Sample records for chaotic expression dynamics

  1. On the robustness of complex heterogeneous gene expression networks.

    PubMed

    Gómez-Gardeñes, Jesús; Moreno, Yamir; Floría, Luis M

    2005-04-01

    We analyze a continuous gene expression model on the underlying topology of a complex heterogeneous network. Numerical simulations aimed at studying the chaotic and periodic dynamics of the model are performed. The results clearly indicate that there is a region in which the dynamical and structural complexity of the system avoid chaotic attractors. However, contrary to what has been reported for Random Boolean Networks, the chaotic phase cannot be completely suppressed, which has important bearings on network robustness and gene expression modeling.

  2. Dynamics of coherent states in regular and chaotic regimes of the non-integrable Dicke model

    NASA Astrophysics Data System (ADS)

    Lerma-Hernández, S.; Chávez-Carlos, J.; Bastarrachea-Magnani, M. A.; López-del-Carpio, B.; Hirsch, J. G.

    2018-04-01

    The quantum dynamics of initial coherent states is studied in the Dicke model and correlated with the dynamics, regular or chaotic, of their classical limit. Analytical expressions for the survival probability, i.e. the probability of finding the system in its initial state at time t, are provided in the regular regions of the model. The results for regular regimes are compared with those of the chaotic ones. It is found that initial coherent states in regular regions have a much longer equilibration time than those located in chaotic regions. The properties of the distributions for the initial coherent states in the Hamiltonian eigenbasis are also studied. It is found that for regular states the components with no negligible contribution are organized in sequences of energy levels distributed according to Gaussian functions. In the case of chaotic coherent states, the energy components do not have a simple structure and the number of participating energy levels is larger than in the regular cases.

  3. Complex dynamics of a new 3D Lorenz-type autonomous chaotic system

    NASA Astrophysics Data System (ADS)

    Zhang, Fuchen; Liao, Xiaofeng; Zhang, Guangyun; Mu, Chunlai

    2017-12-01

    This paper investigates a new three-dimensional continuous quadratic autonomous chaotic system which is not topologically equivalent to the Lorenz system. The dynamical behaviours of this system are further investigated in detail, including the ultimate boundedness, the invariant sets and the global attraction domain according to Lyapunov stability theory of dynamical systems. The innovation of the paper lies in the fact that this paper not only proves this chaotic system is globally bounded for the parameters of this system but also gives a family of mathematical expressions of global exponential attractive sets with respect to the parameters of this system. To validate the ultimate bound estimation, numerical simulations are also investigated. Numerical simulations verify the effectiveness and feasibility of the theoretical scheme.

  4. A new approach of optimal control for a class of continuous-time chaotic systems by an online ADP algorithm

    NASA Astrophysics Data System (ADS)

    Song, Rui-Zhuo; Xiao, Wen-Dong; Wei, Qing-Lai

    2014-05-01

    We develop an online adaptive dynamic programming (ADP) based optimal control scheme for continuous-time chaotic systems. The idea is to use the ADP algorithm to obtain the optimal control input that makes the performance index function reach an optimum. The expression of the performance index function for the chaotic system is first presented. The online ADP algorithm is presented to achieve optimal control. In the ADP structure, neural networks are used to construct a critic network and an action network, which can obtain an approximate performance index function and the control input, respectively. It is proven that the critic parameter error dynamics and the closed-loop chaotic systems are uniformly ultimately bounded exponentially. Our simulation results illustrate the performance of the established optimal control method.

  5. Random Matrix Theory Approach to Chaotic Coherent Perfect Absorbers

    NASA Astrophysics Data System (ADS)

    Li, Huanan; Suwunnarat, Suwun; Fleischmann, Ragnar; Schanz, Holger; Kottos, Tsampikos

    2017-01-01

    We employ random matrix theory in order to investigate coherent perfect absorption (CPA) in lossy systems with complex internal dynamics. The loss strength γCPA and energy ECPA, for which a CPA occurs, are expressed in terms of the eigenmodes of the isolated cavity—thus carrying over the information about the chaotic nature of the target—and their coupling to a finite number of scattering channels. Our results are tested against numerical calculations using complex networks of resonators and chaotic graphs as CPA cavities.

  6. Deception Detection in Multicultural Coalitions: Foundations for a Cognitive Model

    DTIC Science & Technology

    2011-06-01

    and spontaneous vs. deliberate and contrived facial expression of emotions , symmetry, leakage through microexpressions, hand postures, dynamic...sequences of visually detectable cues , such as facial muscle-group coordination and correlations expressed as changes in facial expressions and face...concert, whereas facial expressions of deceivers emphasize a few cues that arise more randomly and chaotically [15]. A smile without the use of

  7. Dynamics of internal models in game players

    NASA Astrophysics Data System (ADS)

    Taiji, Makoto; Ikegami, Takashi

    1999-10-01

    A new approach for the study of social games and communications is proposed. Games are simulated between cognitive players who build the opponent’s internal model and decide their next strategy from predictions based on the model. In this paper, internal models are constructed by the recurrent neural network (RNN), and the iterated prisoner’s dilemma game is performed. The RNN allows us to express the internal model in a geometrical shape. The complicated transients of actions are observed before the stable mutually defecting equilibrium is reached. During the transients, the model shape also becomes complicated and often experiences chaotic changes. These new chaotic dynamics of internal models reflect the dynamical and high-dimensional rugged landscape of the internal model space.

  8. Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators.

    PubMed

    Xu, Kesheng; Maidana, Jean Paul; Castro, Samy; Orio, Patricio

    2018-05-30

    Chaotic dynamics has been shown in the dynamics of neurons and neural networks, in experimental data and numerical simulations. Theoretical studies have proposed an underlying role of chaos in neural systems. Nevertheless, whether chaotic neural oscillators make a significant contribution to network behaviour and whether the dynamical richness of neural networks is sensitive to the dynamics of isolated neurons, still remain open questions. We investigated synchronization transitions in heterogeneous neural networks of neurons connected by electrical coupling in a small world topology. The nodes in our model are oscillatory neurons that - when isolated - can exhibit either chaotic or non-chaotic behaviour, depending on conductance parameters. We found that the heterogeneity of firing rates and firing patterns make a greater contribution than chaos to the steepness of the synchronization transition curve. We also show that chaotic dynamics of the isolated neurons do not always make a visible difference in the transition to full synchrony. Moreover, macroscopic chaos is observed regardless of the dynamics nature of the neurons. However, performing a Functional Connectivity Dynamics analysis, we show that chaotic nodes can promote what is known as multi-stable behaviour, where the network dynamically switches between a number of different semi-synchronized, metastable states.

  9. Chaotic interactions of self-replicating RNA.

    PubMed

    Forst, C V

    1996-03-01

    A general system of high-order differential equations describing complex dynamics of replicating biomolecules is given. Symmetry relations and coordinate transformations of general replication systems leading to topologically equivalent systems are derived. Three chaotic attractors observed in Lotka-Volterra equations of dimension n = 3 are shown to represent three cross-sections of one and the same chaotic regime. Also a fractal torus in a generalized three-dimensional Lotka-Volterra Model has been linked to one of the chaotic attractors. The strange attractors are studied in the equivalent four-dimensional catalytic replicator network. The fractal torus has been examined in adapted Lotka-Volterra equations. Analytic expressions are derived for the Lyapunov exponents of the flow in the replicator system. Lyapunov spectra for different pathways into chaos has been calculated. In the generalized Lotka-Volterra system a second inner rest point--coexisting with (quasi)-periodic orbits--can be observed; with an abundance of different bifurcations. Pathways from chaotic tori, via quasi-periodic tori, via limit cycles, via multi-periodic orbits--emerging out of periodic doubling bifurcations--to "simple" chaotic attractors can be found.

  10. Information's role in the estimation of chaotic signals

    NASA Astrophysics Data System (ADS)

    Drake, Daniel Fred

    1998-11-01

    Researchers have proposed several methods designed to recover chaotic signals from noise-corrupted observations. While the methods vary, their qualitative performance does not: in low levels of noise all methods effectively recover the underlying signal; in high levels of noise no method can recover the underlying signal to any meaningful degree of accuracy. Of the methods proposed to date, all represent sub-optimal estimators. So: Is the inability to recover the signal in high noise levels simply a consequence of estimator sub-optimality? Or is estimator failure actually a manifestation of some intrinsic property of chaos itself? These questions are answered by deriving an optimal estimator for a class of chaotic systems and noting that it, too, fails in high levels of noise. An exact, closed- form expression for the estimator is obtained for a class of chaotic systems whose signals are solutions to a set of linear (but noncausal) difference equations. The existence of this linear description circumvents the difficulties normally encountered when manipulating the nonlinear (but causal) expressions that govern. chaotic behavior. The reason why even the optimal estimator fails to recover underlying chaotic signals in high levels of noise has its roots in information theory. At such noise levels, the mutual information linking the corrupted observations to the underlying signal is essentially nil, reducing the estimator to a simple guessing strategy based solely on a priori statistics. Entropy, long the common bond between information theory and dynamical systems, is actually one aspect of a far more complete characterization of information sources: the rate distortion function. Determining the rate distortion function associated with the class of chaotic systems considered in this work provides bounds on estimator performance in high levels of noise. Finally, a slight modification of the linear description leads to a method of synthesizing on limited precision platforms ``pseudo-chaotic'' sequences that mimic true chaotic behavior to any finite degree of precision and duration. The use of such a technique in spread-spectrum communications is considered.

  11. Detection of chaotic dynamics in human gait signals from mobile devices

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen; Deng, Yunbin

    2017-05-01

    The ubiquity of mobile devices offers the opportunity to exploit device-generated signal data for biometric identification, health monitoring, and activity recognition. In particular, mobile devices contain an Inertial Measurement Unit (IMU) that produces acceleration and rotational rate information from the IMU accelerometers and gyros. These signals reflect motion properties of the human carrier. It is well-known that the complexity of bio-dynamical systems gives rise to chaotic dynamics. Knowledge of chaotic properties of these systems has shown utility, for example, in detecting abnormal medical conditions and neurological disorders. Chaotic dynamics has been found, in the lab, in bio-dynamical systems data such as electrocardiogram (heart), electroencephalogram (brain), and gait data. In this paper, we investigate the following question: can we detect chaotic dynamics in human gait as measured by IMU acceleration and gyro data from mobile phones? To detect chaotic dynamics, we perform recurrence analysis on real gyro and accelerometer signal data obtained from mobile devices. We apply the delay coordinate embedding approach from Takens' theorem to reconstruct the phase space trajectory of the multi-dimensional gait dynamical system. We use mutual information properties of the signal to estimate the appropriate delay value, and the false nearest neighbor approach to determine the phase space embedding dimension. We use a correlation dimension-based approach together with estimation of the largest Lyapunov exponent to make the chaotic dynamics detection decision. We investigate the ability to detect chaotic dynamics for the different one-dimensional IMU signals, across human subject and walking modes, and as a function of different phone locations on the human carrier.

  12. Nonlinear optimal control for the synchronization of chaotic and hyperchaotic finance systems

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Loia, V.; Ademi, S.; Ghosh, T.

    2017-11-01

    It is possible to make specific finance systems get synchronized to other finance systems exhibiting chaotic and hyperchaotic dynamics, by applying nonlinear optimal (H-infinity) control. This signifies that chaotic behavior can be generated in finance systems by exerting a suitable control input. Actually, a lead financial system is considered which exhibits inherently chaotic dynamics. Moreover, a follower finance system is introduced having parameters in its model that inherently prohibit the appearance of chaotic dynamics. Through the application of a suitable nonlinear optimal (H-infinity) control input it is proven that the follower finance system can replicate the chaotic dynamics of the lead finance system. By applying Lyapunov analysis it is proven that asymptotically the follower finance system gets synchronized with the lead system and that the tracking error between the state variables of the two systems vanishes.

  13. Chaos in driven Alfvén systems: unstable periodic orbits and chaotic saddles

    NASA Astrophysics Data System (ADS)

    Chian, A. C.-L.; Santana, W. M.; Rempel, E. L.; Borotto, F. A.; Hada, T.; Kamide, Y.

    2007-01-01

    The chaotic dynamics of Alfvén waves in space plasmas governed by the derivative nonlinear Schrödinger equation, in the low-dimensional limit described by stationary spatial solutions, is studied. A bifurcation diagram is constructed, by varying the driver amplitude, to identify a number of nonlinear dynamical processes including saddle-node bifurcation, boundary crisis, and interior crisis. The roles played by unstable periodic orbits and chaotic saddles in these transitions are analyzed, and the conversion from a chaotic saddle to a chaotic attractor in these dynamical processes is demonstrated. In particular, the phenomenon of gap-filling in the chaotic transition from weak chaos to strong chaos via an interior crisis is investigated. A coupling unstable periodic orbit created by an explosion, within the gaps of the chaotic saddles embedded in a chaotic attractor following an interior crisis, is found numerically. The gap-filling unstable periodic orbits are responsible for coupling the banded chaotic saddle (BCS) to the surrounding chaotic saddle (SCS), leading to crisis-induced intermittency. The physical relevance of chaos for Alfvén intermittent turbulence observed in the solar wind is discussed.

  14. Characterizing chaotic melodies in automatic music composition

    NASA Astrophysics Data System (ADS)

    Coca, Andrés E.; Tost, Gerard O.; Zhao, Liang

    2010-09-01

    In this paper, we initially present an algorithm for automatic composition of melodies using chaotic dynamical systems. Afterward, we characterize chaotic music in a comprehensive way as comprising three perspectives: musical discrimination, dynamical influence on musical features, and musical perception. With respect to the first perspective, the coherence between generated chaotic melodies (continuous as well as discrete chaotic melodies) and a set of classical reference melodies is characterized by statistical descriptors and melodic measures. The significant differences among the three types of melodies are determined by discriminant analysis. Regarding the second perspective, the influence of dynamical features of chaotic attractors, e.g., Lyapunov exponent, Hurst coefficient, and correlation dimension, on melodic features is determined by canonical correlation analysis. The last perspective is related to perception of originality, complexity, and degree of melodiousness (Euler's gradus suavitatis) of chaotic and classical melodies by nonparametric statistical tests.

  15. Reducing the Dynamical Degradation by Bi-Coupling Digital Chaotic Maps

    NASA Astrophysics Data System (ADS)

    Liu, Lingfeng; Liu, Bocheng; Hu, Hanping; Miao, Suoxia

    A chaotic map which is realized on a computer will suffer dynamical degradation. Here, a coupled chaotic model is proposed to reduce the dynamical degradation. In this model, the state variable of one digital chaotic map is used to control the parameter of the other digital map. This coupled model is universal and can be used for all chaotic maps. In this paper, two coupled models (one is coupled by two logistic maps, the other is coupled by Chebyshev map and Baker map) are performed, and the numerical experiments show that the performances of these two coupled chaotic maps are greatly improved. Furthermore, a simple pseudorandom bit generator (PRBG) based on coupled digital logistic maps is proposed as an application for our method.

  16. A model for seasonal phytoplankton blooms.

    PubMed

    Huppert, Amit; Blasius, Bernd; Olinky, Ronen; Stone, Lewi

    2005-10-07

    We analyse a generic bottom-up nutrient phytoplankton model to help understand the dynamics of seasonally recurring algae blooms. The deterministic model displays a wide spectrum of dynamical behaviours, from simple cyclical blooms which trigger annually, to irregular chaotic blooms in which both the time between outbreaks and their magnitudes are erratic. Unusually, despite the persistent seasonal forcing, it is extremely difficult to generate blooms that are both annually recurring and also chaotic or irregular (i.e. in amplitude) even though this characterizes many real time-series. Instead the model has a tendency to 'skip' with outbreaks often being suppressed from 1 year to the next. This behaviour is studied in detail and we develop analytical expressions to describe the model's flow in phase space, yielding insights into the mechanism of the bloom recurrence. We also discuss how modifications to the equations through the inclusion of appropriate functional forms can generate more realistic dynamics.

  17. Visibility graphlet approach to chaotic time series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutua, Stephen; Computer Science Department, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega; Gu, Changgui, E-mail: gu-changgui@163.com, E-mail: hjyang@ustc.edu.cn

    Many novel methods have been proposed for mapping time series into complex networks. Although some dynamical behaviors can be effectively captured by existing approaches, the preservation and tracking of the temporal behaviors of a chaotic system remains an open problem. In this work, we extended the visibility graphlet approach to investigate both discrete and continuous chaotic time series. We applied visibility graphlets to capture the reconstructed local states, so that each is treated as a node and tracked downstream to create a temporal chain link. Our empirical findings show that the approach accurately captures the dynamical properties of chaotic systems.more » Networks constructed from periodic dynamic phases all converge to regular networks and to unique network structures for each model in the chaotic zones. Furthermore, our results show that the characterization of chaotic and non-chaotic zones in the Lorenz system corresponds to the maximal Lyapunov exponent, thus providing a simple and straightforward way to analyze chaotic systems.« less

  18. A new 4-D chaotic hyperjerk system, its synchronization, circuit design and applications in RNG, image encryption and chaos-based steganography

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, S.; Akgul, A.; Kaçar, S.; Çavuşoğlu, U.

    2018-02-01

    Hyperjerk systems have received significant interest in the literature because of their simple structure and complex dynamical properties. This work presents a new chaotic hyperjerk system having two exponential nonlinearities. Dynamical properties of the chaotic hyperjerk system are discovered through equilibrium point analysis, bifurcation diagram, dissipativity and Lyapunov exponents. Moreover, an adaptive backstepping controller is designed for the synchronization of the chaotic hyperjerk system. Also, a real circuit of the chaotic hyperjerk system has been carried out to show the feasibility of the theoretical hyperjerk model. The chaotic hyperjerk system can also be useful in scientific fields such as Random Number Generators (RNGs), data security, data hiding, etc. In this work, three implementations of the chaotic hyperjerk system, viz. RNG, image encryption and sound steganography have been performed by using complex dynamics characteristics of the system.

  19. Improvement and empirical research on chaos control by theory of "chaos + chaos = order".

    PubMed

    Fulai, Wang

    2012-12-01

    This paper focuses on advancing the understanding of Parrondian effects and their paradoxical behavior in nonlinear dynamical systems. Some examples are given to show that a dynamics combined by more than two discrete chaotic dynamics in deterministic manners can give rise to order when combined. The chaotic maps in our study are more general than those in the current literatures as far as "chaos + chaos = order" is concerned. Some problems left over in the current literatures are solved. It is proved both theoretically and numerically that, given any m chaotic dynamics generated by the one-dimensional real Mandelbrot maps, it is no possible to get a periodic system when all the m chaotic dynamics are alternated in random manner, but for any integer m(m ≥ 2) a dynamics combined in deterministic manner by m Mandelbrot chaotic dynamics can be found to give rise to a periodic dynamics of m periods. Numerical and mathematical analysis prove that the paradoxical phenomenon of "chaos + chaos = order" also exist in the dynamics generated by non-Mandelbrot maps.

  20. Virtual Libraries: Interactive Support Software and an Application in Chaotic Models.

    ERIC Educational Resources Information Center

    Katsirikou, Anthi; Skiadas, Christos; Apostolou, Apostolos; Rompogiannakis, Giannis

    This paper begins with a discussion of the characteristics and the singularity of chaotic systems, including dynamic systems theory, chaotic orbit, fractals, chaotic attractors, and characteristics of chaotic systems. The second section addresses the digital libraries (DL) concept and the appropriateness of chaotic models, including definition and…

  1. Projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks.

    PubMed

    Feng, Cun-Fang; Xu, Xin-Jian; Wang, Sheng-Jun; Wang, Ying-Hai

    2008-06-01

    We study projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. We relax some limitations of previous work, where projective-anticipating and projective-lag synchronization can be achieved only on two coupled chaotic systems. In this paper, we realize projective-anticipating and projective-lag synchronization on complex dynamical networks composed of a large number of interconnected components. At the same time, although previous work studied projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In this paper, the dynamics of the nodes of the complex networks are time-delayed chaotic systems without the limitation of the partial linearity. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random dynamical networks, and we find both its existence and sufficient stability conditions. The validity of the proposed method is demonstrated and verified by examining specific examples using Ikeda and Mackey-Glass systems on Erdos-Renyi networks.

  2. Dynamic Regimes of El Niño Southern Oscillation and Influenza Pandemic Timing

    PubMed Central

    Oluwole, Olusegun Steven Ayodele

    2017-01-01

    El Niño southern oscillation (ENSO) dynamics has been shown to drive seasonal influenza dynamics. Severe seasonal influenza epidemics and the 2009–2010 pandemic were coincident with chaotic regime of ENSO dynamics. ENSO dynamics from 1876 to 2016 were characterized to determine if influenza pandemics are coupled to chaotic regimes. Time-varying spectra of southern oscillation index (SOI) and sea surface temperature (SST) were compared. SOI and SST were decomposed to components using the algorithm of noise-assisted multivariate empirical mode decomposition. The components were Hilbert transformed to generate instantaneous amplitudes and phases. The trajectories and attractors of components were characterized in polar coordinates and state space. Influenza pandemics were mapped to dynamic regimes of SOI and SST joint recurrence of annual components. State space geometry of El Niños lagged by influenza pandemics were characterized and compared with other El Niños. Timescales of SOI and SST components ranged from sub-annual to multidecadal. The trajectories of SOI and SST components and the joint recurrence of annual components were dissipative toward chaotic attractors. Periodic, quasi-periodic, and chaotic regimes were present in the recurrence of trajectories, but chaos–chaos transitions dominated. Influenza pandemics occurred during chaotic regimes of significantly low transitivity dimension (p < 0.0001). El Niños lagged by influenza pandemics had distinct state space geometry (p < 0.0001). Chaotic dynamics explains the aperiodic timing, and varying duration and strength of El Niños. Coupling of all influenza pandemics of the past 140 years to chaotic regimes of low transitivity indicate that ENSO dynamics drives influenza pandemic dynamics. Forecasts models from ENSO dynamics should compliment surveillance for novel influenza viruses. PMID:29218303

  3. Information encoder/decoder using chaotic systems

    DOEpatents

    Miller, Samuel Lee; Miller, William Michael; McWhorter, Paul Jackson

    1997-01-01

    The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals.

  4. Information encoder/decoder using chaotic systems

    DOEpatents

    Miller, S.L.; Miller, W.M.; McWhorter, P.J.

    1997-10-21

    The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals. 32 figs.

  5. Spectral analysis of point-vortex dynamics: first application to vortex polygons in a circular domain

    NASA Astrophysics Data System (ADS)

    Speetjens, M. F. M.; Meleshko, V. V.; van Heijst, G. J. F.

    2014-06-01

    The present study addresses the classical problem of the dynamics and stability of a cluster of N-point vortices of equal strength arranged in a polygonal configuration (‘N-vortex polygons’). In unbounded domains, such N-vortex polygons are unconditionally stable for N\\leqslant 7. Confinement in a circular domain tightens the stability conditions to N\\leqslant 6 and a maximum polygon size relative to the domain radius. This work expands on existing studies on stability and integrability by a first giving an exploratory spectral analysis of the dynamics of N vortex polygons in circular domains. Key to this is that the spectral signature of the time evolution of vortex positions reflects their qualitative behaviour. Expressing vortex motion by a generic evolution operator (the so-called Koopman operator) provides a rigorous framework for such spectral analyses. This paves the way to further differentiation and classification of point-vortex behaviour beyond stability and integrability. The concept of Koopman-based spectral analysis is demonstrated for N-vortex polygons. This reveals that conditional stability can be seen as a local form of integrability and confirms an important generic link between spectrum and dynamics: discrete spectra imply regular (quasi-periodic) motion; continuous (sub-)spectra imply chaotic motion. Moreover, this exposes rich nonlinear dynamics as intermittency between regular and chaotic motion and quasi-coherent structures formed by chaotic vortices. Dedicated to the memory of Slava Meleshko, a dear friend and inspiring colleague.

  6. Synchronisation and Circuit Realisation of Chaotic Hartley System

    NASA Astrophysics Data System (ADS)

    Varan, Metin; Akgül, Akif; Güleryüz, Emre; Serbest, Kasım

    2018-06-01

    Hartley chaotic system is topologically the simplest, but its dynamical behaviours are very rich and its synchronisation has not been seen in literature. This paper aims to introduce a simple chaotic system which can be used as alternative to classical chaotic systems in synchronisation fields. Time series, phase portraits, and bifurcation diagrams reveal the dynamics of the mentioned system. Chaotic Hartley model is also supported with electronic circuit model simulations. Its exponential dynamics are hard to realise on circuit model; this paper is the first in literature that handles such a complex modelling problem. Modelling, synchronisation, and circuit realisation of the Hartley system are implemented respectively in MATLAB-Simulink and ORCAD environments. The effectiveness of the applied synchronisation method is revealed via numerical methods, and the results are discussed. Retrieved results show that this complex chaotic system can be used in secure communication fields.

  7. Regular transport dynamics produce chaotic travel times.

    PubMed

    Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F; Toledo, Benjamín; Valdivia, Juan Alejandro

    2014-06-01

    In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.

  8. Regular transport dynamics produce chaotic travel times

    NASA Astrophysics Data System (ADS)

    Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F.; Toledo, Benjamín; Valdivia, Juan Alejandro

    2014-06-01

    In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system.

  9. Recent developments in chaotic dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, E.

    1994-02-01

    Before the relatively recent wide acceptance of the existence of chaotic dynamics, many physicists and engineers were under the impression that simple systems could necessarily only display simple solutions. This feeling had been unintentionally reinforced by conventional college courses which emphasize linear dynamics (partly because that is the only case with nice general solutions). More recently, physical experiments and numerical examples have abundantly demonstrated how wrong this feeling is. A brief review of chaotic dynamics is presented. Topics discussed include basic concepts, recent developments, and applications.

  10. Chaotic Stochasticity: A Ubiquitous Source of Unpredictability in Epidemics

    NASA Astrophysics Data System (ADS)

    Rand, D. A.; Wilson, H. B.

    1991-11-01

    We address the question of whether or not childhood epidemics such as measles and chickenpox are chaotic, and argue that the best explanation of the observed unpredictability is that it is a manifestation of what we call chaotic stochasticity. Such chaos is driven and made permanent by the fluctuations from the mean field encountered in epidemics, or by extrinsic stochastic noise, and is dependent upon the existence of chaotic repellors in the mean field dynamics. Its existence is also a consequence of the near extinctions in the epidemic. For such systems, chaotic stochasticity is likely to be far more ubiquitous than the presence of deterministic chaotic attractors. It is likely to be a common phenomenon in biological dynamics.

  11. Chaotic dynamics of large-scale double-diffusive convection in a porous medium

    NASA Astrophysics Data System (ADS)

    Kondo, Shutaro; Gotoda, Hiroshi; Miyano, Takaya; Tokuda, Isao T.

    2018-02-01

    We have studied chaotic dynamics of large-scale double-diffusive convection of a viscoelastic fluid in a porous medium from the viewpoint of dynamical systems theory. A fifth-order nonlinear dynamical system modeling the double-diffusive convection is theoretically obtained by incorporating the Darcy-Brinkman equation into transport equations through a physical dimensionless parameter representing porosity. We clearly show that the chaotic convective motion becomes much more complicated with increasing porosity. The degree of dynamic instability during chaotic convective motion is quantified by two important measures: the network entropy of the degree distribution in the horizontal visibility graph and the Kaplan-Yorke dimension in terms of Lyapunov exponents. We also present an interesting on-off intermittent phenomenon in the probability distribution of time intervals exhibiting nearly complete synchronization.

  12. Dynamics and circuit of a chaotic system with a curve of equilibrium points

    NASA Astrophysics Data System (ADS)

    Pham, Viet-Thanh; Volos, Christos; Kapitaniak, Tomasz; Jafari, Sajad; Wang, Xiong

    2018-03-01

    Although chaotic systems have been intensively studied since the 1960s, new systems with mysterious features are still of interest. A novel chaotic system including hyperbolic functions is proposed in this work. Especially, the system has an infinite number of equilibrium points. Dynamics of the system are investigated by using non-linear tools such as phase portrait, bifurcation diagram, and Lyapunov exponent. It is interesting that the system can display coexisting chaotic attractors. An electronic circuit for realising the chaotic system has been implemented. Experimental results show a good agreement with theoretical ones.

  13. Chaotic Dynamics and Application of LCR Oscillators Sharing Common Nonlinearity

    NASA Astrophysics Data System (ADS)

    Jeevarekha, A.; Paul Asir, M.; Philominathan, P.

    2016-06-01

    This paper addresses the problem of sharing common nonlinearity among nonautonomous and autonomous oscillators. By choosing a suitable common nonlinear element with the driving point characteristics capable of bringing out chaotic motion in a combined system, we obtain identical chaotic states. The dynamics of the coupled system is explored through numerical and experimental studies. Employing the concept of common nonlinearity, a simple chaotic communication system is modeled and its performance is verified through Multisim simulation.

  14. Multiple shooting shadowing for sensitivity analysis of chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Blonigan, Patrick J.; Wang, Qiqi

    2018-02-01

    Sensitivity analysis methods are important tools for research and design with simulations. Many important simulations exhibit chaotic dynamics, including scale-resolving turbulent fluid flow simulations. Unfortunately, conventional sensitivity analysis methods are unable to compute useful gradient information for long-time-averaged quantities in chaotic dynamical systems. Sensitivity analysis with least squares shadowing (LSS) can compute useful gradient information for a number of chaotic systems, including simulations of chaotic vortex shedding and homogeneous isotropic turbulence. However, this gradient information comes at a very high computational cost. This paper presents multiple shooting shadowing (MSS), a more computationally efficient shadowing approach than the original LSS approach. Through an analysis of the convergence rate of MSS, it is shown that MSS can have lower memory usage and run time than LSS.

  15. Quantifying chaotic dynamics from integrate-and-fire processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlov, A. N.; Saratov State Technical University, Politehnicheskaya Str. 77, 410054 Saratov; Pavlova, O. N.

    2015-01-15

    Characterizing chaotic dynamics from integrate-and-fire (IF) interspike intervals (ISIs) is relatively easy performed at high firing rates. When the firing rate is low, a correct estimation of Lyapunov exponents (LEs) describing dynamical features of complex oscillations reflected in the IF ISI sequences becomes more complicated. In this work we discuss peculiarities and limitations of quantifying chaotic dynamics from IF point processes. We consider main factors leading to underestimated LEs and demonstrate a way of improving numerical determining of LEs from IF ISI sequences. We show that estimations of the two largest LEs can be performed using around 400 mean periodsmore » of chaotic oscillations in the regime of phase-coherent chaos. Application to real data is discussed.« less

  16. Chaotic dynamics around cometary nuclei

    NASA Astrophysics Data System (ADS)

    Lages, José; Shevchenko, Ivan I.; Rollin, Guillaume

    2018-06-01

    We apply a generalized Kepler map theory to describe the qualitative chaotic dynamics around cometary nuclei, based on accessible observational data for five comets whose nuclei are well-documented to resemble dumb-bells. The sizes of chaotic zones around the nuclei and the Lyapunov times of the motion inside these zones are estimated. In the case of Comet 1P/Halley, the circumnuclear chaotic zone seems to engulf an essential part of the Hill sphere, at least for orbits of moderate to high eccentricity.

  17. Suppression of chaos at slow variables by rapidly mixing fast dynamics through linear energy-preserving coupling

    NASA Astrophysics Data System (ADS)

    Abramov, R. V.

    2011-12-01

    Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger chaotic system would result in general increase of chaos at the slow variables.

  18. Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays

    PubMed Central

    Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.

    2016-01-01

    Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer. PMID:26876008

  19. Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.

    2016-02-01

    Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer.

  20. Periodic or chaotic bursting dynamics via delayed pitchfork bifurcation in a slow-varying controlled system

    NASA Astrophysics Data System (ADS)

    Yu, Yue; Zhang, Zhengdi; Han, Xiujing

    2018-03-01

    In this work, we aim to demonstrate the novel routes to periodic and chaotic bursting, i.e., the different bursting dynamics via delayed pitchfork bifurcations around stable attractors, in the classical controlled Lü system. First, by computing the corresponding characteristic polynomial, we determine where some critical values about bifurcation behaviors appear in the Lü system. Moreover, the transition mechanism among different stable attractors has been introduced including homoclinic-type connections or chaotic attractors. Secondly, taking advantage of the above analytical results, we carry out a study of the mechanism for bursting dynamics in the Lü system with slowly periodic variation of certain control parameter. A distinct delayed supercritical pitchfork bifurcation behavior can be discussed when the control item passes through bifurcation points periodically. This delayed dynamical behavior may terminate at different parameter areas, which leads to different spiking modes around different stable attractors (equilibriums, limit cycles, or chaotic attractors). In particular, the chaotic attractor may appear by Shilnikov connections or chaos boundary crisis, which leads to the occurrence of impressive chaotic bursting oscillations. Our findings enrich the study of bursting dynamics and deepen the understanding of some similar sorts of delayed bursting phenomena. Finally, some numerical simulations are included to illustrate the validity of our study.

  1. Urey Prize Lecture - Chaotic dynamics in the solar system

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack

    1987-01-01

    Attention is given to solar system cases in which chaotic solutions of Newton's equations are important, as in chaotic rotation and orbital evolution. Hyperion is noted to be tumbling chaotically; chaotic orbital evolution is suggested to be of fundamental importance to an accounting for the Kirkwood gaps in asteroid distribution and for the phase space boundary of the chaotic zone at the 3/1 mean-motion commensurability with Jupiter. In addition, chaotic trajectories in the 2/1 chaotic zone reach very high eccentricities by a route that carries them to high inclinations temporarily.

  2. Period doubling cascades of limit cycles in cardiac action potential models as precursors to chaotic early Afterdepolarizations.

    PubMed

    Kügler, Philipp; Bulelzai, M A K; Erhardt, André H

    2017-04-04

    Early afterdepolarizations (EADs) are pathological voltage oscillations during the repolarization phase of cardiac action potentials (APs). EADs are caused by drugs, oxidative stress or ion channel disease, and they are considered as potential precursors to cardiac arrhythmias in recent attempts to redefine the cardiac drug safety paradigm. The irregular behaviour of EADs observed in experiments has been previously attributed to chaotic EAD dynamics under periodic pacing, made possible by a homoclinic bifurcation in the fast subsystem of the deterministic AP system of differential equations. In this article we demonstrate that a homoclinic bifurcation in the fast subsystem of the action potential model is neither a necessary nor a sufficient condition for the genesis of chaotic EADs. We rather argue that a cascade of period doubling (PD) bifurcations of limit cycles in the full AP system paves the way to chaotic EAD dynamics across a variety of models including a) periodically paced and spontaneously active cardiomyocytes, b) periodically paced and non-active cardiomyocytes as well as c) unpaced and spontaneously active cardiomyocytes. Furthermore, our bifurcation analysis reveals that chaotic EAD dynamics may coexist in a stable manner with fully regular AP dynamics, where only the initial conditions decide which type of dynamics is displayed. EADs are a potential source of cardiac arrhythmias and hence are of relevance both from the viewpoint of drug cardiotoxicity testing and the treatment of cardiomyopathies. The model-independent association of chaotic EADs with period doubling cascades of limit cycles introduced in this article opens novel opportunities to study chaotic EADs by means of bifurcation control theory and inverse bifurcation analysis. Furthermore, our results may shed new light on the synchronization and propagation of chaotic EADs in homogeneous and heterogeneous multicellular and cardiac tissue preparations.

  3. Temperature crossover of decoherence rates in chaotic and regular bath dynamics.

    PubMed

    Sanz, A S; Elran, Y; Brumer, P

    2012-03-01

    The effect of chaotic bath dynamics on the decoherence of a quantum system is examined for the vibrational degrees of freedom of a diatomic molecule in a realistic, constant temperature collisional bath. As an example, the specific case of I(2) in liquid xenon is examined as a function of temperature, and the results compared with an integrable xenon bath. A crossover in behavior is found: The integrable bath induces more decoherence at low bath temperatures than does the chaotic bath, whereas the opposite is the case at the higher bath temperatures. These results, verifying a conjecture due to Wilkie, shed light on the differing views of the effect of chaotic dynamics on system decoherence.

  4. Experimental study of firing death in a network of chaotic FitzHugh-Nagumo neurons

    NASA Astrophysics Data System (ADS)

    Ciszak, Marzena; Euzzor, Stefano; Arecchi, F. Tito; Meucci, Riccardo

    2013-02-01

    The FitzHugh-Nagumo neurons driven by a periodic forcing undergo a period-doubling route to chaos and a transition to mixed-mode oscillations. When coupled, their dynamics tend to be synchronized. We show that the chaotically spiking neurons change their internal dynamics to subthreshold oscillations, the phenomenon referred to as firing death. These dynamical changes are observed below the critical coupling strength at which the transition to full chaotic synchronization occurs. Moreover, we find various dynamical regimes in the subthreshold oscillations, namely, regular, quasiperiodic, and chaotic states. We show numerically that these dynamical states may coexist with large-amplitude spiking regimes and that this coexistence is characterized by riddled basins of attraction. The reported results are obtained for neurons implemented in the electronic circuits as well as for the model equations. Finally, we comment on the possible scenarios where the coupling-induced firing death could play an important role in biological systems.

  5. Implementation of an integrated op-amp based chaotic neuron model and observation of its chaotic dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Jinwoo; Lee, Jewon; Song, Hanjung

    2011-03-15

    This paper presents a fully integrated circuit implementation of an operational amplifier (op-amp) based chaotic neuron model with a bipolar output function, experimental measurements, and analyses of its chaotic behavior. The proposed chaotic neuron model integrated circuit consists of several op-amps, sample and hold circuits, a nonlinear function block for chaotic signal generation, a clock generator, a nonlinear output function, etc. Based on the HSPICE (circuit program) simulation results, approximated empirical equations for analyses were formulated. Then, the chaotic dynamical responses such as bifurcation diagrams, time series, and Lyapunov exponent were calculated using these empirical equations. In addition, we performedmore » simulations about two chaotic neuron systems with four synapses to confirm neural network connections and got normal behavior of the chaotic neuron such as internal state bifurcation diagram according to the synaptic weight variation. The proposed circuit was fabricated using a 0.8-{mu}m single poly complementary metal-oxide semiconductor technology. Measurements of the fabricated single chaotic neuron with {+-}2.5 V power supplies and a 10 kHz sampling clock frequency were carried out and compared with the simulated results.« less

  6. Chaotic dynamics of controlled electric power systems

    NASA Astrophysics Data System (ADS)

    Kozlov, V. N.; Trosko, I. U.

    2016-12-01

    The conditions for appearance of chaotic dynamics of electromagnetic and electromechanical processes in energy systems described by the Park-Gorev bilinear differential equations with account for lags of coordinates and restrictions on control have been formulated. On the basis of classical equations, the parameters of synchronous generators and power lines, at which the chaotic dynamics of energy systems appears, have been found. The qualitative and quantitative characteristics of chaotic processes in energy associations of two types, based on the Hopf theorem, and methods of nonstationary linearization and decompositions are given. The properties of spectral characteristics of chaotic processes have been investigated, and the qualitative similarity of bilinear equations of power systems and Lorentz equations have been found. These results can be used for modernization of the systems of control of energy objects. The qualitative and quantitative characteristics for power energy systems as objects of control and for some laws of control with the feedback have been established.

  7. Periodic orbit analysis of a system with continuous symmetry--A tutorial.

    PubMed

    Budanur, Nazmi Burak; Borrero-Echeverry, Daniel; Cvitanović, Predrag

    2015-07-01

    Dynamical systems with translational or rotational symmetry arise frequently in studies of spatially extended physical systems, such as Navier-Stokes flows on periodic domains. In these cases, it is natural to express the state of the fluid in terms of a Fourier series truncated to a finite number of modes. Here, we study a 4-dimensional model with chaotic dynamics and SO(2) symmetry similar to those that appear in fluid dynamics problems. A crucial step in the analysis of such a system is symmetry reduction. We use the model to illustrate different symmetry-reduction techniques. The system's relative equilibria are conveniently determined by rewriting the dynamics in terms of a symmetry-invariant polynomial basis. However, for the analysis of its chaotic dynamics, the "method of slices," which is applicable to very high-dimensional problems, is preferable. We show that a Poincaré section taken on the "slice" can be used to further reduce this flow to what is for all practical purposes a unimodal map. This enables us to systematically determine all relative periodic orbits and their symbolic dynamics up to any desired period. We then present cycle averaging formulas adequate for systems with continuous symmetry and use them to compute dynamical averages using relative periodic orbits. The convergence of such computations is discussed.

  8. Analytical Studies on the Synchronization of a Network of Linearly-Coupled Simple Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Sivaganesh, G.; Arulgnanam, A.; Seethalakshmi, A. N.; Selvaraj, S.

    2018-05-01

    We present explicit generalized analytical solutions for a network of linearly-coupled simple chaotic systems. Analytical solutions are obtained for the normalized state equations of a network of linearly-coupled systems driven by a common chaotic drive system. Two parameter bifurcation diagrams revealing the various hidden synchronization regions, such as complete, phase and phase-lag synchronization are identified using the analytical results. The synchronization dynamics and their stability are studied using phase portraits and the master stability function, respectively. Further, experimental results for linearly-coupled simple chaotic systems are presented to confirm the analytical results. The synchronization dynamics of a network of chaotic systems studied analytically is reported for the first time.

  9. A new 4D chaotic system with hidden attractor and its engineering applications: Analog circuit design and field programmable gate array implementation

    NASA Astrophysics Data System (ADS)

    Abdolmohammadi, Hamid Reza; Khalaf, Abdul Jalil M.; Panahi, Shirin; Rajagopal, Karthikeyan; Pham, Viet-Thanh; Jafari, Sajad

    2018-06-01

    Nowadays, designing chaotic systems with hidden attractor is one of the most interesting topics in nonlinear dynamics and chaos. In this paper, a new 4D chaotic system is proposed. This new chaotic system has no equilibria, and so it belongs to the category of systems with hidden attractors. Dynamical features of this system are investigated with the help of its state-space portraits, bifurcation diagram, Lyapunov exponents diagram, and basin of attraction. Also a hardware realisation of this system is proposed by using field programmable gate arrays (FPGA). In addition, an electronic circuit design for the chaotic system is introduced.

  10. A new transiently chaotic flow with ellipsoid equilibria

    NASA Astrophysics Data System (ADS)

    Panahi, Shirin; Aram, Zainab; Jafari, Sajad; Pham, Viet-Thanh; Volos, Christos; Rajagopal, Karthikeyan

    2018-03-01

    In this article, a simple autonomous transiently chaotic flow with cubic nonlinearities is proposed. This system represents some unusual features such as having a surface of equilibria. We shall describe some dynamical properties and behaviours of this system in terms of eigenvalue structures, bifurcation diagrams, time series, and phase portraits. Various behaviours of this system such as periodic and transiently chaotic dynamics can be shown by setting special parameters in proper values. Our system belongs to a newly introduced category of transiently chaotic systems: systems with hidden attractors. Transiently chaotic behaviour of our proposed system has been implemented and tested by the OrCAD-PSpise software. We have found a proper qualitative similarity between circuit and simulation results.

  11. Alternation of regular and chaotic dynamics in a simple two-degree-of-freedom system with nonlinear inertial coupling.

    PubMed

    Sigalov, G; Gendelman, O V; AL-Shudeifat, M A; Manevitch, L I; Vakakis, A F; Bergman, L A

    2012-03-01

    We show that nonlinear inertial coupling between a linear oscillator and an eccentric rotator can lead to very interesting interchanges between regular and chaotic dynamical behavior. Indeed, we show that this model demonstrates rather unusual behavior from the viewpoint of nonlinear dynamics. Specifically, at a discrete set of values of the total energy, the Hamiltonian system exhibits non-conventional nonlinear normal modes, whose shape is determined by phase locking of rotatory and oscillatory motions of the rotator at integer ratios of characteristic frequencies. Considering the weakly damped system, resonance capture of the dynamics into the vicinity of these modes brings about regular motion of the system. For energy levels far from these discrete values, the motion of the system is chaotic. Thus, the succession of resonance captures and escapes by a discrete set of the normal modes causes a sequence of transitions between regular and chaotic behavior, provided that the damping is sufficiently small. We begin from the Hamiltonian system and present a series of Poincaré sections manifesting the complex structure of the phase space of the considered system with inertial nonlinear coupling. Then an approximate analytical description is presented for the non-conventional nonlinear normal modes. We confirm the analytical results by numerical simulation and demonstrate the alternate transitions between regular and chaotic dynamics mentioned above. The origin of the chaotic behavior is also discussed.

  12. Least Squares Shadowing Sensitivity Analysis of Chaotic Flow Around a Two-Dimensional Airfoil

    NASA Technical Reports Server (NTRS)

    Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris

    2016-01-01

    Gradient-based sensitivity analysis has proven to be an enabling technology for many applications, including design of aerospace vehicles. However, conventional sensitivity analysis methods break down when applied to long-time averages of chaotic systems. This breakdown is a serious limitation because many aerospace applications involve physical phenomena that exhibit chaotic dynamics, most notably high-resolution large-eddy and direct numerical simulations of turbulent aerodynamic flows. A recently proposed methodology, Least Squares Shadowing (LSS), avoids this breakdown and advances the state of the art in sensitivity analysis for chaotic flows. The first application of LSS to a chaotic flow simulated with a large-scale computational fluid dynamics solver is presented. The LSS sensitivity computed for this chaotic flow is verified and shown to be accurate, but the computational cost of the current LSS implementation is high.

  13. Space-Group Symmetries Generate Chaotic Fluid Advection in Crystalline Granular Media

    NASA Astrophysics Data System (ADS)

    Turuban, R.; Lester, D. R.; Le Borgne, T.; Méheust, Y.

    2018-01-01

    The classical connection between symmetry breaking and the onset of chaos in dynamical systems harks back to the seminal theory of Noether [Transp. Theory Statist. Phys. 1, 186 (1918), 10.1080/00411457108231446]. We study the Lagrangian kinematics of steady 3D Stokes flow through simple cubic and body-centered cubic (bcc) crystalline lattices of close-packed spheres, and uncover an important exception. While breaking of point-group symmetries is a necessary condition for chaotic mixing in both lattices, a further space-group (glide) symmetry of the bcc lattice generates a transition from globally regular to globally chaotic dynamics. This finding provides new insights into chaotic mixing in porous media and has significant implications for understanding the impact of symmetries upon generic dynamical systems.

  14. Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops

    NASA Astrophysics Data System (ADS)

    Rahman, Aminur; Jordan, Ian; Blackmore, Denis

    2018-01-01

    It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.

  15. Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops.

    PubMed

    Rahman, Aminur; Jordan, Ian; Blackmore, Denis

    2018-01-01

    It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.

  16. On the modeling and nonlinear dynamics of autonomous Silva-Young type chaotic oscillators with flat power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kengne, Jacques; Kenmogne, Fabien

    2014-12-15

    The nonlinear dynamics of fourth-order Silva-Young type chaotic oscillators with flat power spectrum recently introduced by Tamaseviciute and collaborators is considered. In this type of oscillators, a pair of semiconductor diodes in an anti-parallel connection acts as the nonlinear component necessary for generating chaotic oscillations. Based on the Shockley diode equation and an appropriate selection of the state variables, a smooth mathematical model (involving hyperbolic sine and cosine functions) is derived for a better description of both the regular and chaotic dynamics of the system. The complex behavior of the oscillator is characterized in terms of its parameters by usingmore » time series, bifurcation diagrams, Lyapunov exponents' plots, Poincaré sections, and frequency spectra. It is shown that the onset of chaos is achieved via the classical period-doubling and symmetry restoring crisis scenarios. Some PSPICE simulations of the nonlinear dynamics of the oscillator are presented in order to confirm the ability of the proposed mathematical model to accurately describe/predict both the regular and chaotic behaviors of the oscillator.« less

  17. Emergent patterns in interacting neuronal sub-populations

    NASA Astrophysics Data System (ADS)

    Kamal, Neeraj Kumar; Sinha, Sudeshna

    2015-05-01

    We investigate an ensemble of coupled model neurons, consisting of groups of varying sizes and intrinsic dynamics, ranging from periodic to chaotic, where the inter-group coupling interaction is effectively like a dynamic signal from a different sub-population. We observe that the minority group can significantly influence the majority group. For instance, when a small chaotic group is coupled to a large periodic group, the chaotic group de-synchronizes. However, counter-intuitively, when a small periodic group couples strongly to a large chaotic group, it leads to complete synchronization in the majority chaotic population, which also spikes at the frequency of the small periodic group. It then appears that the small group of periodic neurons can act like a pacemaker for the whole network. Further, we report the existence of varied clustering patterns, ranging from sets of synchronized clusters to anti-phase clusters, governed by the interplay of the relative sizes and dynamics of the sub-populations. So these results have relevance in understanding how a group can influence the synchrony of another group of dynamically different elements, reminiscent of event-related synchronization/de-synchronization in complex networks.

  18. Dynamics, Analysis and Implementation of a Multiscroll Memristor-Based Chaotic Circuit

    NASA Astrophysics Data System (ADS)

    Alombah, N. Henry; Fotsin, Hilaire; Ngouonkadi, E. B. Megam; Nguazon, Tekou

    This article introduces a novel four-dimensional autonomous multiscroll chaotic circuit which is derived from the actual simplest memristor-based chaotic circuit. A fourth circuit element — another inductor — is introduced to generate the complex behavior observed. A systematic study of the chaotic behavior is performed with the help of some nonlinear tools such as Lyapunov exponents, phase portraits, and bifurcation diagrams. Multiple scroll attractors are observed in Matlab, Pspice environments and also experimentally. We also observe the phenomenon of antimonotonicity, periodic and chaotic bubbles, multiple periodic-doubling bifurcations, Hopf bifurcations, crises and the phenomenon of intermittency. The chaotic dynamics of this circuit is realized by laboratory experiments, Pspice simulations, numerical and analytical investigations. It is observed that the results from the three environments agree to a great extent. This topology is likely convenient to be used to intentionally generate chaos in memristor-based chaotic circuit applications, given the fact that multiscroll chaotic systems have found important applications as broadband signal generators, pseudorandom number generators for communication engineering and also in biometric authentication.

  19. Evolutionary behaviour, trade-offs and cyclic and chaotic population dynamics.

    PubMed

    Hoyle, Andy; Bowers, Roger G; White, Andy

    2011-05-01

    Many studies of the evolution of life-history traits assume that the underlying population dynamical attractor is stable point equilibrium. However, evolutionary outcomes can change significantly in different circumstances. We present an analysis based on adaptive dynamics of a discrete-time demographic model involving a trade-off whose shape is also an important determinant of evolutionary behaviour. We derive an explicit expression for the fitness in the cyclic region and consequently present an adaptive dynamic analysis which is algebraic. We do this fully in the region of 2-cycles and (using a symbolic package) almost fully for 4-cycles. Simulations illustrate and verify our results. With equilibrium population dynamics, trade-offs with accelerating costs produce a continuously stable strategy (CSS) whereas trade-offs with decelerating costs produce a non-ES repellor. The transition to 2-cycles produces a discontinuous change: the appearance of an intermediate region in which branching points occur. The size of this region decreases as we move through the region of 2-cycles. There is a further discontinuous fall in the size of the branching region during the transition to 4-cycles. We extend our results numerically and with simulations to higher-period cycles and chaos. Simulations show that chaotic population dynamics can evolve from equilibrium and vice-versa.

  20. Analysis, synchronisation and circuit design of a new highly nonlinear chaotic system

    NASA Astrophysics Data System (ADS)

    Mobayen, Saleh; Kingni, Sifeu Takougang; Pham, Viet-Thanh; Nazarimehr, Fahimeh; Jafari, Sajad

    2018-02-01

    This paper investigates a three-dimensional autonomous chaotic flow without linear terms. Dynamical behaviour of the proposed system is investigated through eigenvalue structures, phase portraits, bifurcation diagram, Lyapunov exponents and basin of attraction. For a suitable choice of the parameters, the proposed system can exhibit anti-monotonicity, periodic oscillations and double-scroll chaotic attractor. Basin of attraction of the proposed system shows that the chaotic attractor is self-excited. Furthermore, feasibility of double-scroll chaotic attractor in the real word is investigated by using the OrCAD-PSpice software via an electronic implementation of the proposed system. A good qualitative agreement is illustrated between the numerical simulations and the OrCAD-PSpice results. Finally, a finite-time control method based on dynamic sliding surface for the synchronisation of master and slave chaotic systems in the presence of external disturbances is performed. Using the suggested control technique, the superior master-slave synchronisation is attained. Illustrative simulation results on the studied chaotic system are presented to indicate the effectiveness of the suggested scheme.

  1. Exact folded-band chaotic oscillator.

    PubMed

    Corron, Ned J; Blakely, Jonathan N

    2012-06-01

    An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.

  2. Timing variation in an analytically solvable chaotic system

    NASA Astrophysics Data System (ADS)

    Blakely, J. N.; Milosavljevic, M. S.; Corron, N. J.

    2017-02-01

    We present analytic solutions for a chaotic dynamical system that do not have the regular timing characteristic of recently reported solvable chaotic systems. The dynamical system can be viewed as a first order filter with binary feedback. The feedback state may be switched only at instants defined by an external clock signal. Generalizing from a period one clock, we show analytic solutions for period two and higher period clocks. We show that even when the clock 'ticks' randomly the chaotic system has an analytic solution. These solutions can be visualized in a stroboscopic map whose complexity increases with the complexity of the clock. We provide both analytic results as well as experimental data from an electronic circuit implementation of the system. Our findings bridge the gap between the irregular timing of well known chaotic systems such as Lorenz and Rossler and the well regulated oscillations of recently reported solvable chaotic systems.

  3. A new chaotic attractor with two quadratic nonlinearities, its synchronization and circuit implementation

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Gundara, G.; Mada Sanjaya, W. S.; Subiyanto

    2018-03-01

    A 3-D new chaotic attractor with two quadratic nonlinearities is proposed in this paper. The dynamical properties of the new chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new chaotic system has three unstable equilibrium points. The new chaotic attractor is dissipative in nature. As an engineering application, adaptive synchronization of identical new chaotic attractors is designed via nonlinear control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic attractor model.

  4. Working Towards Führer: A Chaotic View

    NASA Astrophysics Data System (ADS)

    Cakar, Ulas

    Leadership is a concept that has been discussed since the beginning of history. Even though there have been many theories in the field accepting leadership's role in bringing order, chaotic aspects of leadership are generally neglected. This chapter aims to examine the leadership beyond an orderly interpretation of universe. For this purpose, Third Reich period and leadership during this period will be examined. Ian Kershaw's "Working Towards Führer" concept provides a unique understanding of leadership concept. It goes beyond the dualist depiction of Third Reich, it does not state Adolf Hitler as an all powerful dictator, or a weak one. Rather, he expresses that due to the conditions in the Third Reich, Adolf Hitler was both of this. This complex situation can be understood deeper when it is examined through the lens of chaos theory. This study contributes to the field by being the first in using chaos theory for examining "Working Towards Führer" concept and its development. Seemingly orderly nature of synchronization process and its vortex will be shown. Adolf Hitler's storm spot position in the chaotic system and its dynamics are explained. War's entropic power and its effect on the downfall of the system is crucial in understanding this unique chaotic system. The chaotic pattern of "Working Towards Führer" offers an opportunity to analyze the complexities of the leadership concept.

  5. A chaotic jerk system with non-hyperbolic equilibrium: Dynamics, effect of time delay and circuit realisation

    NASA Astrophysics Data System (ADS)

    Rajagopal, Karthikeyan; Pham, Viet-Thanh; Tahir, Fadhil Rahma; Akgul, Akif; Abdolmohammadi, Hamid Reza; Jafari, Sajad

    2018-04-01

    The literature on chaos has highlighted several chaotic systems with special features. In this work, a novel chaotic jerk system with non-hyperbolic equilibrium is proposed. The dynamics of this new system is revealed through equilibrium analysis, phase portrait, bifurcation diagram and Lyapunov exponents. In addition, we investigate the time-delay effects on the proposed system. Realisation of such a system is presented to verify its feasibility.

  6. Entanglement as a signature of quantum chaos.

    PubMed

    Wang, Xiaoguang; Ghose, Shohini; Sanders, Barry C; Hu, Bambi

    2004-01-01

    We explore the dynamics of entanglement in classically chaotic systems by considering a multiqubit system that behaves collectively as a spin system obeying the dynamics of the quantum kicked top. In the classical limit, the kicked top exhibits both regular and chaotic dynamics depending on the strength of the chaoticity parameter kappa in the Hamiltonian. We show that the entanglement of the multiqubit system, considered for both the bipartite and the pairwise entanglement, yields a signature of quantum chaos. Whereas bipartite entanglement is enhanced in the chaotic region, pairwise entanglement is suppressed. Furthermore, we define a time-averaged entangling power and show that this entangling power changes markedly as kappa moves the system from being predominantly regular to being predominantly chaotic, thus sharply identifying the edge of chaos. When this entangling power is averaged over all states, it yields a signature of global chaos. The qualitative behavior of this global entangling power is similar to that of the classical Lyapunov exponent.

  7. Future missions studies: Combining Schatten's solar activity prediction model with a chaotic prediction model

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.

    1991-01-01

    K. Schatten (1991) recently developed a method for combining his prediction model with our chaotic model. The philosophy behind this combined model and his method of combination is explained. Because the Schatten solar prediction model (KS) uses a dynamo to mimic solar dynamics, accurate prediction is limited to long-term solar behavior (10 to 20 years). The Chaotic prediction model (SA) uses the recently developed techniques of nonlinear dynamics to predict solar activity. It can be used to predict activity only up to the horizon. In theory, the chaotic prediction should be several orders of magnitude better than statistical predictions up to that horizon; beyond the horizon, chaotic predictions would theoretically be just as good as statistical predictions. Therefore, chaos theory puts a fundamental limit on predictability.

  8. Proceedings of the 2nd Experimental Chaos Conference

    NASA Astrophysics Data System (ADS)

    Ditto, William; Pecora, Lou; Shlesinger, Michael; Spano, Mark; Vohra, Sandeep

    1995-02-01

    The Table of Contents for the full book PDF is as follows: * Introduction * Spatiotemporal Phenomena * Experimental Studies of Chaotic Mixing * Using Random Maps in the Analysis of Experimental Fluid Flows * Transition to Spatiotemporal Chaos in a Reaction-Diffusion System * Ion-Dynamical Chaos in Plasmas * Optics * Chaos in a Synchronously Driven Optical Resonator * Chaos, Patterns and Defects in Stimulated Scattering Phenomena * Test of the Normal Form for a Subcritical Bifurcation * Observation of Bifurcations and Chaos in a Driven Fiber Optic Coil * Applications -- Communications * Robustness and Signal Recovery in a Synchronized Chaotic System * Synchronizing Nonautonomous Chaotic Circuits * Synchronization of Pulse-Coupled Chaotic Oscillators * Ocean Transmission Effects on Chaotic Signals * Controlling Symbolic Dynamics for Communication * Applications -- Control * Analysis of Nonlinear Actuators Using Chaotic Waveforms * Controlling Chaos in a Quasiperiodic Electronic System * Control of Chaos in a CO2 Laser * General Research * Video-Based Analysis of Bifurcation Phenomena in Radio-Frequency-Excited Inert Gas Plasmas * Transition from Soliton to Chaotic Motion During the Impact of a Nonlinear Structure * Sonoluminescence in a Single Bubble: Periodic, Quasiperiodic and Chaotic Light Source * Quantum Chaos Experiments Using Microwave Cavities * Experiments on Quantum Chaos With and Without Time Reversibility * When Small Noise Imposed on Deterministic Dynamics Becomes Important * Biology * Chaos Control for Cardiac Arrhythmias * Irregularities in Spike Trains of Cat Retinal Ganglion Cells * Broad-Band Synchronization in Monkey Neocortex * Applicability of Correlation Dimension Calculations to Blood Pressure Signal in Rats * Tests for Deterministic Chaos in Noisy Time Series * The Crayfish Mechanoreceptor Cell: A Biological Example of Stochastic Resonance * Chemistry * Chaos During Heterogeneous Chemical Reactions * Stabilizing and Tracking Unstable Periodic Orbits and Stationary States in Chemical Systems * Recursive Proportional-Feedback and Its Use to Control Chaos in an Electrochemical System * Temperature Patterns on Catalytic Surfaces * Meteorology/Oceanography * Nonlinear Evolution of Water Waves: Hilbert's View * Fractal Properties of Isoconcentration Surfaces in a Smoke Plume * Fractal Dimensions of Remotely Sensed Atmospheric Signals * Are Ocean Surface Waves Chaotic? * Dynamical Attractor Reconstruction for a Marine Stratocumulus Cloud

  9. Deterministic chaotic dynamics of Raba River flow (Polish Carpathian Mountains)

    NASA Astrophysics Data System (ADS)

    Kędra, Mariola

    2014-02-01

    Is the underlying dynamics of river flow random or deterministic? If it is deterministic, is it deterministic chaotic? This issue is still controversial. The application of several independent methods, techniques and tools for studying daily river flow data gives consistent, reliable and clear-cut results to the question. The outcomes point out that the investigated discharge dynamics is not random but deterministic. Moreover, the results completely confirm the nonlinear deterministic chaotic nature of the studied process. The research was conducted on daily discharge from two selected gauging stations of the mountain river in southern Poland, the Raba River.

  10. Extreme multistability in a memristor-based multi-scroll hyper-chaotic system.

    PubMed

    Yuan, Fang; Wang, Guangyi; Wang, Xiaowei

    2016-07-01

    In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numerical simulations.

  11. Dynamic analyses, FPGA implementation and engineering applications of multi-butterfly chaotic attractors generated from generalised Sprott C system

    NASA Astrophysics Data System (ADS)

    Lai, Qiang; Zhao, Xiao-Wen; Rajagopal, Karthikeyan; Xu, Guanghui; Akgul, Akif; Guleryuz, Emre

    2018-01-01

    This paper considers the generation of multi-butterfly chaotic attractors from a generalised Sprott C system with multiple non-hyperbolic equilibria. The system is constructed by introducing an additional variable whose derivative has a switching function to the Sprott C system. It is numerically found that the system creates two-, three-, four-, five-butterfly attractors and any other multi-butterfly attractors. First, the dynamic analyses of multi-butterfly chaotic attractors are presented. Secondly, the field programmable gate array implementation, electronic circuit realisation and random number generator are done with the multi-butterfly chaotic attractors.

  12. Solar System Dynamics

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack

    2002-01-01

    In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.

  13. A phase transition induces chaos in a predator-prey ecosystem with a dynamic fitness landscape.

    PubMed

    Gilpin, William; Feldman, Marcus W

    2017-07-01

    In many ecosystems, natural selection can occur quickly enough to influence the population dynamics and thus future selection. This suggests the importance of extending classical population dynamics models to include such eco-evolutionary processes. Here, we describe a predator-prey model in which the prey population growth depends on a prey density-dependent fitness landscape. We show that this two-species ecosystem is capable of exhibiting chaos even in the absence of external environmental variation or noise, and that the onset of chaotic dynamics is the result of the fitness landscape reversibly alternating between epochs of stabilizing and disruptive selection. We draw an analogy between the fitness function and the free energy in statistical mechanics, allowing us to use the physical theory of first-order phase transitions to understand the onset of rapid cycling in the chaotic predator-prey dynamics. We use quantitative techniques to study the relevance of our model to observational studies of complex ecosystems, finding that the evolution-driven chaotic dynamics confer community stability at the "edge of chaos" while creating a wide distribution of opportunities for speciation during epochs of disruptive selection-a potential observable signature of chaotic eco-evolutionary dynamics in experimental studies.

  14. Periodic orbit analysis of a system with continuous symmetry—A tutorial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budanur, Nazmi Burak, E-mail: budanur3@gatech.edu; Cvitanović, Predrag; Borrero-Echeverry, Daniel

    2015-07-15

    Dynamical systems with translational or rotational symmetry arise frequently in studies of spatially extended physical systems, such as Navier-Stokes flows on periodic domains. In these cases, it is natural to express the state of the fluid in terms of a Fourier series truncated to a finite number of modes. Here, we study a 4-dimensional model with chaotic dynamics and SO(2) symmetry similar to those that appear in fluid dynamics problems. A crucial step in the analysis of such a system is symmetry reduction. We use the model to illustrate different symmetry-reduction techniques. The system's relative equilibria are conveniently determined bymore » rewriting the dynamics in terms of a symmetry-invariant polynomial basis. However, for the analysis of its chaotic dynamics, the “method of slices,” which is applicable to very high-dimensional problems, is preferable. We show that a Poincaré section taken on the 'slice' can be used to further reduce this flow to what is for all practical purposes a unimodal map. This enables us to systematically determine all relative periodic orbits and their symbolic dynamics up to any desired period. We then present cycle averaging formulas adequate for systems with continuous symmetry and use them to compute dynamical averages using relative periodic orbits. The convergence of such computations is discussed.« less

  15. Quantum-chaotic cryptography

    NASA Astrophysics Data System (ADS)

    de Oliveira, G. L.; Ramos, R. V.

    2018-03-01

    In this work, it is presented an optical scheme for quantum key distribution employing two synchronized optoelectronic oscillators (OEO) working in the chaotic regime. The produced key depends on the chaotic dynamic, and the synchronization between Alice's and Bob's OEOs uses quantum states. An attack on the synchronization signals will disturb the synchronization of the chaotic systems increasing the error rate in the final key.

  16. Chimera states in coupled Kuramoto oscillators with inertia.

    PubMed

    Olmi, Simona

    2015-12-01

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.

  17. A new feedback image encryption scheme based on perturbation with dynamical compound chaotic sequence cipher generator

    NASA Astrophysics Data System (ADS)

    Tong, Xiaojun; Cui, Minggen; Wang, Zhu

    2009-07-01

    The design of the new compound two-dimensional chaotic function is presented by exploiting two one-dimensional chaotic functions which switch randomly, and the design is used as a chaotic sequence generator which is proved by Devaney's definition proof of chaos. The properties of compound chaotic functions are also proved rigorously. In order to improve the robustness against difference cryptanalysis and produce avalanche effect, a new feedback image encryption scheme is proposed using the new compound chaos by selecting one of the two one-dimensional chaotic functions randomly and a new image pixels method of permutation and substitution is designed in detail by array row and column random controlling based on the compound chaos. The results from entropy analysis, difference analysis, statistical analysis, sequence randomness analysis, cipher sensitivity analysis depending on key and plaintext have proven that the compound chaotic sequence cipher can resist cryptanalytic, statistical and brute-force attacks, and especially it accelerates encryption speed, and achieves higher level of security. By the dynamical compound chaos and perturbation technology, the paper solves the problem of computer low precision of one-dimensional chaotic function.

  18. Autonomous choices among deterministic evolution-laws as source of uncertainty

    NASA Astrophysics Data System (ADS)

    Trujillo, Leonardo; Meyroneinc, Arnaud; Campos, Kilver; Rendón, Otto; Sigalotti, Leonardo Di G.

    2018-03-01

    We provide evidence of an extreme form of sensitivity to initial conditions in a family of one-dimensional self-ruling dynamical systems. We prove that some hyperchaotic sequences are closed-form expressions of the orbits of these pseudo-random dynamical systems. Each chaotic system in this family exhibits a sensitivity to initial conditions that encompasses the sequence of choices of the evolution rule in some collection of maps. This opens a possibility to extend current theories of complex behaviors on the basis of intrinsic uncertainty in deterministic chaos.

  19. Forecasting Nonlinear Chaotic Time Series with Function Expression Method Based on an Improved Genetic-Simulated Annealing Algorithm

    PubMed Central

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior. PMID:26000011

  20. Forecasting nonlinear chaotic time series with function expression method based on an improved genetic-simulated annealing algorithm.

    PubMed

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.

  1. Dynamic Long-Term Anticipation of Chaotic States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voss, Henning U.

    2001-07-02

    Introducing a short time delay into the coupling of two synchronizing chaotic systems, it was shown recently that the driven system may anticipate the driving system in real time. Augmenting the phase space of the driven system, we accomplish anticipation times that are multiples of the coupling delay time and exceed characteristic time scales of the chaotic dynamics. The stability properties of the associated anticipatory synchronization manifold in certain cases turn out to be the same as for identically synchronizing oscillators.

  2. Extreme multistability in a memristor-based multi-scroll hyper-chaotic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Fang, E-mail: yf210yf@163.com; Wang, Guangyi, E-mail: wanggyi@163.com; Wang, Xiaowei

    In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numericalmore » simulations.« less

  3. Quasibound states in a triple Gaussian potential

    NASA Astrophysics Data System (ADS)

    Reichl, L. E.; Porter, Max D.

    2018-04-01

    We derive the transmission probabilities and delay times, and identify quasibound state structures in an open quantum system consisting of three Gaussian potential energy peaks, a system whose classical scattering dynamics we show to be chaotic. Such open quantum systems can serve as models for nanoscale quantum devices and their wave dynamics are similar to electromagnetic wave dynamics in optical microcavities. We use a quantum web to determine energy regimes for which the system exhibits the quantum manifestations of chaos, and we show that the classical scattering dynamics contains a significant amount of chaos. We also derive an exact expression for the non-Hermitian Hamiltonian whose eigenvalues give quasibound state energies and lifetimes of the system.

  4. Effect of collision duration on the chaotic dynamics of a ball bouncing on a vertically vibrating plate

    NASA Astrophysics Data System (ADS)

    Jiang, Z. H.; Liang, Z. J.; Wu, A. C.; Zheng, R. H.

    2018-03-01

    Experiments have been performed to study the chaotic dynamics of a ball bouncing on a vertically vibrating plate. The velocity dependence of collision duration and coefficient of restitution is determined, and phase portraits of chaotic structures for the flight time and the relative collision velocities are obtained. Numerical calculations are carried out to examine the effects of velocity-dependent collision duration on the ball dynamics. It is revealed that when the collision is instantaneous, sticking solutions are always observed, whereas when the collision duration is taken into account, sticking solutions are destroyed and thereby chaos behaviors are induced.

  5. Chaotic Ising-like dynamics in traffic signals

    PubMed Central

    Suzuki, Hideyuki; Imura, Jun-ichi; Aihara, Kazuyuki

    2013-01-01

    The green and red lights of a traffic signal can be viewed as the up and down states of an Ising spin. Moreover, traffic signals in a city interact with each other, if they are controlled in a decentralised way. In this paper, a simple model of such interacting signals on a finite-size two-dimensional lattice is shown to have Ising-like dynamics that undergoes a ferromagnetic phase transition. Probabilistic behaviour of the model is realised by chaotic billiard dynamics that arises from coupled non-chaotic elements. This purely deterministic model is expected to serve as a starting point for considering statistical mechanics of traffic signals. PMID:23350034

  6. Is the normal heart rate ``chaotic'' due to respiration?

    NASA Astrophysics Data System (ADS)

    Wessel, Niels; Riedl, Maik; Kurths, Jürgen

    2009-06-01

    The incidence of cardiovascular diseases increases with the growth of the human population and an aging society, leading to very high expenses in the public health system. Therefore, it is challenging to develop sophisticated methods in order to improve medical diagnostics. The question whether the normal heart rate is chaotic or not is an attempt to elucidate the underlying mechanisms of cardiovascular dynamics and therefore a highly controversial topical challenge. In this contribution we demonstrate that linear and nonlinear parameters allow us to separate completely the data sets of the three groups provided for this controversial topic in nonlinear dynamics. The question whether these time series are chaotic or not cannot be answered satisfactorily without investigating the underlying mechanisms leading to them. We give an example of the dominant influence of respiration on heart beat dynamics, which shows that observed fluctuations can be mostly explained by respiratory modulations of heart rate and blood pressure (coefficient of determination: 96%). Therefore, we recommend reformulating the following initial question: "Is the normal heart rate chaotic?" We rather ask the following: "Is the normal heart rate `chaotic' due to respiration?"

  7. External Source of Infection and Nutritional Efficiency Control Chaos in a Predator-Prey Model with Disease in the Predator

    NASA Astrophysics Data System (ADS)

    Pada Das, Krishna; Roy, Prodip; Ghosh, Subhabrata; Maiti, Somnath

    This paper deals with an eco-epidemiological approach with disease circulating through the predator species. Disease circulation in the predator species can be possible by contact as well as by external sources. Here, we try to discuss the role of external source of infection along with nutritional value on system dynamics. To establish our findings, we have worked out the local and global stability analysis of the equilibrium points with Hopf bifurcation analysis associated with interior equilibrium point. The ecological consequence by ecological basic reproduction number as well as the disease basic reproduction number or basic reproductive ratio are obtained and we have analyzed the community structure of the particular system with the help of ecological and disease basic reproduction numbers. Further we pay attention to the chaotic dynamics which is produced by disease circulating in predator species by contact. Our numerical simulations reveal that eco-epidemiological system without external source of infection induced chaotic dynamics for increasing force of infection due to contact, whereas in the presence of external source of infection, it exhibits stable solution. It is also observed that nutritional value can prevent chaotic dynamics. We conclude that chaotic dynamics can be controlled by the external source of infection as well as nutritional value. We apply basic tools of nonlinear dynamics such as Poincare section and maximum Lyapunov exponent to investigate chaotic behavior of the system.

  8. Chaos in the sunspot cycle - Analysis and prediction

    NASA Technical Reports Server (NTRS)

    Mundt, Michael D.; Maguire, W. Bruce, II; Chase, Robert R. P.

    1991-01-01

    The variability of solar activity over long time scales, given semiquantitatively by measurements of sunspot numbers, is examined as a nonlinear dynamical system. First, a discussion of the data set used and the techniques utilized to reduce the noise and capture the long-term dynamics inherent in the data is presented. Subsequently, an attractor is reconstructed from the data set using the method of time delays. The reconstructed attractor is then used to determine both the dimension of the underlying system and also the largest Lyapunov exponent, which together indicate that the sunspot cycle is indeed chaotic and also low dimensional. In addition, recent techniques of exploiting chaotic dynamics to provide accurate, short-term predictions are utilized in order to improve upon current forecasting methods and also to place theoretical limits on predictability extent. The results are compared to chaotic solar-dynamo models as a possible physically motivated source of this chaotic behavior.

  9. Randomly chosen chaotic maps can give rise to nearly ordered behavior

    NASA Astrophysics Data System (ADS)

    Boyarsky, Abraham; Góra, Paweł; Islam, Md. Shafiqul

    2005-10-01

    Parrondo’s paradox [J.M.R. Parrondo, G.P. Harmer, D. Abbott, New paradoxical games based on Brownian ratchets, Phys. Rev. Lett. 85 (2000), 5226-5229] (see also [O.E. Percus, J.K. Percus, Can two wrongs make a right? Coin-tossing games and Parrondo’s paradox, Math. Intelligencer 24 (3) (2002) 68-72]) states that two losing gambling games when combined one after the other (either deterministically or randomly) can result in a winning game: that is, a losing game followed by a losing game = a winning game. Inspired by this paradox, a recent study [J. Almeida, D. Peralta-Salas, M. Romera, Can two chaotic systems give rise to order? Physica D 200 (2005) 124-132] asked an analogous question in discrete time dynamical system: can two chaotic systems give rise to order, namely can they be combined into another dynamical system which does not behave chaotically? Numerical evidence is provided in [J. Almeida, D. Peralta-Salas, M. Romera, Can two chaotic systems give rise to order? Physica D 200 (2005) 124-132] that two chaotic quadratic maps, when composed with each other, create a new dynamical system which has a stable period orbit. The question of what happens in the case of random composition of maps is posed in [J. Almeida, D. Peralta-Salas, M. Romera, Can two chaotic systems give rise to order? Physica D 200 (2005) 124-132] but left unanswered. In this note we present an example of a dynamical system where, at each iteration, a map is chosen in a probabilistic manner from a collection of chaotic maps. The resulting random map is proved to have an infinite absolutely continuous invariant measure (acim) with spikes at two points. From this we show that the dynamics behaves in a nearly ordered manner. When the foregoing maps are applied one after the other, deterministically as in [O.E. Percus, J.K. Percus, Can two wrongs make a right? Coin-tossing games and Parrondo’s paradox, Math. Intelligencer 24 (3) (2002) 68-72], the resulting composed map has a periodic orbit which is stable.

  10. A phase transition induces chaos in a predator-prey ecosystem with a dynamic fitness landscape

    PubMed Central

    2017-01-01

    In many ecosystems, natural selection can occur quickly enough to influence the population dynamics and thus future selection. This suggests the importance of extending classical population dynamics models to include such eco-evolutionary processes. Here, we describe a predator-prey model in which the prey population growth depends on a prey density-dependent fitness landscape. We show that this two-species ecosystem is capable of exhibiting chaos even in the absence of external environmental variation or noise, and that the onset of chaotic dynamics is the result of the fitness landscape reversibly alternating between epochs of stabilizing and disruptive selection. We draw an analogy between the fitness function and the free energy in statistical mechanics, allowing us to use the physical theory of first-order phase transitions to understand the onset of rapid cycling in the chaotic predator-prey dynamics. We use quantitative techniques to study the relevance of our model to observational studies of complex ecosystems, finding that the evolution-driven chaotic dynamics confer community stability at the “edge of chaos” while creating a wide distribution of opportunities for speciation during epochs of disruptive selection—a potential observable signature of chaotic eco-evolutionary dynamics in experimental studies. PMID:28678792

  11. Biologically inspired rate control of chaos.

    PubMed

    Olde Scheper, Tjeerd V

    2017-10-01

    The overall intention of chaotic control is to eliminate chaos and to force the system to become stable in the classical sense. In this paper, I demonstrate a more subtle method that does not eliminate all traces of chaotic behaviour; yet it consistently, and reliably, can provide control as intended. The Rate Control of Chaos (RCC) method is derived from metabolic control processes and has several remarkable properties. RCC can control complex systems continuously, and unsupervised, it can also maintain control across bifurcations, and in the presence of significant systemic noise. Specifically, I show that RCC can control a typical set of chaotic models, including the 3 and 4 dimensional chaotic Lorenz systems, in all modes. Furthermore, it is capable of controlling spatiotemporal chaos without supervision and maintains control of the system across bifurcations. This property of RCC allows a dynamic system to operate in parameter spaces that are difficult to control otherwise. This may be particularly interesting for the control of forced systems or dynamic systems that are chaotically perturbed. These control properties of RCC are applicable to a range of dynamic systems, thereby appearing to have far-reaching effects beyond just controlling chaos. RCC may also point to the existence of a biochemical control function of an enzyme, to stabilise the dynamics of the reaction cascade.

  12. On the Origin of Chaos in the Asteroid Belt

    NASA Technical Reports Server (NTRS)

    Murray, N.; Holman, M.; Potter, M.

    1998-01-01

    We consider the effect of gravitational perturbations from Jupiter on the dynamics of asteroids, when Jupiter is itself perturbed by Saturn. The presence of Saturn introduces a number of additional frequencies into Jupiters orbit. These frequencies in turn produce chaos in narrow regions on either side of the chaotic zones associated with the mean motion resonances between the asteroids and Jupiter. The resonant arguments of these three-body resonances contain the longitudes of Jupiter and the asteroid together with either the secular frequency 9-6, or the longitude of Saturn. Resonances involving the longitude of Saturn are analogs of the Laplace resonance in the Jovian satellite system. We show that many three-body resonances involving the longitude of Saturn are chaotic. We give simple expressions for the width of the chaotic region and the associated Lyapunov time. In some cases the chaos can produce a diffusive growth in the 4 eccentricity of the asteroid that leads to ejection of the asteroid on times shorter than the age of the solar system. We give simple estimates for the diffusion time. Finally, we present the results of numerical integrations testing the theory.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmi, Simona, E-mail: simona.olmi@fi.isc.cnr.it; INFN Sez. Firenze, via Sansone, 1 - I-50019 Sesto Fiorentino

    The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaoticmore » but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.« less

  14. Dynamic analysis and electronic circuit implementation of a novel 3D autonomous system without linear terms

    NASA Astrophysics Data System (ADS)

    Kengne, J.; Jafari, S.; Njitacke, Z. T.; Yousefi Azar Khanian, M.; Cheukem, A.

    2017-11-01

    Mathematical models (ODEs) describing the dynamics of almost all continuous time chaotic nonlinear systems (e.g. Lorenz, Rossler, Chua, or Chen system) involve at least a nonlinear term in addition to linear terms. In this contribution, a novel (and singular) 3D autonomous chaotic system without linear terms is introduced. This system has an especial feature of having two twin strange attractors: one ordinary and one symmetric strange attractor when the time is reversed. The complex behavior of the model is investigated in terms of equilibria and stability, bifurcation diagrams, Lyapunov exponent plots, time series and Poincaré sections. Some interesting phenomena are found including for instance, period-doubling bifurcation, antimonotonicity (i.e. the concurrent creation and annihilation of periodic orbits) and chaos while monitoring the system parameters. Compared to the (unique) case previously reported by Xu and Wang (2014) [31], the system considered in this work displays a more 'elegant' mathematical expression and experiences richer dynamical behaviors. A suitable electronic circuit (i.e. the analog simulator) is designed and used for the investigations. Pspice based simulation results show a very good agreement with the theoretical analysis.

  15. Experiments of reconstructing discrete atmospheric dynamic models from data (I)

    NASA Astrophysics Data System (ADS)

    Lin, Zhenshan; Zhu, Yanyu; Deng, Ziwang

    1995-03-01

    In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, x n + 1 = 1- μx {2/n}, could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.

  16. Chaotic itinerancy in the oscillator neural network without Lyapunov functions.

    PubMed

    Uchiyama, Satoki; Fujisaka, Hirokazu

    2004-09-01

    Chaotic itinerancy (CI), which is defined as an incessant spontaneous switching phenomenon among attractor ruins in deterministic dynamical systems without Lyapunov functions, is numerically studied in the case of an oscillator neural network model. The model is the pseudoinverse-matrix version of the previous model [S. Uchiyama and H. Fujisaka, Phys. Rev. E 65, 061912 (2002)] that was studied theoretically with the aid of statistical neurodynamics. It is found that CI in neural nets can be understood as the intermittent dynamics of weakly destabilized chaotic retrieval solutions. Copyright 2004 American Institute of Physics

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz, Pablo R.; Rempel, Erico L.; Barroso, Joaquim J.

    We study the chaotic dynamics of the Pierce diode, a simple spatially extended system for collisionless bounded plasmas, focusing on the concept of edge of chaos, the boundary that separates transient from asymptotic dynamics. We fully characterize an interior crisis at the end of a periodic window, thereby showing direct evidence of the collision between a chaotic attractor, a chaotic saddle, and the edge of chaos, formed by a period-3 unstable periodic orbit and its stable manifold. The edge of chaos persists after the interior crisis, when the global attractor of the system increases its size in the phase space.

  18. A novel double-convection chaotic attractor, its adaptive control and circuit simulation

    NASA Astrophysics Data System (ADS)

    Mamat, M.; Vaidyanathan, S.; Sambas, A.; Mujiarto; Sanjaya, W. S. M.; Subiyanto

    2018-03-01

    A 3-D novel double-convection chaotic system with three nonlinearities is proposed in this research work. The dynamical properties of the new chaotic system are described in terms of phase portraits, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, stability analysis of equilibria, etc. Adaptive control and synchronization of the new chaotic system with unknown parameters are achieved via nonlinear controllers and the results are established using Lyapunov stability theory. Furthermore, an electronic circuit realization of the new 3-D novel chaotic system is presented in detail. Finally, the circuit experimental results of the 3-D novel chaotic attractor show agreement with the numerical simulations.

  19. Chaotic dynamics of a microswimmer in Poiseuille flow.

    PubMed

    Chacón, Ricardo

    2013-11-01

    The chaotic dynamics of pointlike, spherical particles in cylindrical Poiseuille flow is theoretically characterized and numerically confirmed when their own intrinsic swimming velocity undergoes temporal fluctuations around an average value. Two dimensionless ratios associated with the three significant temporal scales of the problem are identified that fully determine the chaos scenario. In particular, small but finite periodic fluctuations of swimming speed result in chaotic or regular motion depending on the position and orientation of the microswimmer with respect to the flow center line. Remarkably, the spatial extension of chaotic microswimmers is found to depend crucially on the fluctuations' period and amplitude and to be highly sensitive to the Fourier spectrum of the fluctuations. This has implications for the design of artificial microswimmers.

  20. Experimental demonstration of chaotic scattering of microwaves

    NASA Astrophysics Data System (ADS)

    Doron, E.; Smilansky, U.; Frenkel, A.

    1990-12-01

    Reflection of microwaves from a cavity is measured in a frequency domain where the underlying classical chaotic scattering leaves a clear mark on the wave dynamics. We check the hypothesis that the fluctuations of the S matrix can be described in terms of parameters characterizing the chaotic classical scatteirng. Absorption of energy in the cavity walls is shown to significantly affect the results, and is linked to time-domain properties of the scattering in a general way. We also show that features whose origin is entirely due to wave dynamics (e.g., the enhancement of the Wigner time delay due to time-reversal symmetry) coexist with other features which characterize the underlying classical dynamics.

  1. Dynamic Analysis and Adaptive Sliding Mode Controller for a Chaotic Fractional Incommensurate Order Financial System

    NASA Astrophysics Data System (ADS)

    Hajipour, Ahmad; Tavakoli, Hamidreza

    2017-12-01

    In this study, the dynamic behavior and chaos control of a chaotic fractional incommensurate-order financial system are investigated. Using well-known tools of nonlinear theory, i.e. Lyapunov exponents, phase diagrams and bifurcation diagrams, we observe some interesting phenomena, e.g. antimonotonicity, crisis phenomena and route to chaos through a period doubling sequence. Adopting largest Lyapunov exponent criteria, we find that the system yields chaos at the lowest order of 2.15. Next, in order to globally stabilize the chaotic fractional incommensurate order financial system with uncertain dynamics, an adaptive fractional sliding mode controller is designed. Numerical simulations are used to demonstrate the effectiveness of the proposed control method.

  2. Stability enhancement of high Prandtl number chaotic convection in an anisotropic porous layer with feedback control

    NASA Astrophysics Data System (ADS)

    Mahmud, M. N.

    2018-04-01

    The chaotic dynamical behaviour of thermal convection in an anisotropic porous layer subject to gravity, heated from below and cooled from above, is studied based on theory of dynamical system in the presence of feedback control. The extended Darcy model, which includes the time derivative has been employed in the momentum equation to derive a low dimensional Lorenz-like equation by using Galerkin-truncated approximation. The classical fourth-order Runge-Kutta method is used to obtain the numerical solution in order to exemplify the dynamics of the nonlinear autonomous system. The results show that stability enhancement of chaotic convection is feasible via feedback control.

  3. Gross-Pitaevski map as a chaotic dynamical system.

    PubMed

    Guarneri, Italo

    2017-03-01

    The Gross-Pitaevski map is a discrete time, split-operator version of the Gross-Pitaevski dynamics in the circle, for which exponential instability has been recently reported. Here it is studied as a classical dynamical system in its own right. A systematic analysis of Lyapunov exponents exposes strongly chaotic behavior. Exponential growth of energy is then shown to be a direct consequence of rotational invariance and for stationary solutions the full spectrum of Lyapunov exponents is analytically computed. The present analysis includes the "resonant" case, when the free rotation period is commensurate to 2π, and the map has countably many constants of the motion. Except for lowest-order resonances, this case exhibits an integrable-chaotic transition.

  4. Analysis of chaotic saddles in a nonlinear vibro-impact system

    NASA Astrophysics Data System (ADS)

    Feng, Jinqian

    2017-07-01

    In this paper, a computational investigation of chaotic saddles in a nonlinear vibro-impact system is presented. For a classical Duffing vibro-impact oscillator, we employ the bisection procedure and an improved stagger-and-step method to present evidence of visual chaotic saddles on the fractal basin boundary and in the internal basin, respectively. The results show that the period saddles play an important role in the evolution of chaotic saddle. The dynamics mechanics of three types of bifurcation such as saddle-node bifurcation, chaotic saddle crisis bifurcation and interior chaotic crisis bifurcation are discussed. The results reveal that the period saddle created at saddle-node bifurcation is responsible for the switch of the internal chaotic saddle to the boundary chaotic saddle. At chaotic saddle crisis bifurcation, a large chaotic saddle can divide into two different chaotic saddle connected by a period saddle. The intersection points between stable and unstable manifolds of this period saddle supply access for chaotic orbits from one chaotic saddle to another and eventually induce the coupling of these two chaotic saddle. Interior chaotic crisis bifurcation is associated with the intersection of stable and unstable manifolds of the period saddle connecting two chaotic invariant sets. In addition, the gaps in chaotic saddle is responsible for the fractal structure.

  5. A new two-scroll chaotic attractor with three quadratic nonlinearities, its adaptive control and circuit design

    NASA Astrophysics Data System (ADS)

    Lien, C.-H.; Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Sanjaya, W. S. M.; Subiyanto

    2018-03-01

    A 3-D new two-scroll chaotic attractor with three quadratic nonlinearities is investigated in this paper. First, the qualitative and dynamical properties of the new two-scroll chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new two-scroll dissipative chaotic system has three unstable equilibrium points. As an engineering application, global chaos control of the new two-scroll chaotic system with unknown system parameters is designed via adaptive feedback control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic two-scroll attractor model.

  6. A solution for two-dimensional mazes with use of chaotic dynamics in a recurrent neural network model.

    PubMed

    Suemitsu, Yoshikazu; Nara, Shigetoshi

    2004-09-01

    Chaotic dynamics introduced into a neural network model is applied to solving two-dimensional mazes, which are ill-posed problems. A moving object moves from the position at t to t + 1 by simply defined motion function calculated from firing patterns of the neural network model at each time step t. We have embedded several prototype attractors that correspond to the simple motion of the object orienting toward several directions in two-dimensional space in our neural network model. Introducing chaotic dynamics into the network gives outputs sampled from intermediate state points between embedded attractors in a state space, and these dynamics enable the object to move in various directions. System parameter switching between a chaotic and an attractor regime in the state space of the neural network enables the object to move to a set target in a two-dimensional maze. Results of computer simulations show that the success rate for this method over 300 trials is higher than that of random walk. To investigate why the proposed method gives better performance, we calculate and discuss statistical data with respect to dynamical structure.

  7. Stochastic dynamics and combinatorial optimization

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Igor V.; Wang, Kang L.

    2017-11-01

    Natural dynamics is often dominated by sudden nonlinear processes such as neuroavalanches, gamma-ray bursts, solar flares, etc., that exhibit scale-free statistics much in the spirit of the logarithmic Ritcher scale for earthquake magnitudes. On phase diagrams, stochastic dynamical systems (DSs) exhibiting this type of dynamics belong to the finite-width phase (N-phase for brevity) that precedes ordinary chaotic behavior and that is known under such names as noise-induced chaos, self-organized criticality, dynamical complexity, etc. Within the recently proposed supersymmetric theory of stochastic dynamics, the N-phase can be roughly interpreted as the noise-induced “overlap” between integrable and chaotic deterministic dynamics. As a result, the N-phase dynamics inherits the properties of the both. Here, we analyze this unique set of properties and conclude that the N-phase DSs must naturally be the most efficient optimizers: on one hand, N-phase DSs have integrable flows with well-defined attractors that can be associated with candidate solutions and, on the other hand, the noise-induced attractor-to-attractor dynamics in the N-phase is effectively chaotic or aperiodic so that a DS must avoid revisiting solutions/attractors thus accelerating the search for the best solution. Based on this understanding, we propose a method for stochastic dynamical optimization using the N-phase DSs. This method can be viewed as a hybrid of the simulated and chaotic annealing methods. Our proposition can result in a new generation of hardware devices for efficient solution of various search and/or combinatorial optimization problems.

  8. On the adaptivity and complexity embedded into differential evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senkerik, Roman; Pluhacek, Michal; Jasek, Roman

    2016-06-08

    This research deals with the comparison of the two modern approaches for evolutionary algorithms, which are the adaptivity and complex chaotic dynamics. This paper aims on the investigations on the chaos-driven Differential Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative chaotic systems in the form of chaotic pseudo random number generators for the DE and comparing the influence to the performance with the state of the art adaptive representative jDE. This research is focused mainly on the possible disadvantages and advantages of both compared approaches. Repeated simulations for Lozi map driving chaotic systems were performedmore » on the simple benchmark functions set, which are more close to the real optimization problems. Obtained results are compared with the canonical not-chaotic and not adaptive DE. Results show that with used simple test functions, the performance of ChaosDE is better in the most cases than jDE and Canonical DE, furthermore due to the unique sequencing in CPRNG given by the hidden chaotic dynamics, thus better and faster selection of unique individuals from population, ChaosDE is faster.« less

  9. Chaos and Hyperchaos in Coupled Antiphase Driven Toda Oscillators

    NASA Astrophysics Data System (ADS)

    Stankevich, Nataliya V.; Dvorak, Anton; Astakhov, Vladimir; Jaros, Patrycja; Kapitaniak, Marcin; Perlikowski, Przemysław; Kapitaniak, Tomasz

    2018-01-01

    The dynamics of two coupled antiphase driven Toda oscillators is studied. We demonstrate three different routes of transition to chaotic dynamics associated with different bifurcations of periodic and quasi-periodic regimes. As a result of these, two types of chaotic dynamics with one and two positive Lyapunov exponents are observed. We argue that the results obtained are robust as they can exist in a wide range of the system parameters.

  10. Time Series Analysis of the Bacillus subtilis Sporulation Network Reveals Low Dimensional Chaotic Dynamics.

    PubMed

    Lecca, Paola; Mura, Ivan; Re, Angela; Barker, Gary C; Ihekwaba, Adaoha E C

    2016-01-01

    Chaotic behavior refers to a behavior which, albeit irregular, is generated by an underlying deterministic process. Therefore, a chaotic behavior is potentially controllable. This possibility becomes practically amenable especially when chaos is shown to be low-dimensional, i.e., to be attributable to a small fraction of the total systems components. In this case, indeed, including the major drivers of chaos in a system into the modeling approach allows us to improve predictability of the systems dynamics. Here, we analyzed the numerical simulations of an accurate ordinary differential equation model of the gene network regulating sporulation initiation in Bacillus subtilis to explore whether the non-linearity underlying time series data is due to low-dimensional chaos. Low-dimensional chaos is expectedly common in systems with few degrees of freedom, but rare in systems with many degrees of freedom such as the B. subtilis sporulation network. The estimation of a number of indices, which reflect the chaotic nature of a system, indicates that the dynamics of this network is affected by deterministic chaos. The neat separation between the indices obtained from the time series simulated from the model and those obtained from time series generated by Gaussian white and colored noise confirmed that the B. subtilis sporulation network dynamics is affected by low dimensional chaos rather than by noise. Furthermore, our analysis identifies the principal driver of the networks chaotic dynamics to be sporulation initiation phosphotransferase B (Spo0B). We then analyzed the parameters and the phase space of the system to characterize the instability points of the network dynamics, and, in turn, to identify the ranges of values of Spo0B and of the other drivers of the chaotic dynamics, for which the whole system is highly sensitive to minimal perturbation. In summary, we described an unappreciated source of complexity in the B. subtilis sporulation network by gathering evidence for the chaotic behavior of the system, and by suggesting candidate molecules driving chaos in the system. The results of our chaos analysis can increase our understanding of the intricacies of the regulatory network under analysis, and suggest experimental work to refine our behavior of the mechanisms underlying B. subtilis sporulation initiation control.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grebogi, C.; Yorke, J.A.

    This report discusses the following topics: controlling chaotic dynamical systems; embedding of experimental data; effect of noise on critical exponents of crises; transition to chaotic scattering; and distribution of floaters on a fluid surface. (LSP)

  12. Ulam method and fractal Weyl law for Perron-Frobenius operators

    NASA Astrophysics Data System (ADS)

    Ermann, L.; Shepelyansky, D. L.

    2010-06-01

    We use the Ulam method to study spectral properties of the Perron-Frobenius operators of dynamical maps in a chaotic regime. For maps with absorption we show numerically that the spectrum is characterized by the fractal Weyl law recently established for nonunitary operators describing poles of quantum chaotic scattering with the Weyl exponent ν = d-1, where d is the fractal dimension of corresponding strange set of trajectories nonescaping in future times. In contrast, for dissipative maps we numerically find the Weyl exponent ν = d/2 where d is the fractal dimension of strange attractor. The Weyl exponent can be also expressed via the relation ν = d0/2 where d0 is the fractal dimension of the invariant sets. We also discuss the properties of eigenvalues and eigenvectors of such operators characterized by the fractal Weyl law.

  13. A full computation-relevant topological dynamics classification of elementary cellular automata.

    PubMed

    Schüle, Martin; Stoop, Ruedi

    2012-12-01

    Cellular automata are both computational and dynamical systems. We give a complete classification of the dynamic behaviour of elementary cellular automata (ECA) in terms of fundamental dynamic system notions such as sensitivity and chaoticity. The "complex" ECA emerge to be sensitive, but not chaotic and not eventually weakly periodic. Based on this classification, we conjecture that elementary cellular automata capable of carrying out complex computations, such as needed for Turing-universality, are at the "edge of chaos."

  14. Transversal homoclinic orbits in a transiently chaotic neural network.

    PubMed

    Chen, Shyan-Shiou; Shih, Chih-Wen

    2002-09-01

    We study the existence of snap-back repellers, hence the existence of transversal homoclinic orbits in a discrete-time neural network. Chaotic behaviors for the network system in the sense of Li and Yorke or Marotto can then be concluded. The result is established by analyzing the structures of the system and allocating suitable parameters in constructing the fixed points and their pre-images for the system. The investigation provides a theoretical confirmation on the scenario of transient chaos for the system. All the parameter conditions for the theory can be examined numerically. The numerical ranges for the parameters which yield chaotic dynamics and convergent dynamics provide significant information in the annealing process in solving combinatorial optimization problems using this transiently chaotic neural network. (c) 2002 American Institute of Physics.

  15. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence

    NASA Astrophysics Data System (ADS)

    Ma, Chao; Meyers, Stephen R.; Sageman, Bradley B.

    2017-02-01

    Variations in the Earth’s orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.

  16. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence.

    PubMed

    Ma, Chao; Meyers, Stephen R; Sageman, Bradley B

    2017-02-22

    Variations in the Earth's orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.

  17. Efficient sensitivity analysis method for chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Liao, Haitao

    2016-05-01

    The direct differentiation and improved least squares shadowing methods are both developed for accurately and efficiently calculating the sensitivity coefficients of time averaged quantities for chaotic dynamical systems. The key idea is to recast the time averaged integration term in the form of differential equation before applying the sensitivity analysis method. An additional constraint-based equation which forms the augmented equations of motion is proposed to calculate the time averaged integration variable and the sensitivity coefficients are obtained as a result of solving the augmented differential equations. The application of the least squares shadowing formulation to the augmented equations results in an explicit expression for the sensitivity coefficient which is dependent on the final state of the Lagrange multipliers. The LU factorization technique to calculate the Lagrange multipliers leads to a better performance for the convergence problem and the computational expense. Numerical experiments on a set of problems selected from the literature are presented to illustrate the developed methods. The numerical results demonstrate the correctness and effectiveness of the present approaches and some short impulsive sensitivity coefficients are observed by using the direct differentiation sensitivity analysis method.

  18. From Weakly Chaotic Dynamics to Deterministic Subdiffusion via Copula Modeling

    NASA Astrophysics Data System (ADS)

    Nazé, Pierre

    2018-03-01

    Copula modeling consists in finding a probabilistic distribution, called copula, whereby its coupling with the marginal distributions of a set of random variables produces their joint distribution. The present work aims to use this technique to connect the statistical distributions of weakly chaotic dynamics and deterministic subdiffusion. More precisely, we decompose the jumps distribution of Geisel-Thomae map into a bivariate one and determine the marginal and copula distributions respectively by infinite ergodic theory and statistical inference techniques. We verify therefore that the characteristic tail distribution of subdiffusion is an extreme value copula coupling Mittag-Leffler distributions. We also present a method to calculate the exact copula and joint distributions in the case where weakly chaotic dynamics and deterministic subdiffusion statistical distributions are already known. Numerical simulations and consistency with the dynamical aspects of the map support our results.

  19. Generating Random Numbers by Means of Nonlinear Dynamic Systems

    ERIC Educational Resources Information Center

    Zang, Jiaqi; Hu, Haojie; Zhong, Juhua; Luo, Duanbin; Fang, Yi

    2018-01-01

    To introduce the randomness of a physical process to students, a chaotic pendulum experiment was opened in East China University of Science and Technology (ECUST) on the undergraduate level in the physics department. It was shown chaotic motion could be initiated through adjusting the operation of a chaotic pendulum. By using the data of the…

  20. Active synchronization between two different chaotic dynamical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheri, M.; Arifin, N. Md; Ismail, F.

    2015-05-15

    In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes.

  1. Chaos for cardiac arrhythmias through a one-dimensional modulation equation for alternans

    PubMed Central

    Dai, Shu; Schaeffer, David G.

    2010-01-01

    Instabilities in cardiac dynamics have been widely investigated in recent years. One facet of this work has studied chaotic behavior, especially possible correlations with fatal arrhythmias. Previously chaotic behavior was observed in various models, specifically in the breakup of spiral and scroll waves. In this paper we study cardiac dynamics and find spatiotemporal chaotic behavior through the Echebarria–Karma modulation equation for alternans in one dimension. Although extreme parameter values are required to produce chaos in this model, it seems significant mathematically that chaos may occur by a different mechanism from previous observations. PMID:20590327

  2. Uncovering low dimensional macroscopic chaotic dynamics of large finite size complex systems

    NASA Astrophysics Data System (ADS)

    Skardal, Per Sebastian; Restrepo, Juan G.; Ott, Edward

    2017-08-01

    In the last decade, it has been shown that a large class of phase oscillator models admit low dimensional descriptions for the macroscopic system dynamics in the limit of an infinite number N of oscillators. The question of whether the macroscopic dynamics of other similar systems also have a low dimensional description in the infinite N limit has, however, remained elusive. In this paper, we show how techniques originally designed to analyze noisy experimental chaotic time series can be used to identify effective low dimensional macroscopic descriptions from simulations with a finite number of elements. We illustrate and verify the effectiveness of our approach by applying it to the dynamics of an ensemble of globally coupled Landau-Stuart oscillators for which we demonstrate low dimensional macroscopic chaotic behavior with an effective 4-dimensional description. By using this description, we show that one can calculate dynamical invariants such as Lyapunov exponents and attractor dimensions. One could also use the reconstruction to generate short-term predictions of the macroscopic dynamics.

  3. Synchronizability of nonidentical weakly dissipative systems

    NASA Astrophysics Data System (ADS)

    Sendiña-Nadal, Irene; Letellier, Christophe

    2017-10-01

    Synchronization is a very generic process commonly observed in a large variety of dynamical systems which, however, has been rarely addressed in systems with low dissipation. Using the Rössler, the Lorenz 84, and the Sprott A systems as paradigmatic examples of strongly, weakly, and non-dissipative chaotic systems, respectively, we show that a parameter or frequency mismatch between two coupled such systems does not affect the synchronizability and the underlying structure of the joint attractor in the same way. By computing the Shannon entropy associated with the corresponding recurrence plots, we were able to characterize how two coupled nonidentical chaotic oscillators organize their dynamics in different dissipation regimes. While for strongly dissipative systems, the resulting dynamics exhibits a Shannon entropy value compatible with the one having an average parameter mismatch, for weak dissipation synchronization dynamics corresponds to a more complex behavior with higher values of the Shannon entropy. In comparison, conservative dynamics leads to a less rich picture, providing either similar chaotic dynamics or oversimplified periodic ones.

  4. Chaotic trajectories in the standard map. The concept of anti-integrability

    NASA Astrophysics Data System (ADS)

    Aubry, Serge; Abramovici, Gilles

    1990-07-01

    A rigorous proof is given in the standard map (associated with a Frenkel-Kontorowa model) for the existence of chaotic trajectories with unbounded momenta for large enough coupling constant k > k0. These chaotic trajectories (with finite entropy per site) are coded by integer sequences { mi} such that the sequence bi = |m i+1 + m i-1-2m i| be bounded by some integer b. The bound k0 in k depends on b and can be lowered for coding sequences { mi} fulfilling more restrictive conditions. The obtained chaotic trajectories correspond to stationary configurations of the Frenkel-Kontorowa model with a finite (non-zero) photon gap (called gap parameter in dimensionless units). This property implies that the trajectory (or the configuration { ui}) can be uniquely continued as a uniformly continuous function of the model parameter k in some neighborhood of the initial configuration. A non-zero gap parameter implies that the Lyapunov coefficient is strictly positive (when it is defined). In addition, the existence of dilating and contracting manifolds is proven for these chaotic trajectories. “Exotic” trajectories such as ballistic trajectories are also proven to exist as a consequence of these theorems. The concept of anti-integrability emerges from these theorems. In the anti-integrable limit which can be only defined for a discrete time dynamical system, the coordinates of the trajectory at time i do not depend on the coordinates at time i - 1. Thus, at this singular limit, the existence of chaotic trajectories is trivial and the dynamical system reduces to a Bernoulli shift. It is well known that the KAM tori of symplectic dynamical originates by continuity from the invariant tori which exists in the integrible limit (under certain conditions). In a similar way, it appears that the chaotic trajectories of dynamical systems originate by continuity from those which exists at the anti-integrable limits (also under certain conditions).

  5. Impact of inelastic processes on the chaotic dynamics of a Bose-Einstein condensate trapped into a moving optical lattice

    NASA Astrophysics Data System (ADS)

    Tchatchueng, Sylvin; Siewe Siewe, Martin; Marie Moukam Kakmeni, François; Tchawoua, Clément

    2017-03-01

    We investigate the dynamics of a Bose-Einstein condensate with attractive two-body and repulsive three-body interactions between atoms trapped into a moving optical lattice and subjected to some inelastic processes (a linear atomic feeding and two dissipative terms related to dipolar relaxation and three-body recombination). We are interested in finding out how the nonconservative terms mentioned above act on the dynamical behaviour of the condensate, and how they can be used in the control of possible chaotic dynamics. Seeking the wave function of condensate on the form of Bloch waves, we notice that the real amplitude of the condensate is governed by an integro-differential equation. As theoretical tool of prediction of homoclinic and heteroclinic chaos, we use the Melnikov method, which provides two Melnikov functions related to homoclinic and heteroclinic bifurcations. Applying the Melnikov criterion, some regions of instability are plotted in the parameter space and reveal complex dynamics (solitonic stable solutions, weak and strong instabilities leading to collapse, growth-collapse cycles and finally to chaotic oscillations). It comes from some parameter space that coupling the optical intensity and parameters related to atomic feeding and atomic losses (dissipations) as control parameters can help to reduce or annihilate chaotic behaviours of the condensate. Moreover, the theoretical study reveals that there is a certain ratio between the atomic feeding parameter and the parameters related to the dissipation for the occurrence of chaotic oscillations in the dynamics of condensate. The theoretical predictions are verified by numerical simulations (Poincaré sections), and there is a certain reliability of our analytical treatment.

  6. The dynamical structure of the MEO region: long-term stability, chaos, and transport

    NASA Astrophysics Data System (ADS)

    Daquin, Jérôme; Rosengren, Aaron J.; Alessi, Elisa Maria; Deleflie, Florent; Valsecchi, Giovanni B.; Rossi, Alessandro

    2016-04-01

    It has long been suspected that the Global Navigation Satellite Systems exist in a background of complex resonances and chaotic motion; yet, the precise dynamical character of these phenomena remains elusive. Recent studies have shown that the occurrence and nature of the resonances driving these dynamics depend chiefly on the frequencies of nodal and apsidal precession and the rate of regression of the Moon's nodes. Woven throughout the inclination and eccentricity phase space is an exceedingly complicated web-like structure of lunisolar secular resonances, which become particularly dense near the inclinations of the navigation satellite orbits. A clear picture of the physical significance of these resonances is of considerable practical interest for the design of disposal strategies for the four constellations. Here we present analytical and semi-analytical models that accurately reflect the true nature of the resonant interactions, and trace the topological organization of the manifolds on which the chaotic motions take place. We present an atlas of FLI stability maps, showing the extent of the chaotic regions of the phase space, computed through a hierarchy of more realistic, and more complicated, models, and compare the chaotic zones in these charts with the analytical estimation of the width of the chaotic layers from the heuristic Chirikov resonance-overlap criterion. As the semi-major axis of the satellite is receding, we observe a transition from stable Nekhoroshev-like structures at three Earth radii, where regular orbits dominate, to a Chirikov regime where resonances overlap at five Earth radii. From a numerical estimation of the Lyapunov times, we find that many of the inclined, nearly circular orbits of the navigation satellites are strongly chaotic and that their dynamics are unpredictable on decadal timescales.

  7. The chaotic dynamical aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.Y.; Tepikian, S.

    1985-10-01

    Nonlinear magnetic forces become more important for particles in the modern large accelerators. These nonlinear elements are introduced either intentionally to control beam dynamics or by uncontrollable random errors. Equations of motion in the nonlinear Hamiltonian are usually non-integrable. Because of the nonlinear part of the Hamiltonian, the tune diagram of accelerators is a jungle. Nonlinear magnet multipoles are important in keeping the accelerator operation point in the safe quarter of the hostile jungle of resonant tunes. Indeed, all the modern accelerator design have taken advantages of nonlinear mechanics. On the other hand, the effect of the uncontrollable random multipolesmore » should be evaluated carefully. A powerful method of studying the effect of these nonlinear multipoles is using a particle tracking calculation, where a group of test particles are tracing through these magnetic multipoles in the accelerator hundreds to millions of turns in order to test the dynamical aperture of the machine. These methods are extremely useful in the design of a large accelerator such as SSC, LEP, HERA and RHIC. These calculations unfortunately take tremendous amount of computing time. In this paper, we try to apply the existing method in the nonlinear dynamics to study the possible alternative solution. When the Hamiltonian motion becomes chaotic, the tune of the machine becomes undefined. The aperture related to the chaotic orbit can be identified as chaotic dynamical aperture. We review the method of determining chaotic orbit and apply the method to nonlinear problems in accelerator physics. We then discuss the scaling properties and effect of random sextupoles.« less

  8. Synthetic Modeling of Autonomous Learning with a Chaotic Neural Network

    NASA Astrophysics Data System (ADS)

    Funabashi, Masatoshi

    We investigate the possible role of intermittent chaotic dynamics called chaotic itinerancy, in interaction with nonsupervised learnings that reinforce and weaken the neural connection depending on the dynamics itself. We first performed hierarchical stability analysis of the Chaotic Neural Network model (CNN) according to the structure of invariant subspaces. Irregular transition between two attractor ruins with positive maximum Lyapunov exponent was triggered by the blowout bifurcation of the attractor spaces, and was associated with riddled basins structure. We secondly modeled two autonomous learnings, Hebbian learning and spike-timing-dependent plasticity (STDP) rule, and simulated the effect on the chaotic itinerancy state of CNN. Hebbian learning increased the residence time on attractor ruins, and produced novel attractors in the minimum higher-dimensional subspace. It also augmented the neuronal synchrony and established the uniform modularity in chaotic itinerancy. STDP rule reduced the residence time on attractor ruins, and brought a wide range of periodicity in emerged attractors, possibly including strange attractors. Both learning rules selectively destroyed and preserved the specific invariant subspaces, depending on the neuron synchrony of the subspace where the orbits are situated. Computational rationale of the autonomous learning is discussed in connectionist perspective.

  9. Child allowances, fertility, and chaotic dynamics.

    PubMed

    Chen, Hung-Ju; Li, Ming-Chia

    2013-06-01

    This paper analyzes the dynamics in an overlapping generations model with the provision of child allowances. Fertility is an increasing function of child allowances and there exists a threshold effect of the marginal effect of child allowances on fertility. We show that if the effectiveness of child allowances is sufficiently high, an intermediate-sized tax rate will be enough to generate chaotic dynamics. Besides, a decrease in the inter-temporal elasticity of substitution will prevent the occurrence of irregular cycles.

  10. Chaotic Dynamics of a Josephson Junction with a Ratchet Potential and Current-Modulating Damping

    NASA Astrophysics Data System (ADS)

    Li, Fei; Li, Wenwu; Xu, Lan

    2018-06-01

    The chaotic dynamics of a Josephson junction with a ratchet potential and current-modulating damping are studied. Under the first-order approximation, we construct the general solution of the first-order equation whose boundedness condition contains the famous Melnikov chaotic criterion. Based on the general solution, the incomputability and unpredictability of the system's chaotic behavior are discussed. For the case beyond perturbation conditions, the evolution of stroboscopic Poincaré sections shows that the system undergoes a quasi-periodic transition to chaos with an increasing intensity of the rf-current. Through a suitable feedback controlling strategy, the chaos can be effectively suppressed and the intensity of the controller can vary in a large range. It is also found that the current between the two separated superconductors increases monotonously in some specific parameter spaces.

  11. Chaotic Dynamics of a Josephson Junction with a Ratchet Potential and Current-Modulating Damping

    NASA Astrophysics Data System (ADS)

    Li, Fei; Li, Wenwu; Xu, Lan

    2018-04-01

    The chaotic dynamics of a Josephson junction with a ratchet potential and current-modulating damping are studied. Under the first-order approximation, we construct the general solution of the first-order equation whose boundedness condition contains the famous Melnikov chaotic criterion. Based on the general solution, the incomputability and unpredictability of the system's chaotic behavior are discussed. For the case beyond perturbation conditions, the evolution of stroboscopic Poincaré sections shows that the system undergoes a quasi-periodic transition to chaos with an increasing intensity of the rf-current. Through a suitable feedback controlling strategy, the chaos can be effectively suppressed and the intensity of the controller can vary in a large range. It is also found that the current between the two separated superconductors increases monotonously in some specific parameter spaces.

  12. Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrio, Roberto, E-mail: rbarrio@unizar.es; Serrano, Sergio; Angeles Martínez, M.

    2014-06-01

    We study a plethora of chaotic phenomena in the Hindmarsh-Rose neuron model with the use of several computational techniques including the bifurcation parameter continuation, spike-quantification, and evaluation of Lyapunov exponents in bi-parameter diagrams. Such an aggregated approach allows for detecting regions of simple and chaotic dynamics, and demarcating borderlines—exact bifurcation curves. We demonstrate how the organizing centers—points corresponding to codimension-two homoclinic bifurcations—along with fold and period-doubling bifurcation curves structure the biparametric plane, thus forming macro-chaotic regions of onion bulb shapes and revealing spike-adding cascades that generate micro-chaotic structures due to the hysteresis.

  13. A study in three-dimensional chaotic dynamics: Granular flow and transport in a bi-axial spherical tumbler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christov, Ivan C.; Lueptow, Richard M.; Ottino, Julio M.

    We study three-dimensional (3D) chaotic dynamics through an analysis of transport in a granular flow in a half-full spherical tumbler rotated sequentially about two orthogonal axes (a bi-axial “blinking” tumbler). The flow is essentially quasi-two-dimensional in any vertical slice of the sphere during rotation about a single axis, and we provide an explicit exact solution to the model in this case. Hence, the cross-sectional flow can be represented by a twist map, allowing us to express the 3D flow as a linked twist map (LTM). We prove that if the rates of rotation about each axis are equal, then (inmore » the absence of stochasticity) particle trajectories are restricted to two-dimensional (2D) surfaces consisting of a portion of a hemispherical shell closed by a “cap''; if the rotation rates are unequal, then particles can leave the surface they start on and traverse a volume of the tumbler. The period-one structures of the governing LTM are examined in detail: analytical expressions are provided for the location of period-one curves, their extent into the bulk of the granular material, and their dependence on the protocol parameters (rates and durations of rotations). Exploiting the restriction of trajectories to 2D surfaces in the case of equal rotation rates about the axes, a method is proposed for identifying and constructing 3D Kolmogorov--Arnold--Moser (KAM) tubes around the normally elliptic period-one curves. The invariant manifold structure arising from the normally hyperbolic period-one curves is also examined. When the motion is restricted to 2D surfaces, the structure of manifolds of the hyperbolic points in the bulk differs from that corresponding to hyperbolic points in the flowing layer. Each is reminiscent of a template provided by a non-integrable perturbation to a Hamiltonian system, though the governing LTM is not. This highlights the novel 3D chaotic behaviors observed in this model dynamical system.« less

  14. A study in three-dimensional chaotic dynamics: Granular flow and transport in a bi-axial spherical tumbler

    DOE PAGES

    Christov, Ivan C.; Lueptow, Richard M.; Ottino, Julio M.; ...

    2014-05-22

    We study three-dimensional (3D) chaotic dynamics through an analysis of transport in a granular flow in a half-full spherical tumbler rotated sequentially about two orthogonal axes (a bi-axial “blinking” tumbler). The flow is essentially quasi-two-dimensional in any vertical slice of the sphere during rotation about a single axis, and we provide an explicit exact solution to the model in this case. Hence, the cross-sectional flow can be represented by a twist map, allowing us to express the 3D flow as a linked twist map (LTM). We prove that if the rates of rotation about each axis are equal, then (inmore » the absence of stochasticity) particle trajectories are restricted to two-dimensional (2D) surfaces consisting of a portion of a hemispherical shell closed by a “cap''; if the rotation rates are unequal, then particles can leave the surface they start on and traverse a volume of the tumbler. The period-one structures of the governing LTM are examined in detail: analytical expressions are provided for the location of period-one curves, their extent into the bulk of the granular material, and their dependence on the protocol parameters (rates and durations of rotations). Exploiting the restriction of trajectories to 2D surfaces in the case of equal rotation rates about the axes, a method is proposed for identifying and constructing 3D Kolmogorov--Arnold--Moser (KAM) tubes around the normally elliptic period-one curves. The invariant manifold structure arising from the normally hyperbolic period-one curves is also examined. When the motion is restricted to 2D surfaces, the structure of manifolds of the hyperbolic points in the bulk differs from that corresponding to hyperbolic points in the flowing layer. Each is reminiscent of a template provided by a non-integrable perturbation to a Hamiltonian system, though the governing LTM is not. This highlights the novel 3D chaotic behaviors observed in this model dynamical system.« less

  15. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model

    NASA Astrophysics Data System (ADS)

    Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward

    2018-04-01

    A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.

  16. Quantification of scaling exponents and dynamical complexity of microwave refractivity in a tropical climate

    NASA Astrophysics Data System (ADS)

    Fuwape, Ibiyinka A.; Ogunjo, Samuel T.

    2016-12-01

    Radio refractivity index is used to quantify the effect of atmospheric parameters in communication systems. Scaling and dynamical complexities of radio refractivity across different climatic zones of Nigeria have been studied. Scaling property of the radio refractivity across Nigeria was estimated from the Hurst Exponent obtained using two different scaling methods namely: The Rescaled Range (R/S) and the detrended fluctuation analysis(DFA). The delay vector variance (DVV), Largest Lyapunov Exponent (λ1) and Correlation Dimension (D2) methods were used to investigate nonlinearity and the results confirm the presence of deterministic nonlinear profile in the radio refractivity time series. The recurrence quantification analysis (RQA) was used to quantify the degree of chaoticity in the radio refractivity across the different climatic zones. RQA was found to be a good measure for identifying unique fingerprint and signature of chaotic time series data. Microwave radio refractivity was found to be persistent and chaotic in all the study locations. The dynamics of radio refractivity increases in complexity and chaoticity from the Coastal region towards the Sahelian climate. The design, development and deployment of robust and reliable microwave communication link in the region will be greatly affected by the chaotic nature of radio refractivity in the region.

  17. Effect of Parametric Dichotomic Markov Noise on the Properties of Chaotic Transitions in Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Gac, J. M.; Żebrowski, J. J.

    A chaotic transition occurs when a continuous change of one of the parameters of the system causes a discontinuous change in the properties of the chaotic attractor of the system. Such phenomena are present in many dynamical systems, in which a chaotic behavior occurs. The best known of these transitions are: the period-doubling bifurcation cascade, intermittency and crises. The effect of dichotomous Markov noise (DMN) on the properties of systems with chaotic transitions is discussed. DMN is a very simple two-valued stochastic process, with constant transition rates between the two states. In spite of its simplicity, this kind of noise is a very powerful tool to describe various phenomena present in many physical, chemical or biological systems. Many interesting phenomena induced by DMN are known. However, there is no research on the effect of this kind of noise on intermittency or crises. We present the change of the mean laminar phase length and of laminar phase length distribution caused by DMN modulating the parameters of a system with intermittency and the modification of the mean life time on the pre-crisis attractor in the case of a boundary crisis. The results obtained analytically are compared with numerical simulations for several simple dynamical systems.

  18. Experimental Chaos - Proceedings of the 3rd Conference

    NASA Astrophysics Data System (ADS)

    Harrison, Robert G.; Lu, Weiping; Ditto, William; Pecora, Lou; Spano, Mark; Vohra, Sandeep

    1996-10-01

    The Table of Contents for the full book PDF is as follows: * Preface * Spatiotemporal Chaos and Patterns * Scale Segregation via Formation of Domains in a Nonlinear Optical System * Laser Dynamics as Hydrodynamics * Spatiotemporal Dynamics of Human Epileptic Seizures * Experimental Transition to Chaos in a Quasi 1D Chain of Oscillators * Measuring Coupling in Spatiotemporal Dynamical Systems * Chaos in Vortex Breakdown * Dynamical Analysis * Radial Basis Function Modelling and Prediction of Time Series * Nonlinear Phenomena in Polyrhythmic Hand Movements * Using Models to Diagnose, Test and Control Chaotic Systems * New Real-Time Analysis of Time Series Data with Physical Wavelets * Control and Synchronization * Measuring and Controlling Chaotic Dynamics in a Slugging Fluidized Bed * Control of Chaos in a Laser with Feedback * Synchronization and Chaotic Diode Resonators * Control of Chaos by Continuous-time Feedback with Delay * A Framework for Communication using Chaos Sychronization * Control of Chaos in Switching Circuits * Astrophysics, Meteorology and Oceanography * Solar-Wind-Magnetospheric Dynamics via Satellite Data * Nonlinear Dynamics of the Solar Atmosphere * Fractal Dimension of Scalar and Vector Variables from Turbulence Measurements in the Atmospheric Surface Layer * Mechanics * Escape and Overturning: Subtle Transient Behavior in Nonlinear Mechanical Models * Organising Centres in the Dynamics of Parametrically Excited Double Pendulums * Intermittent Behaviour in a Heating System Driven by Phase Transitions * Hydrodynamics * Size Segregation in Couette Flow of Granular Material * Routes to Chaos in Rotational Taylor-Couette Flow * Experimental Study of the Laminar-Turbulent Transition in an Open Flow System * Chemistry * Order and Chaos in Excitable Media under External Forcing * A Chemical Wave Propagation with Accelerating Speed Accompanied by Hydrodynamic Flow * Optics * Instabilities in Semiconductor Lasers with Optical Injection * Spatio-Temporal Dynamics of a Bimode CO2 Laser with Saturable Absorber * Chaotic Homoclinic Phenomena in Opto-Thermal Devices * Observation and Characterisation of Low-Frequency Chaos in Semiconductor Lasers with External Feedback * Condensed Matter * The Application of Nonlinear Dynamics in the Study of Ferroelectric Materials * Cellular Convection in a Small Aspect Ratio Liquid Crystal Device * Driven Spin-Wave Dynamics in YIG Films * Quantum Chaology in Quartz * Small Signal Amplification Caused by Nonlinear Properties of Ferroelectrics * Composite Materials Evolved from Chaos * Electronics and Circuits * Controlling a Chaotic Array of Pulse-Coupled Fitzhugh-Nagumo Circuits * Experimental Observation of On-Off Intermittency * Phase Lock-In of Chaotic Relaxation Oscillators * Biology and Medicine * Singular Value Decomposition and Circuit Structure in Invertebrate Ganglia * Nonlinear Forecasting of Spike Trains from Neurons of a Mollusc * Ultradian Rhythm in the Sensitive Plants: Chaos or Coloured Noise? * Chaos and the Crayfish Sixth Ganglion * Hardware Coupled Nonlinear Oscillators as a Model of Retina

  19. An application of the Caputo-Fabrizio operator to replicator-mutator dynamics: Bifurcation, chaotic limit cycles and control

    NASA Astrophysics Data System (ADS)

    Doungmo Goufo, Emile Franc

    2018-02-01

    The physical behaviors of replicator-mutator processes found in theoretical biophysics, physical chemistry, biochemistry and population biology remain complex with unlimited expressibility. People languages, for instance, have impressively and unpredictably changed over the time in human history. This is mainly due to the collection of small changes and collaboration with other languages. In this paper, the Caputo-Fabrizio operator is applied to a replicator-mutator dynamic taking place in midsts with movement. The model is fully analyzed and solved numerically via the Crank-Nicolson scheme. Stability and convergence results are provided. A concrete application to replicator-mutator dynamics for a population with three strategies is performed with numerical simulations provided for some fixed values of the physical position of the population symbolized by r and the grid points. Physically, it happens that limit cycles appear, not only in function of the mutation parameter μ but also in function of the values given to r . The amplitudes of limit cycles also appear to be proportional to r but the stability of the system remains unaffected. However, those limit cycles instead of disappearing as expected, are immediately followed by chaotic and unpredictable behaviors certainly due to the non-singular kernel used in the model and suitable to non-linear dynamics. Hence, the appearance and disappearance of limit cycles might be controlled by the position variable r which can also apprehend chaos.

  20. Counting statistics of chaotic resonances at optical frequencies: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Lippolis, Domenico; Wang, Li; Xiao, Yun-Feng

    2017-07-01

    A deformed dielectric microcavity is used as an experimental platform for the analysis of the statistics of chaotic resonances, in the perspective of testing fractal Weyl laws at optical frequencies. In order to surmount the difficulties that arise from reading strongly overlapping spectra, we exploit the mixed nature of the phase space at hand, and only count the high-Q whispering-gallery modes (WGMs) directly. That enables us to draw statistical information on the more lossy chaotic resonances, coupled to the high-Q regular modes via dynamical tunneling. Three different models [classical, Random-Matrix-Theory (RMT) based, semiclassical] to interpret the experimental data are discussed. On the basis of least-squares analysis, theoretical estimates of Ehrenfest time, and independent measurements, we find that a semiclassically modified RMT-based expression best describes the experiment in all its realizations, particularly when the resonator is coupled to visible light, while RMT alone still works quite well in the infrared. In this work we reexamine and substantially extend the results of a short paper published earlier [L. Wang et al., Phys. Rev. E 93, 040201(R) (2016), 10.1103/PhysRevE.93.040201].

  1. Experimental Demonstration of Coherent Control in Quantum Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Bitter, M.; Milner, V.

    2017-01-01

    We experimentally demonstrate coherent control of a quantum system, whose dynamics is chaotic in the classical limit. Interaction of diatomic molecules with a periodic sequence of ultrashort laser pulses leads to the dynamical localization of the molecular angular momentum, a characteristic feature of the chaotic quantum kicked rotor. By changing the phases of the rotational states in the initially prepared coherent wave packet, we control the rotational distribution of the final localized state and its total energy. We demonstrate the anticipated sensitivity of control to the exact parameters of the kicking field, as well as its disappearance in the classical regime of excitation.

  2. A nonlinear optimal control approach for chaotic finance dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.

    2017-11-01

    A new nonlinear optimal control approach is proposed for stabilization of the dynamics of a chaotic finance model. The dynamic model of the financial system, which expresses interaction between the interest rate, the investment demand, the price exponent and the profit margin, undergoes approximate linearization round local operating points. These local equilibria are defined at each iteration of the control algorithm and consist of the present value of the systems state vector and the last value of the control inputs vector that was exerted on it. The approximate linearization makes use of Taylor series expansion and of the computation of the associated Jacobian matrices. The truncation of higher order terms in the Taylor series expansion is considered to be a modelling error that is compensated by the robustness of the control loop. As the control algorithm runs, the temporary equilibrium is shifted towards the reference trajectory and finally converges to it. The control method needs to compute an H-infinity feedback control law at each iteration, and requires the repetitive solution of an algebraic Riccati equation. Through Lyapunov stability analysis it is shown that an H-infinity tracking performance criterion holds for the control loop. This implies elevated robustness against model approximations and external perturbations. Moreover, under moderate conditions the global asymptotic stability of the control loop is proven.

  3. First experimental test of a trace formula for billiard systems showing mixed dynamics.

    PubMed

    Dembowski, C; Gräf, H D; Heine, A; Hesse, T; Rehfeld, H; Richter, A

    2001-04-09

    In general, trace formulas relate the density of states for a given quantum mechanical system to the properties of the periodic orbits of its classical counterpart. Here we report for the first time on a semiclassical description of microwave spectra taken from superconducting billiards of the Limaçon family showing mixed dynamics in terms of a generalized trace formula derived by Ullmo et al. [Phys. Rev. E 54, 136 (1996)]. This expression not only describes mixed-typed behavior but also the limiting cases of fully regular and fully chaotic systems and thus presents a continuous interpolation between the Berry-Tabor and Gutzwiller formulas.

  4. Chaos in Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Hu, Shuiqing; Raman, Arvind

    2006-01-01

    Chaotic oscillations of microcantilever tips in dynamic atomic force microscopy (AFM) are reported and characterized. Systematic experiments performed using a variety of microcantilevers under a wide range of operating conditions indicate that softer AFM microcantilevers bifurcate from periodic to chaotic oscillations near the transition from the noncontact to the tapping regimes. Careful Lyapunov exponent and noise titration calculations of the tip oscillation data confirm their chaotic nature. AFM images taken by scanning the chaotically oscillating tips over the sample show small, but significant metrology errors at the nanoscale due to this “deterministic” uncertainty.

  5. Chaos enhancing tunneling in a coupled Bose-Einstein condensate with a double driving.

    PubMed

    Rong, Shiguang; Hai, Wenhua; Xie, Qiongtao; Zhu, Qianquan

    2009-09-01

    We study the effects of chaotic dynamics on atomic tunneling between two weakly coupled Bose-Einstein condensates driven by a double-frequency periodic field. Under the Melnikov's chaos criterion, we divide the parameter space into three parts of different types, regular region, low-chaoticity region, and high-chaoticity region, and give the accurate boundaries between the different regions. It is found that the atomic tunneling can be enhanced in the presence of chaos. Particularly, in the high-chaoticity regions, the chaos-induced inversion of the population imbalance is observed numerically.

  6. Chaotic dynamics of Heisenberg ferromagnetic spin chain with bilinear and biquadratic interactions

    NASA Astrophysics Data System (ADS)

    Blessy, B. S. Gnana; Latha, M. M.

    2017-10-01

    We investigate the chaotic dynamics of one dimensional Heisenberg ferromagnetic spin chain by constructing the Hamiltonian equations of motion. We present the trajectory and phase plots of the system with bilinear and also biquadratic interactions. The stability of the system is analysed in both cases by constructing the Jacobian matrix and by measuring the Lyapunov exponents. The results are illustrated graphically.

  7. Exact coherent structures and chaotic dynamics in a model of cardiac tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Greg; Marcotte, Christopher D.; Grigoriev, Roman O., E-mail: roman.grigoriev@physics.gatech.edu

    Unstable nonchaotic solutions embedded in the chaotic attractor can provide significant new insight into chaotic dynamics of both low- and high-dimensional systems. In particular, in turbulent fluid flows, such unstable solutions are referred to as exact coherent structures (ECS) and play an important role in both initiating and sustaining turbulence. The nature of ECS and their role in organizing spatiotemporally chaotic dynamics, however, is reasonably well understood only for systems on relatively small spatial domains lacking continuous Euclidean symmetries. Construction of ECS on large domains and in the presence of continuous translational and/or rotational symmetries remains a challenge. This ismore » especially true for models of excitable media which display spiral turbulence and for which the standard approach to computing ECS completely breaks down. This paper uses the Karma model of cardiac tissue to illustrate a potential approach that could allow computing a new class of ECS on large domains of arbitrary shape by decomposing them into a patchwork of solutions on smaller domains, or tiles, which retain Euclidean symmetries locally.« less

  8. Intermittent and sustained periodic windows in networked chaotic Rössler oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhiwei; Sun, Yong; University of the Chinese Academy of Sciences, Beijing 100049

    Route to chaos (or periodicity) in dynamical systems is one of fundamental problems. Here, dynamical behaviors of coupled chaotic Rössler oscillators on complex networks are investigated and two different types of periodic windows with the variation of coupling strength are found. Under a moderate coupling, the periodic window is intermittent, and the attractors within the window extremely sensitively depend on the initial conditions, coupling parameter, and topology of the network. Therefore, after adding or removing one edge of network, the periodic attractor can be destroyed and substituted by a chaotic one, or vice versa. In contrast, under an extremely weakmore » coupling, another type of periodic window appears, which insensitively depends on the initial conditions, coupling parameter, and network. It is sustained and unchanged for different types of network structure. It is also found that the phase differences of the oscillators are almost discrete and randomly distributed except that directly linked oscillators more likely have different phases. These dynamical behaviors have also been generally observed in other networked chaotic oscillators.« less

  9. A method of recovering the initial vectors of globally coupled map lattices based on symbolic dynamics

    NASA Astrophysics Data System (ADS)

    Sun, Li-Sha; Kang, Xiao-Yun; Zhang, Qiong; Lin, Lan-Xin

    2011-12-01

    Based on symbolic dynamics, a novel computationally efficient algorithm is proposed to estimate the unknown initial vectors of globally coupled map lattices (CMLs). It is proved that not all inverse chaotic mapping functions are satisfied for contraction mapping. It is found that the values in phase space do not always converge on their initial values with respect to sufficient backward iteration of the symbolic vectors in terms of global convergence or divergence (CD). Both CD property and the coupling strength are directly related to the mapping function of the existing CML. Furthermore, the CD properties of Logistic, Bernoulli, and Tent chaotic mapping functions are investigated and compared. Various simulation results and the performances of the initial vector estimation with different signal-to-noise ratios (SNRs) are also provided to confirm the proposed algorithm. Finally, based on the spatiotemporal chaotic characteristics of the CML, the conditions of estimating the initial vectors using symbolic dynamics are discussed. The presented method provides both theoretical and experimental results for better understanding and characterizing the behaviours of spatiotemporal chaotic systems.

  10. Generating a Double-Scroll Attractor by Connecting a Pair of Mutual Mirror-Image Attractors via Planar Switching Control

    NASA Astrophysics Data System (ADS)

    Sun, Changchun; Chen, Zhongtang; Xu, Qicheng

    2017-12-01

    An original three-dimensional (3D) smooth continuous chaotic system and its mirror-image system with eight common parameters are constructed and a pair of symmetric chaotic attractors can be generated simultaneously. Basic dynamical behaviors of two 3D chaotic systems are investigated respectively. A double-scroll chaotic attractor by connecting the pair of mutual mirror-image attractors is generated via a novel planar switching control approach. Chaos can also be controlled to a fixed point, a periodic orbit and a divergent orbit respectively by switching between two chaotic systems. Finally, an equivalent 3D chaotic system by combining two 3D chaotic systems with a switching law is designed by utilizing a sign function. Two circuit diagrams for realizing the double-scroll attractor are depicted by employing an improved module-based design approach.

  11. A Simple Snap Oscillator with Coexisting Attractors, Its Time-Delayed Form, Physical Realization, and Communication Designs

    NASA Astrophysics Data System (ADS)

    Rajagopal, Karthikeyan; Jafari, Sajad; Akgul, Akif; Karthikeyan, Anitha; Çiçek, Serdar; Shekofteh, Yasser

    2018-05-01

    In this paper, we report a novel chaotic snap oscillator with one nonlinear function. Dynamic analysis of the system shows the existence of bistability. To study the time delay effects on the proposed snap oscillator, we introduce multiple time delay in the fourth state equation. Investigation of dynamical properties of the time-delayed system shows that the snap oscillator exhibits the same multistable properties as the nondelayed system. The new multistable hyperjerk chaotic system has been tested in chaos shift keying and symmetric choc shift keying modulated communication designs for engineering applications. It has been determined that the symmetric chaos shift keying modulated communication system implemented with the new chaotic system is more successful than the chaos shift keying modulation for secure communication. Also, circuit implementation of the chaotic snap oscillator with tangent function is carried out showing its feasibility.

  12. Nonlinear modeling of chaotic time series: Theory and applications

    NASA Astrophysics Data System (ADS)

    Casdagli, M.; Eubank, S.; Farmer, J. D.; Gibson, J.; Desjardins, D.; Hunter, N.; Theiler, J.

    We review recent developments in the modeling and prediction of nonlinear time series. In some cases, apparent randomness in time series may be due to chaotic behavior of a nonlinear but deterministic system. In such cases, it is possible to exploit the determinism to make short term forecasts that are much more accurate than one could make from a linear stochastic model. This is done by first reconstructing a state space, and then using nonlinear function approximation methods to create a dynamical model. Nonlinear models are valuable not only as short term forecasters, but also as diagnostic tools for identifying and quantifying low-dimensional chaotic behavior. During the past few years, methods for nonlinear modeling have developed rapidly, and have already led to several applications where nonlinear models motivated by chaotic dynamics provide superior predictions to linear models. These applications include prediction of fluid flows, sunspots, mechanical vibrations, ice ages, measles epidemics, and human speech.

  13. Semiconductor lasers driven by self-sustained chaotic electronic oscillators and applications to optical chaos cryptography.

    PubMed

    Kingni, Sifeu Takougang; Mbé, Jimmi Hervé Talla; Woafo, Paul

    2012-09-01

    In this work, we numerically study the dynamics of vertical cavity surface emitting laser (VCSEL) firstly when it is driven by Chua's oscillator, secondly in case where it is driven by a broad frequency spectral bandwidth chaotic oscillator developed by Nana et al. [Commun. Nonlinear Sci. Numer. Simul. 14, 2266 (2009)]. We demonstrated that the VCSEL generated robust chaotic dynamics compared to the ones found in VCSEL subject to a sinusoidally modulated current and therefore it is more suitable for chaos encryption techniques. The synchronization characteristics and the communication performances of unidirectional coupled VCSEL driven by the broad frequency spectral bandwidth chaotic oscillators are investigated numerically. The results show that high-quality synchronization and transmission of messages can be realized for suitable system parameters. Chaos shift keying method is successfully applied to encrypt a message at a high bitrate.

  14. Chimeras and clusters in networks of hyperbolic chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Cano, A. V.; Cosenza, M. G.

    2017-03-01

    We show that chimera states, where differentiated subsets of synchronized and desynchronized dynamical elements coexist, can emerge in networks of hyperbolic chaotic oscillators subject to global interactions. As local dynamics we employ Lozi maps, which possess hyperbolic chaotic attractors. We consider a globally coupled system of these maps and use two statistical quantities to describe its collective behavior: the average fraction of elements belonging to clusters and the average standard deviation of state variables. Chimera states, clusters, complete synchronization, and incoherence are thus characterized on the space of parameters of the system. We find that chimera states are related to the formation of clusters in the system. In addition, we show that chimera states arise for a sufficiently long range of interactions in nonlocally coupled networks of these maps. Our results reveal that, under some circumstances, hyperbolicity does not impede the formation of chimera states in networks of coupled chaotic systems, as it had been previously hypothesized.

  15. Turbulent Fluid Motion 6: Turbulence, Nonlinear Dynamics, and Deterministic Chaos

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1996-01-01

    Several turbulent and nonturbulent solutions of the Navier-Stokes equations are obtained. The unaveraged equations are used numerically in conjunction with tools and concepts from nonlinear dynamics, including time series, phase portraits, Poincare sections, Liapunov exponents, power spectra, and strange attractors. Initially neighboring solutions for a low-Reynolds-number fully developed turbulence are compared. The turbulence is sustained by a nonrandom time-independent external force. The solutions, on the average, separate exponentially with time, having a positive Liapunov exponent. Thus, the turbulence is characterized as chaotic. In a search for solutions which contrast with the turbulent ones, the Reynolds number (or strength of the forcing) is reduced. Several qualitatively different flows are noted. These are, respectively, fully chaotic, complex periodic, weakly chaotic, simple periodic, and fixed-point. Of these, we classify only the fully chaotic flows as turbulent. Those flows have both a positive Liapunov exponent and Poincare sections without pattern. By contrast, the weakly chaotic flows, although having positive Liapunov exponents, have some pattern in their Poincare sections. The fixed-point and periodic flows are nonturbulent, since turbulence, as generally understood, is both time-dependent and aperiodic.

  16. The onset of dynamical instability and chaos in navigation satellite orbits

    NASA Astrophysics Data System (ADS)

    Rosengren, Aaron Jay; Daquin, Jérôme; Alessi, Elisa Maria; Valsecchi, Giovanni B.; Rossi, Alessandro; Deleflie, Florent

    2015-05-01

    Orbital resonances are ubiquitous in the Solar System and are harbingers for the onset of dynamical instability and chaos. It has long been suspected that the Global Navigation Satellite Systems exist in a background of complex resonances and chaotic motion; yet, the precise dynamical character of these phenomena remains elusive. Here we will show that the same underlying physical mechanism, the overlapping of secular resonances, responsible for the eventual destabilization of Mercury and recently proposed to explain the orbital architecture of extrasolar planetary systems (Lithwick Y., Wu Y., 2014, PNAS; Batygin K., Morbidelli A., Holman M.J., 2015, ApJ) is at the heart of the orbital instabilities of seemingly more mundane celestial bodies---the Earth's navigation satellites. We will demonstrate that the occurrence and nature of the secular resonances driving these dynamics depend chiefly on one aspect of the Moon's perturbed motion, the regression of the line of nodes. This talk will present analytical models that accurately reflect the true nature of the resonant interactions, and will show how chaotic diffusion is mediated by the web-like structure of secular resonances. We will also present an atlas of FLI stability maps, showing the extent of the chaotic regions of the phase space, computed through a hierarchy of more realistic, and more complicated, models, and compare the chaotic zones in these charts with the analytical estimation of the width of the chaotic layers from the heuristic Chirikov resonance-overlap criterion. The obtained results have remarkable practical applications for space debris mitigation and for satellite technology, and are both of essential dynamical and theoretical importance, with broad implications for planetary science.

  17. Analytically solvable chaotic oscillator based on a first-order filter.

    PubMed

    Corron, Ned J; Cooper, Roy M; Blakely, Jonathan N

    2016-02-01

    A chaotic hybrid dynamical system is introduced and its analytic solution is derived. The system is described as an unstable first order filter subject to occasional switching of a set point according to a feedback rule. The system qualitatively differs from other recently studied solvable chaotic hybrid systems in that the timing of the switching is regulated by an external clock. The chaotic analytic solution is an optimal waveform for communications in noise when a resistor-capacitor-integrate-and-dump filter is used as a receiver. As such, these results provide evidence in support of a recent conjecture that the optimal communication waveform for any stable infinite-impulse response filter is chaotic.

  18. Analytically solvable chaotic oscillator based on a first-order filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corron, Ned J.; Cooper, Roy M.; Blakely, Jonathan N.

    2016-02-15

    A chaotic hybrid dynamical system is introduced and its analytic solution is derived. The system is described as an unstable first order filter subject to occasional switching of a set point according to a feedback rule. The system qualitatively differs from other recently studied solvable chaotic hybrid systems in that the timing of the switching is regulated by an external clock. The chaotic analytic solution is an optimal waveform for communications in noise when a resistor-capacitor-integrate-and-dump filter is used as a receiver. As such, these results provide evidence in support of a recent conjecture that the optimal communication waveform formore » any stable infinite-impulse response filter is chaotic.« less

  19. The chaotic saddle of a three degrees of freedom scattering system reconstructed from cross-section data

    NASA Astrophysics Data System (ADS)

    Drótos, G.; Jung, C.

    2016-06-01

    The topic of this paper is hyperbolic chaotic scattering in a three degrees of freedom system. We generalize how shadows in the domain of the doubly differential cross-section are found: they are traced out by the appropriately filtered unstable manifolds of the periodic trajectories in the chaotic saddle. These shadows are related to the rainbow singularities in the doubly differential cross-section. As a result of this relation, we discover a method of how to recognize in the cross section a smoothly deformed image of the chaotic saddle, allowing the reconstruction of the symbolic dynamics of the chaotic saddle, its topology and its scaling factors.

  20. Synchronization of mobile chaotic oscillator networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, Naoya, E-mail: fujiwara@csis.u-tokyo.ac.jp; Kurths, Jürgen; Díaz-Guilera, Albert

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to themore » transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.« less

  1. Improving Ecological Forecasting: Data Assimilation Enhances the Ecological Forecast Horizon of a Complex Food Web

    NASA Astrophysics Data System (ADS)

    Massoud, E. C.; Huisman, J.; Benincà, E.; Bouten, W.; Vrugt, J. A.

    2017-12-01

    Species abundances in ecological communities can display chaotic non-equilibrium dynamics. A characteristic feature of chaotic systems is that long-term prediction of the system's trajectory is fundamentally impossible. How then should we make predictions for complex multi-species communities? We explore data assimilation (DA) with the Ensemble Kalman Filter (EnKF) to fuse a two-predator-two-prey model with abundance data from a long term experiment of a plankton community which displays chaotic dynamics. The results show that DA improves substantially the predictability and ecological forecast horizon of complex community dynamics. In addition, we show that DA helps provide guidance on measurement design, for instance on defining the frequency of observations. The study presented here is highly innovative, because DA methods at the current stage are almost unknown in ecology.

  2. Fractal and chaotic laws on seismic dissipated energy in an energy system of engineering structures

    NASA Astrophysics Data System (ADS)

    Cui, Yu-Hong; Nie, Yong-An; Yan, Zong-Da; Wu, Guo-You

    1998-09-01

    Fractal and chaotic laws of engineering structures are discussed in this paper, it means that the intrinsic essences and laws on dynamic systems which are made from seismic dissipated energy intensity E d and intensity of seismic dissipated energy moment I e are analyzed. Based on the intrinsic characters of chaotic and fractal dynamic system of E d and I e, three kinds of approximate dynamic models are rebuilt one by one: index autoregressive model, threshold autoregressive model and local-approximate autoregressive model. The innate laws, essences and systematic error of evolutional behavior I e are explained over all, the short-term behavior predictability and long-term behavior probability of which are analyzed in the end. That may be valuable for earthquake-resistant theory and analysis method in practical engineering structures.

  3. Chaotic dynamics and synchronization in microchip solid-state lasers with optoelectronic feedback.

    PubMed

    Uchida, Atsushi; Mizumura, Keisuke; Yoshimori, Shigeru

    2006-12-01

    We experimentally observe the dynamics of a two-mode Nd:YVO4 microchip solid-state laser with optoelectronic feedback. The total laser output is detected and fed back to the injection current of the laser diode for pumping. Chaotic oscillations are observed in the microchip laser with optoelectronic self-feedback. We also observe the dynamics of two microchip lasers coupled mutually with optoelectronic link. The output of one laser is detected by a photodiode and the electronic signal converted from the laser output is sent to the pumping of the other laser. Chaotic fluctuation of the laser output is observed when the relaxation oscillation frequency is close to each other between the two microchip lasers. Synchronization of periodic wave form is also obtained when the microchip lasers have a single-longitudinal mode.

  4. Statistical inference for noisy nonlinear ecological dynamic systems.

    PubMed

    Wood, Simon N

    2010-08-26

    Chaotic ecological dynamic systems defy conventional statistical analysis. Systems with near-chaotic dynamics are little better. Such systems are almost invariably driven by endogenous dynamic processes plus demographic and environmental process noise, and are only observable with error. Their sensitivity to history means that minute changes in the driving noise realization, or the system parameters, will cause drastic changes in the system trajectory. This sensitivity is inherited and amplified by the joint probability density of the observable data and the process noise, rendering it useless as the basis for obtaining measures of statistical fit. Because the joint density is the basis for the fit measures used by all conventional statistical methods, this is a major theoretical shortcoming. The inability to make well-founded statistical inferences about biological dynamic models in the chaotic and near-chaotic regimes, other than on an ad hoc basis, leaves dynamic theory without the methods of quantitative validation that are essential tools in the rest of biological science. Here I show that this impasse can be resolved in a simple and general manner, using a method that requires only the ability to simulate the observed data on a system from the dynamic model about which inferences are required. The raw data series are reduced to phase-insensitive summary statistics, quantifying local dynamic structure and the distribution of observations. Simulation is used to obtain the mean and the covariance matrix of the statistics, given model parameters, allowing the construction of a 'synthetic likelihood' that assesses model fit. This likelihood can be explored using a straightforward Markov chain Monte Carlo sampler, but one further post-processing step returns pure likelihood-based inference. I apply the method to establish the dynamic nature of the fluctuations in Nicholson's classic blowfly experiments.

  5. Nonlinear dynamics as an engine of computation.

    PubMed

    Kia, Behnam; Lindner, John F; Ditto, William L

    2017-03-06

    Control of chaos teaches that control theory can tame the complex, random-like behaviour of chaotic systems. This alliance between control methods and physics-cybernetical physics-opens the door to many applications, including dynamics-based computing. In this article, we introduce nonlinear dynamics and its rich, sometimes chaotic behaviour as an engine of computation. We review our work that has demonstrated how to compute using nonlinear dynamics. Furthermore, we investigate the interrelationship between invariant measures of a dynamical system and its computing power to strengthen the bridge between physics and computation.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).

  6. Nonlinear dynamics as an engine of computation

    PubMed Central

    Lindner, John F.; Ditto, William L.

    2017-01-01

    Control of chaos teaches that control theory can tame the complex, random-like behaviour of chaotic systems. This alliance between control methods and physics—cybernetical physics—opens the door to many applications, including dynamics-based computing. In this article, we introduce nonlinear dynamics and its rich, sometimes chaotic behaviour as an engine of computation. We review our work that has demonstrated how to compute using nonlinear dynamics. Furthermore, we investigate the interrelationship between invariant measures of a dynamical system and its computing power to strengthen the bridge between physics and computation. This article is part of the themed issue ‘Horizons of cybernetical physics’. PMID:28115619

  7. A reducing of a chaotic movement to a periodic orbit, of a micro-electro-mechanical system, by using an optimal linear control design

    NASA Astrophysics Data System (ADS)

    Chavarette, Fábio Roberto; Balthazar, José Manoel; Felix, Jorge L. P.; Rafikov, Marat

    2009-05-01

    This paper analyzes the non-linear dynamics, with a chaotic behavior of a particular micro-electro-mechanical system. We used a technique of the optimal linear control for reducing the irregular (chaotic) oscillatory movement of the non-linear systems to a periodic orbit. We use the mathematical model of a (MEMS) proposed by Luo and Wang.

  8. Chaotic behavior in Malaysian stock market: A study with recurrence quantification analysis

    NASA Astrophysics Data System (ADS)

    Niu, Betty Voon Wan; Noorani, Mohd Salmi Md; Jaaman, Saiful Hafizah

    2016-11-01

    The dynamics of stock market has been questioned for decades. Its behavior appeared random yet some found it behaves as chaos. Up to 5000 daily adjusted closing data of FTSE Bursa Malaysia Kuala Lumpur Composite Index (KLSE) was investigated through recurrence plot and recurrence quantification analysis. Results were compared between stochastic system, chaotic system and deterministic system. Results show that KLSE daily adjusted closing data behaves chaotically.

  9. Chaotic Motions in the Real Fuzzy Electronic Circuits

    DTIC Science & Technology

    2012-12-30

    field of secure communications, the original source should be blended with other complex signals. Chaotic signals are one of the good sources to be...Takagi-Sugeno (T-S) fuzzy chaotic systems on electronic circuit. In the research field of secure communications, the original source should be blended ...model. The overall fuzzy model of the system is achieved by fuzzy blending of the linear system models. Consider a continuous-time nonlinear dynamic

  10. Chaotic behaviour of the Rossler model and its analysis by using bifurcations of limit cycles and chaotic attractors

    NASA Astrophysics Data System (ADS)

    Ibrahim, K. M.; Jamal, R. K.; Ali, F. H.

    2018-05-01

    The behaviour of certain dynamical nonlinear systems are described in term as chaos, i.e., systems’ variables change with the time, displaying very sensitivity to initial conditions of chaotic dynamics. In this paper, we study archetype systems of ordinary differential equations in two-dimensional phase spaces of the Rössler model. A system displays continuous time chaos and is explained by three coupled nonlinear differential equations. We study its characteristics and determine the control parameters that lead to different behavior of the system output, periodic, quasi-periodic and chaos. The time series, attractor, Fast Fourier Transformation and bifurcation diagram for different values have been described.

  11. Chaotic patterns of autonomic activity during hypnotic recall.

    PubMed

    Bob, Petr; Siroka, Ivana; Susta, Marek

    2009-01-01

    Chaotic neural dynamics likely emerge in cognitive processes and may present time periods that are extremely sensitive to influences affecting the neural system. Recent findings suggest that this sensitivity may increase during retrieval of stressful emotional experiences reflecting underlying mechanism related to consolidation of traumatic memories. In this context, hypnotic recall of anxiety memories in 10 patients, simultaneously with ECG measurement was performed. The same measurement was performed during control cognitive task in 8 anxiety patients and 22 healthy controls. Nonlinear data analysis of ECG records indicates significant increase in the degree of chaos during retrieval of stressful memory in all the patients. The results suggest a role of chaotic neural dynamics during processing of anxiety-related stressful memories.

  12. Lyapunov exponents from CHUA's circuit time series using artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gonzalez, J. Jesus; Espinosa, Ismael E.; Fuentes, Alberto M.

    1995-01-01

    In this paper we present the general problem of identifying if a nonlinear dynamic system has a chaotic behavior. If the answer is positive the system will be sensitive to small perturbations in the initial conditions which will imply that there is a chaotic attractor in its state space. A particular problem would be that of identifying a chaotic oscillator. We present an example of three well known different chaotic oscillators where we have knowledge of the equations that govern the dynamical systems and from there we can obtain the corresponding time series. In a similar example we assume that we only know the time series and, finally, in another example we have to take measurements in the Chua's circuit to obtain sample points of the time series. With the knowledge about the time series the phase plane portraits are plotted and from them, by visual inspection, it is concluded whether or not the system is chaotic. This method has the problem of uncertainty and subjectivity and for that reason a different approach is needed. A quantitative approach is the computation of the Lyapunov exponents. We describe several methods for obtaining them and apply a little known method of artificial neural networks to the different examples mentioned above. We end the paper discussing the importance of the Lyapunov exponents in the interpretation of the dynamic behavior of biological neurons and biological neural networks.

  13. A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter

    NASA Astrophysics Data System (ADS)

    Kiani-B, Arman; Fallahi, Kia; Pariz, Naser; Leung, Henry

    2009-03-01

    In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. In this paper, for the first time, a fractional chaotic communication method using an extended fractional Kalman filter is presented. The chaotic synchronization is implemented by the EFKF design in the presence of channel additive noise and processing noise. Encoding chaotic communication achieves a satisfactory, typical secure communication scheme. In the proposed system, security is enhanced based on spreading the signal in frequency and encrypting it in time domain. In this paper, the main advantages of using fractional order systems, increasing nonlinearity and spreading the power spectrum are highlighted. To illustrate the effectiveness of the proposed scheme, a numerical example based on the fractional Lorenz dynamical system is presented and the results are compared to the integer Lorenz system.

  14. Fast and secure encryption-decryption method based on chaotic dynamics

    DOEpatents

    Protopopescu, Vladimir A.; Santoro, Robert T.; Tolliver, Johnny S.

    1995-01-01

    A method and system for the secure encryption of information. The method comprises the steps of dividing a message of length L into its character components; generating m chaotic iterates from m independent chaotic maps; producing an "initial" value based upon the m chaotic iterates; transforming the "initial" value to create a pseudo-random integer; repeating the steps of generating, producing and transforming until a pseudo-random integer sequence of length L is created; and encrypting the message as ciphertext based upon the pseudo random integer sequence. A system for accomplishing the invention is also provided.

  15. Dynamic analysis of a buckled asymmetric piezoelectric beam for energy harvesting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Blarigan, Louis, E-mail: louis01@umail.ucsb.edu; Moehlis, Jeff

    2016-03-15

    A model of a buckled beam energy harvester is analyzed to determine the phenomena behind the transition between high and low power output levels. It is shown that the presence of a chaotic attractor is a sufficient condition to predict high power output, though there are relatively small areas where high output is achieved without a chaotic attractor. The chaotic attractor appears as a product of a period doubling cascade or a boundary crisis. Bifurcation diagrams provide insight into the development of the chaotic region as the input power level is varied, as well as the intermixed periodic windows.

  16. Bluetooth based chaos synchronization using particle swarm optimization and its applications to image encryption.

    PubMed

    Yau, Her-Terng; Hung, Tzu-Hsiang; Hsieh, Chia-Chun

    2012-01-01

    This study used the complex dynamic characteristics of chaotic systems and Bluetooth to explore the topic of wireless chaotic communication secrecy and develop a communication security system. The PID controller for chaos synchronization control was applied, and the optimum parameters of this PID controller were obtained using a Particle Swarm Optimization (PSO) algorithm. Bluetooth was used to realize wireless transmissions, and a chaotic wireless communication security system was developed in the design concept of a chaotic communication security system. The experimental results show that this scheme can be used successfully in image encryption.

  17. Devaney chaos plus shadowing implies distributional chaos.

    PubMed

    Li, Jian; Li, Jie; Tu, Siming

    2016-09-01

    We explore connections among the regional proximal relation, the asymptotic relation, and the distal relation for a topological dynamical system with the shadowing property and show that if a Devaney chaotic system has the shadowing property then it is distributionally chaotic.

  18. Generic dynamical features of quenched interacting quantum systems: Survival probability, density imbalance, and out-of-time-ordered correlator

    NASA Astrophysics Data System (ADS)

    Torres-Herrera, E. J.; García-García, Antonio M.; Santos, Lea F.

    2018-02-01

    We study numerically and analytically the quench dynamics of isolated many-body quantum systems. Using full random matrices from the Gaussian orthogonal ensemble, we obtain analytical expressions for the evolution of the survival probability, density imbalance, and out-of-time-ordered correlator. They are compared with numerical results for a one-dimensional-disordered model with two-body interactions and shown to bound the decay rate of this realistic system. Power-law decays are seen at intermediate times, and dips below the infinite time averages (correlation holes) occur at long times for all three quantities when the system exhibits level repulsion. The fact that these features are shared by both the random matrix and the realistic disordered model indicates that they are generic to nonintegrable interacting quantum systems out of equilibrium. Assisted by the random matrix analytical results, we propose expressions that describe extremely well the dynamics of the realistic chaotic system at different time scales.

  19. On the spin-axis dynamics of a Moonless Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Gongjie; Batygin, Konstantin, E-mail: gli@cfa.harvard.edu

    2014-07-20

    The variation of a planet's obliquity is influenced by the existence of satellites with a high mass ratio. For instance, Earth's obliquity is stabilized by the Moon and would undergo chaotic variations in the Moon's absence. In turn, such variations can lead to large-scale changes in the atmospheric circulation, rendering spin-axis dynamics a central issue for understanding climate. The relevant quantity for dynamically forced climate change is the rate of chaotic diffusion. Accordingly, here we re-examine the spin-axis evolution of a Moonless Earth within the context of a simplified perturbative framework. We present analytical estimates of the characteristic Lyapunov coefficientmore » as well as the chaotic diffusion rate and demonstrate that even in absence of the Moon, the stochastic change in Earth's obliquity is sufficiently slow to not preclude long-term habitability. Our calculations are consistent with published numerical experiments and illustrate the putative system's underlying dynamical structure in a simple and intuitive manner.« less

  20. Characterization of chaotic dynamics in the human menstrual cycle

    NASA Astrophysics Data System (ADS)

    Derry, Gregory; Derry, Paula

    2010-03-01

    The human menstrual cycle exhibits much unexplained variability, which is typically dismissed as random variation. Given the many delayed nonlinear feedbacks in the reproductive endocrine system, however, the menstrual cycle might well be a nonlinear dynamical system in a chaotic trajectory, and that this instead accounts for the observed variability. Here, we test this hypothesis by performing a time series analysis on data for 7438 menstrual cycles from 38 women in the 20-40 year age range, using the database maintained by the Tremin Research Program on Women's Health. Using phase space reconstruction techniques with a maximum embedding dimension of 6, we find appropriate scaling behavior in the correlation sums for this data, indicating low dimensional deterministic dynamics. A correlation dimension of 2.6 is measured in this scaling regime, and this result is confirmed by recalculation using the Takens estimator. These results may be interpreted as offering an approximation to the fractal dimension of a strange attractor governing the chaotic dynamics of the menstrual cycle.

  1. From globally coupled maps to complex-systems biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  2. A Non-Intrusive Algorithm for Sensitivity Analysis of Chaotic Flow Simulations

    NASA Technical Reports Server (NTRS)

    Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris

    2017-01-01

    We demonstrate a novel algorithm for computing the sensitivity of statistics in chaotic flow simulations to parameter perturbations. The algorithm is non-intrusive but requires exposing an interface. Based on the principle of shadowing in dynamical systems, this algorithm is designed to reduce the effect of the sampling error in computing sensitivity of statistics in chaotic simulations. We compare the effectiveness of this method to that of the conventional finite difference method.

  3. Regular-to-Chaotic Tunneling Rates: From the Quantum to the Semiclassical Regime

    NASA Astrophysics Data System (ADS)

    Löck, Steffen; Bäcker, Arnd; Ketzmerick, Roland; Schlagheck, Peter

    2010-03-01

    We derive a prediction of dynamical tunneling rates from regular to chaotic phase-space regions combining the direct regular-to-chaotic tunneling mechanism in the quantum regime with an improved resonance-assisted tunneling theory in the semiclassical regime. We give a qualitative recipe for identifying the relevance of nonlinear resonances in a given ℏ regime. For systems with one or multiple dominant resonances we find excellent agreement to numerics.

  4. Insights on chaotic dynamics: mixing experiments between natural silicate melts from Vulcano island (Aeolian Islands, Italy)

    NASA Astrophysics Data System (ADS)

    Rossi, Stefano; Morgavi, Daniele; Vetere, Francesco; Petrelli, Maurizio; Perugini, Diego

    2017-04-01

    keywords: Magma mixing, chaotic dynamics, time series experiments Magma mixing is a petrologic phenomenon which is recognized as potential trigger of highly explosive eruptions and its evidence is commonly observable in natural rocks. Here we tried to replicate the dynamic conditions of mixing performing a set of chaotic mixing experiments between shoshonitic and rhyolitic magmas from Vulcano island. Vulcano is the southernmost island of the Aeolian Archipelago (Aeolian Islands, Italy); it is completely built by volcanic rocks with variable degree of evolution ranging from basalt to rhyolite (e.g. Keller 1980; Ellam et al. 1988; De Astis 1995; De Astis et al. 2013) and its magmatic activity dates back to about 120 ky. Last eruption occurred in 1888-1890. The chaotic mixing experiments were performed by using the new ChaOtic Magma Mixing Apparatus (COMMA), held at the Department of Physics and Geology, University of Perugia. This new experimental device allows to track the evolution of the mixing process and the associated modulation of chemical composition between different magmas. Experiments were performed at 1200°C and atmospheric pressure with a viscosity ratio higher than three orders of magnitude. The experimental protocol was chosen to ensure the occurrence of chaotic dynamics in the system and the run duration was progressively increased (e.g. 10.5 h, 21 h, 42 h). The products of each experiment are crystal-free glasses in which the variation of major elements was investigated along different profiles using electron microprobe (EMPA) at Institute für Mineralogie, Leibniz Universität of Hannover (Germany). The efficiency of the mixing process is estimated by calculating the decrease of concentration variance in time and it is shown that the variance of major elements exponentially decays. Our results confirm and quantify how different chemical elements homogenize in the melt at differing rates. It is also observable that the mixing structures generated during the mixing experiments are topologically identical to those observed in natural mixed volcanic rocks.

  5. Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor

    PubMed Central

    Zhou, Ping; Ahmad, Bashir; Ren, Guodong; Wang, Chunni

    2018-01-01

    In this paper, a new four-variable dynamical system is proposed to set chaotic circuit composed of memristor and Josephson junction, and the dependence of chaotic behaviors on nonlinearity is investigated. A magnetic flux-controlled memristor is used to couple with the RCL-shunted junction circuit, and the dynamical behaviors can be modulated by changing the coupling intensity between the memristor and the RCL-shunted junction. Bifurcation diagram and Lyapunov exponent are calculated to confirm the emergence of chaos in the improved dynamical system. The outputs and dynamical behaviors can be controlled by the initial setting and external stimulus as well. As a result, chaos can be suppressed and spiking occurs in the sampled outputs under negative feedback, while applying positive feedback type via memristor can be effective to trigger chaos. Furthermore, it is found that the number of multi-attractors in the Jerk circuit can be modulated when memristor coupling is applied on the circuit. These results indicate that memristor coupling can be effective to control chaotic circuits and it is also useful to reproduce dynamical behaviors for neuronal activities. PMID:29342178

  6. Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor.

    PubMed

    Ma, Jun; Zhou, Ping; Ahmad, Bashir; Ren, Guodong; Wang, Chunni

    2018-01-01

    In this paper, a new four-variable dynamical system is proposed to set chaotic circuit composed of memristor and Josephson junction, and the dependence of chaotic behaviors on nonlinearity is investigated. A magnetic flux-controlled memristor is used to couple with the RCL-shunted junction circuit, and the dynamical behaviors can be modulated by changing the coupling intensity between the memristor and the RCL-shunted junction. Bifurcation diagram and Lyapunov exponent are calculated to confirm the emergence of chaos in the improved dynamical system. The outputs and dynamical behaviors can be controlled by the initial setting and external stimulus as well. As a result, chaos can be suppressed and spiking occurs in the sampled outputs under negative feedback, while applying positive feedback type via memristor can be effective to trigger chaos. Furthermore, it is found that the number of multi-attractors in the Jerk circuit can be modulated when memristor coupling is applied on the circuit. These results indicate that memristor coupling can be effective to control chaotic circuits and it is also useful to reproduce dynamical behaviors for neuronal activities.

  7. Suppression of chaos at slow variables by rapidly mixing fast dynamics

    NASA Astrophysics Data System (ADS)

    Abramov, R.

    2012-04-01

    One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total energy conservation property promotes the suppression of chaos at the slow variables through the rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to the infinite-time linear response of the mean state to a constant external forcing at the fast variables. Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic while the complete multiscale system loses chaos and becomes completely predictable at the slow variables through increasing chaos and turbulence at the fast variables. This result contradicts the common sense intuition, where, naturally, one would think that coupling a slow weakly chaotic system with another much faster and much stronger mixing system would result in general increase of chaos at the slow variables.

  8. Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback.

    PubMed

    Illing, Lucas; Gauthier, Daniel J

    2006-09-01

    We report an experimental study of ultra-high-frequency chaotic dynamics generated in a delay-dynamical electronic device. It consists of a transistor-based nonlinearity, commercially-available amplifiers, and a transmission-line for feedback. The feedback is band-limited, allowing tuning of the characteristic time-scales of both the periodic and high-dimensional chaotic oscillations that can be generated with the device. As an example, periodic oscillations ranging from 48 to 913 MHz are demonstrated. We develop a model and use it to compare the experimentally observed Hopf bifurcation of the steady-state to existing theory [Illing and Gauthier, Physica D 210, 180 (2005)]. We find good quantitative agreement of the predicted and the measured bifurcation threshold, bifurcation type and oscillation frequency. Numerical integration of the model yields quasiperiodic and high dimensional chaotic solutions (Lyapunov dimension approximately 13), which match qualitatively the observed device dynamics.

  9. Geometric and dynamic perspectives on phase-coherent and noncoherent chaos.

    PubMed

    Zou, Yong; Donner, Reik V; Kurths, Jürgen

    2012-03-01

    Statistically distinguishing between phase-coherent and noncoherent chaotic dynamics from time series is a contemporary problem in nonlinear sciences. In this work, we propose different measures based on recurrence properties of recorded trajectories, which characterize the underlying systems from both geometric and dynamic viewpoints. The potentials of the individual measures for discriminating phase-coherent and noncoherent chaotic oscillations are discussed. A detailed numerical analysis is performed for the chaotic Rössler system, which displays both types of chaos as one control parameter is varied, and the Mackey-Glass system as an example of a time-delay system with noncoherent chaos. Our results demonstrate that especially geometric measures from recurrence network analysis are well suited for tracing transitions between spiral- and screw-type chaos, a common route from phase-coherent to noncoherent chaos also found in other nonlinear oscillators. A detailed explanation of the observed behavior in terms of attractor geometry is given.

  10. Living on the edge of chaos: minimally nonlinear models of genetic regulatory dynamics.

    PubMed

    Hanel, Rudolf; Pöchacker, Manfred; Thurner, Stefan

    2010-12-28

    Linearized catalytic reaction equations (modelling, for example, the dynamics of genetic regulatory networks), under the constraint that expression levels, i.e. molecular concentrations of nucleic material, are positive, exhibit non-trivial dynamical properties, which depend on the average connectivity of the reaction network. In these systems, an inflation of the edge of chaos and multi-stability have been demonstrated to exist. The positivity constraint introduces a nonlinearity, which makes chaotic dynamics possible. Despite the simplicity of such minimally nonlinear systems, their basic properties allow us to understand the fundamental dynamical properties of complex biological reaction networks. We analyse the Lyapunov spectrum, determine the probability of finding stationary oscillating solutions, demonstrate the effect of the nonlinearity on the effective in- and out-degree of the active interaction network, and study how the frequency distributions of oscillatory modes of such a system depend on the average connectivity.

  11. A chaotic-dynamical conceptual model to describe fluid flow and contaminant transport in a fractured vadose zone. 1997 progress report and presentations at the annual meeting, Ernest Orlando Lawrence Berkeley National Laboratory, December 3--4, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, B.; Doughty, C.; Geller, J.

    1998-07-01

    Understanding subsurface flow and transport processes is critical for effective assessment, decision-making, and remediation activities for contaminated sites. However, for fluid flow and contaminant transport through fractured vadose zones, traditional hydrogeological approaches are often found to be inadequate. In this project, the authors examine flow and transport through a fractured vadose zone as a deterministic chaotic dynamical process, and develop a model of it in these terms. Initially, the authors examine separately the geometric model of fractured rock and the flow dynamics model needed to describe chaotic behavior. Ultimately they will put the geometry and flow dynamics together to developmore » a chaotic-dynamical model of flow and transport in a fractured vadose zone. They investigate water flow and contaminant transport on several scales, ranging from small-scale laboratory experiments in fracture replicas and fractured cores, to field experiments conducted in a single exposed fracture at a basalt outcrop, and finally to a ponded infiltration test using a pond of 7 by 8 m. In the field experiments, they measure the time-variation of water flux, moisture content, and hydraulic head at various locations, as well as the total inflow rate to the subsurface. Such variations reflect the changes in the geometry and physics of water flow that display chaotic behavior, which they try to reconstruct using the data obtained. In the analysis of experimental data, a chaotic model can be used to predict the long-term bounds on fluid flow and transport behavior, known as the attractor of the system, and to examine the limits of short-term predictability within these bounds. This approach is especially well suited to the need for short-term predictions to support remediation decisions and long-term bounding studies. View-graphs from ten presentations made at the annual meeting held December 3--4, 1997 are included in an appendix to this report.« less

  12. The complexity of proving chaoticity and the Church-Turing thesis

    NASA Astrophysics Data System (ADS)

    Calude, Cristian S.; Calude, Elena; Svozil, Karl

    2010-09-01

    Proving the chaoticity of some dynamical systems is equivalent to solving the hardest problems in mathematics. Conversely, classical physical systems may "compute the hard or even the incomputable" by measuring observables which correspond to computationally hard or even incomputable problems.

  13. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing

    NASA Astrophysics Data System (ADS)

    Kumar, Suhas; Strachan, John Paul; Williams, R. Stanley

    2017-08-01

    At present, machine learning systems use simplified neuron models that lack the rich nonlinear phenomena observed in biological systems, which display spatio-temporal cooperative dynamics. There is evidence that neurons operate in a regime called the edge of chaos that may be central to complexity, learning efficiency, adaptability and analogue (non-Boolean) computation in brains. Neural networks have exhibited enhanced computational complexity when operated at the edge of chaos, and networks of chaotic elements have been proposed for solving combinatorial or global optimization problems. Thus, a source of controllable chaotic behaviour that can be incorporated into a neural-inspired circuit may be an essential component of future computational systems. Such chaotic elements have been simulated using elaborate transistor circuits that simulate known equations of chaos, but an experimental realization of chaotic dynamics from a single scalable electronic device has been lacking. Here we describe niobium dioxide (NbO2) Mott memristors each less than 100 nanometres across that exhibit both a nonlinear-transport-driven current-controlled negative differential resistance and a Mott-transition-driven temperature-controlled negative differential resistance. Mott materials have a temperature-dependent metal-insulator transition that acts as an electronic switch, which introduces a history-dependent resistance into the device. We incorporate these memristors into a relaxation oscillator and observe a tunable range of periodic and chaotic self-oscillations. We show that the nonlinear current transport coupled with thermal fluctuations at the nanoscale generates chaotic oscillations. Such memristors could be useful in certain types of neural-inspired computation by introducing a pseudo-random signal that prevents global synchronization and could also assist in finding a global minimum during a constrained search. We specifically demonstrate that incorporating such memristors into the hardware of a Hopfield computing network can greatly improve the efficiency and accuracy of converging to a solution for computationally difficult problems.

  14. Chaotic Traversal (CHAT): Very Large Graphs Traversal Using Chaotic Dynamics

    NASA Astrophysics Data System (ADS)

    Changaival, Boonyarit; Rosalie, Martin; Danoy, Grégoire; Lavangnananda, Kittichai; Bouvry, Pascal

    2017-12-01

    Graph Traversal algorithms can find their applications in various fields such as routing problems, natural language processing or even database querying. The exploration can be considered as a first stepping stone into knowledge extraction from the graph which is now a popular topic. Classical solutions such as Breadth First Search (BFS) and Depth First Search (DFS) require huge amounts of memory for exploring very large graphs. In this research, we present a novel memoryless graph traversal algorithm, Chaotic Traversal (CHAT) which integrates chaotic dynamics to traverse large unknown graphs via the Lozi map and the Rössler system. To compare various dynamics effects on our algorithm, we present an original way to perform the exploration of a parameter space using a bifurcation diagram with respect to the topological structure of attractors. The resulting algorithm is an efficient and nonresource demanding algorithm, and is therefore very suitable for partial traversal of very large and/or unknown environment graphs. CHAT performance using Lozi map is proven superior than the, commonly known, Random Walk, in terms of number of nodes visited (coverage percentage) and computation time where the environment is unknown and memory usage is restricted.

  15. On fractality and chaos in Moroccan family business stock returns and volatility

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2017-05-01

    The purpose of this study is to examine existence of fractality and chaos in returns and volatilities of family business companies listed on the Casablanca Stock Exchange (CSE) in Morocco, and also in returns and volatility of the CSE market index. Detrended fluctuation analysis based Hurst exponent and fractionally integrated generalized autoregressive conditional heteroskedasticity (FIGARCH) model are used to quantify fractality in returns and volatility time series respectively. Besides, the largest Lyapunov exponent is employed to quantify chaos in both time series. The empirical results from sixteen family business companies follow. For return series, fractality analysis show that most of family business returns listed on CSE exhibit anti-persistent dynamics, whilst market returns have persistent dynamics. Besides, chaos tests show that business family stock returns are not chaotic while market returns exhibit evidence of chaotic behaviour. For volatility series, fractality analysis shows that most of family business stocks and market index exhibit long memory in volatility. Furthermore, results from chaos tests show that volatility of family business returns is not chaotic, whilst volatility of market index is chaotic. These results may help understanding irregularities patterns in Moroccan family business stock returns and volatility, and how they are different from market dynamics.

  16. Robust and irreversible development in cell society as a general consequence of intra-inter dynamics

    NASA Astrophysics Data System (ADS)

    Kaneko, Kunihiko; Furusawa, Chikara

    2000-05-01

    A dynamical systems scenario for developmental cell biology is proposed, based on numerical studies of a system with interacting units with internal dynamics and reproduction. Diversification, formation of discrete and recursive types, and rules for differentiation are found as a natural consequence of such a system. “Stem cells” that either proliferate or differentiate to different types stochastically are found to appear when intra-cellular dynamics are chaotic. Robustness of the developmental process against microscopic and macroscopic perturbations is shown to be a natural consequence of such intra-inter dynamics, while irreversibility in developmental process is discussed in terms of the gain of stability, loss of diversity and chaotic instability.

  17. Hysteresis-induced bifurcation and chaos in a magneto-rheological suspension system under external excitation

    NASA Astrophysics Data System (ADS)

    Hailong, Zhang; Enrong, Wang; Fuhong, Min; Ning, Zhang

    2016-03-01

    The magneto-rheological damper (MRD) is a promising device used in vehicle semi-active suspension systems, for its continuous adjustable damping output. However, the innate nonlinear hysteresis characteristic of MRD may cause the nonlinear behaviors. In this work, a two-degree-of-freedom (2-DOF) MR suspension system was established first, by employing the modified Bouc-Wen force-velocity (F-v) hysteretic model. The nonlinear dynamic response of the system was investigated under the external excitation of single-frequency harmonic and bandwidth-limited stochastic road surface. The largest Lyapunov exponent (LLE) was used to detect the chaotic area of the frequency and amplitude of harmonic excitation, and the bifurcation diagrams, time histories, phase portraits, and power spectrum density (PSD) diagrams were used to reveal the dynamic evolution process in detail. Moreover, the LLE and Kolmogorov entropy (K entropy) were used to identify whether the system response was random or chaotic under stochastic road surface. The results demonstrated that the complex dynamical behaviors occur under different external excitation conditions. The oscillating mechanism of alternating periodic oscillations, quasi-periodic oscillations, and chaotic oscillations was observed in detail. The chaotic regions revealed that chaotic motions may appear in conditions of mid-low frequency and large amplitude, as well as small amplitude and all frequency. The obtained parameter regions where the chaotic motions may appear are useful for design of structural parameters of the vibration isolation, and the optimization of control strategy for MR suspension system. Projects supported by the National Natural Science Foundation of China (Grant Nos. 51475246, 51277098, and 51075215), the Research Innovation Program for College Graduates of Jiangsu Province China (Grant No. KYLX15 0725), and the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20131402).

  18. A noisy chaotic neural network for solving combinatorial optimization problems: stochastic chaotic simulated annealing.

    PubMed

    Wang, Lipo; Li, Sa; Tian, Fuyu; Fu, Xiuju

    2004-10-01

    Recently Chen and Aihara have demonstrated both experimentally and mathematically that their chaotic simulated annealing (CSA) has better search ability for solving combinatorial optimization problems compared to both the Hopfield-Tank approach and stochastic simulated annealing (SSA). However, CSA may not find a globally optimal solution no matter how slowly annealing is carried out, because the chaotic dynamics are completely deterministic. In contrast, SSA tends to settle down to a global optimum if the temperature is reduced sufficiently slowly. Here we combine the best features of both SSA and CSA, thereby proposing a new approach for solving optimization problems, i.e., stochastic chaotic simulated annealing, by using a noisy chaotic neural network. We show the effectiveness of this new approach with two difficult combinatorial optimization problems, i.e., a traveling salesman problem and a channel assignment problem for cellular mobile communications.

  19. Generating random numbers by means of nonlinear dynamic systems

    NASA Astrophysics Data System (ADS)

    Zang, Jiaqi; Hu, Haojie; Zhong, Juhua; Luo, Duanbin; Fang, Yi

    2018-07-01

    To introduce the randomness of a physical process to students, a chaotic pendulum experiment was opened in East China University of Science and Technology (ECUST) on the undergraduate level in the physics department. It was shown chaotic motion could be initiated through adjusting the operation of a chaotic pendulum. By using the data of the angular displacements of chaotic motion, random binary numerical arrays can be generated. To check the randomness of generated numerical arrays, the NIST Special Publication 800-20 method was adopted. As a result, it was found that all the random arrays which were generated by the chaotic motion could pass the validity criteria and some of them were even better than the quality of pseudo-random numbers generated by a computer. Through the experiments, it is demonstrated that chaotic pendulum can be used as an efficient mechanical facility in generating random numbers, and can be applied in teaching random motion to the students.

  20. A mixed analog/digital chaotic neuro-computer system for quadratic assignment problems.

    PubMed

    Horio, Yoshihiko; Ikeguchi, Tohru; Aihara, Kazuyuki

    2005-01-01

    We construct a mixed analog/digital chaotic neuro-computer prototype system for quadratic assignment problems (QAPs). The QAP is one of the difficult NP-hard problems, and includes several real-world applications. Chaotic neural networks have been used to solve combinatorial optimization problems through chaotic search dynamics, which efficiently searches optimal or near optimal solutions. However, preliminary experiments have shown that, although it obtained good feasible solutions, the Hopfield-type chaotic neuro-computer hardware system could not obtain the optimal solution of the QAP. Therefore, in the present study, we improve the system performance by adopting a solution construction method, which constructs a feasible solution using the analog internal state values of the chaotic neurons at each iteration. In order to include the construction method into our hardware, we install a multi-channel analog-to-digital conversion system to observe the internal states of the chaotic neurons. We show experimentally that a great improvement in the system performance over the original Hopfield-type chaotic neuro-computer is obtained. That is, we obtain the optimal solution for the size-10 QAP in less than 1000 iterations. In addition, we propose a guideline for parameter tuning of the chaotic neuro-computer system according to the observation of the internal states of several chaotic neurons in the network.

  1. Extreme multistability analysis of memristor-based chaotic system and its application in image decryption

    NASA Astrophysics Data System (ADS)

    Li, Chuang; Min, Fuhong; Jin, Qiusen; Ma, Hanyuan

    2017-12-01

    An active charge-controlled memristive Chua's circuit is implemented, and its basic properties are analyzed. Firstly, with the system trajectory starting from an equilibrium point, the dynamic behavior of multiple coexisting attractors depending on the memristor initial value and the system parameter is studied, which shows the coexisting behaviors of point, period, chaos, and quasic-period. Secondly, with the system motion starting from a non-equilibrium point, the dynamics of extreme multistability in a wide initial value domain are easily conformed by new analytical methods. Furthermore, the simulation results indicate that some strange chaotic attractors like multi-wing type and multi-scroll type are observed when the observed signals are extended from voltage and current to power and energy, respectively. Specially, when different initial conditions are taken, the coexisting strange chaotic attractors between the power and energy signals are exhibited. Finally, the chaotic sequences of the new system are used for encrypting color image to protect image information security. The encryption performance is analyzed by statistic histogram, correlation, key spaces and key sensitivity. Simulation results show that the new memristive chaotic system has high security in color image encryption.

  2. Influence of the black hole spin on the chaotic particle dynamics within a dipolar halo

    NASA Astrophysics Data System (ADS)

    Nag, Sankhasubhra; Sinha, Siddhartha; Ananda, Deepika B.; Das, Tapas K.

    2017-04-01

    We investigate the role of the spin angular momentum of astrophysical black holes in controlling the special relativistic chaotic dynamics of test particles moving under the influence of a post-Newtonian pseudo-Kerr black hole potential, along with a perturbative potential created by an asymmetrically placed (dipolar) halo. Proposing a Lyapunov-like exponent to be the effective measure of the degree of chaos observed in the system under consideration, it has been found that black hole spin anti-correlates with the degree of chaos for the aforementioned dynamics. Our findings have been explained applying the general principles of dynamical systems analysis.

  3. Characterizing chaotic dynamics from integrate-and-fire interspike intervals at the presence of noise

    NASA Astrophysics Data System (ADS)

    Mohammad, Yasir K.; Pavlova, Olga N.; Pavlov, Alexey N.

    2016-04-01

    We discuss the problem of quantifying chaotic dynamics at the input of the "integrate-and-fire" (IF) model from the output sequences of interspike intervals (ISIs) for the case when the fluctuating threshold level leads to the appearance of noise in ISI series. We propose a way to detect an ability of computing dynamical characteristics of the input dynamics and the level of noise in the output point processes. The proposed approach is based on the dependence of the largest Lyapunov exponent from the maximal orientation error used at the estimation of the averaged rate of divergence of nearby phase trajectories.

  4. Chaotic dynamics of flexible Euler-Bernoulli beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awrejcewicz, J., E-mail: awrejcew@p.lodz.pl; Krysko, A. V., E-mail: anton.krysko@gmail.com; Kutepov, I. E., E-mail: iekutepov@gmail.com

    2013-12-15

    Mathematical modeling and analysis of spatio-temporal chaotic dynamics of flexible simple and curved Euler-Bernoulli beams are carried out. The Kármán-type geometric non-linearity is considered. Algorithms reducing partial differential equations which govern the dynamics of studied objects and associated boundary value problems are reduced to the Cauchy problem through both Finite Difference Method with the approximation of O(c{sup 2}) and Finite Element Method. The obtained Cauchy problem is solved via the fourth and sixth-order Runge-Kutta methods. Validity and reliability of the results are rigorously discussed. Analysis of the chaotic dynamics of flexible Euler-Bernoulli beams for a series of boundary conditions ismore » carried out with the help of the qualitative theory of differential equations. We analyze time histories, phase and modal portraits, autocorrelation functions, the Poincaré and pseudo-Poincaré maps, signs of the first four Lyapunov exponents, as well as the compression factor of the phase volume of an attractor. A novel scenario of transition from periodicity to chaos is obtained, and a transition from chaos to hyper-chaos is illustrated. In particular, we study and explain the phenomenon of transition from symmetric to asymmetric vibrations. Vibration-type charts are given regarding two control parameters: amplitude q{sub 0} and frequency ω{sub p} of the uniformly distributed periodic excitation. Furthermore, we detected and illustrated how the so called temporal-space chaos is developed following the transition from regular to chaotic system dynamics.« less

  5. Dynamics of some fictitious satellites of Venus and Mars

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tadashi

    1999-05-01

    The dynamics of some fictitious satellites of Venus and Mars are studied considering only solar perturbation and the oblateness of the planet, as disturbing forces. Several numerical integrations of the averaged system, taking different values of the obliquity of ecliptic (ε), show the existence of strong chaotic motion, provided that the semi major axis is near a critical value. As a consequence, large increase of eccentricities occur and the satellites may collide with the planet or cross possible internal orbits. Even starting from almost circular and equatorial orbits, most satellites can easily reach prohibitive values. The extension of the chaotic zone depends clearly on the value of ε, so that, previous regular regions may become chaotic, provided ε increases sufficiently.

  6. Desynchronization in an ensemble of globally coupled chaotic bursting neuronal oscillators by dynamic delayed feedback control

    NASA Astrophysics Data System (ADS)

    Che, Yanqiu; Yang, Tingting; Li, Ruixue; Li, Huiyan; Han, Chunxiao; Wang, Jiang; Wei, Xile

    2015-09-01

    In this paper, we propose a dynamic delayed feedback control approach or desynchronization of chaotic-bursting synchronous activities in an ensemble of globally coupled neuronal oscillators. We demonstrate that the difference signal between an ensemble's mean field and its time delayed state, filtered and fed back to the ensemble, can suppress the self-synchronization in the ensemble. These individual units are decoupled and stabilized at the desired desynchronized states while the stimulation signal reduces to the noise level. The effectiveness of the method is illustrated by examples of two different populations of globally coupled chaotic-bursting neurons. The proposed method has potential for mild, effective and demand-controlled therapy of neurological diseases characterized by pathological synchronization.

  7. Least Squares Shadowing sensitivity analysis of chaotic limit cycle oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qiqi, E-mail: qiqi@mit.edu; Hu, Rui, E-mail: hurui@mit.edu; Blonigan, Patrick, E-mail: blonigan@mit.edu

    2014-06-15

    The adjoint method, among other sensitivity analysis methods, can fail in chaotic dynamical systems. The result from these methods can be too large, often by orders of magnitude, when the result is the derivative of a long time averaged quantity. This failure is known to be caused by ill-conditioned initial value problems. This paper overcomes this failure by replacing the initial value problem with the well-conditioned “least squares shadowing (LSS) problem”. The LSS problem is then linearized in our sensitivity analysis algorithm, which computes a derivative that converges to the derivative of the infinitely long time average. We demonstrate ourmore » algorithm in several dynamical systems exhibiting both periodic and chaotic oscillations.« less

  8. Emergence of chimeras through induced multistability

    NASA Astrophysics Data System (ADS)

    Ujjwal, Sangeeta Rani; Punetha, Nirmal; Prasad, Awadhesh; Ramaswamy, Ramakrishna

    2017-03-01

    Chimeras, namely coexisting desynchronous and synchronized dynamics, are formed in an ensemble of identically coupled identical chaotic oscillators when the coupling induces multiple stable attractors, and further when the basins of the different attractors are intertwined in a complex manner. When there is coupling-induced multistability, an ensemble of identical chaotic oscillators—with global coupling, or also under the influence of common noise or an external drive (chaotic, periodic, or quasiperiodic)—inevitably exhibits chimeric behavior. Induced multistability in the system leads to the formation of distinct subpopulations, one or more of which support synchronized dynamics, while in others the motion is asynchronous or incoherent. We study the mechanism for the emergence of such chimeric states, and we discuss the generality of our results.

  9. Chaotic structures of nonlinear magnetic fields. I - Theory. II - Numerical results

    NASA Technical Reports Server (NTRS)

    Lee, Nam C.; Parks, George K.

    1992-01-01

    A study of the evolutionary properties of nonlinear magnetic fields in flowing MHD plasmas is presented to illustrate that nonlinear magnetic fields may involve chaotic dynamics. It is shown how a suitable transformation of the coupled equations leads to Duffing's form, suggesting that the behavior of the general solution can also be chaotic. Numerical solutions of the nonlinear magnetic field equations that have been cast in the form of Duffing's equation are presented.

  10. Coexistence and chaos in complex ecologies [rapid communication

    NASA Astrophysics Data System (ADS)

    Sprott, J. C.; Vano, J. A.; Wildenberg, J. C.; Anderson, M. B.; Noel, J. K.

    2005-02-01

    Many complex dynamical systems in ecology, economics, neurology, and elsewhere, in which agents compete for limited resources, exhibit apparently chaotic fluctuations. This Letter proposes a purely deterministic mechanism for evolving robustly but weakly chaotic systems that exhibit adaptation, self-organization, sporadic volatility, and punctuated equilibria.

  11. Generation of 2N + 1-scroll existence in new three-dimensional chaos systems.

    PubMed

    Liu, Yue; Guan, Jian; Ma, Chunyang; Guo, Shuxu

    2016-08-01

    We propose a systematic methodology for creating 2N + 1-scroll chaotic attractors from a simple three-dimensional system, which is named as the translation chaotic system. It satisfies the condition a12a21 = 0, while the Chua system satisfies a12a21 > 0. In this paper, we also propose a successful (an effective) design and an analytical approach for constructing 2N + 1-scrolls, the translation transformation principle. Also, the dynamics properties of the system are studied in detail. MATLAB simulation results show very sophisticated dynamical behaviors and unique chaotic behaviors of the system. It provides a new approach for 2N + 1-scroll attractors. Finally, to explore the potential use in technological applications, a novel block circuit diagram is also designed for the hardware implementation of 1-, 3-, 5-, and 7-scroll attractors via switching the switches. Translation chaotic system has the merit of convenience and high sensitivity to initial values, emerging potentials in future engineering chaos design.

  12. Nonlinear modeling of chaotic time series: Theory and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casdagli, M.; Eubank, S.; Farmer, J.D.

    1990-01-01

    We review recent developments in the modeling and prediction of nonlinear time series. In some cases apparent randomness in time series may be due to chaotic behavior of a nonlinear but deterministic system. In such cases it is possible to exploit the determinism to make short term forecasts that are much more accurate than one could make from a linear stochastic model. This is done by first reconstructing a state space, and then using nonlinear function approximation methods to create a dynamical model. Nonlinear models are valuable not only as short term forecasters, but also as diagnostic tools for identifyingmore » and quantifying low-dimensional chaotic behavior. During the past few years methods for nonlinear modeling have developed rapidly, and have already led to several applications where nonlinear models motivated by chaotic dynamics provide superior predictions to linear models. These applications include prediction of fluid flows, sunspots, mechanical vibrations, ice ages, measles epidemics and human speech. 162 refs., 13 figs.« less

  13. Electric fields yield chaos in microflows

    PubMed Central

    Posner, Jonathan D.; Pérez, Carlos L.; Santiago, Juan G.

    2012-01-01

    We present an investigation of chaotic dynamics of a low Reynolds number electrokinetic flow. Electrokinetic flows arise due to couplings of electric fields and electric double layers. In these flows, applied (steady) electric fields can couple with ionic conductivity gradients outside electric double layers to produce flow instabilities. The threshold of these instabilities is controlled by an electric Rayleigh number, Rae. As Rae increases monotonically, we show here flow dynamics can transition from steady state to a time-dependent periodic state and then to an aperiodic, chaotic state. Interestingly, further monotonic increase of Rae shows a transition back to a well-ordered state, followed by a second transition to a chaotic state. Temporal power spectra and time-delay phase maps of low dimensional attractors graphically depict the sequence between periodic and chaotic states. To our knowledge, this is a unique report of a low Reynolds number flow with such a sequence of periodic-to-aperiodic transitions. Also unique is a report of strange attractors triggered and sustained through electric fluid body forces. PMID:22908251

  14. Noise induced stabilization of chaotic free-running laser diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virte, Martin, E-mail: mvirte@b-phot.org

    In this paper, we investigate theoretically the stabilization of a free-running vertical-cavity surface-emitting laser exhibiting polarization chaos dynamics. We report the existence of a boundary isolating the chaotic attractor on one side and a steady-state on the other side and identify the unstable periodic orbit playing the role of separatrix. In addition, we highlight a small range of parameters where the chaotic attractor passes through this boundary, and therefore where chaos only appears as a transient behaviour. Then, including the effect of spontaneous emission noise in the laser, we demonstrate that, for realistic levels of noise, the system is systematicallymore » pushed over the separating solution. As a result, we show that the chaotic dynamics cannot be sustained unless the steady-state on the other side of the separatrix becomes unstable. Finally, we link the stability of this steady-state to a small value of the birefringence in the laser cavity and discuss the significance of this result on future experimental work.« less

  15. Modelling chaotic vibrations using NASTRAN

    NASA Technical Reports Server (NTRS)

    Sheerer, T. J.

    1993-01-01

    Due to the unavailability and, later, prohibitive cost of the computational power required, many phenomena in nonlinear dynamic systems have in the past been addressed in terms of linear systems. Linear systems respond to periodic inputs with periodic outputs, and may be characterized in the time domain or in the frequency domain as convenient. Reduction to the frequency domain is frequently desireable to reduce the amount of computation required for solution. Nonlinear systems are only soluble in the time domain, and may exhibit a time history which is extremely sensitive to initial conditions. Such systems are termed chaotic. Dynamic buckling, aeroelasticity, fatigue analysis, control systems and electromechanical actuators are among the areas where chaotic vibrations have been observed. Direct transient analysis over a long time period presents a ready means of simulating the behavior of self-excited or externally excited nonlinear systems for a range of experimental parameters, either to characterize chaotic behavior for development of load spectra, or to define its envelope and preclude its occurrence.

  16. Route to broadband chaos in a chaotic laser diode subject to optical injection.

    PubMed

    Wang, An-Bang; Wang, Yun-Cai; Wang, Juan-Fen

    2009-04-15

    We experimentally and numerically demonstrate a route to bandwidth-enhanced chaos that is induced by an additional optical injection for a chaotic laser diode with optical feedback. The measured and calculated optical spectra consistently reveal that the mechanism of bandwidth enhancement is the interaction between the injection and chaotic laser field via beating. The bandwidth can be maximized only when the injected light is detuned into the edge of the optical spectrum of the chaotic laser field and the beating frequency exceeds the original bandwidth. The simulated dynamics maps indicate that 20 GHz broadband chaos can be obtained by commonly used laser diodes.

  17. Fractional Order Spatiotemporal Chaos with Delay in Spatial Nonlinear Coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Yingqian; Wang, Xingyuan; Liu, Liyan; Liu, Jia

    We investigate the spatiotemporal dynamics with fractional order differential logistic map with delay under nonlinear chaotic maps for spatial coupling connections. Here, the coupling methods between lattices are the nonlinear chaotic map coupling of lattices. The fractional order differential logistic map with delay breaks the limits of the range of parameter μ ∈ [3.75, 4] in the classical logistic map for chaotic states. The Kolmogorov-Sinai entropy density and universality, and bifurcation diagrams are employed to investigate the chaotic behaviors of the proposed model in this paper. The proposed model can also be applied for cryptography, which is verified in a color image encryption scheme in this paper.

  18. A reanalysis of "Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons".

    PubMed

    Engelken, Rainer; Farkhooi, Farzad; Hansel, David; van Vreeswijk, Carl; Wolf, Fred

    2016-01-01

    Neuronal activity in the central nervous system varies strongly in time and across neuronal populations. It is a longstanding proposal that such fluctuations generically arise from chaotic network dynamics. Various theoretical studies predict that the rich dynamics of rate models operating in the chaotic regime can subserve circuit computation and learning. Neurons in the brain, however, communicate via spikes and it is a theoretical challenge to obtain similar rate fluctuations in networks of spiking neuron models. A recent study investigated spiking balanced networks of leaky integrate and fire (LIF) neurons and compared their dynamics to a matched rate network with identical topology, where single unit input-output functions were chosen from isolated LIF neurons receiving Gaussian white noise input. A mathematical analogy between the chaotic instability in networks of rate units and the spiking network dynamics was proposed. Here we revisit the behavior of the spiking LIF networks and these matched rate networks. We find expected hallmarks of a chaotic instability in the rate network: For supercritical coupling strength near the transition point, the autocorrelation time diverges. For subcritical coupling strengths, we observe critical slowing down in response to small external perturbations. In the spiking network, we found in contrast that the timescale of the autocorrelations is insensitive to the coupling strength and that rate deviations resulting from small input perturbations rapidly decay. The decay speed even accelerates for increasing coupling strength. In conclusion, our reanalysis demonstrates fundamental differences between the behavior of pulse-coupled spiking LIF networks and rate networks with matched topology and input-output function. In particular there is no indication of a corresponding chaotic instability in the spiking network.

  19. An annealed chaotic maximum neural network for bipartite subgraph problem.

    PubMed

    Wang, Jiahai; Tang, Zheng; Wang, Ronglong

    2004-04-01

    In this paper, based on maximum neural network, we propose a new parallel algorithm that can help the maximum neural network escape from local minima by including a transient chaotic neurodynamics for bipartite subgraph problem. The goal of the bipartite subgraph problem, which is an NP- complete problem, is to remove the minimum number of edges in a given graph such that the remaining graph is a bipartite graph. Lee et al. presented a parallel algorithm using the maximum neural model (winner-take-all neuron model) for this NP- complete problem. The maximum neural model always guarantees a valid solution and greatly reduces the search space without a burden on the parameter-tuning. However, the model has a tendency to converge to a local minimum easily because it is based on the steepest descent method. By adding a negative self-feedback to the maximum neural network, we proposed a new parallel algorithm that introduces richer and more flexible chaotic dynamics and can prevent the network from getting stuck at local minima. After the chaotic dynamics vanishes, the proposed algorithm is then fundamentally reined by the gradient descent dynamics and usually converges to a stable equilibrium point. The proposed algorithm has the advantages of both the maximum neural network and the chaotic neurodynamics. A large number of instances have been simulated to verify the proposed algorithm. The simulation results show that our algorithm finds the optimum or near-optimum solution for the bipartite subgraph problem superior to that of the best existing parallel algorithms.

  20. Transition to Chaos in Random Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Kadmon, Jonathan; Sompolinsky, Haim

    2015-10-01

    Firing patterns in the central nervous system often exhibit strong temporal irregularity and considerable heterogeneity in time-averaged response properties. Previous studies suggested that these properties are the outcome of the intrinsic chaotic dynamics of the neural circuits. Indeed, simplified rate-based neuronal networks with synaptic connections drawn from Gaussian distribution and sigmoidal nonlinearity are known to exhibit chaotic dynamics when the synaptic gain (i.e., connection variance) is sufficiently large. In the limit of an infinitely large network, there is a sharp transition from a fixed point to chaos, as the synaptic gain reaches a critical value. Near the onset, chaotic fluctuations are slow, analogous to the ubiquitous, slow irregular fluctuations observed in the firing rates of many cortical circuits. However, the existence of a transition from a fixed point to chaos in neuronal circuit models with more realistic architectures and firing dynamics has not been established. In this work, we investigate rate-based dynamics of neuronal circuits composed of several subpopulations with randomly diluted connections. Nonzero connections are either positive for excitatory neurons or negative for inhibitory ones, while single neuron output is strictly positive with output rates rising as a power law above threshold, in line with known constraints in many biological systems. Using dynamic mean field theory, we find the phase diagram depicting the regimes of stable fixed-point, unstable-dynamic, and chaotic-rate fluctuations. We focus on the latter and characterize the properties of systems near this transition. We show that dilute excitatory-inhibitory architectures exhibit the same onset to chaos as the single population with Gaussian connectivity. In these architectures, the large mean excitatory and inhibitory inputs dynamically balance each other, amplifying the effect of the residual fluctuations. Importantly, the existence of a transition to chaos and its critical properties depend on the shape of the single-neuron nonlinear input-output transfer function, near firing threshold. In particular, for nonlinear transfer functions with a sharp rise near threshold, the transition to chaos disappears in the limit of a large network; instead, the system exhibits chaotic fluctuations even for small synaptic gain. Finally, we investigate transition to chaos in network models with spiking dynamics. We show that when synaptic time constants are slow relative to the mean inverse firing rates, the network undergoes a transition from fast spiking fluctuations with constant rates to a state where the firing rates exhibit chaotic fluctuations, similar to the transition predicted by rate-based dynamics. Systems with finite synaptic time constants and firing rates exhibit a smooth transition from a regime dominated by stationary firing rates to a regime of slow rate fluctuations. This smooth crossover obeys scaling properties, similar to crossover phenomena in statistical mechanics. The theoretical results are supported by computer simulations of several neuronal architectures and dynamics. Consequences for cortical circuit dynamics are discussed. These results advance our understanding of the properties of intrinsic dynamics in realistic neuronal networks and their functional consequences.

  1. Suppression of chaos via control of energy flow

    NASA Astrophysics Data System (ADS)

    Guo, Shengli; Ma, Jun; Alsaedi, Ahmed

    2018-03-01

    Continuous energy supply is critical and important to support oscillating behaviour; otherwise, the oscillator will die. For nonlinear and chaotic circuits, enough energy supply is also important to keep electric devices working. In this paper, Hamilton energy is calculated for dimensionless dynamical system (e.g., the chaotic Lorenz system) using Helmholtz's theorem. The Hamilton energy is considered as a new variable and then the dynamical system is controlled by using the scheme of energy feedback. It is found that chaos can be suppressed even when intermittent feedback scheme is applied. This scheme is effective to control chaos and to stabilise other dynamical systems.

  2. A note on chaotic unimodal maps and applications.

    PubMed

    Zhou, C T; He, X T; Yu, M Y; Chew, L Y; Wang, X G

    2006-09-01

    Based on the word-lift technique of symbolic dynamics of one-dimensional unimodal maps, we investigate the relation between chaotic kneading sequences and linear maximum-length shift-register sequences. Theoretical and numerical evidence that the set of the maximum-length shift-register sequences is a subset of the set of the universal sequence of one-dimensional chaotic unimodal maps is given. By stabilizing unstable periodic orbits on superstable periodic orbits, we also develop techniques to control the generation of long binary sequences.

  3. Transition of chaotic motion to a limit cycle by intervention of economic policy: an empirical analysis in agriculture.

    PubMed

    Sakai, Kenshi; Managi, Shunsuke; Vitanov, Nikolay K; Demura, Katsuhiko

    2007-04-01

    This paper investigates the transition of dynamics observed in an actual real agricultural economic dataset. Lyapunov spectrum analysis is conducted on the data to distinguish deterministic chaos and the limit cycle. Chaotic and periodic oscillation were identified before and after the second oil crisis, respectively. The statitonarity of the time series is investigated using recurrence plots. This shows that government intervention might reduce market instability by removing a chaotic market's long-term unpredictability.

  4. Using chaotic artificial neural networks to model memory in the brain

    NASA Astrophysics Data System (ADS)

    Aram, Zainab; Jafari, Sajad; Ma, Jun; Sprott, Julien C.; Zendehrouh, Sareh; Pham, Viet-Thanh

    2017-03-01

    In the current study, a novel model for human memory is proposed based on the chaotic dynamics of artificial neural networks. This new model explains a biological fact about memory which is not yet explained by any other model: There are theories that the brain normally works in a chaotic mode, while during attention it shows ordered behavior. This model uses the periodic windows observed in a previously proposed model for the brain to store and then recollect the information.

  5. Impact of hyperbolicity on chimera states in ensembles of nonlocally coupled chaotic oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semenova, N.; Anishchenko, V.; Zakharova, A.

    2016-06-08

    In this work we analyse nonlocally coupled networks of identical chaotic oscillators. We study both time-discrete and time-continuous systems (Henon map, Lozi map, Lorenz system). We hypothesize that chimera states, in which spatial domains of coherent (synchronous) and incoherent (desynchronized) dynamics coexist, can be obtained only in networks of chaotic non-hyperbolic systems and cannot be found in networks of hyperbolic systems. This hypothesis is supported by numerical simulations for hyperbolic and non-hyperbolic cases.

  6. Mixing Silicate Melts with High Viscosity Contrast by Chaotic Dynamics: Results from a New Experimental Device

    NASA Astrophysics Data System (ADS)

    de Campos, Cristina; Perugini, Diego; Ertel-Ingrisch, Werner; Dingwell, Donald B.; Poli, Giampiero

    2010-05-01

    A new experimental device has been developed to perform chaotic mixing between high viscosity melts under controlled fluid-dynamic conditions. The apparatus is based on the Journal Bearing System (JBS). It consists of an outer cylinder hosting the melts of interest and an inner cylinder, which is eccentrically located. Both cylinders can be independently moved to generate chaotic streamlines in the mixing system. Two experiments were performed using as end-members different proportions of a peralkaline haplogranite and a mafic melt, corresponding to the 1 atm eutectic composition in the An-Di binary system. The two melts were stirred together in the JBS for ca. two hours, at 1,400° C and under laminar fluid dynamic condition (Re of the order of 10-7). The viscosity ratio between the two melts, at the beginning of the experiment, was of the order of 103. Optical analyses of experimental samples revealed, at short length scale (of the order of μm), a complex pattern of mixed structures. These consisted of an intimate distribution of filaments; a complex inter-fingering of the two melts. Such features are typically observed in rocks thought to be produced by magma mixing processes. Stretching and folding dynamics between the melts induced chaotic flow fields and generated wide compositional interfaces. In this way, chemical diffusion processes become more efficient, producing melts with highly heterogeneous compositions. A remarkable modulation of compositional fields has been obtained by performing short time-scale experiments and using melts with a high viscosity ratio. This indicates that chaotic mixing of magmas can be a very efficient process in modulating compositional variability in igneous systems, especially under high viscosity ratios and laminar fluid-dynamic regimes. Our experimental device may replicate magma mixing features, observed in natural rocks, and therefore open new frontiers in the study of this important petrologic and volcanological process.

  7. Chaotic gas turbine subject to augmented Lorenz equations.

    PubMed

    Cho, Kenichiro; Miyano, Takaya; Toriyama, Toshiyuki

    2012-09-01

    Inspired by the chaotic waterwheel invented by Malkus and Howard about 40 years ago, we have developed a gas turbine that randomly switches the sense of rotation between clockwise and counterclockwise. The nondimensionalized expressions for the equations of motion of our turbine are represented as a starlike network of many Lorenz subsystems sharing the angular velocity of the turbine rotor as the central node, referred to as augmented Lorenz equations. We show qualitative similarities between the statistical properties of the angular velocity of the turbine rotor and the velocity field of large-scale wind in turbulent Rayleigh-Bénard convection reported by Sreenivasan et al. [Phys. Rev. E 65, 056306 (2002)]. Our equations of motion achieve the random reversal of the turbine rotor through the stochastic resonance of the angular velocity in a double-well potential and the force applied by rapidly oscillating fields. These results suggest that the augmented Lorenz model is applicable as a dynamical model for the random reversal of turbulent large-scale wind through cessation.

  8. Application of chaos theory to the particle dynamics of asymmetry-induced transport

    NASA Astrophysics Data System (ADS)

    Eggleston, D. L.

    2018-03-01

    The techniques of chaos theory are employed in an effort to better understand the complex single-particle dynamics of asymmetry-induced transport in non-neutral plasmas. The dynamical equations are re-conceptualized as describing time-independent trajectories in a four-dimensional space consisting of the radius r, rotating frame angle ψ, axial position z, and axial velocity v. Results include the identification of an integral of the motion, fixed-point analysis of the dynamical equations, the construction and interpretation of Poincaré sections to visualize the dynamics, and, for the case of chaotic motion, numerical calculation of the largest Lyapunov exponent. Chaotic cases are shown to be associated with the overlap of resonance islands formed by the applied asymmetry.

  9. A Novel Type of Chaotic Attractor for Quadratic Systems Without Equilibriums

    NASA Astrophysics Data System (ADS)

    Dantsev, Danylo

    In this paper, a new chaotic dynamic system without equilibriums is presented. A conducted research of the qualitative properties of the discovered system reveals a noncompliance between the bifurcation behavior of the system and the Feigenbaum-Sharkovskii-Magnitsky theory. Additional research of known systems confirms the discrepancy.

  10. Security Analysis of a Block Encryption Algorithm Based on Dynamic Sequences of Multiple Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Du, Mao-Kang; He, Bo; Wang, Yong

    2011-01-01

    Recently, the cryptosystem based on chaos has attracted much attention. Wang and Yu (Commun. Nonlin. Sci. Numer. Simulat. 14 (2009) 574) proposed a block encryption algorithm based on dynamic sequences of multiple chaotic systems. We analyze the potential flaws in the algorithm. Then, a chosen-plaintext attack is presented. Some remedial measures are suggested to avoid the flaws effectively. Furthermore, an improved encryption algorithm is proposed to resist the attacks and to keep all the merits of the original cryptosystem.

  11. A model with chaotic scattering and reduction of wave packets

    NASA Astrophysics Data System (ADS)

    Guarneri, Italo

    2018-03-01

    Some variants of Smilansky’s model of a particle interacting with harmonic oscillators are examined in the framework of scattering theory. A dynamical proof is given of the existence of wave operators. Analysis of a classical version of the model provides a transparent picture for the spectral transition to which the quantum model owes its renown, and for the underlying dynamical behaviour. The model is thereby classified as an extreme case of chaotic scattering, with aspects related to wave packet reduction and irreversibility.

  12. Magnetic field induced dynamical chaos.

    PubMed

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-01

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  13. On Chaotic and Hyperchaotic Complex Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Gamal M.

    Dynamical systems described by real and complex variables are currently one of the most popular areas of scientific research. These systems play an important role in several fields of physics, engineering, and computer sciences, for example, laser systems, control (or chaos suppression), secure communications, and information science. Dynamical basic properties, chaos (hyperchaos) synchronization, chaos control, and generating hyperchaotic behavior of these systems are briefly summarized. The main advantage of introducing complex variables is the reduction of phase space dimensions by a half. They are also used to describe and simulate the physics of detuned laser and thermal convection of liquid flows, where the electric field and the atomic polarization amplitudes are both complex. Clearly, if the variables of the system are complex the equations involve twice as many variables and control parameters, thus making it that much harder for a hostile agent to intercept and decipher the coded message. Chaotic and hyperchaotic complex systems are stated as examples. Finally there are many open problems in the study of chaotic and hyperchaotic complex nonlinear dynamical systems, which need further investigations. Some of these open problems are given.

  14. Multifractal Approach to the Analysis of Crime Dynamics: Results for Burglary in San Francisco

    NASA Astrophysics Data System (ADS)

    Melgarejo, Miguel; Obregon, Nelson

    This paper provides evidence of fractal, multifractal and chaotic behaviors in urban crime by computing key statistical attributes over a long data register of criminal activity. Fractal and multifractal analyses based on power spectrum, Hurst exponent computation, hierarchical power law detection and multifractal spectrum are considered ways to characterize and quantify the footprint of complexity of criminal activity. Moreover, observed chaos analysis is considered a second step to pinpoint the nature of the underlying crime dynamics. This approach is carried out on a long database of burglary activity reported by 10 police districts of San Francisco city. In general, interarrival time processes of criminal activity in San Francisco exhibit fractal and multifractal patterns. The behavior of some of these processes is close to 1/f noise. Therefore, a characterization as deterministic, high-dimensional, chaotic phenomena is viable. Thus, the nature of crime dynamics can be studied from geometric and chaotic perspectives. Our findings support that crime dynamics may be understood from complex systems theories like self-organized criticality or highly optimized tolerance.

  15. Self-Similar Random Process and Chaotic Behavior In Serrated Flow of High Entropy Alloys

    PubMed Central

    Chen, Shuying; Yu, Liping; Ren, Jingli; Xie, Xie; Li, Xueping; Xu, Ying; Zhao, Guangfeng; Li, Peizhen; Yang, Fuqian; Ren, Yang; Liaw, Peter K.

    2016-01-01

    The statistical and dynamic analyses of the serrated-flow behavior in the nanoindentation of a high-entropy alloy, Al0.5CoCrCuFeNi, at various holding times and temperatures, are performed to reveal the hidden order associated with the seemingly-irregular intermittent flow. Two distinct types of dynamics are identified in the high-entropy alloy, which are based on the chaotic time-series, approximate entropy, fractal dimension, and Hurst exponent. The dynamic plastic behavior at both room temperature and 200 °C exhibits a positive Lyapunov exponent, suggesting that the underlying dynamics is chaotic. The fractal dimension of the indentation depth increases with the increase of temperature, and there is an inflection at the holding time of 10 s at the same temperature. A large fractal dimension suggests the concurrent nucleation of a large number of slip bands. In particular, for the indentation with the holding time of 10 s at room temperature, the slip process evolves as a self-similar random process with a weak negative correlation similar to a random walk. PMID:27435922

  16. Noise-driven switching and chaotic itinerancy among dynamic states in a three-mode intracavity second-harmonic generation laser operating on a Λ transition

    NASA Astrophysics Data System (ADS)

    Otsuka, Kenju; Ohtomo, Takayuki; Maniwa, Tsuyoshi; Kawasaki, Hazumi; Ko, Jing-Yuan

    2003-09-01

    We studied the antiphase self-pulsation in a globally coupled three-mode laser operating in different optical spectrum configurations. We observed locking of modal pulsation frequencies, quasiperiodicity, clustering behaviors, and chaos, resulting from the nonlinear interaction among modes. The robustness of [p:q:r] three-frequency locking states and quasiperiodic oscillations against residual noise has been examined by using joint time-frequency analysis of long-term experimental time series. Two sharply antithetical types of switching behaviors among different dynamic states were observed during temporal evolutions; noise-driven switching and self-induced switching, which manifests itself in chaotic itinerancy. The modal interplay behind observed behaviors was studied by using the statistical dynamic quantity of the information circulation. Well-organized information flows among modes, which correspond to the number of degeneracies of modal pulsation frequencies, were found to be established in accordance with the inherent antiphase dynamics. Observed locking behaviors, quasiperiodic motions, and chaotic itinerancy were reproduced by numerical simulation of the model equations.

  17. Self-similar random process and chaotic behavior in serrated flow of high entropy alloys

    DOE PAGES

    Chen, Shuying; Yu, Liping; Ren, Jingli; ...

    2016-07-20

    Here, the statistical and dynamic analyses of the serrated-flow behavior in the nanoindentation of a high-entropy alloy, Al 0.5CoCrCuFeNi, at various holding times and temperatures, are performed to reveal the hidden order associated with the seemingly-irregular intermittent flow. Two distinct types of dynamics are identified in the high-entropy alloy, which are based on the chaotic time-series, approximate entropy, fractal dimension, and Hurst exponent. The dynamic plastic behavior at both room temperature and 200 °C exhibits a positive Lyapunov exponent, suggesting that the underlying dynamics is chaotic. The fractal dimension of the indentation depth increases with the increase of temperature, andmore » there is an inflection at the holding time of 10 s at the same temperature. A large fractal dimension suggests the concurrent nucleation of a large number of slip bands. In particular, for the indentation with the holding time of 10 s at room temperature, the slip process evolves as a self-similar random process with a weak negative correlation similar to a random walk.« less

  18. Chaotic coordinates for the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Hudson, Stuart; Suzuki, Yasuhiro

    2014-10-01

    The study of dynamical systems is facilitated by a coordinate framework with coordinate surfaces that coincide with invariant structures of the dynamical flow. For axisymmetric systems, a continuous family of invariant surfaces is guaranteed and straight-fieldline coordinates may be constructed. For non-integrable systems, e.g. stellarators, perturbed tokamaks, this continuous family is broken. Nevertheless, coordinates can still be constructed that simplify the description of the dynamics. The Poincare-Birkhoff theorem, the Aubry-Mather theorem, and the KAM theorem show that there are important structures that are invariant under the perturbed dynamics; namely the periodic orbits, the cantori, and the irrational flux surfaces. Coordinates adapted to these invariant sets, which we call chaotic coordinates, provide substantial advantages. The regular motion becomes straight, and the irregular motion is bounded by, and dissected by, coordinate surfaces that coincide with surfaces of locally-minimal magnetic-fieldline flux. The chaotic edge of the magnetic field, as calculated by HINT2 code, in the Large Helical Device (LHD) is examined, and a coordinate system is constructed so that the flux surfaces are ``straight'' and the islands become ``square.''

  19. Self-Similar Random Process and Chaotic Behavior In Serrated Flow of High Entropy Alloys.

    PubMed

    Chen, Shuying; Yu, Liping; Ren, Jingli; Xie, Xie; Li, Xueping; Xu, Ying; Zhao, Guangfeng; Li, Peizhen; Yang, Fuqian; Ren, Yang; Liaw, Peter K

    2016-07-20

    The statistical and dynamic analyses of the serrated-flow behavior in the nanoindentation of a high-entropy alloy, Al0.5CoCrCuFeNi, at various holding times and temperatures, are performed to reveal the hidden order associated with the seemingly-irregular intermittent flow. Two distinct types of dynamics are identified in the high-entropy alloy, which are based on the chaotic time-series, approximate entropy, fractal dimension, and Hurst exponent. The dynamic plastic behavior at both room temperature and 200 °C exhibits a positive Lyapunov exponent, suggesting that the underlying dynamics is chaotic. The fractal dimension of the indentation depth increases with the increase of temperature, and there is an inflection at the holding time of 10 s at the same temperature. A large fractal dimension suggests the concurrent nucleation of a large number of slip bands. In particular, for the indentation with the holding time of 10 s at room temperature, the slip process evolves as a self-similar random process with a weak negative correlation similar to a random walk.

  20. Memcapacitor model and its application in chaotic oscillator with memristor.

    PubMed

    Wang, Guangyi; Zang, Shouchi; Wang, Xiaoyuan; Yuan, Fang; Iu, Herbert Ho-Ching

    2017-01-01

    Memristors and memcapacitors are two new nonlinear elements with memory. In this paper, we present a Hewlett-Packard memristor model and a charge-controlled memcapacitor model and design a new chaotic oscillator based on the two models for exploring the characteristics of memristors and memcapacitors in nonlinear circuits. Furthermore, many basic dynamical behaviors of the oscillator, including equilibrium sets, Lyapunov exponent spectrums, and bifurcations with various circuit parameters, are investigated theoretically and numerically. Our analysis results show that the proposed oscillator possesses complex dynamics such as an infinite number of equilibria, coexistence oscillation, and multi-stability. Finally, a discrete model of the chaotic oscillator is given and the main statistical properties of this oscillator are verified via Digital Signal Processing chip experiments and National Institute of Standards and Technology tests.

  1. Granular chaos and mixing: Whirled in a grain of sand.

    PubMed

    Shinbrot, Troy

    2015-09-01

    In this paper, we overview examples of chaos in granular flows. We begin by reviewing several remarkable behaviors that have intrigued researchers over the past few decades, and we then focus on three areas in which chaos plays an intrinsic role in granular behavior. First, we discuss pattern formation in vibrated beds, which we show is a direct result of chaotic scattering combined with dynamical dissipation. Next, we consider stick-slip motion, which involves chaotic scattering on the micro-scale, and which results in complex and as yet unexplained peculiarities on the macro-scale. Finally, we examine granular mixing, which we show combines micro-scale chaotic scattering and macro-scale stick-slip motion into behaviors that are well described by dynamical systems tools, such as iterative mappings.

  2. Stability and Noise-induced Transitions in an Ensemble of Nonlocally Coupled Chaotic Maps

    NASA Astrophysics Data System (ADS)

    Bukh, Andrei V.; Slepnev, Andrei V.; Anishchenko, Vadim S.; Vadivasova, Tatiana E.

    2018-05-01

    The influence of noise on chimera states arising in ensembles of nonlocally coupled chaotic maps is studied. There are two types of chimera structures that can be obtained in such ensembles: phase and amplitude chimera states. In this work, a series of numerical experiments is carried out to uncover the impact of noise on both types of chimeras. The noise influence on a chimera state in the regime of periodic dynamics results in the transition to chaotic dynamics. At the same time, the transformation of incoherence clusters of the phase chimera to incoherence clusters of the amplitude chimera occurs. Moreover, it is established that the noise impact may result in the appearance of a cluster with incoherent behavior in the middle of a coherence cluster.

  3. Chaotic behavior in electro-rotation

    NASA Astrophysics Data System (ADS)

    Lemaire, E.; Lobry, L.

    2002-11-01

    We study the dynamics of an insulating cylinder in a weakly conducting liquid when submitted to a DC electric field. The cylinder is free to rotate along its long axis which is perpendicular to the applied field. Above a threshold value of the electric field, the cylinder rotates in either direction with constant angular velocity. This instability is known as Quincke rotation and can be easily understood by considering the polarization induced by the free charges accumulation on the cylinder surface. Here we present preliminary experimental results which exhibit a chaotic dynamics of the cylinder for higher electric fields: the velocity is no longer constant and the rotation direction changes randomly. By taking into account the finite Maxwell-Wagner polarization relaxation time, we show that this chaotic behavior can be described by the Lorenz equations.

  4. Granular chaos and mixing: Whirled in a grain of sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinbrot, Troy, E-mail: shinbrot@rutgers.edu

    2015-09-15

    In this paper, we overview examples of chaos in granular flows. We begin by reviewing several remarkable behaviors that have intrigued researchers over the past few decades, and we then focus on three areas in which chaos plays an intrinsic role in granular behavior. First, we discuss pattern formation in vibrated beds, which we show is a direct result of chaotic scattering combined with dynamical dissipation. Next, we consider stick-slip motion, which involves chaotic scattering on the micro-scale, and which results in complex and as yet unexplained peculiarities on the macro-scale. Finally, we examine granular mixing, which we show combinesmore » micro-scale chaotic scattering and macro-scale stick-slip motion into behaviors that are well described by dynamical systems tools, such as iterative mappings.« less

  5. Chaos and Correlated Avalanches in Excitatory Neural Networks with Synaptic Plasticity

    NASA Astrophysics Data System (ADS)

    Pittorino, Fabrizio; Ibáñez-Berganza, Miguel; di Volo, Matteo; Vezzani, Alessandro; Burioni, Raffaella

    2017-03-01

    A collective chaotic phase with power law scaling of activity events is observed in a disordered mean field network of purely excitatory leaky integrate-and-fire neurons with short-term synaptic plasticity. The dynamical phase diagram exhibits two transitions from quasisynchronous and asynchronous regimes to the nontrivial, collective, bursty regime with avalanches. In the homogeneous case without disorder, the system synchronizes and the bursty behavior is reflected into a period doubling transition to chaos for a two dimensional discrete map. Numerical simulations show that the bursty chaotic phase with avalanches exhibits a spontaneous emergence of persistent time correlations and enhanced Kolmogorov complexity. Our analysis reveals a mechanism for the generation of irregular avalanches that emerges from the combination of disorder and deterministic underlying chaotic dynamics.

  6. Chaotic dynamics in premixed hydrogen/air channel flow combustion

    NASA Astrophysics Data System (ADS)

    Pizza, Gianmarco; Frouzakis, Christos E.; Mantzaras, John

    2012-04-01

    The complex oscillatory behaviour observed in fuel-lean premixed hydrogen/air atmospheric pressure flames in an open planar channel with prescribed wall temperature is investigated by means of direct numerical simulations, employing detailed chemistry descriptions and species transport, and nonlinear dynamics analysis. As the inflow velocity is varied, the sequence of transitions includes harmonic single frequency oscillations, intermittency, mixed mode oscillations, and finally a period-doubling cascade leading to chaotic dynamics. The observed modes are described and characterised by means of phase-space portraits and next amplitude maps. It is shown that the interplay of chemistry, transport, and wall-bounded developing flow leads to considerably richer dynamics compared to fuel-lean hydrogen/air continuously stirred tank reactor studies.

  7. Chaotic behaviour of Zeeman machines at introductory course of mechanics

    NASA Astrophysics Data System (ADS)

    Nagy, Péter; Tasnádi, Péter

    2016-05-01

    Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.

  8. Chaotic itinerancy and power-law residence time distribution in stochastic dynamical systems.

    PubMed

    Namikawa, Jun

    2005-08-01

    Chaotic itinerant motion among varieties of ordered states is described by a stochastic model based on the mechanism of chaotic itinerancy. The model consists of a random walk on a half-line and a Markov chain with a transition probability matrix. The stability of attractor ruin in the model is investigated by analyzing the residence time distribution of orbits at attractor ruins. It is shown that the residence time distribution averaged over all attractor ruins can be described by the superposition of (truncated) power-law distributions if the basin of attraction for each attractor ruin has a zero measure. This result is confirmed by simulation of models exhibiting chaotic itinerancy. Chaotic itinerancy is also shown to be absent in coupled Milnor attractor systems if the transition probability among attractor ruins can be represented as a Markov chain.

  9. Chaotic Zones around Rotating Small Bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lages, José; Shevchenko, Ivan I.; Shepelyansky, Dima L., E-mail: jose.lages@utinam.cnrs.fr

    Small bodies of the solar system, like asteroids, trans-Neptunian objects, cometary nuclei, and planetary satellites, with diameters smaller than 1000 km usually have irregular shapes, often resembling dumb-bells or contact binaries. The spinning of such a gravitating dumb-bell creates around it a zone of chaotic orbits. We determine its extent analytically and numerically. We find that the chaotic zone swells significantly if the rotation rate is decreased; in particular, the zone swells more than twice if the rotation rate is decreased 10 times with respect to the “centrifugal breakup” threshold. We illustrate the properties of the chaotic orbital zones in examples ofmore » the global orbital dynamics about asteroid 243 Ida (which has a moon, Dactyl, orbiting near the edge of the chaotic zone) and asteroid 25143 Itokawa.« less

  10. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale.

    PubMed

    Maslennikov, Oleg V; Nekorkin, Vladimir I

    2016-07-01

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.

  11. Solving large scale traveling salesman problems by chaotic neurodynamics.

    PubMed

    Hasegawa, Mikio; Ikeguch, Tohru; Aihara, Kazuyuki

    2002-03-01

    We propose a novel approach for solving large scale traveling salesman problems (TSPs) by chaotic dynamics. First, we realize the tabu search on a neural network, by utilizing the refractory effects as the tabu effects. Then, we extend it to a chaotic neural network version. We propose two types of chaotic searching methods, which are based on two different tabu searches. While the first one requires neurons of the order of n2 for an n-city TSP, the second one requires only n neurons. Moreover, an automatic parameter tuning method of our chaotic neural network is presented for easy application to various problems. Last, we show that our method with n neurons is applicable to large TSPs such as an 85,900-city problem and exhibits better performance than the conventional stochastic searches and the tabu searches.

  12. Stability analysis of an implicitly defined labor market model

    NASA Astrophysics Data System (ADS)

    Mendes, Diana A.; Mendes, Vivaldo M.

    2008-06-01

    Until very recently, the pervasive existence of models exhibiting well-defined backward dynamics but ill-defined forward dynamics in economics and finance has apparently posed no serious obstacles to the analysis of their dynamics and stability, despite the problems that may arise from possible erroneous conclusions regarding theoretical considerations and policy prescriptions from such models. A large number of papers have dealt with this problem in the past by assuming the existence of symmetry between forward and backward dynamics, even in the case when the map cannot be invertible either forward or backwards. However, this procedure has been seriously questioned over the last few years in a series of papers dealing with implicit difference equations and inverse limit spaces. This paper explores the search and matching labor market model developed by Bhattacharya and Bunzel [J. Bhattacharya, H. Bunzel, Chaotic Planning Solution in the Textbook Model of Equilibrium Labor Market Search and Matching, Mimeo, Iowa State University, 2002; J. Bhattacharya, H. Bunzel, Economics Bulletin 5 (19) (2003) 1-10], with the following objectives in mind: (i) to show that chaotic dynamics may still be present in the model for acceptable parameter values, (ii) to clarify some open questions related with the admissible dynamics in the forward looking setting, by providing a rigorous proof of the existence of cyclic and chaotic dynamics through the application of tools from symbolic dynamics and inverse limit theory.

  13. Dynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaos.

    PubMed

    Innocenti, Giacomo; Morelli, Alice; Genesio, Roberto; Torcini, Alessandro

    2007-12-01

    The dynamical phases of the Hindmarsh-Rose neuronal model are analyzed in detail by varying the external current I. For increasing current values, the model exhibits a peculiar cascade of nonchaotic and chaotic period-adding bifurcations leading the system from the silent regime to a chaotic state dominated by bursting events. At higher I-values, this phase is substituted by a regime of continuous chaotic spiking and finally via an inverse period doubling cascade the system returns to silence. The analysis is focused on the transition between the two chaotic phases displayed by the model: one dominated by spiking dynamics and the other by bursts. At the transition an abrupt shrinking of the attractor size associated with a sharp peak in the maximal Lyapunov exponent is observable. However, the transition appears to be continuous and smoothed out over a finite current interval, where bursts and spikes coexist. The beginning of the transition (from the bursting side) is signaled from a structural modification in the interspike interval return map. This change in the map shape is associated with the disappearance of the family of solutions responsible for the onset of the bursting chaos. The successive passage from bursting to spiking chaos is associated with a progressive pruning of unstable long-lasting bursts.

  14. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states.

    PubMed

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  15. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    NASA Astrophysics Data System (ADS)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  16. Analytical expressions for the evolution of many-body quantum systems quenched far from equilibrium

    NASA Astrophysics Data System (ADS)

    Santos, Lea F.; Torres-Herrera, E. Jonathan

    2017-12-01

    Possible strategies to describe analytically the dynamics of many-body quantum systems out of equilibrium include the use of solvable models and of full random matrices. None of the two approaches represent actual realistic systems, but they serve as references for the studies of these ones. We take the second path and obtain analytical expressions for the survival probability, density imbalance, and out-of-time-ordered correlator. Using these findings, we then propose an approximate expression that matches very well numerical results for the evolution of realistic finite quantum systems that are strongly chaotic and quenched far from equilibrium. In the case of the survival probability, the expression proposed covers all different time scales, from the moment the system is taken out of equilibrium to the moment it reaches a new equilibrium. The realistic systems considered are described by one-dimensional spin-1/2 models.

  17. Chaotic Mixing in Magmatic Systems: a new experiment

    NASA Astrophysics Data System (ADS)

    de Campos, C. P.; Perugini, D.; Dingwell, D. B.; Poli, G.; Ertel-Ingrisch, W.; Hess, K.

    2007-12-01

    Previous studies on magma mixing systems have evidenced that mixing processes could be controlled by chaotic dynamics. These processes are thought to be the source of fractal structures propagating within natural magmatic systems, from meter to the micrometer length scale (Perugini et al., 2006. EPSL, 234: 669-680 and references therein). We have developed a device for experimental studies of chaotic mixing dynamics in silicate melts at high temperatures (up to 1700°C). This device has been inspired by the journal bearing or eccentric cylinder geometry for viscous fluids for the study of chaotic mixing in slow flows (Swanson and Ottino, 1990. J. Fluid Mech., 213:227-249). This geometry is thought to be an ideal system for chaotic studies because a) it is experimentally accessible/feasible for silicate rheologies and b) it is subject to an analytical solution for the stream function. In the journal bearing system the flow region, is confined in the torus between the centers of the two cylinders. Their central axes are parallel but not coincident, i. e. the cylinders are eccentric. In order to generate chaos in a flow, the streamlines must be time dependent, resulting in alternating movements between the two cylinders. This means that at least one of the cylinders has alternating rotation directions. The dimension of this new experimental device follows the required main dimensionless numbers for a chaotic flow. Our first experimental goal is to characterize the mixing process in a prototypical system (haplogranite-haplobasalt)under variable mixing protocols. muenchen.de/

  18. Linear matrix inequality approach to exponential synchronization of a class of chaotic neural networks with time-varying delays

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Cui, Bao-Tong

    2007-07-01

    In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented. This class of chaotic neural networks covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks, and bidirectional associative memory networks. The obtained criteria are expressed in terms of linear matrix inequalities, thus they can be efficiently verified. A comparison between our results and the previous results shows that our results are less restrictive.

  19. [Interdependence of plankton spatial distribution and plancton biomass temporal oscillations: mathematical simulation].

    PubMed

    Medvedinskiĭ, A B; Tikhonova, I A; Li, B L; Malchow, H

    2003-01-01

    The dynamics of aquatic biological communities in a patchy environment is of great interest in respect to interrelations between phenomena at various spatial and time scales. To study the complex plankton dynamics in relation to variations of such a biologically essential parameter as the fish predation rate, we use a simple reaction-diffusion model of trophic interactions between phytoplankton, zooplankton, and fish. We suggest that plankton is distributed between two habitats one of which is fish-free due to hydrological inhomogeneity, while the other is fish-populated. We show that temporal variations in the fish predation rate do not violate the strong correspondence between the character of spatial distribution of plankton and changes of plankton biomass in time: regular temporal oscillations of plankton biomass correspond to large-scale plankton patches, while chaotic oscillations correspond to small-scale plankton patterns. As in the case of the constant fish predation rate, the chaotic plankton dynamics is characterized by coexistence of the chaotic attractor and limit cycle.

  20. Synchronization of chaotic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecora, Louis M.; Carroll, Thomas L.

    2015-09-15

    We review some of the history and early work in the area of synchronization in chaotic systems. We start with our own discovery of the phenomenon, but go on to establish the historical timeline of this topic back to the earliest known paper. The topic of synchronization of chaotic systems has always been intriguing, since chaotic systems are known to resist synchronization because of their positive Lyapunov exponents. The convergence of the two systems to identical trajectories is a surprise. We show how people originally thought about this process and how the concept of synchronization changed over the years tomore » a more geometric view using synchronization manifolds. We also show that building synchronizing systems leads naturally to engineering more complex systems whose constituents are chaotic, but which can be tuned to output various chaotic signals. We finally end up at a topic that is still in very active exploration today and that is synchronization of dynamical systems in networks of oscillators.« less

  1. Stick-slip chaos in a mechanical oscillator with dry friction

    NASA Astrophysics Data System (ADS)

    Kousaka, Takuji; Asahara, Hiroyuki; Inaba, Naohiko

    2018-03-01

    This study analyzes a forced mechanical dynamical system with dry friction that can generate chaotic stick-slip vibrations. We find that the dynamics proposed by Yoshitake et al. [Trans. Jpn. Soc. Mech. Eng. C 61, 768 (1995)] can be expressed as a nonautonomous constraint differential equation owing to the static friction force. The object is constrained to the surface of a moving belt by a static friction force from when it sticks to the surface until the force on the object exceeds the maximal static friction force. We derive a 1D Poincaré return map from the constrained mechanical system, and prove numerically that this 1D map has an absolutely continuous invariant measure and a positive Lyapunov exponent, providing strong evidence for chaos.

  2. Chaos of radiative heat-loss-induced flame front instability.

    PubMed

    Kinugawa, Hikaru; Ueda, Kazuhiro; Gotoda, Hiroshi

    2016-03-01

    We are intensively studying the chaos via the period-doubling bifurcation cascade in radiative heat-loss-induced flame front instability by analytical methods based on dynamical systems theory and complex networks. Significant changes in flame front dynamics in the chaotic region, which cannot be seen in the bifurcation diagrams, were successfully extracted from recurrence quantification analysis and nonlinear forecasting and from the network entropy. The temporal dynamics of the fuel concentration in the well-developed chaotic region is much more complicated than that of the flame front temperature. It exhibits self-affinity as a result of the scale-free structure in the constructed visibility graph.

  3. Generation of 2N + 1-scroll existence in new three-dimensional chaos systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yue; Guan, Jian; Ma, Chunyang

    2016-08-15

    We propose a systematic methodology for creating 2N + 1-scroll chaotic attractors from a simple three-dimensional system, which is named as the translation chaotic system. It satisfies the condition a{sub 12}a{sub 21} = 0, while the Chua system satisfies a{sub 12}a{sub 21} > 0. In this paper, we also propose a successful (an effective) design and an analytical approach for constructing 2N + 1-scrolls, the translation transformation principle. Also, the dynamics properties of the system are studied in detail. MATLAB simulation results show very sophisticated dynamical behaviors and unique chaotic behaviors of the system. It provides a new approach for 2N + 1-scroll attractors. Finally, to explore the potential usemore » in technological applications, a novel block circuit diagram is also designed for the hardware implementation of 1-, 3-, 5-, and 7-scroll attractors via switching the switches. Translation chaotic system has the merit of convenience and high sensitivity to initial values, emerging potentials in future engineering chaos design.« less

  4. Improved numerical solutions for chaotic-cancer-model

    NASA Astrophysics Data System (ADS)

    Yasir, Muhammad; Ahmad, Salman; Ahmed, Faizan; Aqeel, Muhammad; Akbar, Muhammad Zubair

    2017-01-01

    In biological sciences, dynamical system of cancer model is well known due to its sensitivity and chaoticity. Present work provides detailed computational study of cancer model by counterbalancing its sensitive dependency on initial conditions and parameter values. Cancer chaotic model is discretized into a system of nonlinear equations that are solved using the well-known Successive-Over-Relaxation (SOR) method with a proven convergence. This technique enables to solve large systems and provides more accurate approximation which is illustrated through tables, time history maps and phase portraits with detailed analysis.

  5. Solar system dynamics

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack

    1987-01-01

    The rotational dynamics of irregularly shaped satellites and the origin of Kirkwood Gaps are discussed. The chaotic tumbling of Hyperion and the anomalously low eccentricity of Deimos are examined. The Digital Orrery is used to explore the phase space of the ellipic restricted three body problem near the principal commensurabilities (2/1, 5/2, 3/1, and 3/2). The results for the 3/1 commensurability are in close agreement with those found earlier with the algebraic mapping method. Large chaotic zones are associated with the 3/1, 2/1 and 5/2 resonances, where there are gaps in the distribution of asteroids. The region near the 3/2 resonance, where the Hilda group of asteroids is located, is largely devoid of chaotic behavior. Thus, there is a qualitative agreement between the character of the motion and the distribution of asteroids.

  6. How to control chaotic behaviour and population size with proportional feedback

    NASA Astrophysics Data System (ADS)

    Liz, Eduardo

    2010-01-01

    We study the control of chaos in one-dimensional discrete maps as they often occur in modelling population dynamics. For managing the population, we seek to suppress any possible chaotic behavior, leading the system to a stable equilibrium. In this Letter, we make a rigorous analysis of the proportional feedback method under certain conditions fulfilled by a wide family of maps. We show that it is possible to stabilize the chaotic dynamics towards a globally stable positive equilibrium, that can be chosen among a broad range of possible values. In particular, the size of the population can be enhanced by control in form of population reduction. This paradoxical phenomenon is known as the hydra effect, and it has important implications in the design of strategies in such areas as fishing, pest management, and conservation biology.

  7. Precisely cyclic sand: self-organization of periodically sheared frictional grains.

    PubMed

    Royer, John R; Chaikin, Paul M

    2015-01-06

    The disordered static structure and chaotic dynamics of frictional granular matter has occupied scientists for centuries, yet there are few organizational principles or guiding rules for this highly hysteretic, dissipative material. We show that cyclic shear of a granular material leads to dynamic self-organization into several phases with different spatial and temporal order. Using numerical simulations, we present a phase diagram in strain-friction space that shows chaotic dispersion, crystal formation, vortex patterns, and most unusually a disordered phase in which each particle precisely retraces its unique path. However, the system is not reversible. Rather, the trajectory of each particle, and the entire frictional, many-degrees-of-freedom system, organizes itself into a limit cycle absorbing state. Of particular note is that fact that the cyclic states are spatially disordered, whereas the ordered states are chaotic.

  8. Precisely cyclic sand: Self-organization of periodically sheared frictional grains

    PubMed Central

    Royer, John R.; Chaikin, Paul M.

    2015-01-01

    The disordered static structure and chaotic dynamics of frictional granular matter has occupied scientists for centuries, yet there are few organizational principles or guiding rules for this highly hysteretic, dissipative material. We show that cyclic shear of a granular material leads to dynamic self-organization into several phases with different spatial and temporal order. Using numerical simulations, we present a phase diagram in strain–friction space that shows chaotic dispersion, crystal formation, vortex patterns, and most unusually a disordered phase in which each particle precisely retraces its unique path. However, the system is not reversible. Rather, the trajectory of each particle, and the entire frictional, many–degrees-of-freedom system, organizes itself into a limit cycle absorbing state. Of particular note is that fact that the cyclic states are spatially disordered, whereas the ordered states are chaotic. PMID:25538298

  9. Fault detection technique for wavelength division multiplexing passive optical network using chaotic fiber laser

    NASA Astrophysics Data System (ADS)

    Xu, Naijun; Yang, Lingzhen; Zhang, Juan; Zhang, Xiangyuan; Wang, Juanfen; Zhang, Zhaoxia; Liu, Xianglian

    2014-03-01

    We propose a fault localization method for wavelength division multiplexing passive optical network (WDM-PON). A proof-of-concept experiment was demonstrated by utilizing the wavelength tunable chaotic laser generated from an erbium-doped fiber ring laser with a manual tunable fiber Bragg grating (TFBG) filter. The range of the chaotic lasing wavelength can cover the C-band. Basing on the TFBG filter, we can adjust the wavelength of the chaotic laser to match the WDM-PON channel with identical wavelength. We determined the fault location by calculating the cross-correlation between the reference and return signals. Analysis of the characteristics of the wavelength tunable chaotic laser showed that the breakpoint, the loose connector, and the mismatch connector could be precisely located. A dynamic range of approximately 23.8 dB and a spatial resolution of 4 cm, which was independent of the measuring range, were obtained.

  10. Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basicmore » properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.« less

  11. Terminal Transient Phase of Chaotic Transients

    NASA Astrophysics Data System (ADS)

    Lilienkamp, Thomas; Parlitz, Ulrich

    2018-03-01

    Transient chaos in spatially extended systems can be characterized by the length of the transient phase, which typically grows quickly with the system size (supertransients). For a large class of these systems, the chaotic phase terminates abruptly, without any obvious precursors in commonly used observables. Here we investigate transient spatiotemporal chaos in two different models of this class. By probing the state space using perturbed trajectories we show the existence of a "terminal transient phase," which occurs prior to the abrupt collapse of chaotic dynamics. During this phase the impact of perturbations is significantly different from the earlier transient and particular patterns of (non)susceptible regions in state space occur close to the chaotic trajectories. We therefore hypothesize that even without perturbations proper precursors for the collapse of chaotic transients exist, which might be highly relevant for coping with spatiotemporal chaos in cardiac arrhythmias or brain functionality, for example.

  12. Improving the quality of extracting dynamics from interspike intervals via a resampling approach

    NASA Astrophysics Data System (ADS)

    Pavlova, O. N.; Pavlov, A. N.

    2018-04-01

    We address the problem of improving the quality of characterizing chaotic dynamics based on point processes produced by different types of neuron models. Despite the presence of embedding theorems for non-uniformly sampled dynamical systems, the case of short data analysis requires additional attention because the selection of algorithmic parameters may have an essential influence on estimated measures. We consider how the preliminary processing of interspike intervals (ISIs) can increase the precision of computing the largest Lyapunov exponent (LE). We report general features of characterizing chaotic dynamics from point processes and show that independently of the selected mechanism for spike generation, the performed preprocessing reduces computation errors when dealing with a limited amount of data.

  13. Chaotic Dynamical Ferromagnetic Phase Induced by Nonequilibrium Quantum Fluctuations

    NASA Astrophysics Data System (ADS)

    Lerose, Alessio; Marino, Jamir; Žunkovič, Bojan; Gambassi, Andrea; Silva, Alessandro

    2018-03-01

    We investigate the robustness of a dynamical phase transition against quantum fluctuations by studying the impact of a ferromagnetic nearest-neighbor spin interaction in one spatial dimension on the nonequilibrium dynamical phase diagram of the fully connected quantum Ising model. In particular, we focus on the transient dynamics after a quantum quench and study the prethermal state via a combination of analytic time-dependent spin wave theory and numerical methods based on matrix product states. We find that, upon increasing the strength of the quantum fluctuations, the dynamical critical point fans out into a chaotic dynamical phase within which the asymptotic ordering is characterized by strong sensitivity to the parameters and initial conditions. We argue that such a phenomenon is general, as it arises from the impact of quantum fluctuations on the mean-field out of equilibrium dynamics of any system which exhibits a broken discrete symmetry.

  14. Chaotic Dynamical Ferromagnetic Phase Induced by Nonequilibrium Quantum Fluctuations.

    PubMed

    Lerose, Alessio; Marino, Jamir; Žunkovič, Bojan; Gambassi, Andrea; Silva, Alessandro

    2018-03-30

    We investigate the robustness of a dynamical phase transition against quantum fluctuations by studying the impact of a ferromagnetic nearest-neighbor spin interaction in one spatial dimension on the nonequilibrium dynamical phase diagram of the fully connected quantum Ising model. In particular, we focus on the transient dynamics after a quantum quench and study the prethermal state via a combination of analytic time-dependent spin wave theory and numerical methods based on matrix product states. We find that, upon increasing the strength of the quantum fluctuations, the dynamical critical point fans out into a chaotic dynamical phase within which the asymptotic ordering is characterized by strong sensitivity to the parameters and initial conditions. We argue that such a phenomenon is general, as it arises from the impact of quantum fluctuations on the mean-field out of equilibrium dynamics of any system which exhibits a broken discrete symmetry.

  15. Bit-level quantum color image encryption scheme with quantum cross-exchange operation and hyper-chaotic system

    NASA Astrophysics Data System (ADS)

    Zhou, Nanrun; Chen, Weiwei; Yan, Xinyu; Wang, Yunqian

    2018-06-01

    In order to obtain higher encryption efficiency, a bit-level quantum color image encryption scheme by exploiting quantum cross-exchange operation and a 5D hyper-chaotic system is designed. Additionally, to enhance the scrambling effect, the quantum channel swapping operation is employed to swap the gray values of corresponding pixels. The proposed color image encryption algorithm has larger key space and higher security since the 5D hyper-chaotic system has more complex dynamic behavior, better randomness and unpredictability than those based on low-dimensional hyper-chaotic systems. Simulations and theoretical analyses demonstrate that the presented bit-level quantum color image encryption scheme outperforms its classical counterparts in efficiency and security.

  16. Dynamics of delay-coupled FitzHugh-Nagumo neural rings.

    PubMed

    Mao, Xiaochen; Sun, Jianqiao; Li, Shaofan

    2018-01-01

    This paper studies the dynamical behaviors of a pair of FitzHugh-Nagumo neural networks with bidirectional delayed couplings. It presents a detailed analysis of delay-independent and delay-dependent stabilities and the existence of bifurcated oscillations. Illustrative examples are performed to validate the analytical results and to discover interesting phenomena. It is shown that the network exhibits a variety of complicated activities, such as multiple stability switches, the coexistence of periodic and quasi-periodic oscillations, the coexistence of periodic and chaotic orbits, and the coexisting chaotic attractors.

  17. Dynamics of delay-coupled FitzHugh-Nagumo neural rings

    NASA Astrophysics Data System (ADS)

    Mao, Xiaochen; Sun, Jianqiao; Li, Shaofan

    2018-01-01

    This paper studies the dynamical behaviors of a pair of FitzHugh-Nagumo neural networks with bidirectional delayed couplings. It presents a detailed analysis of delay-independent and delay-dependent stabilities and the existence of bifurcated oscillations. Illustrative examples are performed to validate the analytical results and to discover interesting phenomena. It is shown that the network exhibits a variety of complicated activities, such as multiple stability switches, the coexistence of periodic and quasi-periodic oscillations, the coexistence of periodic and chaotic orbits, and the coexisting chaotic attractors.

  18. Discrete dynamical laser equation for the critical onset of bistability, entanglement and disappearance

    NASA Astrophysics Data System (ADS)

    Abdul, M.; Farooq, U.; Akbar, Jehan; Saif, F.

    2018-06-01

    We transform the semi-classical laser equation for single mode homogeneously broadened lasers to a one-dimensional nonlinear map by using the discrete dynamical approach. The obtained mapping, referred to as laser logistic mapping (LLM), characteristically exhibits convergent, cyclic and chaotic behavior depending on the control parameter. Thus, the so obtained LLM explains stable, bistable, multi-stable, and chaotic solutions for output field intensity. The onset of bistability takes place at a critical value of the effective gain coefficient. The obtained analytical results are confirmed through numerical calculations.

  19. Reconstruction of dynamical systems from resampled point processes produced by neuron models

    NASA Astrophysics Data System (ADS)

    Pavlova, Olga N.; Pavlov, Alexey N.

    2018-04-01

    Characterization of dynamical features of chaotic oscillations from point processes is based on embedding theorems for non-uniformly sampled signals such as the sequences of interspike intervals (ISIs). This theoretical background confirms the ability of attractor reconstruction from ISIs generated by chaotically driven neuron models. The quality of such reconstruction depends on the available length of the analyzed dataset. We discuss how data resampling improves the reconstruction for short amount of data and show that this effect is observed for different types of mechanisms for spike generation.

  20. Features of Chaotic Transients in Excitable Media Governed by Spiral and Scroll Waves

    NASA Astrophysics Data System (ADS)

    Lilienkamp, Thomas; Christoph, Jan; Parlitz, Ulrich

    2017-08-01

    In excitable media, chaotic dynamics governed by spiral or scroll waves is often not persistent but transient. Using extensive simulations employing different mathematical models we identify a specific type-II supertransient by an exponential increase of transient lifetimes with the system size in 2D and an investigation of the dynamics (number and lifetime of spiral waves, Kaplan-Yorke dimension). In 3D, simulations exhibit an increase of transient lifetimes and filament lengths only above a critical thickness. Finally, potential implications for understanding cardiac arrhythmias are discussed.

  1. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field ismore » chaotic. We argue that this second type of behavior is “extensive” in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.« less

  2. Devaney chaos, Li-Yorke chaos, and multi-dimensional Li-Yorke chaos for topological dynamics

    NASA Astrophysics Data System (ADS)

    Dai, Xiongping; Tang, Xinjia

    2017-11-01

    Let π : T × X → X, written T↷π X, be a topological semiflow/flow on a uniform space X with T a multiplicative topological semigroup/group not necessarily discrete. We then prove: If T↷π X is non-minimal topologically transitive with dense almost periodic points, then it is sensitive to initial conditions. As a result of this, Devaney chaos ⇒ Sensitivity to initial conditions, for this very general setting. Let R+↷π X be a C0-semiflow on a Polish space; then we show: If R+↷π X is topologically transitive with at least one periodic point p and there is a dense orbit with no nonempty interior, then it is multi-dimensional Li-Yorke chaotic; that is, there is a uncountable set Θ ⊆ X such that for any k ≥ 2 and any distinct points x1 , … ,xk ∈ Θ, one can find two time sequences sn → ∞ ,tn → ∞ with Moreover, let X be a non-singleton Polish space; then we prove: Any weakly-mixing C0-semiflow R+↷π X is densely multi-dimensional Li-Yorke chaotic. Any minimal weakly-mixing topological flow T↷π X with T abelian is densely multi-dimensional Li-Yorke chaotic. Any weakly-mixing topological flow T↷π X is densely Li-Yorke chaotic. We in addition construct a completely Li-Yorke chaotic minimal SL (2 , R)-acting flow on the compact metric space R ∪ { ∞ }. Our various chaotic dynamics are sensitive to the choices of the topology of the phase semigroup/group T.

  3. Cross-entropy optimization for neuromodulation.

    PubMed

    Brar, Harleen K; Yunpeng Pan; Mahmoudi, Babak; Theodorou, Evangelos A

    2016-08-01

    This study presents a reinforcement learning approach for the optimization of the proportional-integral gains of the feedback controller represented in a computational model of epilepsy. The chaotic oscillator model provides a feedback control systems view of the dynamics of an epileptic brain with an internal feedback controller representative of the natural seizure suppression mechanism within the brain circuitry. Normal and pathological brain activity is simulated in this model by adjusting the feedback gain values of the internal controller. With insufficient gains, the internal controller cannot provide enough feedback to the brain dynamics causing an increase in correlation between different brain sites. This increase in synchronization results in the destabilization of the brain dynamics, which is representative of an epileptic seizure. To provide compensation for an insufficient internal controller an external controller is designed using proportional-integral feedback control strategy. A cross-entropy optimization algorithm is applied to the chaotic oscillator network model to learn the optimal feedback gains for the external controller instead of hand-tuning the gains to provide sufficient control to the pathological brain and prevent seizure generation. The correlation between the dynamics of neural activity within different brain sites is calculated for experimental data to show similar dynamics of epileptic neural activity as simulated by the network of chaotic oscillators.

  4. Quantifying chaos for ecological stoichiometry.

    PubMed

    Duarte, Jorge; Januário, Cristina; Martins, Nuno; Sardanyés, Josep

    2010-09-01

    The theory of ecological stoichiometry considers ecological interactions among species with different chemical compositions. Both experimental and theoretical investigations have shown the importance of species composition in the outcome of the population dynamics. A recent study of a theoretical three-species food chain model considering stoichiometry [B. Deng and I. Loladze, Chaos 17, 033108 (2007)] shows that coexistence between two consumers predating on the same prey is possible via chaos. In this work we study the topological and dynamical measures of the chaotic attractors found in such a model under ecological relevant parameters. By using the theory of symbolic dynamics, we first compute the topological entropy associated with unimodal Poincaré return maps obtained by Deng and Loladze from a dimension reduction. With this measure we numerically prove chaotic competitive coexistence, which is characterized by positive topological entropy and positive Lyapunov exponents, achieved when the first predator reduces its maximum growth rate, as happens at increasing δ1. However, for higher values of δ1 the dynamics become again stable due to an asymmetric bubble-like bifurcation scenario. We also show that a decrease in the efficiency of the predator sensitive to prey's quality (increasing parameter ζ) stabilizes the dynamics. Finally, we estimate the fractal dimension of the chaotic attractors for the stoichiometric ecological model.

  5. On the Chaotic Vibrations of Electrostatically Actuated Arch Micro/Nano Resonators: A Parametric Study

    NASA Astrophysics Data System (ADS)

    Tajaddodianfar, Farid; Hairi Yazdi, Mohammad Reza; Pishkenari, Hossein Nejat

    Motivated by specific applications, electrostatically actuated bistable arch shaped micro-nano resonators have attracted growing attention in the research community in recent years. Nevertheless, some issues relating to their nonlinear dynamics, including the possibility of chaos, are still not well known. In this paper, we investigate the chaotic vibrations of a bistable resonator comprised of a double clamped initially curved microbeam under combined harmonic AC and static DC distributed electrostatic actuation. A reduced order equation obtained by the application of the Galerkin method to the nonlinear partial differential equation of motion, given in the framework of Euler-Bernoulli beam theory, is used for the investigation in this paper. We numerically integrate the obtained equation to study the chaotic vibrations of the proposed system. Moreover, we investigate the effects of various parameters including the arch curvature, the actuation parameters and the quality factor of the resonator, which are effective in the formation of both static and dynamic behaviors of the system. Using appropriate numerical tools, including Poincaré maps, bifurcation diagrams, Fourier spectrum and Lyapunov exponents we scrutinize the effects of various parameters on the formation of chaotic regions in the parametric space of the resonator. Results of this work provide better insight into the problem of nonlinear dynamics of the investigated family of bistable micro/nano resonators, and facilitate the design of arch resonators for applications such as filters.

  6. Competitive Modes for the Detection of Chaotic Parameter Regimes in the General Chaotic Bilinear System of Lorenz Type

    NASA Astrophysics Data System (ADS)

    Mallory, Kristina; van Gorder, Robert A.

    We study chaotic behavior of solutions to the bilinear system of Lorenz type developed by Celikovsky and Vanecek [1994] through an application of competitive modes. This bilinear system of Lorenz type is one possible canonical form holding the Lorenz equation as a special case. Using a competitive modes analysis, which is a completely analytical method allowing one to identify parameter regimes for which chaos may occur, we are able to demonstrate a number of parameter regimes which admit a variety of distinct chaotic behaviors. Indeed, we are able to draw some interesting conclusions which relate the behavior of the mode frequencies arising from writing the state variables for the Celikovsky-Vanecek model as coupled oscillators, and the types of emergent chaotic behaviors observed. The competitive modes analysis is particularly useful if all but one of the model parameters are fixed, and the remaining free parameter is used to modify the chaos observed, in a manner analogous to a bifurcation parameter. Through a thorough application of the method, we are able to identify several parameter regimes which give new dynamics (such as specific forms of chaos) which were not observed or studied previously in the Celikovsky-Vanecek model. Therefore, the results demonstrate the advantage of the competitive modes approach for detecting new parameter regimes leading to chaos in third-order dynamical systems.

  7. Chaos and generalised multistability in a mesoscopic model of the electroencephalogram

    NASA Astrophysics Data System (ADS)

    Dafilis, Mathew P.; Frascoli, Federico; Cadusch, Peter J.; Liley, David T. J.

    2009-06-01

    We present evidence for chaos and generalised multistability in a mesoscopic model of the electroencephalogram (EEG). Two limit cycle attractors and one chaotic attractor were found to coexist in a two-dimensional plane of the ten-dimensional volume of initial conditions. The chaotic attractor was found to have a moderate value of the largest Lyapunov exponent (3.4 s -1 base e) with an associated Kaplan-Yorke (Lyapunov) dimension of 2.086. There are two different limit cycles appearing in conjunction with this particular chaotic attractor: one multiperiodic low amplitude limit cycle whose largest spectral peak is within the alpha band (8-13 Hz) of the EEG; and another multiperiodic large-amplitude limit cycle which may correspond to epilepsy. The cause of the coexistence of these structures is explained with a one-parameter bifurcation analysis. Each attractor has a basin of differing complexity: the large-amplitude limit cycle has a basin relatively uncomplicated in its structure while the small-amplitude limit cycle and chaotic attractor each have much more finely structured basins of attraction, but none of the basin boundaries appear to be fractal. The basins of attraction for the chaotic and small-amplitude limit cycle dynamics apparently reside within each other. We briefly discuss the implications of these findings in the context of theoretical attempts to understand the dynamics of brain function and behaviour.

  8. THE ASTEROID BELT AS A RELIC FROM A CHAOTIC EARLY SOLAR SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izidoro, André; Raymond, Sean N.; Pierens, Arnaud

    The orbital structure of the asteroid belt holds a record of the solar system’s dynamical history. The current belt only contains ∼10{sup −3} Earth masses yet the asteroids’ orbits are dynamically excited, with a large spread in eccentricity and inclination. In the context of models of terrestrial planet formation, the belt may have been excited by Jupiter’s orbital migration. The terrestrial planets can also be reproduced without invoking a migrating Jupiter; however, as it requires a severe mass deficit beyond Earth’s orbit, this model systematically under-excites the asteroid belt. Here we show that the orbits of the asteroids may havemore » been excited to their current state if Jupiter’s and Saturn’s early orbits were chaotic. Stochastic variations in the gas giants’ orbits cause resonances to continually jump across the main belt and excite the asteroids’ orbits on a timescale of tens of millions of years. While hydrodynamical simulations show that the gas giants were likely in mean motion resonance at the end of the gaseous disk phase, small perturbations could have driven them into a chaotic but stable state. The gas giants’ current orbits were achieved later, during an instability in the outer solar system. Although it is well known that the present-day solar system exhibits chaotic behavior, our results suggest that the early solar system may also have been chaotic.« less

  9. On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Bong

    1993-09-01

    Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaoticmore » nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.« less

  10. The role of model dynamics in ensemble Kalman filter performance for chaotic systems

    USGS Publications Warehouse

    Ng, G.-H.C.; McLaughlin, D.; Entekhabi, D.; Ahanin, A.

    2011-01-01

    The ensemble Kalman filter (EnKF) is susceptible to losing track of observations, or 'diverging', when applied to large chaotic systems such as atmospheric and ocean models. Past studies have demonstrated the adverse impact of sampling error during the filter's update step. We examine how system dynamics affect EnKF performance, and whether the absence of certain dynamic features in the ensemble may lead to divergence. The EnKF is applied to a simple chaotic model, and ensembles are checked against singular vectors of the tangent linear model, corresponding to short-term growth and Lyapunov vectors, corresponding to long-term growth. Results show that the ensemble strongly aligns itself with the subspace spanned by unstable Lyapunov vectors. Furthermore, the filter avoids divergence only if the full linearized long-term unstable subspace is spanned. However, short-term dynamics also become important as non-linearity in the system increases. Non-linear movement prevents errors in the long-term stable subspace from decaying indefinitely. If these errors then undergo linear intermittent growth, a small ensemble may fail to properly represent all important modes, causing filter divergence. A combination of long and short-term growth dynamics are thus critical to EnKF performance. These findings can help in developing practical robust filters based on model dynamics. ?? 2011 The Authors Tellus A ?? 2011 John Wiley & Sons A/S.

  11. Global dynamics in a stoichiometric food chain model with two limiting nutrients.

    PubMed

    Chen, Ming; Fan, Meng; Kuang, Yang

    2017-07-01

    Ecological stoichiometry studies the balance of energy and multiple chemical elements in ecological interactions to establish how the nutrient content affect food-web dynamics and nutrient cycling in ecosystems. In this study, we formulate a food chain with two limiting nutrients in the form of a stoichiometric population model. A comprehensive global analysis of the rich dynamics of the targeted model is explored both analytically and numerically. Chaotic dynamic is observed in this simple stoichiometric food chain model and is compared with traditional model without stoichiometry. The detailed comparison reveals that stoichiometry can reduce the parameter space for chaotic dynamics. Our findings also show that decreasing producer production efficiency may have only a small effect on the consumer growth but a more profound impact on the top predator growth. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Self-organization of complex networks as a dynamical system

    NASA Astrophysics Data System (ADS)

    Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio

    2015-01-01

    To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.

  13. Self-organization of complex networks as a dynamical system.

    PubMed

    Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio

    2015-01-01

    To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.

  14. Piecewise affine models of chaotic attractors: the Rossler and Lorenz systems.

    PubMed

    Amaral, Gleison F V; Letellier, Christophe; Aguirre, Luis Antonio

    2006-03-01

    This paper proposes a procedure by which it is possible to synthesize Rossler [Phys. Lett. A 57, 397-398 (1976)] and Lorenz [J. Atmos. Sci. 20, 130-141 (1963)] dynamics by means of only two affine linear systems and an abrupt switching law. Comparison of different (valid) switching laws suggests that parameters of such a law behave as codimension one bifurcation parameters that can be changed to produce various dynamical regimes equivalent to those observed with the original systems. Topological analysis is used to characterize the resulting attractors and to compare them with the original attractors. The paper provides guidelines that are helpful to synthesize other chaotic dynamics by means of switching affine linear systems.

  15. Chaos and crises in a model for cooperative hunting: a symbolic dynamics approach.

    PubMed

    Duarte, Jorge; Januário, Cristina; Martins, Nuno; Sardanyés, Josep

    2009-12-01

    In this work we investigate the population dynamics of cooperative hunting extending the McCann and Yodzis model for a three-species food chain system with a predator, a prey, and a resource species. The new model considers that a given fraction sigma of predators cooperates in prey's hunting, while the rest of the population 1-sigma hunts without cooperation. We use the theory of symbolic dynamics to study the topological entropy and the parameter space ordering of the kneading sequences associated with one-dimensional maps that reproduce significant aspects of the dynamics of the species under several degrees of cooperative hunting. Our model also allows us to investigate the so-called deterministic extinction via chaotic crisis and transient chaos in the framework of cooperative hunting. The symbolic sequences allow us to identify a critical boundary in the parameter spaces (K,C(0)) and (K,sigma) which separates two scenarios: (i) all-species coexistence and (ii) predator's extinction via chaotic crisis. We show that the crisis value of the carrying capacity K(c) decreases at increasing sigma, indicating that predator's populations with high degree of cooperative hunting are more sensitive to the chaotic crises. We also show that the control method of Dhamala and Lai [Phys. Rev. E 59, 1646 (1999)] can sustain the chaotic behavior after the crisis for systems with cooperative hunting. We finally analyze and quantify the inner structure of the target regions obtained with this control method for wider parameter values beyond the crisis, showing a power law dependence of the extinction transients on such critical parameters.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osovski, Shmuel; Moiseyev, Nimrod

    The recent pioneering experiments of the [Nature 412, 52 (2001)] and [Science, 293, 274 (2001)] groups have demonstrated the dynamical tunneling of cold atoms interacting with standing electromagnetic waves. It has been shown [Phys. Rev. Lett. 89, 253201 (2002)], that the tunneling oscillations observed in these experiments correspondingly stems from two- and three-Floquet quantum state mechanism and can be controlled by varying the experimental parameters. The question where are the fingerprints of the classical chaotic dynamics in a quantum dynamical process which is controlled by 2 or 3 quantum states remains open. Our calculations show that although the effective ({Dirac_h}/2{pi})more » associated with the two experiments is large, and the quantum system is far from its semiclassical limit, the quantum Floquet-Bloch quasienergy states still can be classified as regular and chaotic states. In both experiments the quantum and the classical phase-space entropies are quite similar, although the classical phase space is a mixed regular-chaotic space. It is also shown that as the wave packet which is initially localized at one of the two inner regular islands oscillates between them through the chaotic sea, it accumulates a random phase which causes the decay of the amplitude of the oscillating mean momentum, , as measured in both experiments. The extremely high sensitivity of the rate of decay of the oscillations of to the very small changes in the population of different Floquet-Bloch states, is another type of fingerprint of chaos in quantum dynamics that presumably was measured in the NIST and AUSTIN experiments for the first time.« less

  17. Turbulence and deterministic chaos. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1992-01-01

    Several turbulent and nonturbulent solutions of the Navier-Stokes equations are obtained. The unaveraged equations are used numerically in conjunction with tools and concepts from nonlinear dynamics, including time series, phase portraits, Poincare sections, largest Liapunov exponents, power spectra, and strange attractors. Initially neighboring solutions for a low Reynolds number fully developed turbulence are compared. Several flows are noted: fully chaotic, complex periodic, weakly chaotic, simple periodic, and fixed-point. Of these, only fully chaotic is classified as turbulent. Besides the sustained flows, a flow which decays as it becomes turbulent is examined. For the finest grid, 128(exp 3) points, the spatial resolution appears to be quite good. As a final note, the variation of the velocity derivatives skewness of a Navier-Stokes flow as the Reynolds number goes to zero is calculated numerically. The value of the skewness is shown to become small at low Reynolds numbers, in agreement with intuitive arguments that nonlinear terms should be negligible.

  18. Chaos and Forecasting - Proceedings of the Royal Society Discussion Meeting

    NASA Astrophysics Data System (ADS)

    Tong, Howell

    1995-04-01

    The Table of Contents for the full book PDF is as follows: * Preface * Orthogonal Projection, Embedding Dimension and Sample Size in Chaotic Time Series from a Statistical Perspective * A Theory of Correlation Dimension for Stationary Time Series * On Prediction and Chaos in Stochastic Systems * Locally Optimized Prediction of Nonlinear Systems: Stochastic and Deterministic * A Poisson Distribution for the BDS Test Statistic for Independence in a Time Series * Chaos and Nonlinear Forecastability in Economics and Finance * Paradigm Change in Prediction * Predicting Nonuniform Chaotic Attractors in an Enzyme Reaction * Chaos in Geophysical Fluids * Chaotic Modulation of the Solar Cycle * Fractal Nature in Earthquake Phenomena and its Simple Models * Singular Vectors and the Predictability of Weather and Climate * Prediction as a Criterion for Classifying Natural Time Series * Measuring and Characterising Spatial Patterns, Dynamics and Chaos in Spatially-Extended Dynamical Systems and Ecologies * Non-Linear Forecasting and Chaos in Ecology and Epidemiology: Measles as a Case Study

  19. Study on a new chaotic bitwise dynamical system and its FPGA implementation

    NASA Astrophysics Data System (ADS)

    Wang, Qian-Xue; Yu, Si-Min; Guyeux, C.; Bahi, J.; Fang, Xiao-Le

    2015-06-01

    In this paper, the structure of a new chaotic bitwise dynamical system (CBDS) is described. Compared to our previous research work, it uses various random bitwise operations instead of only one. The chaotic behavior of CBDS is mathematically proven according to the Devaney's definition, and its statistical properties are verified both for uniformity and by a comprehensive, reputed and stringent battery of tests called TestU01. Furthermore, a systematic methodology developing the parallel computations is proposed for FPGA platform-based realization of this CBDS. Experiments finally validate the proposed systematic methodology. Project supported by China Postdoctoral Science Foundation (Grant No. 2014M552175), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Chinese Education Ministry, the National Natural Science Foundation of China (Grant No. 61172023), and the Specialized Research Foundation of Doctoral Subjects of Chinese Education Ministry (Grant No. 20114420110003).

  20. Impact of Noise on a Dynamical System: Prediction and Uncertainties from a Swarm-Optimized Neural Network

    PubMed Central

    López-Caraballo, C. H.; Lazzús, J. A.; Salfate, I.; Rojas, P.; Rivera, M.; Palma-Chilla, L.

    2015-01-01

    An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term x(t + 6). The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σ N) from 0.01 to 0.1. PMID:26351449

  1. Impact of Noise on a Dynamical System: Prediction and Uncertainties from a Swarm-Optimized Neural Network.

    PubMed

    López-Caraballo, C H; Lazzús, J A; Salfate, I; Rojas, P; Rivera, M; Palma-Chilla, L

    2015-01-01

    An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term x(t + 6). The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σ(N)) from 0.01 to 0.1.

  2. Controlling chaos faster.

    PubMed

    Bick, Christian; Kolodziejski, Christoph; Timme, Marc

    2014-09-01

    Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic orbits in chaotic dynamical systems. Predictive feedback control is severely limited because asymptotic convergence speed decreases with stronger instabilities which in turn are typical for larger target periods, rendering it harder to effectively stabilize periodic orbits of large period. Here, we study stalled chaos control, where the application of control is stalled to make use of the chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation and speed up convergence. This modified control scheme is not only capable of stabilizing more periodic orbits than the original predictive feedback control but also speeds up convergence for typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that converges reliably, even for periodic orbits of large period.

  3. Double-well chimeras in 2D lattice of chaotic bistable elements

    NASA Astrophysics Data System (ADS)

    Shepelev, I. A.; Bukh, A. V.; Vadivasova, T. E.; Anishchenko, V. S.; Zakharova, A.

    2018-01-01

    We investigate spatio-temporal dynamics of a 2D ensemble of nonlocally coupled chaotic cubic maps in a bistability regime. In particular, we perform a detailed study on the transition ;coherence - incoherence; for varying coupling strength for a fixed interaction radius. For the 2D ensemble we show the appearance of amplitude and phase chimera states previously reported for 1D ensembles of nonlocally coupled chaotic systems. Moreover, we uncover a novel type of chimera state, double-well chimera, which occurs due to the interplay of the bistability of the local dynamics and the 2D ensemble structure. Additionally, we find double-well chimera behavior for steady states which we call double-well chimera death. A distinguishing feature of chimera patterns observed in the lattice is that they mainly combine clusters of different chimera types: phase, amplitude and double-well chimeras.

  4. Slow dynamics and regularization phenomena in ensembles of chaotic neurons

    NASA Astrophysics Data System (ADS)

    Rabinovich, M. I.; Varona, P.; Torres, J. J.; Huerta, R.; Abarbanel, H. D. I.

    1999-02-01

    We have explored the role of calcium concentration dynamics in the generation of chaos and in the regularization of the bursting oscillations using a minimal neural circuit of two coupled model neurons. In regions of the control parameter space where the slowest component, namely the calcium concentration in the endoplasmic reticulum, weakly depends on the other variables, this model is analogous to three dimensional systems as found in [1] or [2]. These are minimal models that describe the fundamental characteristics of the chaotic spiking-bursting behavior observed in real neurons. We have investigated different regimes of cooperative behavior in large assemblies of such units using lattice of non-identical Hindmarsh-Rose neurons electrically coupled with parameters chosen randomly inside the chaotic region. We study the regularization mechanisms in large assemblies and the development of several spatio-temporal patterns as a function of the interconnectivity among nearest neighbors.

  5. Fourier's law for quasi-one-dimensional chaotic quantum systems

    NASA Astrophysics Data System (ADS)

    Seligman, Thomas H.; Weidenmüller, Hans A.

    2011-05-01

    We derive Fourier's law for a completely coherent quasi-one-dimensional chaotic quantum system coupled locally to two heat baths at different temperatures. We solve the master equation to first order in the temperature difference. We show that the heat conductance can be expressed as a thermodynamic equilibrium coefficient taken at some intermediate temperature. We use that expression to show that for temperatures large compared to the mean level spacing of the system, the heat conductance is inversely proportional to the level density and, thus, inversely proportional to the length of the system.

  6. Design and simulation of the micromixer with chaotic advection in twisted microchannels.

    PubMed

    Jen, Chun-Ping; Wu, Chung-Yi; Lin, Yu-Cheng; Wu, Ching-Yi

    2003-05-01

    Chaotic mixers with twisted microchannels were designed and simulated numerically in the present study. The phenomenon whereby a simple Eulerian velocity field may generate a chaotic response in the distribution of a Lagrangian marker is termed chaotic advection. Dynamic system theory indicates that chaotic particle motion can occur when a velocity field is either two-dimensional and time-dependent, or three-dimensional. In the present study, micromixers with three-dimensional structures of the twisted microchannel were designed in order to induce chaotic mixing. In addition to the basic T-mixer, three types of micromixers with inclined, oblique and wavelike microchannels were investigated. In the design of each twisted microchannel, the angle of the channels' bottoms alternates in each subsection. When the fluids enter the twisted microchannels, the flow sways around the varying structures within the microchannels. The designs of the twisted microchannels provide a third degree of freedom to the flow field in the microchannel. Therefore, chaotic regimes that lead to chaotic mixing may arise. The numerical results indicate that mixing occurs in the main channel and progressively larger mixing lengths are required as the Peclet number increased. The swaying of the flow in the twisted microchannel causes chaotic advection. Among the four micromixer designs, the micromixer with the inclined channel most improved mixing. Furthermore, using the inclined mixer with six subsections yielded optimum performance, decreasing the mixing length by up to 31% from that of the basic T-mixer.

  7. Denoising of chaotic signal using independent component analysis and empirical mode decomposition with circulate translating

    NASA Astrophysics Data System (ADS)

    Wen-Bo, Wang; Xiao-Dong, Zhang; Yuchan, Chang; Xiang-Li, Wang; Zhao, Wang; Xi, Chen; Lei, Zheng

    2016-01-01

    In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the independent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor. Project supported by the National Science and Technology, China (Grant No. 2012BAJ15B04), the National Natural Science Foundation of China (Grant Nos. 41071270 and 61473213), the Natural Science Foundation of Hubei Province, China (Grant No. 2015CFB424), the State Key Laboratory Foundation of Satellite Ocean Environment Dynamics, China (Grant No. SOED1405), the Hubei Provincial Key Laboratory Foundation of Metallurgical Industry Process System Science, China (Grant No. Z201303), and the Hubei Key Laboratory Foundation of Transportation Internet of Things, Wuhan University of Technology, China (Grant No.2015III015-B02).

  8. Trojan resonant dynamics, stability, and chaotic diffusion, for parameters relevant to exoplanetary systems

    NASA Astrophysics Data System (ADS)

    Páez, Rocío Isabel; Efthymiopoulos, Christos

    2015-02-01

    The possibility that giant extrasolar planets could have small Trojan co-orbital companions has been examined in the literature from both viewpoints of the origin and dynamical stability of such a configuration. Here we aim to investigate the dynamics of hypothetical small Trojan exoplanets in domains of secondary resonances embedded within the tadpole domain of motion. To this end, we consider the limit of a massless Trojan companion of a giant planet. Without other planets, this is a case of the elliptic restricted three body problem (ERTBP). The presence of additional planets (hereafter referred to as the restricted multi-planet problem, RMPP) induces new direct and indirect secular effects on the dynamics of the Trojan body. The paper contains a theoretical and a numerical part. In the theoretical part, we develop a Hamiltonian formalism in action-angle variables, which allows us to treat in a unified way resonant dynamics and secular effects on the Trojan body in both the ERTBP or the RMPP. In both cases, our formalism leads to a decomposition of the Hamiltonian in two parts, . , called the basic model, describes resonant dynamics in the short-period (epicyclic) and synodic (libration) degrees of freedom, while contains only terms depending trigonometrically on slow (secular) angles. is formally identical in the ERTBP and the RMPP, apart from a re-definition of some angular variables. An important physical consequence of this analysis is that the slow chaotic diffusion along resonances proceeds in both the ERTBP and the RMPP by a qualitatively similar dynamical mechanism. We found that this is best approximated by the paradigm of `modulational diffusion'. In the paper's numerical part, we then focus on the ERTBP in order to make a detailed numerical demonstration of the chaotic diffusion process along resonances. Using color stability maps, we first provide a survey of the resonant web for characteristic mass parameter values of the primary, in which the secondary resonances from 1:5 to 1:12 (ratio of the short over the synodic period), as well as their transverse resonant multiplets, appear. We give numerical examples of diffusion of weakly chaotic orbits in the resonant web. We finally make a statistics of the escaping times in the resonant domain, and find power-law tails of the distribution of the escaping times for the slowly diffusing chaotic orbits. Implications of resonant dynamics in the search for Trojan exoplanets are discussed.

  9. Audio signal encryption using chaotic Hénon map and lifting wavelet transforms

    NASA Astrophysics Data System (ADS)

    Roy, Animesh; Misra, A. P.

    2017-12-01

    We propose an audio signal encryption scheme based on the chaotic Hénon map. The scheme mainly comprises two phases: one is the preprocessing stage where the audio signal is transformed into data by the lifting wavelet scheme and the other in which the transformed data is encrypted by chaotic data set and hyperbolic functions. Furthermore, we use dynamic keys and consider the key space size to be large enough to resist any kind of cryptographic attacks. A statistical investigation is also made to test the security and the efficiency of the proposed scheme.

  10. Some new surprises in chaos.

    PubMed

    Bunimovich, Leonid A; Vela-Arevalo, Luz V

    2015-09-01

    "Chaos is found in greatest abundance wherever order is being sought.It always defeats order, because it is better organized"Terry PratchettA brief review is presented of some recent findings in the theory of chaotic dynamics. We also prove a statement that could be naturally considered as a dual one to the Poincaré theorem on recurrences. Numerical results demonstrate that some parts of the phase space of chaotic systems are more likely to be visited earlier than other parts. A new class of chaotic focusing billiards is discussed that clearly violates the main condition considered to be necessary for chaos in focusing billiards.

  11. Effect of Noise on the Relaxation to an Invariant Probability Measure of Nonhyperbolic Chaotic Attractors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anishchenko, Vadim S.; Vadivasova, Tatjana E.; Kopeikin, Andrey S.

    2001-07-30

    We study the influence of external noise on the relaxation to an invariant probability measure for two types of nonhyperbolic chaotic attractors, a spiral (or coherent) and a noncoherent one. We find that for the coherent attractor the rate of mixing changes under the influence of noise, although the largest Lyapunov exponent remains almost unchanged. A mechanism of the noise influence on mixing is presented which is associated with the dynamics of the instantaneous phase of chaotic trajectories. This also explains why the noncoherent regime is robust against the presence of external noise.

  12. Applied Chaos: From Oxymoron to Reality.

    NASA Astrophysics Data System (ADS)

    Ditto, William

    1996-11-01

    The rapidly emerging field of chaotic dynamics has presented the applied scientist with intriguing new tools to understand and manipulate systems that behave chaotically. An overview will be presented which will answer the questions: What is Chaos? and What can you do with Chaos? Examples of recent applications of chaos theory to the physical and biological sciences will be presented covering applications that range from encryption in communications to control of chaotically beating human hearts. Part A of program listing

  13. Perception-action map learning in controlled multiscroll systems applied to robot navigation.

    PubMed

    Arena, Paolo; De Fiore, Sebastiano; Fortuna, Luigi; Patané, Luca

    2008-12-01

    In this paper a new technique for action-oriented perception in robots is presented. The paper starts from exploiting the successful implementation of the basic idea that perceptual states can be embedded into chaotic attractors whose dynamical evolution can be associated with sensorial stimuli. In this way, it can be possible to encode, into the chaotic dynamics, environment-dependent patterns. These have to be suitably linked to an action, executed by the robot, to fulfill an assigned mission. This task is addressed here: the action-oriented perception loop is closed by introducing a simple unsupervised learning stage, implemented via a bio-inspired structure based on the motor map paradigm. In this way, perceptual meanings, useful for solving a given task, can be autonomously learned, based on the environment-dependent patterns embedded into the controlled chaotic dynamics. The presented framework has been tested on a simulated robot and the performance have been successfully compared with other traditional navigation control paradigms. Moreover an implementation of the proposed architecture on a Field Programmable Gate Array is briefly outlined and preliminary experimental results on a roving robot are also reported.

  14. Computational Study of Chaotic and Ordered Solutions of the Kuramoto-Sivashinsky Equation

    NASA Technical Reports Server (NTRS)

    Smyrlis, Yiorgos S.; Papageorgiou, Demetrios T.

    1996-01-01

    We report the results of extensive numerical experiments on the Kuramoto-Sivashinsky equation in the strongly chaotic regime as the viscosity parameter is decreased and increasingly more linearly unstable modes enter the dynamics. General initial conditions are used and evolving states do not assume odd-parity. A large number of numerical experiments are employed in order to obtain quantitative characteristics of the dynamics. We report on different routes to chaos and provide numerical evidence and construction of strange attractors with self-similar characteristics. As the 'viscosity' parameter decreases the dynamics becomes increasingly more complicated and chaotic. In particular it is found that regular behavior in the form of steady state or steady state traveling waves is supported amidst the time-dependent and irregular motions. We show that multimodal steady states emerge and are supported on decreasing windows in parameter space. In addition we invoke a self-similarity property of the equation, to show that these profiles are obtainable from global fixed point attractors of the Kuramoto-Sivashinsky equation at much larger values of the viscosity.

  15. Performance Comparison of the European Storm Surge Models and Chaotic Model in Forecasting Extreme Storm Surges

    NASA Astrophysics Data System (ADS)

    Siek, M. B.; Solomatine, D. P.

    2009-04-01

    Storm surge modeling has rapidly developed considerably over the past 30 years. A number of significant advances on operational storm surge models have been implemented and tested, consisting of: refining computational grids, calibrating the model, using a better numerical scheme (i.e. more realistic model physics for air-sea interaction), implementing data assimilation and ensemble model forecasts. This paper addresses the performance comparison between the existing European storm surge models and the recently developed methods of nonlinear dynamics and chaos theory in forecasting storm surge dynamics. The chaotic model is built using adaptive local models based on the dynamical neighbours in the reconstructed phase space of observed time series data. The comparison focused on the model accuracy in forecasting a recently extreme storm surge in the North Sea on November 9th, 2007 that hit the coastlines of several European countries. The combination of a high tide, north-westerly winds exceeding 50 mph and low pressure produced an exceptional storm tide. The tidal level was exceeded 3 meters above normal sea levels. Flood warnings were issued for the east coast of Britain and the entire Dutch coast. The Maeslant barrier's two arc-shaped steel doors in the Europe's biggest port of Rotterdam was closed for the first time since its construction in 1997 due to this storm surge. In comparison to the chaotic model performance, the forecast data from several European physically-based storm surge models were provided from: BSH Germany, DMI Denmark, DNMI Norway, KNMI Netherlands and MUMM Belgium. The performance comparison was made over testing datasets for two periods/conditions: non-stormy period (1-Sep-2007 till 14-Oct-2007) and stormy period (15-Oct-2007 till 20-Nov-2007). A scalar chaotic model with optimized parameters was developed by utilizing an hourly training dataset of observations (11-Sep-2005 till 31-Aug-2007). The comparison results indicated the chaotic model yields better forecasts than the existing European storm surge models. The best performance of European storm surge models for non-storm and storm conditions was achieved by KNMI (with Kalman filter data assimilation) and BSH with errors of 8.95cm and 10.92cm, respectively. Whereas the chaotic model can provide 6 and 48 hours forecasts with errors of 3.10cm and 8.55cm for non-storm condition and 5.04cm and 15.21cm for storm condition, respectively. The chaotic model can provide better forecasts primarily due to the fact that the chaotic model forecasting are estimated by local models which model and identify the similar development of storm surges in the past. In practice, the chaotic model can serve as a reliable and accurate model to support decision-makers in operational ship navigation and flood forecasting.

  16. Network-induced chaos in integrate-and-fire neuronal ensembles.

    PubMed

    Zhou, Douglas; Rangan, Aaditya V; Sun, Yi; Cai, David

    2009-09-01

    It has been shown that a single standard linear integrate-and-fire (IF) neuron under a general time-dependent stimulus cannot possess chaotic dynamics despite the firing-reset discontinuity. Here we address the issue of whether conductance-based, pulsed-coupled network interactions can induce chaos in an IF neuronal ensemble. Using numerical methods, we demonstrate that all-to-all, homogeneously pulse-coupled IF neuronal networks can indeed give rise to chaotic dynamics under an external periodic current drive. We also provide a precise characterization of the largest Lyapunov exponent for these high dimensional nonsmooth dynamical systems. In addition, we present a stable and accurate numerical algorithm for evaluating the largest Lyapunov exponent, which can overcome difficulties encountered by traditional methods for these nonsmooth dynamical systems with degeneracy induced by, e.g., refractoriness of neurons.

  17. Phase Shadows: An Enhanced Representation of Nonlinear Dynamic Systems

    NASA Astrophysics Data System (ADS)

    Luque, Amalia; Barbancho, Julio; Cañete, Javier Fernández; Córdoba, Antonio

    2017-12-01

    Many nonlinear dynamic systems have a rotating behavior where an angle defining its state may extend to more than 360∘. In these cases the use of the phase portrait does not properly depict the system’s evolution. Normalized phase portraits or cylindrical phase portraits have been extensively used to overcome the original phase portrait’s disadvantages. In this research a new graphic representation is introduced: the phase shadow. Its use clearly reveals the system behavior while overcoming the drawback of the existing plots. Through the paper the method to obtain the graphic is stated. Additionally, to show the phase shadow’s expressiveness, a rotating pendulum is considered. The work exposes that the new graph is an enhanced representational tool for systems having equilibrium points, limit cycles, chaotic attractors and/or bifurcations.

  18. Chaotic oscillator containing memcapacitor and meminductor and its dimensionality reduction analysis.

    PubMed

    Yuan, Fang; Wang, Guangyi; Wang, Xiaowei

    2017-03-01

    In this paper, smooth curve models of meminductor and memcapacitor are designed, which are generalized from a memristor. Based on these models, a new five-dimensional chaotic oscillator that contains a meminductor and memcapacitor is proposed. By dimensionality reducing, this five-dimensional system can be transformed into a three-dimensional system. The main work of this paper is to give the comparisons between the five-dimensional system and its dimensionality reduction model. To investigate dynamics behaviors of the two systems, equilibrium points and stabilities are analyzed. And the bifurcation diagrams and Lyapunov exponent spectrums are used to explore their properties. In addition, digital signal processing technologies are used to realize this chaotic oscillator, and chaotic sequences are generated by the experimental device, which can be used in encryption applications.

  19. Desktop chaotic systems: Intuition and visualization

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Melcher, Kevin J.; Qammar, Helen K.; Hartley, Tom T.

    1993-01-01

    This paper presents a dynamic study of the Wildwood Pendulum, a commercially available desktop system which exhibits a strange attractor. The purpose of studying this chaotic pendulum is twofold: to gain insight in the paradigmatic approach of modeling, simulating, and determining chaos in nonlinear systems; and to provide a desktop model of chaos as a visual tool. For this study, the nonlinear behavior of this chaotic pendulum is modeled, a computer simulation is performed, and an experimental performance is measured. An assessment of the pendulum in the phase plane shows the strange attractor. Through the use of a box-assisted correlation dimension methodology, the attractor dimension is determined for both the model and the experimental pendulum systems. Correlation dimension results indicate that the pendulum and the model are chaotic and their fractal dimensions are similar.

  20. Human brain detects short-time nonlinear predictability in the temporal fine structure of deterministic chaotic sounds

    NASA Astrophysics Data System (ADS)

    Itoh, Kosuke; Nakada, Tsutomu

    2013-04-01

    Deterministic nonlinear dynamical processes are ubiquitous in nature. Chaotic sounds generated by such processes may appear irregular and random in waveform, but these sounds are mathematically distinguished from random stochastic sounds in that they contain deterministic short-time predictability in their temporal fine structures. We show that the human brain distinguishes deterministic chaotic sounds from spectrally matched stochastic sounds in neural processing and perception. Deterministic chaotic sounds, even without being attended to, elicited greater cerebral cortical responses than the surrogate control sounds after about 150 ms in latency after sound onset. Listeners also clearly discriminated these sounds in perception. The results support the hypothesis that the human auditory system is sensitive to the subtle short-time predictability embedded in the temporal fine structure of sounds.

  1. Dynamic analysis, circuit implementation and passive control of a novel four-dimensional chaotic system with multiscroll attractor and multiple coexisting attractors

    NASA Astrophysics Data System (ADS)

    Lai, Bang-Cheng; He, Jian-Jun

    2018-03-01

    In this paper, we construct a novel 4D autonomous chaotic system with four cross-product nonlinear terms and five equilibria. The multiple coexisting attractors and the multiscroll attractor of the system are numerically investigated. Research results show that the system has various types of multiple attractors, including three strange attractors with a limit cycle, three limit cycles, two strange attractors with a pair of limit cycles, two coexisting strange attractors. By using the passive control theory, a controller is designed for controlling the chaos of the system. Both analytical and numerical studies verify that the designed controller can suppress chaotic motion and stabilise the system at the origin. Moreover, an electronic circuit is presented for implementing the chaotic system.

  2. Competitions hatch butterfly attractors in foreign exchange markets

    NASA Astrophysics Data System (ADS)

    Jin, Yu Ying

    2005-03-01

    Chaos in foreign exchange markets is a common issue of concern in the study of economic dynamics. In this work, we mainly investigate the competition effect on chaos in foreign exchange markets. As one of the main economic structures in the globalization process, competition between two target exchange rates with the same base currency forms a simple competitive exchange rate relation, where each exchange rate follows the chaotic model of De Grauwe (Exchange Rate Theory-Chaotic Models of Foreign Exchange Markets, Blackwell, Oxford, Cambridge, MA, 1993). The main discovery is, while each exchange rate is in its non-chaotic parameter regions, the effect of competition will “hatch” butterfly-like chaotic attractors in the competitive market. The positive Lyapunov exponent in the market explains the reason why chaos occurs.

  3. Transition from Exponential to Power Law Income Distributions in a Chaotic Market

    NASA Astrophysics Data System (ADS)

    Pellicer-Lostao, Carmen; Lopez-Ruiz, Ricardo

    Economy is demanding new models, able to understand and predict the evolution of markets. To this respect, Econophysics offers models of markets as complex systems, that try to comprehend macro-, system-wide states of the economy from the interaction of many agents at micro-level. One of these models is the gas-like model for trading markets. This tries to predict money distributions in closed economies and quite simply, obtains the ones observed in real economies. However, it reveals technical hitches to explain the power law distribution, observed in individuals with high incomes. In this work, nonlinear dynamics is introduced in the gas-like model in an effort to overcomes these flaws. A particular chaotic dynamics is used to break the pairing symmetry of agents (i, j) ⇔ (j, i). The results demonstrate that a "chaotic gas-like model" can reproduce the Exponential and Power law distributions observed in real economies. Moreover, it controls the transition between them. This may give some insight of the micro-level causes that originate unfair distributions of money in a global society. Ultimately, the chaotic model makes obvious the inherent instability of asymmetric scenarios, where sinks of wealth appear and doom the market to extreme inequality.

  4. Decrease of cardiac chaos in congestive heart failure

    NASA Astrophysics Data System (ADS)

    Poon, Chi-Sang; Merrill, Christopher K.

    1997-10-01

    The electrical properties of the mammalian heart undergo many complex transitions in normal and diseased states. It has been proposed that the normal heartbeat may display complex nonlinear dynamics, including deterministic chaos,, and that such cardiac chaos may be a useful physiological marker for the diagnosis and management, of certain heart trouble. However, it is not clear whether the heartbeat series of healthy and diseased hearts are chaotic or stochastic, or whether cardiac chaos represents normal or abnormal behaviour. Here we have used a highly sensitive technique, which is robust to random noise, to detect chaos. We analysed the electrocardiograms from a group of healthy subjects and those with severe congestive heart failure (CHF), a clinical condition associated with a high risk of sudden death. The short-term variations of beat-to-beat interval exhibited strongly and consistently chaotic behaviour in all healthy subjects, but were frequently interrupted by periods of seemingly non-chaotic fluctuations in patients with CHF. Chaotic dynamics in the CHF data, even when discernible, exhibited a high degree of random variability over time, suggesting a weaker form of chaos. These findings suggest that cardiac chaos is prevalent in healthy heart, and a decrease in such chaos may be indicative of CHF.

  5. Dynamic interaction of monowheel inclined vehicle-vibration platform coupled system with quadratic and cubic nonlinearities

    NASA Astrophysics Data System (ADS)

    Zhou, Shihua; Song, Guiqiu; Sun, Maojun; Ren, Zhaohui; Wen, Bangchun

    2018-01-01

    In order to analyze the nonlinear dynamics and stability of a novel design for the monowheel inclined vehicle-vibration platform coupled system (MIV-VPCS) with intermediate nonlinearity support subjected to a harmonic excitation, a multi-degree of freedom lumped parameter dynamic model taking into account the dynamic interaction of the MIV-VPCS with quadratic and cubic nonlinearities is presented. The dynamical equations of the coupled system are derived by applying the displacement relationship, interaction force relationship at the contact position and Lagrange's equation, which are further discretized into a set of nonlinear ordinary differential equations with coupled terms by Galerkin's truncation. Based on the mathematical model, the coupled multi-body nonlinear dynamics of the vibration system is investigated by numerical method, and the parameters influences of excitation amplitude, mass ratio and inclined angle on the dynamic characteristics are precisely analyzed and discussed by bifurcation diagram, Largest Lyapunov exponent and 3-D frequency spectrum. Depending on different ranges of system parameters, the results show that the different motions and jump discontinuity appear, and the coupled system enters into chaotic behavior through different routes (period-doubling bifurcation, inverse period-doubling bifurcation, saddle-node bifurcation and Hopf bifurcation), which are strongly attributed to the dynamic interaction of the MIV-VPCS. The decreasing excitation amplitude and inclined angle could reduce the higher order bifurcations, and effectively control the complicated nonlinear dynamic behaviors under the perturbation of low rotational speed. The first bifurcation and chaotic motion occur at lower value of inclined angle, and the chaotic behavior lasts for larger intervals with higher rotational speed. The investigation results could provide a better understanding of the nonlinear dynamic behaviors for the dynamic interaction of the MIV-VPCS.

  6. Role of Orbital Dynamics in Spin Relaxation and Weak Antilocalization in Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zaitsev, Oleg; Frustaglia, Diego; Richter, Klaus

    2005-01-01

    We develop a semiclassical theory for spin-dependent quantum transport to describe weak (anti)localization in quantum dots with spin-orbit coupling. This allows us to distinguish different types of spin relaxation in systems with chaotic, regular, and diffusive orbital classical dynamics. We find, in particular, that for typical Rashba spin-orbit coupling strengths, integrable ballistic systems can exhibit weak localization, while corresponding chaotic systems show weak antilocalization. We further calculate the magnetoconductance and analyze how the weak antilocalization is suppressed with decreasing quantum dot size and increasing additional in-plane magnetic field.

  7. Enhancing synchrony in chaotic oscillators by dynamic relaying

    NASA Astrophysics Data System (ADS)

    Banerjee, Ranjib; Ghosh, Dibakar; Padmanaban, E.; Ramaswamy, R.; Pecora, L. M.; Dana, Syamal K.

    2012-02-01

    In a chain of mutually coupled oscillators, the coupling threshold for synchronization between the outermost identical oscillators decreases when a type of impurity (in terms of parameter mismatch) is introduced in the inner oscillator(s). The outer oscillators interact indirectly via dynamic relaying, mediated by the inner oscillator(s). We confirm this enhancing of critical coupling in the chaotic regimes of the Lorenz system, in the Rössler system in the absence of coupling delay, and in the Mackey-Glass system with delay coupling. The enhancing effect is experimentally verified in the electronic circuit of Rössler oscillators.

  8. Input reconstruction of chaos sensors.

    PubMed

    Yu, Dongchuan; Liu, Fang; Lai, Pik-Yin

    2008-06-01

    Although the sensitivity of sensors can be significantly enhanced using chaotic dynamics due to its extremely sensitive dependence on initial conditions and parameters, how to reconstruct the measured signal from the distorted sensor response becomes challenging. In this paper we suggest an effective method to reconstruct the measured signal from the distorted (chaotic) response of chaos sensors. This measurement signal reconstruction method applies the neural network techniques for system structure identification and therefore does not require the precise information of the sensor's dynamics. We discuss also how to improve the robustness of reconstruction. Some examples are presented to illustrate the measurement signal reconstruction method suggested.

  9. Chaos in the brain: imaging via chaoticity of EEG/MEG signals

    NASA Astrophysics Data System (ADS)

    Kowalik, Zbigniew J.; Elbert, Thomas; Rockstroh, Brigitte; Hoke, Manfried

    1995-03-01

    Brain electro- (EEG) or magnetoencephalogram (MEG) can be analyzed by using methods of the nonlinear system theory. We show that even for very short and nonstationary time series it is possible to functionally differentiate various brain activities. Usually the analysis assumes that the analyzed signals are both long and stationary, so that the classic spectral methods can be used. Even more convincing results can be obtained under these circumstances when the dimensional analysis or estimation of the Kolmogorov entropy or the Lyapunov exponent are performed. When measuring the spontaneous activity of a human brain the assumption of stationarity is questionable and `static' methods (correlation dimension, entropy, etc.) are then not adequate. In this case `dynamic' methods like pointwise-D2 dimension or chaoticity measures should be applied. Predictability measures in the form of local Lyapunov exponents are capable of revealing directly the chaoticity of a given process, and can practically be applied for functional differentiation of brain activity. We exemplify these in cases of apallic syndrome, tinnitus and schizophrenia. We show that: the average chaoticity in apallic syndrome differentiates brain states both in space and time, chaoticity changes temporally in case of schizophrenia (critical jumps of chaoticity), chaoticity changes locally in space, i.e., in the cortex plane in case of tinnitus.

  10. Chaotic diffusion in the Gliese-876 planetary system

    NASA Astrophysics Data System (ADS)

    Martí, J. G.; Cincotta, P. M.; Beaugé, C.

    2016-07-01

    Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disc, and a natural consequence of irregular motion. In this paper, we show that resonant multiplanetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over time-scales comparable to their age. Using the GJ-876 system as an example, we analyse the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincaré maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behaviour of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.

  11. Synthesis of a fully-integrated digital signal source for communications from chaotic dynamics-based oscillations

    NASA Astrophysics Data System (ADS)

    Glenn, Chance Michael, Sr.

    This work is the conceptualization, derivation, analysis, and fabrication of a fully practical digital signal source designed from a chaotic oscillator. In it we show how a simple electronic circuit based upon the Colpitts oscillator, can be made to produce highly complex signals capable of carrying digital information. We show a direct relationship between the continuous-time chaotic oscillations produced by the circuit and the logistic map, which is discrete-time, one-dimensional map that is a fundamental paradigm for the study of chaotic systems. We demonstrate the direct encoding of binary information into the oscillations of the chaotic circuit. We demonstrate a new concept in power amplification, called syncrodyne amplification , which uses fundamental properties of chaotic oscillators to provide high-efficiency, high gain amplification of standard communication waveforms as well as typical chaotic oscillations. We show modeling results of this system providing nearly 60-dB power gain and 80% PAE for communications waveforms conforming to GMSK modulation. Finally we show results from a fabricated syncrodyne amplifier circuit operating at 2 MHz, providing over 40-dB power gain and 72% PAE, and propose design criteria for an 824--850 MHz circuit utilizing heterojunction bipolar transistors (HBTs), providing the basis for microwave frequency realization.

  12. Synchronization of chaotic systems involving fractional operators of Liouville-Caputo type with variable-order

    NASA Astrophysics Data System (ADS)

    Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.; Valtierra-Rodríguez, M.

    2017-12-01

    In this paper, we propose a state-observer-based approach to synchronize variable-order fractional (VOF) chaotic systems. In particular, this work is focused on complete synchronization with a so-called unidirectional master-slave topology. The master is described by a dynamical system in state-space representation whereas the slave is described by a state observer. The slave is composed of a master copy and a correction term which in turn is constituted of an estimation error and an appropriate gain that assures the synchronization. The differential equations of the VOF chaotic system are described by the Liouville-Caputo and Atangana-Baleanu-Caputo derivatives. Numerical simulations involving the synchronization of Rössler oscillators, Chua's systems and multi-scrolls are studied. The simulations show that different chaotic behaviors can be obtained if different smooths functions defined in the interval (0 , 1 ] are used as the variable order of the fractional derivatives. Furthermore, simulations show that the VOF chaotic systems can be synchronized.

  13. Spatiotemporal chaos in mixed linear-nonlinear two-dimensional coupled logistic map lattice

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Qian; He, Yi; Wang, Xing-Yuan

    2018-01-01

    We investigate a new spatiotemporal dynamics with mixing degrees of nonlinear chaotic maps for spatial coupling connections based on 2DCML. Here, the coupling methods are including with linear neighborhood coupling and the nonlinear chaotic map coupling of lattices, and the former 2DCML system is only a special case in the proposed system. In this paper the criteria such Kolmogorov-Sinai entropy density and universality, bifurcation diagrams, space-amplitude and snapshot pattern diagrams are provided in order to investigate the chaotic behaviors of the proposed system. Furthermore, we also investigate the parameter ranges of the proposed system which holds those features in comparisons with those of the 2DCML system and the MLNCML system. Theoretical analysis and computer simulation indicate that the proposed system contains features such as the higher percentage of lattices in chaotic behaviors for most of parameters, less periodic windows in bifurcation diagrams and the larger range of parameters for chaotic behaviors, which is more suitable for cryptography.

  14. Chaotic dynamics and its analysis of Hindmarsh-Rose neurons by Shil’nikov approach

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zuo, Min

    2015-08-01

    In this paper, the relationship between external current stimulus and chaotic behaviors of a Hindmarsh-Rose (HR) neuron is considered. In order to find out the range of external current stimulus which will produce chaotic behaviors of an HR neuron, the Shil’nikov technique is employed. The Cardano formula is taken to obtain the threshold of the chaotic motion, and series solution to a differential equation is utilized to obtain the homoclinic orbit of HR neurons. This analysis establishes mathematically the value of external current input in generating chaotic motion of HR neurons by the Shil’nikov method. The numerical simulations are performed to support the theoretical results. Project supported by the Beijing Natural Science Foundation, China (Grant No. 4132005), the National Natural Science Foundation of China (Grant No. 61403006), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions, China (Grant No. YETP1449), and the Project of Scientific and Technological Innovation Platform, China (Grant No. PXM2015_014213_000063).

  15. Visibility graphs and symbolic dynamics

    NASA Astrophysics Data System (ADS)

    Lacasa, Lucas; Just, Wolfram

    2018-07-01

    Visibility algorithms are a family of geometric and ordering criteria by which a real-valued time series of N data is mapped into a graph of N nodes. This graph has been shown to often inherit in its topology nontrivial properties of the series structure, and can thus be seen as a combinatorial representation of a dynamical system. Here we explore in some detail the relation between visibility graphs and symbolic dynamics. To do that, we consider the degree sequence of horizontal visibility graphs generated by the one-parameter logistic map, for a range of values of the parameter for which the map shows chaotic behaviour. Numerically, we observe that in the chaotic region the block entropies of these sequences systematically converge to the Lyapunov exponent of the time series. Hence, Pesin's identity suggests that these block entropies are converging to the Kolmogorov-Sinai entropy of the physical measure, which ultimately suggests that the algorithm is implicitly and adaptively constructing phase space partitions which might have the generating property. To give analytical insight, we explore the relation k(x) , x ∈ [ 0 , 1 ] that, for a given datum with value x, assigns in graph space a node with degree k. In the case of the out-degree sequence, such relation is indeed a piece-wise constant function. By making use of explicit methods and tools from symbolic dynamics we are able to analytically show that the algorithm indeed performs an effective partition of the phase space and that such partition is naturally expressed as a countable union of subintervals, where the endpoints of each subinterval are related to the fixed point structure of the iterates of the map and the subinterval enumeration is associated with particular ordering structures that we called motifs.

  16. Cycle-expansion method for the Lyapunov exponent, susceptibility, and higher moments.

    PubMed

    Charbonneau, Patrick; Li, Yue Cathy; Pfister, Henry D; Yaida, Sho

    2017-09-01

    Lyapunov exponents characterize the chaotic nature of dynamical systems by quantifying the growth rate of uncertainty associated with the imperfect measurement of initial conditions. Finite-time estimates of the exponent, however, experience fluctuations due to both the initial condition and the stochastic nature of the dynamical path. The scale of these fluctuations is governed by the Lyapunov susceptibility, the finiteness of which typically provides a sufficient condition for the law of large numbers to apply. Here, we obtain a formally exact expression for this susceptibility in terms of the Ruelle dynamical ζ function for one-dimensional systems. We further show that, for systems governed by sequences of random matrices, the cycle expansion of the ζ function enables systematic computations of the Lyapunov susceptibility and of its higher-moment generalizations. The method is here applied to a class of dynamical models that maps to static disordered spin chains with interactions stretching over a varying distance and is tested against Monte Carlo simulations.

  17. Nonlinear dynamic analysis of D α signals for type I edge localized modes characterization on JET with a carbon wall

    NASA Astrophysics Data System (ADS)

    Cannas, Barbara; Fanni, Alessandra; Murari, Andrea; Pisano, Fabio; Contributors, JET

    2018-02-01

    In this paper, the dynamic characteristics of type-I ELM time-series from the JET tokamak, the world’s largest magnetic confinement plasma physics experiment, have been investigated. The dynamic analysis has been focused on the detection of nonlinear structure in D α radiation time series. Firstly, the method of surrogate data has been applied to evaluate the statistical significance of the null hypothesis of static nonlinear distortion of an underlying Gaussian linear process. Several nonlinear statistics have been evaluated, such us the time delayed mutual information, the correlation dimension and the maximal Lyapunov exponent. The obtained results allow us to reject the null hypothesis, giving evidence of underlying nonlinear dynamics. Moreover, no evidence of low-dimensional chaos has been found; indeed, the analysed time series are better characterized by the power law sensitivity to initial conditions which can suggest a motion at the ‘edge of chaos’, at the border between chaotic and regular non-chaotic dynamics. This uncertainty makes it necessary to further investigate about the nature of the nonlinear dynamics. For this purpose, a second surrogate test to distinguish chaotic orbits from pseudo-periodic orbits has been applied. In this case, we cannot reject the null hypothesis which means that the ELM time series is possibly pseudo-periodic. In order to reproduce pseudo-periodic dynamical properties, a periodic state-of-the-art model, proposed to reproduce the ELM cycle, has been corrupted by a dynamical noise, obtaining time series qualitatively in agreement with experimental time series.

  18. A Tribute to J. C. Sprott

    NASA Astrophysics Data System (ADS)

    Nazarimehr, Fahimeh; Jafari, Sajad; Chen, Guanrong; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Li, Chunbiao; Wei, Zhouchao

    2017-12-01

    In honor of his 75th birthday, we review the prominent works of Professor Julien Clinton Sprott in chaos and nonlinear dynamics. We categorize his works into three important groups. The first and most important group is identifying new dynamical systems with special properties. He has proposed different chaotic maps, flows, complex variable systems, nonautonomous systems, partial differential equations, fractional-order systems, delay differential systems, spatiotemporal systems, artificial neural networks, and chaotic electrical circuits. He has also studied dynamical properties of complex systems such as bifurcations and basins of attraction. He has done work on generating fractal art. He has examined models of real-world systems that exhibit chaos. The second group of his works comprise control and synchronization of chaos. Finally, the third group is extracting dynamical properties of systems using time-series analysis. This paper highlights the impact of Sprott’s work on the promotion of nonlinear dynamics.

  19. Detecting and disentangling nonlinear structure from solar flux time series

    NASA Technical Reports Server (NTRS)

    Ashrafi, S.; Roszman, L.

    1992-01-01

    Interest in solar activity has grown in the past two decades for many reasons. Most importantly for flight dynamics, solar activity changes the atmospheric density, which has important implications for spacecraft trajectory and lifetime prediction. Building upon the previously developed Rayleigh-Benard nonlinear dynamic solar model, which exhibits many dynamic behaviors observed in the Sun, this work introduces new chaotic solar forecasting techniques. Our attempt to use recently developed nonlinear chaotic techniques to model and forecast solar activity has uncovered highly entangled dynamics. Numerical techniques for decoupling additive and multiplicative white noise from deterministic dynamics and examines falloff of the power spectra at high frequencies as a possible means of distinguishing deterministic chaos from noise than spectrally white or colored are presented. The power spectral techniques presented are less cumbersome than current methods for identifying deterministic chaos, which require more computationally intensive calculations, such as those involving Lyapunov exponents and attractor dimension.

  20. Modeling the Physics of Sliding Objects on Rotating Space Elevators and Other Non-relativistic Strings

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo; Knudsen, Steven

    2017-01-01

    We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.

  1. Qualitative dynamical analysis of chaotic plasma perturbations model

    NASA Astrophysics Data System (ADS)

    Elsadany, A. A.; Elsonbaty, Amr; Agiza, H. N.

    2018-06-01

    In this work, an analytical framework to understand nonlinear dynamics of plasma perturbations model is introduced. In particular, we analyze the model presented by Constantinescu et al. [20] which consists of three coupled ODEs and contains three parameters. The basic dynamical properties of the system are first investigated by the ways of bifurcation diagrams, phase portraits and Lyapunov exponents. Then, the normal form technique and perturbation methods are applied so as to the different types of bifurcations that exist in the model are investigated. It is proved that pitcfork, Bogdanov-Takens, Andronov-Hopf bifurcations, degenerate Hopf and homoclinic bifurcation can occur in phase space of the model. Also, the model can exhibit quasiperiodicity and chaotic behavior. Numerical simulations confirm our theoretical analytical results.

  2. Robust optimization with transiently chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Sumi, R.; Molnár, B.; Ercsey-Ravasz, M.

    2014-05-01

    Efficiently solving hard optimization problems has been a strong motivation for progress in analog computing. In a recent study we presented a continuous-time dynamical system for solving the NP-complete Boolean satisfiability (SAT) problem, with a one-to-one correspondence between its stable attractors and the SAT solutions. While physical implementations could offer great efficiency, the transiently chaotic dynamics raises the question of operability in the presence of noise, unavoidable on analog devices. Here we show that the probability of finding solutions is robust to noise intensities well above those present on real hardware. We also developed a cellular neural network model realizable with analog circuits, which tolerates even larger noise intensities. These methods represent an opportunity for robust and efficient physical implementations.

  3. The geometry of chaotic dynamics — a complex network perspective

    NASA Astrophysics Data System (ADS)

    Donner, R. V.; Heitzig, J.; Donges, J. F.; Zou, Y.; Marwan, N.; Kurths, J.

    2011-12-01

    Recently, several complex network approaches to time series analysis have been developed and applied to study a wide range of model systems as well as real-world data, e.g., geophysical or financial time series. Among these techniques, recurrence-based concepts and prominently ɛ-recurrence networks, most faithfully represent the geometrical fine structure of the attractors underlying chaotic (and less interestingly non-chaotic) time series. In this paper we demonstrate that the well known graph theoretical properties local clustering coefficient and global (network) transitivity can meaningfully be exploited to define two new local and two new global measures of dimension in phase space: local upper and lower clustering dimension as well as global upper and lower transitivity dimension. Rigorous analytical as well as numerical results for self-similar sets and simple chaotic model systems suggest that these measures are well-behaved in most non-pathological situations and that they can be estimated reasonably well using ɛ-recurrence networks constructed from relatively short time series. Moreover, we study the relationship between clustering and transitivity dimensions on the one hand, and traditional measures like pointwise dimension or local Lyapunov dimension on the other hand. We also provide further evidence that the local clustering coefficients, or equivalently the local clustering dimensions, are useful for identifying unstable periodic orbits and other dynamically invariant objects from time series. Our results demonstrate that ɛ-recurrence networks exhibit an important link between dynamical systems and graph theory.

  4. Chaotic universe model.

    PubMed

    Aydiner, Ekrem

    2018-01-15

    In this study, we consider nonlinear interactions between components such as dark energy, dark matter, matter and radiation in the framework of the Friedman-Robertson-Walker space-time and propose a simple interaction model based on the time evolution of the densities of these components. By using this model we show that these interactions can be given by Lotka-Volterra type equations. We numerically solve these coupling equations and show that interaction dynamics between dark energy-dark matter-matter or dark energy-dark matter-matter-radiation has a strange attractor for 0 > w de  >-1, w dm  ≥ 0, w m  ≥ 0 and w r  ≥ 0 values. These strange attractors with the positive Lyapunov exponent clearly show that chaotic dynamics appears in the time evolution of the densities. These results provide that the time evolution of the universe is chaotic. The present model may have potential to solve some of the cosmological problems such as the singularity, cosmic coincidence, big crunch, big rip, horizon, oscillation, the emergence of the galaxies, matter distribution and large-scale organization of the universe. The model also connects between dynamics of the competing species in biological systems and dynamics of the time evolution of the universe and offers a new perspective and a new different scenario for the universe evolution.

  5. Dynamic Patterns in Mood Among Newly Diagnosed Patients With Major Depressive Episode or Panic Disorder and Normal Controls

    PubMed Central

    Katerndahl, David; Ferrer, Robert; Best, Rick; Wang, Chen-Pin

    2007-01-01

    Objective: The purpose of this pilot study was to compare the dynamic patterns of hourly mood variation among newly diagnosed primary care patients with major depressive disorder or panic disorder with patterns in patients with neither disorder. Method: Five adult patients with major depressive episode, 5 with panic disorder, and 5 with neither disorder were asked to complete hourly self-assessments of anxiety and depression (using 100-mm visual analog scales) for each hour they were awake during a 30-day period. Time series were analyzed using ARIMA (autoregression, integration, moving average) modeling (to assess periodicity), Lyapunov exponents (to assess sensitivity to initial conditions indicative of chaotic patterns), and correlation dimension saturation (to assess whether an attractor is limiting change). The study was conducted from March to June 2003. Results: Controls displayed circadian rhythms with underlying chaotic variability. Depressed patients did not display circadian rhythm, but did show chaotic dynamics. Panic disorder patients showed circadian rhythms, but 2 of the 4 patients completing the self-assessments displayed nonchaotic underlying patterns. Conclusions: Patients with major depressive disorder or panic disorder may differ from controls and from each other in their patterns of mood variability. There is a need for more research on the dynamics of mood among patients with mental disorders. PMID:17632650

  6. Long-term influence of asteroids on planet longitudes and chaotic dynamics of the solar system

    NASA Astrophysics Data System (ADS)

    Woillez, E.; Bouchet, F.

    2017-11-01

    Over timescales much longer than an orbital period, the solar system exhibits large-scale chaotic behavior and can thus be viewed as a stochastic dynamical system. The aim of the present paper is to compare different sources of stochasticity in the solar system. More precisely we studied the importance of the long term influence of asteroids on the chaotic dynamics of the solar system. We show that the effects of asteroids on planets is similar to a white noise process, when those effects are considered on a timescale much larger than the correlation time τϕ ≃ 104 yr of asteroid trajectories. We computed the timescale τe after which the effects of the stochastic evolution of the asteroids lead to a loss of information for the initial conditions of the perturbed Laplace-Lagrange secular dynamics. The order of magnitude of this timescale is precisely determined by theoretical argument, and we find that τe ≃ 104 Myr. Although comparable to the full main-sequence lifetime of the sun, this timescale is considerably longer than the Lyapunov time τI ≃ 10 Myr of the solar system without asteroids. This shows that the external sources of chaos arise as a small perturbation in the stochastic secular behavior of the solar system, rather due to intrinsic chaos.

  7. Nonlinear dynamics of homeothermic temperature control in skunk cabbage, Symplocarpus foetidus

    NASA Astrophysics Data System (ADS)

    Ito, Takanori; Ito, Kikukatsu

    2005-11-01

    Certain primitive plants undergo orchestrated temperature control during flowering. Skunk cabbage, Symplocarpus foetidus, has been demonstrated to maintain an internal temperature of around 20 °C even when the ambient temperature drops below freezing. However, it is not clear whether a unique algorithm controls the homeothermic behavior of S. foetidus, or whether such an algorithm might exhibit linear or nonlinear thermoregulatory dynamics. Here we report the underlying dynamics of temperature control in S. foetidus using nonlinear forecasting, attractor and correlation dimension analyses. It was shown that thermoregulation in S. foetidus was governed by low-dimensional chaotic dynamics, the geometry of which showed a strange attractor named the “Zazen attractor.” Our data suggest that the chaotic thermoregulation in S. foetidus is inherent and that it is an adaptive response to the natural environment.

  8. Heteroclinic tangle phenomena in nanomagnets subject to time-harmonic excitations

    NASA Astrophysics Data System (ADS)

    Serpico, C.; Quercia, A.; Bertotti, G.; d'Aquino, M.; Mayergoyz, I.; Perna, S.; Ansalone, P.

    2015-05-01

    Magnetization dynamics in uniformly magnetized nanomagnets excited by time-harmonic (AC) external fields or spin-polarized injected currents is considered. The analysis is focused on the behaviour of the AC-excited dynamics near saddle equilibria. It turns out that this dynamics has a chaotic character at moderately low power level. This chaotic and fractal nature is due to the phenomenon of heteroclinic tangle which is produced by the combined effect of AC-excitations and saddle type dynamics. By using the perturbation technique based on Melnikov function, analytical formulas for the threshold AC excitation amplitudes necessary to create the heteroclinic tangle are derived. Both the cases of AC applied fields and AC spin-polarized injected currents are treated. Then, by means of numerical simulations, we show how heteroclinic tangle is accompanied by the erosion of the safe basin around the stable regimes.

  9. Clustering stock market companies via chaotic map synchronization

    NASA Astrophysics Data System (ADS)

    Basalto, N.; Bellotti, R.; De Carlo, F.; Facchi, P.; Pascazio, S.

    2005-01-01

    A pairwise clustering approach is applied to the analysis of the Dow Jones index companies, in order to identify similar temporal behavior of the traded stock prices. To this end, the chaotic map clustering algorithm is used, where a map is associated to each company and the correlation coefficients of the financial time series to the coupling strengths between maps. The simulation of a chaotic map dynamics gives rise to a natural partition of the data, as companies belonging to the same industrial branch are often grouped together. The identification of clusters of companies of a given stock market index can be exploited in the portfolio optimization strategies.

  10. An introduction to chaotic and random time series analysis

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.

    1989-01-01

    The origin of chaotic behavior and the relation of chaos to randomness are explained. Two mathematical results are described: (1) a representation theorem guarantees the existence of a specific time-domain model for chaos and addresses the relation between chaotic, random, and strictly deterministic processes; (2) a theorem assures that information on the behavior of a physical system in its complete state space can be extracted from time-series data on a single observable. Focus is placed on an important connection between the dynamical state space and an observable time series. These two results lead to a practical deconvolution technique combining standard random process modeling methods with new embedded techniques.

  11. A new reduced-order observer for the synchronization of nonlinear chaotic systems: An application to secure communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro-Ramírez, Joel, E-mail: ingcastro.7@gmail.com; Martínez-Guerra, Rafael, E-mail: rguerra@ctrl.cinvestav.mx; Cruz-Victoria, Juan Crescenciano, E-mail: juancrescenciano.cruz@uptlax.edu.mx

    2015-10-15

    This paper deals with the master-slave synchronization scheme for partially known nonlinear chaotic systems, where the unknown dynamics is considered as the master system and we propose the slave system structure which estimates the unknown states. It introduced a new reduced order observer, using the concept of Algebraic Observability; we applied the results to a Sundarapandian chaotic system, and by means of some numerical simulations we show the effectiveness of the suggested approach. Finally, the proposed observer is utilized for encryption, where encryption key is the master system and decryption key is the slave system.

  12. A novel grid multiwing chaotic system with only non-hyperbolic equilibria

    NASA Astrophysics Data System (ADS)

    Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le

    2018-05-01

    The structure of the chaotic attractor of a system is mainly determined by the nonlinear functions in system equations. By using a new saw-tooth wave function and a new stair function, a novel complex grid multiwing chaotic system which belongs to non-Shil'nikov chaotic system with non-hyperbolic equilibrium points is proposed in this paper. It is particularly interesting that the complex grid multiwing attractors are generated by increasing the number of non-hyperbolic equilibrium points, which are different from the traditional methods of realising multiwing attractors by adding the index-2 saddle-focus equilibrium points in double-wing chaotic systems. The basic dynamical properties of the new system, such as dissipativity, phase portraits, the stability of the equilibria, the time-domain waveform, power spectrum, bifurcation diagram, Lyapunov exponents, and so on, are investigated by theoretical analysis and numerical simulations. Furthermore, the corresponding electronic circuit is designed and simulated on the Multisim platform. The Multisim simulation results and the hardware experimental results are in good agreement with the numerical simulations of the same system on Matlab platform, which verify the feasibility of this new grid multiwing chaotic system.

  13. Cooling of a magmatic system under thermal chaotic mixing

    NASA Astrophysics Data System (ADS)

    Petrelli, Maurizio; El Omari, Kamal; Le Guer, Yves; Perugini, Diego

    2015-04-01

    The cooling of a melt undergoing chaotic advection is studied numerically for a magma with a temperature-dependent viscosity in a 2D cavity with moving boundary. Different statistical mixing and energy indicators are used to characterize the efficiency of cooling by thermal chaotic mixing. We show that different cooling rates can be obtained during the thermal mixing even of a single basaltic magmatic batch undergoing chaotic advection. This process can induce complex temperature patterns inside the magma chamber. The emergence of chaotic dynamics strongly affects the temperature field during time and greatly increases the cooling rates. This mechanism has implications for the lifetime of a magmatic body and may favor the appearance of chemical heterogeneities in igneous systems as a result of different crystallization rates. Results from this study also highlight that even a single magma batch can develop, under chaotic thermal advection, complex thermal and therefore compositional patterns resulting from different cooling rates, which can account for some natural features that, to date, have received unsatisfactory explanations. Among them, the production of magmatic enclaves showing completely different cooling histories compared with the host magma, compositional zoning in mineral phases, and the generation of large-scale compositionally zoning observed in many plutons worldwide.

  14. A qualitative numerical study of high dimensional dynamical systems

    NASA Astrophysics Data System (ADS)

    Albers, David James

    Since Poincare, the father of modern mathematical dynamical systems, much effort has been exerted to achieve a qualitative understanding of the physical world via a qualitative understanding of the functions we use to model the physical world. In this thesis, we construct a numerical framework suitable for a qualitative, statistical study of dynamical systems using the space of artificial neural networks. We analyze the dynamics along intervals in parameter space, separating the set of neural networks into roughly four regions: the fixed point to the first bifurcation; the route to chaos; the chaotic region; and a transition region between chaos and finite-state neural networks. The study is primarily with respect to high-dimensional dynamical systems. We make the following general conclusions as the dimension of the dynamical system is increased: the probability of the first bifurcation being of type Neimark-Sacker is greater than ninety-percent; the most probable route to chaos is via a cascade of bifurcations of high-period periodic orbits, quasi-periodic orbits, and 2-tori; there exists an interval of parameter space such that hyperbolicity is violated on a countable, Lebesgue measure 0, "increasingly dense" subset; chaos is much more likely to persist with respect to parameter perturbation in the chaotic region of parameter space as the dimension is increased; moreover, as the number of positive Lyapunov exponents is increased, the likelihood that any significant portion of these positive exponents can be perturbed away decreases with increasing dimension. The maximum Kaplan-Yorke dimension and the maximum number of positive Lyapunov exponents increases linearly with dimension. The probability of a dynamical system being chaotic increases exponentially with dimension. The results with respect to the first bifurcation and the route to chaos comment on previous results of Newhouse, Ruelle, Takens, Broer, Chenciner, and Iooss. Moreover, results regarding the high-dimensional chaotic region of parameter space is interpreted and related to the closing lemma of Pugh, the windows conjecture of Barreto, the stable ergodicity theorem of Pugh and Shub, and structural stability theorem of Robbin, Robinson, and Mane.

  15. Transient chaos in the Lorenz-type map with periodic forcing.

    PubMed

    Maslennikov, Oleg V; Nekorkin, Vladimir I; Kurths, Jürgen

    2018-03-01

    We consider a case study of perturbing a system with a boundary crisis of a chaotic attractor by periodic forcing. In the static case, the system exhibits persistent chaos below the critical value of the control parameter but transient chaos above the critical value. We discuss what happens to the system and particularly to the transient chaotic dynamics if the control parameter periodically oscillates. We find a non-exponential decaying behavior of the survival probability function, study the impact of the forcing frequency and amplitude on the escape rate, analyze the phase-space image of the observed dynamics, and investigate the influence of initial conditions.

  16. RP and RQA Analysis for Floating Potential Fluctuations in a DC Magnetron Sputtering Plasma

    NASA Astrophysics Data System (ADS)

    Sabavath, Gopikishan; Banerjee, I.; Mahapatra, S. K.

    2016-04-01

    The nonlinear dynamics of a direct current magnetron sputtering plasma is visualized using recurrence plot (RP) technique. RP comprises the recurrence quantification analysis (RQA) which is an efficient method to observe critical regime transitions in dynamics. Further, RQA provides insight information about the system’s behavior. We observed the floating potential fluctuations of the plasma as a function of discharge voltage by using Langmuir probe. The system exhibits quasi-periodic-chaotic-quasi-periodic-chaotic transitions. These transitions are quantified from determinism, Lmax, and entropy of RQA. Statistical investigations like kurtosis and skewness also studied for these transitions which are in well agreement with RQA results.

  17. Transient chaos in the Lorenz-type map with periodic forcing

    NASA Astrophysics Data System (ADS)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.; Kurths, Jürgen

    2018-03-01

    We consider a case study of perturbing a system with a boundary crisis of a chaotic attractor by periodic forcing. In the static case, the system exhibits persistent chaos below the critical value of the control parameter but transient chaos above the critical value. We discuss what happens to the system and particularly to the transient chaotic dynamics if the control parameter periodically oscillates. We find a non-exponential decaying behavior of the survival probability function, study the impact of the forcing frequency and amplitude on the escape rate, analyze the phase-space image of the observed dynamics, and investigate the influence of initial conditions.

  18. Neuronal and network computation in the brain

    NASA Astrophysics Data System (ADS)

    Babloyantz, A.

    1999-03-01

    The concepts and methods of non-linear dynamics have been a powerful tool for studying some gamow aspects of brain dynamics. In this paper we show how, from time series analysis of electroencepholograms in sick and healthy subjects, chaotic nature of brain activity could be unveiled. This finding gave rise to the concept of spatiotemporal cortical chaotic networks which in turn was the foundation for a simple brain-like device which is able to become attentive, perform pattern recognition and motion detection. A new method of time series analysis is also proposed which demonstrates for the first time the existence of neuronal code in interspike intervals of coclear cells.

  19. Fractal analysis of GPS time series for early detection of disastrous seismic events

    NASA Astrophysics Data System (ADS)

    Filatov, Denis M.; Lyubushin, Alexey A.

    2017-03-01

    A new method of fractal analysis of time series for estimating the chaoticity of behaviour of open stochastic dynamical systems is developed. The method is a modification of the conventional detrended fluctuation analysis (DFA) technique. We start from analysing both methods from the physical point of view and demonstrate the difference between them which results in a higher accuracy of the new method compared to the conventional DFA. Then, applying the developed method to estimate the measure of chaoticity of a real dynamical system - the Earth's crust, we reveal that the latter exhibits two distinct mechanisms of transition to a critical state: while the first mechanism has already been known due to numerous studies of other dynamical systems, the second one is new and has not previously been described. Using GPS time series, we demonstrate efficiency of the developed method in identification of critical states of the Earth's crust. Finally we employ the method to solve a practically important task: we show how the developed measure of chaoticity can be used for early detection of disastrous seismic events and provide a detailed discussion of the numerical results, which are shown to be consistent with outcomes of other researches on the topic.

  20. A Route to Chaos after Bifurcation in a Two-section Semiconductor Laser Using Opto-electronic Delayed Feedback at Each In-current

    NASA Astrophysics Data System (ADS)

    Yan, Sen-lin

    2014-12-01

    We study dynamics in an opto-electronic delayed feedback two-section semiconductor laser. We predict theoretically that the system can result in bistability and bifurcation. We analyze numerically the route to chaos from stability to bifurcation by varying the delayed time, feedback strength and two in-currents. The system displays the four distinct types or modes of stable, periodic pulsed or self-pulsing, undamped oscillating or beating, and chaos. The frequency and intensity varying with the delayed time in the self-pulsation regions are discussed detailedly to find that the pulsing frequency is reduced with the long delayed time while the pulsing intensity is added. And the chaotic pulsing frequency is increased with the large in-current Ja. The laser relaxation oscillation frequency is decreased with the large in-current Jb. One in-current characterize dynamics in the laser to conduce to stable, periodic pulsed, beating and chaotic states by altering its values. The other in-current characterize dynamics in the chaotic laser to be controlled to a stable state after a road to quasi-period by adding the values.

  1. Chaotic Image Encryption Algorithm Based on Bit Permutation and Dynamic DNA Encoding.

    PubMed

    Zhang, Xuncai; Han, Feng; Niu, Ying

    2017-01-01

    With the help of the fact that chaos is sensitive to initial conditions and pseudorandomness, combined with the spatial configurations in the DNA molecule's inherent and unique information processing ability, a novel image encryption algorithm based on bit permutation and dynamic DNA encoding is proposed here. The algorithm first uses Keccak to calculate the hash value for a given DNA sequence as the initial value of a chaotic map; second, it uses a chaotic sequence to scramble the image pixel locations, and the butterfly network is used to implement the bit permutation. Then, the image is coded into a DNA matrix dynamic, and an algebraic operation is performed with the DNA sequence to realize the substitution of the pixels, which further improves the security of the encryption. Finally, the confusion and diffusion properties of the algorithm are further enhanced by the operation of the DNA sequence and the ciphertext feedback. The results of the experiment and security analysis show that the algorithm not only has a large key space and strong sensitivity to the key but can also effectively resist attack operations such as statistical analysis and exhaustive analysis.

  2. Chaotic Image Encryption Algorithm Based on Bit Permutation and Dynamic DNA Encoding

    PubMed Central

    2017-01-01

    With the help of the fact that chaos is sensitive to initial conditions and pseudorandomness, combined with the spatial configurations in the DNA molecule's inherent and unique information processing ability, a novel image encryption algorithm based on bit permutation and dynamic DNA encoding is proposed here. The algorithm first uses Keccak to calculate the hash value for a given DNA sequence as the initial value of a chaotic map; second, it uses a chaotic sequence to scramble the image pixel locations, and the butterfly network is used to implement the bit permutation. Then, the image is coded into a DNA matrix dynamic, and an algebraic operation is performed with the DNA sequence to realize the substitution of the pixels, which further improves the security of the encryption. Finally, the confusion and diffusion properties of the algorithm are further enhanced by the operation of the DNA sequence and the ciphertext feedback. The results of the experiment and security analysis show that the algorithm not only has a large key space and strong sensitivity to the key but can also effectively resist attack operations such as statistical analysis and exhaustive analysis. PMID:28912802

  3. Generalized correlation integral vectors: A distance concept for chaotic dynamical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haario, Heikki, E-mail: heikki.haario@lut.fi; Kalachev, Leonid, E-mail: KalachevL@mso.umt.edu; Hakkarainen, Janne

    2015-06-15

    Several concepts of fractal dimension have been developed to characterise properties of attractors of chaotic dynamical systems. Numerical approximations of them must be calculated by finite samples of simulated trajectories. In principle, the quantities should not depend on the choice of the trajectory, as long as it provides properly distributed samples of the underlying attractor. In practice, however, the trajectories are sensitive with respect to varying initial values, small changes of the model parameters, to the choice of a solver, numeric tolerances, etc. The purpose of this paper is to present a statistically sound approach to quantify this variability. Wemore » modify the concept of correlation integral to produce a vector that summarises the variability at all selected scales. The distribution of this stochastic vector can be estimated, and it provides a statistical distance concept between trajectories. Here, we demonstrate the use of the distance for the purpose of estimating model parameters of a chaotic dynamic model. The methodology is illustrated using computational examples for the Lorenz 63 and Lorenz 95 systems, together with a framework for Markov chain Monte Carlo sampling to produce posterior distributions of model parameters.« less

  4. Long-Range Correlations in Stride Intervals May Emerge from Non-Chaotic Walking Dynamics

    PubMed Central

    Ahn, Jooeun; Hogan, Neville

    2013-01-01

    Stride intervals of normal human walking exhibit long-range temporal correlations. Similar to the fractal-like behaviors observed in brain and heart activity, long-range correlations in walking have commonly been interpreted to result from chaotic dynamics and be a signature of health. Several mathematical models have reproduced this behavior by assuming a dominant role of neural central pattern generators (CPGs) and/or nonlinear biomechanics to evoke chaos. In this study, we show that a simple walking model without a CPG or biomechanics capable of chaos can reproduce long-range correlations. Stride intervals of the model revealed long-range correlations observed in human walking when the model had moderate orbital stability, which enabled the current stride to affect a future stride even after many steps. This provides a clear counterexample to the common hypothesis that a CPG and/or chaotic dynamics is required to explain the long-range correlations in healthy human walking. Instead, our results suggest that the long-range correlation may result from a combination of noise that is ubiquitous in biological systems and orbital stability that is essential in general rhythmic movements. PMID:24086274

  5. Prediction of the reference evapotranspiration using a chaotic approach.

    PubMed

    Wang, Wei-guang; Zou, Shan; Luo, Zhao-hui; Zhang, Wei; Chen, Dan; Kong, Jun

    2014-01-01

    Evapotranspiration is one of the most important hydrological variables in the context of water resources management. An attempt was made to understand and predict the dynamics of reference evapotranspiration from a nonlinear dynamical perspective in this study. The reference evapotranspiration data was calculated using the FAO Penman-Monteith equation with the observed daily meteorological data for the period 1966-2005 at four meteorological stations (i.e., Baotou, Zhangbei, Kaifeng, and Shaoguan) representing a wide range of climatic conditions of China. The correlation dimension method was employed to investigate the chaotic behavior of the reference evapotranspiration series. The existence of chaos in the reference evapotranspiration series at the four different locations was proved by the finite and low correlation dimension. A local approximation approach was employed to forecast the daily reference evapotranspiration series. Low root mean square error (RSME) and mean absolute error (MAE) (for all locations lower than 0.31 and 0.24, resp.), high correlation coefficient (CC), and modified coefficient of efficiency (for all locations larger than 0.97 and 0.8, resp.) indicate that the predicted reference evapotranspiration agrees well with the observed one. The encouraging results indicate the suitableness of chaotic approach for understanding and predicting the dynamics of the reference evapotranspiration.

  6. Coupled chaotic fluctuations in a model of international trade and innovation: Some preliminary results

    NASA Astrophysics Data System (ADS)

    Sushko, Iryna; Gardini, Laura; Matsuyama, Kiminori

    2018-05-01

    We consider a two-dimensional continuous noninvertible piecewise smooth map, which characterizes the dynamics of innovation activities in the two-country model of trade and product innovation proposed in [7]. This two-dimensional map can be viewed as a coupling of two one-dimensional skew tent maps, each of which characterizes the innovation dynamics in each country in the absence of trade, and the coupling parameter depends inversely on the trade cost between the two countries. Hence, this model offers a laboratory for studying how a decline in the trade cost, or globalization, might synchronize endogenous fluctuations of innovation activities in the two countries. In this paper, we focus on the bifurcation scenarios, how the phase portrait of the two-dimensional map changes with a gradual decline of the trade cost, leading to border collision, merging, expansion and final bifurcations of the coexisting chaotic attractors. An example of peculiar border collision bifurcation leading to an increase of dimension of the chaotic attractor is also presented.

  7. ORIGIN OF THE CHAOTIC MOTION OF THE SATURNIAN SATELLITE ATLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, S.; Vienne, A.; Cooper, N. J.

    2016-05-01

    We revisit the dynamics of Atlas. Using Cassini ISS astrometric observations spanning 2004 February to 2013 August, Cooper et al. found evidence that Atlas is currently perturbed by both a 54:53 corotation eccentricity resonance (CER) and a 54:53 Lindblad eccentricity resonance (LER) with Prometheus. They demonstrated that the orbit of Atlas is chaotic, with a Lyapunov time of order 10 years, as a direct consequence of the coupled resonant interaction (CER/LER) with Prometheus. Here we investigate the interactions between the two resonances using the CoraLin analytical model, showing that the chaotic zone fills almost all the corotation sites occupied bymore » the satellite's orbit. Four 70:67 apse-type mean motion resonances with Pandora are also overlapping, but these resonances have a much weaker effect. Frequency analysis allows us to highlight the coupling between the 54:53 resonances, and confirms that a simplified system including the perturbations due to Prometheus and Saturn's oblateness only captures the essential features of the dynamics.« less

  8. Investigating chaotic features in solar radiation over a tropical station using recurrence quantification analysis

    NASA Astrophysics Data System (ADS)

    Ogunjo, Samuel T.; Adediji, Adekunle T.; Dada, Joseph B.

    2017-01-01

    The use of solar energy for power generation and other uses is on the increase. This demand necessitate a better understanding of the underlying dynamics for better prediction. Nonlinear dynamics and its associated tools readily lend itself for such analysis. In this paper, nonlinearity in solar radiation data is tested using recurrence plot (RP) and recurrence quantification analysis (RQA) in a tropical station. The data used was obtained from an ongoing campaign at the Federal University of Technology, Akure, Southwestern Nigeria using an Integrated Sensor Suite (Vantage2 Pro). Half hourly and daily values were tested for each month of the year. Both were found to be nonlinear. The dry months of the year exhibit higher chaoticity compared to the wet months of the year. The daily average values were found to be mildly chaotic. Using RQA, features due to external effects such as harmattan and intertropical discontinuity (ITD) on solar radiation data were uniquely identified.

  9. Chaotic electrical activity of living β-cells in the mouse pancreatic islet

    NASA Astrophysics Data System (ADS)

    Kanno, Takahiro; Miyano, Takaya; Tokuda, Isao; Galvanovskis, Juris; Wakui, Makoto

    2007-02-01

    To test for chaotic dynamics of the insulin producing β-cell and explore its biological role, we observed the action potentials with the perforated patch clamp technique, for isolated cells as well as for intact cells of the mouse pancreatic islet. The time series obtained were analyzed using nonlinear diagnostic algorithms associated with the surrogate method. The isolated cells exhibited short-term predictability and visible determinism, in the steady state response to 10 mM glucose, while the intact cells did not. In the latter case, determinism became visible after the application of a gap junction inhibitor. This tendency was enhanced by the stimulation with tolbutamide. Our observations suggest that, thanks to the integration of individual chaotic dynamics via gap junction coupling, the β-cells will lose memory of fluctuations occurring at any instant in their electrical activity more rapidly with time. This is likely to contribute to the functional stability of the islet against uncertain perturbations.

  10. Origin of the Chaotic Motion of the Saturnian Satellite Atlas

    NASA Astrophysics Data System (ADS)

    Renner, S.; Cooper, N. J.; El Moutamid, M.; Sicardy, B.; Vienne, A.; Murray, C. D.; Saillenfest, M.

    2016-05-01

    We revisit the dynamics of Atlas. Using Cassini ISS astrometric observations spanning 2004 February to 2013 August, Cooper et al. found evidence that Atlas is currently perturbed by both a 54:53 corotation eccentricity resonance (CER) and a 54:53 Lindblad eccentricity resonance (LER) with Prometheus. They demonstrated that the orbit of Atlas is chaotic, with a Lyapunov time of order 10 years, as a direct consequence of the coupled resonant interaction (CER/LER) with Prometheus. Here we investigate the interactions between the two resonances using the CoraLin analytical model, showing that the chaotic zone fills almost all the corotation sites occupied by the satellite's orbit. Four 70:67 apse-type mean motion resonances with Pandora are also overlapping, but these resonances have a much weaker effect. Frequency analysis allows us to highlight the coupling between the 54:53 resonances, and confirms that a simplified system including the perturbations due to Prometheus and Saturn's oblateness only captures the essential features of the dynamics.

  11. Simultaneous trilateral communication based on three mutually coupled chaotic semiconductor lasers with optical feedback.

    PubMed

    Li, Qiliang; Lu, Shanshan; Bao, Qi; Chen, Dewang; Hu, Miao; Zeng, Ran; Yang, Guowei; Li, Shuqin

    2018-01-10

    In this paper, we propose a chaos-based scheme allowing for trilateral communication among three mutually coupled chaotic semiconductor lasers. The coupling through a partially transparent optical mirror between two lasers induces the chaotic dynamics. We numerically solve the delay rate equations of three lasers and demonstrate that the dynamics is completely synchronous. Herein, each laser is not only a transmitter but a receiver; three different messages are encoded by simultaneously modulating bias current of the three lasers. By monitoring the synchronization error between transmitter and receiver, and comparing the error with the message of the local laser, we can decipher the message of the sender. The investigation indicates that these messages introduced on the two ends of each link among three lasers can be simultaneously transmitted and restored, so the system can realize simultaneous trilateral communication. In this scheme, an eavesdropper can monitor the synchronization error, but one has no way to obtain the bits that are being sent, so the trilateral communication is secure.

  12. Simulations of Technology-Induced and Crisis-Led Stochastic and Chaotic Fluctuations in Higher Education Processes: A Model and a Case Study for Performance and Expected Employment

    ERIC Educational Resources Information Center

    Ahmet, Kara

    2015-01-01

    This paper presents a simple model of the provision of higher educational services that considers and exemplifies nonlinear, stochastic, and potentially chaotic processes. I use the methods of system dynamics to simulate these processes in the context of a particular sociologically interesting case, namely that of the Turkish higher education…

  13. Nonlinear Dynamics Used to Classify Effects of Mild Traumatic Brain Injury

    DTIC Science & Technology

    2012-01-11

    evaluate random fractal characteristics, and scale-dependent Lyapunov exponents (SDLE) to evaluate chaotic characteristics. Both Shannon and Renyi entropy...fluctuation analysis to evaluate random fractal characteristics, and scale-dependent Lyapunov exponents (SDLE) to evaluate chaotic characteristics. Both...often called the Hurst parameter [32]. When the scaling law described by Eq. (2) holds, the September 2011 I Volume 6 I Issue 9 I e24446 -Q.384

  14. Recurrence Quantification of Fractal Structures

    PubMed Central

    Webber, Charles L.

    2012-01-01

    By definition, fractal structures possess recurrent patterns. At different levels repeating patterns can be visualized at higher magnifications. The purpose of this chapter is threefold. First, general characteristics of dynamical systems are addressed from a theoretical mathematical perspective. Second, qualitative and quantitative recurrence analyses are reviewed in brief, but the reader is directed to other sources for explicit details. Third, example mathematical systems that generate strange attractors are explicitly defined, giving the reader the ability to reproduce the rich dynamics of continuous chaotic flows or discrete chaotic iterations. The challenge is then posited for the reader to study for themselves the recurrent structuring of these different dynamics. With a firm appreciation of the power of recurrence analysis, the reader will be prepared to turn their sights on real-world systems (physiological, psychological, mechanical, etc.). PMID:23060808

  15. Multistability and hidden attractors in a relay system with hysteresis

    NASA Astrophysics Data System (ADS)

    Zhusubaliyev, Zhanybai T.; Mosekilde, Erik; Rubanov, Vasily G.; Nabokov, Roman A.

    2015-06-01

    For nonlinear dynamic systems with switching control, the concept of a "hidden attractor" naturally applies to a stable dynamic state that either (1) coexists with the stable switching cycle or (2), if the switching cycle is unstable, has a basin of attraction that does not intersect with the neighborhood of that cycle. We show how the equilibrium point of a relay system disappears in a boundary-equilibrium bifurcation as the system enters the region of autonomous switching dynamics and demonstrate experimentally how a relay system can exhibit large amplitude chaotic oscillations at high values of the supply voltage. By investigating a four-dimensional model of the experimental relay system we finally show how a variety of hidden periodic, quasiperiodic and chaotic attractors arise, transform and disappear through different bifurcations.

  16. A new class of asymptotically non-chaotic vacuum singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klinger, Paul, E-mail: paul.klinger@univie.ac.at

    2015-12-15

    The BKL conjecture, stated in the 1960s and early 1970s by Belinski, Khalatnikov and Lifschitz, proposes a detailed description of the generic asymptotic dynamics of spacetimes as they approach a spacelike singularity. It predicts complicated chaotic behaviour in the generic case, but simpler non-chaotic one in cases with symmetry assumptions or certain kinds of matter fields. Here we construct a new class of four-dimensional vacuum spacetimes containing spacelike singularities which show non-chaotic behaviour. In contrast with previous constructions, no symmetry assumptions are made. Rather, the metric is decomposed in Iwasawa variables and conditions on the asymptotic evolution of some ofmore » them are imposed. The constructed solutions contain five free functions of all space coordinates, two of which are constrained by inequalities. We investigate continuous and discrete isometries and compare the solutions to previous constructions. Finally, we give the asymptotic behaviour of the metric components and curvature.« less

  17. Evolution of secondary whirls in thermoconvective vortices: Strengthening, weakening, and disappearance in the route to chaos

    NASA Astrophysics Data System (ADS)

    Castaño, D.; Navarro, M. C.; Herrero, H.

    2016-01-01

    The appearance, evolution, and disappearance of periodic and quasiperiodic dynamics of fluid flows in a cylindrical annulus locally heated from below are analyzed using nonlinear simulations. The results reveal a route of the transition from a steady axisymmetric vertical vortex to a chaotic flow. The chaotic flow regime is reached after a sequence of successive supercritical Hopf bifurcations to periodic, quasiperiodic, and chaotic flow regimes. A scenario similar to the Ruelle-Takens-Newhouse scenario is verified in this convective flow. In the transition to chaos we find the appearance of subvortices embedded in the primary axisymmetric vortex, flows where the subvortical structure strengthens and weakens, that almost disappears before reforming again, leading to a more disorganized flow to a final chaotic regime. Results are remarkable as they connect to observations describing formation, weakening, and virtual disappearance before revival of subvortices in some atmospheric swirls such as dust devils.

  18. Controlling effect of geometrically defined local structural changes on chaotic Hamiltonian systems.

    PubMed

    Ben Zion, Yossi; Horwitz, Lawrence

    2010-04-01

    An effective characterization of chaotic conservative Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor derived from the structure of the Hamiltonian has been extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce the Hamilton equations of the original potential model through an inverse map in the tangent space. The second covariant derivative of the geodesic deviation in this space generates a dynamical curvature, resulting in (energy-dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We show here that this criterion can be constructively used to modify locally the potential of a chaotic Hamiltonian model in such a way that stable motion is achieved. Since our criterion for instability is local in coordinate space, these results provide a minimal method for achieving control of a chaotic system.

  19. Chaos in high-dimensional dissipative dynamical systems

    PubMed Central

    Ispolatov, Iaroslav; Madhok, Vaibhav; Allende, Sebastian; Doebeli, Michael

    2015-01-01

    For dissipative dynamical systems described by a system of ordinary differential equations, we address the question of how the probability of chaotic dynamics increases with the dimensionality of the phase space. We find that for a system of d globally coupled ODE’s with quadratic and cubic non-linearities with randomly chosen coefficients and initial conditions, the probability of a trajectory to be chaotic increases universally from ~10−5 − 10−4 for d = 3 to essentially one for d ~ 50. In the limit of large d, the invariant measure of the dynamical systems exhibits universal scaling that depends on the degree of non-linearity, but not on the choice of coefficients, and the largest Lyapunov exponent converges to a universal scaling limit. Using statistical arguments, we provide analytical explanations for the observed scaling, universality, and for the probability of chaos. PMID:26224119

  20. Detecting dynamical changes in time series by using the Jensen Shannon divergence

    NASA Astrophysics Data System (ADS)

    Mateos, D. M.; Riveaud, L. E.; Lamberti, P. W.

    2017-08-01

    Most of the time series in nature are a mixture of signals with deterministic and random dynamics. Thus the distinction between these two characteristics becomes important. Distinguishing between chaotic and aleatory signals is difficult because they have a common wide band power spectrum, a delta like autocorrelation function, and share other features as well. In general, signals are presented as continuous records and require to be discretized for being analyzed. In this work, we introduce different schemes for discretizing and for detecting dynamical changes in time series. One of the main motivations is to detect transitions between the chaotic and random regime. The tools here used here originate from the Information Theory. The schemes proposed are applied to simulated and real life signals, showing in all cases a high proficiency for detecting changes in the dynamics of the associated time series.

  1. Alteration of chaotic advection in blood flow around partial blockage zone: Role of hematocrit concentration

    NASA Astrophysics Data System (ADS)

    Maiti, Soumyabrata; Chaudhury, Kaustav; DasGupta, Debabrata; Chakraborty, Suman

    2013-01-01

    Spatial distributions of particles carried by blood exhibit complex filamentary pattern under the combined effects of geometrical irregularities of the blood vessels and pulsating pumping by the heart. This signifies the existence of so called chaotic advection. In the present article, we argue that the understanding of such pathologically triggered chaotic advection is incomplete without giving due consideration to a major constituent of blood: abundant presence of red blood cells quantified by the hematocrit (HCT) concentration. We show that the hematocrit concentration in blood cells can alter the filamentary structures of the spatial distribution of advected particles in an intriguing manner. Our results reveal that there primarily are two major impacts of HCT concentrations towards dictating the chaotic dynamics of blood flow: changing the zone of influence of chaotic mixing and determining the enhancement of residence time of the advected particles away from the wall. This, in turn, may alter the extent of activation of platelets or other reactive biological entities, bearing immense consequence towards dictating the biophysical mechanisms behind possible life-threatening diseases originating in the circulatory system.

  2. Chaotic examination

    NASA Astrophysics Data System (ADS)

    Bildirici, Melike; Sonustun, Fulya Ozaksoy; Sonustun, Bahri

    2018-01-01

    In the regards of chaos theory, new concepts such as complexity, determinism, quantum mechanics, relativity, multiple equilibrium, complexity, (continuously) instability, nonlinearity, heterogeneous agents, irregularity were widely questioned in economics. It is noticed that linear models are insufficient for analyzing unpredictable, irregular and noncyclical oscillations of economies, and for predicting bubbles, financial crisis, business cycles in financial markets. Therefore, economists gave great consequence to use appropriate tools for modelling non-linear dynamical structures and chaotic behaviors of the economies especially in macro and the financial economy. In this paper, we aim to model the chaotic structure of exchange rates (USD-TL and EUR-TL). To determine non-linear patterns of the selected time series, daily returns of the exchange rates were tested by BDS during the period from January 01, 2002 to May 11, 2017 which covers after the era of the 2001 financial crisis. After specifying the non-linear structure of the selected time series, it was aimed to examine the chaotic characteristic for the selected time period by Lyapunov Exponents. The findings verify the existence of the chaotic structure of the exchange rate returns in the analyzed time period.

  3. Computing with Chaos

    NASA Astrophysics Data System (ADS)

    Murali, K.; Sinah, Sudeshna; Ditto, William

    2004-03-01

    Recently there has been a new theoretical direction in harnessing the richness of spatially extended chaotic systems, namely the exploitation of coupled chaotic elements to do flexible computations [1]. The aim of this presentation is to demonstrate the use a single chaotic element to emulate different logic gates and perform different arithmetic tasks. Additionally we demonstrate that the elements can be controlled to switch easily between the different operational roles. Such a computing unit may then allow a more dynamic computer architecture and serve as ingredients of a general-purpose device more flexible than statically wired hardware. The theoretical scheme for flexible implementation of all these fundamental logical operations utilizing low dimensional chaos [1] will be reviewed along with a specific realization of the theory in a chaotic circuit [2]. Results will also be presented from experiments done on leech neurons. [1] Sinha, S., Munakata, T. and Ditto, W.L., Phys. Rev. E 65 036216 [2] "Experimental realization of the fundamental NOR Gate using a chaotic circuit," K. Murali, Sudeshna Sinha and William L. Ditto Phys. Rev. E 68, 016205 (2003).

  4. Generating one to four-wing hidden attractors in a novel 4D no-equilibrium chaotic system with extreme multistability.

    PubMed

    Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le

    2018-01-01

    By using a simple state feedback controller in a three-dimensional chaotic system, a novel 4D chaotic system is derived in this paper. The system state equations are composed of nine terms including only one constant term. Depending on the different values of the constant term, this new proposed system has a line of equilibrium points or no equilibrium points. Compared with other similar chaotic systems, the newly presented system owns more abundant and complicated dynamic properties. What interests us is the observation that if the value of the constant term of the system is nonzero, it has no equilibria, and therefore, the Shil'nikov theorem is not suitable to verify the existence of chaos for the lack of heteroclinic or homoclinic trajectory. However, one-wing, two-wing, three-wing, and four-wing hidden attractors can be obtained from this new system. In addition, various coexisting hidden attractors are obtained and the complex transient transition behaviors are also observed. More interestingly, the unusual and striking dynamic behavior of the coexistence of infinitely many hidden attractors is revealed by selecting the different initial values of the system, which means that extreme multistability arises. The rich and complex hidden dynamic characteristics of this system are investigated by phase portraits, bifurcation diagrams, Lyapunov exponents, and so on. Finally, the new system is implemented by an electronic circuit. A very good agreement is observed between the experimental results and the numerical simulations of the same system on the Matlab platform.

  5. Generating one to four-wing hidden attractors in a novel 4D no-equilibrium chaotic system with extreme multistability

    NASA Astrophysics Data System (ADS)

    Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le

    2018-01-01

    By using a simple state feedback controller in a three-dimensional chaotic system, a novel 4D chaotic system is derived in this paper. The system state equations are composed of nine terms including only one constant term. Depending on the different values of the constant term, this new proposed system has a line of equilibrium points or no equilibrium points. Compared with other similar chaotic systems, the newly presented system owns more abundant and complicated dynamic properties. What interests us is the observation that if the value of the constant term of the system is nonzero, it has no equilibria, and therefore, the Shil'nikov theorem is not suitable to verify the existence of chaos for the lack of heteroclinic or homoclinic trajectory. However, one-wing, two-wing, three-wing, and four-wing hidden attractors can be obtained from this new system. In addition, various coexisting hidden attractors are obtained and the complex transient transition behaviors are also observed. More interestingly, the unusual and striking dynamic behavior of the coexistence of infinitely many hidden attractors is revealed by selecting the different initial values of the system, which means that extreme multistability arises. The rich and complex hidden dynamic characteristics of this system are investigated by phase portraits, bifurcation diagrams, Lyapunov exponents, and so on. Finally, the new system is implemented by an electronic circuit. A very good agreement is observed between the experimental results and the numerical simulations of the same system on the Matlab platform.

  6. Quantum-classical correspondence in the vicinity of periodic orbits

    NASA Astrophysics Data System (ADS)

    Kumari, Meenu; Ghose, Shohini

    2018-05-01

    Quantum-classical correspondence in chaotic systems is a long-standing problem. We describe a method to quantify Bohr's correspondence principle and calculate the size of quantum numbers for which we can expect to observe quantum-classical correspondence near periodic orbits of Floquet systems. Our method shows how the stability of classical periodic orbits affects quantum dynamics. We demonstrate our method by analyzing quantum-classical correspondence in the quantum kicked top (QKT), which exhibits both regular and chaotic behavior. We use our correspondence conditions to identify signatures of classical bifurcations even in a deep quantum regime. Our method can be used to explain the breakdown of quantum-classical correspondence in chaotic systems.

  7. Adjoint sensitivity analysis of chaotic dynamical systems with non-intrusive least squares shadowing

    NASA Astrophysics Data System (ADS)

    Blonigan, Patrick J.

    2017-11-01

    This paper presents a discrete adjoint version of the recently developed non-intrusive least squares shadowing (NILSS) algorithm, which circumvents the instability that conventional adjoint methods encounter for chaotic systems. The NILSS approach involves solving a smaller minimization problem than other shadowing approaches and can be implemented with only minor modifications to preexisting tangent and adjoint solvers. Adjoint NILSS is demonstrated on a small chaotic ODE, a one-dimensional scalar PDE, and a direct numerical simulation (DNS) of the minimal flow unit, a turbulent channel flow on a small spatial domain. This is the first application of an adjoint shadowing-based algorithm to a three-dimensional turbulent flow.

  8. Menstruation, perimenopause, and chaos theory.

    PubMed

    Derry, Paula S; Derry, Gregory N

    2012-01-01

    This article argues that menstruation, including the transition to menopause, results from a specific kind of complex system, namely, one that is nonlinear, dynamical, and chaotic. A complexity-based perspective changes how we think about and research menstruation-related health problems and positive health. Chaotic systems are deterministic but not predictable, characterized by sensitivity to initial conditions and strange attractors. Chaos theory provides a coherent framework that qualitatively accounts for puzzling results from perimenopause research. It directs attention to variability within and between women, adaptation, lifespan development, and the need for complex explanations of disease. Whether the menstrual cycle is chaotic can be empirically tested, and a summary of our research on 20- to 40-year-old women is provided.

  9. Time-delayed chameleon: Analysis, synchronization and FPGA implementation

    NASA Astrophysics Data System (ADS)

    Rajagopal, Karthikeyan; Jafari, Sajad; Laarem, Guessas

    2017-12-01

    In this paper we report a time-delayed chameleon-like chaotic system which can belong to different families of chaotic attractors depending on the choices of parameters. Such a characteristic of self-excited and hidden chaotic flows in a simple 3D system with time delay has not been reported earlier. Dynamic analysis of the proposed time-delayed systems are analysed in time-delay space and parameter space. A novel adaptive modified functional projective lag synchronization algorithm is derived for synchronizing identical time-delayed chameleon systems with uncertain parameters. The proposed time-delayed systems and the synchronization algorithm with controllers and parameter estimates are then implemented in FPGA using hardware-software co-simulation and the results are presented.

  10. Investigating chaotic wake dynamics past a flapping airfoil and the role of vortex interactions behind the chaotic transition

    NASA Astrophysics Data System (ADS)

    Bose, Chandan; Sarkar, Sunetra

    2018-04-01

    The present study investigates the complex vortex interactions in two-dimensional flow-field behind a symmetric NACA0012 airfoil undergoing a prescribed periodic pitching-plunging motion in low Reynolds number regime. The flow-field transitions from periodic to chaotic through a quasi-periodic route as the plunge amplitude is gradually increased. This study unravels the role of the complex interactions that take place among the main vortex structures in making the unsteady flow-field transition from periodicity to chaos. The leading-edge separation plays a key role in providing the very first trigger for aperiodicity. Subsequent mechanisms like shredding, merging, splitting, and collision of vortices in the near-field that propagate and sustain the disturbance have also been followed and presented. These fundamental mechanisms are seen to give rise to spontaneous and irregular formation of new vortex couples at arbitrary locations, which are the primary agencies for sustaining chaos in the flow-field. The interactions have been studied for each dynamical state to understand the course of transition in the flow-field. The qualitative changes observed in the flow-field are manifestation of changes in the underlying dynamical system. The overall dynamics are established in the present study by means of robust quantitative measures derived from classical and non-classical tools from the dynamical system theory. As the present analysis involves a high fidelity multi-unknown system, non-classical dynamical tools such as recurrence-based time series methods are seen to be very efficient. Moreover, their application is novel in the context of pitch-plunge flapping flight.

  11. Chaotic motion of comets in near-parabolic orbit: Mapping aproaches

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Sun, Yi-Sui

    1994-09-01

    There exist many comets with near-parabolic orbits in the solar system. Among various theories proposed to explain their origin, the Oort cloud hypothesis seems to be the most reasonable. The theory assumes that there is a cometary cloud at a distance 103 to 107 from the sun and that perturbing forces from planets or stars make orbits of some of these comets become the near-parabolic type. Concerning the evolution of these orbits under planetary perturbations, we can raise the question: Will they stay in the solar system forever or will they escape from it? This is an attractive dynamical problem. If we go ahead by directly solving the dynamical differential equations, we may encounter the difficulty of long-time computation. For the orbits of these comets are near-parabolic and their periods are too long to study on their long-term evolution. With mapping approaches the difficulty will be overcome. In another aspect, the study of this model has special meaning for chaotic dynamics. We know that in the neighborhood of any separatrix i.e. the trajectory with zero frequency of the uperturbed motion of a Hamiltonian system, some chaotic motions have to be expected. Actually, the simplest example of separatrix is the parabolic trajectory of the two-body problem which separates the bounded and unbounded motion. From this point of view, the dynamical study of near-parabolic motion is very important. Petrosky's elegant but more abstract deduction gives a Kepler mapping which describes the dynamics of the cometary motion. In this paper we derive a similar mapping directly and discuss its dynamical characters.

  12. Supply based on demand dynamical model

    NASA Astrophysics Data System (ADS)

    Levi, Asaf; Sabuco, Juan; Sanjuán, Miguel A. F.

    2018-04-01

    We propose and numerically analyze a simple dynamical model that describes the firm behaviors under uncertainty of demand. Iterating this simple model and varying some parameter values, we observe a wide variety of market dynamics such as equilibria, periodic, and chaotic behaviors. Interestingly, the model is also able to reproduce market collapses.

  13. Detecting dynamic causal inference in nonlinear two-phase fracture flow

    NASA Astrophysics Data System (ADS)

    Faybishenko, Boris

    2017-08-01

    Identifying dynamic causal inference involved in flow and transport processes in complex fractured-porous media is generally a challenging task, because nonlinear and chaotic variables may be positively coupled or correlated for some periods of time, but can then become spontaneously decoupled or non-correlated. In his 2002 paper (Faybishenko, 2002), the author performed a nonlinear dynamical and chaotic analysis of time-series data obtained from the fracture flow experiment conducted by Persoff and Pruess (1995), and, based on the visual examination of time series data, hypothesized that the observed pressure oscillations at both inlet and outlet edges of the fracture result from a superposition of both forward and return waves of pressure propagation through the fracture. In the current paper, the author explores an application of a combination of methods for detecting nonlinear chaotic dynamics behavior along with the multivariate Granger Causality (G-causality) time series test. Based on the G-causality test, the author infers that his hypothesis is correct, and presents a causation loop diagram of the spatial-temporal distribution of gas, liquid, and capillary pressures measured at the inlet and outlet of the fracture. The causal modeling approach can be used for the analysis of other hydrological processes, for example, infiltration and pumping tests in heterogeneous subsurface media, and climatic processes, for example, to find correlations between various meteorological parameters, such as temperature, solar radiation, barometric pressure, etc.

  14. Restoration and recovery of damaged eco-epidemiological systems: application to the Salton Sea, California, USA.

    PubMed

    Upadhyay, Ranjit Kumar; Raw, S N; Roy, P; Rai, Vikas

    2013-04-01

    In this paper, we have proposed and analysed a mathematical model to figure out possible ways to rescue a damaged eco-epidemiological system. Our strategy of rescue is based on the realization of the fact that chaotic dynamics often associated with excursions of system dynamics to extinction-sized densities. Chaotic dynamics of the model is depicted by 2D scans, bifurcation analysis, largest Lyapunov exponent and basin boundary calculations. 2D scan results show that μ, the total death rate of infected prey should be brought down in order to avoid chaotic dynamics. We have carried out linear and nonlinear stability analysis and obtained Hopf-bifurcation and persistence criteria of the proposed model system. The other outcome of this study is a suggestion which involves removal of infected fishes at regular interval of time. The estimation of timing and periodicity of the removal exercises would be decided by the nature of infection more than anything else. If this suggestion is carefully worked out and implemented, it would be most effective in restoring the health of the ecosystem which has immense ecological, economic and aesthetic potential. We discuss the implications of this result to Salton Sea, California, USA. The restoration of the Salton Sea provides a perspective for conservation and management strategy. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. A challenge to chaotic itinerancy from brain dynamics

    NASA Astrophysics Data System (ADS)

    Kay, Leslie M.

    2003-09-01

    Brain hermeneutics and chaotic itinerancy proposed by Tsuda are attractive characterizations of perceptual dynamics in the mammalian olfactory system. This theory proposes that perception occurs at the interface between itinerant neural representation and interaction with the environment. Quantifiable application of these dynamics has been hampered by the lack of definable history and action processes which characterize the changes induced by behavioral state, attention, and learning. Local field potentials measured from several brain areas were used to characterize dynamic activity patterns for their use as representations of history and action processes. The signals were recorded from olfactory areas (olfactory bulb, OB, and pyriform cortex) and hippocampal areas (entorhinal cortex and dentate gyrus, DG) in the brains of rats. During odor-guided behavior the system shows dynamics at three temporal scales. Short time-scale changes are system-wide and can occur in the space of a single sniff. They are predictable, associated with learned shifts in behavioral state and occur periodically on the scale of the intertrial interval. These changes occupy the theta (2-12 Hz), beta (15-30 Hz), and gamma (40-100 Hz) frequency bands within and between all areas. Medium time-scale changes occur relatively unpredictably, manifesting in these data as alterations in connection strength between the OB and DG. These changes are strongly correlated with performance in associated trial blocks (5-10 min) and may be due to fluctuations in attention, mood, or amount of reward received. Long time-scale changes are likely related to learning or decline due to aging or disease. These may be modeled as slow monotonic processes that occur within or across days or even weeks or years. The folding of different time scales is proposed as a mechanism for chaotic itinerancy, represented by dynamic processes instead of static connection strengths. Thus, the individual maintains continuity of experience within the stability of fast periodic and slow monotonic processes, while medium scale events alter experience and performance dramatically but temporarily. These processes together with as yet to be determined action effects from motor system feedback are proposed as an instantiation of brain hermeneutics and chaotic itinerancy.

  16. Coexisting multiple attractors and riddled basins of a memristive system.

    PubMed

    Wang, Guangyi; Yuan, Fang; Chen, Guanrong; Zhang, Yu

    2018-01-01

    In this paper, a new memristor-based chaotic system is designed, analyzed, and implemented. Multistability, multiple attractors, and complex riddled basins are observed from the system, which are investigated along with other dynamical behaviors such as equilibrium points and their stabilities, symmetrical bifurcation diagrams, and sustained chaotic states. With different sets of system parameters, the system can also generate various multi-scroll attractors. Finally, the system is realized by experimental circuits.

  17. A multi-GHz chaotic optoelectronic oscillator based on laser terminal voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C. Y., E-mail: cychang@gatech.edu; UMI 2958 Georgia Tech-CNRS, Georgia Tech Lorraine, 2 Rue Marconi, F-57070 Metz; Choi, Daeyoung

    2016-05-09

    A multi-GHz chaotic optoelectronic oscillator based on an external cavity semiconductor laser (ECL) is demonstrated. Unlike the standard optoelectronic oscillators for microwave applications, we do not employ the dynamic light output incident on a photodiode to generate the microwave signal, but instead generate the microwave signal directly by measuring the terminal voltage V(t) of the laser diode of the ECL under constant-current operation, thus obviating the photodiode entirely.

  18. Cooling of a Magmatic System Under Thermal Chaotic Mixing

    NASA Astrophysics Data System (ADS)

    El Omari, Kamal; Le Guer, Yves; Perugini, Diego; Petrelli, Maurizio

    2015-07-01

    The cooling of a basaltic melt undergoing chaotic advection is studied numerically for a magma with a temperature-dependent viscosity in a two-dimensional (2D) cavity with moving boundary. Different statistical mixing and energy indicators are used to characterize the efficiency of cooling by thermal chaotic mixing. We show that different cooling rates can be obtained during the thermal mixing of a single basaltic magmatic batch undergoing chaotic advection. This process can induce complex temperature patterns inside the magma chamber. The emergence of chaotic dynamics strongly modulates the temperature fields over time and greatly increases the cooling rates. This mechanism has implications for the thermal lifetime of the magmatic body and may favor the appearance of chemical heterogeneities in the igneous system as a result of different crystallization rates. Results from this study also highlight that even a single magma batch can develop, under chaotic thermal advection, complex thermal and therefore compositional patterns resulting from different cooling rates, which can account for some natural features that, to date, have received unsatisfactory explanations, including the production of magmatic enclaves showing completely different cooling histories compared with the host magma, compositional zoning in mineral phases, and the generation of large-scale compositional zoning observed in many plutons worldwide.

  19. Terminal Model Of Newtonian Dynamics

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1994-01-01

    Paper presents study of theory of Newtonian dynamics of terminal attractors and repellers, focusing on issues of reversibility vs. irreversibility and deterministic evolution vs. probabilistic or chaotic evolution of dynamic systems. Theory developed called "terminal dynamics" emphasizes difference between it and classical Newtonian dynamics. Also holds promise for explaining irreversibility, unpredictability, probabilistic behavior, and chaos in turbulent flows, in thermodynamic phenomena, and in other dynamic phenomena and systems.

  20. Time series analyses of breathing patterns of lung cancer patients using nonlinear dynamical system theory.

    PubMed

    Tewatia, D K; Tolakanahalli, R P; Paliwal, B R; Tomé, W A

    2011-04-07

    The underlying requirements for successful implementation of any efficient tumour motion management strategy are regularity and reproducibility of a patient's breathing pattern. The physiological act of breathing is controlled by multiple nonlinear feedback and feed-forward couplings. It would therefore be appropriate to analyse the breathing pattern of lung cancer patients in the light of nonlinear dynamical system theory. The purpose of this paper is to analyse the one-dimensional respiratory time series of lung cancer patients based on nonlinear dynamics and delay coordinate state space embedding. It is very important to select a suitable pair of embedding dimension 'm' and time delay 'τ' when performing a state space reconstruction. Appropriate time delay and embedding dimension were obtained using well-established methods, namely mutual information and the false nearest neighbour method, respectively. Establishing stationarity and determinism in a given scalar time series is a prerequisite to demonstrating that the nonlinear dynamical system that gave rise to the scalar time series exhibits a sensitive dependence on initial conditions, i.e. is chaotic. Hence, once an appropriate state space embedding of the dynamical system has been reconstructed, we show that the time series of the nonlinear dynamical systems under study are both stationary and deterministic in nature. Once both criteria are established, we proceed to calculate the largest Lyapunov exponent (LLE), which is an invariant quantity under time delay embedding. The LLE for all 16 patients is positive, which along with stationarity and determinism establishes the fact that the time series of a lung cancer patient's breathing pattern is not random or irregular, but rather it is deterministic in nature albeit chaotic. These results indicate that chaotic characteristics exist in the respiratory waveform and techniques based on state space dynamics should be employed for tumour motion management.

  1. Control of complex dynamics and chaos in distributed parameter systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarti, S.; Marek, M.; Ray, W.H.

    This paper discusses a methodology for controlling complex dynamics and chaos in distributed parameter systems. The reaction-diffusion system with Brusselator kinetics, where the torus-doubling or quasi-periodic (two characteristic incommensurate frequencies) route to chaos exists in a defined range of parameter values, is used as an example. Poincare maps are used for characterization of quasi-periodic and chaotic attractors. The dominant modes or topos, which are inherent properties of the system, are identified by means of the Singular Value Decomposition. Tested modal feedback control schemas based on identified dominant spatial modes confirm the possibility of stabilization of simple quasi-periodic trajectories in themore » complex quasi-periodic or chaotic spatiotemporal patterns.« less

  2. Conductance fluctuations in high mobility monolayer graphene: Nonergodicity, lack of determinism and chaotic behavior

    PubMed Central

    da Cunha, C. R.; Mineharu, M.; Matsunaga, M.; Matsumoto, N.; Chuang, C.; Ochiai, Y.; Kim, G.-H.; Watanabe, K.; Taniguchi, T.; Ferry, D. K.; Aoki, N.

    2016-01-01

    We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these fluctuations. The distribution of eigenvalues was estimated from the conductance fluctuations with Gaussian kernels and it indicates that the carrier motion is chaotic at low temperatures. We argue that a two-phase dynamical fluid model best describes the transport in this system and can be used to explain the violation of the so-called ergodic hypothesis found in graphene. PMID:27609184

  3. Conductance fluctuations in high mobility monolayer graphene: Nonergodicity, lack of determinism and chaotic behavior.

    PubMed

    da Cunha, C R; Mineharu, M; Matsunaga, M; Matsumoto, N; Chuang, C; Ochiai, Y; Kim, G-H; Watanabe, K; Taniguchi, T; Ferry, D K; Aoki, N

    2016-09-09

    We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these fluctuations. The distribution of eigenvalues was estimated from the conductance fluctuations with Gaussian kernels and it indicates that the carrier motion is chaotic at low temperatures. We argue that a two-phase dynamical fluid model best describes the transport in this system and can be used to explain the violation of the so-called ergodic hypothesis found in graphene.

  4. Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems.

    PubMed

    Lucarini, Valerio; Faranda, Davide; Wouters, Jeroen; Kuna, Tobias

    2014-01-01

    In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the chosen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan-Yorke dimension of the attractor. Preliminary numerical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.

  5. Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio; Faranda, Davide; Wouters, Jeroen; Kuna, Tobias

    2014-02-01

    In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the chosen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan-Yorke dimension of the attractor. Preliminary numerical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.

  6. The Six Fundamental Characteristics of Chaos and Their Clinical Relevance to Psychiatry: a New Hypothesis for the Origin of Psychosis

    NASA Astrophysics Data System (ADS)

    Schmid, Gary Bruno

    Underlying idea: A new hypothesis about how the mental state of psychosis may arise in the brain as a "linear" information processing pathology is briefly introduced. This hypothesis is proposed in the context of a complementary approach to psychiatry founded in the logical paradigm of chaos theory. To best understand the relation between chaos theory and psychiatry, the semantic structure of chaos theory is analyzed with the help of six general, and six specific, fundamental characteristics which can be directly inferred from empirical observations on chaotic systems. This enables a mathematically and physically stringent perspective on psychological phenomena which until now could only be grasped intuitively: Chaotic systems are in a general sense dynamic, intrinsically coherent, deterministic, recursive, reactive and structured: in a specific sense, self-organizing, unpredictable, nonreproducible, triadic, unstable and self-similar. To a great extent, certain concepts of chaos theory can be associated with corresponding concepts in psychiatry, psychology and psychotherapy, thus enabling an understanding of the human psyche in general as a (fractal) chaotic system and an explanation of certain mental developments, such as the course of schizophrenia, the course of psychosis and psychotherapy as chaotic processes. General overview: A short comparison and contrast of classical and chaotic physical theory leads to four postulates and one hypothesis motivating a new, dynamic, nonlinear approach to classical, causal psychiatry: Process-Oriented PSYchiatry or "POPSY", for short. Four aspects of the relationship between chaos theory and POPSY are discussed: (1) The first of these, namely, Identification of Chaos / Picture of Illness involves a definition of Chaos / Psychosis and a discussion of the 6 logical characteristics of each. This leads to the concept of dynamical disease (definition, characteristics and examples) and to the idea of "psychological disturbance as dynamical illness". On the one hand, it is argued that the developmental course of psychosis is chaotic. On the other hand, we propose the hypothesis that the mental state of psychosis may be a linear information processing pathology. (2) The second aspect under discussion is the Assessment of Chaos / Diagnosis of Illness. In order to better understand how POPSY research treats this aspect, we take a look at the 3 different classes of (non-quantum) motion as models of 3 different possible courses of illness and outline present-day methods available for the quantitative assessment of chaotic (fractal) motion. (3) The third aspect, namely. Prediction of Chaos / Prognosis of Illness considers how each of these 3 classes of motion implies a different way of looking into the future: linear-causal, statistical and nonlinear-fractal, respectively (4) The fourth aspect of the relationship between chaos theory and POPSY, Control of Chaos / Treatment of Illness, is shown to have certain implications to complementary medicine. This paper completes with a short summary, conclusion and a closing remark.

  7. Modeling and Analysis of a Fractional-Order Generalized Memristor-Based Chaotic System and Circuit Implementation

    NASA Astrophysics Data System (ADS)

    Yang, Ningning; Xu, Cheng; Wu, Chaojun; Jia, Rong; Liu, Chongxin

    2017-12-01

    Memristor is a nonlinear “missing circuit element”, that can easily achieve chaotic oscillation. Memristor-based chaotic systems have received more and more attention. Research shows that fractional-order systems are more close to real systems. As an important parameter, the order can increase the flexibility and degree of freedom of the system. In this paper, a fractional-order generalized memristor, which consists of a diode bridge and a parallel circuit with an equivalent unit circuit and a linear resistance, is proposed. Frequency and electrical characteristics of the fractional-order memristor are analyzed. A chain structure circuit is used to implement the fractional-order unit circuit. Then replacing the conventional Chua’s diode by the fractional-order generalized memristor, a fractional-order memristor-based chaotic circuit is proposed. A large amount of research work has been done to investigate the influence of the order on the dynamical behaviors of the fractional-order memristor-based chaotic circuit. Varying with the order, the system enters the chaotic state from the periodic state through the Hopf bifurcation and period-doubling bifurcation. The chaotic state of the system has two types of attractors: single-scroll and double-scroll attractor. The stability theory of fractional-order systems is used to determine the minimum order occurring Hopf bifurcation. And the influence of the initial value on the system is analyzed. Circuit simulations are designed to verify the results of theoretical analysis and numerical simulation.

  8. An advanced analysis and modelling the air pollutant concentration temporal dynamics in atmosphere of the industrial cities: Odessa city

    NASA Astrophysics Data System (ADS)

    Buyadzhi, V. V.; Glushkov, A. V.; Khetselius, O. Yu; Ternovsky, V. B.; Serga, I. N.; Bykowszczenko, N.

    2017-10-01

    Results of analysis and modelling the air pollutant (dioxide of nitrogen) concentration temporal dynamics in atmosphere of the industrial city Odessa are presented for the first time and based on computing by nonlinear methods of the chaos and dynamical systems theories. A chaotic behaviour is discovered and investigated. To reconstruct the corresponding strange chaotic attractor, the time delay and embedding dimension are computed. The former is determined by the methods of autocorrelation function and average mutual information, and the latter is calculated by means of correlation dimension method and algorithm of false nearest neighbours. It is shown that low-dimensional chaos exists in the nitrogen dioxide concentration time series under investigation. Further, the Lyapunov’s exponents spectrum, Kaplan-Yorke dimension and Kolmogorov entropy are computed.

  9. High-frequency chaotic dynamics enabled by optical phase-conjugation

    PubMed Central

    Mercier, Émeric; Wolfersberger, Delphine; Sciamanna, Marc

    2016-01-01

    Wideband chaos is of interest for applications such as random number generation or encrypted communications, which typically use optical feedback in a semiconductor laser. Here, we show that replacing conventional optical feedback with phase-conjugate feedback improves the chaos bandwidth. In the range of achievable phase-conjugate mirror reflectivities, the bandwidth increase reaches 27% when compared with feedback from a conventional mirror. Experimental measurements of the time-resolved frequency dynamics on nanosecond time-scales show that the bandwidth enhancement is related to the onset of self-pulsing solutions at harmonics of the external-cavity frequency. In the observed regime, the system follows a chaotic itinerancy among these destabilized high-frequency external-cavity modes. The recorded features are unique to phase-conjugate feedback and distinguish it from the long-standing problem of time-delayed feedback dynamics. PMID:26739806

  10. Chaotic dynamics in the (47171) Lempo triple system

    NASA Astrophysics Data System (ADS)

    Correia, Alexandre C. M.

    2018-05-01

    We investigate the dynamics of the (47171) Lempo triple system, also known by 1999 TC36. We derive a full 3D N-body model that takes into account the orbital and spin evolution of all bodies, which are assumed triaxial ellipsoids. We show that, for reasonable values of the shapes and rotational periods, the present best fitted orbital solution for the Lempo system is chaotic and unstable in short time-scales. The formation mechanism of this system is unknown, but the orbits can be stabilised when tidal dissipation is taken into account. The dynamics of the Lempo system is very rich, but depends on many parameters that are presently unknown. A better understanding of this systems thus requires more observations, which also need to be fitted with a complete model like the one presented here.

  11. The violent adolescent: the urge to destroy versus the urge to feel alive.

    PubMed

    Snyder, Jane; Rogers, Kenneth

    2002-09-01

    The dynamics of adolescent violence are explored from theoretical and developmental perspectives applied to the review of psychoanalytic studies of violence and three cases: the case of Willie Bosket, presented in Fox Butterfield's All God's Children, an adolescent treated by one of the authors, and observation of staff dynamics in a juvenile detention facility. Studies indicate that violence is used to preserve a sense of existence and psychic equilibrium as well as to express rage and destroy unwanted projected parts of the self and dangerous intrusions into a fragile self-coherence. In the case studies, violent activity serves a number of psychic functions: it leads to high arousal states and the feeling of being alive thereby disavowing underlying feelings of deadness and depression, it serves to contain and discharge overwhelming chaotic and rageful feelings, and it enacts object ties and the unconscious fantasies of the parent. Staff dynamics in a treatment setting for juvenile offenders reflect the intrapsychic dynamics of the juvenile offender prone to acting out, projection, hypervigilance to signs of disrespect, and disavowal of unwanted affects including helplessness and vulnerability.

  12. Exploiting chaos for applications.

    PubMed

    Ditto, William L; Sinha, Sudeshna

    2015-09-01

    We discuss how understanding the nature of chaotic dynamics allows us to control these systems. A controlled chaotic system can then serve as a versatile pattern generator that can be used for a range of application. Specifically, we will discuss the application of controlled chaos to the design of novel computational paradigms. Thus, we present an illustrative research arc, starting with ideas of control, based on the general understanding of chaos, moving over to applications that influence the course of building better devices.

  13. Neural network representation and learning of mappings and their derivatives

    NASA Technical Reports Server (NTRS)

    White, Halbert; Hornik, Kurt; Stinchcombe, Maxwell; Gallant, A. Ronald

    1991-01-01

    Discussed here are recent theorems proving that artificial neural networks are capable of approximating an arbitrary mapping and its derivatives as accurately as desired. This fact forms the basis for further results establishing the learnability of the desired approximations, using results from non-parametric statistics. These results have potential applications in robotics, chaotic dynamics, control, and sensitivity analysis. An example involving learning the transfer function and its derivatives for a chaotic map is discussed.

  14. Chaotic Transport in Circumterrestrial Orbits

    NASA Astrophysics Data System (ADS)

    Rosengren, Aaron Jay

    2018-04-01

    The slow deformation of circumterrestrial orbits in the medium region, subject to lunisolar secular resonances, is well approximated by a Hamiltonian system with 2.5 degrees of freedom. This dynamical model is referred to in the astrophysical and celestial dynamics communities as the quadrupolar, secular, hierarchical three-body problem, and, in the non-autonomous case, gives rise to the classical Kozai-Lidov mechanism. In the time-dependent model, brought about in our case by the Moon's perturbed motion, the action variables of the system may experience chaotic variations and large drifts due to the possible overlap of nearby resonances. Using variational chaos indicators, we compute high-resolution portraits of the action space, revealing the existence of tori and structures filling chaotic regions. Our refined and elaborate calculations allow us to isolate precise initial conditions near specific areas of interest and to study their asymptotic behavior in time. We highlight in particular how the drift in phase space is mediated by the complement of the numerically detected KAM tori. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors, and, like the small body remnants of Solar system formation, they have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.

  15. Prediction of the Reference Evapotranspiration Using a Chaotic Approach

    PubMed Central

    Wang, Wei-guang; Zou, Shan; Luo, Zhao-hui; Zhang, Wei; Kong, Jun

    2014-01-01

    Evapotranspiration is one of the most important hydrological variables in the context of water resources management. An attempt was made to understand and predict the dynamics of reference evapotranspiration from a nonlinear dynamical perspective in this study. The reference evapotranspiration data was calculated using the FAO Penman-Monteith equation with the observed daily meteorological data for the period 1966–2005 at four meteorological stations (i.e., Baotou, Zhangbei, Kaifeng, and Shaoguan) representing a wide range of climatic conditions of China. The correlation dimension method was employed to investigate the chaotic behavior of the reference evapotranspiration series. The existence of chaos in the reference evapotranspiration series at the four different locations was proved by the finite and low correlation dimension. A local approximation approach was employed to forecast the daily reference evapotranspiration series. Low root mean square error (RSME) and mean absolute error (MAE) (for all locations lower than 0.31 and 0.24, resp.), high correlation coefficient (CC), and modified coefficient of efficiency (for all locations larger than 0.97 and 0.8, resp.) indicate that the predicted reference evapotranspiration agrees well with the observed one. The encouraging results indicate the suitableness of chaotic approach for understanding and predicting the dynamics of the reference evapotranspiration. PMID:25133221

  16. Monte Carlo Sampling in Fractal Landscapes

    NASA Astrophysics Data System (ADS)

    Leitão, Jorge C.; Lopes, J. M. Viana Parente; Altmann, Eduardo G.

    2013-05-01

    We design a random walk to explore fractal landscapes such as those describing chaotic transients in dynamical systems. We show that the random walk moves efficiently only when its step length depends on the height of the landscape via the largest Lyapunov exponent of the chaotic system. We propose a generalization of the Wang-Landau algorithm which constructs not only the density of states (transient time distribution) but also the correct step length. As a result, we obtain a flat-histogram Monte Carlo method which samples fractal landscapes in polynomial time, a dramatic improvement over the exponential scaling of traditional uniform-sampling methods. Our results are not limited by the dimensionality of the landscape and are confirmed numerically in chaotic systems with up to 30 dimensions.

  17. Chaos control applied to cardiac rhythms represented by ECG signals

    NASA Astrophysics Data System (ADS)

    Borem Ferreira, Bianca; Amorim Savi, Marcelo; Souza de Paula, Aline

    2014-10-01

    The control of irregular or chaotic heartbeats is a key issue in cardiology. In this regard, chaos control techniques represent a good alternative since they suggest treatments different from those traditionally used. This paper deals with the application of the extended time-delayed feedback control method to stabilize pathological chaotic heart rhythms. Electrocardiogram (ECG) signals are employed to represent the cardiovascular behavior. A mathematical model is employed to generate ECG signals using three modified Van der Pol oscillators connected with time delay couplings. This model provides results that qualitatively capture the general behavior of the heart. Controlled ECG signals show the ability of the strategy either to control or to suppress the chaotic heart dynamics generating less-critical behaviors.

  18. A secure communication using cascade chaotic computing systems on clinical decision support.

    PubMed

    Koksal, Ahmet Sertol; Er, Orhan; Evirgen, Hayrettin; Yumusak, Nejat

    2016-06-01

    Clinical decision support systems (C-DSS) provide supportive tools to the expert for the determination of the disease. Today, many of the support systems, which have been developed for a better and more accurate diagnosis, have reached a dynamic structure due to artificial intelligence techniques. However, in cases when important diagnosis studies should be performed in secret, a secure communication system is required. In this study, secure communication of a DSS is examined through a developed double layer chaotic communication system. The developed communication system consists of four main parts: random number generator, cascade chaotic calculation layer, PCM, and logical mixer layers. Thanks to this system, important patient data created by DSS will be conveyed to the center through a secure communication line.

  19. Robust PRNG based on homogeneously distributed chaotic dynamics

    NASA Astrophysics Data System (ADS)

    Garasym, Oleg; Lozi, René; Taralova, Ina

    2016-02-01

    This paper is devoted to the design of new chaotic Pseudo Random Number Generator (CPRNG). Exploring several topologies of network of 1-D coupled chaotic mapping, we focus first on two dimensional networks. Two topologically coupled maps are studied: TTL rc non-alternate, and TTL SC alternate. The primary idea of the novel maps has been based on an original coupling of the tent and logistic maps to achieve excellent random properties and homogeneous /uniform/ density in the phase plane, thus guaranteeing maximum security when used for chaos base cryptography. In this aim two new nonlinear CPRNG: MTTL 2 sc and NTTL 2 are proposed. The maps successfully passed numerous statistical, graphical and numerical tests, due to proposed ring coupling and injection mechanisms.

  20. Psychotherapy Is Chaotic-(Not Only) in a Computational World.

    PubMed

    Schiepek, Günter K; Viol, Kathrin; Aichhorn, Wolfgang; Hütt, Marc-Thorsten; Sungler, Katharina; Pincus, David; Schöller, Helmut J

    2017-01-01

    Objective: The aim of this article is to outline the role of chaotic dynamics in psychotherapy. Besides some empirical findings of chaos at different time scales, the focus is on theoretical modeling of change processes explaining and simulating chaotic dynamics. It will be illustrated how some common factors of psychotherapeutic change and psychological hypotheses on motivation, emotion regulation, and information processing of the client's functioning can be integrated into a comprehensive nonlinear model of human change processes. Methods: The model combines 5 variables (intensity of emotions, problem intensity, motivation to change, insight and new perspectives, therapeutic success) and 4 parameters into a set of 5 coupled nonlinear difference equations. The results of these simulations are presented as time series, as phase space embedding of these time series (i.e., attractors), and as bifurcation diagrams. Results: The model creates chaotic dynamics, phase transition-like phenomena, bi- or multi-stability, and sensibility of the dynamic patterns on parameter drift. These features are predicted by chaos theory and by Synergetics and correspond to empirical findings. The spectrum of these behaviors illustrates the complexity of psychotherapeutic processes. Conclusion: The model contributes to the development of an integrative conceptualization of psychotherapy. It is consistent with the state of scientific knowledge of common factors, as well as other psychological topics, such as: motivation, emotion regulation, and cognitive processing. The role of chaos theory is underpinned, not only in the world of computer simulations, but also in practice. In practice, chaos demands technologies capable of real-time monitoring and reporting on the nonlinear features of the ongoing process (e.g., its stability or instability). Based on this monitoring, a client-centered, continuous, and cooperative process of feedback and control becomes possible. By contrast, restricted predictability and spontaneous changes challenge the usefulness of prescriptive treatment manuals or other predefined programs of psychotherapy.

  1. Chaotic dynamics of Comet 1P/Halley: Lyapunov exponent and survival time expectancy

    NASA Astrophysics Data System (ADS)

    Muñoz-Gutiérrez, M. A.; Reyes-Ruiz, M.; Pichardo, B.

    2015-03-01

    The orbital elements of Comet Halley are known to a very high precision, suggesting that the calculation of its future dynamical evolution is straightforward. In this paper we seek to characterize the chaotic nature of the present day orbit of Comet Halley and to quantify the time-scale over which its motion can be predicted confidently. In addition, we attempt to determine the time-scale over which its present day orbit will remain stable. Numerical simulations of the dynamics of test particles in orbits similar to that of Comet Halley are carried out with the MERCURY 6.2 code. On the basis of these we construct survival time maps to assess the absolute stability of Halley's orbit, frequency analysis maps to study the variability of the orbit, and we calculate the Lyapunov exponent for the orbit for variations in initial conditions at the level of the present day uncertainties in our knowledge of its orbital parameters. On the basis of our calculations of the Lyapunov exponent for Comet Halley, the chaotic nature of its motion is demonstrated. The e-folding time-scale for the divergence of initially very similar orbits is approximately 70 yr. The sensitivity of the dynamics on initial conditions is also evident in the self-similarity character of the survival time and frequency analysis maps in the vicinity of Halley's orbit, which indicates that, on average, it is unstable on a time-scale of hundreds of thousands of years. The chaotic nature of Halley's present day orbit implies that a precise determination of its motion, at the level of the present-day observational uncertainty, is difficult to predict on a time-scale of approximately 100 yr. Furthermore, we also find that the ejection of Halley from the Solar system or its collision with another body could occur on a time-scale as short as 10 000 yr.

  2. Numerical Study of Sound Emission by 2D Regular and Chaotic Vortex Configurations

    NASA Astrophysics Data System (ADS)

    Knio, Omar M.; Collorec, Luc; Juvé, Daniel

    1995-02-01

    The far-field noise generated by a system of three Gaussian vortices lying over a flat boundary is numerically investigated using a two-dimensional vortex element method. The method is based on the discretization of the vorticity field into a finite number of smoothed vortex elements of spherical overlapping cores. The elements are convected in a Lagrangian reference along particle trajectories using the local velocity vector, given in terms of a desingularized Biot-Savart law. The initial structure of the vortex system is triangular; a one-dimensional family of initial configurations is constructed by keeping one side of the triangle fixed and vertical, and varying the abscissa of the centroid of the remaining vortex. The inviscid dynamics of this vortex configuration are first investigated using non-deformable vortices. Depending on the aspect ratio of the initial system, regular or chaotic motion occurs. Due to wall-related symmetries, the far-field sound always exhibits a time-independent quadrupolar directivity with maxima parallel end perpendicular to the wall. When regular motion prevails, the noise spectrum is dominated by discrete frequencies which correspond to the fundamental system frequency and its superharmonics. For chaotic motion, a broadband spectrum is obtained; computed soundlevels are substantially higher than in non-chaotic systems. A more sophisticated analysis is then performed which accounts for vortex core dynamics. Results show that the vortex cores are susceptible to inviscid instability which leads to violent vorticity reorganization within the core. This phenomenon has little effect on the large-scale features of the motion of the system or on low frequency sound emission. However, it leads to the generation of a high-frequency noise band in the acoustic pressure spectrum. The latter is observed in both regular and chaotic system simulations.

  3. Chaotic Dynamics of Linguistic-Like Processes at the Syntactical and Semantic Levels: in the Pursuit of a Multifractal Attractor

    NASA Astrophysics Data System (ADS)

    Nicolis, John S.; Katsikas, Anastassis A.

    Collective parameters such as the Zipf's law-like statistics, the Transinformation, the Block Entropy and the Markovian character are compared for natural, genetic, musical and artificially generated long texts from generating partitions (alphabets) on homogeneous as well as on multifractal chaotic maps. It appears that minimal requirements for a language at the syntactical level such as memory, selectivity of few keywords and broken symmetry in one dimension (polarity) are more or less met by dynamically iterating simple maps or flows e.g. very simple chaotic hardware. The same selectivity is observed at the semantic level where the aim refers to partitioning a set of enviromental impinging stimuli onto coexisting attractors-categories. Under the regime of pattern recognition and classification, few key features of a pattern or few categories claim the lion's share of the information stored in this pattern and practically, only these key features are persistently scanned by the cognitive processor. A multifractal attractor model can in principle explain this high selectivity, both at the syntactical and the semantic levels.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hailong; Vibration Control Lab, School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042; Zhang, Ning

    Magneto-rheological (MR) damper possesses inherent hysteretic characteristics. We investigate the resulting nonlinear behaviors of a two degree-of-freedom (2-DoF) MR vibration isolation system under harmonic external excitation. A MR damper is identified by employing the modified Bouc-wen hysteresis model. By numerical simulation, we characterize the nonlinear dynamic evolution of period-doubling, saddle node bifurcating and inverse period-doubling using bifurcation diagrams of variations in frequency with a fixed amplitude of the harmonic excitation. The strength of chaos is determined by the Lyapunov exponent (LE) spectrum. Semi-physical experiment on the 2-DoF MR vibration isolation system is proposed. We trace the time history and phasemore » trajectory under certain values of frequency of the harmonic excitation to verify the nonlinear dynamical evolution of period-doubling bifurcations to chaos. The largest LEs computed with the experimental data are also presented, confirming the chaotic motion in the experiment. We validate the chaotic motion caused by the hysteresis of the MR damper, and show the transitions between distinct regimes of stable motion and chaotic motion of the 2-DoF MR vibration isolation system for variations in frequency of external excitation.« less

  5. Polarization chaos and random bit generation in nonlinear fiber optics induced by a time-delayed counter-propagating feedback loop.

    PubMed

    Morosi, J; Berti, N; Akrout, A; Picozzi, A; Guasoni, M; Fatome, J

    2018-01-22

    In this manuscript, we experimentally and numerically investigate the chaotic dynamics of the state-of-polarization in a nonlinear optical fiber due to the cross-interaction between an incident signal and its intense backward replica generated at the fiber-end through an amplified reflective delayed loop. Thanks to the cross-polarization interaction between the two-delayed counter-propagating waves, the output polarization exhibits fast temporal chaotic dynamics, which enable a powerful scrambling process with moving speeds up to 600-krad/s. The performance of this all-optical scrambler was then evaluated on a 10-Gbit/s On/Off Keying telecom signal achieving an error-free transmission. We also describe how these temporal and chaotic polarization fluctuations can be exploited as an all-optical random number generator. To this aim, a billion-bit sequence was experimentally generated and successfully confronted to the dieharder benchmarking statistic tools. Our experimental analysis are supported by numerical simulations based on the resolution of counter-propagating coupled nonlinear propagation equations that confirm the observed behaviors.

  6. Direct experimental visualization of the global Hamiltonian progression of two-dimensional Lagrangian flow topologies from integrable to chaotic state.

    PubMed

    Baskan, O; Speetjens, M F M; Metcalfe, G; Clercx, H J H

    2015-10-01

    Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.

  7. Statistical and dynamical properties of a dissipative kicked rotator

    NASA Astrophysics Data System (ADS)

    Oliveira, Diego F. M.; Leonel, Edson D.

    2014-11-01

    Some dynamical and statistical properties for a conservative as well as the dissipative problem of relativistic particles in a waveguide are considered. For the first time, two different types of dissipation namely: (i) due to viscosity and; (ii) due to inelastic collision (upon the kick) are considered individually and acting together. For the first case, and contrary to what is expected for the original Zaslavsky’s relativistic model, we show there is a critical parameter where a transition from local to global chaos occurs. On the other hand, after considering the introduction of dissipation also on the kick, the structure of the phase space changes in the sense that chaotic and periodic attractors appear. We study also the chaotic sea by using scaling arguments and we proposed an analytical argument to reinforce the validity of the scaling exponents obtained numerically. In principle such an approach can be extended to any two-dimensional map. Finally, based on the Lyapunov exponent, we show that the parameter space exhibits infinite families of self-similar shrimp-shape structures, corresponding to periodic attractors, embedded in a large region corresponding to chaotic attractors.

  8. Critical edge between frozen extinction and chaotic life

    NASA Astrophysics Data System (ADS)

    Monetti, Roberto A.; Albano, Ezequiel V.

    1995-12-01

    The cellular automata ``game of life'' (GL) proposed by J. Conway simulates the dynamic evolution of a society of living organisms. It has been extensively studied in order to understand the emergence of complexity and diversity from a set of local rules. More recently, the capability of GL to self-oranize into a critical state has opened an interesting debate. In this work we adopt a different approach: by introducing stochastic rules in the GL it is found that ``life'' exhibits a very rich critical behavior. Discontinuous (first-order) irreversible phase transitions (IPT's) between an extinct phase and a steady state supporting life are found. A precise location of the critical edge is achieved by means of an epidemic analysis, which also allows us to determine dynamic critical exponents. Furthermore, by means of a damage spreading study we conclude that the living phase is chaotic. The edge of the frozen-chaotic transition coincides with that of the IPT's life extinction. Close to the edge, fractal spreading of the damage is observed; however, deep inside the living phase such spreading becomes homogeneous. (c) 1995 The American Physical Society

  9. Forecasting fluctuating outbreaks in seasonally driven epidemics

    NASA Astrophysics Data System (ADS)

    Stone, Lewi

    2009-03-01

    Seasonality is a driving force that has major impact on the spatio-temporal dynamics of natural systems and their populations. This is especially true for the transmission of common infectious diseases such as influenza, measles, chickenpox, and pertussis. Here we gain new insights into the nonlinear dynamics of recurrent diseases through the analysis of the classical seasonally forced SIR epidemic model. Despite many efforts over the last decades, it has been difficult to gain general analytical insights because of the complex synchronization effects that can evolve between the external forcing and the model's natural oscillations. The analysis advanced here attempts to make progress in this direction by focusing on the dynamics of ``skips'' where we identify and predict years in which the epidemic is absent rather than outbreak years. Skipping events are intrinsic to the forced SIR model when parameterised in the chaotic regime. In fact, it is difficult if not impossible to locate realistic chaotic parameter regimes in which outbreaks occur regularly each year. This contrasts with the well known Rossler oscillator whose outbreaks recur regularly but whose amplitude vary chaotically in time (Uniform Phase Chaotic Amplitude oscillations). The goal of the present study is to develop a ``language of skips'' that makes it possible to predict under what conditions the next outbreak is likely to occur, and how many ``skips'' might be expected after any given outbreak. We identify a new threshold effect and give clear analytical conditions that allow accurate predictions. Moreover, the time of occurrence (i.e., phase) of an outbreak proves to be a useful new parameter that carries important epidemiological information. In forced systems, seasonal changes can prevent late-initiating outbreaks (i.e., having high phase) from running to completion. These principles yield forecasting tools that should have relevance for the study of newly emerging and reemerging diseases.

  10. Chaotic system detection of weak seismic signals

    NASA Astrophysics Data System (ADS)

    Li, Y.; Yang, B. J.; Badal, J.; Zhao, X. P.; Lin, H. B.; Li, R. L.

    2009-09-01

    When the signal-to-noise (S/N) ratio is less than -3 dB or even 0 dB, seismic events are generally difficult to identify from a common shot record. To overcome this type of problem we present a method to detect weak seismic signals based on the oscillations described by a chaotic dynamic system in phase space. The basic idea is that a non-linear chaotic oscillator is strongly immune to noise. Such a dynamic system is less influenced by noise, but it is more sensitive to periodic signals, changing from a chaotic state to a large-scale periodic phase state when excited by a weak signal. With the purpose of checking the possible contamination of the signal by noise, we have performed a numerical experiment with an oscillator controlled by the Duffing-Holmes equation, taking a distorted Ricker wavelet sequence as input signal. In doing so, we prove that the oscillator system is able to reach a large-scale periodic phase state in a strong noise environment. In the case of a common shot record with low S/N ratio, the onsets reflected from a same interface are similar to one other and can be put on a single trace with a common reference time and the periodicity of the so-generated signal follows as a consequence of moveout at a particular scanning velocity. This operation, which is called `horizontal dynamic correction' and leads to a nearly periodic signal, is implemented on synthetic wavelet sequences taking various sampling arrival times and scanning velocities. Thereafter, two tests, both in a noisy ambient of -3.7 dB, are done using a chaotic oscillator: the first demonstrates the capability of the method to really detect a weak seismic signal; the second takes care of the fundamental weakness of the dynamic correction coming from the use of a particular scanning velocity, which is investigated from the effect caused by near-surface lateral velocity variation on the periodicity of the reconstructed seismic signal. Finally, we have developed an application of the method to real data acquired in seismic prospecting and then converted into pseudo-periodic signals, which has allowed us to discriminate fuzzy waveforms as multiples, thus illustrating in practice the performance of our working scheme.

  11. Chaotic itinerancy within the coupled dynamics between a physical body and neural oscillator networks

    PubMed Central

    Mori, Hiroki; Okuyama, Yuji; Asada, Minoru

    2017-01-01

    Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random) with a musculoskeletal model (i.e., a snake-like robot) as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering) and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the “information networks” different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1) the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2) two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed. PMID:28796797

  12. Chaotic itinerancy within the coupled dynamics between a physical body and neural oscillator networks.

    PubMed

    Park, Jihoon; Mori, Hiroki; Okuyama, Yuji; Asada, Minoru

    2017-01-01

    Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random) with a musculoskeletal model (i.e., a snake-like robot) as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering) and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the "information networks" different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1) the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2) two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed.

  13. Chaotic attractors of relaxation oscillators

    NASA Astrophysics Data System (ADS)

    Guckenheimer, John; Wechselberger, Martin; Young, Lai-Sang

    2006-03-01

    We develop a general technique for proving the existence of chaotic attractors for three-dimensional vector fields with two time scales. Our results connect two important areas of dynamical systems: the theory of chaotic attractors for discrete two-dimensional Henon-like maps and geometric singular perturbation theory. Two-dimensional Henon-like maps are diffeomorphisms that limit on non-invertible one-dimensional maps. Wang and Young formulated hypotheses that suffice to prove the existence of chaotic attractors in these families. Three-dimensional singularly perturbed vector fields have return maps that are also two-dimensional diffeomorphisms limiting on one-dimensional maps. We describe a generic mechanism that produces folds in these return maps and demonstrate that the Wang-Young hypotheses are satisfied. Our analysis requires a careful study of the convergence of the return maps to their singular limits in the Ck topology for k >= 3. The theoretical results are illustrated with a numerical study of a variant of the forced van der Pol oscillator.

  14. Security scheme in IMDD-OFDM-PON system with the chaotic pilot interval and scrambling

    NASA Astrophysics Data System (ADS)

    Chen, Qianghua; Bi, Meihua; Fu, Xiaosong; Lu, Yang; Zeng, Ran; Yang, Guowei; Yang, Xuelin; Xiao, Shilin

    2018-01-01

    In this paper, a random chaotic pilot interval and permutations scheme without any requirement of redundant sideband information is firstly proposed for the physical layer security-enhanced intensity modulation direct detection orthogonal frequency division multiplexing passive optical network (IMDD-OFDM-PON) system. With the help of the position feature of inserting the pilot, a simple logistic chaos map is used to generate the random pilot interval and scramble the chaotic subcarrier allocation of each column pilot data for improving the physical layer confidentiality. Due to the dynamic chaotic permutations of pilot data, the enhanced key space of ∼103303 is achieved in OFDM-PON. Moreover, the transmission experiment of 10-Gb/s 16-QAM encrypted OFDM data is successfully demonstrated over 20-km single-mode fiber, which indicates that the proposed scheme not only improves the system security, but also can achieve the same performance as in the common IMDD-OFDM-PON system without encryption scheme.

  15. Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Ballard, Christopher C.; Esty, C. Clark; Egolf, David A.

    2016-11-01

    Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.

  16. Large memory capacity in chaotic artificial neural networks: a view of the anti-integrable limit.

    PubMed

    Lin, Wei; Chen, Guanrong

    2009-08-01

    In the literature, it was reported that the chaotic artificial neural network model with sinusoidal activation functions possesses a large memory capacity as well as a remarkable ability of retrieving the stored patterns, better than the conventional chaotic model with only monotonic activation functions such as sigmoidal functions. This paper, from the viewpoint of the anti-integrable limit, elucidates the mechanism inducing the superiority of the model with periodic activation functions that includes sinusoidal functions. Particularly, by virtue of the anti-integrable limit technique, this paper shows that any finite-dimensional neural network model with periodic activation functions and properly selected parameters has much more abundant chaotic dynamics that truly determine the model's memory capacity and pattern-retrieval ability. To some extent, this paper mathematically and numerically demonstrates that an appropriate choice of the activation functions and control scheme can lead to a large memory capacity and better pattern-retrieval ability of the artificial neural network models.

  17. Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation.

    PubMed

    Ballard, Christopher C; Esty, C Clark; Egolf, David A

    2016-11-01

    Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.

  18. Efficient topological chaos embedded in the blinking vortex system.

    PubMed

    Kin, Eiko; Sakajo, Takashi

    2005-06-01

    We consider the particle mixing in the plane by two vortex points appearing one after the other, called the blinking vortex system. Mathematical and numerical studies of the system reveal that the chaotic particle mixing, i.e., the chaotic advection, is observed due to the homoclinic chaos, but the mixing region is restricted locally in the neighborhood of the vortex points. The present article shows that it is possible to realize a global and efficient chaotic advection in the blinking vortex system with the help of the Thurston-Nielsen theory, which classifies periodic orbits for homeomorphisms in the plane into three types: periodic, reducible, and pseudo-Anosov (pA). It is mathematically shown that periodic orbits of pA type generate a complicated dynamics, which is called topological chaos. We show that the combination of the local chaotic mixing due to the topological chaos and the dipole-like return orbits realize an efficient and global particle mixing in the blinking vortex system.

  19. Chaotic Expansions of Elements of the Universal Enveloping Superalgebra Associated with a Z2-graded Quantum Stochastic Calculus

    NASA Astrophysics Data System (ADS)

    Eyre, T. M. W.

    Given a polynomial function f of classical stochastic integrator processes whose differentials satisfy a closed Ito multiplication table, we can express the stochastic derivative of f as We establish an analogue of this formula in the form of a chaotic decomposition for Z2-graded theories of quantum stochastic calculus based on the natural coalgebra structure of the universal enveloping superalgebra.

  20. Quantitative Measures of Chaotic Charged Particle Dynamics in the Magnetotail

    NASA Astrophysics Data System (ADS)

    Holland, D. L.; Martin, R. F., Jr.; Burris, C.

    2017-12-01

    It has long been noted that the motion of charged particles in magnetotail-like magnetic fields is chaotic, however, efforts to quantify the degree of chaos have had conflicting conclusions. In this paper we re-examine the question by focusing on quantitative measures of chaos. We first examine the percentage of orbits that enter the chaotic region of phase space and the average trapping time of those particles. We then examine the average exponential divergence rate (AEDR) of the chaotic particles between their first and last crossing of the mid-plane. We show that at resonant energies where the underlying phase space has a high degree of symmetry, only a small number of particle enter the chaotic region, but they are trapped for long periods of time and the time asymptotic value of the AEDR is very close to the average value of the AEDR. At the off-resonant energies where the phase space is highly asymmetric, the majority of the particle enter the chaotic region for fairly short periods of time and the time asymptotic value of the AEDR is much smaller than the average value. The root cause is that in the resonant case, the longest-lived orbits tend interact with the current many times and sample the entire chaotic region, whereas in the non-resonant case the longest-lived orbits only interact with the current sheet a small number of times but have very long mirrorings where the motion is nearly regular. Additionally we use an ad-hoc model where we model the current sheet as a Lorentz scattering system with each interaction with the current sheet being considered as a "collision". We find that the average kick per collision is greatest at off-resonant energies. Finally, we propose a chaos parameter as the product of the AEDR times the average chaotic particle trapping time times the percentage of orbits that are chaotic. We find that this takes on peak values at the resonant energies.

  1. Chaotic Dynamics in the Planar Gravitational Many-Body Problem with Rigid Body Rotations

    NASA Astrophysics Data System (ADS)

    Kwiecinski, James A.; Kovacs, Attila; Krause, Andrew L.; Planella, Ferran Brosa; van Gorder, Robert A.

    The discovery of Pluto’s small moons in the last decade has brought attention to the dynamics of the dwarf planet’s satellites. With such systems in mind, we study a planar N-body system in which all the bodies are point masses, except for a single rigid body. We then present a reduced model consisting of a planar N-body problem with the rigid body treated as a 1D continuum (i.e. the body is treated as a rod with an arbitrary mass distribution). Such a model provides a good approximation to highly asymmetric geometries, such as the recently observed interstellar asteroid ‘Oumuamua, but is also amenable to analysis. We analytically demonstrate the existence of homoclinic chaos in the case where one of the orbits is nearly circular by way of the Melnikov method, and give numerical evidence for chaos when the orbits are more complicated. We show that the extent of chaos in parameter space is strongly tied to the deviations from a purely circular orbit. These results suggest that chaos is ubiquitous in many-body problems when one or more of the rigid bodies exhibits nonspherical and highly asymmetric geometries. The excitation of chaotic rotations does not appear to require tidal dissipation, obliquity variation, or orbital resonance. Such dynamics give a possible explanation for routes to chaotic dynamics observed in N-body systems such as the Pluto system where some of the bodies are highly nonspherical.

  2. Correlations in electrically coupled chaotic lasers.

    PubMed

    Rosero, E J; Barbosa, W A S; Martinez Avila, J F; Khoury, A Z; Rios Leite, J R

    2016-09-01

    We show how two electrically coupled semiconductor lasers having optical feedback can present simultaneous antiphase correlated fast power fluctuations, and strong in-phase synchronized spikes of chaotic power drops. This quite counterintuitive phenomenon is demonstrated experimentally and confirmed by numerical solutions of a deterministic dynamical system of rate equations. The occurrence of negative and positive cross correlation between parts of a complex system according to time scales, as proved in our simple arrangement, is relevant for the understanding and characterization of collective properties in complex networks.

  3. Temporal intermittency and the lifetime of chimera states in ensembles of nonlocally coupled chaotic oscillators

    NASA Astrophysics Data System (ADS)

    Semenova, N. I.; Strelkova, G. I.; Anishchenko, V. S.; Zakharova, A.

    2017-06-01

    We describe numerical results for the dynamics of networks of nonlocally coupled chaotic maps. Switchings in time between amplitude and phase chimera states have been first established and studied. It has been shown that in autonomous ensembles, a nonstationary regime of switchings has a finite lifetime and represents a transient process towards a stationary regime of phase chimera. The lifetime of the nonstationary switching regime can be increased to infinity by applying short-term noise perturbations.

  4. Chaos in the gauge/gravity correspondence

    NASA Astrophysics Data System (ADS)

    Pando Zayas, Leopoldo A.; Terrero-Escalante, César A.

    2010-09-01

    We study the motion of a string in the background of the Schwarzschild black hole in AdS 5 by applying the standard arsenal of dynamical systems. Our description of the phase space includes: the power spectrum, the largest Lyapunov exponent, Poincare sections and basins of attractions. We find convincing evidence that the motion is chaotic. We discuss the implications of some of the quantities associated with chaotic systems for aspects of the gauge/gravity correspondence. In particular, we suggest some potential relevance for the information loss paradox.

  5. Dynamics of a neuron model in different two-dimensional parameter-spaces

    NASA Astrophysics Data System (ADS)

    Rech, Paulo C.

    2011-03-01

    We report some two-dimensional parameter-space diagrams numerically obtained for the multi-parameter Hindmarsh-Rose neuron model. Several different parameter planes are considered, and we show that regardless of the combination of parameters, a typical scenario is preserved: for all choice of two parameters, the parameter-space presents a comb-shaped chaotic region immersed in a large periodic region. We also show that exist regions close these chaotic region, separated by the comb teeth, organized themselves in period-adding bifurcation cascades.

  6. Analysis of Hepatic Blood Flow Using Chaotic Models

    PubMed Central

    Cohen, M. E.; Moazamipour, H.; Hudson, D. L.; Anderson, M. F.

    1990-01-01

    The study of chaos in physical systems is an important new theoretical development in modeling which has emerged in the last fifteen years. It is particularly useful in explaining phenomena which arise in nonlinear dynamic systems, for which previous mathematical models produced results with intractable solutions. Analysis of blood flow is such an application. In the work described here, chaotic models are used to analyze hepatic artery and portal vein blood flow obtained from a pulsed Doppler ultrasonic flowmeter implanted in dogs. ImagesFigure 3

  7. Chaotic Motions in the Real Fuzzy Electronic Circuits (Preprint)

    DTIC Science & Technology

    2012-12-01

    the research field of secure communications, the original source should be blended with other complex signals. Chaotic signals are one of the good... blending of the linear system models. Consider a continuous-time nonlinear dynamic system as follows: Rule i: IF )(1 tx is ...1iM and )(txn is...Chaos Solitons Fractals, vol. 21, no. 4, pp. 957–965, 2004. 29. L. M. Tam and W. M. SiTou, “Parametric study of the fractional order Chen–Lee

  8. Fragility of foot process morphology in kidney podocytes arises from chaotic spatial propagation of cytoskeletal instability

    PubMed Central

    Deerinck, Thomas J.; Chen, Yibang; He, John C.; Ellisman, Mark H.; Iyengar, Ravi

    2017-01-01

    Kidney podocytes’ function depends on fingerlike projections (foot processes) that interdigitate with those from neighboring cells to form the glomerular filtration barrier. The integrity of the barrier depends on spatial control of dynamics of actin cytoskeleton in the foot processes. We determined how imbalances in regulation of actin cytoskeletal dynamics could result in pathological morphology. We obtained 3-D electron microscopy images of podocytes and used quantitative features to build dynamical models to investigate how regulation of actin dynamics within foot processes controls local morphology. We find that imbalances in regulation of actin bundling lead to chaotic spatial patterns that could impair the foot process morphology. Simulation results are consistent with experimental observations for cytoskeletal reconfiguration through dysregulated RhoA or Rac1, and they predict compensatory mechanisms for biochemical stability. We conclude that podocyte morphology, optimized for filtration, is intrinsically fragile, whereby local transient biochemical imbalances may lead to permanent morphological changes associated with pathophysiology. PMID:28301477

  9. Dynamical complexity of short and noisy time series. Compression-Complexity vs. Shannon entropy

    NASA Astrophysics Data System (ADS)

    Nagaraj, Nithin; Balasubramanian, Karthi

    2017-07-01

    Shannon entropy has been extensively used for characterizing complexity of time series arising from chaotic dynamical systems and stochastic processes such as Markov chains. However, for short and noisy time series, Shannon entropy performs poorly. Complexity measures which are based on lossless compression algorithms are a good substitute in such scenarios. We evaluate the performance of two such Compression-Complexity Measures namely Lempel-Ziv complexity (LZ) and Effort-To-Compress (ETC) on short time series from chaotic dynamical systems in the presence of noise. Both LZ and ETC outperform Shannon entropy (H) in accurately characterizing the dynamical complexity of such systems. For very short binary sequences (which arise in neuroscience applications), ETC has higher number of distinct complexity values than LZ and H, thus enabling a finer resolution. For two-state ergodic Markov chains, we empirically show that ETC converges to a steady state value faster than LZ. Compression-Complexity measures are promising for applications which involve short and noisy time series.

  10. Memory and betweenness preference in temporal networks induced from time series

    NASA Astrophysics Data System (ADS)

    Weng, Tongfeng; Zhang, Jie; Small, Michael; Zheng, Rui; Hui, Pan

    2017-02-01

    We construct temporal networks from time series via unfolding the temporal information into an additional topological dimension of the networks. Thus, we are able to introduce memory entropy analysis to unravel the memory effect within the considered signal. We find distinct patterns in the entropy growth rate of the aggregate network at different memory scales for time series with different dynamics ranging from white noise, 1/f noise, autoregressive process, periodic to chaotic dynamics. Interestingly, for a chaotic time series, an exponential scaling emerges in the memory entropy analysis. We demonstrate that the memory exponent can successfully characterize bifurcation phenomenon, and differentiate the human cardiac system in healthy and pathological states. Moreover, we show that the betweenness preference analysis of these temporal networks can further characterize dynamical systems and separate distinct electrocardiogram recordings. Our work explores the memory effect and betweenness preference in temporal networks constructed from time series data, providing a new perspective to understand the underlying dynamical systems.

  11. Spin squeezing as an indicator of quantum chaos in the Dicke model.

    PubMed

    Song, Lijun; Yan, Dong; Ma, Jian; Wang, Xiaoguang

    2009-04-01

    We study spin squeezing, an intrinsic quantum property, in the Dicke model without the rotating-wave approximation. We show that the spin squeezing can reveal the underlying chaotic and regular structures in phase space given by a Poincaré section, namely, it acts as an indicator of quantum chaos. Spin squeezing vanishes after a very short time for an initial coherent state centered in a chaotic region, whereas it persists over a longer time for the coherent state centered in a regular region of the phase space. We also study the distribution of the mean spin directions when quantum dynamics takes place. Finally, we discuss relations among spin squeezing, bosonic quadrature squeezing, and two-qubit entanglement in the dynamical processes.

  12. Intermittent Chaos in the Bray-Liebhafsky Oscillator. Dependence of Dynamic States on the Iodate Concentration

    NASA Astrophysics Data System (ADS)

    Bubanja, I. N.; Ivanović-Šašić, A.; Čupić, Ž.; Anić, S.; Kolar-Anić, Lj.

    2017-12-01

    Chaotic dynamic states with intermittent oscillations were generated in a Bray-Liebhafsky (BL) oscillatory reaction in an isothermal open reactor i.e., in the continuously-fed well-stirred tank reactor (CSTR) when the inflow concentration of potassium iodate was the control parameter. They are found between periodic oscillations obtained when [KIO3]0 < 3.00 × 10-2 M and stable steady states when [KIO3]0 > 4.10 × 10-2 M. It was shown that the most chaotic states obtained experimentally somewhere in the middle of this region are in high correlation with results obtained by means of largest Lyapunov exponents and phenomenological analysis based on the quantitative characteristics of intermittent oscillations.

  13. The onset of chaos in orbital pilot-wave dynamics.

    PubMed

    Tambasco, Lucas D; Harris, Daniel M; Oza, Anand U; Rosales, Rodolfo R; Bush, John W M

    2016-10-01

    We present the results of a numerical investigation of the emergence of chaos in the orbital dynamics of droplets walking on a vertically vibrating fluid bath and acted upon by one of the three different external forces, specifically, Coriolis, Coulomb, or linear spring forces. As the vibrational forcing of the bath is increased progressively, circular orbits destabilize into wobbling orbits and eventually chaotic trajectories. We demonstrate that the route to chaos depends on the form of the external force. When acted upon by Coriolis or Coulomb forces, the droplet's orbital motion becomes chaotic through a period-doubling cascade. In the presence of a central harmonic potential, the transition to chaos follows a path reminiscent of the Ruelle-Takens-Newhouse scenario.

  14. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Shaohua

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaosmore » of PMSM and show the effectiveness and robustness of the proposed method.« less

  15. Adaptive fuzzy dynamic surface control for the chaotic permanent magnet synchronous motor using Nussbaum gain.

    PubMed

    Luo, Shaohua

    2014-09-01

    This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.

  16. Current observations with a decaying cosmological constant allow for chaotic cyclic cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, George F.R.; Platts, Emma; Weltman, Amanda

    2016-04-01

    We use the phase plane analysis technique of Madsen and Ellis [1] to consider a universe with a true cosmological constant as well as a cosmological 'constant' that is decaying. Time symmetric dynamics for the inflationary era allows eternally bouncing models to occur. Allowing for scalar field dynamic evolution, we find that if dark energy decays in the future, chaotic cyclic universes exist provided the spatial curvature is positive. This is particularly interesting in light of current observations which do not yet rule out either closed universes or possible evolution of the cosmological constant. We present only a proof ofmore » principle, with no definite claim on the physical mechanism required for the present dark energy to decay.« less

  17. Using chaos to generate variations on movement sequences

    NASA Astrophysics Data System (ADS)

    Bradley, Elizabeth; Stuart, Joshua

    1998-12-01

    We describe a method for introducing variations into predefined motion sequences using a chaotic symbol-sequence reordering technique. A progression of symbols representing the body positions in a dance piece, martial arts form, or other motion sequence is mapped onto a chaotic trajectory, establishing a symbolic dynamics that links the movement sequence and the attractor structure. A variation on the original piece is created by generating a trajectory with slightly different initial conditions, inverting the mapping, and using special corpus-based graph-theoretic interpolation schemes to smooth any abrupt transitions. Sensitive dependence guarantees that the variation is different from the original; the attractor structure and the symbolic dynamics guarantee that the two resemble one another in both aesthetic and mathematical senses.

  18. Various Attractors, Coexisting Attractors and Antimonotonicity in a Simple Fourth-Order Memristive Twin-T Oscillator

    NASA Astrophysics Data System (ADS)

    Zhou, Ling; Wang, Chunhua; Zhang, Xin; Yao, Wei

    By replacing the resistor in a Twin-T network with a generalized flux-controlled memristor, this paper proposes a simple fourth-order memristive Twin-T oscillator. Rich dynamical behaviors can be observed in the dynamical system. The most striking feature is that this system has various periodic orbits and various chaotic attractors generated by adjusting parameter b. At the same time, coexisting attractors and antimonotonicity are also detected (especially, two full Feigenbaum remerging trees in series are observed in such autonomous chaotic systems). Their dynamical features are analyzed by phase portraits, Lyapunov exponents, bifurcation diagrams and basin of attraction. Moreover, hardware experiments on a breadboard are carried out. Experimental measurements are in accordance with the simulation results. Finally, a multi-channel random bit generator is designed for encryption applications. Numerical results illustrate the usefulness of the random bit generator.

  19. Plastic dynamics of the Al0.5CoCrCuFeNi high entropy alloy at cryogenic temperatures: Jerky flow, stair-like fluctuation, scaling behavior, and non-chaotic state

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoxiang; Xie, Xie; Ren, Jingli; Laktionova, Marina; Tabachnikova, Elena; Yu, Liping; Cheung, Wing-Sum; Dahmen, Karin A.; Liaw, Peter K.

    2017-12-01

    This study investigates the plastic behavior of the Al0.5CoCrCuFeNi high-entropy alloy at cryogenic temperatures. The samples are uniaxially compressed at 4.2 K, 7.5 K, and 9 K. A jerky evolution of stress and stair-like fluctuation of strain are observed during plastic deformation. A scaling relationship is detected between the released elastic energy and strain-jump sizes. Furthermore, the dynamical evolution of serrations is characterized by the largest Lyapunov exponent. The largest Lyapunov exponents of the serrations at the three temperatures are all negative, which indicates that the dynamical regime is non-chaotic. This trend reflects an ordered slip process, and this ordered slip process exhibits a more disordered slip process, as the temperature decreases from 9 K to 4.2 K or 7.5 K.

  20. Complex dynamics of a delayed discrete neural network of two nonidentical neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yuanlong; Huang, Tingwen; Huang, Yu, E-mail: stshyu@mail.sysu.edu.cn

    2014-03-15

    In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zoumore » [J. Nonlinear Sci. 15, 291–303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415–432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869–1878 (2013)]. We also give some numeric simulations to verify our theoretical results.« less

  1. Complex dynamics of a delayed discrete neural network of two nonidentical neurons.

    PubMed

    Chen, Yuanlong; Huang, Tingwen; Huang, Yu

    2014-03-01

    In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291-303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415-432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869-1878 (2013)]. We also give some numeric simulations to verify our theoretical results.

  2. Detecting malicious chaotic signals in wireless sensor network

    NASA Astrophysics Data System (ADS)

    Upadhyay, Ranjit Kumar; Kumari, Sangeeta

    2018-02-01

    In this paper, an e-epidemic Susceptible-Infected-Vaccinated (SIV) model has been proposed to analyze the effect of node immunization and worms attacking dynamics in wireless sensor network. A modified nonlinear incidence rate with cyrtoid type functional response has been considered using sleep and active mode approach. Detailed stability analysis and the sufficient criteria for the persistence of the model system have been established. We also established different types of bifurcation analysis for different equilibria at different critical points of the control parameters. We performed a detailed Hopf bifurcation analysis and determine the direction and stability of the bifurcating periodic solutions using center manifold theorem. Numerical simulations are carried out to confirm the theoretical results. The impact of the control parameters on the dynamics of the model system has been investigated and malicious chaotic signals are detected. Finally, we have analyzed the effect of time delay on the dynamics of the model system.

  3. Unscrambling the Omlette: a New Bubble and Crystal Clustering Mechanism in Chaotically Mixed Magma Flows

    NASA Astrophysics Data System (ADS)

    Robertson, J.; Metcalfe, G.; Wang, S.; Barnes, S. J.

    2014-12-01

    The concentration of bubbles, crystals or droplets into small volumes of magma is a key trigger for many interesting magmatic processes. For example, gas slugs driving Strombolian eruptions form from the coalesence of exsolved bubbles within a volcanic conduit, while Ni-Cu-PGE magmatic sulfide deposits require a concentration of dense sulfide droplets from a large volume of magma to form a massive ore body. However the physical mechanism for this clustering remains unresolved - especially since small particles in active magma flows are expected to mostly track flow streamlines rather than clustering. We have uncovered a previously unreported clustering mechanism which is applicable to magmatic flows. This mechanism involves the interaction of particles with two kinds of chaotic flow structure: (a) high-strain regions within the well-mixed chaotic zones of the flow, and (b) unmixed islands of stability within the chaotic flow, known as Kolmogorov-Arnold-Moser (KAM) regions. The first figure shows the difference between chaotic and KAM regions in a chaotic laminar pipe flow. Trapping occurs when particles are scattered from high-strain regions in the chaotic zones and become trapped in the KAM regions, leading to a rapid concentration of particles relative to their original distribution (shown in the second series of figures). Using a combination of these analogue experiments and theoretical analysis we outline the conditions under which this clustering process can occur. We examine the onset of secondary density-related instabilities and the effects of increased particle-particle interaction within the clustered particles, and highlight the impact of particle clustering on the dynamics of magma ascent and emplacement.

  4. Morphological Expressions of Crater Infill Collapse: Model Simulations of Chaotic Terrains on Mars

    NASA Astrophysics Data System (ADS)

    Roda, Manuel; Marketos, George; Westerweel, Jan; Govers, Rob

    2017-10-01

    Martian chaotic terrains are characterized by deeply depressed intensively fractured areas that contain a large number of low-strain tilted blocks. Stronger deformation (e.g., higher number of fractures) is generally observed in the rims when compared to the middle regions of the terrains. The distribution and number of fractures and tilted blocks are correlated with the size of the chaotic terrains. Smaller chaotic terrains are characterized by few fractures between undeformed blocks. Larger terrains show an elevated number of fractures uniformly distributed with single blocks. We investigate whether this surface morphology may be a consequence of the collapse of the infill of a crater. We perform numerical simulations with the Discrete Element Method and we evaluate the distribution of fractures within the crater and the influence of the crater size, infill thickness, and collapsing depth on the final morphology. The comparison between model predictions and the morphology of the Martian chaotic terrains shows strong statistical similarities in terms of both number of fractures and correlation between fractures and crater diameters. No or very weak correlation is observed between fractures and the infill thickness or collapsing depth. The strong correspondence between model results and observations suggests that the collapse of an infill layer within a crater is a viable mechanism for the peculiar morphology of the Martian chaotic terrains.

  5. Generalized Gaussian wave packet dynamics: Integrable and chaotic systems.

    PubMed

    Pal, Harinder; Vyas, Manan; Tomsovic, Steven

    2016-01-01

    The ultimate semiclassical wave packet propagation technique is a complex, time-dependent Wentzel-Kramers-Brillouin method known as generalized Gaussian wave packet dynamics (GGWPD). It requires overcoming many technical difficulties in order to be carried out fully in practice. In its place roughly twenty years ago, linearized wave packet dynamics was generalized to methods that include sets of off-center, real trajectories for both classically integrable and chaotic dynamical systems that completely capture the dynamical transport. The connections between those methods and GGWPD are developed in a way that enables a far more practical implementation of GGWPD. The generally complex saddle-point trajectories at its foundation are found using a multidimensional Newton-Raphson root search method that begins with the set of off-center, real trajectories. This is possible because there is a one-to-one correspondence. The neighboring trajectories associated with each off-center, real trajectory form a path that crosses a unique saddle; there are exceptions that are straightforward to identify. The method is applied to the kicked rotor to demonstrate the accuracy improvement as a function of ℏ that comes with using the saddle-point trajectories.

  6. The spatial dynamics of ecosystem engineers.

    PubMed

    Franco, Caroline; Fontanari, José F

    2017-10-01

    The changes on abiotic features of ecosystems have rarely been taken into account by population dynamics models, which typically focus on trophic and competitive interactions between species. However, understanding the population dynamics of organisms that must modify their habitats in order to survive, the so-called ecosystem engineers, requires the explicit incorporation of abiotic interactions in the models. Here we study a model of ecosystem engineers that is discrete both in space and time, and where the engineers and their habitats are arranged in patches fixed to the sites of regular lattices. The growth of the engineer population is modeled by Ricker equation with a density-dependent carrying capacity that is given by the number of modified habitats. A diffusive dispersal stage ensures that a fraction of the engineers move from their birth patches to neighboring patches. We find that dispersal influences the metapopulation dynamics only in the case that the local or single-patch dynamics exhibit chaotic behavior. In that case, it can suppress the chaotic behavior and avoid extinctions in the regime of large intrinsic growth rate of the population. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Inertio-elastic mixing in a straight microchannel with side wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Sun Ok; Cooper-White, Justin J.; School of Chemical Engineering, University of Queensland, St Lucia, 4072 QLD

    Mixing remains a challenging task in microfluidic channels because of their inherently small length scale. In this work, we propose an efficient microfluidic mixer based on the chaotic vortex dynamics of a viscoelastic flow in a straight channel with side wells. When the inertia and elasticity of a dilute polymer solution are balanced (i.e., the Reynolds number Re and Weissenberg number Wi are both on the order of 10{sup 1}), chaotic vortices appear in the side wells (inertio-elastic flow instability), enhancing the mixing of adjacent fluid streams. However, there is no chaotic vortex motion in Newtonian flows for any flowmore » rate. Efficient mixing by such an inertio-elastic instability is found to be relevant for a wide range of Re values.« less

  8. Parametric number covariance in quantum chaotic spectra.

    PubMed

    Vinayak; Kumar, Sandeep; Pandey, Akhilesh

    2016-03-01

    We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated.

  9. Exact relations between homoclinic and periodic orbit actions in chaotic systems

    NASA Astrophysics Data System (ADS)

    Li, Jizhou; Tomsovic, Steven

    2018-02-01

    Homoclinic and unstable periodic orbits in chaotic systems play central roles in various semiclassical sum rules. The interferences between terms are governed by the action functions and Maslov indices. In this article, we identify geometric relations between homoclinic and unstable periodic orbits, and derive exact formulas expressing the periodic orbit classical actions in terms of corresponding homoclinic orbit actions plus certain phase space areas. The exact relations provide a basis for approximations of the periodic orbit actions as action differences between homoclinic orbits with well-estimated errors. This enables an explicit study of relations between periodic orbits, which results in an analytic expression for the action differences between long periodic orbits and their shadowing decomposed orbits in the cycle expansion.

  10. Simulations of submonolayer Xe on Pt(111): The case for a chaotic low temperature phase

    NASA Astrophysics Data System (ADS)

    Novaco, Anthony D.; Bavaresco, Jessica

    2018-04-01

    Molecular dynamics simulations are reported for the structural and thermodynamic properties of submonolayer xenon adsorbed on the (111) surface of platinum for temperatures up to the (apparently incipient) triple point and beyond. While the motion of the atoms in the surface plane is treated with a standard two-dimensional molecular dynamics simulation, the model takes into consideration the thermal excitation of quantum states associated with surface-normal dynamics in an attempt to describe the apparent smoothing of the corrugation with increasing temperature. We examine the importance of this thermal smoothing to the relative stability of several observed and proposed low-temperature structures. Structure factor calculations are compared to experimental results in an attempt to determine the low temperature structure of this system. These calculations provide strong evidence that, at very low temperatures, the domain wall structure of a xenon monolayer adsorbed on a Pt(111) substrate possesses a chaotic-like nature, exhibiting long-lived meta-stable states with pinned domain walls, these walls having narrow widths and irregular shapes. This result is contrary to the standard wisdom regarding this system, namely, that the very low temperature phase of this system is a striped incommensurate phase. We present the case for further experimental investigation of this and similar systems as possible examples of chaotic low temperature phases in two dimensions.

  11. Asynchronous Rate Chaos in Spiking Neuronal Circuits

    PubMed Central

    Harish, Omri; Hansel, David

    2015-01-01

    The brain exhibits temporally complex patterns of activity with features similar to those of chaotic systems. Theoretical studies over the last twenty years have described various computational advantages for such regimes in neuronal systems. Nevertheless, it still remains unclear whether chaos requires specific cellular properties or network architectures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of networks of excitatory-inhibitory (EI) spiking neurons with random sparse connectivity operating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctuations emerge generically for sufficiently strong synapses. Two different mechanisms can lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluctuations is proportional to the time constant of the inhibition. The second mechanism relies on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time scale of the excitation. Another feature of this regime is that the population-averaged firing rate is substantially smaller in the excitatory population than in the inhibitory population. This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysiological and computational significance of our results. PMID:26230679

  12. Introduction: Second Language Development as a Dynamic Process

    ERIC Educational Resources Information Center

    De Bot, Kees

    2008-01-01

    In this contribution, some of the basic characteristics of complex adaptive systems, collectively labeled Dynamic Systems Theory (DST), are discussed. Such systems are self-organizing, dependent on initial conditions, sometimes chaotic, and they show emergent properties. The focus in DST is on development over time. Language is seen as a dynamic…

  13. Topics in quantum chaos

    NASA Astrophysics Data System (ADS)

    Jordan, Andrew Noble

    2002-09-01

    In this dissertation, we study the quantum mechanics of classically chaotic dynamical systems. We begin by considering the decoherence effects a quantum chaotic system has on a simple quantum few state system. Typical time evolution of a quantum system whose classical limit is chaotic generates structures in phase space whose size is much smaller than Planck's constant. A naive application of Heisenberg's uncertainty principle indicates that these structures are not physically relevant. However, if we take the quantum chaotic system in question to be an environment which interacts with a simple two state quantum system (qubit), we show that these small phase-space structures cause the qubit to generically lose quantum coherence if and only if the environment has many degrees of freedom, such as a dilute gas. This implies that many-body environments may be crucial for the phenomenon of quantum decoherence. Next, we turn to an analysis of statistical properties of time correlation functions and matrix elements of quantum chaotic systems. A semiclassical evaluation of matrix elements of an operator indicates that the dominant contribution will be related to a classical time correlation function over the energy surface. For a highly chaotic class of dynamics, these correlation functions may be decomposed into sums of Ruelle resonances, which control exponential decay to the ergodic distribution. The theory is illustrated both numerically and theoretically on the Baker map. For this system, we are able to isolate individual Ruelle modes. We further consider dynamical systems whose approach to ergodicity is given by a power law rather than an exponential in time. We propose a billiard with diffusive boundary conditions, whose classical solution may be calculated analytically. We go on to compare the exact solution with an approximation scheme, as well calculate asympotic corrections. Quantum spectral statistics are calculated assuming the validity of the Again, Altshuler and Andreev ansatz. We find singular behavior of the two point spectral correlator in the limit of small spacing. Finally, we analyse the effect that slow decay to ergodicity has on the structure of the quantum propagator, as well as wavefunction localization. We introduce a statistical quantum description of systems that are composed of both an orderly region and a random region. By averaging over the random region only, we find that measures of localization in momentum space semiclassically diverge with the dimension of the Hilbert space. We illustrate this numerically with quantum maps and suggest various other systems where this behavior should be important.

  14. Regular and chaotic dynamics of non-spherical bodies. Zeldovich's pancakes and emission of very long gravitational waves

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Tsupko, O. Yu.

    2015-10-01

    > In this paper we review a recently developed approximate method for investigation of dynamics of compressible ellipsoidal figures. Collapse and subsequent behaviour are described by a system of ordinary differential equations for time evolution of semi-axes of a uniformly rotating, three-axis, uniform-density ellipsoid. First, we apply this approach to investigate dynamic stability of non-spherical bodies. We solve the equations that describe, in a simplified way, the Newtonian dynamics of a self-gravitating non-rotating spheroidal body. We find that, after loss of stability, a contraction to a singularity occurs only in a pure spherical collapse, and deviations from spherical symmetry prevent the contraction to the singularity through a stabilizing action of nonlinear non-spherical oscillations. The development of instability leads to the formation of a regularly or chaotically oscillating body, in which dynamical motion prevents the formation of the singularity. We find regions of chaotic and regular pulsations by constructing a Poincaré diagram. A real collapse occurs after damping of the oscillations because of energy losses, shock wave formation or viscosity. We use our approach to investigate approximately the first stages of collapse during the large scale structure formation. The theory of this process started from ideas of Ya. B. Zeldovich, concerning the formation of strongly non-spherical structures during nonlinear stages of the development of gravitational instability, known as `Zeldovich's pancakes'. In this paper the collapse of non-collisional dark matter and the formation of pancake structures are investigated approximately. Violent relaxation, mass and angular momentum losses are taken into account phenomenologically. We estimate an emission of very long gravitational waves during the collapse, and discuss the possibility of gravitational lensing and polarization of the cosmic microwave background by these waves.

  15. Stochastic Erosion of Fractal Structure in Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Wettlaufer, J. S.

    2014-12-01

    We analyze the effects of stochastic noise on the Lorenz-63 model in the chaotic regime to demonstrate a set of general issues arising in the interpretation of data from nonlinear dynamical systems typical in geophysics. The model is forced using both additive and multiplicative, white and colored noise and it is shown that, through a suitable choice of the noise intensity, both additive and multiplicative noise can produce similar dynamics. We use a recently developed measure, histogram distance, to show the similarity between the dynamics produced by additive and multiplicative forcing. This phenomenon, in a nonlinear fractal structure with chaotic dynamics can be explained by understanding how noise affects the Unstable Periodic Orbits (UPOs) of the system. For delta-correlated noise, the UPOs erode the fractal structure. In the presence of memory in the noise forcing, the time scale of the noise starts to interact with the period of some UPO and, depending on the noise intensity, stochastic resonance may be observed. This also explains the mixing in dissipative dynamical systems in presence of white noise; as the fractal structure is smoothed, the decay of correlations is enhanced, and hence the rate of mixing increases with noise intensity.

  16. Nonlinear analysis of dynamic signature

    NASA Astrophysics Data System (ADS)

    Rashidi, S.; Fallah, A.; Towhidkhah, F.

    2013-12-01

    Signature is a long trained motor skill resulting in well combination of segments like strokes and loops. It is a physical manifestation of complex motor processes. The problem, generally stated, is that how relative simplicity in behavior emerges from considerable complexity of perception-action system that produces behavior within an infinitely variable biomechanical and environmental context. To solve this problem, we present evidences which indicate that motor control dynamic in signing process is a chaotic process. This chaotic dynamic may explain a richer array of time series behavior in motor skill of signature. Nonlinear analysis is a powerful approach and suitable tool which seeks for characterizing dynamical systems through concepts such as fractal dimension and Lyapunov exponent. As a result, they can be analyzed in both horizontal and vertical for time series of position and velocity. We observed from the results that noninteger values for the correlation dimension indicates low dimensional deterministic dynamics. This result could be confirmed by using surrogate data tests. We have also used time series to calculate the largest Lyapunov exponent and obtain a positive value. These results constitute significant evidence that signature data are outcome of chaos in a nonlinear dynamical system of motor control.

  17. Robust sequential working memory recall in heterogeneous cognitive networks

    PubMed Central

    Rabinovich, Mikhail I.; Sokolov, Yury; Kozma, Robert

    2014-01-01

    Psychiatric disorders are often caused by partial heterogeneous disinhibition in cognitive networks, controlling sequential and spatial working memory (SWM). Such dynamic connectivity changes suggest that the normal relationship between the neuronal components within the network deteriorates. As a result, competitive network dynamics is qualitatively altered. This dynamics defines the robust recall of the sequential information from memory and, thus, the SWM capacity. To understand pathological and non-pathological bifurcations of the sequential memory dynamics, here we investigate the model of recurrent inhibitory-excitatory networks with heterogeneous inhibition. We consider the ensemble of units with all-to-all inhibitory connections, in which the connection strengths are monotonically distributed at some interval. Based on computer experiments and studying the Lyapunov exponents, we observed and analyzed the new phenomenon—clustered sequential dynamics. The results are interpreted in the context of the winnerless competition principle. Accordingly, clustered sequential dynamics is represented in the phase space of the model by two weakly interacting quasi-attractors. One of them is similar to the sequential heteroclinic chain—the regular image of SWM, while the other is a quasi-chaotic attractor. Coexistence of these quasi-attractors means that the recall of the normal information sequence is intermittently interrupted by episodes with chaotic dynamics. We indicate potential dynamic ways for augmenting damaged working memory and other cognitive functions. PMID:25452717

  18. Experimental identification of a comb-shaped chaotic region in multiple parameter spaces simulated by the Hindmarsh—Rose neuron model

    NASA Astrophysics Data System (ADS)

    Jia, Bing

    2014-03-01

    A comb-shaped chaotic region has been simulated in multiple two-dimensional parameter spaces using the Hindmarsh—Rose (HR) neuron model in many recent studies, which can interpret almost all of the previously simulated bifurcation processes with chaos in neural firing patterns. In the present paper, a comb-shaped chaotic region in a two-dimensional parameter space was reproduced, which presented different processes of period-adding bifurcations with chaos with changing one parameter and fixed the other parameter at different levels. In the biological experiments, different period-adding bifurcation scenarios with chaos by decreasing the extra-cellular calcium concentration were observed from some neural pacemakers at different levels of extra-cellular 4-aminopyridine concentration and from other pacemakers at different levels of extra-cellular caesium concentration. By using the nonlinear time series analysis method, the deterministic dynamics of the experimental chaotic firings were investigated. The period-adding bifurcations with chaos observed in the experiments resembled those simulated in the comb-shaped chaotic region using the HR model. The experimental results show that period-adding bifurcations with chaos are preserved in different two-dimensional parameter spaces, which provides evidence of the existence of the comb-shaped chaotic region and a demonstration of the simulation results in different two-dimensional parameter spaces in the HR neuron model. The results also present relationships between different firing patterns in two-dimensional parameter spaces.

  19. Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method.

    PubMed

    Wang, Yu; Li, Feng-Ming; Wang, Yi-Ze

    2015-06-01

    The nonlinear dynamical equations are established for the double layered viscoelastic nanoplates (DLNP) subjected to in-plane excitation based on the nonlocal theory and von Kármán large deformation theory. The extended high dimensional homoclinic Melnikov method is employed to study the homoclinic phenomena and chaotic motions for the parametrically excited DLNP system. The criteria for the homoclinic transverse intersection for both the asynchronous and synchronous buckling cases are proposed. Lyapunov exponents and phase portraits are obtained to verify the Melnikov-type analysis. The influences of structural parameters on the transverse homoclinic orbits and homoclinic bifurcation sets are discussed for the two buckling cases. Some novel phenomena are observed in the investigation. It should be noticed that the nonlocal effect on the homoclinic behaviors and chaotic motions is quite remarkable. Hence, the small scale effect should be taken into account for homoclinic and chaotic analysis for nanostructures. It is significant that the nonlocal effect on the homoclinic phenomena for the asynchronous buckling case is quite different from that for the synchronous buckling case. Moreover, due to the van der Walls interaction between the layers, the nonlocal effect on the homoclinic behaviors and chaotic motions for high order mode is rather tiny under the asynchronous buckling condition.

  20. Application of chaotic attractor analysis in crack assessment of plates

    NASA Astrophysics Data System (ADS)

    Jalili, Sina; Daneshmehr, A. R.

    2018-03-01

    Part-through crack presence with limited length is one of the prevalent defects in plate structures. However, this type of damage has only a slight effect on the dynamic response of the structures. In this paper the modified line spring method (MLSM) is used to develop a nonlinear multi-degree of freedom model of part through cracked rectangular plate and chaotic interrogation is implemented to assess crack-induced degradation in the nonlinear model. After a convergence study of the proposed model in time series domain in which the plate subjected to Lorenz-type chaotic excitation, the tuning of interrogation is conducted by crossing the Lyapunov exponents' spectrums of the nonlinear model of the plate and chaotic signal. In this research nonlinear prediction error (NPE) is proposed as a damage sensitive feature which deals with the chaotic attractor of the excited system response. It is found that there are ranges of tuning parameter that result in higher damage sensitivity of the NPE. Damage characteristics such as: length, angle, location and depth of crack are considered as parameters to be varied to scrutinize the response of the plates. Results show that NPE generally has significantly higher sensitivity in comparison with conventional frequency-based methods; however this property has different levels for various boundary conditions.

  1. Theory of chaos regularization of tunneling in chaotic quantum dots.

    PubMed

    Lee, Ming-Jer; Antonsen, Thomas M; Ott, Edward; Pecora, Louis M

    2012-11-01

    Recent numerical experiments of Pecora et al. [Phys. Rev. E 83, 065201 (2011)] have investigated tunneling between two-dimensional symmetric double wells separated by a tunneling barrier. The wells were bounded by hard walls and by the potential barrier which was created by a step increase from the zero potential within a well to a uniform barrier potential within the barrier region, which is a situation potentially realizable in the context of quantum dots. Numerical results for the splitting of energy levels between symmetric and antisymmetric eigenstates were calculated. It was found that the splittings vary erratically from state to state, and the statistics of these variations were studied for different well shapes with the fluctuation levels being much less in chaotic wells than in comparable nonchaotic wells. Here we develop a quantitative theory for the statistics of the energy level splittings for chaotic wells. Our theory is based on the random plane wave hypothesis of Berry. While the fluctuation statistics are very different for chaotic and nonchaotic well dynamics, we show that the mean splittings of differently shaped wells, including integrable and chaotic wells, are the same if their well areas and barrier parameters are the same. We also consider the case of tunneling from a single well into a region with outgoing quantum waves.

  2. Chimeralike states in a network of oscillators under attractive and repulsive global coupling.

    PubMed

    Mishra, Arindam; Hens, Chittaranjan; Bose, Mridul; Roy, Prodyot K; Dana, Syamal K

    2015-12-01

    We report chimeralike states in an ensemble of oscillators using a type of global coupling consisting of two components: attractive and repulsive mean-field feedback. We identify the existence of two types of chimeralike states in a bistable Liénard system; in one type, both the coherent and the incoherent populations are in chaotic states (which we refer to as chaos-chaos chimeralike states) and, in another type, the incoherent population is in periodic state while the coherent population has irregular small oscillation. We find a metastable state in a parameter regime of the Liénard system where the coherent and noncoherent states migrate in time from one to another subpopulation. The relative size of the incoherent subpopulation, in the chimeralike states, remains almost stable with increasing size of the network. The generality of the coupling configuration in the origin of the chimeralike states is tested, using a second example of bistable system, the van der Pol-Duffing oscillator where the chimeralike states emerge as weakly chaotic in the coherent subpopulation and chaotic in the incoherent subpopulation. Furthermore, we apply the coupling, in a simplified form, to form a network of the chaotic Rössler system where both the noncoherent and the coherent subpopulations show chaotic dynamics.

  3. Homoclinic behaviors and chaotic motions of double layered viscoelastic nanoplates based on nonlocal theory and extended Melnikov method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yu; Wang, Yi-Ze; Li, Feng-Ming, E-mail: fmli@bjut.edu.cn

    2015-06-15

    The nonlinear dynamical equations are established for the double layered viscoelastic nanoplates (DLNP) subjected to in-plane excitation based on the nonlocal theory and von Kármán large deformation theory. The extended high dimensional homoclinic Melnikov method is employed to study the homoclinic phenomena and chaotic motions for the parametrically excited DLNP system. The criteria for the homoclinic transverse intersection for both the asynchronous and synchronous buckling cases are proposed. Lyapunov exponents and phase portraits are obtained to verify the Melnikov-type analysis. The influences of structural parameters on the transverse homoclinic orbits and homoclinic bifurcation sets are discussed for the two bucklingmore » cases. Some novel phenomena are observed in the investigation. It should be noticed that the nonlocal effect on the homoclinic behaviors and chaotic motions is quite remarkable. Hence, the small scale effect should be taken into account for homoclinic and chaotic analysis for nanostructures. It is significant that the nonlocal effect on the homoclinic phenomena for the asynchronous buckling case is quite different from that for the synchronous buckling case. Moreover, due to the van der Walls interaction between the layers, the nonlocal effect on the homoclinic behaviors and chaotic motions for high order mode is rather tiny under the asynchronous buckling condition.« less

  4. Nonlinear Dynamics, Chaotic and Complex Systems

    NASA Astrophysics Data System (ADS)

    Infeld, E.; Zelazny, R.; Galkowski, A.

    2011-04-01

    Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet Speech: Where will the future go? M. J. Feigenbaum.

  5. Relativistic quantum Darwinism in Dirac fermion and graphene systems

    NASA Astrophysics Data System (ADS)

    Ni, Xuan; Huang, Liang; Lai, Ying-Cheng; Pecora, Louis

    2012-02-01

    We solve the Dirac equation in two spatial dimensions in the setting of resonant tunneling, where the system consists of two symmetric cavities connected by a finite potential barrier. The shape of the cavities can be chosen to yield both regular and chaotic dynamics in the classical limit. We find that certain pointer states about classical periodic orbits can exist, which are signatures of relativistic quantum Darwinism (RQD). These localized states suppress quantum tunneling, and the effect becomes less severe as the underlying classical dynamics in the cavity is chaotic, leading to regularization of quantum tunneling. Qualitatively similar phenomena have been observed in graphene. A physical theory is developed to explain relativistic quantum Darwinism and its effects based on the spectrum of complex eigenenergies of the non-Hermitian Hamiltonian describing the open cavity system.

  6. Scale relativity: from quantum mechanics to chaotic dynamics.

    NASA Astrophysics Data System (ADS)

    Nottale, L.

    Scale relativity is a new approach to the problem of the origin of fundamental scales and of scaling laws in physics, which consists in generalizing Einstein's principle of relativity to the case of scale transformations of resolutions. We recall here how it leads one to the concept of fractal space-time, and to introduce a new complex time derivative operator which allows to recover the Schrödinger equation, then to generalize it. In high energy quantum physics, it leads to the introduction of a Lorentzian renormalization group, in which the Planck length is reinterpreted as a lowest, unpassable scale, invariant under dilatations. These methods are successively applied to two problems: in quantum mechanics, that of the mass spectrum of elementary particles; in chaotic dynamics, that of the distribution of planets in the Solar System.

  7. Coherent destruction of tunneling in chaotic microcavities via three-state anti-crossings

    PubMed Central

    Song, Qinghai; Gu, Zhiyuan; Liu, Shuai; Xiao, Shumin

    2014-01-01

    Coherent destruction of tunneling (CDT) has been one seminal result of quantum dynamics control. Traditionally, CDT is understood as destructive interference between two intermediate transition paths near the level crossing. CDT near the level anti-crossings, especially the “locking”, has not been thoroughly explored so far. Taking chaotic microcavity as an example, here we study the inhibition of the tunneling via the strong couplings of three resonances. While the tunneling rate is only slightly affected by each strong coupling between two modes, the destructive interference between two strong couplings can dramatically improve the inhibition of the tunneling. A “locking” point, where dynamical tunneling is completely suppressed, has even been observed. We believe our finding will shed light on researches on micro- & nano-photonics. PMID:24781881

  8. Quantum Tunneling and Chaos in Classical Scale Walkers

    NASA Astrophysics Data System (ADS)

    Su, Jenny; Dijksman, Joshua; Ward, Jeremy; Behringer, Robert

    2014-03-01

    We study the behavior of `walkers' small droplets bouncing on a fluid layer vibrated at amplitudes just below the onset of Faraday instability. It was shown recently that despite their macroscopic size, the droplet dynamics are stochastic in nature and reminiscent of the dual particle-wave dynamics in the realm of quantum mechanics (Couder PRL 2006). We use these walkers to study how chaos, which is macroscopically unpredictable, will manifest in a quantum setting. Pecora showed in 2011 that tunneling for particles that have a chaotic ground state is different from tunneling for particles with a regular ground state (PRE 2011). In the experiment we gather data that illustrates the particle trajectory and tunneling behavior as particles transition across the barrier in the double well system with both integrable and chaotic shapes.

  9. Optimizing homogenization by chaotic unmixing?

    NASA Astrophysics Data System (ADS)

    Weijs, Joost; Bartolo, Denis

    2016-11-01

    A number of industrial processes rely on the homogeneous dispersion of non-brownian particles in a viscous fluid. An ideal mixing would yield a so-called hyperuniform particle distribution. Such configurations are characterized by density fluctuations that grow slower than the standard √{ N}-fluctuations. Even though such distributions have been found in several natural structures, e.g. retina receptors in birds, they have remained out of experimental reach until very recently. Over the last 5 years independent experiments and numerical simulations have shown that periodically driven suspensions can self-assemble hyperuniformally. Simple as the recipe may be, it has one important disadvantage. The emergence of hyperuniform states co-occurs with a critical phase transition from reversible to non reversible particle dynamics. As a consequence the homogenization dynamics occurs over a time that diverges with the system size (critical slowing down). Here, we discuss how this process can be sped up by exploiting the stirring properties of chaotic advection. Among the questions that we answer are: What are the physical mechanisms in a chaotic flow that are relevant for hyperuniformity? How can we tune the flow parameters such to obtain optimal hyperuniformity in the fastest way? JW acknowledges funding by NWO (Netherlands Organisation for Scientific Research) through a Rubicon Grant.

  10. Algorthms and prigrams complex for chaotic dynamics investigation of the Earth artificial sat-ellites. (Russian Title: Комплекс алгоритмов и программ для исследования хаотичности в динамике искусственных спутников Земли )

    NASA Astrophysics Data System (ADS)

    Bordovitsyna, T. V.; Aleksandrova, A. G.; Chuvashov, I. N.

    2010-12-01

    In this paper complex of algorithms and programs for revelation and investigation of dynamical chaotic state in the motion of the Earth artificial satellites by parallel computing is presented. Complex has been based on the program "Numerical model of the system artificial satellites motion" for cluster "Skiff Cyberia". Factor MEGNO as main indicator of chaotic state has been used. The factor is computed by combined numerical integration of equations of the motion, equations in variation and equations of MEGNO parameters. The results of program complex testing in the problem of MEGNO parameters calculation for different types of geostationary orbits are presented.

  11. Controlling chaotic behavior in CO2 and other lasers

    NASA Astrophysics Data System (ADS)

    1993-06-01

    Additional substantial experimental progress has been made, in the third month of the project, in setting up equipment and testing for producing chaotic behavior with a CO2 laser. The project goal is to synchronize and control chaos in CO2 and other lasers, and thereby increase the power in ensembles of coupled laser sources. Numerous investigations into the chaos regime have been made, a second CO2 laser has been brought on stream, and work is progressing in the fourth month toward coupling the two lasers and control of the first laser. It is also intended to submit at least two papers to the Second Experimental Chaos Conference which is supported by the Office of Naval Research. Abstracts to those two papers are attached. Last month's report discussed the experimental investigation of nonlinear dynamics of CO2 lasers which involved a new technique of inducing chaos. In this new technique, an acoustically modulated feedback of the laser light was used and led to chaotic dynamics at a very low modulation frequency of 375 Hz. Since then, new results have been obtained by an Electro-Optical Modulation (EOM) technique. In the new setup, the electro-optical modulator is placed in an external cavity outside the laser.

  12. Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer.

    PubMed

    Naruse, Makoto; Kim, Song-Ju; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi

    2014-08-12

    By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.

  13. Chaotic dynamics outside Saturn’s main rings: The case of Atlas

    NASA Astrophysics Data System (ADS)

    Renner, Stéfan; Cooper, Nicholas J.; El Moutamid, Maryame; Evans, Mike W.; Murray, Carl D.; Sicardy, Bruno

    2014-11-01

    We revisit in detail the dynamics of Atlas. From a fit to new Cassini ISS astrometric observations spanning February 2004 to August 2013, we estimate GM_Atlas=0.384+/-0.001 x 10^(-3)km^3s^(-2), a value 13% smaller than the previously published estimate but with an order of magnitude reduction in the uncertainty. Our numerically-derived orbit shows that Atlas is currently librating in both a 54:53 corotation eccentricity resonance (CER) and a 54:53 Lindblad eccentricity resonance (LER) with Prometheus. We demonstrate that the orbit of Atlas is chaotic, with a Lyapunov time of order 10 years, as a direct consequence of the coupled resonant interaction (CER/LER) with Prometheus. The interactions between the two resonances is investigated using the CoraLin analytical model (El Moutamid et al., 2014), showing that the chaotic zone fills almost all the corotation site occupied by the satellite’s orbit. Four 70 :67 apse-type mean motion resonances with Pandora are also overlapping, but these resonances have a much weaker effect on Atlas.We estimate the capture probabilities of Atlas into resonances with Prometheus as the orbits expand through tidal effects, and discuss the implications for the orbital evolution.

  14. Direct experimental visualization of the global Hamiltonian progression of two-dimensional Lagrangian flow topologies from integrable to chaotic state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskan, O.; Clercx, H. J. H; Speetjens, M. F. M.

    Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progressionmore » by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.« less

  15. A vast amount of various invariant tori in the Nosé-Hoover oscillator.

    PubMed

    Wang, Lei; Yang, Xiao-Song

    2015-12-01

    This letter restudies the Nosé-Hoover oscillator. Some new averagely conservative regions are found, each of which is filled with different sequences of nested tori with various knot types. Especially, the dynamical behaviors near the border of "chaotic region" and conservative regions are studied showing that there exist more complicated and thinner invariant tori around the boundaries of conservative regions bounded by tori. Our results suggest an infinite number of island chains in a "chaotic sea" for the Nosé-Hoover oscillator.

  16. Hash function based on chaotic map lattices.

    PubMed

    Wang, Shihong; Hu, Gang

    2007-06-01

    A new hash function system, based on coupled chaotic map dynamics, is suggested. By combining floating point computation of chaos and some simple algebraic operations, the system reaches very high bit confusion and diffusion rates, and this enables the system to have desired statistical properties and strong collision resistance. The chaos-based hash function has its advantages for high security and fast performance, and it serves as one of the most highly competitive candidates for practical applications of hash function for software realization and secure information communications in computer networks.

  17. A New Finite-Time Observer for Nonlinear Systems: Applications to Synchronization of Lorenz-Like Systems.

    PubMed

    Aguilar-López, Ricardo; Mata-Machuca, Juan L

    2016-01-01

    This paper proposes a synchronization methodology of two chaotic oscillators under the framework of identical synchronization and master-slave configuration. The proposed methodology is based on state observer design under the frame of control theory; the observer structure provides finite-time synchronization convergence by cancelling the upper bounds of the main nonlinearities of the chaotic oscillator. The above is showed via an analysis of the dynamic of the so called synchronization error. Numerical experiments corroborate the satisfactory results of the proposed scheme.

  18. A New Finite-Time Observer for Nonlinear Systems: Applications to Synchronization of Lorenz-Like Systems

    PubMed Central

    Aguilar-López, Ricardo

    2016-01-01

    This paper proposes a synchronization methodology of two chaotic oscillators under the framework of identical synchronization and master-slave configuration. The proposed methodology is based on state observer design under the frame of control theory; the observer structure provides finite-time synchronization convergence by cancelling the upper bounds of the main nonlinearities of the chaotic oscillator. The above is showed via an analysis of the dynamic of the so called synchronization error. Numerical experiments corroborate the satisfactory results of the proposed scheme. PMID:27738651

  19. Transport properties in nontwist area-preserving maps

    DOE PAGES

    Szezech Jr., J. D.; Caldas, I. L.; Lopes, S. R.; ...

    2009-10-23

    Nontwist systems, common in the dynamical descriptions of fluids and plasmas, possess a shearless curve with a concomitant transport barrier that eliminates or reduces chaotic transport, even after its breakdown. In order to investigate the transport properties of nontwist systems, we analyze the barrier escape time and barrier transmissivity for the standard nontwist map, a paradigm of such systems. We interpret the sensitive dependence of these quantities upon map parameters by investigating chaotic orbit stickiness and the associated role played by the dominant crossing of stable and unstable manifolds.

  20. A vast amount of various invariant tori in the Nosé-Hoover oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Xiao-Song

    2015-12-01

    This letter restudies the Nosé-Hoover oscillator. Some new averagely conservative regions are found, each of which is filled with different sequences of nested tori with various knot types. Especially, the dynamical behaviors near the border of "chaotic region" and conservative regions are studied showing that there exist more complicated and thinner invariant tori around the boundaries of conservative regions bounded by tori. Our results suggest an infinite number of island chains in a "chaotic sea" for the Nosé-Hoover oscillator.

Top