use of channel measurements to estimate discharge characteristics of alluvial streams has shown that little agreement exists for the exponent of the width-discharge relation. For the equation Q = aWAb, where Q is mean discharge and WA is active-channel width, it is proposed that the exponent, b, should be of fixed value for most natural, perennial, alluvial stream channels and that the coefficient, a, varies with the characteristics of the bed and bank material.Three groups of perennial stream channels with differing characteristics were selected for study using consistent procedures of data collection. A common feature of the groups was general channel stability, that is, absence of excessive widening by erosive discharges. Group 1 consisted of 32 channels of gradient exceeding 0.0080, low suspended-sediment discharge, high channel roughness, and low discharge variability. Group 2 consisted of 13 streams in Kansas having at least 70 percent silt and clay in the bed material and having similar discharge variability, climate, gradient, and riparian vegetation. Group 3, in southern Missouri, consisted of discharge channels of 18 springs having similar conditions of very low discharge variability, climate and vegetation, but variable bed and bank material. Values for the exponent for the three groups of data are 1.98, 1.97, and 1.97, respectively, whereas values of the coefficients are 0.017, 0.042, and 0.011 when discharge is expressed in cubic meters per second and width is in meters. The relation for high-gradient channels (group 1) is supported by published data from laboratory flumes.The similarity of the three values of the exponent demonstrates that a standard exponent of 2.0, significant to two figures, is reasonable for the width-mean discharge relation of perennial, alluvial stream channels, and that the exponent is independent of other variables. Using a fixed exponent of 2.0, a family of simple power-function equations was developed expressing the manner in which channel sediment affects the width-discharge relation.
Extension of the HAL QCD approach to inelastic and multi-particle scatterings in lattice QCD
NASA Astrophysics Data System (ADS)
Aoki, S.
We extend the HAL QCD approach, with which potentials between two hadrons can be obtained in QCD at energy below inelastic thresholds, to inelastic and multi-particle scatterings. We first derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than 2 particles, in terms of the one-shell $T$-matrix consrainted by the unitarity of quantum field theories. We show that its asymptotic behavior contains phase shifts and mixing angles of $n$ particle scatterings. This property is one of the essential ingredients of the HAL QCD scheme to define "potential" from the NBS wave function in quantum field theories such as QCD. We next construct energy independent but non-local potentials above inelastic thresholds, in terms of these NBS wave functions. We demonstrate an existence of energy-independent coupled channel potentials with a non-relativistic approximation, where momenta of all particles are small compared with their own masses. Combining these two results, we can employ the HAL QCD approach also to investigate inelastic and multi-particle scatterings.
Synthetic environment employing a craft for providing user perspective reference
Maples, Creve; Peterson, Craig A.
1997-10-21
A multi-dimensional user oriented synthetic environment system allows application programs to be programmed and accessed with input/output device independent, generic functional commands which are a distillation of the actual functions performed by any application program. A shared memory structure allows the translation of device specific commands to device independent, generic functional commands. Complete flexibility of the mapping of synthetic environment data to the user is thereby allowed. Accordingly, synthetic environment data may be provided to the user on parallel user information processing channels allowing the subcognitive mind to act as a filter, eliminating irrelevant information and allowing the processing of increase amounts of data by the user. The user is further provided with a craft surrounding the user within the synthetic environment, which craft, imparts important visual referential an motion parallax cues, enabling the user to better appreciate distances and directions within the synthetic environment. Display of this craft in close proximity to the user's point of perspective may be accomplished without substantially degrading the image resolution of the displayed portions of the synthetic environment.
Nuclear BK Channels Regulate Gene Expression via the Control of Nuclear Calcium Signaling
Li, Boxing; Jie, Wei; Huang, Lianyan; Wei, Peng; Li, Shuji; Luo, Zhengyi; Friedman, Allyson K.; Meredith, Andrea L.; Han, Ming-Hu; Zhu, Xin-Hong; Gao, Tian-Ming
2014-01-01
Ion channels are essential for the regulation of neuronal functions. The significance of plasma membrane, mitochondrial, endoplasmic reticulum, and lysosomal ion channels in the regulation of Ca2+ is well established. In contrast, surprisingly less is known about the function of ion channels on the nuclear envelope (NE). Here we demonstrate the presence of functional large-conductance, calcium-activated potassium channels (BK channels) on the NE of rodent hippocampal neurons. Functionally blockade of nuclear BK channels (nBK channels) induces NE-derived Ca2+ release, nucleoplasmic Ca2+ elevation, and cAMP response element binding protein (CREB)-dependent transcription. More importantly, blockade of nBK channels regulates nuclear Ca2+-sensitive gene expression and promotes dendritic arborization in a nuclear Ca2+-dependent manner. These results suggest that nBK channel functions as a molecular linker between neuronal activity and nuclear Ca2+ to convey the signals from synapse to nucleus and is a new modulator for synaptic activity-dependent neuronal functions at the NE level. PMID:24952642
Hague, Michael T J; Feldman, Chris R; Brodie, Edmund D; Brodie, Edmund D
2017-06-01
Convergent phenotypes often result from similar underlying genetics, but recent work suggests convergence may also occur in the historical order of substitutions en route to an adaptive outcome. We characterized convergence in the mutational steps to two independent outcomes of tetrodotoxin (TTX) resistance in separate geographic lineages of the common garter snake (Thamnophis sirtalis) that coevolved with toxic newts. Resistance is largely conferred by amino acid changes in the skeletal muscle sodium channel (Na V 1.4) that interfere with TTX-binding. We sampled variation in Na V 1.4 throughout western North America and found clear evidence that TTX-resistant changes in both lineages began with the same isoleucine-valine mutation (I1561V) within the outer pore of Na V 1.4. Other point mutations in the pore, shown to confer much greater resistance, accumulate later in the evolutionary progression and always occur together with the initial I1561V change. A gene tree of Na V 1.4 suggests the I1561V mutations in each lineage are not identical-by-decent, but rather they arose independently. Convergence in the evolution of channel resistance is likely the result of shared biases in the two lineages of T. sirtalis-only a few mutational routes can confer TTX resistance while maintaining the conserved function of voltage-gated sodium channels. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Visual and Auditory Components in the Perception of Asynchronous Audiovisual Speech
Alcalá-Quintana, Rocío
2015-01-01
Research on asynchronous audiovisual speech perception manipulates experimental conditions to observe their effects on synchrony judgments. Probabilistic models establish a link between the sensory and decisional processes underlying such judgments and the observed data, via interpretable parameters that allow testing hypotheses and making inferences about how experimental manipulations affect such processes. Two models of this type have recently been proposed, one based on independent channels and the other using a Bayesian approach. Both models are fitted here to a common data set, with a subsequent analysis of the interpretation they provide about how experimental manipulations affected the processes underlying perceived synchrony. The data consist of synchrony judgments as a function of audiovisual offset in a speech stimulus, under four within-subjects manipulations of the quality of the visual component. The Bayesian model could not accommodate asymmetric data, was rejected by goodness-of-fit statistics for 8/16 observers, and was found to be nonidentifiable, which renders uninterpretable parameter estimates. The independent-channels model captured asymmetric data, was rejected for only 1/16 observers, and identified how sensory and decisional processes mediating asynchronous audiovisual speech perception are affected by manipulations that only alter the quality of the visual component of the speech signal. PMID:27551361
Real-time Adaptive EEG Source Separation using Online Recursive Independent Component Analysis
Hsu, Sheng-Hsiou; Mullen, Tim; Jung, Tzyy-Ping; Cauwenberghs, Gert
2016-01-01
Independent Component Analysis (ICA) has been widely applied to electroencephalographic (EEG) biosignal processing and brain-computer interfaces. The practical use of ICA, however, is limited by its computational complexity, data requirements for convergence, and assumption of data stationarity, especially for high-density data. Here we study and validate an optimized online recursive ICA algorithm (ORICA) with online recursive least squares (RLS) whitening for blind source separation of high-density EEG data, which offers instantaneous incremental convergence upon presentation of new data. Empirical results of this study demonstrate the algorithm's: (a) suitability for accurate and efficient source identification in high-density (64-channel) realistically-simulated EEG data; (b) capability to detect and adapt to non-stationarity in 64-ch simulated EEG data; and (c) utility for rapidly extracting principal brain and artifact sources in real 61-channel EEG data recorded by a dry and wearable EEG system in a cognitive experiment. ORICA was implemented as functions in BCILAB and EEGLAB and was integrated in an open-source Real-time EEG Source-mapping Toolbox (REST), supporting applications in ICA-based online artifact rejection, feature extraction for real-time biosignal monitoring in clinical environments, and adaptable classifications in brain-computer interfaces. PMID:26685257
Benndorf, Klaus; Koopmann, Rolf; Eismann, Elisabeth; Kaupp, U. Benjamin
1999-01-01
Gating by cGMP and voltage of the α subunit of the cGMP-gated channel from rod photoreceptor was examined with a patch-clamp technique. The channels were expressed in Xenopus oocytes. At low [cGMP] (<20 μM), the current displayed strong outward rectification. At low and high (700 μM) [cGMP], the channel activity was dominated by only one conductance level. Therefore, the outward rectification at low [cGMP] results solely from an increase in the open probability, P o. Kinetic analysis of single-channel openings revealed two exponential distributions. At low [cGMP], the larger P o at positive voltages with respect to negative voltages is caused by an increased frequency of openings in both components of the open-time distribution. In macroscopic currents, depolarizing voltage steps, starting from −100 mV, generated a time-dependent current that increased with the step size (activation). At low [cGMP] (20 μM), the degree of activation was large and the time course was slow, whereas at saturating [cGMP] (7 mM) the respective changes were small and fast. The dose–response relation at −100 mV was shifted to the right and saturated at significantly lower P o values with respect to that at +100 mV (0.77 vs. 0.96). P o was determined as function of the [cGMP] (at +100 and −100 mV) and voltage (at 20, 70, and 700 μM, and 7 mM cGMP). Both relations could be fitted with an allosteric state model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric opening reaction. At saturating [cGMP] (7 mM), the activation time course was monoexponential, which allowed us to determine the individual rate constants for the allosteric reaction. For the rapid rate constants of cGMP binding and unbinding, lower limits are determined. It is concluded that an allosteric model consisting of four independent cGMP-binding reactions and one voltage-dependent allosteric reaction, describes the cGMP- and voltage-dependent gating of cGMP-gated channels adequately. PMID:10498668
Sodium channel blockers for cystic fibrosis.
Burrows, Elinor F; Southern, Kevin W; Noone, Peadar G
2014-04-09
People with cystic fibrosis (CF) have increased transport of the salt, sodium across their airway lining. Over-absorption of sodium results in the dehydration of the liquid that lines the airway surface and (along with defective chloride secretion) is a primary defect in people with CF. To determine whether the topical administration of drugs that block sodium transport improves the respiratory condition of people with CF. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearching relevant journals and abstract books of conference proceedings. We contacted principal investigators known to work in the field, previous authors and pharmaceutical companies who manufacture ion transport agents for unpublished or follow-up data.Most recent search of the Group's register: 19 December 2013. Published or unpublished randomised controlled trials (RCTs) or quasi-randomised controlled trials of sodium channel blockers compared to placebo or another sodium channel blocker or the same sodium channel blocker at a different dosing regimen. Two authors independently extracted data. Meta-analysis was limited due to differing study designs. Five RCTs, with a total of 226 participants, examining the topical administration of the short-acting sodium channel blocker, amiloride, compared to placebo were identified as eligible for inclusion in the review. In three studies over six months, there was a significant difference found in the difference in relative change in FVC in favour of placebo (weighted mean difference 1.51% (95% confidence interval -2.77 to -0.25), although heterogeneity was evident. A two-week study demonstrated that hypertonic saline with amiloride pre-treatment did not result in a significant improvement in respiratory function or mucus clearance, in contrast to pre-treatment with placebo. There were no significant differences identified in other clinically relevant outcomes. We found no evidence that the topical administration of a short-acting sodium channel blocker improves respiratory condition in people with cystic fibrosis and some limited evidence of deterioration in lung function.
Sodium channel blockers for cystic fibrosis.
Burrows, Elinor F; Southern, Kevin W; Noone, Peadar G
2012-03-14
People with cystic fibrosis (CF) have increased transport of the salt, sodium across their airway lining. Over-absorption of sodium results in the dehydration of the liquid that lines the airway surface and is a primary defect in people with CF. To determine whether the topical administration of drugs that block sodium transport improves the respiratory condition of people with CF. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearching relevant journals and abstract books of conference proceedings. We contacted principal investigators known to work in the field, previous authors and pharmaceutical companies who manufacture ion transport agents for unpublished or follow-up data.Most recent search of the Group's register: 22nd August 2011. Published or unpublished randomised controlled trials (RCTs) or quasi-randomised controlled trials of sodium channel blockers compared to placebo or another sodium channel blocker or the same sodium channel blocker at a different dosing regimen. Two authors independently extracted data. Meta-analysis was limited due to differing study designs. Five RCTs, with a total of 226 participants, examining the topical administration of the short-acting sodium channel blocker, amiloride, compared to placebo were identified as eligible for inclusion in the review. In three studies over six months, there was a significant difference found in the difference in relative change in FVC in favour of placebo (weighted mean difference 1.51% (95% confidence interval -2.77 to -0.25), although heterogeneity was evident. A two-week study demonstrated that hypertonic saline with amiloride pre-treatment did not result in a significant improvement in respiratory function or mucus clearance, in contrast to pre-treatment with placebo. There were no significant differences identified in other clinically relevant outcomes. We found no evidence that the topical administration of a short-acting sodium channel blocker improves respiratory condition in people with cystic fibrosis and some limited evidence of deterioration in lung function.
Fusi, Fabio; Trezza, Alfonso; Spiga, Ottavia; Sgaragli, Giampietro; Bova, Sergio
2017-09-15
To characterize the role of cAMP-dependent protein kinase (PKA) in regulating vascular Ca 2+ current through Ca v 1.2 channels [I Ca1.2 ], we have documented a marked capacity of the isoquinoline H-89, widely used as a PKA inhibitor, to reduce current amplitude. We hypothesized that the I Ca1.2 inhibitory activity of H-89 was mediated by mechanisms unrelated to PKA inhibition. To support this, an in-depth analysis of H-89 vascular effects on both I Ca1.2 and contractility was undertaken by performing whole-cell patch-clamp recordings and functional experiments in rat tail main artery single myocytes and rings, respectively. H-89 inhibited I Ca1.2 with a pIC 50 (M) value of about 5.5, even under conditions where PKA activity was either abolished by both the PKA antagonists KT5720 and protein kinase inhibitor fragment 6-22 amide or enhanced by the PKA stimulators 6-Bnz-cAMP and 8-Br-cAMP. Inhibition of I Ca1.2 by H-89 appeared almost irreversible upon washout, was charge carrier- and voltage-dependent, and antagonised by the Ca v 1.2 channel agonist (S)-(-)-Bay K 8644. H-89 did not alter both potency and efficacy of verapamil, did not affect current kinetics or voltage-dependent activation, while shifting to the left the 50% voltage of inactivation in a concentration-dependent manner. H-89 docked at the α 1C subunit in a pocket region close to that of (S)-(-)-Bay K 8644 docking, forming a hydrogen bond with the same, key amino acid residue Tyr-1489. Finally, both high K + - and (S)-(-)-Bay K 8644-induced contractions of rings were fully reverted by H-89. In conclusion, these results indicate that H-89 inhibited vascular I Ca1.2 and, consequently, the contractile function through a PKA-independent mechanism. Therefore, caution is recommended when interpreting experiments where H-89 is used to inhibit vascular smooth muscle PKA. Copyright © 2017 Elsevier Inc. All rights reserved.
Cable Channel 8, 1983-84: Is Austin Watching?
ERIC Educational Resources Information Center
Austin Independent School District, TX. Office of Research and Evaluation.
This report presents basic information on the Austin Independent School District's (AISD) Cable Channel 8 which began broadcasting in 1982. Information was collected through a review of Cable 8 schedules and 1983 surveys of AISD administrators, teachers, and parents and community members. Channel 8 broadcasts 24 hours a day with about 12 hours of…
Parrett, Charles; Omang, R.J.; Hull, J.A.
1983-01-01
Equations for estimating mean annual runoff and peak discharge from measurements of channel geometry were developed for western and northeastern Montana. The study area was divided into two regions for the mean annual runoff analysis, and separate multiple-regression equations were developed for each region. The active-channel width was determined to be the most important independent variable in each region. The standard error of estimate for the estimating equation using active-channel width was 61 percent in the Northeast Region and 38 percent in the West region. The study area was divided into six regions for the peak discharge analysis, and multiple regression equations relating channel geometry and basin characteristics to peak discharges having recurrence intervals of 2, 5, 10, 25, 50 and 100 years were developed for each region. The standard errors of estimate for the regression equations using only channel width as an independent variable ranged from 35 to 105 percent. The standard errors improved in four regions as basin characteristics were added to the estimating equations. (USGS)
Yilmaz, Mahmut Ilker; Carrero, Juan Jesús; Martín-Ventura, Jose Luis; Sonmez, Alper; Saglam, Mutlu; Celik, Turgay; Yaman, Halil; Yenicesu, Mujdat; Eyileten, Tayfun; Moreno, Juan Antonio; Egido, Jesús
2010-01-01
Background and objectives: Soluble TNF-like weak inducer of apoptosis (sTWEAK) and long pentraxin-3 (PTX3) concentrations have been associated with endothelial function in patients with chronic kidney disease (CKD). This study tested the hypothesis that the improvement in endothelial function after initiation of angiotensin II receptor blocker (valsartan), calcium channel blocker (amlodipine) therapy, or a combination of both is directly linked to the normalization of sTWEAK and PTX3. Design, setting, participants, & measurements: One-hundred-eight diabetic CKD stage I patients with hypertension (56% men, 46.7 ± 5.3 years) were allocated to a 12-week intervention with amlodipine (10 mg/d), valsartan (160 mg/d), or their combination. Plasma levels of sTWEAK, PTX3, and flow-mediated dilation (FMD) were studied during the interventions. Results: All treatment strategies effectively increased FMD and reduced proteinuria, confirming a more prone reduction with the combined therapy. These improvements were followed by significant PTX3 reductions. Valsartan alone and in combination with amlodipine achieved significant incremental raises in sTWEAK plasma levels. More importantly, the changes observed in sTWEAK (β = 0.25, P = 0.006) or PTX3 (β = −0.24, P = 0.007) plasma levels were independently associated with the improvement in ultrasonographically measured FMD. Conclusions: This study shows that treatment with antihypertensive drugs improves FMD and normalizes proteinuria, PTX3, and sTWEAK in diabetic CKD stage I patients with hypertension. The improvement in FMD was independently associated with PTX3 and sTWEAK normalization. Two surrogate biomarkers of endothelial function are therefore identified with potential as therapeutic targets. The study was registered in clinicaltrials.gov as NCT00921570. PMID:20430947
Diamant, Kevin David; Raitses, Yevgeny; Fisch, Nathaniel Joseph
2014-05-13
Systems and methods may be provided for cylindrical Hall thrusters with independently controllable ionization and acceleration stages. The systems and methods may include a cylindrical channel having a center axial direction, a gas inlet for directing ionizable gas to an ionization section of the cylindrical channel, an ionization device that ionizes at least a portion of the ionizable gas within the ionization section to generate ionized gas, and an acceleration device distinct from the ionization device. The acceleration device may provide an axial electric field for an acceleration section of the cylindrical channel to accelerate the ionized gas through the acceleration section, where the axial electric field has an axial direction in relation to the center axial direction. The ionization section and the acceleration section of the cylindrical channel may be substantially non-overlapping.
García-Delgado, Neivys; Velasco, Myrian; Sánchez-Soto, Carmen; Díaz-García, Carlos Manlio; Hiriart, Marcia
2018-01-01
Pancreatic beta cells during the first month of development acquire functional maturity, allowing them to respond to variations in extracellular glucose concentration by secreting insulin. Changes in ionic channel activity are important for this maturation. Within the voltage-gated calcium channels (VGCC), the most studied channels are high-voltage-activated (HVA), principally L-type; while low-voltage-activated (LVA) channels have been poorly studied in native beta cells. We analyzed the changes in the expression and activity of VGCC during the postnatal development in rat beta cells. We observed that the percentage of detection of T-type current increased with the stage of development. T-type calcium current density in adult cells was higher than in neonatal and P20 beta cells. Mean HVA current density also increased with age. Calcium current behavior in P20 beta cells was heterogeneous; almost half of the cells had HVA current densities higher than the adult cells, and this was independent of the presence of T-type current. We detected the presence of α1G, α1H, and α1I subunits of LVA channels at all ages. The Cav 3.1 subunit (α1G) was the most expressed. T-type channel blockers mibefradil and TTA-A2 significantly inhibited insulin secretion at 5.6 mM glucose, which suggests a physiological role for T-type channels at basal glucose conditions. Both, nifedipine and TTA-A2, drastically decreased the beta-cell subpopulation that secretes more insulin, in both basal and stimulating glucose conditions. We conclude that changes in expression and activity of VGCC during the development play an important role in physiological maturation of beta cells. PMID:29556214
The TRPM7 channel kinase regulates store-operated calcium entry.
Faouzi, Malika; Kilch, Tatiana; Horgen, F David; Fleig, Andrea; Penner, Reinhold
2017-05-15
Pharmacological and molecular inhibition of transient receptor potential melastatin 7 (TRPM7) reduces store-operated calcium entry (SOCE). Overexpression of TRPM7 in TRPM7 -/- cells restores SOCE. TRPM7 is not a store-operated calcium channel. TRPM7 kinase rather than channel modulates SOCE. TRPM7 channel activity contributes to the maintenance of store Ca 2+ levels at rest. The transient receptor potential melastatin 7 (TRPM7) is a protein that combines an ion channel with an intrinsic kinase domain, enabling it to modulate cellular functions either by conducting ions through the pore or by phosphorylating downstream proteins via its kinase domain. In the present study, we report store-operated calcium entry (SOCE) as a novel target of TRPM7 kinase activity. TRPM7-deficient chicken DT40 B lymphocytes exhibit a strongly impaired SOCE compared to wild-type cells as a result of reduced calcium release activated calcium currents, and independently of potassium channel regulation, membrane potential changes or changes in cell-cycle distribution. Pharmacological blockade of TRPM7 with NS8593 or waixenicin A in wild-type B lymphocytes results in a significant decrease in SOCE, confirming that TRPM7 activity is acutely linked to SOCE, without TRPM7 representing a store-operated channel itself. Using kinase-deficient mutants, we find that TRPM7 regulates SOCE through its kinase domain. Furthermore, Ca 2+ influx through TRPM7 is essential for the maintenance of endoplasmic reticulum Ca 2+ concentration in resting cells, and for the refilling of Ca 2+ stores after a Ca 2+ signalling event. We conclude that the channel kinase TRPM7 and SOCE are synergistic mechanisms regulating intracellular Ca 2+ homeostasis. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Bravo-Zehnder, Marcela; Orio, Patricio; Norambuena, Andrés; Wallner, Martin; Meera, Pratap; Toro, Ligia; Latorre, Ramón; González, Alfonso
2000-01-01
The voltage- and Ca2+-activated K+ (KV,Ca) channel is expressed in a variety of polarized epithelial cells seemingly displaying a tissue-dependent apical-to-basolateral regionalization, as revealed by electrophysiology. Using domain-specific biotinylation and immunofluorescence we show that the human channel KV,Ca α-subunit (human Slowpoke channel, hSlo) is predominantly found in the apical plasma membrane domain of permanently transfected Madin-Darby canine kidney cells. Both the wild-type and a mutant hSlo protein lacking its only potential N-glycosylation site were efficiently transported to the cell surface and concentrated in the apical domain even when they were overexpressed to levels 200- to 300-fold higher than the density of intrinsic Slo channels. Furthermore, tunicamycin treatment did not prevent apical segregation of hSlo, indicating that endogenous glycosylated proteins (e.g., KV,Ca β-subunits) were not required. hSlo seems to display properties for lipid-raft targeting, as judged by its buoyant distribution in sucrose gradients after extraction with either detergent or sodium carbonate. The evidence indicates that the hSlo protein possesses intrinsic information for transport to the apical cell surface through a mechanism that may involve association with lipid rafts and that is independent of glycosylation of the channel itself or an associated protein. Thus, this particular polytopic model protein shows that glycosylation-independent apical pathways exist for endogenous membrane proteins in Madin-Darby canine kidney cells. PMID:11069304
Maji, Kaushik; Kouri, Donald J
2011-03-28
We have developed a new method for solving quantum dynamical scattering problems, using the time-independent Schrödinger equation (TISE), based on a novel method to generalize a "one-way" quantum mechanical wave equation, impose correct boundary conditions, and eliminate exponentially growing closed channel solutions. The approach is readily parallelized to achieve approximate N(2) scaling, where N is the number of coupled equations. The full two-way nature of the TISE is included while propagating the wave function in the scattering variable and the full S-matrix is obtained. The new algorithm is based on a "Modified Cayley" operator splitting approach, generalizing earlier work where the method was applied to the time-dependent Schrödinger equation. All scattering variable propagation approaches to solving the TISE involve solving a Helmholtz-type equation, and for more than one degree of freedom, these are notoriously ill-behaved, due to the unavoidable presence of exponentially growing contributions to the numerical solution. Traditionally, the method used to eliminate exponential growth has posed a major obstacle to the full parallelization of such propagation algorithms. We stabilize by using the Feshbach projection operator technique to remove all the nonphysical exponentially growing closed channels, while retaining all of the propagating open channel components, as well as exponentially decaying closed channel components.
The use of dwell time cross-correlation functions to study single-ion channel gating kinetics.
Ball, F G; Kerry, C J; Ramsey, R L; Sansom, M S; Usherwood, P N
1988-01-01
The derivation of cross-correlation functions from single-channel dwell (open and closed) times is described. Simulation of single-channel data for simple gating models, alongside theoretical treatment, is used to demonstrate the relationship of cross-correlation functions to underlying gating mechanisms. It is shown that time irreversibility of gating kinetics may be revealed in cross-correlation functions. Application of cross-correlation function analysis to data derived from the locust muscle glutamate receptor-channel provides evidence for multiple gateway states and time reversibility of gating. A model for the gating of this channel is used to show the effect of omission of brief channel events on cross-correlation functions. PMID:2462924
Fluorescence detection of the movement of single KcsA subunits reveals cooperativity
Blunck, Rikard; McGuire, Hugo; Hyde, H. Clark; Bezanilla, Francisco
2008-01-01
The prokaryotic KcsA channel is gated at the helical bundle crossing by intracellular protons and inactivates at the extracellular selectivity filter. The C-terminal transmembrane helix has to undergo a conformational change for potassium ions to access the central cavity. Whereas a partial opening of the tetrameric channel is suggested to be responsible for subconductance levels of ion channels, including KcsA, a cooperative opening of the 4 subunits is postulated as the final opening step. In this study, we used single-channel fluorescence spectroscopy of KcsA to directly observe the movement of each subunit and the temporal correlation between subunits. Purified KcsA channels labeled at the C terminus near the bundle crossing have been inserted into supported lipid bilayer, and the fluorescence traces analyzed by means of a cooperative or independent Markov model. The analysis revealed that the 4 subunits do not move fully independently but instead showed a certain degree of cooperativity. However, the 4 subunits do not simply open in 1 concerted step. PMID:19074286
Geoacoustic inversion of a shallow fresh-water environment
NASA Astrophysics Data System (ADS)
Stotts, Steven A.; Knobles, David P.; Koch, Robert A.; Piper, James N.; Keller, Jason A.
2003-10-01
A recent experiment was conducted at The University of Texas/Applied Research Laboratories test station located at Lake Travis, Austin, TX. Implosive (light bulb), explosive (firecracker), and tonal sources were recorded on a dual receiver system located on the bottom next to a range-independent underwater river channel. Inversion results of the broadband time series obtained over ranges less than 1.5 km were used to predict measured transmission loss at several tonal frequencies in the band from 250-1000 Hz. The average water depth was approximately 38 m along the channel during the experiment. Sound speed profiles were calculated from recorded temperature readings measured as a function of depth. Implosive source spectrums were measured and used to evaluate a model/data correlation cost function in a simulated annealing algorithm. Comparisons of inversion results using both a normal mode and a ray-based plane wave reflection coefficient forward model [Stotts et al., J. Acoust. Soc. Am. (submitted)] are discussed. Predicted transmission loss based on the inversion results are compared to the measured transmission loss. Differences between fluid and elastic layer bottom models will also be presented.
The three-dimensional structure of aquaporin-1
NASA Astrophysics Data System (ADS)
Walz, Thomas; Hirai, Teruhisa; Murata, Kazuyoshi; Heymann, J. Bernard; Mitsuoka, Kaoru; Fujiyoshi, Yoshinori; Smith, Barbara L.; Agre, Peter; Engel, Andreas
1997-06-01
The entry and exit of water from cells is a fundamental process of life. Recognition of the high water permeability of red blood cells led to the proposal that specialized water pores exist in the plasma membrane. Expression in Xenopus oocytes and functional studies of an erythrocyte integral membrane protein of relative molecular mass 28,000, identified it as the mercury-sensitive water channel, aquaporin-1 (AQP1). Many related proteins, all belonging to the major intrinsic protein (MIP) family, are found throughout nature. AQP1 is a homotetramer containing four independent aqueous channels. When reconstituted into lipid bilayers, the protein forms two-dimensional lattices with a unit cell containing two tetramers in opposite orientation. Here we present the three-dimensional structure of AQP1 determined at 6Å resolution by cryo-electron microscopy. Each AQP1 monomer has six tilted, bilayer-spanning α-helices which form a right-handed bundle surrounding a central density. These results, together with functional studies, provide a model that identifies the aqueous pore in the AQP1 molecule and indicates the organization of the tetrameric complex in the membrane.
Sabourin, Jessica; Le Gal, Loïc; Saurwein, Lisa; Haefliger, Jacques-Antoine; Raddatz, Eric; Allagnat, Florent
2015-01-01
Store-operated Ca2+ channels (SOCs) are voltage-independent Ca2+ channels activated upon depletion of the endoplasmic reticulum Ca2+ stores. Early studies suggest the contribution of such channels to Ca2+ homeostasis in insulin-secreting pancreatic β-cells. However, their composition and contribution to glucose-stimulated insulin secretion (GSIS) remains unclear. In this study, endoplasmic reticulum Ca2+ depletion triggered by acetylcholine (ACh) or thapsigargin stimulated the formation of a ternary complex composed of Orai1, TRPC1, and STIM1, the key proteins involved in the formation of SOCs. Ca2+ imaging further revealed that Orai1 and TRPC1 are required to form functional SOCs and that these channels are activated by STIM1 in response to thapsigargin or ACh. Pharmacological SOCs inhibition or dominant negative blockade of Orai1 or TRPC1 using the specific pore mutants Orai1-E106D and TRPC1-F562A impaired GSIS in rat β-cells and fully blocked the potentiating effect of ACh on secretion. In contrast, pharmacological or dominant negative blockade of TRPC3 had no effect on extracellular Ca2+ entry and GSIS. Finally, we observed that prolonged exposure to supraphysiological glucose concentration impaired SOCs function without altering the expression levels of STIM1, Orai1, and TRPC1. We conclude that Orai1 and TRPC1, which form SOCs regulated by STIM1, play a key role in the effect of ACh on GSIS, a process that may be impaired in type 2 diabetes. PMID:26494622
Picardi, Susanne; Cartellieri, Sibylle; Groves, Danja; Hahnenkamp, Klaus; Hahnenekamp, Klaus; Gerner, Peter; Durieux, Marcel E; Stevens, Markus F; Lirk, Philipp; Hollmann, Markus W
2013-01-01
Local anesthetics (LAs) are widely known for inhibition of voltage-gated sodium channels underlying their antiarrhythmic and antinociceptive effects. However, LAs have significant immunomodulatory properties and were shown to affect human neutrophil functions independent of sodium-channel blockade. Previous studies suggest a highly selective interaction between LAs and the α-subunit of G protein-coupled receptors of the Gq/G11 family as underlying mechanism. Providing a detailed structure function analysis, this study aimed to determine the active parts within the LA molecule responsible for the effects on human neutrophil priming. Human neutrophils were incubated with structurally different LAs for 60 minutes, followed by priming and activation using either platelet-activating factor or lysophosphatidic acid and N-formyl-methionyl-L-leucyl-L-phenylalanine. Superoxide anion generation was determined, using the cytochrome c reduction assay. Differences in priming inhibition of human neutrophils between LAs were smaller than expected, although significant. Ester-linked LAs blocked priming responses more effectively than did amide LAs. Furthermore, the inhibitory potency of LAs on priming decreased with an increase of their respective octanol-buffer coefficient, and inhibition did not correlate with sodium-channel-blocking potency. Charge was not crucially required for priming inhibition, yet it played a role in effect size. Local anesthetics significantly attenuated Gαq-protein-mediated neutrophil priming. The most potent inhibition was achieved by ester compounds, inversely correlated with their octanol-buffer coefficient, and enhanced by permanent charges within the LA molecule. No correlation to their potency of blocking sodium channels was found.
NASA Technical Reports Server (NTRS)
Sukharev, S. I.; Schroeder, M. J.; McCaslin, D. R.
1999-01-01
MscL, a 15 kDa transmembrane protein, is the only component involved in the formation of a 3 nS channel in the inner membrane of Escherichia coli that opens in response to mechanical or osmotic stress. While previous data had suggested that the functional MscL complex might be a hexamer, a recent crystallographic study of the MscL homologue from M. tuberculosis reveals a pentameric structure. The present work further examines the stoichiometry of the E. coli MscL using a variety of biochemical approaches. Detergent-purified 6His-MscL in solution and MscL in the membrane could be chemically crosslinked with the products displaying ladderlike patterns on SDS gels. Three crosslinking agents (EDC, DMS, and DMA) used at saturating concentrations invariably generated pentamers as the largest product. DSS produced additional bands corresponding to larger complexes although the pentamer band appeared to be the predominant product at high levels of crosslinker. It is not clear whether these extra bands reflect a difference in the crosslinking chemistry of DSS or whether its spacer arm is the longest of those used, or a combination of both facts. For the detergent-solubilized 6His-MscL both sedimentation equilibrium and gel chromatography showed the presence of multiple species. Thus the longer spacer arm could permit both intra- and intercomplex linkages. Nonetheless, the patterns obtained with all agents are consistent with and strongly suggest a pentameric organization for the MscL channel. Expression of MscL as genetically engineered double or triple subunit tandems yields low numbers of functional channels as compared to expressed monomers. The double-tandem assemblies must have an even number of subunits and crosslinking in the membrane confirmed hexamerization. Gel chromatography clearly demonstrated that the channels formed from the double tandems were larger than those formed from WT MscL, consistent with the native channel being pentameric. The observation that both double and triple tandems form channels of normal conductance implies that the pentameric assembly is to some degree independent of the number of subunit repeats in the polypeptide precursor. The channel is thus a pentameric core with the 'extra' subunits left out of the functional complex. From sedimentation equilibrium and size-exclusion chromatography, we also conclude that MscL complexes are not in a dynamic equilibrium with monomers, but are pre-assembled; and thus, their gating properties must result from changes in the conformation of the entire complex induced by the mechanical stress.
Sukharev, S I; Schroeder, M J; McCaslin, D R
1999-10-01
MscL, a 15 kDa transmembrane protein, is the only component involved in the formation of a 3 nS channel in the inner membrane of Escherichia coli that opens in response to mechanical or osmotic stress. While previous data had suggested that the functional MscL complex might be a hexamer, a recent crystallographic study of the MscL homologue from M. tuberculosis reveals a pentameric structure. The present work further examines the stoichiometry of the E. coli MscL using a variety of biochemical approaches. Detergent-purified 6His-MscL in solution and MscL in the membrane could be chemically crosslinked with the products displaying ladderlike patterns on SDS gels. Three crosslinking agents (EDC, DMS, and DMA) used at saturating concentrations invariably generated pentamers as the largest product. DSS produced additional bands corresponding to larger complexes although the pentamer band appeared to be the predominant product at high levels of crosslinker. It is not clear whether these extra bands reflect a difference in the crosslinking chemistry of DSS or whether its spacer arm is the longest of those used, or a combination of both facts. For the detergent-solubilized 6His-MscL both sedimentation equilibrium and gel chromatography showed the presence of multiple species. Thus the longer spacer arm could permit both intra- and intercomplex linkages. Nonetheless, the patterns obtained with all agents are consistent with and strongly suggest a pentameric organization for the MscL channel. Expression of MscL as genetically engineered double or triple subunit tandems yields low numbers of functional channels as compared to expressed monomers. The double-tandem assemblies must have an even number of subunits and crosslinking in the membrane confirmed hexamerization. Gel chromatography clearly demonstrated that the channels formed from the double tandems were larger than those formed from WT MscL, consistent with the native channel being pentameric. The observation that both double and triple tandems form channels of normal conductance implies that the pentameric assembly is to some degree independent of the number of subunit repeats in the polypeptide precursor. The channel is thus a pentameric core with the 'extra' subunits left out of the functional complex. From sedimentation equilibrium and size-exclusion chromatography, we also conclude that MscL complexes are not in a dynamic equilibrium with monomers, but are pre-assembled; and thus, their gating properties must result from changes in the conformation of the entire complex induced by the mechanical stress.
Voltage-dependent formation of gramicidin channels in lipid bilayers.
Sandblom, J; Galvanovskis, J; Jilderos, B
2001-01-01
The formation kinetics of gramicidin A channels in lipid bilayer membranes has been characterized as a function of voltage for different solution conditions and membrane composition. The frequency of channel events was measured during the application of voltage ramps and counted in given intervals, a procedure that eliminated the effects of drift in gramicidin concentration. The formation rate was found to increase strongly with voltages up to approximately 50 mV and then to level off slightly. The shape of the voltage dependence was independent of lipid solvent and ramp speed but differed for different ions and different solution concentrations. This suggested an ion occupancy effect on the formation rate that was further supported by the fact that the minimum of the formation rate was shifted toward the equilibrium potential in asymmetric solution concentrations. The effects are explained in terms of a model that contains two contributions to the voltage dependence, a voltage-dependent ion binding to the monomers and a polarization of monomers by the applied electric field and by the occupied ions. The theory is found to give a good fit to experimental data. PMID:11463628
Jih, Kang-Yang; Hwang, Tzyh-Chang
2013-03-12
Vx-770 (Ivacaftor), a Food and Drug Administration (FDA)-approved drug for clinical application to patients with cystic fibrosis (CF), shifts the paradigm from conventional symptomatic treatments to therapeutics directly tackling the root of the disease: functional defects of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel caused by pathogenic mutations. The underlying mechanism for the action of Vx-770 remains elusive partly because this compound not only increases the activity of wild-type (WT) channels whose gating is primarily controlled by ATP binding/hydrolysis, but also improves the function of G551D-CFTR, a disease-associated mutation that abolishes CFTR's responsiveness to ATP. Here we provide a unified theory to account for this dual effect of Vx-770. We found that Vx-770 enhances spontaneous, ATP-independent activity of WT-CFTR to a similar magnitude as its effects on G551D channels, a result essentially explaining Vx-770's effect on G551D-CFTR. Furthermore, Vx-770 increases the open time of WT-CFTR in an [ATP]-dependent manner. This distinct kinetic effect is accountable with a newly proposed CFTR gating model depicting an [ATP]-dependent "reentry" mechanism that allows CFTR shuffling among different open states by undergoing multiple rounds of ATP hydrolysis. We further examined the effect of Vx-770 on R352C-CFTR, a unique mutant that allows direct observation of hydrolysis-triggered gating events. Our data corroborate that Vx-770 increases the open time of WT-CFTR by stabilizing a posthydrolytic open state and thereby fosters decoupling between the gating cycle and ATP hydrolysis cycle. The current study also suggests that this unique mechanism of drug action can be further exploited to develop strategies that enhance the function of CFTR.
Jih, Kang-Yang; Hwang, Tzyh-Chang
2013-01-01
Vx-770 (Ivacaftor), a Food and Drug Administration (FDA)-approved drug for clinical application to patients with cystic fibrosis (CF), shifts the paradigm from conventional symptomatic treatments to therapeutics directly tackling the root of the disease: functional defects of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel caused by pathogenic mutations. The underlying mechanism for the action of Vx-770 remains elusive partly because this compound not only increases the activity of wild-type (WT) channels whose gating is primarily controlled by ATP binding/hydrolysis, but also improves the function of G551D-CFTR, a disease-associated mutation that abolishes CFTR’s responsiveness to ATP. Here we provide a unified theory to account for this dual effect of Vx-770. We found that Vx-770 enhances spontaneous, ATP-independent activity of WT-CFTR to a similar magnitude as its effects on G551D channels, a result essentially explaining Vx-770’s effect on G551D-CFTR. Furthermore, Vx-770 increases the open time of WT-CFTR in an [ATP]-dependent manner. This distinct kinetic effect is accountable with a newly proposed CFTR gating model depicting an [ATP]-dependent “reentry” mechanism that allows CFTR shuffling among different open states by undergoing multiple rounds of ATP hydrolysis. We further examined the effect of Vx-770 on R352C-CFTR, a unique mutant that allows direct observation of hydrolysis-triggered gating events. Our data corroborate that Vx-770 increases the open time of WT-CFTR by stabilizing a posthydrolytic open state and thereby fosters decoupling between the gating cycle and ATP hydrolysis cycle. The current study also suggests that this unique mechanism of drug action can be further exploited to develop strategies that enhance the function of CFTR. PMID:23440202
Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses
Ward, John M.; Mäser, Pascal; Schroeder, Julian I.
2016-01-01
Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100
Plant ion channels: gene families, physiology, and functional genomics analyses.
Ward, John M; Mäser, Pascal; Schroeder, Julian I
2009-01-01
Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.
Emergence of ion channel modal gating from independent subunit kinetics.
Bicknell, Brendan A; Goodhill, Geoffrey J
2016-09-06
Many ion channels exhibit a slow stochastic switching between distinct modes of gating activity. This feature of channel behavior has pronounced implications for the dynamics of ionic currents and the signaling pathways that they regulate. A canonical example is the inositol 1,4,5-trisphosphate receptor (IP3R) channel, whose regulation of intracellular Ca(2+) concentration is essential for numerous cellular processes. However, the underlying biophysical mechanisms that give rise to modal gating in this and most other channels remain unknown. Although ion channels are composed of protein subunits, previous mathematical models of modal gating are coarse grained at the level of whole-channel states, limiting further dialogue between theory and experiment. Here we propose an origin for modal gating, by modeling the kinetics of ligand binding and conformational change in the IP3R at the subunit level. We find good agreement with experimental data over a wide range of ligand concentrations, accounting for equilibrium channel properties, transient responses to changing ligand conditions, and modal gating statistics. We show how this can be understood within a simple analytical framework and confirm our results with stochastic simulations. The model assumes that channel subunits are independent, demonstrating that cooperative binding or concerted conformational changes are not required for modal gating. Moreover, the model embodies a generally applicable principle: If a timescale separation exists in the kinetics of individual subunits, then modal gating can arise as an emergent property of channel behavior.
Sun, Qian-Quan; Dale, Nicholas
1998-01-01
In whole-cell patch clamp recordings made from non-sensory neurons acutely isolated from the spinal cord of Xenopus (stage 40–42) larvae, two forms of inhibition of the high voltage-activated (HVA) Ca2+ currents were produced by 5-HT. One was voltage dependent and associated with both slowing of the activation kinetics and shifting of the voltage dependence of the HVA currents. This inhibition was relieved by strong depolarizing prepulses. A second form of inhibition was neither associated with slowing of the activation kinetics nor relieved by depolarizing prepulses and was thus voltage independent. In all neurons examined, 5-HT (1 μM) reversibly reduced 34 ± 1.6 % (n = 102) of the HVA Ca2+ currents. In about 40 % of neurons, the inhibition was totally voltage independent. In another 5 %, the inhibition was totally voltage dependent. In the remaining neurons, inhibition was only partially (by around 40 %) relieved by a large depolarizing prepulse, suggesting that in these, the inhibition consisted of both voltage-dependent and -independent components. By using selective channel blockers, we found that 5-HT acted on both N- and P/Q-type channels. However, whereas the inhibition of P/Q-type currents was only voltage independent, the inhibition of N-type currents had both voltage-dependent and -independent components. The effects of 5-HT on HVA Ca2+ currents were mediated by 5-HT1A and 5-HT1D receptors. The 5-HT1A receptors not only preferentially caused voltage-independent inhibition, but did so by acting mainly on the ω-agatoxin-IVA-sensitive Ca2+ channels. In contrast, the 5-HT1D receptor produced both voltage-dependent and -independent inhibition and was preferentially coupled to ω-conotoxin-GVIA sensitive channels. This complexity of modulation may allow fine tuning of transmitter release and calcium signalling in the spinal circuitry of Xenopus larvae. PMID:9625870
Kara, Adnane; Rouillard, Camille; Mathault, Jessy; Boisvert, Martin; Tessier, Frédéric; Landari, Hamza; Melki, Imene; Laprise-Pelletier, Myriam; Boisselier, Elodie; Fortin, Marc-André; Boilard, Eric; Greener, Jesse; Miled, Amine
2016-05-28
In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT) sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 μ M was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an "intelligent" drug delivery system based on a feedback loop to monitor drug delivery.
Kara, Adnane; Rouillard, Camille; Mathault, Jessy; Boisvert, Martin; Tessier, Frédéric; Landari, Hamza; Melki, Imene; Laprise-Pelletier, Myriam; Boisselier, Elodie; Fortin, Marc-André; Boilard, Eric; Greener, Jesse; Miled, Amine
2016-01-01
In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT) sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 μM was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an “intelligent” drug delivery system based on a feedback loop to monitor drug delivery. PMID:27240377
Burgess, Don E; Bartos, Daniel C; Reloj, Allison R; Campbell, Kenneth S; Johnson, Jonathan N; Tester, David J; Ackerman, Michael J; Fressart, Véronique; Denjoy, Isabelle; Guicheney, Pascale; Moss, Arthur J; Ohno, Seiko; Horie, Minoru; Delisle, Brian P
2012-11-13
Type 1 long QT syndrome (LQT1) is caused by loss-of-function mutations in the KCNQ1 gene, which encodes the K(+) channel (Kv7.1) that underlies the slowly activating delayed rectifier K(+) current in the heart. Intragenic risk stratification suggests LQT1 mutations that disrupt conserved amino acid residues in the pore are an independent risk factor for LQT1-related cardiac events. The purpose of this study is to determine possible molecular mechanisms that underlie the loss of function for these high-risk mutations. Extensive genotype-phenotype analyses of LQT1 patients showed that T322M-, T322A-, or G325R-Kv7.1 confers a high risk for LQT1-related cardiac events. Heterologous expression of these mutations with KCNE1 revealed they generated nonfunctional channels and caused dominant negative suppression of WT-Kv7.1 current. Molecular dynamics simulations of analogous mutations in KcsA (T85M-, T85A-, and G88R-KcsA) demonstrated that they disrupted the symmetrical distribution of the carbonyl oxygen atoms in the selectivity filter, which upset the balance between the strong attractive and K(+)-K(+) repulsive forces required for rapid K(+) permeation. We conclude high-risk LQT1 mutations in the pore likely disrupt the architectural and physical properties of the K(+) channel selectivity filter.
Non-equilibrium Green's functions study of discrete dopants variability on an ultra-scaled FinFET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valin, R., E-mail: r.valinferreiro@swansea.ac.uk; Martinez, A., E-mail: a.e.Martinez@swansea.ac.uk; Barker, J. R., E-mail: john.barker@glasgow.ac.uk
In this paper, we study the effect of random discrete dopants on the performance of a 6.6 nm channel length silicon FinFET. The discrete dopants have been distributed randomly in the source/drain region of the device. Due to the small dimensions of the FinFET, a quantum transport formalism based on the non-equilibrium Green's functions has been deployed. The transfer characteristics for several devices that differ in location and number of dopants have been calculated. Our results demonstrate that discrete dopants modify the effective channel length and the height of the source/drain barrier, consequently changing the channel control of the charge. Thismore » effect becomes more significant at high drain bias. As a consequence, there is a strong effect on the variability of the on-current, off-current, sub-threshold slope, and threshold voltage. Finally, we have also calculated the mean and standard deviation of these parameters to quantify their variability. The obtained results show that the variability at high drain bias is 1.75 larger than at low drain bias. However, the variability of the on-current, off-current, and sub-threshold slope remains independent of the drain bias. In addition, we have found that a large source to drain current by tunnelling current occurs at low gate bias.« less
Suzuki, Yoriyasu; Muto, Makoto; Yamane, Masahisa; Muramatsu, Toshiya; Okamura, Atsunori; Igarashi, Yasumi; Fujita, Tsutomu; Nakamura, Shigeru; Oida, Akitsugu; Tsuchikane, Etsuo
2017-07-01
To evaluate factors for predicting retrograde CTO-PCI failure after successful collateral channel crossing. Successful guidewire/catheter collateral channel crossing is important for the retrograde approach in percutaneous coronary intervention (PCI) for chronic total occlusion (CTO). A total of 5984 CTO-PCI procedures performed in 45 centers in Japan from 2009 to 2012 were studied. The retrograde approach was used in 1656 CTO-PCIs (27.7%). We investigated these retrograde procedures to evaluate factors for predicting retrograde CTO-PCI failure even after successful collateral channel crossing. Successful guidewire/catheter collateral crossing was achieved in 77.1% (n = 1,276) of 1656 retrograde CTO-PCI procedures. Retrograde procedural success after successful collateral crossing was achieved in 89.4% (n = 1,141). Univariate analysis showed that the predictors for retrograde CTO-PCI failure were in-stent occlusion (OR = 1.9829, 95%CI = 1.1783 - 3.3370 P = 0.0088), calcified lesions (OR = 1.9233, 95%CI = 1.2463 - 2.9679, P = 0.0027), and lesion tortuosity (OR = 1.5244, 95%CI = 1.0618 - 2.1883, P = 0.0216). On multivariate analysis, lesion calcification was an independent predictor of retrograde CTO-PCI failure after successful collateral channel crossing (OR = 1.3472, 95%CI = 1.0614 - 1.7169, P = 0.0141). The success rate of retrograde CTO-PCI following successful guidewire/catheter collateral channel crossing was high in this registry. Lesion calcification was an independent predictor of retrograde CTO-PCI failure after successful collateral channel crossing. Devices and techniques to overcome complex CTO lesion morphology, such as lesion calcification, are required to further improve the retrograde CTO-PCI success rate. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
[K+ channels and lung epithelial physiology].
Bardou, Olivier; Trinh, Nguyen Thu Ngan; Brochiero, Emmanuelle
2009-04-01
Transcripts of more than 30 different K(+) channels have been detected in the respiratory epithelium lining airways and alveoli. These channels belong to the 3 main classes of K(+) channels, i.e. i) voltage-dependent or calcium-activated, 6 transmembrane segments (TM), ii) 2-pores 4-TM and iii) inward-rectified 2-TM channels. The physiological and functional significance of this high molecular diversity of lung epithelial K(+) channels is not well understood. Surprisingly, relatively few studies are focused on K(+) channel function in lung epithelial physiology. Nevertheless, several studies have shown that KvLQT1, KCa and K(ATP) K(+) channels play a crucial role in ion and fluid transport, contributing to the control of airway and alveolar surface liquid composition and volume. K(+) channels are involved in other key functions, such as O(2) sensing or the capacity of the respiratory epithelia to repair after injury. This mini-review aims to discuss potential functions of lung K(+) channels.
Lee, Kuan-I; Lin, Hui-Ching; Lee, Hsueh-Te; Tsai, Feng-Chuan; Lee, Tzong-Shyuan
2017-07-01
The transient receptor potential ankyrin 1 (TRPA1) channel is a non-selective cation channel that helps regulate inflammatory pain sensation and nociception and the development of inflammatory diseases. However, the potential role of the TRPA1 channel and the underlying mechanism in brain functions are not fully resolved. In this study, we demonstrated that genetic deletion of the TRPA1 channel in mice or pharmacological inhibition of its activity increased neurite outgrowth. In vivo study in mice provided evidence of the TRPA1 channel as a negative regulator in hippocampal functions; functional ablation of the TRPA1 channel in mice enhanced hippocampal functions, as evidenced by less anxiety-like behavior, and enhanced fear-related or spatial learning and memory, and novel location recognition as well as social interactions. However, the TRPA1 channel appears to be a prerequisite for motor function; functional loss of the TRPA1 channel in mice led to axonal bundle fragmentation, downregulation of myelin basic protein, and decreased mature oligodendrocyte population in the brain, for impaired motor function. The TRPA1 channel may play a crucial role in neuronal development and oligodendrocyte maturation and be a potential regulator in emotion, cognition, learning and memory, and social behavior.
Basolateral membrane K+ channels in renal epithelial cells
Devor, Daniel C.
2012-01-01
The major function of epithelial tissues is to maintain proper ion, solute, and water homeostasis. The tubule of the renal nephron has an amazingly simple structure, lined by epithelial cells, yet the segments (i.e., proximal tubule vs. collecting duct) of the nephron have unique transport functions. The functional differences are because epithelial cells are polarized and thus possess different patterns (distributions) of membrane transport proteins in the apical and basolateral membranes of the cell. K+ channels play critical roles in normal physiology. Over 90 different genes for K+ channels have been identified in the human genome. Epithelial K+ channels can be located within either or both the apical and basolateral membranes of the cell. One of the primary functions of basolateral K+ channels is to recycle K+ across the basolateral membrane for proper function of the Na+-K+-ATPase, among other functions. Mutations of these channels can cause significant disease. The focus of this review is to provide an overview of the basolateral K+ channels of the nephron, providing potential physiological functions and pathophysiology of these channels, where appropriate. We have taken a “K+ channel gene family” approach in presenting the representative basolateral K+ channels of the nephron. The basolateral K+ channels of the renal epithelia are represented by members of the KCNK, KCNJ, KCNQ, KCNE, and SLO gene families. PMID:22338089
Jet shapes in dijet events at the LHC in SCET
NASA Astrophysics Data System (ADS)
Hornig, Andrew; Makris, Yiannis; Mehen, Thomas
2016-04-01
We consider the class of jet shapes known as angularities in dijet production at hadron colliders. These angularities are modified from the original definitions in e + e - collisions to be boost invariant along the beam axis. These shapes apply to the constituents of jets defined with respect to either k T -type (anti- k T , C/ A, and k T ) algorithms and cone-type algorithms. We present an SCET factorization formula and calculate the ingredients needed to achieve next-to-leading-log (NLL) accuracy in kinematic regions where non-global logarithms are not large. The factorization formula involves previously unstudied "unmeasured beam functions," which are present for finite rapidity cuts around the beams. We derive relations between the jet functions and the shape-dependent part of the soft function that appear in the factorized cross section and those previously calculated for e + e - collisions, and present the calculation of the non-trivial, color-connected part of the soft-function to O({α}_s) . This latter part of the soft function is universal in the sense that it applies to any experimental setup with an out-of-jet p T veto and rapidity cuts together with two identified jets and it is independent of the choice of jet (sub-)structure measurement. In addition, we implement the recently introduced soft-collinear refactorization to resum logarithms of the jet size, valid in the region of non-enhanced non-global logarithm effects. While our results are valid for all 2 → 2 channels, we compute explicitly for the qq' → qq' channel the color-flow matrices and plot the NLL resummed differential dijet cross section as an explicit example, which shows that the normalization and scale uncertainty is reduced when the soft function is refactorized. For this channel, we also plot the jet size R dependence, the p T cut dependence, and the dependence on the angularity parameter a.
Jet shapes in dijet events at the LHC in SCET
Hornig, Andrew; Makris, Yiannis; Mehen, Thomas
2016-04-15
Here, we consider the class of jet shapes known as angularities in dijet production at hadron colliders. These angularities are modified from the original definitions in e + e- collisions to be boost invariant along the beam axis. These shapes apply to the constituents of jets defined with respect to either k T-type (anti-k T, C/A, and k T) algorithms and cone-type algorithms. We present an SCET factorization formula and calculate the ingredients needed to achieve next-to-leading-log (NLL) accuracy in kinematic regions where non-global logarithms are not large. The factorization formula involves previously unstudied “unmeasured beam functions,” which are present for finite rapidity cuts around the beams. We derive relations between the jet functions and the shape-dependent part of the soft function that appear in the factorized cross section and those previously calculated for e +e - collisions, and present the calculation of the non-trivial, color-connected part of the soft-function to O(αs) . This latter part of the soft function is universal in the sense that it applies to any experimental setup with an out-of-jet p T veto and rapidity cuts together with two identified jets and it is independent of the choice of jet (sub-)structure measurement. In addition, we implement the recently introduced soft-collinear refactorization to resum logarithms of the jet size, valid in the region of non-enhanced non-global logarithm effects. While our results are valid for all 2 → 2 channels, we compute explicitly for the qq' → qq' channel the color-flow matrices and plot the NLL resummed differential dijet cross section as an explicit example, which shows that the normalization and scale uncertainty is reduced when the soft function is refactorized. For this channel, we also plot the jet size R dependence, the pmore » $$cut\\atop{T}$$ dependence, and the dependence on the angularity parameter a.« less
Galvin, John J; Oba, Sandra I; Başkent, Deniz; Chatterjee, Monita; Fu, Qian-Jie
2015-01-01
Previous cochlear implant (CI) studies have shown that single-channel amplitude modulation frequency discrimination (AMFD) can be improved when coherent modulation is delivered to additional channels. It is unclear whether the multi-channel advantage is due to increased loudness, multiple envelope representations, or to component channels with better temporal processing. Measuring envelope interference may shed light on how modulated channels can be combined. In this study, multi-channel AMFD was measured in CI subjects using a 3-alternative forced-choice, non-adaptive procedure ("which interval is different?"). For the reference stimulus, the reference AM (100 Hz) was delivered to all 3 channels. For the probe stimulus, the target AM (101, 102, 104, 108, 116, 132, 164, 228, or 256 Hz) was delivered to 1 of 3 channels, and the reference AM (100 Hz) delivered to the other 2 channels. The spacing between electrodes was varied to be wide or narrow to test different degrees of channel interaction. Results showed that CI subjects were highly sensitive to interactions between the reference and target envelopes. However, performance was non-monotonic as a function of target AM frequency. For the wide spacing, there was significantly less envelope interaction when the target AM was delivered to the basal channel. For the narrow spacing, there was no effect of target AM channel. The present data were also compared to a related previous study in which the target AM was delivered to a single channel or to all 3 channels. AMFD was much better with multiple than with single channels whether the target AM was delivered to 1 of 3 or to all 3 channels. For very small differences between the reference and target AM frequencies (2-4 Hz), there was often greater sensitivity when the target AM was delivered to 1 of 3 channels versus all 3 channels, especially for narrowly spaced electrodes. Besides the increased loudness, the present results also suggest that multiple envelope representations may contribute to the multi-channel advantage observed in previous AMFD studies. The different patterns of results for the wide and narrow spacing suggest a peripheral contribution to multi-channel temporal processing. Because the effect of target AM frequency was non-monotonic in this study, adaptive procedures may not be suitable to measure AMFD thresholds with interfering envelopes. Envelope interactions among multiple channels may be quite complex, depending on the envelope information presented to each channel and the relative independence of the stimulated channels.
2015-01-01
Rationale Previous cochlear implant (CI) studies have shown that single-channel amplitude modulation frequency discrimination (AMFD) can be improved when coherent modulation is delivered to additional channels. It is unclear whether the multi-channel advantage is due to increased loudness, multiple envelope representations, or to component channels with better temporal processing. Measuring envelope interference may shed light on how modulated channels can be combined. Methods In this study, multi-channel AMFD was measured in CI subjects using a 3-alternative forced-choice, non-adaptive procedure (“which interval is different?”). For the reference stimulus, the reference AM (100 Hz) was delivered to all 3 channels. For the probe stimulus, the target AM (101, 102, 104, 108, 116, 132, 164, 228, or 256 Hz) was delivered to 1 of 3 channels, and the reference AM (100 Hz) delivered to the other 2 channels. The spacing between electrodes was varied to be wide or narrow to test different degrees of channel interaction. Results Results showed that CI subjects were highly sensitive to interactions between the reference and target envelopes. However, performance was non-monotonic as a function of target AM frequency. For the wide spacing, there was significantly less envelope interaction when the target AM was delivered to the basal channel. For the narrow spacing, there was no effect of target AM channel. The present data were also compared to a related previous study in which the target AM was delivered to a single channel or to all 3 channels. AMFD was much better with multiple than with single channels whether the target AM was delivered to 1 of 3 or to all 3 channels. For very small differences between the reference and target AM frequencies (2–4 Hz), there was often greater sensitivity when the target AM was delivered to 1 of 3 channels versus all 3 channels, especially for narrowly spaced electrodes. Conclusions Besides the increased loudness, the present results also suggest that multiple envelope representations may contribute to the multi-channel advantage observed in previous AMFD studies. The different patterns of results for the wide and narrow spacing suggest a peripheral contribution to multi-channel temporal processing. Because the effect of target AM frequency was non-monotonic in this study, adaptive procedures may not be suitable to measure AMFD thresholds with interfering envelopes. Envelope interactions among multiple channels may be quite complex, depending on the envelope information presented to each channel and the relative independence of the stimulated channels. PMID:26431043
Method and apparatus for advancing tethers
Zollinger, W. Thor
1998-01-01
A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel.
Ion Channel Gene Expression in Lung Adenocarcinoma: Potential Role in Prognosis and Diagnosis
Ko, Jae-Hong; Gu, Wanjun; Lim, Inja; Bang, Hyoweon; Ko, Eun A.; Zhou, Tong
2014-01-01
Ion channels are known to regulate cancer processes at all stages. The roles of ion channels in cancer pathology are extremely diverse. We systematically analyzed the expression patterns of ion channel genes in lung adenocarcinoma. First, we compared the expression of ion channel genes between normal and tumor tissues in patients with lung adenocarcinoma. Thirty-seven ion channel genes were identified as being differentially expressed between the two groups. Next, we investigated the prognostic power of ion channel genes in lung adenocarcinoma. We assigned a risk score to each lung adenocarcinoma patient based on the expression of the differentially expressed ion channel genes. We demonstrated that the risk score effectively predicted overall survival and recurrence-free survival in lung adenocarcinoma. We also found that the risk scores for ever-smokers were higher than those for never-smokers. Multivariate analysis indicated that the risk score was a significant prognostic factor for survival, which is independent of patient age, gender, stage, smoking history, Myc level, and EGFR/KRAS/ALK gene mutation status. Finally, we investigated the difference in ion channel gene expression between the two major subtypes of non-small cell lung cancer: adenocarcinoma and squamous-cell carcinoma. Thirty ion channel genes were identified as being differentially expressed between the two groups. We suggest that ion channel gene expression can be used to improve the subtype classification in non-small cell lung cancer at the molecular level. The findings in this study have been validated in several independent lung cancer cohorts. PMID:24466154
Twenty-Channel Voice Response System
DOT National Transportation Integrated Search
1981-06-01
This report documents the design and implementation of a Voice Response System, which provides Direct-User Access to the FAA's aviation-weather data base. This system supports 20 independent audio channels, and as of this report, speaks three weather...
Iron Framing Axonometric, Stringer, IBeam, Channel, Composite TieBeam, and Small ...
Iron Framing Axonometric, Stringer, I-Beam, Channel, Composite Tie-Beam, and Small and Large Phoenix Columns - Washington Monument, High ground West of Fifteenth Street, Northwest, between Independence & Constitution Avenues, Washington, District of Columbia, DC
Krey, Jocelyn F.; Pasca, Sergiu P.; Shcheglovitov, Aleksandr; Yazawa, Masayuki; Schwemberger, Rachel; Rasmusson, Randall; Dolmetsch, Ricardo E.
2012-01-01
L-type voltage gated calcium channels (LTCs) play an important role in neuronal development by promoting dendritic growth and arborization1–3. A point mutation in CaV1.2 causes Timothy Syndrome (TS)4, a neurodevelopmental disorder associated with autism spectrum disorders (ASD). We report that channels with the TS mutation cause activity-dependent dendrite retraction in rodent neurons and in induced pluripotent stem cell (iPSCs)– derived neurons from individuals with TS. Dendrite retraction is independent of calcium permeation through the mutant channel, is associated with ectopic activation of RhoA and is inhibited by over-expression of the channel associated GTPase Gem. These results suggest that CaV1.2 can activate RhoA signaling independently of Ca2+ and provide novel insights into the cellular basis of TS and other ASDs. PMID:23313911
NASA Technical Reports Server (NTRS)
Gullbrand, Jessica
2003-01-01
In this paper, turbulence-closure models are evaluated using the 'true' LES approach in turbulent channel flow. The study is an extension of the work presented by Gullbrand (2001), where fourth-order commutative filter functions are applied in three dimensions in a fourth-order finite-difference code. The true LES solution is the grid-independent solution to the filtered governing equations. The solution is obtained by keeping the filter width constant while the computational grid is refined. As the grid is refined, the solution converges towards the true LES solution. The true LES solution will depend on the filter width used, but will be independent of the grid resolution. In traditional LES, because the filter is implicit and directly connected to the grid spacing, the solution converges towards a direct numerical simulation (DNS) as the grid is refined, and not towards the solution of the filtered Navier-Stokes equations. The effect of turbulence-closure models is therefore difficult to determine in traditional LES because, as the grid is refined, more turbulence length scales are resolved and less influence from the models is expected. In contrast, in the true LES formulation, the explicit filter eliminates all scales that are smaller than the filter cutoff, regardless of the grid resolution. This ensures that the resolved length-scales do not vary as the grid resolution is changed. In true LES, the cell size must be smaller than or equal to the cutoff length scale of the filter function. The turbulence-closure models investigated are the dynamic Smagorinsky model (DSM), the dynamic mixed model (DMM), and the dynamic reconstruction model (DRM). These turbulence models were previously studied using two-dimensional explicit filtering in turbulent channel flow by Gullbrand & Chow (2002). The DSM by Germano et al. (1991) is used as the USFS model in all the simulations. This enables evaluation of different reconstruction models for the RSFS stresses. The DMM consists of the scale-similarity model (SSM) by Bardina et al. (1983), which is an RSFS model, in linear combination with the DSM. In the DRM, the RSFS stresses are modeled by using an estimate of the unfiltered velocity in the unclosed term, while the USFS stresses are modeled by the DSM. The DSM and the DMM are two commonly used turbulence-closure models, while the DRM is a more recent model.
Poroca, Diogo R.; Pelis, Ryan M.; Chappe, Valérie M.
2017-01-01
The discovery of ClC proteins at the beginning of the 1990s was important for the development of the Cl- transport research field. ClCs form a large family of proteins that mediate voltage-dependent transport of Cl- ions across cell membranes. They are expressed in both plasma and intracellular membranes of cells from almost all living organisms. ClC proteins form transmembrane dimers, in which each monomer displays independent ion conductance. Eukaryotic members also possess a large cytoplasmic domain containing two CBS domains, which are involved in transport modulation. ClC proteins function as either Cl- channels or Cl-/H+ exchangers, although all ClC proteins share the same basic architecture. ClC channels have two gating mechanisms: a relatively well-studied fast gating mechanism, and a slow gating mechanism, which is poorly defined. ClCs are involved in a wide range of physiological processes, including regulation of resting membrane potential in skeletal muscle, facilitation of transepithelial Cl- reabsorption in kidneys, and control of pH and Cl- concentration in intracellular compartments through coupled Cl-/H+ exchange mechanisms. Several inherited diseases result from C1C gene mutations, including myotonia congenita, Bartter’s syndrome (types 3 and 4), Dent’s disease, osteopetrosis, retinal degeneration, and lysosomal storage diseases. This review summarizes general features, known or suspected, of ClC structure, gating and physiological functions. We also discuss biophysical properties of mammalian ClCs that are directly involved in the pathophysiology of several human inherited disorders, or that induce interesting phenotypes in animal models. PMID:28386229
K+ channels of Müller glial cells in retinal disorders.
Gao, Feng; Xu, Linjie; Zhao, Yuan; Sun, Xinghuai; Wang, Zhongfeng
2018-02-01
Müller cell is the major type glial cell in the vertebrate retina. Müller cells express various types of K+ channels, such as inwardly rectifying K+ (Kir) channels, big conductance Ca2+-activated K+ (BKCa) channels, delayed rectifier K+ channels (KDR), and transient A-type K+ channels. These K+ channels play important roles in maintaining physiological functions of Müller cells. Under some retinal pathological conditions, the changed expression and functions of K+ channels may contribute to retinal pathogenesis. In this article, we reviewed the physiological properties of K+ channels in retinal Müller cells and the functional changes of these channels in retinal disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Keeley, N.; Mackintosh, R. S.
2018-01-01
Background: Precise fitting of scattering observables suggests that the nucleon-nucleus interaction is l dependent. Such l dependence has been shown to be S -matrix equivalent to an undulatory l -independent potential. The undulations include radial regions where the imaginary term is emissive. Purpose: To study the dynamical polarization potential (DPP) generated in proton-16O and neutron-16O interaction potentials by coupling to pickup channels. Undulatory features occurring in these DPPs can be compared with corresponding features of empirical optical model potentials (OMPs). Furthermore, the additional inclusion of coupling to vibrational states of the target will provide evidence for dynamically generated nonlocality. Methods: The fresco code provides the elastic channel S -matrix Sl j for chosen channel couplings. Inversion, Sl j→V (r ) +l .s VSO(r ) , followed by subtraction of the bare potential, yields an l -independent and local representation of the DPP due to the chosen couplings. Results: The DPPs have strongly undulatory features, including radial regions of emissivity. Certain features of empirical DPPs appear, e.g., the full inverted potential has emissive regions. The DPPs for different collective states are additive except near the nuclear center, whereas the collective and reaction channel DPPs are distinctly nonadditive over a considerable radial range, indicating dynamical nonlocality. Substantial differences between the DPPs due to pickup coupling for protons and neutrons occur; these imply a greater difference between proton and neutron OMPs than the standard phenomenological prescription. Conclusions: The onus is on those who object to undularity in the local and l -independent representation of nucleon elastic scattering to show why such undulations do not occur. This work suggests that it is not legitimate to halt model-independent fits to high-quality data at the appearance of undularity.
Eight-channel transmit/receive body MRI coil at 3T.
Vernickel, P; Röschmann, P; Findeklee, C; Lüdeke, K-M; Leussler, Ch; Overweg, J; Katscher, U; Grässlin, I; Schünemann, K
2007-08-01
Multichannel transmit magnetic resonance imaging (MR) systems have the potential to compensate for signal-intensity variations occurring at higher field strengths due to wave propagation effects in tissue. Methods such as RF shimming and local excitation in combination with parallel transmission can be applied to compensate for these effects. Moreover, parallel transmission can be applied to ease the excitation of arbitrarily shaped magnetization patterns. The implementation of these methods adds new requirements in terms of MRI hardware. This article describes the design of a decoupled eight-element transmit/receive body coil for 3T. The setup of the coil is explained, starting with standard single-channel resonators. Special focus is placed on the decoupling of the elements to obtain independent RF resonators. After a brief discussion of the underlying theory, the properties and limitations of the coil are outlined. Finally, the functionality and capabilities of the coil are demonstrated using RF measurements as well as MRI sequences.
Multi-channel medical imaging system
Frangioni, John V
2013-12-31
A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.
Quantum correlation of fiber-based telecom-band photon pairs through standard loss and random media.
Sua, Yong Meng; Malowicki, John; Lee, Kim Fook
2014-08-15
We study quantum correlation and interference of fiber-based telecom-band photon pairs with one photon of the pair experiencing multiple scattering in a random medium. We measure joint probability of two-photon detection for signal photon in a normal channel and idler photon in a channel, which is subjected to two independent conditions: standard loss (neutral density filter) and random media. We observe that both conditions degrade the correlation of signal and idler photons, and depolarization of the idler photon in random medium can enhance two-photon interference at certain relative polarization angles. Our theoretical calculation on two-photon polarization correlation and interference as a function of mean free path is in agreement with our experiment data. We conclude that quantum correlation of a polarization-entangled photon pair is better preserved than a polarization-correlated photon pair as one photon of the pair scatters through a random medium.
Multi-channel medical imaging system
Frangioni, John V.
2016-05-03
A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.
Scornik, Fabiana S.; Bucciero, Ronald S.; Wu, Yuesheng; Selga, Elisabet; Bosch Calero, Cristina; Brugada, Ramon
2013-01-01
The voltage-sensitive dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol [DiBAC4(3)] has been reported as a novel large-conductance Ca2+-activated K+ (BK) channel activator with selectivity for its β1- or β4-subunits. In arterial smooth muscle, BK channels are formed by a pore-forming α-subunit and a smooth muscle-abundant regulatory β1-subunit. This tissue specificity has driven extensive pharmacological research aimed at regulating arterial tone. Using animals with a disruption of the gene for the β1-subunit, we explored the effects of DiBAC4(3) in native channels from arterial smooth muscle. We tested the hypothesis that, in native BK channels, activation by DiBAC4(3) relies mostly on its α-subunit. We studied BK channels from wild-type and transgenic β1-knockout mice in excised patches. BK channels from brain arteries, with or without the β1-subunit, were similarly activated by DiBAC4(3). In addition, we found that saturating concentrations of DiBAC4(3) (∼30 μM) promote an unprecedented persistent activation of the channel that negatively shifts its voltage dependence by as much as −300 mV. This “sweet spot” for persistent activation is independent of Ca2+ and/or the β1–4-subunits and is fully achieved when DiBAC4(3) is applied to the intracellular side of the channel. Arterial BK channel response to DiBAC4(3) varies across species and/or vascular beds. DiBAC4(3) unique effects can reveal details of BK channel gating mechanisms and help in the rational design of BK channel activators. PMID:23542916
Montes de Oca Balderas, Pavel; Aguilera, Penélope
2015-01-01
Astrocytes were long thought to be only structural cells in the CNS; however, their functional properties support their role in information processing and cognition. The ionotropic glutamate N-methyl D-aspartate (NMDA) receptor (NMDAR) is critical for CNS functions, but its expression and function in astrocytes is still a matter of research and debate. Here, we report immunofluorescence (IF) labeling in rat cultured cortical astrocytes (rCCA) of all NMDAR subunits, with phenotypes suggesting their intracellular transport, and their mRNA were detected by qRT-PCR. IF and Western Blot revealed GluN1 full-length synthesis, subunit critical for NMDAR assembly and transport, and its plasma membrane localization. Functionally, we found an iCa2+ rise after NMDA treatment in Fluo-4-AM labeled rCCA, an effect blocked by the NMDAR competitive inhibitors D(-)-2-amino-5-phosphonopentanoic acid (APV) and Kynurenic acid (KYNA) and dependent upon GluN1 expression as evidenced by siRNA knock down. Surprisingly, the iCa2+ rise was not blocked by MK-801, an NMDAR channel blocker, or by extracellular Ca2+ depletion, indicating flux-independent NMDAR function. In contrast, the IP3 receptor (IP3R) inhibitor XestosponginC did block this response, whereas a Ryanodine Receptor inhibitor did so only partially. Furthermore, tyrosine kinase inhibition with genistein enhanced the NMDA elicited iCa2+ rise to levels comparable to those reached by the gliotransmitter ATP, but with different population dynamics. Finally, NMDA depleted the rCCA mitochondrial membrane potential (mΔψ) measured with JC-1. Our results demonstrate that rCCA express NMDAR subunits which assemble into functional receptors that mediate a metabotropic-like, non-canonical, flux-independent iCa2+ increase.
Hristov, Kiril L.; Parajuli, Shankar P.; Provence, Aaron
2016-01-01
In addition to improving sexual function, testosterone has been reported to have beneficial effects in ameliorating lower urinary tract symptoms by increasing bladder capacity and compliance, while decreasing bladder pressure. However, the cellular mechanisms by which testosterone regulates detrusor smooth muscle (DSM) excitability have not been elucidated. Here, we used amphotericin-B perforated whole cell patch-clamp and single channel recordings on inside-out excised membrane patches to investigate the regulatory role of testosterone in guinea pig DSM excitability. Testosterone (100 nM) significantly increased the depolarization-induced whole cell outward currents in DSM cells. The selective pharmacological inhibition of the large-conductance voltage- and Ca2+-activated K+ (BK) channels with paxilline (1 μM) completely abolished this stimulatory effect of testosterone, suggesting a mechanism involving BK channels. At a holding potential of −20 mV, DSM cells exhibited transient BK currents (TBKCs). Testosterone (100 nM) significantly increased TBKC activity in DSM cells. In current-clamp mode, testosterone (100 nM) significantly hyperpolarized the DSM cell resting membrane potential and increased spontaneous transient hyperpolarizations. Testosterone (100 nM) rapidly increased the single BK channel open probability in inside-out excised membrane patches from DSM cells, clearly suggesting a direct BK channel activation via a nongenomic mechanism. Live-cell Ca2+ imaging showed that testosterone (100 nM) caused a decrease in global intracellular Ca2+ concentration, consistent with testosterone-induced membrane hyperpolarization. In conclusion, the data provide compelling mechanistic evidence that under physiological conditions, testosterone at nanomolar concentrations directly activates BK channels in DSM cells, independent from genomic testosterone receptors, and thus regulates DSM excitability. PMID:27605581
Mechanism of auxiliary β-subunit-mediated membrane targeting of L-type (CaV1.2) channels
Fang, Kun; Colecraft, Henry M
2011-01-01
Abstract Ca2+ influx via CaV1/CaV2 channels drives processes ranging from neurotransmission to muscle contraction. Association of a pore-forming α1 and cytosolic β is necessary for trafficking CaV1/CaV2 channels to the cell surface through poorly understood mechanisms. A prevalent idea suggests β binds the α1 intracellular I–II loop, masking an endoplasmic reticulum (ER) retention signal as the dominant mechanism for CaV1/CaV2 channel membrane trafficking. There are hints that other α1 subunit cytoplasmic domains may play a significant role, but the nature of their potential contribution is unclear. We assessed the roles of all intracellular domains of CaV1.2-α1C by generating chimeras featuring substitutions of all possible permutations of intracellular loops/termini of α1C into the β-independent CaV3.1-α1G channel. Surprisingly, functional analyses demonstrated α1C I–II loop strongly increases channel surface density while other cytoplasmic domains had a competing opposing effect. Alanine-scanning mutagenesis identified an acidic-residue putative ER export motif responsible for the I–II loop-mediated increase in channel surface density. β-dependent increase in current arose as an emergent property requiring four α1C intracellular domains, with the I–II loop and C-terminus being essential. The results suggest β binding to the α1C I–II loop causes a C-terminus-dependent rearrangement of intracellular domains, shifting a balance of power between export signals on the I–II loop and retention signals elsewhere. PMID:21746784
Tomazou, Marios; Barahona, Mauricio; Polizzi, Karen M; Stan, Guy-Bart
2018-04-25
To perform well in biotechnology applications, synthetic genetic oscillators must be engineered to allow independent modulation of amplitude and period. This need is currently unmet. Here, we demonstrate computationally how two classic genetic oscillators, the dual-feedback oscillator and the repressilator, can be re-designed to provide independent control of amplitude and period and improve tunability-that is, a broad dynamic range of periods and amplitudes accessible through the input "dials." Our approach decouples frequency and amplitude modulation by incorporating an orthogonal "sink module" where the key molecular species are channeled for enzymatic degradation. This sink module maintains fast oscillation cycles while alleviating the translational coupling between the oscillator's transcription factors and output. We characterize the behavior of our re-designed oscillators over a broad range of physiologically reasonable parameters, explain why this facilitates broader function and control, and provide general design principles for building synthetic genetic oscillators that are more precisely controllable. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
A method for estimating mean and low flows of streams in national forests of Montana
Parrett, Charles; Hull, J.A.
1985-01-01
Equations were developed for estimating mean annual discharge, 80-percent exceedance discharge, and 95-percent exceedance discharge for streams on national forest lands in Montana. The equations for mean annual discharge used active-channel width, drainage area and mean annual precipitation as independent variables, with active-channel width being most significant. The equations for 80-percent exceedance discharge and 95-percent exceedance discharge used only active-channel width as an independent variable. The standard error or estimate for the best equation for estimating mean annual discharge was 27 percent. The standard errors of estimate for the equations were 67 percent for estimating 80-percent exceedance discharge and 75 percent for estimating 95-percent exceedance discharge. (USGS)
Zhang, Shen; Zheng, Yanchun; Wang, Daifa; Wang, Ling; Ma, Jianai; Zhang, Jing; Xu, Weihao; Li, Deyu; Zhang, Dan
2017-08-10
Motor imagery is one of the most investigated paradigms in the field of brain-computer interfaces (BCIs). The present study explored the feasibility of applying a common spatial pattern (CSP)-based algorithm for a functional near-infrared spectroscopy (fNIRS)-based motor imagery BCI. Ten participants performed kinesthetic imagery of their left- and right-hand movements while 20-channel fNIRS signals were recorded over the motor cortex. The CSP method was implemented to obtain the spatial filters specific for both imagery tasks. The mean, slope, and variance of the CSP filtered signals were taken as features for BCI classification. Results showed that the CSP-based algorithm outperformed two representative channel-wise methods for classifying the two imagery statuses using either data from all channels or averaged data from imagery responsive channels only (oxygenated hemoglobin: CSP-based: 75.3±13.1%; all-channel: 52.3±5.3%; averaged: 64.8±13.2%; deoxygenated hemoglobin: CSP-based: 72.3±13.0%; all-channel: 48.8±8.2%; averaged: 63.3±13.3%). Furthermore, the effectiveness of the CSP method was also observed for the motor execution data to a lesser extent. A partial correlation analysis revealed significant independent contributions from all three types of features, including the often-ignored variance feature. To our knowledge, this is the first study demonstrating the effectiveness of the CSP method for fNIRS-based motor imagery BCIs. Copyright © 2017 Elsevier B.V. All rights reserved.
Nerve membrane ion channels as the target site of environmental toxicants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narahashi, T.
1987-04-01
There are many environmentally important chemicals which exhibit potent effects on the nervous system. Since nerve excitation takes place in a fraction of a second, electrophysiological methods provide the authors with the most straightforward approach to the study of the mechanisms of action of environmental toxicants on the nervous system. Aquatic animals such as crayfish, lobster, squid, and marine snails represent extremely useful materials for such electrophysiological studies, because much of the authors knowledge of nerve excitation is derived from those animals. Nerve excitation takes place as a result of opening and closing of ion channels of the membrane. Thesemore » functions are independent of metabolic energy, and can be measured most effectively by voltage clamp techniques as applied to the giant axons of the crayfish and the squid. Patch clamp techniques developed during the past 10 years have added a new dimension to the electrophysiological investigation. These techniques allow them to measure the activity of individual ion channels, thereby making it possible to analyze the interaction of toxic molecules directly with single ion channels. Examples are given summarizing electrophysiological studies of environmental neurotoxicants. The abdominal nerve cords and neuromuscular preparations isolated from the crayfish are convenient materials for bioassay of certain environmental toxicants such as pyrethroids, chlorinated hydrocarbons, and other insecticides. Only a small fraction of the flux through the sodium channel, less than 1%, must be modified by pyrethroids for the animal to develop symptoms of poisoning. Such a toxicological application from channel to animal is important is understanding the potent toxic effect.« less
MarkoLAB: A simulator to study ionic channel's stochastic behavior.
da Silva, Robson Rodrigues; Goroso, Daniel Gustavo; Bers, Donald M; Puglisi, José Luis
2017-08-01
Mathematical models of the cardiac cell have started to include markovian representations of the ionic channels instead of the traditional Hodgkin & Huxley formulations. There are many reasons for this: Markov models are not restricted to the idea of independent gates defining the channel, they allow more complex description with specific transitions between open, closed or inactivated states, and more importantly those states can be closely related to the underlying channel structure and conformational changes. We used the LabVIEW ® and MATLAB ® programs to implement the simulator MarkoLAB that allow a dynamical 3D representation of the markovian model of the channel. The Monte Carlo simulation was used to implement the stochastic transitions among states. The user can specify the voltage protocol by setting the holding potential, the step-to voltage and the duration of the stimuli. The most studied feature of a channel is the current flowing through it. This happens when the channel stays in the open state, but most of the time, as revealed by the low open probability values, the channel remains on the inactive or closed states. By focusing only when the channel enters or leaves the open state we are missing most of its activity. MarkoLAB proved to be quite useful to visualize the whole behavior of the channel and not only when the channel produces a current. Such dynamic representation provides more complete information about channel kinetics and will be a powerful tool to demonstrate the effect of gene mutations or drugs on the channel function. MarkoLAB provides an original way of visualizing the stochastic behavior of a channel. It clarifies concepts, such as recovery from inactivation, calcium- versus voltage-dependent inactivation, and tail currents. It is not restricted to ionic channels only but it can be extended to other transporters, such as exchangers and pumps. This program is intended as a didactical tool to illustrate the dynamical behavior of a channel. It has been implemented in two platforms MATLAB ® and LabVIEW ® to enhance the target users of this new didactical tool. The computational cost of implementing a stochastic simulation is within the range of a personal computer performance; making MarkoLAB suitable to be run during a lecture or presentation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Held, Katharina; Gruss, Fabian; Aloi, Vincenzo Davide; Janssens, Annelies; Ulens, Chris; Voets, Thomas; Vriens, Joris
2018-03-31
Mutagenesis at positively charged amino acids (arginines and lysines) (R1-R4) in the voltage-sensor domain (transmembrane segment (S) 4) of voltage-gated Na + , K + and Ca 2+ channels can lead to an alternative ion permeation pathway distinct from the central pore. Recently, a non-canonical ion permeation pathway was described in TRPM3, a member of the transient receptor potential (TRP) superfamily. The non-canonical pore exists in the native TRPM3 channel and can be activated by co-stimulation of the endogenous agonist pregnenolone sulphate and the antifungal drug clotrimazole or by stimulation of the synthetic agonist CIM0216. Alignment of the voltage sensor of Shaker K + channels with the entire TRPM3 sequence revealed the highest degree of similarity in the putative S4 region of TRPM3, and suggested that only one single gating charge arginine (R2) in the putative S4 region is conserved. Mutagenesis studies in the voltage-sensing domain of TRPM3 revealed several residues in the voltage sensor (S4) as well as in S1 and S3 that are crucial for the occurrence of the non-canonical inward currents. In conclusion, this study provides evidence for the involvement of the voltage-sensing domain of TRPM3 in the formation of an alternative ion permeation pathway. Transient receptor potential (TRP) channels are cationic channels involved in a broad array of functions, including homeostasis, motility and sensory functions. TRP channel subunits consist of six transmembrane segments (S1-S6), and form tetrameric channels with a central pore formed by the region encompassing S5 and S6. Recently, evidence was provided for the existence of an alternative ion permeation pathway in TRPM3, which allows large inward currents upon hyperpolarization independently of the central pore. However, very little knowledge is available concerning the localization of this alternative pathway in the native TRPM3 channel protein. Guided by sequence homology with Shaker K + channels, in which mutations in S4 can create an analogous 'omega' pore, we performed site-directed mutagenesis studies and patch clamp experiments to identify amino acid residues involved in the formation of the non-canonical pore in TRPM3. Based on our results, we pinpoint four residues in S4 (W982, R985, D988 and G991) as crucial determinants of the properties of the alternative ion permeation pathway. © 2018 KU Leuven The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Effects of channel noise on firing coherence of small-world Hodgkin-Huxley neuronal networks
NASA Astrophysics Data System (ADS)
Sun, X. J.; Lei, J. Z.; Perc, M.; Lu, Q. S.; Lv, S. J.
2011-01-01
We investigate the effects of channel noise on firing coherence of Watts-Strogatz small-world networks consisting of biophysically realistic HH neurons having a fraction of blocked voltage-gated sodium and potassium ion channels embedded in their neuronal membranes. The intensity of channel noise is determined by the number of non-blocked ion channels, which depends on the fraction of working ion channels and the membrane patch size with the assumption of homogeneous ion channel density. We find that firing coherence of the neuronal network can be either enhanced or reduced depending on the source of channel noise. As shown in this paper, sodium channel noise reduces firing coherence of neuronal networks; in contrast, potassium channel noise enhances it. Furthermore, compared with potassium channel noise, sodium channel noise plays a dominant role in affecting firing coherence of the neuronal network. Moreover, we declare that the observed phenomena are independent of the rewiring probability.
Salvador-Recatalà, Vicenta; Schneider, Toni; Greenberg, Robert M
2008-03-26
The function of voltage-gated calcium (Cav) channels greatly depends on coupling to cytoplasmic accessory beta subunits, which not only promote surface expression, but also modulate gating and kinetic properties of the alpha1 subunit. Schistosomes, parasitic platyhelminths that cause schistosomiasis, express two beta subunit subtypes: a structurally conventional beta subunit and a variant beta subunit with unusual functional properties. We have previously characterized the functional properties of the variant Cavbeta subunit. Here, we focus on the modulatory phenotype of the conventional Cavbeta subunit (SmCavbeta) using the human Cav2.3 channel as the substrate for SmCavbeta and the whole-cell patch-clamp technique. The conventional Schistosoma mansoni Cavbeta subunit markedly increases Cav2.3 currents, slows macroscopic inactivation and shifts steady state inactivation in the hyperpolarizing direction. However, currents produced by Cav2.3 in the presence of SmCavbeta run-down to approximately 75% of their initial amplitudes within two minutes of establishing the whole-cell configuration. This suppressive effect was independent of Ca2+, but dependent on intracellular Mg2+-ATP. Additional experiments revealed that SmCavbeta lends the Cav2.3/SmCavbeta complex sensitivity to Na+ ions. A mutant version of the Cavbeta subunit lacking the first forty-six amino acids, including a string of twenty-two acidic residues, no longer conferred sensitivity to intracellular Mg2+-ATP and Na+ ions, while continuing to show wild type modulation of current amplitude and inactivation of Cav2.3. The data presented in this article provide insights into novel mechanisms employed by platyhelminth Cavbeta subunits to modulate voltage-gated Ca2+ currents that indicate interactions between the Ca2+ channel complex and chelated forms of ATP as well as Na+ ions. These results have potentially important implications for understanding previously unknown mechanisms by which platyhelminths and perhaps other organisms modulate Ca2+ currents in excitable cells.
Skyrme forces and decay of the Rf266*104 nucleus synthesized via different incoming channels
NASA Astrophysics Data System (ADS)
Niyti, Deep, Aman; Kharab, Rajesh; Chopra, Sahila; Gupta, Raj K.
2017-03-01
The excitation functions for the production of 262Rf, 261Rf, and 260Rf isotopes via 4 n -, 5 n -, and 6 n -decay channels from the *266Rf compound nucleus are studied within the dynamical cluster-decay model (DCM), including deformations β2 i and so-called hot-optimum orientations θi which support symmetric fission, in agreement with experiments. The data are available for 18O+248Cm and 22Ne+244Pu reactions, respectively, at the energy ranges of Elab=88.2 to 101.3 and 109.0 to 124.8 MeV. For the nuclear interaction potentials, we use the Skyrme energy density functional (SEDF) based on semiclassical extended Thomas Fermi (ETF) approach, which means an extension of the earlier study of excitation functions of *266Rf formed in 18O+248Cm reaction, based on the DCM using the pocket formula for nuclear proximity potential, showing interaction dependence. The Skyrme forces used here are the old SIII and SIV and new GSkI and KDE0(v1) given for both normal and isospin-rich nuclei, with densities added in frozen density approximation. Interestingly, the DCM gives an excellent fit to the measured data on fusion evaporation residue (ER) for both the incoming channels (18O+248Cm and 22Ne+244Pu ) at the energy range Elab=88.2 to 124.8 MeV, independent of the entrance channel and Skyrme force used. The possible fusion-fission (ff) and quasifission (qf) mass regions of fragments on DCM are also predicted. The DCM with Skyrme forces is further used to look for all the possible target-projectile (t-p) combinations forming the cold compound nucleus (CN) *266Rf at the CN excitation energy of Elab for hot compact configurations. The fusion evaporation residue cross sections, for the proposed new reactions in synthesizing the CN *266Rf, are also estimated for the future experiments, and role of mass asymmetry of nuclei is indicated.
Qin, Xin; Yue, Zhichao; Sun, Baonan; Yang, Wenzhong; Xie, Jia; Ni, Eric; Feng, Yi; Mahmood, Rafat; Zhang, Yanhui; Yue, Lixia
2013-03-01
Transient receptor potential melastatin 7 (TRPM7) is a unique channel kinase which is crucial for various physiological functions. However, the mechanism by which TRPM7 is gated and modulated is not fully understood. To better understand how modulation of TRPM7 may impact biological processes, we investigated if TRPM7 can be regulated by the phospholipids sphingosine (SPH) and sphingosine-1-phosphate (S1P), two potent bioactive sphingolipids that mediate a variety of physiological functions. Moreover, we also tested the effects of the structural analogues of SPH, N,N-dimethyl-D-erythro-sphingosine (DMS), ceramides and FTY720 on TRPM7. HEK293 cells stably expressing TRPM7 were used for whole-cell, single-channel and macropatch current recordings. Cardiac fibroblasts were used for native TRPM7 current recording. SPH potently inhibited TRPM7 in a concentration-dependent manner, whereas S1P and other ceramides did not produce noticeable effects. DMS also markedly inhibited TRPM7. Moreover, FTY720, an immunosuppressant and the first oral drug for treatment of multiple sclerosis, inhibited TRPM7 with a similar potency to that of SPH. In contrast, FTY720-P has no effect on TRPM7. It appears that SPH and FTY720 inhibit TRPM7 by reducing channel open probability. Furthermore, endogenous TRPM7 in cardiac fibroblasts was markedly inhibited by SPH, DMS and FTY720. This is the first study demonstrating that SPH and FTY720 are potent inhibitors of TRPM7. Our results not only provide a new modulation mechanism of TRPM7, but also suggest that TRPM7 may serve as a direct target of SPH and FTY720, thereby mediating S1P-independent physiological/pathological functions of SPH and FTY720. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
Gan, Yiqun; Gan, Tingting; Chen, Zhiyan; Miao, Miao; Zhang, Kan
2015-10-01
This study investigated the role of social support in the complex pattern of associations among stressors, work-family interferences and depression in the domains of work and family. A questionnaire was administered to a nationwide sample of 11,419 Chinese science and technology professionals. Several structural equation models were specified to determine whether social support functioned as a predictor or a mediator. Using Mplus 5.0, we compared the moderation model, the independence model, the antecedent model and the mediation model. The results revealed that the relationship between work-family interference and social support was domain specific. The independence model fit the data best in the work domain. Both the moderation model and the antecedent model fit the family domain data equally well. The current study was conducted to answer the need for comprehensive investigations of cultural uniqueness in the antecedents of work-family interference. The domain specificity, i.e. the multiple channels of the functions of support in the family domain and not in the work domain, ensures that this study is unique and culturally specific. Copyright © 2014 John Wiley & Sons, Ltd.
Spatial channel interactions in cochlear implants
NASA Astrophysics Data System (ADS)
Tang, Qing; Benítez, Raul; Zeng, Fan-Gang
2011-08-01
The modern multi-channel cochlear implant is widely considered to be the most successful neural prosthesis owing to its ability to restore partial hearing to post-lingually deafened adults and to allow essentially normal language development in pre-lingually deafened children. However, the implant performance varies greatly in individuals and is still limited in background noise, tonal language understanding, and music perception. One main cause for the individual variability and the limited performance in cochlear implants is spatial channel interaction from the stimulating electrodes to the auditory nerve and brain. Here we systematically examined spatial channel interactions at the physical, physiological, and perceptual levels in the same five modern cochlear implant subjects. The physical interaction was examined using an electric field imaging technique, which measured the voltage distribution as a function of the electrode position in the cochlea in response to the stimulation of a single electrode. The physiological interaction was examined by recording electrically evoked compound action potentials as a function of the electrode position in response to the stimulation of the same single electrode position. The perceptual interactions were characterized by changes in detection threshold as well as loudness summation in response to in-phase or out-of-phase dual-electrode stimulation. To minimize potentially confounding effects of temporal factors on spatial channel interactions, stimulus rates were limited to 100 Hz or less in all measurements. Several quantitative channel interaction indexes were developed to define and compare the width, slope and symmetry of the spatial excitation patterns derived from these physical, physiological and perceptual measures. The electric field imaging data revealed a broad but uniformly asymmetrical intracochlear electric field pattern, with the apical side producing a wider half-width and shallower slope than the basal side. In contrast, the evoked compound action potential and perceptual channel interaction data showed much greater individual variability. It is likely that actual reduction in neural and higher level interactions, instead of simple sharpening of the electric current field, would be the key to predicting and hopefully improving the variable cochlear implant performance. The present results are obtained with auditory prostheses but can be applied to other neural prostheses, in which independent spatial channels, rather than a high stimulation rate, are critical to their performance.
NASA Astrophysics Data System (ADS)
Spencer, Roy W.; Christy, John R.
1992-08-01
TIROS-N satellite Microwave Sounding Unit (MSU) channel 2 data from different view angles across the MSU man swath are combined to remove the influence of the lower stratosphere and much of the upper troposphere on the measured brightness temperatures. The retrieval provides a sharper averaging kernel than the raw channel 2 weighting function, with a peak lowered from 50 kPa to 70 kPa and with only slightly more surface influence than raw channel 2. Monthly 2.5° gridpoint anomalies of this tropospheric retrieval compared between simultaneously operating satellites indicate close agreement, 0.15°C in the tropics to around 0.30°C over much of the higher latitudes. The agreement is not as close as with raw channel 2 anomalies because synoptic-scale temperature gradient information across the 2000-km swath of the MSU is lost in the retrieval procedure and because the retrieval involves the magnification of a small difference between two large numbers. Single gridpoint monthly anomaly correlations between the satellite measurements and the radiosonde calculations range from around 0.95 at high latitudes to below 0.8 in the tropical west Pacific, with standard errors of estimate of 0.16°C at Guam to around 0.50°C at high-latitude continental stations. Calculation of radiosonde temperature with a static weighting function instead of the radiative transfer equation degrades the standard errors by an average of less than 0.04°C. Of various standard tropospheric layers, the channel 2 retrieval anomalies correlate best with radiosonde 100-50- or 100-40-kPa-thickness anomalies. A comparison between global and hemispheric anomalies computed for raw channel 2 data versus the tropospheric retrieval show a correction in the 1979-90 time series for the volcano-induced stratospheric warming of 1982-83, which was independently observed by MSU channel 4. This correction leads to a slightly greater tropospheric warming trend in the 12-year time series (1979-90) for the tropospheric retrieval [0.039°C (±0.03°C) per decade] than for channel 2 alone [0.022°C (±0.02°C) per decade].
NASA Astrophysics Data System (ADS)
Zhang, Y.; Shi, M.; Sun, J.; Yang, C.; Zhang, Yajuan; Scopesi, F.; Makobore, P.; Chin, C.; Serra, G.; Wickramasinghe, Y. A. B. D.; Rolfe, P.
2015-02-01
Brain activity can be monitored non-invasively by functional near-infrared spectroscopy (fNIRS), which has several advantages in comparison with other methods, such as flexibility, portability, low cost and fewer physical restrictions. However, in practice fNIRS measurements are often contaminated by physiological interference arising from cardiac contraction, breathing and blood pressure fluctuations, thereby severely limiting the utility of the method. Hence, further improvement is necessary to reduce or eliminate such interference in order that the evoked brain activity information can be extracted reliably from fNIRS data. In the present paper, the multi-distance fNIRS probe configuration has been adopted. The short-distance fNIRS measurement is treated as the virtual channel and the long-distance fNIRS measurement is treated as the measurement channel. Independent component analysis (ICA) is employed for the fNIRS recordings to separate the brain signals and the interference. Least-absolute deviation (LAD) estimator is employed to recover the brain activity signals. We also utilized Monte Carlo simulations based on a five-layer model of the adult human head to evaluate our methodology. The results demonstrate that the ICA algorithm has the potential to separate physiological interference in fNIRS data and the LAD estimator could be a useful criterion to recover the brain activity signals.
James, Kevin R; Dowling, David R
2008-09-01
In underwater acoustics, the accuracy of computational field predictions is commonly limited by uncertainty in environmental parameters. An approximate technique for determining the probability density function (PDF) of computed field amplitude, A, from known environmental uncertainties is presented here. The technique can be applied to several, N, uncertain parameters simultaneously, requires N+1 field calculations, and can be used with any acoustic field model. The technique implicitly assumes independent input parameters and is based on finding the optimum spatial shift between field calculations completed at two different values of each uncertain parameter. This shift information is used to convert uncertain-environmental-parameter distributions into PDF(A). The technique's accuracy is good when the shifted fields match well. Its accuracy is evaluated in range-independent underwater sound channels via an L(1) error-norm defined between approximate and numerically converged results for PDF(A). In 50-m- and 100-m-deep sound channels with 0.5% uncertainty in depth (N=1) at frequencies between 100 and 800 Hz, and for ranges from 1 to 8 km, 95% of the approximate field-amplitude distributions generated L(1) values less than 0.52 using only two field calculations. Obtaining comparable accuracy from traditional methods requires of order 10 field calculations and up to 10(N) when N>1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, R.L.; Johansson, E.B.
1988-06-07
A fuel assembly is described comprising fuel rods positioned in a spaced array by upper and lower tie-plates, an open ended flow channel surrounding the array for conducting coolant upward about the fuel rods, the open ended channel having a polygon shaped cross section with flat side sections connected between the corner sections; means separate from the channel connecting the upper and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel, improvement in the flow channel comprising: four corners having a first thickness; four sides having a second and reduced thickness from themore » corner thickness, the sides welded to the corner sections.« less
Zhang, Qing; Shao, Shuangshuang; Chen, Zheng; Pecunia, Vincenzo; Xia, Kai; Zhao, Jianwen; Cui, Zheng
2018-05-09
A self-aligned inkjet printing process has been developed to construct small channel metal oxide (a-IGZO) thin-film transistors (TFTs) with independent bottom gates on transparent glass substrates. Poly(methylsilsesquioxane) was used to pattern hydrophobic banks on the transparent substrate instead of commonly used self-assembled octadecyltrichlorosilane. Photolithographic exposure from backside using bottom-gate electrodes as mask formed hydrophilic channel areas for the TFTs. IGZO ink was selectively deposited by an inkjet printer in the hydrophilic channel region and confined by the hydrophobic bank structure, resulting in the precise deposition of semiconductor layers just above the gate electrodes. Inkjet-printed IGZO TFTs with independent gate electrodes of 10 μm width have been demonstrated, avoiding completely printed channel beyond the broad of the gate electrodes. The TFTs showed on/off ratios of 10 8 , maximum mobility of 3.3 cm 2 V -1 s -1 , negligible hysteresis, and good uniformity. This method is conductive to minimizing the area of printed TFTs so as to the development of high-resolution printing displays.
NASA Astrophysics Data System (ADS)
Murshid, Syed H.; Muralikrishnan, Hari P.; Kozaitis, Samuel P.
2012-06-01
Bandwidth increase has always been an important area of research in communications. A novel multiplexing technique known as Spatial Domain Multiplexing (SDM) has been developed at the Optronics Laboratory of Florida Institute of Technology to increase the bandwidth to T-bits/s range. In this technique, space inside the fiber is used effectively to transmit up to four channels of same wavelength at the same time. Experimental and theoretical analysis shows that these channels follow independent helical paths inside the fiber without interfering with each other. Multiple pigtail laser sources of exactly the same wavelength are used to launch light into a single carrier fiber in a fashion that resulting channels follow independent helical trajectories. These helically propagating light beams form optical vortices inside the fiber and carry their own Orbital Angular Momentum (OAM). The outputs of these beams appear as concentric donut shaped rings when projected on a screen. This endeavor presents the experimental outputs and simulated results for a four channel spatially multiplexed system effectively increasing the system bandwidth by a factor of four.
Method and apparatus for advancing tethers
Zollinger, W.T.
1998-06-02
A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel. 9 figs.
Mechanisms for Rapid Adaptive Control of Motion Processing in Macaque Visual Cortex.
McLelland, Douglas; Baker, Pamela M; Ahmed, Bashir; Kohn, Adam; Bair, Wyeth
2015-07-15
A key feature of neural networks is their ability to rapidly adjust their function, including signal gain and temporal dynamics, in response to changes in sensory inputs. These adjustments are thought to be important for optimizing the sensitivity of the system, yet their mechanisms remain poorly understood. We studied adaptive changes in temporal integration in direction-selective cells in macaque primary visual cortex, where specific hypotheses have been proposed to account for rapid adaptation. By independently stimulating direction-specific channels, we found that the control of temporal integration of motion at one direction was independent of motion signals driven at the orthogonal direction. We also found that individual neurons can simultaneously support two different profiles of temporal integration for motion in orthogonal directions. These findings rule out a broad range of adaptive mechanisms as being key to the control of temporal integration, including untuned normalization and nonlinearities of spike generation and somatic adaptation in the recorded direction-selective cells. Such mechanisms are too broadly tuned, or occur too far downstream, to explain the channel-specific and multiplexed temporal integration that we observe in single neurons. Instead, we are compelled to conclude that parallel processing pathways are involved, and we demonstrate one such circuit using a computer model. This solution allows processing in different direction/orientation channels to be separately optimized and is sensible given that, under typical motion conditions (e.g., translation or looming), speed on the retina is a function of the orientation of image components. Many neurons in visual cortex are understood in terms of their spatial and temporal receptive fields. It is now known that the spatiotemporal integration underlying visual responses is not fixed but depends on the visual input. For example, neurons that respond selectively to motion direction integrate signals over a shorter time window when visual motion is fast and a longer window when motion is slow. We investigated the mechanisms underlying this useful adaptation by recording from neurons as they responded to stimuli moving in two different directions at different speeds. Computer simulations of our results enabled us to rule out several candidate theories in favor of a model that integrates across multiple parallel channels that operate at different time scales. Copyright © 2015 the authors 0270-6474/15/3510268-13$15.00/0.
Functional Characterization of Cnidarian HCN Channels Points to an Early Evolution of Ih.
Baker, Emma C; Layden, Michael J; van Rossum, Damian B; Kamel, Bishoy; Medina, Monica; Simpson, Eboni; Jegla, Timothy
2015-01-01
HCN channels play a unique role in bilaterian physiology as the only hyperpolarization-gated cation channels. Their voltage-gating is regulated by cyclic nucleotides and phosphatidylinositol 4,5-bisphosphate (PIP2). Activation of HCN channels provides the depolarizing current in response to hyperpolarization that is critical for intrinsic rhythmicity in neurons and the sinoatrial node. Additionally, HCN channels regulate dendritic excitability in a wide variety of neurons. Little is known about the early functional evolution of HCN channels, but the presence of HCN sequences in basal metazoan phyla and choanoflagellates, a protozoan sister group to the metazoans, indicate that the gene family predates metazoan emergence. We functionally characterized two HCN channel orthologs from Nematostella vectensis (Cnidaria, Anthozoa) to determine which properties of HCN channels were established prior to the emergence of bilaterians. We find Nematostella HCN channels share all the major functional features of bilaterian HCNs, including reversed voltage-dependence, activation by cAMP and PIP2, and block by extracellular Cs+. Thus bilaterian-like HCN channels were already present in the common parahoxozoan ancestor of bilaterians and cnidarians, at a time when the functional diversity of voltage-gated K+ channels was rapidly expanding. NvHCN1 and NvHCN2 are expressed broadly in planulae and in both the endoderm and ectoderm of juvenile polyps.
Universal freezing of quantum correlations within the geometric approach
Cianciaruso, Marco; Bromley, Thomas R.; Roga, Wojciech; Lo Franco, Rosario; Adesso, Gerardo
2015-01-01
Quantum correlations in a composite system can be measured by resorting to a geometric approach, according to which the distance from the state of the system to a suitable set of classically correlated states is considered. Here we show that all distance functions, which respect natural assumptions of invariance under transposition, convexity, and contractivity under quantum channels, give rise to geometric quantifiers of quantum correlations which exhibit the peculiar freezing phenomenon, i.e., remain constant during the evolution of a paradigmatic class of states of two qubits each independently interacting with a non-dissipative decohering environment. Our results demonstrate from first principles that freezing of geometric quantum correlations is independent of the adopted distance and therefore universal. This finding paves the way to a deeper physical interpretation and future practical exploitation of the phenomenon for noisy quantum technologies. PMID:26053239
[Colorimetric characterization of LCD based on wavelength partition spectral model].
Liu, Hao-Xue; Cui, Gui-Hua; Huang, Min; Wu, Bing; Xu, Yan-Fang; Luo, Ming
2013-10-01
To establish a colorimetrical characterization model of LCDs, an experiment with EIZO CG19, IBM 19, DELL 19 and HP 19 LCDs was designed and carried out to test the interaction between RGB channels, and then to test the spectral additive property of LCDs. The RGB digital values of single channel and two channels were given and the corresponding tristimulus values were measured, then a chart was plotted and calculations were made to test the independency of RGB channels. The results showed that the interaction between channels was reasonably weak and spectral additivity property was held well. We also found that the relations between radiations and digital values at different wavelengths varied, that is, they were the functions of wavelength. A new calculation method based on piecewise spectral model, in which the relation between radiations and digital values was fitted by a cubic polynomial in each piece of wavelength with measured spectral radiation curves, was proposed and tested. The spectral radiation curves of RGB primaries with any digital values can be found out with only a few measurements and fitted cubic polynomial in this way and then any displayed color can be turned out by the spectral additivity property of primaries at given digital values. The algorithm of this method was discussed in detail in this paper. The computations showed that the proposed method was simple and the number of measurements needed was reduced greatly while keeping a very high computation precision. This method can be used as a colorimetrical characterization model.
Slow synaptic transmission mediated by TRPV1 channels in CA3 interneurons of the hippocampus.
Eguchi, Noriomi; Hishimoto, Akitoyo; Sora, Ichiro; Mori, Masahiro
2016-03-11
Metabotropic glutamate receptors (mGluRs) modulate various neuronal functions in the central nervous system. Many studies reported that mGluRs have linkages to neuronal disorders such as schizophrenia and autism related disorders, indicating that mGluRs are involved in critical functions of the neuronal circuits. To study this possibility further, we recorded mGluR-induced synaptic responses in the interneurons of the CA3 stratum radiatum using rat hippocampal organotypic slice cultures. Electrical stimulation in the CA3 pyramidal cell layer evoked a slow inward current in the interneurons at a holding potential of -70mV in the presence of antagonists for AMPA/kainate receptors, NMDA receptors, GABAA receptors and GABAB receptors. The slow inward current was blocked in the absence of extracellular calcium, suggesting that this was a synaptic response. The slow excitatory postsynaptic current (EPSC) reversed near 0mV, reflecting an increase in a non-selective cationic conductance. The slow EPSC is mediated by group I mGluRs, as it was blocked by AP3, a group I mGluR antagonist. Neither a calcium chelator BAPTA nor a phospholipase C (PLC) inhibitor U73122 affected the slow EPSC. La(3+), a general TRP channel blocker or capsazepine, a selective TRPV1 channel antagonist significantly suppressed the slow EPSC. DHPG, a selective group I mGluRs agonist induced an inward current, which was suppressed by capsazepine. These results indicate that in the interneurons of the hippocampal CA3 stratum radiatum group I mGluRs activate TRPV1 channels independently of PLC and intracellular Ca(2+), resulting in the slow EPSC in the interneurons. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Mapping the membrane-aqueous border for the voltage-sensing domain of a potassium channel.
Neale, Edward J; Rong, Honglin; Cockcroft, Christopher J; Sivaprasadarao, Asipu
2007-12-28
Voltage-sensing domains (VSDs) play diverse roles in biology. As integral components, they can detect changes in the membrane potential of a cell and couple these changes to activity of ion channels and enzymes. As independent proteins, homologues of the VSD can function as voltage-dependent proton channels. To sense voltage changes, the positively charged fourth transmembrane segment, S4, must move across the energetically unfavorable hydrophobic core of the bilayer, which presents a barrier to movement of both charged species and protons. To reduce the barrier to S4 movement, it has been suggested that aqueous crevices may penetrate the protein, reducing the extent of total movement. To investigate this hypothesis in a system containing fully functional channels in a native environment with an intact membrane potential, we have determined the contour of the membrane-aqueous border of the VSD of KvAP in Escherichia coli by examining the chemical accessibility of introduced cysteines. The results revealed the contour of the membrane-aqueous border of the VSD in its activated conformation. The water-inaccessible regions of S1 and S2 correspond to the standard width of the membrane bilayer (~28 A), but those of S3 and S4 are considerably shorter (> or = 40%), consistent with aqueous crevices pervading both the extracellular and intracellular ends. One face of S3b and the entire S3a were water-accessible, reducing the water-inaccessible region of S3 to just 10 residues, significantly shorter than for S4. The results suggest a key role for S3 in reducing the distance S4 needs to move to elicit gating.
Castelló-Ruiz, María; Salom, Juan B; Fernández-Musoles, Ricardo; Burguete, María C; López-Morales, Mikahela A; Arduini, Alessandro; Jover-Mengual, Teresa; Hervás, David; Torregrosa, Germán; Alborch, Enrique
2016-10-01
We have previously shown that the selective estrogen receptor modulator, bazedoxifene, improves the consequences of ischemic stroke. Now we aimed to characterize the effects and mechanisms of action of bazedoxifene in cerebral arteries. Male rabbit isolated basilar arteries were used for isometric tension recording and quantitative polymerase chain reaction. Bazedoxifene relaxed cerebral arteries, as 17-β-estradiol, 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol [estrogen receptor (ER) α agonist], and G1 [G protein-coupled ER (GPER) agonist] did it (4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol > bazedoxifene = G1 > 17-β-estradiol). 2,3-Bis(4-hydroxyphenyl)-propionitrile (ERβ agonist) had no effect. Expression profile of genes encoding for ERα (ESR1), ERβ (ESR2), and GPER was GPER > ESR1 > ESR2. As to the endothelial mechanisms, endothelium removal, N-nitro-L-arginine methyl ester, and indomethacin, did not modify the relaxant responses to bazedoxifene. As to the K channels, both a high-K medium and the Kv blocker, 4-aminopyridine, inhibited the bazedoxifene-induced relaxations, whereas tetraethylammonium (nonselective K channel blocker), glibenclamide (selective KATP blocker) or iberiotoxin (selective KCa blocker) were without effect. Bazedoxifene also inhibited both Ca- and Bay K8644-elicited contractions. Therefore, bazedoxifene induces endothelium-independent relaxations of cerebral arteries through (1) activation of GPER and ERα receptors; (2) increase of K conductance through Kv channels; and (3) inhibition of Ca entry through L-type Ca channels. Such a profile is compatible with the beneficial effects of estrogenic compounds (eg, SERMs) on vascular function and, specifically, that concerning the brain. Therefore, bazedoxifene could be useful in the treatment of cerebral disorders in which the cerebrovascular function is compromised (eg, stroke).
Revised techniques for estimating peak discharges from channel width in Montana
Parrett, Charles; Hull, J.A.; Omang, R.J.
1987-01-01
This study was conducted to develop new estimating equations based on channel width and the updated flood frequency curves of previous investigations. Simple regression equations for estimating peak discharges with recurrence intervals of 2, 5, 10 , 25, 50, and 100 years were developed for seven regions in Montana. The standard errors of estimates for the equations that use active channel width as the independent variables ranged from 30% to 87%. The standard errors of estimate for the equations that use bankfull width as the independent variable ranged from 34% to 92%. The smallest standard errors generally occurred in the prediction equations for the 2-yr flood, 5-yr flood, and 10-yr flood, and the largest standard errors occurred in the prediction equations for the 100-yr flood. The equations that use active channel width and the equations that use bankfull width were determined to be about equally reliable in five regions. In the West Region, the equations that use bankfull width were slightly more reliable than those based on active channel width, whereas in the East-Central Region the equations that use active channel width were slightly more reliable than those based on bankfull width. Compared with similar equations previously developed, the standard errors of estimate for the new equations are substantially smaller in three regions and substantially larger in two regions. Limitations on the use of the estimating equations include: (1) The equations are based on stable conditions of channel geometry and prevailing water and sediment discharge; (2) The measurement of channel width requires a site visit, preferably by a person with experience in the method, and involves appreciable measurement errors; (3) Reliability of results from the equations for channel widths beyond the range of definition is unknown. In spite of the limitations, the estimating equations derived in this study are considered to be as reliable as estimating equations based on basin and climatic variables. Because the two types of estimating equations are independent, results from each can be weighted inversely proportional to their variances, and averaged. The weighted average estimate has a variance less than either individual estimate. (Author 's abstract)
Analysis of a novel double-barreled anion channel from rat liver rough endoplasmic reticulum.
Morier, N; Sauvé, R
1994-01-01
The presence of anionic channels in stripped rough endoplasmic reticulum membranes isolated from rat hepatocytes was investigated by fusing microsomes from these membranes to a planar lipid bilayer. Several types of anion-selective channels were observed including a voltage-gated Cl- channel, the activity of which appeared in bursts characterized by transitions among three distinct conductance levels of 0 pS (0 level), 160 pS (O1 level), and 320 pS (O2 level), respectively, in 450 mM (cis) 50 mM (trans) KCl conditions. A chi 2 analysis on current records where interburst silent periods were omitted showed that the relative probability of current levels 0 (baseline), O1, and O2 followed a binomial statistic. However, measurements of the conditional probabilities W(level 0 at tau/level O2 at 0) and W(level O2 at tau/level 0 at 0) provided clear evidence of direct transitions between the current levels 0 and O2 without any detectable transitions to the intermediate level O1. It was concluded on the basis of these results that the observed channel was controlled by at least two distinct gating processes, namely 1) a voltage-dependent activation mechanism in which the entire system behaves as two independent monomeric channels of 160 pS with each channel characterized by a simple Open-Closed kinetic, and 2) a slow voltage-dependent process that accounts for both the appearance of silent periods between bursts of channel activity and the transitions between the current levels 0 and O2. Finally, an analysis of the relative probability for the system to be in levels 0, O1, and O2 showed that our results are more compatible with a model in which all the states resulting from the superposition of the two independent monomeric channels have access at different rates to a common inactivated state than with a model where a simple Open-Closed main gate either occludes or exposes simultaneously two independent 160-pS monomers. Images FIGURE 2 FIGURE 6 PMID:7524709
G-protein-coupled inwardly rectifying potassium channels are targets of alcohol action.
Lewohl, J M; Wilson, W R; Mayfield, R D; Brozowski, S J; Morrisett, R A; Harris, R A
1999-12-01
G-protein-coupled inwardly rectifying potassium channels (GIRKs) are important for regulation of synaptic transmission and neuronal firing rates. Because of their key role in brain function, we asked if these potassium channels are targets of alcohol action. Ethanol enhanced function of cerebellar granule cell GIRKs coupled to GABAB receptors. Enhancement of GIRK function by ethanol was studied in detail using Xenopus oocytes expressing homomeric or heteromeric channels. Function of all GIRK channels was enhanced by intoxicating concentrations of ethanol, but other, related inwardly rectifying potassium channels were not affected. GIRK2/IRK1 chimeras and GIRK2 truncation mutants were used to identify a region of 43 amino acids in the carboxyl (C) terminus that is critical for the action of ethanol on these channels.
Functional evolution of scorpion venom peptides with an inhibitor cystine knot fold.
Gao, Bin; Harvey, Peta J; Craik, David J; Ronjat, Michel; De Waard, Michel; Zhu, Shunyi
2013-06-27
The ICK (inhibitor cystine knot) defines a large superfamily of polypeptides with high structural stability and functional diversity. Here, we describe a new scorpion venom-derived K+ channel toxin (named λ-MeuKTx-1) with an ICK fold through gene cloning, chemical synthesis, nuclear magnetic resonance spectroscopy, Ca2+ release measurements and electrophysiological recordings. λ-MeuKTx-1 was found to adopt an ICK fold that contains a three-strand anti-parallel β-sheet and a 310-helix. Functionally, this peptide selectively inhibits the Drosophila Shaker K+ channel but is not capable of activating skeletal-type Ca2+ release channels/ryanodine receptors, which is remarkably different from the previously known scorpion venom ICK peptides. The removal of two C-terminal residues of λ-MeuKTx-1 led to the loss of the inhibitory activity on the channel, whereas the C-terminal amidation resulted in the emergence of activity on four mammalian K+ channels accompanied by the loss of activity on the Shaker channel. A combination of structural and pharmacological data allows the recognition of three putative functional sites involved in channel blockade of λ-MeuKTx-1. The presence of a functional dyad in λ-MeuKTx-1 supports functional convergence among scorpion venom peptides with different folds. Furthermore, similarities in precursor organization, exon-intron structure, 3D-fold and function suggest that scorpion venom ICK-type K+ channel inhibitors and Ca2+ release channel activators share a common ancestor and their divergence occurs after speciation between buthidae and non-buthids. The structural and functional characterizations of the first scorpion venom ICK toxin with K+ channel-blocking activity sheds light on functionally divergent and convergent evolution of this conserved scaffold of ancient origin.
Yunoki, Takakazu; Takimoto, Koichi; Kita, Kaori; Funahashi, Yasuhito; Takahashi, Ryosuke; Matsuyoshi, Hiroko; Naito, Seiji; Yoshimura, Naoki
2014-11-15
Little is known about electrophysiological differences of A-type transient K(+) (KA) currents in nociceptive afferent neurons that innervate somatic and visceral tissues. Staining with isolectin B4 (IB4)-FITC classifies L6-S1 dorsal root ganglion (DRG) neurons into three populations with distinct staining intensities: negative to weak, moderate, and intense fluorescence signals. All IB4 intensely stained cells are negative for a fluorescent dye, Fast Blue (FB), injected into the bladder wall, whereas a fraction of somatic neurons labeled by FB, injected to the external urethral dermis, is intensely stained with IB4. In whole-cell, patch-clamp recordings, phrixotoxin 2 (PaTx2), a voltage-gated K(+) (Kv)4 channel blocker, exhibits voltage-independent inhibition of the KA current in IB4 intensely stained cells but not the one in bladder-innervating cells. The toxin also shows voltage-independent inhibition of heterologously expressed Kv4.1 current, whereas its inhibition of Kv4.2 and Kv4.3 currents is voltage dependent. The swapping of four amino acids at the carboxyl portion of the S3 region between Kv4.1 and Kv4.2 transfers this characteristic. RT-PCRs detected Kv4.1 and the long isoform of Kv4.3 mRNAs without significant Kv4.2 mRNA in L6-S1 DRGs. Kv4.1 and Kv4.3 mRNA levels were higher in laser-captured, IB4-stained neurons than in bladder afferent neurons. These results indicate that PaTx2 acts differently on channels in the Kv4 family and that Kv4.1 and possibly Kv4.3 subunits functionally participate in the formation of KA channels in a subpopulation of somatic C-fiber neurons but not in visceral C-fiber neurons innervating the bladder. Copyright © 2014 the American Physiological Society.
Yunoki, Takakazu; Takimoto, Koichi; Kita, Kaori; Funahashi, Yasuhito; Takahashi, Ryosuke; Matsuyoshi, Hiroko; Naito, Seiji
2014-01-01
Little is known about electrophysiological differences of A-type transient K+ (KA) currents in nociceptive afferent neurons that innervate somatic and visceral tissues. Staining with isolectin B4 (IB4)-FITC classifies L6-S1 dorsal root ganglion (DRG) neurons into three populations with distinct staining intensities: negative to weak, moderate, and intense fluorescence signals. All IB4 intensely stained cells are negative for a fluorescent dye, Fast Blue (FB), injected into the bladder wall, whereas a fraction of somatic neurons labeled by FB, injected to the external urethral dermis, is intensely stained with IB4. In whole-cell, patch-clamp recordings, phrixotoxin 2 (PaTx2), a voltage-gated K+ (Kv)4 channel blocker, exhibits voltage-independent inhibition of the KA current in IB4 intensely stained cells but not the one in bladder-innervating cells. The toxin also shows voltage-independent inhibition of heterologously expressed Kv4.1 current, whereas its inhibition of Kv4.2 and Kv4.3 currents is voltage dependent. The swapping of four amino acids at the carboxyl portion of the S3 region between Kv4.1 and Kv4.2 transfers this characteristic. RT-PCRs detected Kv4.1 and the long isoform of Kv4.3 mRNAs without significant Kv4.2 mRNA in L6-S1 DRGs. Kv4.1 and Kv4.3 mRNA levels were higher in laser-captured, IB4-stained neurons than in bladder afferent neurons. These results indicate that PaTx2 acts differently on channels in the Kv4 family and that Kv4.1 and possibly Kv4.3 subunits functionally participate in the formation of KA channels in a subpopulation of somatic C-fiber neurons but not in visceral C-fiber neurons innervating the bladder. PMID:25143545
Cooper, B Y; Johnson, R D; Nutter, T J
2016-05-01
Chronic pain is a component of the multisymptom disease known as Gulf War Illness (GWI). There is evidence that pain symptoms could have been a consequence of prolonged and/or excessive exposure to anticholinesterases and other GW chemicals. We previously reported that rats exposed, for 8 weeks, to a mixture of anticholinesterases (pyridostigmine bromide, chlorpyrifos) and a Nav (voltage activated Na(+) channel) deactivation-inhibiting pyrethroid, permethrin, exhibited a behavior pattern that was consistent with a delayed myalgia. This myalgia-like behavior was accompanied by persistent changes to Kv (voltage activated K(+)) channel physiology in muscle nociceptors (Kv7, KDR). In the present study, we examined how exposure to the above agents altered the reactivity of Kv channels to a muscarinic receptor (mAChR) agonist (oxotremorine-M). Comparisons between muscle nociceptors harvested from vehicle and GW chemical-exposed rats revealed that mAChR suppression of Kv7 activity was enhanced in exposed rats. Yet in these same muscle nociceptors, a Stromatoxin-insensitive component of the KDR (voltage activated delayed rectifier K(+) channel) exhibited decreased sensitivity to activation of mAChR. We have previously shown that a unique mAChR-induced depolarization and burst discharge (MDBD) was exaggerated in muscle nociceptors of rats exposed to GW chemicals. We now provide evidence that both muscle and vascular nociceptors of naïve rats exhibit MDBD. Examination of the molecular basis of the MDBD in naïve animals revealed that while the mAChR depolarization was independent of Kv7, the action potential burst was modulated by Kv7 status. mAChR depolarizations were shown to be dependent, in part, on TRPA1. We argue that dysfunction of the MDBD could be a functional convergence point for maladapted ion channels and receptors consequent to exposure to GW chemicals. Copyright © 2016 Elsevier Inc. All rights reserved.
Flow and heat transfer in a curved channel
NASA Technical Reports Server (NTRS)
Brinich, P. F.; Graham, R. W.
1977-01-01
Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S. N.; Revet, G.; Fuchs, J.
Radiochromic films (RCF) are commonly used in dosimetry for a wide range of radiation sources (electrons, protons, and photons) for medical, industrial, and scientific applications. They are multi-layered, which includes plastic substrate layers and sensitive layers that incorporate a radiation-sensitive dye. Quantitative dose can be retrieved by digitizing the film, provided that a prior calibration exists. Here, to calibrate the newly developed EBT3 and HDv2 RCFs from Gafchromic™, we used the Stanford Medical LINAC to deposit in the films various doses of 10 MeV photons, and by scanning the films using three independent EPSON Precision 2450 scanners, three independent EPSONmore » V750 scanners, and two independent EPSON 11000XL scanners. The films were scanned in separate RGB channels, as well as in black and white, and film orientation was varied. We found that the green channel of the RGB scan and the grayscale channel are in fact quite consistent over the different models of the scanner, although this comes at the cost of a reduction in sensitivity (by a factor ∼2.5 compared to the red channel). To allow any user to extend the absolute calibration reported here to any other scanner, we furthermore provide a calibration curve of the EPSON 2450 scanner based on absolutely calibrated, commercially available, optical density filters.« less
A channel-based framework for steering, non-locality and beyond
NASA Astrophysics Data System (ADS)
Hoban, Matty J.; Belén Sainz, Ana
2018-05-01
Non-locality and steering are both non-classical phenomena witnessed in nature as a result of quantum entanglement. It is now well-established that one can study non-locality independently of the formalism of quantum mechanics, in the so-called device-independent framework. With regards to steering, although one cannot study it completely independently of the quantum formalism, ‘post-quantum steering’ has been described, which is steering that cannot be reproduced by measurements on entangled states but does not lead to superluminal signalling. In this work we present a framework based on the study of quantum channels in which one can study steering (and non-locality) in quantum theory and beyond. In this framework, we show that kinds of steering, whether quantum or post-quantum, are directly related to particular families of quantum channels that have been previously introduced by Beckman et al (2001 Phys. Rev. A 64 052309). Utilizing this connection we also demonstrate new analytical examples of post-quantum steering, give a quantum channel interpretation of almost quantum non-locality and steering, easily recover and generalize the celebrated Gisin–Hughston–Jozsa–Wootters theorem, and initiate the study of post-quantum Buscemi non-locality and non-classical teleportation. In this way, we see post-quantum non-locality and steering as just two aspects of a more general phenomenon.
Southwest Washington, Urban Renewal Area, Bounded by Independence Avenue, Washington ...
Southwest Washington, Urban Renewal Area, Bounded by Independence Avenue, Washington Avenue, South Capitol Street, Canal Street, P Street, Maine Avenue & Washington Channel, Fourteenth Street, D Street, & Twelfth Street, Washington, District of Columbia, DC
Martin, Gregory M.; Rex, Emily A.; Devaraneni, Prasanna; Denton, Jerod S.; Boodhansingh, Kara E.; DeLeon, Diva D.; Stanley, Charles A.; Shyng, Show-Ling
2016-01-01
ATP-sensitive potassium (KATP) channels play a key role in mediating glucose-stimulated insulin secretion by coupling metabolic signals to β-cell membrane potential. Loss of KATP channel function due to mutations in ABCC8 or KCNJ11, genes encoding the sulfonylurea receptor 1 (SUR1) or the inwardly rectifying potassium channel Kir6.2, respectively, results in congenital hyperinsulinism. Many SUR1 mutations prevent trafficking of channel proteins from the endoplasmic reticulum to the cell surface. Channel inhibitors, including sulfonylureas and carbamazepine, have been shown to correct channel trafficking defects. In the present study, we identified 13 novel SUR1 mutations that cause channel trafficking defects, the majority of which are amenable to pharmacological rescue by glibenclamide and carbamazepine. By contrast, none of the mutant channels were rescued by KATP channel openers. Cross-linking experiments showed that KATP channel inhibitors promoted interactions between the N terminus of Kir6.2 and SUR1, whereas channel openers did not, suggesting the inhibitors enhance intersubunit interactions to overcome channel biogenesis and trafficking defects. Functional studies of rescued mutant channels indicate that most mutants rescued to the cell surface exhibited WT-like sensitivity to ATP, MgADP, and diazoxide. In intact cells, recovery of channel function upon trafficking rescue by reversible sulfonylureas or carbamazepine was facilitated by the KATP channel opener diazoxide. Our study expands the list of KATP channel trafficking mutations whose function can be recovered by pharmacological ligands and provides further insight into the structural mechanism by which channel inhibitors correct channel biogenesis and trafficking defects. PMID:27573238
Yen, Hong-Hsu
2009-01-01
In wireless sensor networks, data aggregation routing could reduce the number of data transmissions so as to achieve energy efficient transmission. However, data aggregation introduces data retransmission that is caused by co-channel interference from neighboring sensor nodes. This kind of co-channel interference could result in extra energy consumption and significant latency from retransmission. This will jeopardize the benefits of data aggregation. One possible solution to circumvent data retransmission caused by co-channel interference is to assign different channels to every sensor node that is within each other's interference range on the data aggregation tree. By associating each radio with a different channel, a sensor node could receive data from all the children nodes on the data aggregation tree simultaneously. This could reduce the latency from the data source nodes back to the sink so as to meet the user's delay QoS. Since the number of radios on each sensor node and the number of non-overlapping channels are all limited resources in wireless sensor networks, a challenging question here is to minimize the total transmission cost under limited number of non-overlapping channels in multi-radio wireless sensor networks. This channel constrained data aggregation routing problem in multi-radio wireless sensor networks is an NP-hard problem. I first model this problem as a mixed integer and linear programming problem where the objective is to minimize the total transmission subject to the data aggregation routing, channel and radio resources constraints. The solution approach is based on the Lagrangean relaxation technique to relax some constraints into the objective function and then to derive a set of independent subproblems. By optimally solving these subproblems, it can not only calculate the lower bound of the original primal problem but also provide useful information to get the primal feasible solutions. By incorporating these Lagrangean multipliers as the link arc weight, the optimization-based heuristics are proposed to get energy-efficient data aggregation tree with better resource (channel and radio) utilization. From the computational experiments, the proposed optimization-based approach is superior to existing heuristics under all tested cases.
Inactivation gating of Kv7.1 channels does not involve concerted cooperative subunit interactions.
Meisel, Eshcar; Tobelaim, William; Dvir, Meidan; Haitin, Yoni; Peretz, Asher; Attali, Bernard
2018-01-01
Inactivation is an intrinsic property of numerous voltage-gated K + (Kv) channels and can occur by N-type or/and C-type mechanisms. N-type inactivation is a fast, voltage independent process, coupled to activation, with each inactivation particle of a tetrameric channel acting independently. In N-type inactivation, a single inactivation particle is necessary and sufficient to occlude the pore. C-type inactivation is a slower process, involving the outermost region of the pore and is mediated by a concerted, highly cooperative interaction between all four subunits. Inactivation of Kv7.1 channels does not exhibit the hallmarks of N- and C-type inactivation. Inactivation of WT Kv7.1 channels can be revealed by hooked tail currents that reflects the recovery from a fast and voltage-independent inactivation process. However, several Kv7.1 mutants such as the pore mutant L273F generate an additional voltage-dependent slow inactivation. The subunit interactions during this slow inactivation gating remain unexplored. The goal of the present study was to study the nature of subunit interactions along Kv7.1 inactivation gating, using concatenated tetrameric Kv7.1 channel and introducing sequentially into each of the four subunits the slow inactivating pore mutation L273F. Incorporating an incremental number of inactivating mutant subunits did not affect the inactivation kinetics but slowed down the recovery kinetics from inactivation. Results indicate that Kv7.1 inactivation gating is not compatible with a concerted cooperative process. Instead, adding an inactivating subunit L273F into the Kv7.1 tetramer incrementally stabilizes the inactivated state, which suggests that like for activation gating, Kv7.1 slow inactivation gating is not a concerted process.
Subunit stoichiometry of human muscle chloride channels.
Fahlke, C; Knittle, T; Gurnett, C A; Campbell, K P; George, A L
1997-01-01
Voltage-gated Cl- channels belonging to the ClC family appear to function as homomultimers, but the number of subunits needed to form a functional channel is controversial. To determine subunit stoichiometry, we constructed dimeric human skeletal muscle Cl- channels in which one subunit was tagged by a mutation (D136G) that causes profound changes in voltage-dependent gating. Sucrose-density gradient centrifugation experiments indicate that both monomeric and dimeric hClC-1 channels in their native configurations exhibit similar sedimentation properties consistent with a multimeric complex having a molecular mass of a dimer. Expression of the heterodimeric channel in a mammalian cell line results in a homogenous population of Cl- channels exhibiting novel gating properties that are best explained by the formation of heteromultimeric channels with an even number of subunits. Heteromultimeric channels were not evident in cells cotransfected with homodimeric WT-WT and D136G-D136G constructs excluding the possibility that functional hClC-1 channels are assembled from more than two subunits. These results demonstrate that the functional hClC-1 unit consists of two subunits.
Role of potassium ion channels in detrusor smooth muscle function and dysfunction
Petkov, Georgi V.
2013-01-01
Contraction and relaxation of the detrusor smooth muscle (DSM), which makes up the wall of the urinary bladder, facilitates the storage and voiding of urine. Several families of K+ channels, including voltage-gated K+ (KV) channels, Ca2+-activated K+ (KCa) channels, inward-rectifying ATP-sensitive K+ (Kir, KATP) channels, and two-pore-domain K+ (K2P) channels, are expressed and functional in DSM. They control DSM excitability and contractility by maintaining the resting membrane potential and shaping the action potentials that determine the phasic nature of contractility in this tissue. Defects in DSM K+ channel proteins or in the molecules involved in their regulatory pathways may underlie certain forms of bladder dysfunction, such as overactive bladder. K+ channels represent an opportunity for novel pharmacological manipulation and therapeutic intervention in human DSM. Modulation of DSM K+ channels directly or indirectly by targeting their regulatory mechanisms has the potential to control urinary bladder function. This Review summarizes our current state of knowledge of the functional role of K+ channels in DSM in health and disease, with special emphasis on current advancements in the field. PMID:22158596
Gong, Rui; Xu, Haisong; Tong, Qingfen
2012-10-20
The colorimetric characterization of active matrix organic light emitting diode (AMOLED) panels suffers from their poor channel independence. Based on the colorimetric characteristics evaluation of channel independence and chromaticity constancy, an accurate colorimetric characterization method, namely, the polynomial compensation model (PC model) considering channel interactions was proposed for AMOLED panels. In this model, polynomial expressions are employed to calculate the relationship between the prediction errors of XYZ tristimulus values and the digital inputs to compensate the XYZ prediction errors of the conventional piecewise linear interpolation assuming the variable chromaticity coordinates (PLVC) model. The experimental results indicated that the proposed PC model outperformed other typical characterization models for the two tested AMOLED smart-phone displays and for the professional liquid crystal display monitor as well.
Arias Gómez, M
2007-01-01
Music perception and output are special functions of the human brain. Investigation in this field is growing with the support of modern neuroimaging techniques (functional magnetic resonance imaging, positron emission tomography). Interest in the music phenomenon and the disorders regarding its processing has been limited. Music is not just an artistic activity but a language to communicate, evoke and reinforce several emotions. Although the subject is still under debate, processing of music is independent of common language and each one uses independent circuits. One may be seriously affected and the other practically unharmed. On the other hand, there may be separate channels within the processing of music for the temporary elements (rhythm), melodic elements (pitch, timbre, and melody), memory and emotional response. The study of subjects with absolute pitch, congenital and acquired amusias, musicogenic epilepsy and musical hallucinations has greatly contributed to the knowledge of how the brain processes music. Music training involves some changes in morphology and physiology of professional musicians' brains. Stress, chronic pain and professional dystonias constitute a special field of musicians' disturbances that concerns neurological practice. Listening to and playing music may have some educational and therapeutic benefits.
Chen, Pei-Chun; Olson, Erik M; Zhou, Qing; Kryukova, Yelena; Sampson, Heidi M; Thomas, David Y; Shyng, Show-Ling
2013-07-19
ATP-sensitive potassium (KATP) channels consisting of sulfonylurea receptor 1 (SUR1) and the potassium channel Kir6.2 play a key role in insulin secretion by coupling metabolic signals to β-cell membrane potential. Mutations in SUR1 and Kir6.2 that impair channel trafficking to the cell surface lead to loss of channel function and congenital hyperinsulinism. We report that carbamazepine, an anticonvulsant, corrects the trafficking defects of mutant KATP channels previously identified in congenital hyperinsulinism. Strikingly, of the 19 SUR1 mutations examined, only those located in the first transmembrane domain of SUR1 responded to the drug. We show that unlike that reported for several other protein misfolding diseases, carbamazepine did not correct KATP channel trafficking defects by activating autophagy; rather, it directly improved the biogenesis efficiency of mutant channels along the secretory pathway. In addition to its effect on channel trafficking, carbamazepine also inhibited KATP channel activity. Upon subsequent removal of carbamazepine, however, the function of rescued channels was recovered. Importantly, combination of the KATP channel opener diazoxide and carbamazepine led to enhanced mutant channel function without carbamazepine washout. The corrector effect of carbamazepine on mutant KATP channels was also demonstrated in rat and human β-cells with an accompanying increase in channel activity. Our findings identify carbamazepine as a novel small molecule corrector that may be used to restore KATP channel expression and function in a subset of congenital hyperinsulinism patients.
Ozkan, Melike Hacer; Uma, Serdar
2018-06-01
Endothelial IK C a and/or SK C a channels play an important role in the control of vascular tone by participating in endothelium-dependent relaxation. Whether β-AR antagonists, mainly used in hypertension, affect endothelial K C a channel function is unknown. In this study, we examined the effect of the β2-AR antagonist and inverse agonist ICI 118,551 on the IK C a /SK C a channel activity by assessing functional relaxation responses to several agonists that stimulate these channels. Mesenteric arterial rings isolated from male Sprague Dawley mounted to organ baths. Acetylcholine elicited IK C a - and SK C a -mediated relaxations that were abolished by TRAM-34 and apamin, respectively. ICI 118,551, which did not dilate the arteries per se, increased the IK C a -mediated relaxations, whereas SK C a -mediated relaxations remained unaltered. Same potentiating effect was also detected on the IK C a -mediated relaxations to carbachol and A23187, but not to NS309. Neither acetylcholine-induced nitric oxide-mediated relaxations nor SNP relaxations changed with ICI 118,551. The PKA inhibitor KT-5720, the selective β2-AR agonist salbutamol, the selective β2-AR antagonist butoxamine, the non-selective β-AR antagonist propranolol, and the inverse agonists carvedilol or nadolol failed to affect the IK C a -mediated relaxations. ICI 118,551-induced increase was not reversed by salbutamol or propranolol as well. Besides, low potassium-induced relaxations in endothelium-removed arteries remained the same in the presence of ICI 118,551. These data demonstrate a previously unrecognized action of ICI 118,551, the ability to potentiate endothelial IK C a channel-mediated vasodilation, through a mechanism independent of β2-AR antagonistic or inverse agonistic action. Instead, the enhancement of acetylcholine relaxation seems likely to occur by a mechanism secondary to endothelial calcium increase. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Mukhtasimova, Nuriya; daCosta, Corrie J.B.
2016-01-01
The acetylcholine receptor (AChR) from vertebrate skeletal muscle initiates voluntary movement, and its kinetics of activation are crucial for maintaining the safety margin for neuromuscular transmission. Furthermore, the kinetic mechanism of the muscle AChR serves as an archetype for understanding activation mechanisms of related receptors from the Cys-loop superfamily. Here we record currents through single muscle AChR channels with improved temporal resolution approaching half an order of magnitude over our previous best. A range of concentrations of full and partial agonists are used to elicit currents from human wild-type and gain-of-function mutant AChRs. For each agonist–receptor combination, rate constants are estimated from maximum likelihood analysis using a kinetic scheme comprised of agonist binding, priming, and channel gating steps. The kinetic scheme and rate constants are tested by stochastic simulation, followed by incorporation of the experimental step response, sampling rate, background noise, and filter bandwidth. Analyses of the simulated data confirm all rate constants except those for channel gating, which are overestimated because of the established effect of noise on the briefest dwell times. Estimates of the gating rate constants were obtained through iterative simulation followed by kinetic fitting. The results reveal that the agonist association rate constants are independent of agonist occupancy but depend on receptor state, whereas those for agonist dissociation depend on occupancy but not on state. The priming rate and equilibrium constants increase with successive agonist occupancy, and for a full agonist, the forward rate constant increases more than the equilibrium constant; for a partial agonist, the forward rate and equilibrium constants increase equally. The gating rate and equilibrium constants also increase with successive agonist occupancy, but unlike priming, the equilibrium constants increase more than the forward rate constants. As observed for a full and a partial agonist, the gain-of-function mutation affects the relationship between rate and equilibrium constants for priming but not for channel gating. Thus, resolving brief single channel currents distinguishes priming from gating steps and reveals how the corresponding rate and equilibrium constants depend on agonist occupancy. PMID:27353445
Archer, Stephen L; Wu, Xi-Chen; Thébaud, Bernard; Nsair, Ali; Bonnet, Sebastien; Tyrrell, Ben; McMurtry, M Sean; Hashimoto, Kyoko; Harry, Gwyneth; Michelakis, Evangelos D
2004-08-06
Hypoxic pulmonary vasoconstriction (HPV) is initiated by inhibition of O2-sensitive, voltage-gated (Kv) channels in pulmonary arterial smooth muscle cells (PASMCs). Kv inhibition depolarizes membrane potential (E(M)), thereby activating Ca2+ influx via voltage-gated Ca2+ channels. HPV is weak in extrapulmonary, conduit pulmonary arteries (PA) and strong in precapillary resistance arteries. We hypothesized that regional heterogeneity in HPV reflects a longitudinal gradient in the function/expression of PASMC O2-sensitive Kv channels. In adult male Sprague Dawley rats, constrictions to hypoxia, the Kv blocker 4-aminopyridine (4-AP), and correolide, a Kv1.x channel inhibitor, were endothelium-independent and greater in resistance versus conduit PAs. Moreover, HPV was dependent on Kv-inhibition, being completely inhibited by pretreatment with 4-AP. Kv1.2, 1.5, Kv2.1, Kv3.1b, Kv4.3, and Kv9.3. mRNA increased as arterial caliber decreased; however, only Kv1.5 protein expression was greater in resistance PAs. Resistance PASMCs had greater K+ current (I(K)) and a more hyperpolarized E(M) and were uniquely O2- and correolide-sensitive. The O2-sensitive current (active at -65 mV) was resistant to iberiotoxin, with minimal tityustoxin sensitivity. In resistance PASMCs, 4-AP and hypoxia inhibited I(K) 57% and 49%, respectively, versus 34% for correolide. Intracellular administration of anti-Kv1.5 antibodies inhibited correolide's effects. The hypoxia-sensitive, correolide-insensitive I(K) (15%) was conducted by Kv2.1. Anti-Kv1.5 and anti-Kv2.1 caused additive depolarization in resistance PASMCs (Kv1.5>Kv2.1) and inhibited hypoxic depolarization. Heterologously expressed human PASMC Kv1.5 generated an O2- and correolide-sensitive I(K) like that in resistance PASMCs. In conclusion, Kv1.5 and Kv2.1 account for virtually all the O2-sensitive current. HPV occurs in a Kv-enriched resistance zone because resistance PASMCs preferentially express O2-sensitive Kv-channels.
Local calcium signalling is mediated by mechanosensitive ion channels in mesenchymal stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubinskiy-Nadezhdin, Vladislav I., E-mail: vchubinskiy@gmail.com; Vasileva, Valeria Y.; Pugovkina, Natalia A.
Mechanical forces are implicated in key physiological processes in stem cells, including proliferation, differentiation and lineage switching. To date, there is an evident lack of understanding of how external mechanical cues are coupled with calcium signalling in stem cells. Mechanical reactions are of particular interest in adult mesenchymal stem cells because of their promising potential for use in tissue remodelling and clinical therapy. Here, single channel patch-clamp technique was employed to search for cation channels involved in mechanosensitivity in mesenchymal endometrial-derived stem cells (hMESCs). Functional expression of native mechanosensitive stretch-activated channels (SACs) and calcium-sensitive potassium channels of different conductances inmore » hMESCs was shown. Single current analysis of stretch-induced channel activity revealed functional coupling of SACs and BK channels in plasma membrane. The combination of cell-attached and inside-out experiments have indicated that highly localized Ca{sup 2+} entry via SACs triggers BK channel activity. At the same time, SK channels are not coupled with SACs despite of high calcium sensitivity as compared to BK. Our data demonstrate novel mechanism controlling BK channel activity in native cells. We conclude that SACs and BK channels are clusterized in functional mechanosensitive domains in the plasma membrane of hMESCs. Co-clustering of ion channels may significantly contribute to mechano-dependent calcium signalling in stem cells. - Highlights: • Stretch-induced channel activity in human mesenchymal stem cells was analyzed. • Functional expression of SACs and Ca{sup 2+}-sensitive BK and SK channels was shown. • Local Ca{sup 2+} influx via stretch-activated channels triggers BK channel activity. • SK channels are not coupled with SACs despite higher sensitivity to [Ca{sup 2+}]{sub i}. • Functional clustering of SACs and BK channels in stem cell membrane is proposed.« less
Portella, Guillem; Pohl, Peter; de Groot, Bert L
2007-06-01
We investigated the structural and energetic determinants underlying water permeation through peptidic nanopores, motivated by recent experimental findings that indicate that water mobility in single-file water channels displays nonlinear length dependence. To address the molecular mechanism determining the observed length dependence, we studied water permeability in a series of designed gramicidin-like channels of different length using atomistic molecular dynamics simulations. We found that within the studied range of length the osmotic water permeability is independent of pore length. This result is at variance with textbook models, where the relationship is assumed to be linear. Energetic analysis shows that loss of solvation rather than specific water binding sites in the pore form the main energetic barrier for water permeation, consistent with our dynamics results. For this situation, we propose a modified expression for osmotic permeability that fully takes into account water motion collectivity and does not depend on the pore length. Different schematic barrier profiles are discussed that explain both experimental and computational interpretations, and we propose a set of experiments aimed at validation of the presented results. Implications of the results for the design of peptidic channels with desired permeation characteristics are discussed.
A Ca2+ channel differentially regulates Clathrin-mediated and activity-dependent bulk endocytosis.
Yao, Chi-Kuang; Liu, Yu-Tzu; Lee, I-Chi; Wang, You-Tung; Wu, Ping-Yen
2017-04-01
Clathrin-mediated endocytosis (CME) and activity-dependent bulk endocytosis (ADBE) are two predominant forms of synaptic vesicle (SV) endocytosis, elicited by moderate and strong stimuli, respectively. They are tightly coupled with exocytosis for sustained neurotransmission. However, the underlying mechanisms are ill defined. We previously reported that the Flower (Fwe) Ca2+ channel present in SVs is incorporated into the periactive zone upon SV fusion, where it triggers CME, thus coupling exocytosis to CME. Here, we show that Fwe also promotes ADBE. Intriguingly, the effects of Fwe on CME and ADBE depend on the strength of the stimulus. Upon mild stimulation, Fwe controls CME independently of Ca2+ channeling. However, upon strong stimulation, Fwe triggers a Ca2+ influx that initiates ADBE. Moreover, knockout of rodent fwe in cultured rat hippocampal neurons impairs but does not completely abolish CME, similar to the loss of Drosophila fwe at the neuromuscular junction, suggesting that Fwe plays a regulatory role in regulating CME across species. In addition, the function of Fwe in ADBE is conserved at mammalian central synapses. Hence, Fwe exerts different effects in response to different stimulus strengths to control two major modes of endocytosis.
Focused intracochlear electric stimulation with phased array channels.
van den Honert, Chris; Kelsall, David C
2007-06-01
A method is described for producing focused intracochlear electric stimulation using an array of N electrodes. For each electrode site, N weights are computed that define the ratios of positive and negative electrode currents required to produce cancellation of the voltage within scala tympani at all of the N-1 other sites. Multiple sites can be stimulated simultaneously by superposition of their respective current vectors. The method allows N independent stimulus waveforms to be delivered to each of the N electrode sites without spatial overlap. Channel interaction from current spread associated with monopolar stimulation is substantially eliminated. The method operates by inverting the spread functions of individual monopoles as measured with the other electrodes. The method was implemented and validated with data from three human subjects implanted with 22-electrode perimodiolar arrays. Results indicate that (1) focusing is realizable with realistic precision; (2) focusing comes at the cost of increased total stimulation current; (3) uncanceled voltages that arise beyond the ends of the array are weak except when stimulating the two end channels; and (4) close perimodiolar positioning of the electrodes may be important for minimizing stimulation current and sensitivity to measurement errors.
4He+n+n continuum within an ab initio framework
Romero-Redondo, Carolina; Quaglioni, Sofia; Navratil, Petr; ...
2014-07-16
In this study, the low-lying continuum spectrum of the 6He nucleus is investigated for the first time within an ab initio framework that encompasses the 4He+n+n three-cluster dynamics characterizing its lowest decay channel. This is achieved through an extension of the no-core shell model combined with the resonating-group method, in which energy-independent nonlocal interactions among three nuclear fragments can be calculated microscopically, starting from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with three-body scattering boundary conditions by means of the hyperspherical-harmonics method on a Lagrange mesh. Using amore » soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we find the known J π = 2 + resonance as well as a result consistent with a new low-lying second 2 + resonance recently observed at GANIL at ~2.6 MeV above the He6 ground state. We also find resonances in the 2 –, 1 +, and 0 – channels, while no low-lying resonances are present in the 0 + and 1 – channels.« less
A Ca2+ channel differentially regulates Clathrin-mediated and activity-dependent bulk endocytosis
Liu, Yu-Tzu; Lee, I-Chi; Wang, You-Tung; Wu, Ping-Yen
2017-01-01
Clathrin-mediated endocytosis (CME) and activity-dependent bulk endocytosis (ADBE) are two predominant forms of synaptic vesicle (SV) endocytosis, elicited by moderate and strong stimuli, respectively. They are tightly coupled with exocytosis for sustained neurotransmission. However, the underlying mechanisms are ill defined. We previously reported that the Flower (Fwe) Ca2+ channel present in SVs is incorporated into the periactive zone upon SV fusion, where it triggers CME, thus coupling exocytosis to CME. Here, we show that Fwe also promotes ADBE. Intriguingly, the effects of Fwe on CME and ADBE depend on the strength of the stimulus. Upon mild stimulation, Fwe controls CME independently of Ca2+ channeling. However, upon strong stimulation, Fwe triggers a Ca2+ influx that initiates ADBE. Moreover, knockout of rodent fwe in cultured rat hippocampal neurons impairs but does not completely abolish CME, similar to the loss of Drosophila fwe at the neuromuscular junction, suggesting that Fwe plays a regulatory role in regulating CME across species. In addition, the function of Fwe in ADBE is conserved at mammalian central synapses. Hence, Fwe exerts different effects in response to different stimulus strengths to control two major modes of endocytosis. PMID:28414717
Swelling and Eicosanoid Metabolites Differentially Gate TRPV4 Channels in Retinal Neurons and Glia
Ryskamp, Daniel A.; Jo, Andrew O.; Frye, Amber M.; Vazquez-Chona, Felix; MacAulay, Nanna; Thoreson, Wallace B.
2014-01-01
Activity-dependent shifts in ionic concentrations and water that accompany neuronal and glial activity can generate osmotic forces with biological consequences for brain physiology. Active regulation of osmotic gradients and cellular volume requires volume-sensitive ion channels. In the vertebrate retina, critical support to volume regulation is provided by Müller astroglia, but the identity of their osmosensor is unknown. Here, we identify TRPV4 channels as transducers of mouse Müller cell volume increases into physiological responses. Hypotonic stimuli induced sustained [Ca2+]i elevations that were inhibited by TRPV4 antagonists and absent in TRPV4−/− Müller cells. Glial TRPV4 signals were phospholipase A2- and cytochrome P450-dependent, characterized by slow-onset and Ca2+ waves, and, in excess, were sufficient to induce reactive gliosis. In contrast, neurons responded to TRPV4 agonists and swelling with fast, inactivating Ca2+ signals that were independent of phospholipase A2. Our results support a model whereby swelling and proinflammatory signals associated with arachidonic acid metabolites differentially gate TRPV4 in retinal neurons and glia, with potentially significant consequences for normal and pathological retinal function. PMID:25411497
Reihill, James A; Walker, Brian; Hamilton, Robert A; Ferguson, Timothy E G; Elborn, J Stuart; Stutts, M Jackson; Harvey, Brian J; Saint-Criq, Vinciane; Hendrick, Siobhan M; Martin, S Lorraine
2016-09-15
In cystic fibrosis (CF) a reduction in airway surface liquid (ASL) height compromises mucociliary clearance, favoring mucus plugging and chronic bacterial infection. Inhibitors of the epithelial sodium channel (ENaC) have therapeutic potential in CF airways to reduce hyperstimulated sodium and fluid absorption to levels that can restore airway hydration. To determine whether a novel compound (QUB-TL1) designed to inhibit protease/ENaC signaling in CF airways restores ASL volume and mucociliary function. Protease activity was measured using fluorogenic activity assays. Differentiated primary airway epithelial cell cultures (F508del homozygotes) were used to determined ENaC activity (Ussing chamber recordings), ASL height (confocal microscopy), and mucociliary function (by tracking the surface flow of apically applied microbeads). Cell toxicity was measured using a lactate dehydrogenase assay. QUB-TL1 inhibits extracellularly located channel activating proteases (CAPs), including prostasin, matriptase, and furin, the activities of which are observed at excessive levels at the apical surface of CF airway epithelial cells. QUB-TL1-mediated CAP inhibition results in diminished ENaC-mediated Na(+) absorption in CF airway epithelial cells caused by internalization of a prominent pool of cleaved (active) ENaCγ from the cell surface. Importantly, diminished ENaC activity correlates with improved airway hydration status and mucociliary clearance. We further demonstrate QUB-TL1-mediated furin inhibition, which is in contrast to other serine protease inhibitors (camostat mesylate and aprotinin), affords protection against neutrophil elastase-mediated ENaC activation and Pseudomonas aeruginosa exotoxin A-induced cell death. QUB-TL1 corrects aberrant CAP activities, providing a mechanism to delay or prevent the development of CF lung disease in a manner independent of CF transmembrane conductance regulator mutation.
α-SNAP regulates dynamic, on-site assembly and calcium selectivity of Orai1 channels.
Li, Peiyao; Miao, Yong; Dani, Adish; Vig, Monika
2016-08-15
Orai1 forms a highly calcium-selective pore of the calcium release activated channel, and α-SNAP is necessary for its function. Here we show that α-SNAP regulates on-site assembly of Orai1 dimers into calcium-selective multimers. We find that Orai1 is a dimer in resting primary mouse embryonic fibroblasts but displays variable stoichiometry in the plasma membrane of store-depleted cells. Remarkably, α-SNAP depletion induces formation of higher-order Orai1 oligomers, which permeate significant levels of sodium via Orai1 channels. Sodium permeation in α-SNAP-deficient cells cannot be corrected by tethering multiple Stim1 domains to Orai1 C-terminal tail, demonstrating that α-SNAP regulates functional assembly and calcium selectivity of Orai1 multimers independently of Stim1 levels. Fluorescence nanoscopy reveals sustained coassociation of α-SNAP with Stim1 and Orai1, and α-SNAP-depleted cells show faster and less constrained mobility of Orai1 within ER-PM junctions, suggesting Orai1 and Stim1 coentrapment without stable contacts. Furthermore, α-SNAP depletion significantly reduces fluorescence resonance energy transfer between Stim1 and Orai1 N-terminus but not C-terminus. Taken together, these data reveal a unique role of α-SNAP in the on-site functional assembly of Orai1 subunits and suggest that this process may, in part, involve enabling crucial low-affinity interactions between Orai1 N-terminus and Stim1. © 2016 Li, Miao, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
van Goor, Mark K C; Hoenderop, Joost G J; van der Wijst, Jenny
2017-06-01
Maintaining plasma calcium levels within a narrow range is of vital importance for many physiological functions. Therefore, calcium transport processes in the intestine, bone and kidney are tightly regulated to fine-tune the rate of absorption, storage and excretion. The TRPV5 and TRPV6 calcium channels are viewed as the gatekeepers of epithelial calcium transport. Several calciotropic hormones control the channels at the level of transcription, membrane expression, and function. Recent technological advances have provided the first near-atomic resolution structural models of several TRPV channels, allowing insight into their architecture. While this field is still in its infancy, it has increased our understanding of molecular channel regulation and holds great promise for future structure-function studies of these ion channels. This review will summarize the mechanisms that control the systemic calcium balance, as well as extrapolate structural views to the molecular functioning of TRPV5/6 channels in epithelial calcium transport. Copyright © 2016. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Sukharev, S. I.; Sigurdson, W. J.; Kung, C.; Sachs, F.
1999-01-01
MscL is multimeric protein that forms a large conductance mechanosensitive channel in the inner membrane of Escherichia coli. Since MscL is gated by tension transmitted through the lipid bilayer, we have been able to measure its gating parameters as a function of absolute tension. Using purified MscL reconstituted in liposomes, we recorded single channel currents and varied the pressure gradient (P) to vary the tension (T). The tension was calculated from P and the radius of curvature was obtained using video microscopy of the patch. The probability of being open (Po) has a steep sigmoidal dependence on T, with a midpoint (T1/2) of 11.8 dyn/cm. The maximal slope sensitivity of Po/Pc was 0.63 dyn/cm per e-fold. Assuming a Boltzmann distribution, the energy difference between the closed and fully open states in the unstressed membrane was DeltaE = 18.6 kBT. If the mechanosensitivity arises from tension acting on a change of in-plane area (DeltaA), the free energy, TDeltaA, would correspond to DeltaA = 6.5 nm2. MscL is not a binary channel, but has four conducting states and a closed state. Most transition rates are independent of tension, but the rate-limiting step to opening is the transition between the closed state and the lowest conductance substate. This transition thus involves the greatest DeltaA. When summed over all transitions, the in-plane area change from closed to fully open was 6 nm2, agreeing with the value obtained in the two-state analysis. Assuming a cylindrical channel, the dimensions of the (fully open) pore were comparable to DeltaA. Thus, the tension dependence of channel gating is primarily one of increasing the external channel area to accommodate the pore of the smallest conducting state. The higher conducting states appear to involve conformational changes internal to the channel that don't involve changes in area.
The problem of predicting the size distribution of sediment supplied by hillslopes to rivers
NASA Astrophysics Data System (ADS)
Sklar, Leonard S.; Riebe, Clifford S.; Marshall, Jill A.; Genetti, Jennifer; Leclere, Shirin; Lukens, Claire L.; Merces, Viviane
2017-01-01
Sediments link hillslopes to river channels. The size of sediments entering channels is a key control on river morphodynamics across a range of scales, from channel response to human land use to landscape response to changes in tectonic and climatic forcing. However, very little is known about what controls the size distribution of particles eroded from bedrock on hillslopes, and how particle sizes evolve before sediments are delivered to channels. Here we take the first steps toward building a geomorphic transport law to predict the size distribution of particles produced on hillslopes and supplied to channels. We begin by identifying independent variables that can be used to quantify the influence of five key boundary conditions: lithology, climate, life, erosion rate, and topography, which together determine the suite of geomorphic processes that produce and transport sediments on hillslopes. We then consider the physical and chemical mechanisms that determine the initial size distribution of rock fragments supplied to the hillslope weathering system, and the duration and intensity of weathering experienced by particles on their journey from bedrock to the channel. We propose a simple modeling framework with two components. First, the initial rock fragment sizes are set by the distribution of spacing between fractures in unweathered rock, which is influenced by stresses encountered by rock during exhumation and by rock resistance to fracture propagation. That initial size distribution is then transformed by a weathering function that captures the influence of climate and mineralogy on chemical weathering potential, and the influence of erosion rate and soil depth on residence time and the extent of particle size reduction. Model applications illustrate how spatial variation in weathering regime can lead to bimodal size distributions and downstream fining of channel sediment by down-valley fining of hillslope sediment supply, two examples of hillslope control on river sediment size. Overall, this work highlights the rich opportunities for future research into the controls on the size of sediments produced on hillslopes and delivered to channels.
Aiba, Takeshi; Hesketh, Geoffrey G.; Liu, Ting; Carlisle, Rachael; Villa-Abrille, Maria Celeste; O'Rourke, Brian; Akar, Fadi G.; Tomaselli, Gordon F.
2010-01-01
Aims Calmodulin (CaM) regulates Na+ channel gating through binding to an IQ-like motif in the C-terminus. Ca2+/CaM-dependent protein kinase II (CaMKII) regulates Ca2+ handling, and chronic overactivity of CaMKII is associated with left ventricular hypertrophy and dysfunction and lethal arrhythmias. However, the acute effects of Ca2+/CaM and CaMKII on cardiac Na+ channels are not fully understood. Methods and results Purified NaV1.5–glutathione-S-transferase fusion peptides were phosphorylated in vitro by CaMKII predominantly on the I–II linker. Whole-cell voltage-clamp was used to measure Na+ current (INa) in isolated guinea-pig ventricular myocytes in the absence or presence of CaM or CaMKII in the pipette solution. CaMKII shifted the voltage dependence of Na+ channel availability by ≈+5 mV, hastened recovery from inactivation, decreased entry into intermediate or slow inactivation, and increased persistent (late) current, but did not change INa decay. These CaMKII-induced changes of Na+ channel gating were completely abolished by a specific CaMKII inhibitor, autocamtide-2-related inhibitory peptide (AIP). Ca2+/CaM alone reproduced the CaMKII-induced changes of INa availability and the fraction of channels undergoing slow inactivation, but did not alter recovery from inactivation or the magnitude of the late current. Furthermore, the CaM-induced changes were also completely abolished by AIP. On the other hand, cAMP-dependent protein kinase A inhibitors did not abolish the CaM/CaMKII-induced alterations of INa function. Conclusion Ca2+/CaM and CaMKII have distinct effects on the inactivation phenotype of cardiac Na+ channels. The differences are consistent with CaM-independent effects of CaMKII on cardiac Na+ channel gating. PMID:19797425
Martin, Gregory M; Rex, Emily A; Devaraneni, Prasanna; Denton, Jerod S; Boodhansingh, Kara E; DeLeon, Diva D; Stanley, Charles A; Shyng, Show-Ling
2016-10-14
ATP-sensitive potassium (K ATP ) channels play a key role in mediating glucose-stimulated insulin secretion by coupling metabolic signals to β-cell membrane potential. Loss of K ATP channel function due to mutations in ABCC8 or KCNJ11, genes encoding the sulfonylurea receptor 1 (SUR1) or the inwardly rectifying potassium channel Kir6.2, respectively, results in congenital hyperinsulinism. Many SUR1 mutations prevent trafficking of channel proteins from the endoplasmic reticulum to the cell surface. Channel inhibitors, including sulfonylureas and carbamazepine, have been shown to correct channel trafficking defects. In the present study, we identified 13 novel SUR1 mutations that cause channel trafficking defects, the majority of which are amenable to pharmacological rescue by glibenclamide and carbamazepine. By contrast, none of the mutant channels were rescued by K ATP channel openers. Cross-linking experiments showed that K ATP channel inhibitors promoted interactions between the N terminus of Kir6.2 and SUR1, whereas channel openers did not, suggesting the inhibitors enhance intersubunit interactions to overcome channel biogenesis and trafficking defects. Functional studies of rescued mutant channels indicate that most mutants rescued to the cell surface exhibited WT-like sensitivity to ATP, MgADP, and diazoxide. In intact cells, recovery of channel function upon trafficking rescue by reversible sulfonylureas or carbamazepine was facilitated by the K ATP channel opener diazoxide. Our study expands the list of K ATP channel trafficking mutations whose function can be recovered by pharmacological ligands and provides further insight into the structural mechanism by which channel inhibitors correct channel biogenesis and trafficking defects. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Neuhof, Andrea; Rolls, Melissa M.; Jungnickel, Berit; Kalies, Kai-Uwe; Rapoport, Tom A.
1998-01-01
Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes. PMID:9436994
Exclusion of alternative exon 33 of CaV1.2 calcium channels in heart is proarrhythmogenic
Li, Guang; Wang, Juejin; Liao, Ping; Bartels, Peter; Zhang, Hengyu; Yu, Dejie; Liang, Mui Cheng; Poh, Kian Keong; Yu, Chye Yun; Jiang, Fengli; Yong, Tan Fong; Wong, Yuk Peng; Hu, Zhenyu; Huang, Hua; Zhang, Guangqin; Galupo, Mary Joyce; Bian, Jin-Song; Ponniah, Sathivel; Trasti, Scott Lee; Foo, Roger; Hoppe, Uta C.; Herzig, Stefan; Soong, Tuck Wah
2017-01-01
Alternative splicing changes the CaV1.2 calcium channel electrophysiological property, but the in vivo significance of such altered channel function is lacking. Structure–function studies of heterologously expressed CaV1.2 channels could not recapitulate channel function in the native milieu of the cardiomyocyte. To address this gap in knowledge, we investigated the role of alternative exon 33 of the CaV1.2 calcium channel in heart function. Exclusion of exon 33 in CaV1.2 channels has been reported to shift the activation potential −10.4 mV to the hyperpolarized direction, and increased expression of CaV1.2Δ33 channels was observed in rat myocardial infarcted hearts. However, how a change in CaV1.2 channel electrophysiological property, due to alternative splicing, might affect cardiac function in vivo is unknown. To address these questions, we generated mCacna1c exon 33−/−-null mice. These mice contained CaV1.2Δ33 channels with a gain-of-function that included conduction of larger currents that reflects a shift in voltage dependence and a modest increase in single-channel open probability. This altered channel property underscored the development of ventricular arrhythmia, which is reflected in significantly more deaths of exon 33−/− mice from β-adrenergic stimulation. In vivo telemetric recordings also confirmed increased frequencies in premature ventricular contractions, tachycardia, and lengthened QT interval. Taken together, the significant decrease or absence of exon 33-containing CaV1.2 channels is potentially proarrhythmic in the heart. Of clinical relevance, human ischemic and dilated cardiomyopathy hearts showed increased inclusion of exon 33. However, the possible role that inclusion of exon 33 in CaV1.2 channels may play in the pathogenesis of human heart failure remains unclear. PMID:28490495
Conditional cooling limit for a quantum channel going through an incoherent environment.
Straka, Ivo; Miková, Martina; Mičuda, Michal; Dušek, Miloslav; Ježek, Miroslav; Filip, Radim
2015-11-16
We propose and experimentally verify a cooling limit for a quantum channel going through an incoherent environment. The environment consists of a large number of independent non-interacting and non-interfering elementary quantum systems--qubits. The qubits travelling through the channel can only be randomly replaced by environmental qubits. We investigate a conditional cooling limit that exploits an additional probing output. The limit specifies when the single-qubit channel is quantum, i.e. it preserves entanglement. It is a fundamental condition for entanglement-based quantum technology.
Conditional cooling limit for a quantum channel going through an incoherent environment
Straka, Ivo; Miková, Martina; Mičuda, Michal; Dušek, Miloslav; Ježek, Miroslav; Filip, Radim
2015-01-01
We propose and experimentally verify a cooling limit for a quantum channel going through an incoherent environment. The environment consists of a large number of independent non-interacting and non-interfering elementary quantum systems – qubits. The qubits travelling through the channel can only be randomly replaced by environmental qubits. We investigate a conditional cooling limit that exploits an additional probing output. The limit specifies when the single-qubit channel is quantum, i.e. it preserves entanglement. It is a fundamental condition for entanglement-based quantum technology. PMID:26568362
Wang, Ying; D'Urso, Giulia
2012-01-01
Degenerin/epithelial Na+ channels (DEG/ENaCs) are voltage-independent Na+ or Na+/Ca2+ channels expressed in many tissues and are needed for a wide range of physiological functions, including sensory perception and transepithelial Na+ transport. In the nervous system, DEG/ENaCs are expressed in both neurons and glia. However, the role of glial vs. neuronal DEG/ENaCs remains unclear. We recently reported the characterization of a novel DEG/ENaC in Caenorhabditis elegans that we named ACD-1. ACD-1 is expressed in glial amphid sheath cells. The glial ACD-1, together with the neuronal DEG/ENaC DEG-1, is necessary for acid avoidance and attraction to lysine. We report presently that knockout of acd-1 in glia exacerbates sensory deficits caused by another mutant: the hypomorphic allele of the cGMP-gated channel subunit tax-2. Furthermore, sensory deficits caused by mutations in Gi protein odr-3 and guanylate cyclase daf-11, which regulate the activity of TAX-2/TAX-4 channels, are worsened by knockout of acd-1. We also show that sensory neurons of acd-1 tax-2(p694) double mutants fail to undergo changes in intracellular Ca2+ when animals are exposed to low concentrations of attractant. Finally, we show that exogenous expression of TRPV1 in sensory neurons and exposure to capsaicin rescue sensory deficits of acd-1 tax-2(p694) mutants, suggesting that sensory deficits of these mutants are bypassed by increasing neuronal excitability. Our data suggest a role of glial DEG/ENaC channel ACD-1 in supporting neuronal activity. PMID:21994266
Wang, Ying; D'Urso, Giulia; Bianchi, Laura
2012-01-01
Degenerin/epithelial Na(+) channels (DEG/ENaCs) are voltage-independent Na(+) or Na(+)/Ca(2+) channels expressed in many tissues and are needed for a wide range of physiological functions, including sensory perception and transepithelial Na(+) transport. In the nervous system, DEG/ENaCs are expressed in both neurons and glia. However, the role of glial vs. neuronal DEG/ENaCs remains unclear. We recently reported the characterization of a novel DEG/ENaC in Caenorhabditis elegans that we named ACD-1. ACD-1 is expressed in glial amphid sheath cells. The glial ACD-1, together with the neuronal DEG/ENaC DEG-1, is necessary for acid avoidance and attraction to lysine. We report presently that knockout of acd-1 in glia exacerbates sensory deficits caused by another mutant: the hypomorphic allele of the cGMP-gated channel subunit tax-2. Furthermore, sensory deficits caused by mutations in G(i) protein odr-3 and guanylate cyclase daf-11, which regulate the activity of TAX-2/TAX-4 channels, are worsened by knockout of acd-1. We also show that sensory neurons of acd-1 tax-2(p694) double mutants fail to undergo changes in intracellular Ca(2+) when animals are exposed to low concentrations of attractant. Finally, we show that exogenous expression of TRPV1 in sensory neurons and exposure to capsaicin rescue sensory deficits of acd-1 tax-2(p694) mutants, suggesting that sensory deficits of these mutants are bypassed by increasing neuronal excitability. Our data suggest a role of glial DEG/ENaC channel ACD-1 in supporting neuronal activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hongliang; Hong, Da Hye; Kim, Han Sol
We investigated the effects of the calmodulin inhibitor CGS 9343B on voltage-dependent K{sup +} (Kv) channels using whole-cell patch clamp technique in freshly isolated rabbit coronary arterial smooth muscle cells. CGS 9343B inhibited Kv currents in a concentration-dependent manner, with a half-maximal inhibitory concentration (IC{sub 50}) value of 0.81 μM. The decay rate of Kv channel inactivation was accelerated by CGS 9343B. The rate constants of association and dissociation for CGS 9343B were 2.77 ± 0.04 μM{sup −1} s{sup −1} and 2.55 ± 1.50 s{sup −1}, respectively. CGS 9343B did not affect the steady-state activation curve, but shifted the inactivationmore » curve toward to a more negative potential. Train pulses (1 or 2 Hz) application progressively increased the CGS 9343B-induced Kv channel inhibition. In addition, the inactivation recovery time constant was increased in the presence of CGS 9343B, suggesting that CGS 9343B-induced inhibition of Kv channel was use-dependent. Another calmodulin inhibitor, W-13, did not affect Kv currents, and did not change the inhibitory effect of CGS 9343B on Kv current. Our results demonstrated that CGS 9343B inhibited Kv currents in a state-, time-, and use-dependent manner, independent of calmodulin inhibition. - Highlights: • We investigated the effects of CGS 9394B on Kv channels. • CGS 9394B inhibited Kv current in a state-, time-, and use-dependent manner. • Caution is required when using CGS 9394B in vascular function studies.« less
WNK4 regulates activity of the epithelial Na+ channel in vitro and in vivo
Ring, Aaron M.; Cheng, Sam X.; Leng, Qiang; Kahle, Kristopher T.; Rinehart, Jesse; Lalioti, Maria D.; Volkman, Heather M.; Wilson, Frederick H.; Hebert, Steven C.; Lifton, Richard P.
2007-01-01
Homeostasis of intravascular volume, Na+, Cl−, and K+ is interdependent and determined by the coordinated activities of structurally diverse mediators in the distal nephron and the distal colon. The behavior of these flux pathways is regulated by the renin–angiotensin–aldosterone system; however, the mechanisms that allow independent modulation of individual elements have been obscure. Previous work has shown that mutations in WNK4 cause pseudohypoaldosteronism type II (PHAII), a disease featuring hypertension with hyperkalemia, due to altered activity of specific Na-Cl cotransporters, K+ channels, and paracellular Cl− flux mediators of the distal nephron. By coexpression studies in Xenopus oocytes, we now demonstrate that WNK4 also inhibits the epithelial Na+ channel (ENaC), the major mediator of aldosterone-sensitive Na+ (re)absorption, via a mechanism that is independent of WNK4's kinase activity. This inhibition requires intact C termini in ENaC β- and γ-subunits, which contain PY motifs used to target ENaC for clearance from the plasma membrane. Importantly, PHAII-causing mutations eliminate WNK4's inhibition of ENaC, thereby paralleling other effects of PHAII to increase sodium balance. The relevance of these findings in vivo was studied in mice harboring PHAII-mutant WNK4. The colonic epithelium of these mice demonstrates markedly increased amiloride-sensitive Na+ flux compared with wild-type littermates. These studies identify ENaC as a previously unrecognized downstream target of WNK4 and demonstrate a functional role for WNK4 in the regulation of colonic Na+ absorption. These findings support a key role for WNK4 in coordinating the activities of diverse flux pathways to achieve integrated fluid and electrolyte homeostasis. PMID:17360470
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudmundsson, Sanna; Wilbe, Maria; Ekvall, Sara
Revertant mosaicism (RM) is a naturally occurring phenomenon where the pathogenic effect of a germline mutation is corrected by a second somatic event. Development of healthy-looking skin due to RM has been observed in patients with various inherited skin disorders, but not in connexin-related disease. We aimed to clarify the underlying molecular mechanisms of suspected RM in the skin of a patient with keratitis-ichthyosis-deafness (KID) syndrome. The patient was diagnosed with KID syndrome due to characteristic skin lesions, hearing deficiency and keratitis. Investigation of GJB2 encoding connexin (Cx) 26 revealed heterozygosity for the recurrent de novo germline mutation, c.148G >more » A, p.Asp50Asn. At age 20, the patient developed spots of healthy-looking skin that grew in size and number within widespread erythrokeratodermic lesions. Ultra-deep sequencing of two healthy-looking skin biopsies identified five somatic nonsynonymous mutations, independently present in cis with the p.Asp50Asn mutation. Functional studies of Cx26 in HeLa cells revealed co-expression of Cx26-Asp50Asn and wild-type Cx26 in gap junction channel plaques. However, Cx26-Asp50Asn with the second-site mutations identified in the patient displayed no formation of gap junction channel plaques. We argue that the second-site mutations independently inhibit Cx26-Asp50Asn expression in gap junction channels, reverting the dominant negative effect of the p.Asp50Asn mutation. Finally to our knowledge, this is the first time RM has been reported to result in the development of healthy-looking skin in a patient with KID syndrome.« less
Gudmundsson, Sanna; Wilbe, Maria; Ekvall, Sara; ...
2017-02-01
Revertant mosaicism (RM) is a naturally occurring phenomenon where the pathogenic effect of a germline mutation is corrected by a second somatic event. Development of healthy-looking skin due to RM has been observed in patients with various inherited skin disorders, but not in connexin-related disease. We aimed to clarify the underlying molecular mechanisms of suspected RM in the skin of a patient with keratitis-ichthyosis-deafness (KID) syndrome. The patient was diagnosed with KID syndrome due to characteristic skin lesions, hearing deficiency and keratitis. Investigation of GJB2 encoding connexin (Cx) 26 revealed heterozygosity for the recurrent de novo germline mutation, c.148G >more » A, p.Asp50Asn. At age 20, the patient developed spots of healthy-looking skin that grew in size and number within widespread erythrokeratodermic lesions. Ultra-deep sequencing of two healthy-looking skin biopsies identified five somatic nonsynonymous mutations, independently present in cis with the p.Asp50Asn mutation. Functional studies of Cx26 in HeLa cells revealed co-expression of Cx26-Asp50Asn and wild-type Cx26 in gap junction channel plaques. However, Cx26-Asp50Asn with the second-site mutations identified in the patient displayed no formation of gap junction channel plaques. We argue that the second-site mutations independently inhibit Cx26-Asp50Asn expression in gap junction channels, reverting the dominant negative effect of the p.Asp50Asn mutation. Finally to our knowledge, this is the first time RM has been reported to result in the development of healthy-looking skin in a patient with KID syndrome.« less
von Stein, Richard T.; Soderlund, David M.
2012-01-01
Sodium channel inhibitor (SCI) insecticides are hypothesized to inhibit voltage-gated sodium channels by binding selectively to the slow-inactivated state. Replacement of valine at position 787 in the S6 segment of homology domain II of the rat Nav1.4 sodium channel by lysine (V787K) enchances slow inactivation of this channel whereas replacement by alanine or cysteine (V787A, V787C) inhibits slow inactivation. To test the hypothesis that SCI insecticides bind selectively to the slow-inactivated state, we constructed mutated Nav1.4/V787A, Nav1.4/V787C, and Nav1.4/V787K cDNAs, expressed wildtype and mutated channels with the auxiliary β1 subunit in Xenopus oocytes, and used the two-electrode voltage clamp technique to examine the effects of these mutations on channel inhibition by four SCI insecticides (indoxacarb, its bioactivated metabolite DCJW, metaflumizone, and RH3421). Mutations at Val787 affected SCI insecticide sensitivity in a manner that was independent of mutation-induced changes in slow inactivation gating. Sensitivity to inhibition by 10 μM indoxacarb was significantly increased in all three mutated channels, whereas sensitivity to inhibition by 10 μM metaflumizone was significantly reduced in Nav1.4/V787A channels and completely abolished in Nav1.4/V787K channels. The effects of Val787 mutations on metaflumizone were correlated with the hydrophobicity of the substituted amino acid rather than the extent of slow inactivation. None of the mutations at Val787 significantly affected the sensitivity to inhibition by DCJW or RH3421. These results demonstrate that the impact of mutations at Val787 on sodium channel inhibition by SCI insecticides depends on the specific insecticide examined and is independent of mutation-induced changes in slow inactivation gating. We propose that Val787 may be a unique determinant of metaflumizone binding. PMID:22983119
Tunable multiwavelength fiber laser based on a θ-shaped microfiber filter
NASA Astrophysics Data System (ADS)
Li, Yue; Xu, Zhilin; Luo, Yiyang; Xiang, Yang; Yan, Zhijun; Liu, Deming; Sun, Qizhen
2018-06-01
We propose and experimentally demonstrate a flexibly tunable multiwavelength fiber ring laser based on a θ-shaped microfiber filter in conjunction with an erbium-doped fiber amplifier. The stable operation of the multiwavelength lasing is successfully achieved at room temperature, with the peak power fluctuation less than 0.519 dB. By micro-adjusting the cavity length of the filter, the channel spacing can be independently tuned within the gain range of the optical amplifier. We have achieved 0.084 nm-spacing 48 channel, 0.147 nm-spacing 25 channel, 0.190 nm-spacing 20 channel and 0.302 nm-spacing 15 channel lasing wavelengths at room temperature.
Almost all quantum channels are equidistant
NASA Astrophysics Data System (ADS)
Nechita, Ion; Puchała, Zbigniew; Pawela, Łukasz; Życzkowski, Karol
2018-05-01
In this work, we analyze properties of generic quantum channels in the case of large system size. We use random matrix theory and free probability to show that the distance between two independent random channels converges to a constant value as the dimension of the system grows larger. As a measure of the distance we use the diamond norm. In the case of a flat Hilbert-Schmidt distribution on quantum channels, we obtain that the distance converges to 1/2 +2/π , giving also an estimate for the maximum success probability for distinguishing the channels. We also consider the problem of distinguishing two random unitary rotations.
Cryogenic switched MOSFET characterization
NASA Technical Reports Server (NTRS)
1981-01-01
Both p channel and n channel enhancement mode MOSFETs can be readily switched on and off at temperatures as low as 2.8 K so that switch sampled readout of a VLWIR Ge:Ga focal plane is electronically possible. Noise levels as low as 100 rms electrons per sample (independent of sample rate) can be achieved using existing p channel MOSFETs, at overall rates up to 30,000 samples/second per multiplexed channel (e.g., 32 detectors at a rate of almost 1,000 frames/second). Run of the mill devices, including very low power dissipation n channel FETs would still permit noise levels of the order of 500 electrons/sample.
Parajuli, Shankar P.; Zheng, Yun-Min; Levin, Robert; Wang, Yong-Xiao
2016-01-01
ABSTRACT Contraction and relaxation of urinary bladder smooth muscle cells (UBSMCs) represent the important physiological functions of the bladder. Contractile responses in UBSMCs are regulated by a number of ion channels including big-conductance Ca2+- activated K+ (BK) channels. Great progress has been made in studies of BK channels in UBSMCs. The intent of this review is to summarize recent exciting findings with respect to the functional interactions of BK channels with muscarinic receptors, ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) as well as their functional importance under normal and pathophysiological conditions. BK channels are highly expressed in UBSMCs. Activation of muscarinic M3 receptors inhibits the BK channel activity, facilitates opening of voltage-dependent Ca2+ (CaV) channels, and thereby enhances excitability and contractility of UBSMCs. Signaling molecules and regulatory mechanisms involving RyRs and IP3Rs have a significant effect on functions of BK channels and thereby regulate cellular responses in UBSMCs under normal and pathophysiological conditions including overactive bladders. Moreover, BK channels may represent a novel target for the treatment of bladder dysfunctions. PMID:27101440
Solids-based concentrated solar power receiver
None
2018-04-10
A concentrated solar power (CSP) system includes channels arranged to convey a flowing solids medium descending under gravity. The channels form a light-absorbing surface configured to absorb solar flux from a heliostat field. The channels may be independently supported, for example by suspension, and gaps between the channels are sized to accommodate thermal expansion. The light absorbing surface may be sloped so that the inside surfaces of the channels proximate to the light absorbing surface define downward-slanting channel floors, and the flowing solids medium flows along these floors. Baffles may be disposed inside the channels and oriented across the direction of descent of the flowing solids medium. The channels may include wedge-shaped walls forming the light-absorbing surface and defining multiple-reflection light paths for solar flux from the heliostat field incident on the light-absorbing surface.
Differential subcellular distribution of ion channels and the diversity of neuronal function.
Nusser, Zoltan
2012-06-01
Following the astonishing molecular diversity of voltage-gated ion channels that was revealed in the past few decades, the ion channel repertoire expressed by neurons has been implicated as the major factor governing their functional heterogeneity. Although the molecular structure of ion channels is a key determinant of their biophysical properties, their subcellular distribution and densities on the surface of nerve cells are just as important for fulfilling functional requirements. Recent results obtained with high resolution quantitative localization techniques revealed complex, subcellular compartment-specific distribution patterns of distinct ion channels. Here I suggest that within a given neuron type every ion channel has a unique cell surface distribution pattern, with the functional consequence that this dramatically increases the computational power of nerve cells. Copyright © 2011 Elsevier Ltd. All rights reserved.
Notes on SAW Tag Interrogation Techniques
NASA Technical Reports Server (NTRS)
Barton, Richard J.
2010-01-01
We consider the problem of interrogating a single SAW RFID tag with a known ID and known range in the presence of multiple interfering tags under the following assumptions: (1) The RF propagation environment is well approximated as a simple delay channel with geometric power-decay constant alpha >/= 2. (2) The interfering tag IDs are unknown but well approximated as independent, identically distributed random samples from a probability distribution of tag ID waveforms with known second-order properties, and the tag of interest is drawn independently from the same distribution. (3) The ranges of the interfering tags are unknown but well approximated as independent, identically distributed realizations of a random variable rho with a known probability distribution f(sub rho) , and the tag ranges are independent of the tag ID waveforms. In particular, we model the tag waveforms as random impulse responses from a wide-sense-stationary, uncorrelated-scattering (WSSUS) fading channel with known bandwidth and scattering function. A brief discussion of the properties of such channels and the notation used to describe them in this document is given in the Appendix. Under these assumptions, we derive the expression for the output signal-to-noise ratio (SNR) for an arbitrary combination of transmitted interrogation signal and linear receiver filter. Based on this expression, we derive the optimal interrogator configuration (i.e., transmitted signal/receiver filter combination) in the two extreme noise/interference regimes, i.e., noise-limited and interference-limited, under the additional assumption that the coherence bandwidth of the tags is much smaller than the total tag bandwidth. Finally, we evaluate the performance of both optimal interrogators over a broad range of operating scenarios using both numerical simulation based on the assumed model and Monte Carlo simulation based on a small sample of measured tag waveforms. The performance evaluation results not only provide guidelines for proper interrogator design, but also provide some insight on the validity of the assumed signal model. It should be noted that the assumption that the impulse response of the tag of interest is known precisely implies that the temperature and range of the tag are also known precisely, which is generally not the case in practice. However, analyzing interrogator performance under this simplifying assumption is much more straightforward and still provides a great deal of insight into the nature of the problem.
Functionally heterogenous ryanodine receptors in avian cerebellum.
Sierralta, J; Fill, M; Suárez-Isla, B A
1996-07-19
The functional heterogeneity of the ryanodine receptor (RyR) channels in avian cerebellum was defined. Heavy endoplasmic reticulum microsomes had significant levels of ryanodine and inositol 1,4,5-trisphosphate binding. Scatchard analysis and kinetic studies indicated the existence of at least two distinct ryanodine binding sites. Ryanodine binding was calcium-dependent but was not significantly enhanced by caffeine. Incorporation of microsomes into planar lipid bilayers revealed ion channels with pharmacological features (calcium, magnesium, ATP, and caffeine sensitivity) similar to the RyR channels found in mammalian striated muscle. Despite a wide range of unitary conductances (220-500 picosiemens, symmetrical cesium methanesulfonate), ryanodine locked both channels into a characteristic slow gating subconductance state, positively identifying them as RyR channels. Two populations of avian RyR channels were functionally distinguished by single channel calcium sensitivity. One population was defined by a bell-shaped calcium sensitivity analogous to the skeletal muscle RyR isoform (type I). The calcium sensitivity of the second RyR population was sigmoidal and analogous to the cardiac muscle RyR isoform (type II). These data show that there are at least two functionally distinct RyR channel populations in avian cerebellum. This leads to the possibility that these functionally distinct RyR channels are involved in different intracellular calcium signaling pathways.
Physiology and pathophysiology of ClC-K/barttin channels.
Fahlke, Christoph; Fischer, Martin
2010-01-01
ClC-K channels form a subgroup of anion channels within the ClC family of anion transport proteins. They are expressed predominantly in the kidney and in the inner ear, and are necessary for NaCl resorption in the loop of Henle and for K+ secretion by the stria vascularis. Subcellular distribution as well as the function of these channels are tightly regulated by an accessory subunit, barttin. Barttin improves the stability of ClC-K channel protein, stimulates the exit from the endoplasmic reticulum and insertion into the plasma membrane and changes its function by modifying voltage-dependent gating processes. The importance of ClC-K/barttin channels is highlighted by several genetic diseases. Dysfunctions of ClC-K channels result in Bartter syndrome, an inherited human condition characterized by impaired urinary concentration. Mutations in the gene encoding barttin, BSND, affect the urinary concentration as well as the sensory function of the inner ear. Surprisingly, there is one BSND mutation that causes deafness without affecting renal function, indicating that kidney function tolerates a reduction of anion channel activity that is not sufficient to support normal signal transduction in inner hair cells. This review summarizes recent work on molecular mechanisms, physiology, and pathophysiology of ClC-K/barttin channels.
A multichannel compact readout system for single photon detection: Design and performances
NASA Astrophysics Data System (ADS)
Argentieri, A. G.; Cisbani, E.; Colilli, S.; Cusanno, F.; De Leo, R.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Marra, M.; Musico, Paolo; Santavenere, F.; Torrioli, S.
2010-05-01
Optimal exploitation of Multi Anode PhotoMultiplier Tubes (MAPMT) as imaging devices requires the acquisition of a large number of independent channels; despite the rather wide demand, on-the-shelf electronics for this purpose does not exist. A compact independent channel readout system for an array of MAPMTs has been developed and tested [1,2]. The system can handle up to 4096 independent channels, covering an area of about 20×20 cm2 with pixel size of 3×3 mm2, using Hamamatsu H-9500 devices. The front-end is based on a 64 channels VLSI custom chip called MAROC, developed by IN2P3 Orsay (France) group, controlled by means of a Field Programmable Gate Array (FPGA) which implements configuration, triggering and data conversion controls. Up to 64 front-end cards can be housed in four backplanes and a central unit collects data from all of them, communicating with a control Personal Computer (PC) using an high speed USB 2.0 connection. A complete system has been built and tested. Eight Flat MAPMTs (256 anodes Hamamatsu H-9500) have been arranged on a boundary of a 3×3 matrix for a grand total of 2048 channels. This detector has been used to verify the performances of a focusing aerogel RICH prototype using an electron beam at the Frascati (Rome) INFN National Laboratory Beam Test Facility (BTF) during the last week of January 2009. Data analysis is ongoing: the first results are encouraging, showing that the Cherenkov rings are well identified by this system.
Hristov, Kiril L.; Smith, Amy C.; Parajuli, Shankar P.; Malysz, John; Rovner, Eric S.
2016-01-01
Transient receptor potential melastatin 4 (TRPM4) channels are Ca2+-activated nonselective cation channels that have been recently identified as regulators of detrusor smooth muscle (DSM) function in rodents. However, their expression and function in human DSM remain unexplored. We provide insights into the functional role of TRPM4 channels in human DSM under physiological conditions. We used a multidisciplinary experimental approach, including RT-PCR, Western blotting, immunohistochemistry and immunocytochemistry, patch-clamp electrophysiology, and functional studies of DSM contractility. DSM samples were obtained from patients without preoperative overactive bladder symptoms. RT-PCR detected mRNA transcripts for TRPM4 channels in human DSM whole tissue and freshly isolated single cells. Western blotting and immunohistochemistry with confocal microscopy revealed TRPM4 protein expression in human DSM. Immunocytochemistry further detected TRPM4 protein expression in DSM single cells. Patch-clamp experiments showed that 9-phenanthrol, a selective TRPM4 channel inhibitor, significantly decreased the transient inward cation currents and voltage step-induced whole cell currents in freshly isolated human DSM cells. In current-clamp mode, 9-phenanthrol hyperpolarized the human DSM cell membrane potential. Furthermore, 9-phenanthrol attenuated the spontaneous phasic, carbachol-induced and nerve-evoked contractions in human DSM isolated strips. Significant species-related differences in TRPM4 channel activity between human, rat, and guinea pig DSM were revealed, suggesting a more prominent physiological role for the TRPM4 channel in the regulation of DSM function in humans than in rodents. In conclusion, TRPM4 channels regulate human DSM excitability and contractility and are critical determinants of human urinary bladder function. Thus, TRPM4 channels could represent promising novel targets for the pharmacological or genetic control of overactive bladder. PMID:26791488
A Common Polymorphism in SCN2A Predicts General Cognitive Ability through Effects on PFC Physiology.
Scult, Matthew A; Trampush, Joey W; Zheng, Fengyu; Conley, Emily Drabant; Lencz, Todd; Malhotra, Anil K; Dickinson, Dwight; Weinberger, Daniel R; Hariri, Ahmad R
2015-09-01
Here we provide novel convergent evidence across three independent cohorts of healthy adults (n = 531), demonstrating that a common polymorphism in the gene encoding the α2 subunit of neuronal voltage-gated type II sodium channels (SCN2A) predicts human general cognitive ability or "g." Using meta-analysis, we demonstrate that the minor T allele of a common polymorphism (rs10174400) in SCN2A is associated with significantly higher "g" independent of gender and age. We further demonstrate using resting-state fMRI data from our discovery cohort (n = 236) that this genetic advantage may be mediated by increased capacity for information processing between the dorsolateral PFC and dorsal ACC, which support higher cognitive functions. Collectively, these findings fill a gap in our understanding of the genetics of general cognitive ability and highlight a specific neural mechanism through which a common polymorphism shapes interindividual variation in "g."
Progesterone Modulates a Neuronal Nicotinic Acetylcholine Receptor
NASA Astrophysics Data System (ADS)
Valera, S.; Ballivet, M.; Bertrand, D.
1992-10-01
The major brain nicotinic acetylcholine receptor is assembled from two subunits termed α 4 and nα 1. When expressed in Xenopus oocytes, these subunits reconstitute a functional acetylcholine receptor that is inhibited by progesterone levels similar to those found in serum. In this report, we show that the steroid interacts with a site located on the extracellular part of the protein, thus confirming that inhibition by progesterone is not due to a nonspecific perturbation of the membrane bilayer or to the activation of second messengers. Because inhibition by progesterone does not require the presence of agonist, is voltage-independent, and does not alter receptor desensitization, we conclude that the steroid is not an open channel blocker. In addition, we show that progesterone is not a competitive inhibitor but may interact with the acetylcholine binding site and that its effect is independent of the ionic permeability of the receptor.
Buchanan, Paul J; McCloskey, Karen D
2016-10-01
The importance of ion channels in the hallmarks of many cancers is increasingly recognised. This article reviews current knowledge of the expression of members of the voltage-gated calcium channel family (Ca V ) in cancer at the gene and protein level and discusses their potential functional roles. The ten members of the Ca V channel family are classified according to expression of their pore-forming α-subunit; moreover, co-expression of accessory α2δ, β and γ confers a spectrum of biophysical characteristics including voltage dependence of activation and inactivation, current amplitude and activation/inactivation kinetics. Ca V channels have traditionally been studied in excitable cells including neurones, smooth muscle, skeletal muscle and cardiac cells, and drugs targeting the channels are used in the treatment of hypertension and epilepsy. There is emerging evidence that several Ca V channels are differentially expressed in cancer cells compared to their normal counterparts. Interestingly, a number of Ca V channels also have non-canonical functions and are involved in transcriptional regulation of the expression of other proteins including potassium channels. Pharmacological studies show that Ca V canonical function contributes to the fundamental biology of proliferation, cell-cycle progression and apoptosis. This raises the intriguing possibility that calcium channel blockers, approved for the treatment of other conditions, could be repurposed to treat particular cancers. Further research will reveal the full extent of both the canonical and non-canonical functions of Ca V channels in cancer and whether calcium channel blockers are beneficial in cancer treatment.
The Commercialization of Youth: Channel One in Context.
ERIC Educational Resources Information Center
Wartella, Ellen
1995-01-01
Places Channel One controversy in broader context of commercialization of youth culture during past 20 years. Changes in child-oriented TV market since mid-1970s include rise of independent stations and cable networks, introduction of program-length commercials, and proliferation of new products aimed at children. Targeting marketing to child…
Information Transfer Capacity of Articulators in American Sign Language.
Malaia, Evie; Borneman, Joshua D; Wilbur, Ronnie B
2018-03-01
The ability to convey information is a fundamental property of communicative signals. For sign languages, which are overtly produced with multiple, completely visible articulators, the question arises as to how the various channels co-ordinate and interact with each other. We analyze motion capture data of American Sign Language (ASL) narratives, and show that the capacity of information throughput, mathematically defined, is highest on the dominant hand (DH). We further demonstrate that information transfer capacity is also significant for the non-dominant hand (NDH), and the head channel too, as compared to control channels (ankles). We discuss both redundancy and independence in articulator motion in sign language, and argue that the NDH and the head articulators contribute to the overall information transfer capacity, indicating that they are neither completely redundant to, nor completely independent of, the DH.
MadDM: Computation of dark matter relic abundance
NASA Astrophysics Data System (ADS)
Backović, Mihailo; Kong, Kyoungchul; McCaskey, Mathew
2017-12-01
MadDM computes dark matter relic abundance and dark matter nucleus scattering rates in a generic model. The code is based on the existing MadGraph 5 architecture and as such is easily integrable into any MadGraph collider study. A simple Python interface offers a level of user-friendliness characteristic of MadGraph 5 without sacrificing functionality. MadDM is able to calculate the dark matter relic abundance in models which include a multi-component dark sector, resonance annihilation channels and co-annihilations. The direct detection module of MadDM calculates spin independent / spin dependent dark matter-nucleon cross sections and differential recoil rates as a function of recoil energy, angle and time. The code provides a simplified simulation of detector effects for a wide range of target materials and volumes.
2008-01-01
Background Teleost radiation in the oceans required specific physiological adaptations in eggs and early embryos to survive in the hyper-osmotic seawater. Investigating the evolution of aquaporins (AQPs) in these vertebrates should help to elucidate how mechanisms for water homeostasis evolved. The marine teleost gilthead sea bream (Sparus aurata) has a mammalian aquaporin-1 (AQP1)-related channel, termed AQP1o, with a specialized physiological role in mediating egg hydration. However, teleosts have an additional AQP isoform structurally more similar to AQP1, though its relationship with AQP1o is unclear. Results By using phylogenetic and genomic analyses we show here that teleosts, unlike tetrapods, have two closely linked AQP1 paralogous genes, termed aqp1a and aqp1b (formerly AQP1o). In marine teleosts that produce hydrated eggs, aqp1b is highly expressed in the ovary, whereas in freshwater species that produce non-hydrated eggs, aqp1b has a completely different expression pattern or is not found in the genome. Both Aqp1a and Aqp1b are functional water-selective channels when expressed in Xenopus laevis oocytes. However, expression of chimeric and mutated proteins in oocytes revealed that the sea bream Aqp1b C-terminus, unlike that of Aqp1a, contains specific residues involved in the control of Aqp1b intracellular trafficking through phosphorylation-independent and -dependent mechanisms. Conclusion We propose that 1) Aqp1a and Aqp1b are encoded by distinct genes that probably originated specifically in the teleost lineage by duplication of a common ancestor soon after divergence from tetrapods, 2) Aqp1b possibly represents a neofunctionalized AQP adapted to oocytes of marine and catadromous teleosts, thereby contributing to a water reservoir in eggs and early embryos that increases their survival in the ocean, and 3) Aqp1b independently acquired regulatory domains in the cytoplasmatic C-terminal tail for the specific control of Aqp1b expression in the plasma membrane. PMID:18811940
Reversal of OFI and CHF in Research Reactors Operating at 1 to 50 Bar. Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalimullah, M.; Olson, A. P.; Dionne, B.
2014-02-28
The conditions at which the critical heat flux (CHF) and the heat flux at the onset of Ledinegg flow instability (OFI) are equal, are determined for a coolant channel with uniform heat flux as a function of five independent parameters: the channel exit pressure (P), heated length (Lh) , heated diameter (Dh), inlet temperature (Tin), and mass flux (G). A diagram is made by plotting the mass flux and heat flux at the OFI-CHF intersection (reversal from CHF > OFI to CHF < OFI as G increases) as a function of P (1 to 50 bar), for 36 combinations ofmore » the remaining three parameters (Lh , Dh , Tin): Lh = 0.28, 0.61, 1.18 m; Dh = 3, 4, 6, 8 mm; Tin = 30, 50, 70 °C. The use of the diagram to scope whether a research reactor is OFI-limited (below the curve) or CHF-limited based on the five parameters of its coolant channel is described. Justification for application of the diagram to research reactors with axially non-uniform heat flux is provided. Due to its limitations (uncertainties not included), the diagram cannot replace the detailed thermal-hydraulic analysis required for a reactor safety analysis. In order to make the OFI-CHF intersection diagram, two world-class CHF prediction methods (the Hall-Mudawar correlation and the extended Groeneveld 2006 table) are compared for 216 combinations of the five independent parameters. The two widely used OFI correlations (the Saha- Zuber and the Whittle-Forgan with η = 32.5) are also compared for the same combinations of the five parameters. The extended Groeneveld table and the Whittle-Forgan OFI correlation are selected for use in making the diagram. Using the above five design parameters, a research reactor can be represented by a point on the reversal diagram, and the diagram can be used to scope, without a thermal-hydraulic calculation, whether the OFI will occur before the CHF, or the CHF will occur before the OFI when the reactor power is increased keeping the five parameters fixed.« less
The TiPS/TINS lecture: the molecular biology of mammalian glutamate receptor channels.
Seeburg, P H
1993-08-01
In native brain membranes the principal excitatory neurotransmitter L-glutamate activates cation-conducting channels with distinct biophysical and pharmacological properties. Molecular cloning has revealed the existence of 16 channel subunits that can assemble in homomeric or heteromeric configurations in vitro to form receptor channels with disparate functional properties. This review describes the different channel types obtained by recombinant means and the genetic mechanisms controlling the expression of functionally important channel structures.
The TINS/TiPS Lecture. The molecular biology of mammalian glutamate receptor channels.
Seeburg, P H
1993-09-01
In native brain membranes the principal excitatory neurotransmitter L-glutamate activates cation-conducting channels with distinct biophysical and pharmacological properties. Molecular cloning has revealed the existence of 16 channel subunits that can assemble in homomeric or heteromeric configurations in vitro to form receptor channels with disparate functional properties. This review describes the different channel types obtained by recombinant means and the genetic mechanisms controlling the expression of functionally important channel structures.
Patel, Kirti A; Bartoli, Kristen M; Fandino, Richard A; Ngatchou, Anita N; Woch, Gustaw; Carey, Jannette; Tanaka, Jacqueline C
2005-07-01
Achromatopsia 2, an inherited retinal disorder resulting in attenuation or loss of cone function, is caused by mutations in the alpha subunit of the cone cyclic nucleotide-gated (CNG) channel gene CNGA3. Examination of mutations that cluster in the first transmembrane segment of the protein may provide insight into its role in CNG channel structure, function, biogenesis, and pathophysiology. The human CNGA3 gene was tagged at the C terminus with green fluorescent protein. Four mutations, Y181C, N182Y, L186F, and C191Y, were expressed in human embryonic kidney cells. Protein expression was evaluated with immunoblot analysis and cellular localization was determined by immunocytochemistry. Channel function was evaluated by patch-clamp electrophysiology. All the mutations result in loss of channel function, as determined by the failure of cGMP to activate wild-type currents in excised patches. Full-length mutant proteins were synthesized but retained in the endoplasmic reticulum. Glycerol treatment did not rescue channel function nor did coexpression with CNGB3, a subunit of native hetero-tetrameric cone channels. A control mutant, C191S, exhibited cGMP current activation with significantly reduced cooperativity, suggesting that mutations in the first transmembrane domain alter in inter- or intrasubunit communication. The results implicate the first transmembrane segment in both maturation and function of CNG channels. The defects are not reversed with glycerol, a chemical chaperone that rescues channel function in some channelopathies. Molecular analysis of achromatopsia 2 mutations may be useful in evaluating potential therapeutic approaches for treatment of this channelopathy.
Niemeyer, María Isabel; Cid, L Pablo; Yusef, Yamil R; Briones, Rodolfo; Sepúlveda, Francisco V
2009-01-01
The ClC transport protein family comprises both Cl− ion channel and H+/Cl− and H+/NO3− exchanger members. Structural studies on a bacterial ClC transporter reveal a pore obstructed at its external opening by a glutamate side-chain which acts as a gate for Cl− passage and in addition serves as a staging post for H+ exchange. This same conserved glutamate acts as a gate to regulate Cl− flow in ClC channels. The activity of ClC-2, a genuine Cl− channel, has a biphasic response to extracellular pH with activation by moderate acidification followed by abrupt channel closure at pH values lower than ∼7. We have now investigated the molecular basis of this complex gating behaviour. First, we identify a sensor that couples extracellular acidification to complete closure of the channel. This is extracellularly-facing histidine 532 at the N-terminus of transmembrane helix Q whose neutralisation leads to channel closure in a cooperative manner. We go on to show that acidification-dependent activation of ClC-2 is voltage dependent and probably mediated by protonation of pore gate glutamate 207. Intracellular Cl− acts as a voltage-independent modulator, as though regulating the pKa of the protonatable residue. Our results suggest that voltage dependence of ClC-2 is given by hyperpolarisation-dependent penetration of protons from the extracellular side to neutralise the glutamate gate deep within the channel, which allows Cl− efflux. This is reminiscent of a partial exchanger cycle, suggesting that the ClC-2 channel evolved from its transporter counterparts. PMID:19153159
Gibbs-Donnan ratio and channel conductance of Tetrahymena cilia in mixed solution of K+ and Ca2+.
Oosawa, Y; Kasai, M
1988-01-01
A single cation-channel from Tetrahymena cilia was incorporated into planar lipid bilayers. This channel was voltage-independent and is permeable to K+ and Ca2+. In the experiments with mixed solutions where the concentrations of K+ and Ca2+ were varied, the single-channel conductance was found to be influenced by the Gibbs-Donnan ratio. The data are explained by assuming that the binding sites of this channel were always occupied by two potassium ions or one calcium ion under the present experimental conditions (5 mM-90 mM K+ and 0.5 mM-35 mM Ca2+) and these bound cations determined the channel conductivity. PMID:2462927
Olfactory Ionotropic Receptors in Mosquito Aedes albopictus (Diptera: Culicidae).
Chen, Qian; Man, Yahui; Li, Jianyong; Pei, Di; Wu, Wenjian
2017-09-01
Ionotropic glutamate receptors (iGluRs) are a conserved family of ligand-gated ion channels that primarily function to mediate neuronal communication at synapses. A variant subfamily of iGluRs, the ionotropic receptors (IRs), was recently identified in insects and proved with the function in odorant recognition. Ionotropic receptors participate in a distinct olfactory signaling pathway that is independent of olfactory receptors activity. In the present study, we identify 102 putative IR genes, dubbed as AalbIr genes, in mosquito Aedes albopictus (Skuse) by in silico comparative sequence analysis. Among AalbIr genes, 19 show expression in the female antenna by RT-PCR. These putative olfactory AalbIRs share four conservative hydrophobic domains of amino acids, similar to the transmembrane and ion channel pore regions found in conventional iGluRs. To determine the potential function of these olfactory AalbIRs in host-seeking, we compared their transcript expression levels in the antennae of blood-fed females with that of non-blood-fed females by quantitative real-time RT-PCR. Three AalbIr genes showed downregulation when the mosquito finished a bloodmeal. These results may help to improve our understanding of the IR-mediated olfactory signaling in mosquitoes. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Redolfi, M.; Tubino, M.; Bertoldi, W.; Brasington, J.
2016-08-01
Understanding the role of external controls on the morphology of braided rivers is currently limited by the dearth of robust metrics to quantify and distinguish the diversity of channel form. Most existing measures are strongly dependent on river stage and unable to account for the three-dimensional complexity that is apparent in digital terrain models of braided rivers. In this paper, we introduce a simple, stage-independent morphological indicator that enables the analysis of reach-scale regime morphology as a function of slope, discharge, sediment size, and degree of confinement. The index is derived from the bed elevation frequency distribution and characterizes a statistical width-depth curve averaged longitudinally over multiple channel widths. In this way, we define a "synthetic channel" described by a simple parameter that embeds information about the river morphological complexity. Under the assumption of uniform flow, this approach can be extended to provide estimates of the reach-averaged shear stress distribution, bed load flux, and at-a-station-variability of wetted width. We test this approach using data from a wide range of labile channels including 58 flume experiments and three gravel bed braided rivers. Results demonstrate a strong relationship between the unit discharge and the shape of the elevation distribution, which varies between a U shape for typical single-thread confined channels and a Y shape for multithread reaches. Finally, we discuss the use of the metric as a diagnostic index of river condition that may be used to support inferences about the river morphological trajectory.
Perception of 'Back-Channeling' Nonverbal Feedback in Musical Duo Improvisation.
Moran, Nikki; Hadley, Lauren V; Bader, Maria; Keller, Peter E
2015-01-01
In witnessing face-to-face conversation, observers perceive authentic communication according to the social contingency of nonverbal feedback cues ('back-channeling') by non-speaking interactors. The current study investigated the generality of this function by focusing on nonverbal communication in musical improvisation. A perceptual experiment was conducted to test whether observers can reliably identify genuine versus fake (mismatched) duos from musicians' nonverbal cues, and how this judgement is affected by observers' musical background and rhythm perception skill. Twenty-four musicians were recruited to perform duo improvisations, which included solo episodes, in two styles: standard jazz (where rhythm is based on a regular pulse) or free improvisation (where rhythm is non-pulsed). The improvisations were recorded using a motion capture system to generate 16 ten-second point-light displays (with audio) of the soloist and the silent non-soloing musician ('back-channeler'). Sixteen further displays were created by splicing soloists with back-channelers from different duos. Participants (N = 60) with various musical backgrounds were asked to rate the point-light displays as either real or fake. Results indicated that participants were sensitive to the real/fake distinction in the free improvisation condition independently of musical experience. Individual differences in rhythm perception skill did not account for performance in the free condition, but were positively correlated with accuracy in the standard jazz condition. These findings suggest that the perception of back-channeling in free improvisation is not dependent on music-specific skills but is a general ability. The findings invite further study of the links between interpersonal dynamics in conversation and musical interaction.
Parallel Evolution of Sperm Hyper-Activation Ca2+ Channels
Phadnis, Nitin
2017-01-01
Abstract Sperm hyper-activation is a dramatic change in sperm behavior where mature sperm burst into a final sprint in the race to the egg. The mechanism of sperm hyper-activation in many metazoans, including humans, consists of a jolt of Ca2+ into the sperm flagellum via CatSper ion channels. Surprisingly, all nine CatSper genes have been independently lost in several animal lineages. In Drosophila, sperm hyper-activation is performed through the cooption of the polycystic kidney disease 2 (pkd2) Ca2+ channel. The parallels between CatSpers in primates and pkd2 in Drosophila provide a unique opportunity to examine the molecular evolution of the sperm hyper-activation machinery in two independent, nonhomologous calcium channels separated by > 500 million years of divergence. Here, we use a comprehensive phylogenomic approach to investigate the selective pressures on these sperm hyper-activation channels. First, we find that the entire CatSper complex evolves rapidly under recurrent positive selection in primates. Second, we find that pkd2 has parallel patterns of adaptive evolution in Drosophila. Third, we show that this adaptive evolution of pkd2 is driven by its role in sperm hyper-activation. These patterns of selection suggest that the evolution of the sperm hyper-activation machinery is driven by sexual conflict with antagonistic ligands that modulate channel activity. Together, our results add sperm hyper-activation channels to the class of fast evolving reproductive proteins and provide insights into the mechanisms used by the sexes to manipulate sperm behavior. PMID:28810709
Blumenthal, Nils R; Hermanson, Ola; Heimrich, Bernd; Shastri, V Prasad
2014-11-11
Extracellular soluble signals are known to play a critical role in maintaining neuronal function and homeostasis in the CNS. However, the CNS is also composed of extracellular matrix macromolecules and glia support cells, and the contribution of the physical attributes of these components in maintenance and regulation of neuronal function is not well understood. Because these components possess well-defined topography, we theorize a role for topography in neuronal development and we demonstrate that survival and function of hippocampal neurons and differentiation of telencephalic neural stem cells is modulated by nanoroughness. At roughnesses corresponding to that of healthy astrocytes, hippocampal neurons dissociated and survived independent from astrocytes and showed superior functional traits (increased polarity and calcium flux). Furthermore, telencephalic neural stem cells differentiated into neurons even under exogenous signals that favor astrocytic differentiation. The decoupling of neurons from astrocytes seemed to be triggered by changes to astrocyte apical-surface topography in response to nanoroughness. Blocking signaling through mechanosensing cation channels using GsMTx4 negated the ability of neurons to sense the nanoroughness and promoted decoupling of neurons from astrocytes, thus providing direct evidence for the role of nanotopography in neuron-astrocyte interactions. We extrapolate the role of topography to neurodegenerative conditions and show that regions of amyloid plaque buildup in brain tissue of Alzheimer's patients are accompanied by detrimental changes in tissue roughness. These findings suggest a role for astrocyte and ECM-induced topographical changes in neuronal pathologies and provide new insights for developing therapeutic targets and engineering of neural biomaterials.
Targeting PCSK9 for therapeutic gains: Have we addressed all the concerns?
Banerjee, Yajnavalka; Santos, Raul D; Al-Rasadi, Khalid; Rizzo, Manfredi
2016-05-01
Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) regulates the expression of low-density lipoprotein (LDL)-receptors, through reducing their recycling by binding to the receptor along with LDL and targeting it for lysosomal destruction. PCSK9 also enhances the degradation of very-low-density-lipoprotein receptor (VLDLR) and lipoprotein receptor-related protein 1 (LRP-1) in a LDL-receptor independent manner. This role in lipid homeostasis presents PCSK9 as an attractive target for the therapeutic management of familial hypercholesterolemia as well as other refractory dyslipidaemias. However, PCSK9 mediates multifarious functions independent of its role in lipid homeostasis, which can be grouped under "pleiotropic functions" of the protein. This includes PCSK9's role in: trafficking of epithelial sodium channel; hepatic regeneration; pancreatic integrity and glucose homeostasis; antiviral activity; antimalarial activity; regulation of different cell signalling pathways; cortical neural differentiation; neuronal apoptosis and Alzheimer's disease. The question that needs to be investigated in depth is "How will the pleotropic functions of PCSK9, be affected by the therapeutic intervention of the protease's LDL-receptor lowering activity?" In this review, we appraise the different lipid lowering strategies targeting PCSK9 in light of the protein's different pleiotropic functions. Additionally, we delineate the key areas that require further examination, to ensure the long-term safety of the above lipid-lowering strategies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
ReliefF-Based EEG Sensor Selection Methods for Emotion Recognition.
Zhang, Jianhai; Chen, Ming; Zhao, Shaokai; Hu, Sanqing; Shi, Zhiguo; Cao, Yu
2016-09-22
Electroencephalogram (EEG) signals recorded from sensor electrodes on the scalp can directly detect the brain dynamics in response to different emotional states. Emotion recognition from EEG signals has attracted broad attention, partly due to the rapid development of wearable computing and the needs of a more immersive human-computer interface (HCI) environment. To improve the recognition performance, multi-channel EEG signals are usually used. A large set of EEG sensor channels will add to the computational complexity and cause users inconvenience. ReliefF-based channel selection methods were systematically investigated for EEG-based emotion recognition on a database for emotion analysis using physiological signals (DEAP). Three strategies were employed to select the best channels in classifying four emotional states (joy, fear, sadness and relaxation). Furthermore, support vector machine (SVM) was used as a classifier to validate the performance of the channel selection results. The experimental results showed the effectiveness of our methods and the comparison with the similar strategies, based on the F-score, was given. Strategies to evaluate a channel as a unity gave better performance in channel reduction with an acceptable loss of accuracy. In the third strategy, after adjusting channels' weights according to their contribution to the classification accuracy, the number of channels was reduced to eight with a slight loss of accuracy (58.51% ± 10.05% versus the best classification accuracy 59.13% ± 11.00% using 19 channels). In addition, the study of selecting subject-independent channels, related to emotion processing, was also implemented. The sensors, selected subject-independently from frontal, parietal lobes, have been identified to provide more discriminative information associated with emotion processing, and are distributed symmetrically over the scalp, which is consistent with the existing literature. The results will make a contribution to the realization of a practical EEG-based emotion recognition system.
Eight-channel time-resolved tissue oximeter for functional muscle studies
NASA Astrophysics Data System (ADS)
Cubeddu, Rinaldo; Biscotti, Giovanni; Pifferi, Antonio; Taroni, Paola; Torricelli, Alessandro; Ferrari, Marco; Quaresima, Valentina
2003-07-01
A portable instrument for tissue oximetry based on time-resolved reflectance spectroscopy was developed. The output pulses of 2 laser diodes (683 and 785 nm, 80 MHz pulse repetition rate, 1 mW average power, 100 ps FWHM) are delayed and coupled into a multimode graded-index fiber (50/125 μm and injected into the tissue. The reflectance photons are collected by 8 independent 1 mm fibers and detected by a 16-anode photomultiplier. A time-correlated single photon counting PC board is used for the parallel acquisition of the curves. Simultaneous estimate of the transport scattering and absorption coefficients is achieved by best fitting of time-resolved reflectance curves with a standard model of Diffusion Theory. The performances of the system were tested on phantoms in terms of stability, reproducibility among channels, and accuracy in the determination of the optical properties. Preliminary in vivo measurements were performed on healthy volunteers to monitor spatial changes in calf (medical and lateral gastrocnemius) oxygen hemoglobin saturation and blood volume during dynamic plantar flexion exercise.
When emotional prosody and semantics dance cheek to cheek: ERP evidence.
Kotz, Sonja A; Paulmann, Silke
2007-06-02
To communicate emotionally entails that a listener understands a verbal message but also the emotional prosody going along with it. So far the time course and interaction of these emotional 'channels' is still poorly understood. The current set of event-related brain potential (ERP) experiments investigated both the interactive time course of emotional prosody with semantics and of emotional prosody independent of emotional semantics using a cross-splicing method. In a probe verification task (Experiment 1) prosodic expectancy violations elicited a positivity, while a combined prosodic-semantic expectancy violation elicited a negativity. Comparable ERP results were obtained in an emotional prosodic categorization task (Experiment 2). The present data support different ERP responses with distinct time courses and topographies elicited as a function of prosodic expectancy and combined prosodic-semantic expectancy during emotional prosodic processing and combined emotional prosody/emotional semantic processing. These differences suggest that the interaction of more than one emotional channel facilitates subtle transitions in an emotional sentence context.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Ian K.; Garimella, Sandilya V. B.; Tolmachev, Aleksey V.
A Structures for Lossless Ion Manipulations (SLIM) module that allows ion mobility separations and the switching of ions between alternative drift paths is described. The SLIM switch component has a “Tee” configuration and allows switching of ions between a linear path and a 90-degree bend. By controlling switching times, ions can be deflected to an alternative channel as a function of their mobilities. In the initial evaluation the switch is used in a static mode and shown compatible with high performance ion mobility separations at 4 torr. In the “dynamic mode” we show that mobility-selected ions can be switched intomore » the alternative channel, and that various ion species can be independently selected based on their mobilities for time-of-flight mass spectrometer (TOF MS) IMS detection and mass analysis. Ultimately, this development also provides the basis for e.g. the selection of specific mobilities for storage and accumulation, and key modules for the assembly of SLIM devices enabling much more complex sequences of ion manipulations.« less
New regularization scheme for blind color image deconvolution
NASA Astrophysics Data System (ADS)
Chen, Li; He, Yu; Yap, Kim-Hui
2011-01-01
This paper proposes a new regularization scheme to address blind color image deconvolution. Color images generally have a significant correlation among the red, green, and blue channels. Conventional blind monochromatic deconvolution algorithms handle each color image channels independently, thereby ignoring the interchannel correlation present in the color images. In view of this, a unified regularization scheme for image is developed to recover edges of color images and reduce color artifacts. In addition, by using the color image properties, a spectral-based regularization operator is adopted to impose constraints on the blurs. Further, this paper proposes a reinforcement regularization framework that integrates a soft parametric learning term in addressing blind color image deconvolution. A blur modeling scheme is developed to evaluate the relevance of manifold parametric blur structures, and the information is integrated into the deconvolution scheme. An optimization procedure called alternating minimization is then employed to iteratively minimize the image- and blur-domain cost functions. Experimental results show that the method is able to achieve satisfactory restored color images under different blurring conditions.
A Trk/HKT-Type K+ Transporter from Trypanosoma brucei ▿
Mosimann, Marc; Goshima, Shinobu; Wenzler, Tanja; Lüscher, Alexandra; Uozumi, Nobuyuki; Mäser, Pascal
2010-01-01
The molecular mechanisms of K+ homeostasis are only poorly understood for protozoan parasites. Trypanosoma brucei subsp. parasites, the causative agents of human sleeping sickness and nagana, are strictly extracellular and need to actively concentrate K+ from their hosts’ body fluids. The T. brucei genome contains two putative K+ channel genes, yet the trypanosomes are insensitive to K+ antagonists and K+ channel-blocking agents, and they do not spontaneously depolarize in response to high extracellular K+ concentrations. However, the trypanosomes are extremely sensitive to K+ ionophores such as valinomycin. Surprisingly, T. brucei possesses a member of the Trk/HKT superfamily of monovalent cation permeases which so far had only been known from bacteria, archaea, fungi, and plants. The protein was named TbHKT1 and functions as a Na+-independent K+ transporter when expressed in Escherichia coli, Saccharomyces cerevisiae, or Xenopus laevis oocytes. In trypanosomes, TbHKT1 is expressed in both the mammalian bloodstream stage and the Tsetse fly midgut stage; however, RNA interference (RNAi)-mediated silencing of TbHKT1 expression did not produce a growth phenotype in either stage. The presence of HKT genes in trypanosomatids adds a further piece to the enigmatic phylogeny of the Trk/HKT superfamily of K+ transporters. Parsimonial analysis suggests that the transporters were present in the first eukaryotes but subsequently lost in several of the major eukaryotic lineages, in at least four independent events. PMID:20190075
A Trk/HKT-type K+ transporter from Trypanosoma brucei.
Mosimann, Marc; Goshima, Shinobu; Wenzler, Tanja; Lüscher, Alexandra; Uozumi, Nobuyuki; Mäser, Pascal
2010-04-01
The molecular mechanisms of K(+) homeostasis are only poorly understood for protozoan parasites. Trypanosoma brucei subsp. parasites, the causative agents of human sleeping sickness and nagana, are strictly extracellular and need to actively concentrate K(+) from their hosts' body fluids. The T. brucei genome contains two putative K(+) channel genes, yet the trypanosomes are insensitive to K(+) antagonists and K(+) channel-blocking agents, and they do not spontaneously depolarize in response to high extracellular K(+) concentrations. However, the trypanosomes are extremely sensitive to K(+) ionophores such as valinomycin. Surprisingly, T. brucei possesses a member of the Trk/HKT superfamily of monovalent cation permeases which so far had only been known from bacteria, archaea, fungi, and plants. The protein was named TbHKT1 and functions as a Na(+)-independent K(+) transporter when expressed in Escherichia coli, Saccharomyces cerevisiae, or Xenopus laevis oocytes. In trypanosomes, TbHKT1 is expressed in both the mammalian bloodstream stage and the Tsetse fly midgut stage; however, RNA interference (RNAi)-mediated silencing of TbHKT1 expression did not produce a growth phenotype in either stage. The presence of HKT genes in trypanosomatids adds a further piece to the enigmatic phylogeny of the Trk/HKT superfamily of K(+) transporters. Parsimonial analysis suggests that the transporters were present in the first eukaryotes but subsequently lost in several of the major eukaryotic lineages, in at least four independent events.
Lipid microdomains and the regulation of ion channel function
Dart, Caroline
2010-01-01
Many types of ion channel localize to cholesterol and sphingolipid-enriched regions of the plasma membrane known as lipid microdomains or ‘rafts’. The precise physiological role of these unique lipid microenvironments remains elusive due largely to difficulties associated with studying these potentially extremely small and dynamic domains. Nevertheless, increasing evidence suggests that membrane rafts regulate channel function in a number of different ways. Raft-enriched lipids such as cholesterol and sphingolipids exert effects on channel activity either through direct protein–lipid interactions or by influencing the physical properties of the bilayer. Rafts also appear to selectively recruit interacting signalling molecules to generate subcellular compartments that may be important for efficient and selective signal transduction. Direct interaction with raft-associated scaffold proteins such as caveolin can also influence channel function by altering gating kinetics or by affecting trafficking and surface expression. Selective association of ion channels with specific lipid microenvironments within the membrane is thus likely to be an important and fundamental regulatory aspect of channel physiology. This brief review highlights some of the existing evidence for raft modulation of channel function. PMID:20519314
IA channels: diverse regulatory mechanisms.
Carrasquillo, Yarimar; Nerbonne, Jeanne M
2014-04-01
In many peripheral and central neurons, A-type K(+) currents, IA, have been identified and shown to be key determinants in shaping action potential waveforms and repetitive firing properties, as well as in the regulation of synaptic transmission and synaptic plasticity. The functional properties and physiological roles of native neuronal IA, however, have been shown to be quite diverse in different types of neurons. Accumulating evidence suggests that this functional diversity is generated by multiple mechanisms, including the expression and subcellular distributions of IA channels encoded by different voltage-gated K(+) (Kv) channel pore-forming (α) subunits, interactions of Kv α subunits with cytosolic and/or transmembrane accessory subunits and regulatory proteins and post-translational modifications of channel subunits. Several recent reports further suggest that local protein translation in the dendrites of neurons and interactions between IA channels with other types of voltage-gated ion channels further expands the functional diversity of native neuronal IA channels. Here, we review the diverse molecular mechanisms that have been shown or proposed to underlie the functional diversity of native neuronal IA channels.
High-performance multi-channel fiber-based absolute distance measuring interferometer system
NASA Astrophysics Data System (ADS)
Deck, Leslie L.
2009-08-01
I describe the principle of operation and performance of a fiber-based absolute distance measuring interferometer system with 60 independent simultaneous channels. The system was designed for demanding applications requiring passive, electrically immune sensors with an extremely long MTTF. In addition to providing better than 0.3nm measurement repeatability at 5KHz for all channels, the system demonstrated absolute distance uncertainty of less than 5nm over a 500 micron measurement range.
Oxidative Modulation of Voltage-Gated Potassium Channels
Sahoo, Nirakar; Hoshi, Toshinori
2014-01-01
Abstract Significance: Voltage-gated K+ channels are a large family of K+-selective ion channel protein complexes that open on membrane depolarization. These K+ channels are expressed in diverse tissues and their function is vital for numerous physiological processes, in particular of neurons and muscle cells. Potentially reversible oxidative regulation of voltage-gated K+ channels by reactive species such as reactive oxygen species (ROS) represents a contributing mechanism of normal cellular plasticity and may play important roles in diverse pathologies including neurodegenerative diseases. Recent Advances: Studies using various protocols of oxidative modification, site-directed mutagenesis, and structural and kinetic modeling provide a broader phenomenology and emerging mechanistic insights. Critical Issues: Physicochemical mechanisms of the functional consequences of oxidative modifications of voltage-gated K+ channels are only beginning to be revealed. In vivo documentation of oxidative modifications of specific amino-acid residues of various voltage-gated K+ channel proteins, including the target specificity issue, is largely absent. Future Directions: High-resolution chemical and proteomic analysis of ion channel proteins with respect to oxidative modification combined with ongoing studies on channel structure and function will provide a better understanding of how the function of voltage-gated K+ channels is tuned by ROS and the corresponding reducing enzymes to meet cellular needs. Antioxid. Redox Signal. 21, 933–952. PMID:24040918
Multi-Channel RF System for MRI-Guided Transurethral Ultrasound Thermal Therapy
NASA Astrophysics Data System (ADS)
Yak, Nicolas; Asselin, Matthew; Chopra, Rajiv; Bronskill, Michael
2009-04-01
MRI-guided transurethral ultrasound thermal therapy is an approach to treating localized prostate cancer which targets precise deposition of thermal energy within a confined region of the gland. This treatment requires a system incorporating a heating applicator with multiple planar ultrasound transducers and associated RF electronics to control individual elements independently in order to achieve accurate 3D treatment. We report the design, construction, and characterization of a prototype multi-channel system capable of controlling 16 independent RF signals for a 16-element heating applicator. The main components are a control computer, microcontroller, and a 16-channel signal generator with 16 amplifiers, each incorporating a low-pass filter and transmitted/reflected power detection circuit. Each channel can deliver from 0.5 to 10 W of electrical power and good linearity from 3 to 12 MHz. Harmonic RF signals near the Larmor frequency of a 1.5 T MRI were measured to be below -30 dBm and heating experiments within the 1.5 T MR system showed no significant decrease in SNR of the temperature images. The frequency and power for all 16 channels could be changed in less than 250 ms, which was sufficiently rapid for proper performance of the control algorithms. A common backplane design was chosen which enabled an inexpensive, modular approach for each channel resulting in an overall system with minimal footprint.
Pre-hatching embryo-dependent and -independent programming of endometrial function in cattle
Sponchiado, Mariana; Gomes, Nathália Souza; Fontes, Patrícia Kubo; Martins, Thiago; del Collado, Maite; Pastore, Athos de Assumpção; Pugliesi, Guilherme; Nogueira, Marcelo Fábio Gouveia
2017-01-01
The bovine pre-implantation embryo secretes bioactive molecules from early development stages, but effects on endometrial function are reported to start only after elongation. Here, we interrogated spatially defined regions of the endometrium transcriptome for responses to a day 7 embryo in vivo. We hypothesize that exposure to an embryo changes the abundance of specific transcripts in the cranial region of the pregnant uterine horn. Endometrium was collected from the uterotubal junction (UTJ), anterior (IA), medial (IM) and posterior (IP) regions of the uterine horn ipsilateral to the CL 7 days after estrus from sham-inseminated (Con) or artificially inseminated, confirmed pregnant (Preg) cows. Abundance of 86 transcripts was evaluated by qPCR using a microfluidic platform. Abundance of 12 transcripts was modulated in the Preg endometrium, including classical interferon-stimulated genes (ISG15, MX1, MX2 and OAS1Y), prostaglandin biosynthesis genes (PTGES, HPGD and AKR1C4), water channel (AQP4) and a solute transporter (SLC1A4) and this was in the UTJ and IA mainly. Additionally, for 71 transcripts, abundance varied according to region of the reproductive tract. Regulation included downregulation of genes associated with proliferation (IGF1, IGF2, IGF1R and IGF2R) and extracellular matrix remodeling (MMP14, MMP19 and MMP2) and upregulation of anti-adhesive genes (MUC1) in the cranial regions of uterine horn. Physical proximity to the embryo provides paracrine regulation of endometrial function. Embryo-independent regulation of the endometrial transcriptome may support subsequent stages of embryo development, such as elongation and implantation. We speculate that successful early embryo-dependent and -independent programming fine-tune endometrial functions that are important for maintenance of pregnancy in cattle. PMID:28423001
Makeig, S; Westerfield, M; Jung, T P; Covington, J; Townsend, J; Sejnowski, T J; Courchesne, E
1999-04-01
Human event-related potentials (ERPs) were recorded from 10 subjects presented with visual target and nontarget stimuli at five screen locations and responding to targets presented at one of the locations. The late positive response complexes of 25-75 ERP average waveforms from the two task conditions were simultaneously analyzed with Independent Component Analysis, a new computational method for blindly separating linearly mixed signals. Three spatially fixed, temporally independent, behaviorally relevant, and physiologically plausible components were identified without reference to peaks in single-channel waveforms. A novel frontoparietal component (P3f) began at approximately 140 msec and peaked, in faster responders, at the onset of the motor command. The scalp distribution of P3f appeared consistent with brain regions activated during spatial orienting in functional imaging experiments. A longer-latency large component (P3b), positive over parietal cortex, was followed by a postmotor potential (Pmp) component that peaked 200 msec after the button press and reversed polarity near the central sulcus. A fourth component associated with a left frontocentral nontarget positivity (Pnt) was evoked primarily by target-like distractors presented in the attended location. When no distractors were presented, responses of five faster-responding subjects contained largest P3f and smallest Pmp components; when distractors were included, a Pmp component appeared only in responses of the five slower-responding subjects. Direct relationships between component amplitudes, latencies, and behavioral responses, plus similarities between component scalp distributions and regional activations reported in functional brain imaging experiments suggest that P3f, Pmp, and Pnt measure the time course and strength of functionally distinct brain processes.
Design of a 12 channel fm microwave receiver. [for satellite ground stations
NASA Technical Reports Server (NTRS)
Risch, C. O.; Rosenbaum, F. J.; Gregory, R. O.
1974-01-01
The design, fabrication, and performance of elements of a low cost FM microwave satellite ground station receiver is described. It is capable of accepting 12 contiguous color television equivalent bandwidth channels in the 11.72 to 12.2 GHz band. Each channel is 40 MHz wide and incorporates a 4 MHz guard band. The modulation format is wideband FM and the channels are frequency division multiplexed. Twelve independent CATV compatible baseband outputs are provided. The overall system specifications are first discussed, then consideration is given to the receiver subsystems and the signal branching network.
Sun, Xiaole; Djordjevic, Ivan B; Neifeld, Mark A
2016-11-28
We investigate a multiple spatial modes based quantum key distribution (QKD) scheme that employs multiple independent parallel beams through a marine free-space optical channel over open ocean. This approach provides the potential to increase secret key rate (SKR) linearly with the number of channels. To improve the SKR performance, we describe a back-propagation mode (BPM) method to mitigate the atmospheric turbulence effects. Our simulation results indicate that the secret key rate can be improved significantly by employing the proposed BPM-based multi-channel QKD scheme.
Transient Receptor Potential Channels in the Vasculature
Earley, Scott; Brayden, Joseph E.
2015-01-01
The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca2+ levels or subcellular Ca2+ signaling events. In addition to directly mediating Ca2+ entry, TRP channels influence intracellular Ca2+ dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions. PMID:25834234
Sepúlveda, Francisco V.; Pablo Cid, L.; Teulon, Jacques; Niemeyer, María Isabel
2015-01-01
K+ channels fulfill roles spanning from the control of excitability to the regulation of transepithelial transport. Here we review two groups of K+ channels, pH-regulated K2P channels and the transport group of Kir channels. After considering advances in the molecular aspects of their gating based on structural and functional studies, we examine their participation in certain chosen physiological and pathophysiological scenarios. Crystal structures of K2P and Kir channels reveal rather unique features with important consequences for the gating mechanisms. Important tasks of these channels are discussed in kidney physiology and disease, K+ homeostasis in the brain by Kir channel-equipped glia, and central functions in the hearing mechanism in the inner ear and in acid secretion by parietal cells in the stomach. K2P channels fulfill a crucial part in central chemoreception probably by virtue of their pH sensitivity and are central to adrenal secretion of aldosterone. Finally, some unorthodox behaviors of the selectivity filters of K2P channels might explain their normal and pathological functions. Although a great deal has been learned about structure, molecular details of gating, and physiological functions of K2P and Kir K+-transport channels, this has been only scratching at the surface. More molecular and animal studies are clearly needed to deepen our knowledge. PMID:25540142
MOLEonline 2.0: interactive web-based analysis of biomacromolecular channels.
Berka, Karel; Hanák, Ondrej; Sehnal, David; Banás, Pavel; Navrátilová, Veronika; Jaiswal, Deepti; Ionescu, Crina-Maria; Svobodová Vareková, Radka; Koca, Jaroslav; Otyepka, Michal
2012-07-01
Biomolecular channels play important roles in many biological systems, e.g. enzymes, ribosomes and ion channels. This article introduces a web-based interactive MOLEonline 2.0 application for the analysis of access/egress paths to interior molecular voids. MOLEonline 2.0 enables platform-independent, easy-to-use and interactive analyses of (bio)macromolecular channels, tunnels and pores. Results are presented in a clear manner, making their interpretation easy. For each channel, MOLEonline displays a 3D graphical representation of the channel, its profile accompanied by a list of lining residues and also its basic physicochemical properties. The users can tune advanced parameters when performing a channel search to direct the search according to their needs. The MOLEonline 2.0 application is freely available via the Internet at http://ncbr.muni.cz/mole or http://mole.upol.cz.
Coherent state coding approaches the capacity of non-Gaussian bosonic channels
NASA Astrophysics Data System (ADS)
Huber, Stefan; König, Robert
2018-05-01
The additivity problem asks if the use of entanglement can boost the information-carrying capacity of a given channel beyond what is achievable by coding with simple product states only. This has recently been shown not to be the case for phase-insensitive one-mode Gaussian channels, but remains unresolved in general. Here we consider two general classes of bosonic noise channels, which include phase-insensitive Gaussian channels as special cases: these are attenuators with general, potentially non-Gaussian environment states and classical noise channels with general probabilistic noise. We show that additivity violations, if existent, are rather minor for all these channels: the maximal gain in classical capacity is bounded by a constant independent of the input energy. Our proof shows that coding by simple classical modulation of coherent states is close to optimal.
CW Interference Effects on High Data Rate Transmission Through the ACTS Wideband Channel
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Ngo, Duc H.; Tran, Quang K.; Tran, Diepchi T.; Yu, John; Kachmar, Brian A.; Svoboda, James S.
1996-01-01
Satellite communications channels are susceptible to various sources of interference. Wideband channels have a proportionally greater probability of receiving interference than narrowband channels. NASA's Advanced Communications Technology Satellite (ACTS) includes a 900 MHz bandwidth hardlimiting transponder which has provided an opportunity for the study of interference effects of wideband channels. A series of interference tests using two independent ACTS ground terminals measured the effects of continuous-wave (CW) uplink interference on the bit-error rate of a 220 Mbps digitally modulated carrier. These results indicate the susceptibility of high data rate transmissions to CW interference and are compared to results obtained with a laboratory hardware-based system simulation and a computer simulation.
Chitnis, Danial; Cooper, Robert J; Dempsey, Laura; Powell, Samuel; Quaggia, Simone; Highton, David; Elwell, Clare; Hebden, Jeremy C; Everdell, Nicholas L
2016-10-01
We present the first three-dimensional, functional images of the human brain to be obtained using a fibre-less, high-density diffuse optical tomography system. Our technology consists of independent, miniaturized, silicone-encapsulated DOT modules that can be placed directly on the scalp. Four of these modules were arranged to provide up to 128, dual-wavelength measurement channels over a scalp area of approximately 60 × 65 mm 2 . Using a series of motor-cortex stimulation experiments, we demonstrate that this system can obtain high-quality, continuous-wave measurements at source-detector separations ranging from 14 to 55 mm in adults, in the presence of hair. We identify robust haemodynamic response functions in 5 out of 5 subjects, and present diffuse optical tomography images that depict functional haemodynamic responses that are well-localized in all three dimensions at both the individual and group levels. This prototype modular system paves the way for a new generation of wearable, wireless, high-density optical neuroimaging technologies.
Li, Min; Chang, Shan; Yang, Longjin; Shi, Jingyi; McFarland, Kelli; Yang, Xiao; Moller, Alyssa; Wang, Chunguang; Zou, Xiaoqin; Chi, Chengwu; Cui, Jianmin
2014-02-21
BK channel β subunits (β1-β4) modulate the function of channels formed by slo1 subunits to produce tissue-specific phenotypes. The molecular mechanism of how the homologous β subunits differentially alter BK channel functions and the role of different BK channel functions in various physiologic processes remain unclear. By studying channels expressed in Xenopus laevis oocytes, we show a novel disulfide-cross-linked dimer conopeptide, Vt3.1 that preferentially inhibits BK channels containing the β4 subunit, which is most abundantly expressed in brain and important for neuronal functions. Vt3.1 inhibits the currents by a maximum of 71%, shifts the G-V relation by 45 mV approximately half-saturation concentrations, and alters both open and closed time of single channel activities, indicating that the toxin alters voltage dependence of the channel. Vt3.1 contains basic residues and inhibits voltage-dependent activation by electrostatic interactions with acidic residues in the extracellular loops of the slo1 and β4 subunits. These results suggest a large interaction surface between the slo1 subunit of BK channels and the β4 subunit, providing structural insight into the molecular interactions between slo1 and β4 subunits. The results also suggest that Vt3.1 is an excellent tool for studying β subunit modulation of BK channels and for understanding the physiological roles of BK channels in neurophysiology.
Zhang, Yuan; Qin, Wenjuan; Qian, Zhiyuan; Liu, Xingjun; Wang, Hua; Gong, Shan; Sun, Yan-Gang; Snutch, Terrance P; Jiang, Xinghong; Tao, Jin
2014-10-07
Insulin-like growth factor 1 (IGF-1) is implicated in the nociceptive (pain) sensitivity of primary afferent neurons. We found that the IGF-1 receptor (IGF-1R) functionally stimulated voltage-gated T-type Ca(2+) (CaV3) channels in mouse dorsal root ganglia (DRG) neurons through a mechanism dependent on heterotrimeric G protein (heterotrimeric guanine nucleotide-binding protein) signaling. IGF-1 increased T-type channel currents in small-diameter DRG neurons in a manner dependent on IGF-1 concentration and IGF-1R but independent of phosphatidylinositol 3-kinase (PI3K). The intracellular subunit of IGF-1R coimmunoprecipitated with Gαo. Blocking G protein signaling by the intracellular application of guanosine diphosphate (GDP)-β-S or with pertussis toxin abolished the stimulatory effects of IGF-1. Antagonists of protein kinase Cα (PKCα), but not of PKCβ, abolished the IGF-1-induced T-type channel current increase. Application of IGF-1 increased membrane abundance of PKCα, and PKCα inhibition (either pharmacologically or genetically) abolished the increase in T-type channel currents stimulated by IGF-1. IGF-1 increased action potential firing in DRG neurons and increased the sensitivity of mice to both thermal and mechanical stimuli applied to the hindpaw, both of which were attenuated by intraplantar injection of a T-type channel inhibitor. Furthermore, inhibiting IGF-1R signaling or knocking down CaV3.2 or PKCα in DRG neurons abolished the increased mechanical and thermal sensitivity that mice exhibited under conditions modeling chronic hindpaw inflammation. Together, our results showed that IGF-1 enhances T-type channel currents through the activation of IGF-1R that is coupled to a G protein-dependent PKCα pathway, thereby increasing the excitability of DRG neurons and the sensitivity to pain. Copyright © 2014, American Association for the Advancement of Science.
The Role of Auxiliary Subunits for the Functional Diversity of Voltage-Gated Calcium Channels
Campiglio, Marta; Flucher, Bernhard E
2015-01-01
Voltage-gated calcium channels (VGCCs) represent the sole mechanism to convert membrane depolarization into cellular functions like secretion, contraction, or gene regulation. VGCCs consist of a pore-forming α1 subunit and several auxiliary channel subunits. These subunits come in multiple isoforms and splice-variants giving rise to a stunning molecular diversity of possible subunit combinations. It is generally believed that specific auxiliary subunits differentially regulate the channels and thereby contribute to the great functional diversity of VGCCs. If auxiliary subunits can associate and dissociate from pre-existing channel complexes, this would allow dynamic regulation of channel properties. However, most auxiliary subunits modulate current properties very similarly, and proof that any cellular calcium channel function is indeed modulated by the physiological exchange of auxiliary subunits is still lacking. In this review we summarize available information supporting a differential modulation of calcium channel functions by exchange of auxiliary subunits, as well as experimental evidence in support of alternative functions of the auxiliary subunits. At the heart of the discussion is the concept that, in their native environment, VGCCs function in the context of macromolecular signaling complexes and that the auxiliary subunits help to orchestrate the diverse protein–protein interactions found in these calcium channel signalosomes. Thus, in addition to a putative differential modulation of current properties, differential subcellular targeting properties and differential protein–protein interactions of the auxiliary subunits may explain the need for their vast molecular diversity. J. Cell. Physiol. 999: 00–00, 2015. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. J. Cell. Physiol. 230: 2019–2031, 2015. © 2015 Wiley Periodicals, Inc. PMID:25820299
Role of Orai1 and store-operated calcium entry in mouse lacrimal gland signalling and function.
Xing, Juan; Petranka, John G; Davis, Felicity M; Desai, Pooja N; Putney, James W; Bird, Gary S
2014-03-01
Lacrimal glands function to produce an aqueous layer, or tear film, that helps to nourish and protect the ocular surface. Lacrimal glands secrete proteins, electrolytes and water, and loss of gland function can result in tear film disorders such as dry eye syndrome, a widely encountered and debilitating disease in ageing populations. To combat these disorders, understanding the underlying molecular signalling processes that control lacrimal gland function will give insight into corrective therapeutic approaches. Previously, in single lacrimal cells isolated from lacrimal glands, we demonstrated that muscarinic receptor activation stimulates a phospholipase C-coupled signalling cascade involving the inositol trisphosphate-dependent mobilization of intracellular calcium and the subsequent activation of store-operated calcium entry (SOCE). Since intracellular calcium stores are finite and readily exhausted, the SOCE pathway is a critical process for sustaining and maintaining receptor-activated signalling. Recent studies have identified the Orai family proteins as critical components of the SOCE channel activity in a wide variety of cell types. In this study we characterize the role of Orai1 in the function of lacrimal glands using a mouse model in which the gene for the calcium entry channel protein, Orai1, has been deleted. Our data demonstrate that lacrimal acinar cells lacking Orai1 do not exhibit SOCE following activation of the muscarinic receptor. In comparison with wild-type and heterozygous littermates, Orai1 knockout mice showed a significant reduction in the stimulated tear production following injection of pilocarpine, a muscarinic receptor agonist. In addition, calcium-dependent, but not calcium-independent exocytotic secretion of peroxidase was eliminated in glands from knockout mice. These studies indicate a critical role for Orai1-mediated SOCE in lacrimal gland signalling and function.
Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels
Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.
2015-01-01
All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261
Repeated functional convergent effects of NaV1.7 on acid insensitivity in hibernating mammals
Liu, Zhen; Wang, Wei; Zhang, Tong-Zuo; Li, Gong-Hua; He, Kai; Huang, Jing-Fei; Jiang, Xue-Long; Murphy, Robert W.; Shi, Peng
2014-01-01
Hibernating mammals need to be insensitive to acid in order to cope with conditions of high CO2; however, the molecular basis of acid tolerance remains largely unknown. The African naked mole-rat (Heterocephalus glaber) and hibernating mammals share similar environments and physiological features. In the naked mole-rat, acid insensitivity has been shown to be conferred by the functional motif of the sodium ion channel NaV1.7. There is now an opportunity to evaluate acid insensitivity in other taxa. In this study, we tested for functional convergence of NaV1.7 in 71 species of mammals, including 22 species that hibernate. Our analyses revealed a functional convergence of amino acid sequences, which occurred at least six times independently in mammals that hibernate. Evolutionary analyses determined that the convergence results from both parallel and divergent evolution of residues in the functional motif. Our findings not only identify the functional molecules responsible for acid insensitivity in hibernating mammals, but also open new avenues to elucidate the molecular underpinnings of acid insensitivity in mammals. PMID:24352952
Repeated functional convergent effects of NaV1.7 on acid insensitivity in hibernating mammals.
Liu, Zhen; Wang, Wei; Zhang, Tong-Zuo; Li, Gong-Hua; He, Kai; Huang, Jing-Fei; Jiang, Xue-Long; Murphy, Robert W; Shi, Peng
2014-02-07
Hibernating mammals need to be insensitive to acid in order to cope with conditions of high CO2; however, the molecular basis of acid tolerance remains largely unknown. The African naked mole-rat (Heterocephalus glaber) and hibernating mammals share similar environments and physiological features. In the naked mole-rat, acid insensitivity has been shown to be conferred by the functional motif of the sodium ion channel NaV1.7. There is now an opportunity to evaluate acid insensitivity in other taxa. In this study, we tested for functional convergence of NaV1.7 in 71 species of mammals, including 22 species that hibernate. Our analyses revealed a functional convergence of amino acid sequences, which occurred at least six times independently in mammals that hibernate. Evolutionary analyses determined that the convergence results from both parallel and divergent evolution of residues in the functional motif. Our findings not only identify the functional molecules responsible for acid insensitivity in hibernating mammals, but also open new avenues to elucidate the molecular underpinnings of acid insensitivity in mammals.
Yamasaka, Shuto; Watanabe, Kentaro; Sakane, Shunya; Takeuchi, Shotaro; Sakai, Akira; Sawano, Kentarou; Nakamura, Yoshiaki
2016-01-01
The high electrical and drastically-low thermal conductivities, a vital goal for high performance thermoelectric (TE) materials, are achieved in Si-based nanoarchitecture composed of Si channel layers and epitaxial Ge nanodots (NDs) with ultrahigh areal density (~1012 cm−2). In this nanoarchitecture, the ultrasmall NDs and Si channel layers play roles of phonon scattering sources and electrical conduction channels, respectively. Electron conductivity in n-type nanoacrhitecture shows high values comparable to those of epitaxial Si films despite the existence of epitaxial NDs. This is because Ge NDs mainly scattered not electrons but phonons selectively, which could be attributed to the small conduction band offset at the epitaxially-grown Si/Ge interface and high transmission probability through stacking faults. These results demonstrate an independent control of thermal and electrical conduction for phonon-glass electron-crystal TE materials by nanostructure designing and the energetic and structural interface control. PMID:26973092
Masselin, Pascal; Bychkov, Eugène; Coq, David Le
2016-08-01
In this Letter, we present the realization of a low-loss waveguide in a chalcogenide glass by direct laser writing technique in a particular configuration that allows the independent control over the diameter of the core and the magnitude of the refractive index contrast with the cladding. The waveguide is of multicore type and composed of 19 channels arranged on a hexagonal lattice. Each channel is obtained by stacking voxels of refractive index variation obtained by static exposure to femtosecond laser pulse burst. The distance between the channels can be used to vary the diameter of the waveguide, while the duration of laser burst controls the magnitude of the effective index and the propagation loss. We demonstrate that it can be reduced down to 0.11 dB/cm.
pH and external Ca(2+) regulation of a small conductance Cl(-) channel in kidney distal tubule.
Sauvé, R; Cai, S; Garneau, L; Klein, H; Parent, L
2000-12-20
A single channel characterization of the Cl(-) channels in distal nephron was undertaken using vesicles prepared from plasma membranes of isolated rabbit distal tubules. The presence in this vesicle preparation of ClC-K type Cl(-) channels was first established by immunodetection using an antibody raised against ClC-K isoforms. A ClC-K1 based functional characterization was next performed by investigating the pH and external Ca(2+) regulation of a small conductance Cl(-) channel which we identified previously by channel incorporation experiments. Acidification of the cis (external) solution from pH 7.4 to 6.5 led to a dose-dependent inhibition of the channel open probability P(O). Similarly, changing the trans pH from 7.4 to 6.8 resulted in a 4-fold decrease of the channel P(O) with no effect on the channel conductance. Channel activity also appeared to be regulated by cis (external) Ca(2+) concentration, with a dose-dependent increase in channel activity as a function of the cis Ca(2+) concentration. It is concluded on the basis of these results that the small conductance Cl(-) channel present in rabbit distal tubules is functionally equivalent to the ClC-K1 channel in the rat. In addition, the present work constitutes the first single channel evidence for a chloride channel regulated by external Ca(2+).
[Primary and secondary arterial hypertension - update 2016].
Sanner, Bernd; Hausberg, Martin
2016-06-01
In patients with hypertension without diabetes and with an increased risk of cardiovascular complications a blood pressure of below 130 mmHg should be targeted. Hypertensive patients with an age above 80 years should be treated in the same way as younger hypertensive patients if they are otherwise healthy and functionally independent. On the other hand frail elderly patients could have an increased morbidity and mortality with intensive blood pressure control. In patients with resistant hypertension spironolactone was the most effective drug when given in addition to their baseline drugs (ACE-inhibitor/angiotensin receptor antagonist, calcium channel blocker and thiazide diuretic). © Georg Thieme Verlag KG Stuttgart · New York.
Protons stabilize the closed conformation of gain-of-function mutants of the TRPV1 channel.
Boukalova, Stepana; Teisinger, Jan; Vlachova, Viktorie
2013-03-01
The vanilloid transient receptor potential channel TRPV1 is a molecular integrator of noxious stimuli, including capsaicin, heat and protons. Despite clear similarities between the overall architecture of TRPV1 and voltage-dependent potassium (Kv) channels, the extent of conservation in the molecular logic for gating is unknown. In Kv channels, a small contact surface between S1 and the pore-helix is required for channel functioning. To explore the function of S1 in TRPV1, we used tryptophan-scanning mutagenesis and characterized the responses to capsaicin and protons. Wild-type-like currents were generated in 9 out of 17 mutants; three mutants (M445W, A452W, R455W) were non-functional. The conservative mutation R455K in the extracellular extent of S1 slowed down capsaicin-induced activation and prevented normal channel closure. This mutant was neither activated nor potentiated by protons, on the contrary, protons promoted a rapid deactivation of its currents. Similar phenotypes were found in two other gain-of-function mutants and also in the pore-helix mutant T633A, known to uncouple proton activation. We propose that the S1 domain contains a functionally important region that may be specifically involved in TRPV1 channel gating, and thus be important for the energetic coupling between S1-S4 sensor activation and gate opening. Analogous to Kv channels, the S1-pore interface might serve to stabilize conformations associated with TRPV1 channel gating. Copyright © 2012 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false The general course and method by which the Board's functions are channeled and determined. 200.2 Section 200.2 Employees' Benefits RAILROAD... the Board's functions are channeled and determined. (a) Retirement and death benefits. (1) Retirement...
Roche, John P; Westenbroek, Ruth; Sorom, Abraham J; Hille, Bertil; Mackie, Ken; Shapiro, Mark S
2002-01-01
KCNQ K+ channels are thought to underlie the M current of neurons. To probe if the KCNQ2 and KCNQ3 subtypes underlie the M current of rat superior cervical ganglia (SCG) neurons and of hippocampus, we raised specific antibodies against them and also used the cysteine-alkylating agent N-ethylmaleimide (NEM) as an additional probe of subunit composition. Tested on tsA-201 (tsA) cells transfected with cloned KCNQ1-5 subunits, our antibodies showed high affinity and selectivity for the appropriate subtype. The antibodies immunostained SCG neurons and hippocampal sections at levels similar to those for channels expressed in tsA cells, indicating that KCNQ2 and KCNQ3 are present in SCG and hippocampal neurons. Some hippocampal regions contained only KCNQ2 or KCNQ3 subunits, suggesting the presence of M currents produced by channels other than KCNQ2/3 heteromultimers. We found that NEM augmented M currents in SCG neurons and KCNQ2/3 currents in tsA cells via strong voltage-independent and modest voltage-dependent actions. Expression of individual KCNQ subunits in tsA cells revealed voltage-independent augmentation of KCNQ2, but not KCNQ1 nor KCNQ3, currents by NEM indicating that this action on SCG M currents likely localizes to KCNQ2. Much of the voltage-independent action is lost after the C242T mutation in KCNQ2. The correspondence of NEM effects on expressed KCNQ2/3 and SCG M currents, along with the antibody labelling, provide further evidence that KCNQ2 and KCNQ3 subunits strongly contribute to the M current of neurons. The site of NEM action may be important for treatment of diseases caused by under-expression of these channels. PMID:12466226
Combined effects of VX-770 and VX-809 on several functional abnormalities of F508del-CFTR channels.
Kopeikin, Z; Yuksek, Z; Yang, H-Y; Bompadre, S G
2014-09-01
The most common cystic fibrosis-associated mutation, the deletion of phenylalanine 508 (F508del), results in channels with poor membrane expression and impaired function. VX-770, a clinically approved drug for treatment of CF patients carrying the G551D mutation, and VX-809, a corrector shown in vitro to increase membrane expression of mutant channels, are currently undergoing clinical trials, but functional data at the molecular level is still lacking. The effect of VX-770 and VX-809 on the multiple functional defects of F508del-CFTR was assessed via excised inside-out patch-clamp experiments. VX-770 completely restores the low opening-rate of F508del-CFTR, with smaller open-time increase, in temperature-corrected and VX-809-treated channels. The shorter locked-open time of hydrolysis-deficient F508del-CFTR is also prolonged by VX-770. VX-809 does not improve channel function by itself as previously reported. The results from these studies can be interpreted as an equilibrium shift toward the open-channel conformation of F508del-CFTR channels. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Qin, Xin; Yue, Zhichao; Sun, Baonan; Yang, Wenzhong; Xie, Jia; Ni, Eric; Feng, Yi; Mahmood, Rafat; Zhang, Yanhui; Yue, Lixia
2013-01-01
Background and Purpose Transient receptor potential melastatin 7 (TRPM7) is a unique channel kinase which is crucial for various physiological functions. However, the mechanism by which TRPM7 is gated and modulated is not fully understood. To better understand how modulation of TRPM7 may impact biological processes, we investigated if TRPM7 can be regulated by the phospholipids sphingosine (SPH) and sphingosine-1-phosphate (S1P), two potent bioactive sphingolipids that mediate a variety of physiological functions. Moreover, we also tested the effects of the structural analogues of SPH, N,N-dimethyl-D-erythro-sphingosine (DMS), ceramides and FTY720 on TRPM7. Experimental Approach HEK293 cells stably expressing TRPM7 were used for whole-cell, single-channel and macropatch current recordings. Cardiac fibroblasts were used for native TRPM7 current recording. Key Results SPH potently inhibited TRPM7 in a concentration-dependent manner, whereas S1P and other ceramides did not produce noticeable effects. DMS also markedly inhibited TRPM7. Moreover, FTY720, an immunosuppressant and the first oral drug for treatment of multiple sclerosis, inhibited TRPM7 with a similar potency to that of SPH. In contrast, FTY720-P has no effect on TRPM7. It appears that SPH and FTY720 inhibit TRPM7 by reducing channel open probability. Furthermore, endogenous TRPM7 in cardiac fibroblasts was markedly inhibited by SPH, DMS and FTY720. Conclusions and Implications This is the first study demonstrating that SPH and FTY720 are potent inhibitors of TRPM7. Our results not only provide a new modulation mechanism of TRPM7, but also suggest that TRPM7 may serve as a direct target of SPH and FTY720, thereby mediating S1P-independent physiological/pathological functions of SPH and FTY720. Linked Article This article is commented on by Rohacs, pp. 1291–1293 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12070 PMID:23145923
Li, Xiaofan; Martinson, Alexandra S; Layden, Michael J; Diatta, Fortunay H; Sberna, Anna P; Simmons, David K; Martindale, Mark Q; Jegla, Timothy J
2015-02-15
We examined the evolutionary origins of the ether-à-go-go (EAG) family of voltage-gated K(+) channels, which have a strong influence on the excitability of neurons. The bilaterian EAG family comprises three gene subfamilies (Eag, Erg and Elk) distinguished by sequence conservation and functional properties. Searches of genome sequence indicate that EAG channels are metazoan specific, appearing first in ctenophores. However, phylogenetic analysis including two EAG family channels from the ctenophore Mnemiopsis leidyi indicates that the diversification of the Eag, Erg and Elk gene subfamilies occurred in a cnidarian/bilaterian ancestor after divergence from ctenophores. Erg channel function is highly conserved between cnidarians and mammals. Here we show that Eag and Elk channels from the sea anemone Nematostella vectensis (NvEag and NvElk) also share high functional conservation with mammalian channels. NvEag, like bilaterian Eag channels, has rapid kinetics, whereas NvElk activates at extremely hyperpolarized voltages, which is characteristic of Elk channels. Potent inhibition of voltage activation by extracellular protons is conserved between mammalian and Nematostella EAG channels. However, characteristic inhibition of voltage activation by Mg(2+) in Eag channels and Ca(2+) in Erg channels is reduced in Nematostella because of mutation of a highly conserved aspartate residue in the voltage sensor. This mutation may preserve sub-threshold activation of Nematostella Eag and Erg channels in a high divalent cation environment. mRNA in situ hybridization of EAG channels in Nematostella suggests that they are differentially expressed in distinct cell types. Most notable is the expression of NvEag in cnidocytes, a cnidarian-specific stinging cell thought to be a neuronal subtype. © 2015. Published by The Company of Biologists Ltd.
[Architecture of receptor-operated ionic channels of biological membranes].
Bregestovski, P D
2011-01-01
Ion channels of biological membranes are the key proteins, which provide bioelectric functioning of living systems. These proteins are homo- or heterooligomers assembled from several identical or different subunits. Understanding the architectural organization and functioning of ion channels has been significantly extended due to resolving the crystal structure of several types of voltage-gated and receptor-operated channels. This review summarizes the information obtained from crystal structures of potassium, nicotinic acetylcholine receptor, P2X, and other ligand-gated ion channels. Despite the differences in the function, topology, ionic selectivity, and the subunit stoichiometry, a high similarity in the principles of organization of these macromolecular complexes has been revealed.
Relative roughness controls on incipient sediment motion in steep channels
NASA Astrophysics Data System (ADS)
Prancevic, J.; Lamb, M. P.; Fuller, B. M.
2012-12-01
For over eight decades, researchers have noted an appreciable increase in the nondimensional shear stress (Shields number) at initiation of fluvial bedload transport with increasing bed slope. The precise cause of the trend, however, is obscured by the covariance of several factors with increased slope: a greater downstream component of the gravity acting on the grains and fluid, changes in bed morphology, increased grainsize relative to the channel width that may lead to grain bridging, and increased grainsize relative to flow depth (relative roughness) that may change flow hydraulics and particle buoyancy. Here, we report on ongoing laboratory experiments spanning a wide range of bed slopes (2% to 67%) designed to isolate these variables and determine the true cause of heightened critical Shields numbers on steep slopes. First, we eliminated bed morphology as a factor by using only planar beds. To investigate the effect of grain bridging, we used two different channel widths, representing width-to-grainsize ratios of 23:1 and 9:1. Finally, to separate the effects of slope from relative roughness, we compared incipient motion conditions for acrylic particles (submerged specific gravity of 0.15) to natural siliciclastic gravel (submerged specific gravity of 1.65). Different particle densities allowed us to explore incipient motion as a function of relative roughness, independent of channel slope, because lighter particles move at shallower flow depths than heavier ones of the same size. Results show that both materials exhibit a positive trend between bed slope and critical Shields number despite the existence of planar beds for all slopes. Furthermore, changing the grainsize-to-width ratio had a negligible effect on this trend. For all slopes, the critical Shields number for bedload transport was higher for the acrylic particles than for gravel, indicating that relative roughness has a strong control on incipient sediment motion independent of channel slope. These results are consistent with a simple force balance model that considers the effect of relative roughness on flow hydraulics and particle buoyancy, and neglects grain bridging and particle wedging. Together, our results indicate that heightened critical Shields number on steep planar beds is fundamentally due to the increase in relative roughness with increasing slope at the onset of sediment motion.
TMEM16 proteins: unknown structure and confusing functions.
Picollo, Alessandra; Malvezzi, Mattia; Accardi, Alessio
2015-01-16
The TMEM16 family of membrane proteins, also known as anoctamins, plays key roles in a variety of physiological functions that range from ion transport to phospholipid scrambling and to regulating other ion channels. The first two family members to be functionally characterized, TMEM16A (ANO1) and TMEM16B (ANO2), form Ca(2+)-activated Cl(-) channels and are important for transepithelial ion transport, olfaction, phototransduction, smooth muscle contraction, nociception, cell proliferation and control of neuronal excitability. The roles of other family members, such as TMEM16C (ANO3), TMEM16D (ANO4), TMEM16F (ANO6), TMEM16G (ANO7) and TMEM16J (ANO9), remain poorly understood and controversial. These homologues were reported to be phospholipid scramblases, ion channels, to have both functions or to be regulatory subunits of other channels. Mutations in TMEM16F cause Scott syndrome, a bleeding disorder caused by impaired Ca(2+)-dependent externalization of phosphatidylserine in activated platelets, suggesting that this homologue might be a scramblase. However, overexpression of TMEM16F has also been associated with a remarkable number of different ion channel types, raising the possibility that this protein might be involved in both ion and lipid transports. The recent identification of an ancestral TMEM16 homologue with intrinsic channel and scramblase activities supports this hypothesis. Thus, the TMEM16 family might have diverged in two or three different subclasses, channels, scramblases and dual-function channel/scramblases. The structural bases and functional implication of such a functional diversity within a single protein family remain to be elucidated and the links between TMEM16 functions and human physiology and pathologies need to be investigated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cataldi, Mauro; Gaudino, Annarita; Lariccia, Vincenzo; Russo, Michela; Amoroso, Salvatore; di Renzo, Gianfranco; Annunziato, Lucio
2004-04-01
The 2-phenylaminopyrimidine derivative imatinib-mesylate, a powerful protein tyrosine kinase (PTK) inhibitor that targets abl, c-kit, and the platelet-derived growth factor receptors, is rapidly gaining a relevant role in the treatment of several types of neoplasms. Because first generation PTK inhibitors affect the activity of a large number of voltage-dependent ion channels, the present study explored the possibility that imatinib-mesylate could interfere with the activity of T-type channels, a class of voltage-dependent Ca2+ channels that take part in the chain of events elicited by PTK activation. The effect of the drug on T-type channel activity was examined using the whole-cell patch-clamp technique with Ba2+ (10 mM) as the permeant ion in human embryonic kidney-293 cells, stably expressing the rat Ca(V)3.3 channels. Imatinib-mesylate concentrations, ranging from 30 to 300 microM, reversibly decreased Ca(V)3.3 current amplitude with an IC(50) value of 56.9 microM. By contrast, when imatinib-mesylate (500 microM) was intracellularly dialyzed with the pipette solution, no reduction in Ba2+ current density was observed. The 2-phenylaminopyrimidine derivative modified neither the voltage dependence of activation nor the steady-state inactivation of Ca(V)3.3 channels. The decrease in extracellular Ba2+ concentration from 10 to 2 mM and the substitution of Ca2+ for Ba2+ increased the extent of 30 microM imatinib-mesylate-induced percentage of channel blockade from 25.9 +/- 2.4 to 36.3 +/- 0.9% in 2 mM Ba2+ and 44.2 +/- 2.3% in 2 mM Ca2+. In conclusion, imatinib-mesylate blocked the cloned Ca(V)3.3 channels by a PTK-independent mechanism. Specifically, the drug did not affect the activation or the inactivation of the channel but interfered with the ion permeation process.
Wiklund, Urban; Karlsson, Marcus; Ostlund, Nils; Berglin, Lena; Lindecrantz, Kaj; Karlsson, Stefan; Sandsjö, Leif
2007-06-01
Intermittent disturbances are common in ECG signals recorded with smart clothing: this is mainly because of displacement of the electrodes over the skin. We evaluated a novel adaptive method for spatio-temporal filtering for heartbeat detection in noisy multi-channel ECGs including short signal interruptions in single channels. Using multi-channel database recordings (12-channel ECGs from 10 healthy subjects), the results showed that multi-channel spatio-temporal filtering outperformed regular independent component analysis. We also recorded seven channels of ECG using a T-shirt with textile electrodes. Ten healthy subjects performed different sequences during a 10-min recording: resting, standing, flexing breast muscles, walking and pushups. Using adaptive multi-channel filtering, the sensitivity and precision was above 97% in nine subjects. Adaptive multi-channel spatio-temporal filtering can be used to detect heartbeats in ECGs with high noise levels. One application is heartbeat detection in noisy ECG recordings obtained by integrated textile electrodes in smart clothing.
Song, Ming-Ke; Cui, Yong-Yao; Zhang, Wei-Wei; Zhu, Liang; Lu, Yang; Chen, Hong-Zhuan
2009-09-11
A large amount of in vitro studies demonstrate suppression of M-current in hippocampal neurons by Kv7/M channel blocker results in depolarization of membrane potential and release of neurotransmitters, such as acetylcholine and glutamate, suggesting that Kv7/M channel may play important roles in regulating synaptic plasticity. In the present study, we examined the in vivo effect of Kv7/M channel inhibition on the long-term potentiation (LTP) induction at basal dendrites in hippocampal CA1 area of urethane-anaesthetized rats. The Kv7/M channel was inhibited by intraperitoneal injection of XE991 (10mg/kg) and the LTP of field excitatory postsynaptic potential (fEPSP) was induced by supra-threshold high frequency stimulation (S1 HFS). A weak protocol which was just below the threshold for evoking LTP was used as sub-threshold high frequency stimulation (S2 HFS). XE991 did not significantly alter the slope of fEPSP and the magnitude of LTP induced by S1 HFS, suggesting that Kv7/M channel inhibition had little or no effect on glutamatergic transmission under basal conditions. However, XE991 could make S2 HFS evoke LTP even after the application of the muscarinic cholinergic (mACh) receptor antagonist scopolamine, suggesting that Kv7/M channel inhibition lowered the threshold for LTP induction and the effect was independent of muscarinic activation. Based on the above findings, we concluded that the facilitating effect of XE991 on LTP induction is not mediated by its ability to enhance the release of acetylcholine; therefore, Kv7/M channel blockers may provide a therapeutic benefit to cholinergic deficiency-related cognitive impairment, e.g., Alzheimer's disease.
Experimental measurement-device-independent quantum digital signatures over a metropolitan network
NASA Astrophysics Data System (ADS)
Yin, Hua-Lei; Wang, Wei-Long; Tang, Yan-Lin; Zhao, Qi; Liu, Hui; Sun, Xiang-Xiang; Zhang, Wei-Jun; Li, Hao; Puthoor, Ittoop Vergheese; You, Li-Xing; Andersson, Erika; Wang, Zhen; Liu, Yang; Jiang, Xiao; Ma, Xiongfeng; Zhang, Qiang; Curty, Marcos; Chen, Teng-Yun; Pan, Jian-Wei
2017-04-01
Quantum digital signatures (QDSs) provide a means for signing electronic communications with information-theoretic security. However, all previous demonstrations of quantum digital signatures assume trusted measurement devices. This renders them vulnerable against detector side-channel attacks, just like quantum key distribution. Here we exploit a measurement-device-independent (MDI) quantum network, over a metropolitan area, to perform a field test of a three-party MDI QDS scheme that is secure against any detector side-channel attack. In so doing, we are able to successfully sign a binary message with a security level of about 10-7. Remarkably, our work demonstrates the feasibility of MDI QDSs for practical applications.
A computer program for analyzing channel geometry
Regan, R.S.; Schaffranek, R.W.
1985-01-01
The Channel Geometry Analysis Program (CGAP) provides the capability to process, analyze, and format cross-sectional data for input to flow/transport simulation models or other computational programs. CGAP allows for a variety of cross-sectional data input formats through use of variable format specification. The program accepts data from various computer media and provides for modification of machine-stored parameter values. CGAP has been devised to provide a rapid and efficient means of computing and analyzing the physical properties of an open-channel reach defined by a sequence of cross sections. CGAP 's 16 options provide a wide range of methods by which to analyze and depict a channel reach and its individual cross-sectional properties. The primary function of the program is to compute the area, width, wetted perimeter, and hydraulic radius of cross sections at successive increments of water surface elevation (stage) from data that consist of coordinate pairs of cross-channel distances and land surface or channel bottom elevations. Longitudinal rates-of-change of cross-sectional properties are also computed, as are the mean properties of a channel reach. Output products include tabular lists of cross-sectional area, channel width, wetted perimeter, hydraulic radius, average depth, and cross-sectional symmetry computed as functions of stage; plots of cross sections; plots of cross-sectional area and (or) channel width as functions of stage; tabular lists of cross-sectional area and channel width computed as functions of stage for subdivisions of a cross section; plots of cross sections in isometric projection; and plots of cross-sectional area at a fixed stage as a function of longitudinal distance along an open-channel reach. A Command Procedure Language program and Job Control Language procedure exist to facilitate program execution on the U.S. Geological Survey Prime and Amdahl computer systems respectively. (Lantz-PTT)
Calcium channels in chicken sperm regulate motility and the acrosome reaction.
Nguyen, Thi Mong Diep; Duittoz, Anne; Praud, Christophe; Combarnous, Yves; Blesbois, Elisabeth
2016-05-01
Intracellular cytoplasmic calcium ([Ca(2+) ]i ) has an important regulatory role in gamete functions. However, the biochemical components involved in Ca(2+) transport are still unknown in birds, an animal class that has lost functional sperm-specific CatSper channels. Here, we provide evidence for the presence and expression of various Ca(2+) channels in chicken sperm, including high voltage-activated channels (L and R types), the store-operated Ca(2+) channel (SOC) component Orai1, the transient receptor potential channel (TRPC1) and inositol-1,4,5-trisphosphate receptors (IP3 R1). L- and R-type channels were mainly localized in the acrosome and the midpiece, and T-type channels were not detected in chicken sperm. Orai1 was found in all compartments, but with a weak, diffuse signal in the flagellum. TRCP1 was mainly localized in the acrosome and the midpiece, but a weak diffuse signal was also observed in the nucleus and the flagellum. IP3 R1 was mainly detected in the nucleus. The L-type channel inhibitor nifedipine, the R-type channel inhibitor SNX-482 and the SOC inhibitors MRS-1845, 2-APB and YM-58483 decreased [Ca(2+) ]i sperm motility and acrosome reaction capability, with the SOC inhibitors inhibiting these functions most efficiently. Furthermore, we showed that Ca(2+) -mediated induction of AMP-activated protein kinase (AMPK) phosphorylation was blocked by SOC inhibition. Our identification of important regulators of Ca(2+) signaling in avian sperm suggests that SOCs play a predominant role in gamete function, whereas T-type channels may not be involved. In addition, Ca(2+) entry via SOCs appears to be the most likely pathway for AMPK activation and energy-requiring sperm functions such as motility and the acrosome reaction. © 2016 Federation of European Biochemical Societies.
Tomasek, Milan; Misak, Anton; Grman, Marian; Tomaskova, Zuzana
2017-08-01
Recently, it has been discovered that isoforms of intracellular chloride channels (CLIC) are present in cardiac mitochondria. By reconstituting rat cardiac mitochondrial chloride channels into bilayer lipid membranes, we detected three equally separated subconductance states with conductance increment of 45 pS and < 2% occupancy. The observed rare events of channel decomposition into substates, accompanied by disrupted gating, provide an insight into channel quaternary structure. Our findings suggest that the observed channels work as four functionally coupled subunits with synchronized gating. We discuss the putative connection of channel activity from native mitochondria with the recombinant CLIC channels. However, conclusive evidence is needed to prove this connection. © 2017 Federation of European Biochemical Societies.
Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels
Martin, Gregory M.; Chen, Pei-Chun; Devaraneni, Prasanna; Shyng, Show-Ling
2013-01-01
ATP-sensitive potassium (KATP) channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic β-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel function results in neonatal diabetes or congenital hyperinsulinism, respectively. The β-cell KATP channel is formed by co-assembly of four Kir6.2 inwardly rectifying potassium channel subunits encoded by KCNJ11 and four sulfonylurea receptor 1 subunits encoded by ABCC8. Many mutations in ABCC8 or KCNJ11 cause loss of channel function, thus, congenital hyperinsulinism by hampering channel biogenesis and hence trafficking to the cell surface. The trafficking defects caused by a subset of these mutations can be corrected by sulfonylureas, KATP channel antagonists that have long been used to treat type 2 diabetes. More recently, carbamazepine, an anticonvulsant that is thought to target primarily voltage-gated sodium channels has been shown to correct KATP channel trafficking defects. This article reviews studies to date aimed at understanding the mechanisms by which mutations impair channel biogenesis and trafficking and the mechanisms by which pharmacological ligands overcome channel trafficking defects. Insight into channel structure-function relationships and therapeutic implications from these studies are discussed. PMID:24399968
G protein modulation of CaV2 voltage-gated calcium channels.
Currie, Kevin P M
2010-01-01
Voltage-gated Ca(2+) channels translate the electrical inputs of excitable cells into biochemical outputs by controlling influx of the ubiquitous second messenger Ca(2+) . As such the channels play pivotal roles in many cellular functions including the triggering of neurotransmitter and hormone release by CaV2.1 (P/Q-type) and CaV2.2 (N-type) channels. It is well established that G protein coupled receptors (GPCRs) orchestrate precise regulation neurotransmitter and hormone release through inhibition of CaV2 channels. Although the GPCRs recruit a number of different pathways, perhaps the most prominent, and certainly most studied among these is the so-called voltage-dependent inhibition mediated by direct binding of Gβγ to the α1 subunit of CaV2 channels. This article will review the basics of Ca(2+) -channels and G protein signaling, and the functional impact of this now classical inhibitory mechanism on channel function. It will also provide an update on more recent developments in the field, both related to functional effects and crosstalk with other signaling pathways, and advances made toward understanding the molecular interactions that underlie binding of Gβγ to the channel and the voltage-dependence that is a signature characteristic of this mechanism.
Huang, Ning; Chen, Xiong; Krishna, Rajamani; Jiang, Donglin
2015-01-01
Ordered open channels found in two-dimensional covalent organic frameworks (2D COFs) could enable them to adsorb carbon dioxide. However, the frameworks’ dense layer architecture results in low porosity that has thus far restricted their potential for carbon dioxide adsorption. Here we report a strategy for converting a conventional 2D COF into an outstanding platform for carbon dioxide capture through channel-wall functionalization. The dense layer structure enables the dense integration of functional groups on the channel walls, creating a new version of COFs with high capacity, reusability, selectivity, and separation productivity for flue gas. These results suggest that channel-wall functional engineering could be a facile and powerful strategy to develop 2D COFs for high-performance gas storage and separation. PMID:25613010
The energy and work of a ligand-gated ion channel
Auerbach, Anthony
2015-01-01
Ligand-gated ion channels are allosteric membrane proteins that isomerize between C(losed) and O(pen) conformations. A difference in affinity for ligands in the two shapes influences the C↔O ‘gating’ equilibrium constant. The energies associated with adult-type mouse neuromuscular nicotinic acetylcholine receptor-channel (AChR) gating have been measured by using single-channel electrophysiology. Without ligands the free energy, enthalpy and entropy of gating are ΔG0=+8.4, ΔH0=+10.9 and ΔS0=+2.4 kcal/mol (−100 mV, 23 °C). Many mutations throughout the protein change ΔG0, including natural ones that cause disease. Agonists and most mutations change approximately independently the ground state energy difference, so it is possible to forecast and engineer AChR responses simply by combining perturbations. The free energy of the low↔high affinity change for the neurotransmitter at each of two functionally-equivalent binding sites is ΔGBACh=−5.1 kcal/mol. ΔGBACh is set mainly by interactions of ACh with just three binding site aromatic groups. For a series of structurally-related agonists there is a correlation between the energies of low- and high-affinity binding, which implies that gating commences with the formation of the low affinity complex. Brief, intermediate states in binding and gating have been detected. Several proposals for the nature of the gating transition state energy landscape and the isomerization mechanism are discussed. PMID:23357172
The CSM and the NCO Support Channel.
1988-03-30
the NCO support channel functions . And it would be wrong to blame the CSM for conflicts between the chain of command and the NCO support channel. It is...model for all noncommissioned officers and soldiers of the unit. However, Command Sergeant Majors are conditioned to function in a dual channel of ... the premier role model for all noncommissioned officers and soldiers of the unit.
ERIC Educational Resources Information Center
Goodman, Barbara E.
2008-01-01
Ion channels are essential for the basic physiological function of excitable cells such as nerve, skeletal, cardiac, and smooth muscle cells. Mutations in genes that encode ion channels have been identified to cause various diseases and disorders known as channelopathies. An understanding of how individual ion channels are involved in the…
Cellular Mechanism of Inner Ear Genetic Disease, roles of Kv7.1 (KCNQ1) Channel
NASA Astrophysics Data System (ADS)
Mousavi Nik, Atefeh
Potassium channels are the most diverse and widely distributed membrane protein in all living organisms. They have various roles in the body such as controlling membrane potential, cell volume, and cell migration. Many studies have shown that mutation in these channels is associated with different diseases for example: Hearing Defect, Cardiac Arrhythmia, Episodic Ataxia, Seizure and Neuromyotonia. One of the most important diseases associated with K+ channel mutations is called Jervell and Lange-Nielsen syndrome (JLNS). This disease causes bilateral congenital deafness and the patients also suffer from Long QT and they usually experience syncopal episodes in their life and eventually die as a result of cardiac arrest. The gene KCNQ1 encodes the Kv7.1 voltage gated potassium channel. This channel expresses in apical membrane of marginal cell in stria vasularis of cochlea and secret K+ ion to endolymp to keep the endocochlear potential stable, which is necessary for the inner ear to function properly. Kv7.1 channel also expresses in cardiac myocytes and mutation in this gene is associated with another syndrome called Romano-Ward syndrome (RWS). Although Romano-Ward patients have mutation in KCNQ1, similar to Jervell and Lange-Nielsen patients, they only suffer from cardiac defect, and their hearing is completely normal. Several studies identified that mutations in Kv7.1 gene is associated with JLNS and RWS, but the biophysical and cellular mechanisms of these mutations are still unknown. To determine the cellular mechanisms of JLNS and RWS, and to provide mechanistic insight on the functional outputs of JLNS versus RWS mutations, we generated several mutant forms of the human Kv7.1 ( KCNQ1) clone, using site-directed mutagenesis to define their sub-cellular localization and examined their electrophysiological properties. We identified JLNS and RWS mutations at the S4-S5-linker, the pore loop (P-loop) and the C-terminus of hKv7.1 which have been found to control channel gating, permeation and modulation, respectively. The result showed that for JLNS, all P-loop and C-terminal mutations (seven mutations) yielded non-functional channels when expressed alone. Moreover, the W248F at the end of the S4 domain yielded a functional current, but it became inactivated at positive step potentials, therefore the channel essentially is non-functional. All the JLNS mutant channels are non-functional, and have impaired membrane trafficking. In contrast, the RWS mutants showed wide-ranging functional phenotypes consisting of channels with large current, channel with no measurable current when expressed alone, but significant current upon addition of the WT subunit and finally channel with no measurable current even in presence of WT subunit. The RWS mutants, however, produced dominant negative effect. These findings provide integrated cellular and molecular mechanisms of hKv7.1 functions and the consequent diseased phenotype in JLNS and RWS may come from the tissue-specific function of the channel.
Stavang, Jon Anders; Chauvigné, Francois; Kongshaug, Heidi; Cerdà, Joan; Nilsen, Frank; Finn, Roderick Nigel
2015-08-19
An emerging field in biomedical research is focusing on the roles of aquaporin water channels in parasites that cause debilitating or lethal diseases to their vertebrate hosts. The primary vectorial agents are hematophagous arthropods, including mosquitoes, flies, ticks and lice, however very little is known concerning the functional diversity of aquaporins in non-insect members of the Arthropoda. Here we conducted phylogenomic and functional analyses of aquaporins in the salmon louse, a marine ectoparasitic copepod that feeds on the skin and body fluids of salmonids, and used the primary structures of the isolated channels to uncover the genomic repertoires in Arthropoda. Genomic screening identified 7 aquaporin paralogs in the louse in contrast to 42 in its host the Atlantic salmon. Phylogenetic inference of the louse nucleotides and proteins in relation to orthologs identified in Chelicerata, Myriapoda, Crustacea and Hexapoda revealed that the arthropod aquaporin superfamily can be classified into three major grades (1) classical aquaporins including Big brain (Bib) and Prip-like (PripL) channels (2) aquaglyceroporins (Glp) and (3) unorthodox aquaporins (Aqp12-like). In Hexapoda, two additional subfamilies exist as Drip and a recently classified entomoglyceroporin (Eglp) group. Cloning and remapping the louse cDNAs to the genomic DNA revealed that they are encoded by 1-7 exons, with two of the Glps being expressed as N-terminal splice variants (Glp1_v1, -1_v2, -3_v1, -3_v2). Heterologous expression of the cRNAs in amphibian oocytes demonstrated that PripL transports water and urea, while Bib does not. Glp1_v1, -2, -3_v1 and -3_v2 each transport water, glycerol and urea, while Glp1_v2 and the Aqp12-like channels were retained intracellularly. Transcript abundance analyses revealed expression of each louse paralog at all developmental stages, except for glp1_v1, which is specific to preadult and adult males. Our data suggest that the aquaporin repertoires of extant arthropods have expanded independently in the different lineages, but can be phylogenetically classified into three major grades as opposed to four present in deuterostome animals. While the aquaporin repertoire of Atlantic salmon represents a 6-fold redundancy compared to the louse, the functional assays reveal that the permeation properties of the different crustacean grades of aquaporin are largely conserved to the vertebrate counterparts.
Parallel Evolution of Sperm Hyper-Activation Ca2+ Channels.
Cooper, Jacob C; Phadnis, Nitin
2017-07-01
Sperm hyper-activation is a dramatic change in sperm behavior where mature sperm burst into a final sprint in the race to the egg. The mechanism of sperm hyper-activation in many metazoans, including humans, consists of a jolt of Ca2+ into the sperm flagellum via CatSper ion channels. Surprisingly, all nine CatSper genes have been independently lost in several animal lineages. In Drosophila, sperm hyper-activation is performed through the cooption of the polycystic kidney disease 2 (pkd2) Ca2+ channel. The parallels between CatSpers in primates and pkd2 in Drosophila provide a unique opportunity to examine the molecular evolution of the sperm hyper-activation machinery in two independent, nonhomologous calcium channels separated by > 500 million years of divergence. Here, we use a comprehensive phylogenomic approach to investigate the selective pressures on these sperm hyper-activation channels. First, we find that the entire CatSper complex evolves rapidly under recurrent positive selection in primates. Second, we find that pkd2 has parallel patterns of adaptive evolution in Drosophila. Third, we show that this adaptive evolution of pkd2 is driven by its role in sperm hyper-activation. These patterns of selection suggest that the evolution of the sperm hyper-activation machinery is driven by sexual conflict with antagonistic ligands that modulate channel activity. Together, our results add sperm hyper-activation channels to the class of fast evolving reproductive proteins and provide insights into the mechanisms used by the sexes to manipulate sperm behavior. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Flow cytometry of human embryonic kidney cells: A light scattering approach
NASA Technical Reports Server (NTRS)
Kunze, M. E.; Goolsby, C. L.; Todd, P. W.; Morrison, D. R.; Lewis, M. L.
1985-01-01
The mammalian kidney contains cells that transport water, convert vitamin D to active forms, synthesize hormones such a renin and erythropoietin, and produce enzymes such as urokinase, a plasminogen activator. Several of these functions are maintained by human embryonic kidney cells (HEK) cultivated in vitro. Biochemical study of these functions in their individual cell types in vitro requires purified populations of cells. Light-scattering activated cell sorting (LACS) was explored as a means of achieving such purifications. It was found that HEK cells at the first 1 to 5 passages in culture were heterogeneous with respect to 2-parameter light scattering intensity distribution, in which combined measurements included forward angle scattering (2.5 to 19 deg), 90 deg scattering, and time-of-flight size measurements. Size was measured at a resolution of 0.15 microns/channel in 256 channels using pulse-height independent pulse-width measurements. Two-parameter distributions combining these measurements were obtained for HEK cell subpopulations that had been purified by microgravity electrophoresis and subsequently propagated in culture. These distributions contained at least 3 subpopulations in all purified fractions, and results of experiments with prepurified cultured HEK cells indicated that subpopulations of living cells that were high in plasminogen-activator activity also contained the highest per cent of cells with high 90 deg light scatter intensity.
CUDAICA: GPU Optimization of Infomax-ICA EEG Analysis
Raimondo, Federico; Kamienkowski, Juan E.; Sigman, Mariano; Fernandez Slezak, Diego
2012-01-01
In recent years, Independent Component Analysis (ICA) has become a standard to identify relevant dimensions of the data in neuroscience. ICA is a very reliable method to analyze data but it is, computationally, very costly. The use of ICA for online analysis of the data, used in brain computing interfaces, results are almost completely prohibitive. We show an increase with almost no cost (a rapid video card) of speed of ICA by about 25 fold. The EEG data, which is a repetition of many independent signals in multiple channels, is very suitable for processing using the vector processors included in the graphical units. We profiled the implementation of this algorithm and detected two main types of operations responsible of the processing bottleneck and taking almost 80% of computing time: vector-matrix and matrix-matrix multiplications. By replacing function calls to basic linear algebra functions to the standard CUBLAS routines provided by GPU manufacturers, it does not increase performance due to CUDA kernel launch overhead. Instead, we developed a GPU-based solution that, comparing with the original BLAS and CUBLAS versions, obtains a 25x increase of performance for the ICA calculation. PMID:22811699
Kisilevsky, Alexandra E; Mulligan, Sean J; Altier, Christophe; Iftinca, Mircea C; Varela, Diego; Tai, Chao; Chen, Lina; Hameed, Shahid; Hamid, Jawed; Macvicar, Brian A; Zamponi, Gerald W
2008-05-22
Dopamine signaling through D1 receptors in the prefrontal cortex (PFC) plays a critical role in the maintenance of higher cognitive functions, such as working memory. At the cellular level, these functions are predicated to involve alterations in neuronal calcium levels. The dendrites of PFC neurons express D1 receptors and N-type calcium channels, yet little information exists regarding their coupling. Here, we show that D1 receptors potently inhibit N-type channels in dendrites of rat PFC neurons. Using coimmunoprecipitation, we demonstrate the existence of a D1 receptor-N-type channel signaling complex in this region, and we provide evidence for a direct receptor-channel interaction. Finally, we demonstrate the importance of this complex to receptor-channel colocalization in heterologous systems and in PFC neurons. Our data indicate that the N-type calcium channel is an important physiological target of D1 receptors and reveal a mechanism for D1 receptor-mediated regulation of cognitive function in the PFC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicklaus, Dennis J.
2013-10-13
We have developed an Erlang language implementation of the Channel Access protocol. Included are low-level functions for encoding and decoding Channel Access protocol network packets as well as higher level functions for monitoring or setting EPICS process variables. This provides access to EPICS process variables for the Fermilab Acnet control system via our Erlang-based front-end architecture without having to interface to C/C++ programs and libraries. Erlang is a functional programming language originally developed for real-time telecommunications applications. Its network programming features and list management functions make it particularly well-suited for the task of managing multiple Channel Access circuits and PVmore » monitors.« less
Dynamics of Cohering and Decohering Power under Markovian Channels
NASA Astrophysics Data System (ADS)
Chen, Ming-Ming; Luo, Yu; Shao, Lian-He; Li, Yong-Ming
2017-11-01
In this paper, we investigate the cohering and decohering power of the one-qubit Markovian channels with respect to coherence measures based on the l 1-norm, the Rényi α-relative entropy and the Tsallis α-relative entropy of coherence, respectively. The amplitude damping channel, phase damping channel, depolarizing channel, and flip channels are analytically calculated. It shows that the decohering power of the amplitude damping channel on the x,y , and z basis is equal to each other. The same phenomenon can be seen for the phase damping channel and the flip channels. The cohering power for the phase damping channel and the flip channels on the x,y basis also equals to that on the z basis. However, the cohering and decohering power of the depolarizing channel is independent to the reference basises. And the cohering power of the amplitude damping channel on the x,y basis is different to that on the z basis. Supported by the National Natural Science Foundation of China under Grant Nos. 11271237, 11671244, the Higher School Doctoral Subject Foundation of Ministry of Education of China under Grant No. 20130202110001, and Fundamental Research Funds for the Central Universities under Grants Nos. 2016TS060 and 2016CBY003
Nitabach, Michael N.; Wu, Ying; Sheeba, Vasu; Lemon, William C.; Strumbos, John; Zelensky, Paul K.; White, Benjamin H.; Holmes, Todd C.
2008-01-01
Coupling of autonomous cellular oscillators is an essential aspect of circadian clock function but little is known about its circuit requirements. Functional ablation of the pigment-dispersing factor-expressing lateral ventral subset (LNV ) of Drosophila clock neurons abolishes circadian rhythms of locomotor activity. The hypothesis that LNVs synchronize oscillations in downstream clock neurons was tested by rendering the LNVs hyperexcitable via transgenic expression of a low activation threshold voltage-gated sodium channel. When the LNVs are made hyperexcitable, free-running behavioral rhythms decompose into multiple independent superimposed oscillations and the clock protein oscillations in the dorsal neuron 1 and 2 subgroups of clock neurons are phase-shifted. Thus, regulated electrical activity of the LNVs synchronize multiple oscillators in the fly circadian pacemaker circuit. PMID:16407545
Liu, Ping; Chen, Bojun; Wang, Zhao-Wen
2014-01-01
Slo2 channels are prominent K+ channels in mammalian neurons but their physiological functions are not well understood. Here we investigate physiological functions and regulation of the C. elegans homologue SLO-2 in motor neurons through electrophysiological analyses of wild-type and mutant worms. We find that SLO-2 is the primary K+ channel conducting delayed outward current in cholinergic motor neurons, and one of two K+ channels with this function in GABAergic motor neurons. Loss-of-function mutation of slo-2 increases the duration and charge transfer rate of spontaneous postsynaptic current bursts at the neuromuscular junction, which are physiological signals used by motor neurons to control muscle cells, without altering postsynaptic receptor sensitivity. SLO-2 activity in motor neurons depends on Ca2+ entry through EGL-19, an L-type voltage-gated Ca2+ channel (CaV1), but not on other proteins implicated in either Ca2+ entry or intracellular Ca2+ release. Thus, SLO-2 is functionally coupled with CaV1 and regulates neurotransmitter release. PMID:25300429
Vandewalle, Alain
2007-01-01
Cl(-) channels play important roles in the regulation of a variety of functions, including electrical excitability, cell volume regulation, transepithelial transport and acidification of cellular organelles. They are expressed in plasma membranes or reside in intracellular organelles. A large number of Cl(-) channels with different functions have been identified. Some of them are highly expressed in the kidney. They include members of the CLC Cl(-) channel family: ClC-K1 (or ClC-Ka), ClC-K2 (or ClC-Kb) and ClC-5. The identification of mutations responsible for human inherited diseases (Bartter syndrome for ClC-Kb and Dent's disease for ClC-5) and studies on knockout mice models have evidenced the physiological importance of these CLC Cl(-) channels, permitting better understanding on their functions in renal tubule epithelial cells. The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel, also expressed in renal tubule epithelial cells, is involved in the transepithelial transport of Cl(-) in the distal nephron. This short review focuses on intrarenal distribution, subcellular localization and function of the ClK(-1), ClC-K2 and ClC-5 Cl(-) channels in renal tubule epithelial cells, and the role of the CFTR Cl(-) channel in chloride fluxes elicited by vasopressin in the distal nephron.
Inhibition of cardiac inward rectifier currents by cationic amphiphilic drugs.
van der Heyden, M A G; Stary-Weinzinger, A; Sanchez-Chapula, J A
2013-09-01
Cardiac inward rectifier channels belong to three different classes of the KIR channel protein family. The KIR2.x proteins generate the classical inward rectifier current, IK1, while KIR3 and KIR6 members are responsible for the acetylcholine responsive and ATP sensitive inward rectifier currents IKAch and IKATP, respectively. Aberrant function of these channels has been correlated with severe cardiac arrhythmias, indicating their significant contribution to normal cardiac electrophysiology. A common feature of inward rectifier channels is their dependence on the lipid phosphatidyl-4,5-bisphospate (PIP2) interaction for functional activity. Cationic amphiphilic drugs (CADs) are one of the largest classes of pharmaceutical compounds. Several widely used CADs have been associated with inward rectifier current disturbances, and recent evidence points to interference of the channel-PIP2 interaction as the underlying mechanism of action. Here, we will review how six of these well known drugs, used for treatment in various different conditions, interfere in cardiac inward rectifier functioning. In contrast, KIR channel inhibition by the anionic anesthetic thiopental is achieved by a different mechanism of channel-PIP2 interference. We will discuss the latest basic science insights of functional inward rectifier current characteristics, recently derived KIR channel structures and specific PIP2-receptor interactions at the molecular level and provide insight in how these drugs interfere in the structure-function relationships.
Tunable dual-channel filter based on the photonic crystal with air defects.
Zhao, Xiaodan; Yang, Yibiao; Wen, Jianhua; Chen, Zhihui; Zhang, Mingda; Fei, Hongming; Hao, Yuying
2017-07-01
We propose a tuning filter containing two channels by inserting a defect layer (Air/Si/Air/Si/Air) into a one-dimensional photonic crystal of Si/SiO 2 , which is on the symmetry of the defect. Two transmission peaks (1528.98 and 1564.74 nm) appear in the optical communication S-band and C-band, and the transmittance of these two channels is up to 100%. In addition, this design realizes multi-channel filtering to process large dynamic range or multiple independent signals in the near-infrared band by changing the structure. The tuning range will be enlarged, and the channels can be moved in this range through the easy control of air thickness and incident angle.
Sherwood, J.M.
1986-01-01
Methods are presented for estimating peak discharges, flood volumes and hydrograph shapes of small (less than 5 sq mi) urban streams in Ohio. Examples of how to use the various regression equations and estimating techniques also are presented. Multiple-regression equations were developed for estimating peak discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. The significant independent variables affecting peak discharge are drainage area, main-channel slope, average basin-elevation index, and basin-development factor. Standard errors of regression and prediction for the peak discharge equations range from +/-37% to +/-41%. An equation also was developed to estimate the flood volume of a given peak discharge. Peak discharge, drainage area, main-channel slope, and basin-development factor were found to be the significant independent variables affecting flood volumes for given peak discharges. The standard error of regression for the volume equation is +/-52%. A technique is described for estimating the shape of a runoff hydrograph by applying a specific peak discharge and the estimated lagtime to a dimensionless hydrograph. An equation for estimating the lagtime of a basin was developed. Two variables--main-channel length divided by the square root of the main-channel slope and basin-development factor--have a significant effect on basin lagtime. The standard error of regression for the lagtime equation is +/-48%. The data base for the study was established by collecting rainfall-runoff data at 30 basins distributed throughout several metropolitan areas of Ohio. Five to eight years of data were collected at a 5-min record interval. The USGS rainfall-runoff model A634 was calibrated for each site. The calibrated models were used in conjunction with long-term rainfall records to generate a long-term streamflow record for each site. Each annual peak-discharge record was fitted to a Log-Pearson Type III frequency curve. Multiple-regression techniques were then used to analyze the peak discharge data as a function of the basin characteristics of the 30 sites. (Author 's abstract)
Wu, Long-Jun; Sweet, Tara-Beth
2010-01-01
Transient receptor potential (TRP) channels are a large family of ion channel proteins, surpassed in number in mammals only by voltage-gated potassium channels. TRP channels are activated and regulated through strikingly diverse mechanisms, making them suitable candidates for cellular sensors. They respond to environmental stimuli such as temperature, pH, osmolarity, pheromones, taste, and plant compounds, and intracellular stimuli such as Ca2+ and phosphatidylinositol signal transduction pathways. However, it is still largely unknown how TRP channels are activated in vivo. Despite the uncertainties, emerging evidence using TRP channel knockout mice indicates that these channels have broad function in physiology. Here we review the recent progress on the physiology, pharmacology and pathophysiological function of mammalian TRP channels. PMID:20716668
Mutual information of optical communication in phase-conjugating Gaussian channels
NASA Astrophysics Data System (ADS)
Schäfermeier, Clemens; Andersen, Ulrik L.
2018-03-01
In all practical communication channels, the code word consists of Gaussian states and the measurement strategy is often a Gaussian detector such as homodyning or heterodyning. We investigate the communication performance using a phase-conjugated alphabet and joint Gaussian detection in a phase-insensitive amplifying channel. We find that a communication scheme consisting of a phase-conjugating alphabet of coherent states and a joint detection strategy significantly outperforms a standard coherent-state strategy based in individual detection. Moreover, we show that the performance can be further enhanced by using entanglement and that the performance is completely independent of the gain of the phase-insensitively amplifying channel.
NASA Technical Reports Server (NTRS)
Risch, C. O.; Rosenbaum, F. J.; Gregory, R. O.
1974-01-01
The design, fabrication, and performance of elements of a low cost FM microwave satellite ground station receiver is described. It is capable of accepting 12 contiguous color television equivalent bandwidth channels in the 11.72 to 12.2 GHz band. Each channel is 40 MHz wide and incorporates a 4 MHz guard band. The modulation format is wideband FM and the channels are frequency division multiplexed. Twelve independent CATV compatible baseband outputs are provided. The overall system specifications are first discussed, then consideration is given to the receiver subsystems and the signal branching network.
Bezrukov, Sergey M; Liu, Xian; Karginov, Vladimir A; Wein, Alexander N; Leppla, Stephen H; Popoff, Michel R; Barth, Holger; Nestorovich, Ekaterina M
2012-09-19
Cationic β-cyclodextrin derivatives were recently introduced as highly effective, potentially universal blockers of three binary bacterial toxins: anthrax toxin of Bacillus anthracis, C2 toxin of Clostridium botulinum, and iota toxin of Clostridium perfringens. The binary toxins are made of two separate components: the enzymatic A component, which acts on certain intracellular targets, and the binding/translocation B component, which forms oligomeric channels in the target cell membrane. Here we studied the voltage and salt dependence of the rate constants of binding and dissociation reactions of two structurally different β-cyclodextrins (AmPrβCD and AMBnTβCD) in the PA(63), C2IIa, and Ib channels (B components of anthrax, C2, and iota toxins, respectively). With all three channels, the blocker carrying extra hydrophobic aromatic groups on the thio-alkyl linkers of positively charged amino groups, AMBnTβCD, demonstrated significantly stronger binding compared with AmPrβCD. This effect is seen as an increased residence time of the blocker in the channels, whereas the time between blockages characterizing the binding reaction on-rate stays practically unchanged. Surprisingly, the voltage sensitivity, expressed as a slope of the logarithm of the blocker residence time as a function of voltage, turned out to be practically the same for all six cases studied, suggesting structural similarities among the three channels. Also, the more-effective AMBnTβCD blocker shows weaker salt dependence of the binding and dissociation rate constants compared with AmPrβCD. By estimating the relative contributions of the applied transmembrane field, long-range Coulomb, and salt-concentration-independent, short-range forces, we found that the latter represent the leading interaction, which accounts for the high efficiency of blockage. In a search for the putative groups in the channel lumen that are responsible for the short-range forces, we performed measurements with the F427A mutant of PA(63), which lacks the functionally important phenylalanine clamp. We found that the on-rates of the blockage were virtually conserved, but the residence times and, correspondingly, the binding constants dropped by more than an order of magnitude, which also reduced the difference between the efficiencies of the two blockers. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Exotic properties of a voltage-gated proton channel from the snail Helisoma trivolvis.
Thomas, Sarah; Cherny, Vladimir V; Morgan, Deri; Artinian, Liana R; Rehder, Vincent; Smith, Susan M E; DeCoursey, Thomas E
2018-06-04
Voltage-gated proton channels, H V 1, were first reported in Helix aspersa snail neurons. These H + channels open very rapidly, two to three orders of magnitude faster than mammalian H V 1. Here we identify an H V 1 gene in the snail Helisoma trivolvis and verify protein level expression by Western blotting of H. trivolvis brain lysate. Expressed in mammalian cells, HtH V 1 currents in most respects resemble those described in other snails, including rapid activation, 476 times faster than hH V 1 (human) at pH o 7, between 50 and 90 mV. In contrast to most H V 1, activation of HtH V 1 is exponential, suggesting first-order kinetics. However, the large gating charge of ∼5.5 e 0 suggests that HtH V 1 functions as a dimer, evidently with highly cooperative gating. HtH V 1 opening is exquisitely sensitive to pH o , whereas closing is nearly independent of pH o Zn 2+ and Cd 2+ inhibit HtH V 1 currents in the micromolar range, slowing activation, shifting the proton conductance-voltage ( g H - V ) relationship to more positive potentials, and lowering the maximum conductance. This is consistent with HtH V 1 possessing three of the four amino acids that coordinate Zn 2+ in mammalian H V 1. All known H V 1 exhibit ΔpH-dependent gating that results in a 40-mV shift of the g H - V relationship for a unit change in either pH o or pH i This property is crucial for all the functions of H V 1 in many species and numerous human cells. The HtH V 1 channel exhibits normal or supernormal pH o dependence, but weak pH i dependence. Under favorable conditions, this might result in the HtH V 1 channel conducting inward currents and perhaps mediating a proton action potential. The anomalous ΔpH-dependent gating of HtH V 1 channels suggests a structural basis for this important property, which is further explored in this issue (Cherny et al. 2018. J. Gen. Physiol. https://doi.org/10.1085/jgp.201711968). © 2018 Thomas et al.
Dorwart, Michael R; Wray, Robin; Brautigam, Chad A; Jiang, Youxing; Blount, Paul
2010-12-07
While the bacterial mechanosensitive channel of large conductance (MscL) is the best studied biological mechanosensor and serves as a paradigm for how a protein can sense and respond to membrane tension, the simple matter of its oligomeric state has led to debate, with models ranging from tetramers to hexamers. Indeed, two different oligomeric states of the bacterial mechanosensitive channel MscL have been resolved by X-ray crystallography: The M. tuberculosis channel (MtMscL) is a pentamer, while the S. aureus protein (SaMscL) forms a tetramer. Because several studies suggest that, like MtMscL, the E. coli MscL (EcoMscL) is a pentamer, we re-investigated the oligomeric state of SaMscL. To determine the structural organization of MscL in the cell membrane we developed a disulfide-trapping approach. Surprisingly, we found that virtually all SaMscL channels in vivo are pentameric, indicating this as the physiologically relevant and functional oligomeric state. Complementing our in vivo results, we purified SaMscL and assessed its oligomeric state using three independent approaches (sedimentation equilibrium centrifugation, crosslinking, and light scattering) and established that SaMscL is a pentamer when solubilized in Triton X-100 and C(8)E(5) detergents. However, performing similar experiments on SaMscL solubilized in LDAO, the detergent used in the crystallographic study, confirmed the tetrameric oligomerization resolved by X-ray crystallography. We further demonstrate that this stoichiometric shift is reversible by conventional detergent exchange experiments. Our results firmly establish the pentameric organization of SaMscL in vivo. Furthermore they demonstrate that detergents can alter the subunit stoichiometry of membrane protein complexes in vitro; thus, in vivo assays are necessary to firmly establish a membrane protein's true functionally relevant oligomeric state.
Su, J Y; Chang, Y I
1993-05-01
Ryanodine causes depression of the caffeine-induced tension transient (ryanodine depression) in skinned muscle fibers, because it blocks the sarcoplasmic reticulum (SR) Ca(2+)-release channels [Su, J. Y. (1988) Pflügers Arch 411:132-136, 371-377; (1992) Pflügers Arch 421:1-6]. This study was performed to examine the sensitivity of SR Ca(2+)-release channels to ryanodine in fetal compared to adult myocardium and to investigate the influence of Ca2+, caffeine, and Mg2+ on ryanodine depression in skinned fibers. Ryanodine (0.3 nM-1 microM) caused a dose-dependent depression in skinned myocardial fibers of the rat, and the fetal fibers (IC50 approximately 74 nM) were 26-fold less sensitive than those of the adult (IC50 approximately 2.9 nM). The depression induced by 0.1 microM or 1 microM ryanodine was a function of [caffeine], or [Ca2+] (pCa < 6.0), which was potentiated by caffeine, and an inverse function of [Mg2+]. At pCa > 8.0 plus 25 mM caffeine, a 20% ryanodine depression was observed in both the fetal and adult fibers, indicating independence from Ca2+. Ryanodine depression in skinned fibers of the fetus was less affected than that seen in the adult by pCai, [caffeine]i, or 25 mM caffeine plus pCai or plus pMgi (IC50 approximately pCa 4.5 versus 5.1; caffeine 12.7 mM versus 2 mM; pCa 6.7 versus 7.3; and pMg 3.9 versus 3.3 respectively). The results show that the SR Ca(2+)-release channel in both fetal and adult myocardium is modulated by Ca2+, caffeine, and Mg2+.(ABSTRACT TRUNCATED AT 250 WORDS)
Micro- and nanofabrication methods for ion channel reconstitution in bilayer lipid membranes
NASA Astrophysics Data System (ADS)
Tadaki, Daisuke; Yamaura, Daichi; Arata, Kohei; Ohori, Takeshi; Ma, Teng; Yamamoto, Hideaki; Niwano, Michio; Hirano-Iwata, Ayumi
2018-03-01
The self-assembled bilayer lipid membrane (BLM) forms the basic structure of the cell membrane and serves as a major barrier against ion movement. Ion channel proteins function as gated pores that permit ion permeation across the BLM. The reconstitution of ion channel proteins in artificially formed BLMs represents a well-defined system for investigating channel functions and screening drug effects on ion channels. In this review, we will discuss our recent microfabrication approaches to the formation of stable BLMs containing ion channel proteins as a potential platform for next-generation drug screening systems. BLMs formed in a microaperture having a tapered edge exhibited highly stable properties, such as a lifetime of ∼65 h and tolerance to solution changes even after the incorporation of the human ether-a-go-go-related gene (hERG) channel. We also explore a new method of efficiently incorporating human ion channels into BLMs by centrifugation. Our approaches to the formation of stable BLMs and efficient channel incorporation markedly improve the experimental efficiency of BLM reconstitution systems, leading to the realization of a BLM-based high-throughput platform for functional assays of various ion channels.
NASA Astrophysics Data System (ADS)
Bennett, P. F. D.; Underhill, P. R.; Morelli, J.; Krause, T. W.
2018-04-01
Fuel channels in CANDU® (CANada Deuterium Uranium) nuclear reactors consist of two non-concentric tubes; an inner pressure tube (PT) and a larger diameter calandria tube (CT). Up to 400 horizontally mounted fuel channels are contained within a calandria vessel, which also holds the heavy water moderator. Certain fuel channels pass perpendicularly over horizontally oriented tubes (nozzles) that are part of the reactor's liquid injection shutdown system (LISS). Due to sag, these fuel channels are at risk of coming into contact with the LISS nozzles. In the event of contact between the LISS nozzle and CT, flow-induced vibrations from within the moderator could lead to fretting and deformation of the CT. LISS nozzle proximity to CTs is currently measured optically from within the calandria vessel, but from outside the fuel channels. Measurement by an independent means would provide confidence in optical results and supplement cases where optical observations are not possible. Separation of PT and CT, known as gap, is monitored from within the PT using a transmit-receive eddy current probe. Investigation of the eddy current based gap probe as a tool to also measure proximity of LISS nozzles was carried out experimentally in this work. Eddy current response as a function of LISS-PT proximity was recorded. When PT-CT gap, PT wall thickness, PT resistivity and probe lift-off variations were not present this dependence could be used to determine the LISS-PT proximity. This method has the potential to provide LISS-CT proximity using existing gap measurement data. Obtaining LISS nozzle proximity at multiple inspection intervals could be used to provide an estimate of the time to LISS-CT contact, and thereby provide a means of optimizing maintenance schedules.
Adaptive software-defined coded modulation for ultra-high-speed optical transport
NASA Astrophysics Data System (ADS)
Djordjevic, Ivan B.; Zhang, Yequn
2013-10-01
In optically-routed networks, different wavelength channels carrying the traffic to different destinations can have quite different optical signal-to-noise ratios (OSNRs) and signal is differently impacted by various channel impairments. Regardless of the data destination, an optical transport system (OTS) must provide the target bit-error rate (BER) performance. To provide target BER regardless of the data destination we adjust the forward error correction (FEC) strength. Depending on the information obtained from the monitoring channels, we select the appropriate code rate matching to the OSNR range that current channel OSNR falls into. To avoid frame synchronization issues, we keep the codeword length fixed independent of the FEC code being employed. The common denominator is the employment of quasi-cyclic (QC-) LDPC codes in FEC. For high-speed implementation, low-complexity LDPC decoding algorithms are needed, and some of them will be described in this invited paper. Instead of conventional QAM based modulation schemes, we employ the signal constellations obtained by optimum signal constellation design (OSCD) algorithm. To improve the spectral efficiency, we perform the simultaneous rate adaptation and signal constellation size selection so that the product of number of bits per symbol × code rate is closest to the channel capacity. Further, we describe the advantages of using 4D signaling instead of polarization-division multiplexed (PDM) QAM, by using the 4D MAP detection, combined with LDPC coding, in a turbo equalization fashion. Finally, to solve the problems related to the limited bandwidth of information infrastructure, high energy consumption, and heterogeneity of optical networks, we describe an adaptive energy-efficient hybrid coded-modulation scheme, which in addition to amplitude, phase, and polarization state employs the spatial modes as additional basis functions for multidimensional coded-modulation.
Ford, Neil C.; Baccei, Mark L.
2016-01-01
Spinal lamina I projection neurons serve as a major conduit by which noxious stimuli detected in the periphery are transmitted to nociceptive circuits in the brain, including the parabrachial nucleus (PB) and the periaqueductal gray (PAG). While neonatal spino-PB neurons are more than twice as likely to exhibit spontaneous activity compared to spino-PAG neurons, the underlying mechanisms remain unclear since nothing is known about the voltage-independent (i.e. ‘leak’) ion channels expressed by these distinct populations during early life. To begin identifying these key leak conductances, the present study investigated the role of classical inward-rectifying K+ (Kir2) channels in the regulation of intrinsic excitability in neonatal rat spino-PB and spino-PAG neurons. The data demonstrate that a reduction in Kir2-mediated conductance by external BaCl2 significantly enhanced intrinsic membrane excitability in both groups. Similar results were observed in spino-PB neurons following Kir2 channel block with the selective antagonist ML133. In addition, voltage-clamp experiments showed that spino-PB and spino-PAG neurons express similar amounts of Kir2 current during the early postnatal period, suggesting that the differences in the prevalence of spontaneous activity between the two populations are not explained by differential expression of Kir2 channels. Overall, the results indicate that Kir2-mediated conductance tonically dampens the firing of multiple subpopulations of lamina I projection neurons during early life. Therefore, Kir2 channels are positioned to tightly shape the output of the immature spinal nociceptive circuit and thus regulate the ascending flow of nociceptive information to the developing brain, which has important functional implications for pediatric pain. PMID:27751963
Nakahira, Kei; Oshita, Kensuke; Itoh, Masayuki; Takano, Makoto; Sakaguchi, Yoshiro; Ishihara, Keiko
2016-04-01
Inward rectifier K channels of the Kir2.x subfamily are widely expressed in neuronal tissues, controlling neuronal excitability. Previous studies reported that local anesthetics (LAs) do not affect Kir2 channels. However, the effects have not been studied at large concentrations used in regional anesthesia. This study used the patch-clamp technique to examine the effects of bupivacaine and lidocaine on Kir2.1, Kir2.2, and Kir2.3 channels expressed in human embryonic kidney 293 cells. When applied extracellularly in whole-cell recordings, both LAs inhibited Kir2.x currents in a voltage-independent manner. Inhibition with bupivacaine was slow and irreversible, whereas that with lidocaine was fast and reversible. Kir2.3 displayed a greater sensitivity to bupivacaine than Kir2.1 and Kir2.2 (50% inhibitory concentrations at approximately 5 minutes, 0.6 vs 8-10 mM), whereas their sensitivities to lidocaine were similar (50% inhibitory concentrations, 1.5-2.7 mM). Increases in the charged/neutral ratio of the LAs at an acidic extracellular pH attenuated their inhibitory effects, and a permanently charged lidocaine derivative QX-314 exhibited no effects when applied extracellularly. Inside-out experiments demonstrated that inhibition of Kir2.1 with cytoplasmic lidocaine and QX-314 was rapid and reversible, whereas that induced by bupivacaine was slow and irreversible. Furthermore, dose-inhibition relations for the charged form of bupivacaine and lidocaine obtained at different cytoplasmic pHs could be approximated by a single relation for each LA. The results indicate that both LAs at clinical concentrations equilibrated rapidly with the intracellular milieu, differentially inhibiting Kir2.x channel function from the cytoplasmic side.
G protein-gated K+ channel ablation in forebrain pyramidal neurons selectively impairs fear learning
Victoria, Nicole C.; de Velasco, Ezequiel Marron Fernandez; Ostrovskaya, Olga; Metzger, Stefania; Xia, Zhilian; Kotecki, Lydia; Benneyworth, Michael A.; Zink, Anastasia N.; Martemyanov, Kirill A.; Wickman, Kevin
2015-01-01
Background Cognitive dysfunction occurs in many debilitating conditions including Alzheimer’s disease, Down syndrome, schizophrenia, and mood disorders. The dorsal hippocampus is a critical locus of cognitive processes linked to spatial and contextual learning. G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels, which mediate the postsynaptic inhibitory effect of many neurotransmitters, have been implicated in hippocampal-dependent cognition. Available evidence, however, derives primarily from constitutive gain-of-function models that lack cellular specificity. Methods We used constitutive and neuron-specific gene ablation models targeting an integral subunit of neuronal GIRK channels (GIRK2) to probe the impact of GIRK channels on associative learning and memory. Results Constitutive Girk2−/− mice exhibited a striking deficit in hippocampal-dependent (contextual) and hippocampal-independent (cue) fear conditioning. Mice lacking GIRK2 in GABA neurons (GAD-Cre:Girk2flox/flox mice) exhibited a clear deficit in GIRK-dependent signaling in dorsal hippocampal GABA neurons, but no evident behavioral phenotype. Mice lacking GIRK2 in forebrain pyramidal neurons (CaMKII-Cre(+):Girk2flox/flox mice) exhibited diminished GIRK-dependent signaling in dorsal, but not ventral, hippocampal pyramidal neurons. CaMKII-Cre(+):Girk2flox/flox mice also displayed a selective impairment in contextual fear conditioning, as both cue-fear and spatial learning were intact in these mice. Finally, loss of GIRK2 in forebrain pyramidal neurons correlated with enhanced long-term depression and blunted depotentiation of long-term potentiation at the Schaffer collateral/CA1 synapse in the dorsal hippocampus. Conclusions Our data suggest that GIRK channels in dorsal hippocampal pyramidal neurons are necessary for normal learning involving aversive stimuli, and support the contention that dysregulation of GIRK-dependent signaling may underlie cognitive dysfunction in some disorders. PMID:26612516
CFTR fails to inhibit the epithelial sodium channel ENaC expressed in Xenopus laevis oocytes
Nagel, G; Barbry, P; Chabot, H; Brochiero, E; Hartung, K; Grygorczyk, R
2005-01-01
The cystic fibrosis transmembrane conductance regulator (CFTR) plays a crucial role in regulating fluid secretion by the airways, intestines, sweat glands and other epithelial tissues. It is well established that the CFTR is a cAMP-activated, nucleotide-dependent anion channel, but additional functions are often attributed to it, including regulation of the epithelial sodium channel (ENaC). The absence of CFTR-dependent ENaC inhibition and the resulting sodium hyperabsorption were postulated to be a major electrolyte transport abnormality in cystic fibrosis (CF)-affected epithelia. Several ex vivo studies, including those that used the Xenopus oocyte expression system, have reported ENaC inhibition by activated CFTR, but contradictory results have also been obtained. Because CFTR–ENaC interactions have important implications in the pathogenesis of CF, the present investigation was undertaken by our three independent laboratories to resolve whether CFTR regulates ENaC in oocytes and to clarify potential sources of previously reported dissimilar observations. Using different experimental protocols and a wide range of channel expression levels, we found no evidence that activated CFTR regulates ENaC when oocyte membrane potential was carefully clamped. We determined that an apparent CFTR-dependent ENaC inhibition could be observed when resistance in series with the oocyte membrane was not low enough or the feedback voltage gain was not high enough. We suggest that the inhibitory effect of CFTR on ENaC reported in some earlier oocyte studies could be attributed to problems arising from high levels of channel expression and suboptimal recording conditions, that is, large series resistance and/or insufficient feedback voltage gain. PMID:15746174
Tanaka, Naoto; Delemotte, Lucie; Klein, Michael L.; Komáromy, András M.; Tanaka, Jacqueline C.
2014-01-01
Cone cyclic nucleotide-gated channels are tetramers formed by CNGA3 and CNGB3 subunits; CNGA3 subunits function as homotetrameric channels but CNGB3 exhibits channel function only when co-expressed with CNGA3. An aspartatic acid (Asp) to asparagine (Asn) missense mutation at position 262 in the canine CNGB3 (D262N) subunit results in loss of cone function (daylight blindness), suggesting an important role for this aspartic acid residue in channel biogenesis and/or function. Asp 262 is located in a conserved region of the second transmembrane segment containing three Asp residues designated the Tri-Asp motif. This motif is conserved in all CNG channels. Here we examine mutations in canine CNGA3 homomeric channels using a combination of experimental and computational approaches. Mutations of these conserved Asp residues result in the absence of nucleotide-activated currents in heterologous expression. A fluorescent tag on CNGA3 shows mislocalization of mutant channels. Co-expressing CNGB3 Tri-Asp mutants with wild type CNGA3 results in some functional channels, however, their electrophysiological characterization matches the properties of homomeric CNGA3 channels. This failure to record heteromeric currents suggests that Asp/Asn mutations affect heteromeric subunit assembly. A homology model of S1–S6 of the CNGA3 channel was generated and relaxed in a membrane using molecular dynamics simulations. The model predicts that the Tri-Asp motif is involved in non-specific salt bridge pairings with positive residues of S3/S4. We propose that the D262N mutation in dogs with CNGB3-day blindness results in the loss of these inter-helical interactions altering the electrostatic equilibrium within in the S1–S4 bundle. Because residues analogous to Tri-Asp in the voltage-gated Shaker potassium channel family were implicated in monomer folding, we hypothesize that destabilizing these electrostatic interactions impairs the monomer folding state in D262N mutant CNG channels during biogenesis. PMID:24586388
Man-induced channel adjustment in Tennessee streams
Robbins, C.H.; Simon, Andrew
1983-01-01
Channel modifications in Tennessee, particularly in the western part, have led to large-scale instabilities in the channelized rivers and may have contributed to several bridge failures. These modifications, together with land-use practices, led to downcutting, headward erosion, downstream aggradation, accelerated scour, and bank instabilities. Changes in gradient by channel straightening caused more severe channel response than did dredging or clearing. Large-scale changes continue to occur in all the channelized rivers: the Obion River, its forks, and the South Fork Forked Deer River. However, the non-channelized Hatchie River in west Tennessee not only withstood the natural stresses imposed by the wet years of 1973 to 1975 but continues to exhibit characteristics of stability. Water-surface slope, the primary dependent variable, proved to be a sensitive and descriptive parameter useful in determining channel adjustment. Adjustments to man-induced increases in channel-slope are described by inverse exponential functions of the basic form S=ae(-b(t)); where ' S ' is some function describing channel-slope, ' t ' is the number of years since completion of channel work, and ' a ' and ' b ' are coefficients. Response times for the attainment of ' equilibrium ' channel slopes are a function of the magnitude and extent of the imposed modifications. The adjusted profile gradients attained by the streams following channelization are similar to the predisturbed profile gradients, where no alteration to channel length was made. Where the channels were straightened by constructing cut-offs, thus shortening channel length, then slope adjustments (reduction) proceed past the predisturbed profile gradients, to new profiles with lower gradients. (USGS)