Threshold control of chaotic neural network.
He, Guoguang; Shrimali, Manish Dev; Aihara, Kazuyuki
2008-01-01
The chaotic neural network constructed with chaotic neurons exhibits rich dynamic behaviour with a nonperiodic associative memory. In the chaotic neural network, however, it is difficult to distinguish the stored patterns in the output patterns because of the chaotic state of the network. In order to apply the nonperiodic associative memory into information search, pattern recognition etc. it is necessary to control chaos in the chaotic neural network. We have studied the chaotic neural network with threshold activated coupling, which provides a controlled network with associative memory dynamics. The network converges to one of its stored patterns or/and reverse patterns which has the smallest Hamming distance from the initial state of the network. The range of the threshold applied to control the neurons in the network depends on the noise level in the initial pattern and decreases with the increase of noise. The chaos control in the chaotic neural network by threshold activated coupling at varying time interval provides controlled output patterns with different temporal periods which depend upon the control parameters.
Chaotic time series prediction using artificial neural networks
Bartlett, E.B.
1991-12-31
This paper describes the use of artificial neural networks to model the complex oscillations defined by a chaotic Verhuist animal population dynamic. A predictive artificial neural network model is developed and tested, and results of computer simulations are given. These results show that the artificial neural network model predicts the chaotic time series with various initial conditions, growth parameters, or noise.
Chaotic time series prediction using artificial neural networks
Bartlett, E.B.
1991-01-01
This paper describes the use of artificial neural networks to model the complex oscillations defined by a chaotic Verhuist animal population dynamic. A predictive artificial neural network model is developed and tested, and results of computer simulations are given. These results show that the artificial neural network model predicts the chaotic time series with various initial conditions, growth parameters, or noise.
A flexible annealing chaotic neural network to maximum clique problem.
Yang, Gang; Tang, Zheng; Zhang, Zhiqiang; Zhu, Yunyi
2007-06-01
Based on the analysis and comparison of several annealing strategies, we present a flexible annealing chaotic neural network which has flexible controlling ability and quick convergence rate to optimization problem. The proposed network has rich and adjustable chaotic dynamics at the beginning, and then can converge quickly to stable states. We test the network on the maximum clique problem by some graphs of the DIMACS clique instances, p-random and k random graphs. The simulations show that the flexible annealing chaotic neural network can get satisfactory solutions at very little time and few steps. The comparison between our proposed network and other chaotic neural networks denotes that the proposed network has superior executive efficiency and better ability to get optimal or near-optimal solution.
Chaotic itinerancy in the oscillator neural network without Lyapunov functions
NASA Astrophysics Data System (ADS)
Uchiyama, Satoki; Fujisaka, Hirokazu
2004-09-01
Chaotic itinerancy (CI), which is defined as an incessant spontaneous switching phenomenon among attractor ruins in deterministic dynamical systems without Lyapunov functions, is numerically studied in the case of an oscillator neural network model. The model is the pseudoinverse-matrix version of the previous model [S. Uchiyama and H. Fujisaka, Phys. Rev. E 65, 061912 (2002)] that was studied theoretically with the aid of statistical neurodynamics. It is found that CI in neural nets can be understood as the intermittent dynamics of weakly destabilized chaotic retrieval solutions.
Synchronization of an uncertain chaotic system via recurrent neural networks
NASA Astrophysics Data System (ADS)
Tan, Wen; Wang, Yao-Nan
2005-01-01
Incorporating distributed recurrent networks with high-order connections between neurons, the identification and synchronization problem of an unknown chaotic system in the presence of unmodelled dynamics is investigated. Based on the Lyapunov stability theory, the weights learning algorithm for the recurrent high-order neural network model is presented. Also, analytical results concerning the stability properties of the scheme are obtained. Then adaptive control law for eliminating synchronization error of uncertain chaotic plant is developed via Lyapunov methodology. The proposed scheme is applied to model and synchronize an unknown Rossler system.
An annealed chaotic maximum neural network for bipartite subgraph problem.
Wang, Jiahai; Tang, Zheng; Wang, Ronglong
2004-04-01
In this paper, based on maximum neural network, we propose a new parallel algorithm that can help the maximum neural network escape from local minima by including a transient chaotic neurodynamics for bipartite subgraph problem. The goal of the bipartite subgraph problem, which is an NP- complete problem, is to remove the minimum number of edges in a given graph such that the remaining graph is a bipartite graph. Lee et al. presented a parallel algorithm using the maximum neural model (winner-take-all neuron model) for this NP- complete problem. The maximum neural model always guarantees a valid solution and greatly reduces the search space without a burden on the parameter-tuning. However, the model has a tendency to converge to a local minimum easily because it is based on the steepest descent method. By adding a negative self-feedback to the maximum neural network, we proposed a new parallel algorithm that introduces richer and more flexible chaotic dynamics and can prevent the network from getting stuck at local minima. After the chaotic dynamics vanishes, the proposed algorithm is then fundamentally reined by the gradient descent dynamics and usually converges to a stable equilibrium point. The proposed algorithm has the advantages of both the maximum neural network and the chaotic neurodynamics. A large number of instances have been simulated to verify the proposed algorithm. The simulation results show that our algorithm finds the optimum or near-optimum solution for the bipartite subgraph problem superior to that of the best existing parallel algorithms.
Stochastic quasi-synchronization for uncertain chaotic delayed neural networks
NASA Astrophysics Data System (ADS)
Zhang, Shuo; Yu, Yongguang; Wen, Guoguang; Rahmani, Ahmed
2014-02-01
The stochastic quasi-synchronization issue for uncertain chaotic delayed neural networks (DNNs) is investigated. Stochastic perturbation and three uncertain elements, including the discontinuous activation functions, mismatched connection weight parameters and unknown connection weight parameters, are considered in the chaotic DNNs. According to the Ito formula and the inequality techniques, the parameters update laws and the control laws are given to realize the synchronization. And a stochastic quasi-synchronization criterion is established. Furthermore, sufficient conditions are proposed for the control of the synchronization error bound by choosing appropriate control laws. Some numerical simulations are presented to demonstrate the effectiveness of the theoretical results.
Synthetic Modeling of Autonomous Learning with a Chaotic Neural Network
NASA Astrophysics Data System (ADS)
Funabashi, Masatoshi
We investigate the possible role of intermittent chaotic dynamics called chaotic itinerancy, in interaction with nonsupervised learnings that reinforce and weaken the neural connection depending on the dynamics itself. We first performed hierarchical stability analysis of the Chaotic Neural Network model (CNN) according to the structure of invariant subspaces. Irregular transition between two attractor ruins with positive maximum Lyapunov exponent was triggered by the blowout bifurcation of the attractor spaces, and was associated with riddled basins structure. We secondly modeled two autonomous learnings, Hebbian learning and spike-timing-dependent plasticity (STDP) rule, and simulated the effect on the chaotic itinerancy state of CNN. Hebbian learning increased the residence time on attractor ruins, and produced novel attractors in the minimum higher-dimensional subspace. It also augmented the neuronal synchrony and established the uniform modularity in chaotic itinerancy. STDP rule reduced the residence time on attractor ruins, and brought a wide range of periodicity in emerged attractors, possibly including strange attractors. Both learning rules selectively destroyed and preserved the specific invariant subspaces, depending on the neuron synchrony of the subspace where the orbits are situated. Computational rationale of the autonomous learning is discussed in connectionist perspective.
Chaotic neural network for learnable associative memory recall
NASA Astrophysics Data System (ADS)
Hsu, Charles C.; Szu, Harold H.
2003-04-01
We show that the Fuzzy Membership Function (FMF) is learnable with underlying chaotic neural networks for the open set probability. A sigmoid N-shaped function is used to generate chaotic signals. We postulate that such a chaotic set of innumerable realization forms a FMF exemplified by fuzzy feature maps of eyes, nose, etc., for the invariant face classification. The CNN with FMF plays an important role for fast pattern recognition capability in examples of both habituation and novelty detections. In order to reduce the computation complexity, the nearest-neighborhood weight connection is proposed. In addition, a novel timing-sequence weight-learning algorithm is introduced to increase the capacity and recall of the associative memory. For simplicity, a piece-wise-linear (PWL) N-shaped function was designed and implemented and fabricated in a CMOS chip.
Chaotic hopping between attractors in neural networks.
Marro, Joaquín; Torres, Joaquín J; Cortés, Jesús M
2007-03-01
We present a neurobiologically-inspired stochastic cellular automaton whose state jumps with time between the attractors corresponding to a series of stored patterns. The jumping varies from regular to chaotic as the model parameters are modified. The resulting irregular behavior, which mimics the state of attention in which a system shows a great adaptability to changing stimulus, is a consequence in the model of short-time presynaptic noise which induces synaptic depression. We discuss results from both a mean-field analysis and Monte Carlo simulations.
Zhang, Guodong; Shen, Yi
2014-07-01
This paper investigates the exponential synchronization of coupled memristor-based chaotic neural networks with both time-varying delays and general activation functions. And here, we adopt nonsmooth analysis and control theory to handle memristor-based chaotic neural networks with discontinuous right-hand side. In particular, several new criteria ensuring exponential synchronization of two memristor-based chaotic neural networks are obtained via periodically intermittent control. In addition, the new proposed results here are very easy to verify and also complement, extend the earlier publications. Numerical simulations on the chaotic systems are presented to illustrate the effectiveness of the theoretical results.
Chaotic simulated annealing by a neural network with a variable delay: design and application.
Chen, Shyan-Shiou
2011-10-01
In this paper, we have three goals: the first is to delineate the advantages of a variably delayed system, the second is to find a more intuitive Lyapunov function for a delayed neural network, and the third is to design a delayed neural network for a quadratic cost function. For delayed neural networks, most researchers construct a Lyapunov function based on the linear matrix inequality (LMI) approach. However, that approach is not intuitive. We provide a alternative candidate Lyapunov function for a delayed neural network. On the other hand, if we are first given a quadratic cost function, we can construct a delayed neural network by suitably dividing the second-order term into two parts: a self-feedback connection weight and a delayed connection weight. To demonstrate the advantage of a variably delayed neural network, we propose a transiently chaotic neural network with variable delay and show numerically that the model should possess a better searching ability than Chen-Aihara's model, Wang's model, and Zhao's model. We discuss both the chaotic and the convergent phases. During the chaotic phase, we simply present bifurcation diagrams for a single neuron with a constant delay and with a variable delay. We show that the variably delayed model possesses the stochastic property and chaotic wandering. During the convergent phase, we not only provide a novel Lyapunov function for neural networks with a delay (the Lyapunov function is independent of the LMI approach) but also establish a correlation between the Lyapunov function for a delayed neural network and an objective function for the traveling salesman problem.
Kwok, T; Smith, K A
2000-09-01
The aim of this paper is to study both the theoretical and experimental properties of chaotic neural network (CNN) models for solving combinatorial optimization problems. Previously we have proposed a unifying framework which encompasses the three main model types, namely, Chen and Aihara's chaotic simulated annealing (CSA) with decaying self-coupling, Wang and Smith's CSA with decaying timestep, and the Hopfield network with chaotic noise. Each of these models can be represented as a special case under the framework for certain conditions. This paper combines the framework with experimental results to provide new insights into the effect of the chaotic neurodynamics of each model. By solving the N-queen problem of various sizes with computer simulations, the CNN models are compared in different parameter spaces, with optimization performance measured in terms of feasibility, efficiency, robustness and scalability. Furthermore, characteristic chaotic neurodynamics crucial to effective optimization are identified, together with a guide to choosing the corresponding model parameters.
Using chaotic artificial neural networks to model memory in the brain
NASA Astrophysics Data System (ADS)
Aram, Zainab; Jafari, Sajad; Ma, Jun; Sprott, Julien C.; Zendehrouh, Sareh; Pham, Viet-Thanh
2017-03-01
In the current study, a novel model for human memory is proposed based on the chaotic dynamics of artificial neural networks. This new model explains a biological fact about memory which is not yet explained by any other model: There are theories that the brain normally works in a chaotic mode, while during attention it shows ordered behavior. This model uses the periodic windows observed in a previously proposed model for the brain to store and then recollect the information.
Design and analysis of a novel chaotic diagonal recurrent neural network
NASA Astrophysics Data System (ADS)
Wang, Libiao; Meng, Zhuo; Sun, Yize; Guo, Lei; Zhou, Mingxing
2015-09-01
A chaotic neural network model with logistic mapping is proposed to improve the performance of the conventional diagonal recurrent neural network. The network shows rich dynamic behaviors that contribute to escaping from a local minimum to reach the global minimum easily. Then, a simple parameter modulated chaos controller is adopted to enhance convergence speed of the network. Furthermore, an adaptive learning algorithm with the robust adaptive dead zone vector is designed to improve the generalization performance of the network, and weights convergence for the network with the adaptive dead zone vectors is proved in the sense of Lyapunov functions. Finally, the numerical simulation is carried out to demonstrate the correctness of the theory.
A unified framework for chaotic neural-network approaches to combinatorial optimization.
Kwok, T; Smith, K A
1999-01-01
As an attempt to provide an organized way to study the chaotic structures and their effects in solving combinatorial optimization with chaotic neural networks (CNN's), a unifying framework is proposed to serve as a basis where the existing CNN models can be placed and compared. The key of this proposed framework is the introduction of an extra energy term into the computational energy of the Hopfield model, which takes on different forms for different CNN models, and modifies the original Hopfield energy landscape in various manners. Three CNN models, namely the Chen and Aihara model with self-feedback chaotic simulated annealing (CSA), the Wang and Smith model with timestep CSA, and the chaotic noise model, are chosen as examples to show how they can be classified and compared within the proposed framework.
Zhang, Guodong; Shen, Yi
2015-07-01
This paper is concerned with the global exponential stabilization of memristor-based chaotic neural networks with both time-varying delays and general activation functions. Here, we adopt nonsmooth analysis and control theory to handle memristor-based chaotic neural networks with discontinuous right-hand side. In particular, several new sufficient conditions ensuring exponential stabilization of memristor-based chaotic neural networks are obtained via periodically intermittent control. In addition, the proposed results here are easy to verify and they also extend the earlier publications. Finally, numerical simulations illustrate the effectiveness of the obtained results.
Li, Yongtao; Kurata, Shuhei; Morita, Shogo; Shimizu, So; Munetaka, Daigo; Nara, Shigetoshi
2008-09-01
Originating from a viewpoint that complex/chaotic dynamics would play an important role in biological system including brains, chaotic dynamics introduced in a recurrent neural network was applied to control. The results of computer experiment was successfully implemented into a novel autonomous roving robot, which can only catch rough target information with uncertainty by a few sensors. It was employed to solve practical two-dimensional mazes using adaptive neural dynamics generated by the recurrent neural network in which four prototype simple motions are embedded. Adaptive switching of a system parameter in the neural network results in stationary motion or chaotic motion depending on dynamical situations. The results of hardware implementation and practical experiment using it show that, in given two-dimensional mazes, the robot can successfully avoid obstacles and reach the target. Therefore, we believe that chaotic dynamics has novel potential capability in controlling, and could be utilized to practical engineering application.
Mackey-Glass noisy chaotic time series prediction by a swarm-optimized neural network
NASA Astrophysics Data System (ADS)
López-Caraballo, C. H.; Salfate, I.; Lazzús, J. A.; Rojas, P.; Rivera, M.; Palma-Chilla, L.
2016-05-01
In this study, an artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass noiseless chaotic time series in the short-term and long-term prediction. The performance prediction is evaluated and compared with similar work in the literature, particularly for the long-term forecast. Also, we present properties of the dynamical system via the study of chaotic behaviour obtained from the time series prediction. Then, this standard hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the predictions that also allowed us compute uncertainties of predictions for noisy Mackey-Glass chaotic time series. We study the impact of noise for three cases with a white noise level (σ N ) contribution of 0.01, 0.05 and 0.1.
Hybrid information privacy system: integration of chaotic neural network and RSA coding
NASA Astrophysics Data System (ADS)
Hsu, Ming-Kai; Willey, Jeff; Lee, Ting N.; Szu, Harold H.
2005-03-01
Electronic mails are adopted worldwide; most are easily hacked by hackers. In this paper, we purposed a free, fast and convenient hybrid privacy system to protect email communication. The privacy system is implemented by combining private security RSA algorithm with specific chaos neural network encryption process. The receiver can decrypt received email as long as it can reproduce the specified chaos neural network series, so called spatial-temporal keys. The chaotic typing and initial seed value of chaos neural network series, encrypted by the RSA algorithm, can reproduce spatial-temporal keys. The encrypted chaotic typing and initial seed value are hidden in watermark mixed nonlinearly with message media, wrapped with convolution error correction codes for wireless 3rd generation cellular phones. The message media can be an arbitrary image. The pattern noise has to be considered during transmission and it could affect/change the spatial-temporal keys. Since any change/modification on chaotic typing or initial seed value of chaos neural network series is not acceptable, the RSA codec system must be robust and fault-tolerant via wireless channel. The robust and fault-tolerant properties of chaos neural networks (CNN) were proved by a field theory of Associative Memory by Szu in 1997. The 1-D chaos generating nodes from the logistic map having arbitrarily negative slope a = p/q generating the N-shaped sigmoid was given first by Szu in 1992. In this paper, we simulated the robust and fault-tolerance properties of CNN under additive noise and pattern noise. We also implement a private version of RSA coding and chaos encryption process on messages.
Local synchronization of chaotic neural networks with sampled-data and saturating actuators.
Wu, Zheng-Guang; Shi, Peng; Su, Hongye; Chu, Jian
2014-12-01
This paper investigates the problem of local synchronization of chaotic neural networks with sampled-data and actuator saturation. A new time-dependent Lyapunov functional is proposed for the synchronization error systems. The advantage of the constructed Lyapunov functional lies in the fact that it is positive definite at sampling times but not necessarily between sampling times, and makes full use of the available information about the actual sampling pattern. A local stability condition of the synchronization error systems is derived, based on which a sampled-data controller with respect to the actuator saturation is designed to ensure that the master neural networks and slave neural networks are locally asymptotically synchronous. Two optimization problems are provided to compute the desired sampled-data controller with the aim of enlarging the set of admissible initial conditions or the admissible sampling upper bound ensuring the local synchronization of the considered chaotic neural networks. A numerical example is used to demonstrate the effectiveness of the proposed design technique.
Qi, Donglian; Liu, Meiqin; Qiu, Meikang; Zhang, Senlin
2010-08-01
This brief studies exponential H(infinity) synchronization of a class of general discrete-time chaotic neural networks with external disturbance. On the basis of the drive-response concept and H(infinity) control theory, and using Lyapunov-Krasovskii (or Lyapunov) functional, state feedback controllers are established to not only guarantee exponential stable synchronization between two general chaotic neural networks with or without time delays, but also reduce the effect of external disturbance on the synchronization error to a minimal H(infinity) norm constraint. The proposed controllers can be obtained by solving the convex optimization problems represented by linear matrix inequalities. Most discrete-time chaotic systems with or without time delays, such as Hopfield neural networks, cellular neural networks, bidirectional associative memory networks, recurrent multilayer perceptrons, Cohen-Grossberg neural networks, Chua's circuits, etc., can be transformed into this general chaotic neural network to be H(infinity) synchronization controller designed in a unified way. Finally, some illustrated examples with their simulations have been utilized to demonstrate the effectiveness of the proposed methods.
Crop classification by forward neural network with adaptive chaotic particle swarm optimization.
Zhang, Yudong; Wu, Lenan
2011-01-01
This paper proposes a hybrid crop classifier for polarimetric synthetic aperture radar (SAR) images. The feature sets consisted of span image, the H/A/α decomposition, and the gray-level co-occurrence matrix (GLCM) based texture features. Then, the features were reduced by principle component analysis (PCA). Finally, a two-hidden-layer forward neural network (NN) was constructed and trained by adaptive chaotic particle swarm optimization (ACPSO). K-fold cross validation was employed to enhance generation. The experimental results on Flevoland sites demonstrate the superiority of ACPSO to back-propagation (BP), adaptive BP (ABP), momentum BP (MBP), Particle Swarm Optimization (PSO), and Resilient back-propagation (RPROP) methods. Moreover, the computation time for each pixel is only 1.08 × 10(-7) s.
Crop Classification by Forward Neural Network with Adaptive Chaotic Particle Swarm Optimization
Zhang, Yudong; Wu, Lenan
2011-01-01
This paper proposes a hybrid crop classifier for polarimetric synthetic aperture radar (SAR) images. The feature sets consisted of span image, the H/A/α decomposition, and the gray-level co-occurrence matrix (GLCM) based texture features. Then, the features were reduced by principle component analysis (PCA). Finally, a two-hidden-layer forward neural network (NN) was constructed and trained by adaptive chaotic particle swarm optimization (ACPSO). K-fold cross validation was employed to enhance generation. The experimental results on Flevoland sites demonstrate the superiority of ACPSO to back-propagation (BP), adaptive BP (ABP), momentum BP (MBP), Particle Swarm Optimization (PSO), and Resilient back-propagation (RPROP) methods. Moreover, the computation time for each pixel is only 1.08 × 10−7 s. PMID:22163872
NASA Astrophysics Data System (ADS)
Cheng, Chao-Jung; Cheng, Chi-Bin
2013-10-01
Chaotic dynamics provide a fast and simple means to create an excellent image cryptosystem, because it is extremely sensitive to initial conditions and system parameters, pseudorandomness, and non-periodicity. However, most chaos-based image encryption schemes are symmetric cryptographic techniques, which have been proven to be more vulnerable, compared to an asymmetric cryptosystem. This paper develops an asymmetric image cryptosystem, based on the adaptive synchronization of two different chaotic systems, namely a unified chaotic system and a cellular neural network. An adaptive controller with parameter update laws is formulated, using the Lyapunov stability theory, to asymptotically synchronize the two chaotic systems. The synchronization controller is embedded in the image cryptosystem and generates a pair of asymmetric keys, for image encryption and decryption. Using numerical simulations, three sets of experiments are conducted to evaluate the feasibility and reliability of the proposed chaos-based image cryptosystem.
Bodruzzaman, M.; Essawy, M.A.
1996-02-27
Pressurized fluidized-bed combustors (FBC) are becoming very popular, efficient, and environmentally acceptable replica for conventional boilers in Coal-fired and chemical plants. In this paper, we present neural network-based methods for chaotic behavior monitoring and control in FBC systems, in addition to chaos analysis of FBC data, in order to localize chaotic modes in them. Both of the normal and abnormal mixing processes in FBC systems are known to undergo chaotic behavior. Even though, this type of behavior is not always undesirable, it is a challenge to most types of conventional control methods, due to its unpredictable nature. The performance, reliability, availability and operating cost of an FBC system will be significantly improved, if an appropriate control method is available to control its abnormal operation and switch it to normal when exists. Since this abnormal operation develops only at certain times due to a sequence of transient behavior, then an appropriate abnormal behavior monitoring method is also necessary. Those methods has to be fast enough for on-line operation, such that the control methods would be applied before the system reaches a non-return point in its transients. It was found that both normal and abnormal behavior of FBC systems are chaotic. However, the abnormal behavior has a higher order chaos. Hence, the appropriate control system should be capable of switching the system behavior from its high order chaos condition to low order chaos. It is to mention that most conventional chaos control methods are designed to switch a chaotic behavior to a periodic orbit. Since this is not the goal for the FBC case, further developments are needed. We propose neural network-based control methods which are known for their flexibility and capability to control both non-linear and chaotic systems. A special type of recurrent neural network, known as Dynamic System Imitator (DSI), will be used for the monitoring and control purposes.
NASA Astrophysics Data System (ADS)
Li, Yuan; Lv, Hui; Jiao, Dongxiu
2017-03-01
In this study, an adaptive neural network synchronization (NNS) approach, capable of guaranteeing prescribed performance (PP), is designed for non-identical fractional-order chaotic systems (FOCSs). For PP synchronization, we mean that the synchronization error converges to an arbitrary small region of the origin with convergence rate greater than some function given in advance. Neural networks are utilized to estimate unknown nonlinear functions in the closed-loop system. Based on the integer-order Lyapunov stability theorem, a fractional-order adaptive NNS controller is designed, and the PP can be guaranteed. Finally, simulation results are presented to confirm our results.
NASA Astrophysics Data System (ADS)
Hsiao, Feng-Hsiag
2016-10-01
In this study, a novel approach via improved genetic algorithm (IGA)-based fuzzy observer is proposed to realise exponential optimal H∞ synchronisation and secure communication in multiple time-delay chaotic (MTDC) systems. First, an original message is inserted into the MTDC system. Then, a neural-network (NN) model is employed to approximate the MTDC system. Next, a linear differential inclusion (LDI) state-space representation is established for the dynamics of the NN model. Based on this LDI state-space representation, this study proposes a delay-dependent exponential stability criterion derived in terms of Lyapunov's direct method, thus ensuring that the trajectories of the slave system approach those of the master system. Subsequently, the stability condition of this criterion is reformulated into a linear matrix inequality (LMI). Due to GA's random global optimisation search capabilities, the lower and upper bounds of the search space can be set so that the GA will seek better fuzzy observer feedback gains, accelerating feedback gain-based synchronisation via the LMI-based approach. IGA, which exhibits better performance than traditional GA, is used to synthesise a fuzzy observer to not only realise the exponential synchronisation, but also achieve optimal H∞ performance by minimizing the disturbance attenuation level and recovering the transmitted message. Finally, a numerical example with simulations is given in order to demonstrate the effectiveness of our approach.
The chaotic nature of temper in humans: a long short-term memory recurrent neural network model.
Zifan, Ali; Gharibzadeh, Shahriar
2006-01-01
In mathematics and physics, chaos theory deals with the behavior of certain nonlinear dynamical systems that under certain conditions exhibit a phenomenon known as chaos, which is characterised by a sensitivity to initial conditions. Mathematicians paradoxically call such states of order chaos and distinguish them from randomness. New models for describing and predicting different aspects of behavior are being created which once seemed unpredictable. This is done by focusing on the overall patterns of behavior, showing how stable or unstable they are and identifying the circumstances that make them change. In this paper, we indicate why human temper and mood changes have a chaotic nature. Then, we develop a chaotic model based on a long short-term memory recurrent neural network with irregular embeddings derived by the gamma test to model temper tantrum. We finally use a feedback delay controller to stabilize its chaotic behavior, because it is a plausible method for stabilizing biological neural systems. A lot of aspects of this model are analogous to the human counterpart. The model might suggest, for example, that if a particular person had stronger ego defenses, and attended a little less vigilantly to the external world, he or she might find a stable attractor amidst of a broader landscape of chaotic attractors. A therapist or self-control would be analogous to the delayed feedback controller, by specifically encouraging those changes, he might help the person reach a stable behavior. Finally, some comments are proposed to facilitate the normal behavior.
NASA Astrophysics Data System (ADS)
Yadmellat, Peyman; Nikravesh, S. Kamaleddin Yadavar
2011-01-01
In this paper, a recursive delayed output-feedback control strategy is considered for stabilizing unstable periodic orbit of unknown nonlinear chaotic systems. An unknown nonlinearity is directly estimated by a linear-in-parameter neural network which is then used in an observer structure. An on-line modified back propagation algorithm with e-modification is used to update the weights of the network. The globally uniformly ultimately boundedness of overall closed-loop system response is analytically ensured using Razumikhin lemma. To verify the effectiveness of the proposed observer-based controller, a set of simulations is performed on a Rossler system in comparison with several previous methods.
Mohammadzadeh, Ardashir; Ghaemi, Sehraneh
2015-09-01
This paper proposes a novel approach for training of proposed recurrent hierarchical interval type-2 fuzzy neural networks (RHT2FNN) based on the square-root cubature Kalman filters (SCKF). The SCKF algorithm is used to adjust the premise part of the type-2 FNN and the weights of defuzzification and the feedback weights. The recurrence property in the proposed network is the output feeding of each membership function to itself. The proposed RHT2FNN is employed in the sliding mode control scheme for the synchronization of chaotic systems. Unknown functions in the sliding mode control approach are estimated by RHT2FNN. Another application of the proposed RHT2FNN is the identification of dynamic nonlinear systems. The effectiveness of the proposed network and its learning algorithm is verified by several simulation examples. Furthermore, the universal approximation of RHT2FNNs is also shown.
Li, Yang; Oku, Makito; He, Guoguang; Aihara, Kazuyuki
2017-04-01
In this study, a method is proposed that eliminates spiral waves in a locally connected chaotic neural network (CNN) under some simplified conditions, using a dynamic phase space constraint (DPSC) as a control method. In this method, a control signal is constructed from the feedback internal states of the neurons to detect phase singularities based on their amplitude reduction, before modulating a threshold value to truncate the refractory internal states of the neurons and terminate the spirals. Simulations showed that with appropriate parameter settings, the network was directed from a spiral wave state into either a plane wave (PW) state or a synchronized oscillation (SO) state, where the control vanished automatically and left the original CNN model unaltered. Each type of state had a characteristic oscillation frequency, where spiral wave states had the highest, and the intra-control dynamics was dominated by low-frequency components, thereby indicating slow adjustments to the state variables. In addition, the PW-inducing and SO-inducing control processes were distinct, where the former generally had longer durations but smaller average proportions of affected neurons in the network. Furthermore, variations in the control parameter allowed partial selectivity of the control results, which were accompanied by modulation of the control processes. The results of this study broaden the applicability of DPSC to chaos control and they may also facilitate the utilization of locally connected CNNs in memory retrieval and the exploration of traveling wave dynamics in biological neural networks.
Nonlinear Neural Network Oscillator.
A nonlinear oscillator (10) includes a neural network (12) having at least one output (12a) for outputting a one dimensional vector. The neural ... neural network and the input of the input layer for modifying a magnitude and/or a polarity of the one dimensional output vector prior to the sample of...first or a second direction. Connection weights of the neural network are trained on a deterministic sequence of data from a chaotic source or may be a
Nonlinear identification using a B-spline neural network and chaotic immune approaches
NASA Astrophysics Data System (ADS)
dos Santos Coelho, Leandro; Pessôa, Marcelo Wicthoff
2009-11-01
One of the important applications of B-spline neural network (BSNN) is to approximate nonlinear functions defined on a compact subset of a Euclidean space in a highly parallel manner. Recently, BSNN, a type of basis function neural network, has received increasing attention and has been applied in the field of nonlinear identification. BSNNs have the potential to "learn" the process model from input-output data or "learn" fault knowledge from past experience. BSNN can be used as function approximators to construct the analytical model for residual generation too. However, BSNN is trained by gradient-based methods that may fall into local minima during the learning procedure. When using feed-forward BSNNs, the quality of approximation depends on the control points (knots) placement of spline functions. This paper describes the application of a modified artificial immune network inspired optimization method - the opt-aiNet - combined with sequences generate by Hénon map to provide a stochastic search to adjust the control points of a BSNN. The numerical results presented here indicate that artificial immune network optimization methods are useful for building good BSNN model for the nonlinear identification of two case studies: (i) the benchmark of Box and Jenkins gas furnace, and (ii) an experimental ball-and-tube system.
Bodruzzaman, M.
1996-10-30
We have developed techniques to control the chaotic behavior in Fluidized Bed Systems (FBC) systems using recurrent neural networks. For the sake of comparison of the techniques we have developed with the traditional chaotic system control methods, in the past three months we have been investigating the most popular and first known chaotic system control technique known as the OGY method. This method was developed by Edward Ott, Celso Grebogi and James York in 1990. In the past few years this method was further developed and applied by many researchers in the field. It was shown that this method has potential applications to a large cross section of problems in many fields. The only remaining question is whether it will prove possible to move from laboratory demonstrations on model systems to real world situations of engineering importance. We have developed computer programs to compute the OGY parameters from a chaotic time series, to control a chaotic system to a desired periodic orbit, using small perturbations to an accessible system parameter. We have tested those programs on the logistic map and the Henon map. We were able to control the chaotic behavior in such typical chaotic systems to period 1, 2, 3, 5..., as shown in some sample results below. In the following sections a brief discussion for the OGY method will be introduced, followed by results for the logistic map and Henon map control.
Attractor switching by neural control of chaotic neurodynamics.
Pasemann, F; Stollenwerk, N
1998-11-01
Chaotic attractors of discrete-time neural networks include infinitely many unstable periodic orbits, which can be stabilized by small parameter changes in a feedback control. Here we explore the control of unstable periodic orbits in a chaotic neural network with only two neurons. Analytically, a local control algorithm is derived on the basis of least squares minimization of the future deviations between actual system states and the desired orbit. This delayed control allows a consistent neural implementation, i.e. the same types of neurons are used for chaotic and controlling modules. The control signal is realized with one layer of neurons, allowing selective switching between different stabilized periodic orbits. For chaotic modules with noise, random switching between different periodic orbits is observed.
Sun, Jitao; Lin, Hai
2008-09-01
This paper investigates the stationary oscillation for an impulsive delayed system which represents a class of nonlinear hybrid systems. First, a new concept of S-stability is introduced for nonlinear impulsive delayed systems. Based on this new concept and fixed point theorem, the relationship between S-stability and stationary oscillation (i.e., existence, uniqueness and global stability of periodic solutions) for the nonlinear impulsive delayed system is explored. It is shown that the nonlinear impulsive delayed system has a stationary oscillation if the system is S-stable. Second, an easily verifiable sufficient condition is then obtained for stationary oscillations of nonautonomous neural networks with both time delays and impulses by using the new criterion. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed method.
1990-01-01
FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO 11 TITLE (Include Security Classification) NEURAL NETWORKS 12. PERSONAL...SUB-GROUP Neural Networks Optical Architectures Nonlinear Optics Adaptation 19. ABSTRACT (Continue on reverse if necessary and identify by block number...341i Y C-odes , lo iii/(iv blank) 1. INTRODUCTION Neural networks are a type of distributed processing system [1
NASA Astrophysics Data System (ADS)
Kalpana, M.; Balasubramaniam, P.
2013-07-01
We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov—Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.
Smith, Patrick I.
2003-09-23
Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing
Hsieh, Chin-Tsung; Yau, Her-Terng; Wu, Shang-Yi; Lin, Huo-Cheng
2014-01-01
The collision fault detection of a XXY stage is proposed for the first time in this paper. The stage characteristic signals are extracted and imported into the master and slave chaos error systems by signal filtering from the vibratory magnitude of the stage. The trajectory diagram is made from the chaos synchronization dynamic error signals E1 and E2. The distance between characteristic positive and negative centers of gravity, as well as the maximum and minimum distances of trajectory diagram, are captured as the characteristics of fault recognition by observing the variation in various signal trajectory diagrams. The matter-element model of normal status and collision status is built by an extension neural network. The correlation grade of various fault statuses of the XXY stage was calculated for diagnosis. The dSPACE is used for real-time analysis of stage fault status with an accelerometer sensor. Three stage fault statuses are detected in this study, including normal status, Y collision fault and X collision fault. It is shown that the scheme can have at least 75% diagnosis rate for collision faults of the XXY stage. As a result, the fault diagnosis system can be implemented using just one sensor, and consequently the hardware cost is significantly reduced. PMID:25405512
Hsieh, Chin-Tsung; Yau, Her-Terng; Wu, Shang-Yi; Lin, Huo-Cheng
2014-11-14
The collision fault detection of a XXY stage is proposed for the first time in this paper. The stage characteristic signals are extracted and imported into the master and slave chaos error systems by signal filtering from the vibratory magnitude of the stage. The trajectory diagram is made from the chaos synchronization dynamic error signals E1 and E2. The distance between characteristic positive and negative centers of gravity, as well as the maximum and minimum distances of trajectory diagram, are captured as the characteristics of fault recognition by observing the variation in various signal trajectory diagrams. The matter-element model of normal status and collision status is built by an extension neural network. The correlation grade of various fault statuses of the XXY stage was calculated for diagnosis. The dSPACE is used for real-time analysis of stage fault status with an accelerometer sensor. Three stage fault statuses are detected in this study, including normal status, Y collision fault and X collision fault. It is shown that the scheme can have at least 75% diagnosis rate for collision faults of the XXY stage. As a result, the fault diagnosis system can be implemented using just one sensor, and consequently the hardware cost is significantly reduced.
NASA Astrophysics Data System (ADS)
Gu, Huaguang
2013-06-01
The transition from chaotic bursting to chaotic spiking has been simulated and analyzed in theoretical neuronal models. In the present study, we report experimental observations in a neural pacemaker of a transition from chaotic bursting to chaotic spiking within a bifurcation scenario from period-1 bursting to period-1 spiking. This was induced by adjusting extracellular calcium or potassium concentrations. The bifurcation scenario began from period-doubling bifurcations or period-adding sequences of bursting pattern. This chaotic bursting is characterized by alternations between multiple continuous spikes and a long duration of quiescence, whereas chaotic spiking is comprised of fast, continuous spikes without periods of quiescence. Chaotic bursting changed to chaotic spiking as long interspike intervals (ISIs) of quiescence disappeared within bursting patterns, drastically decreasing both ISIs and the magnitude of the chaotic attractors. Deterministic structures of the chaotic bursting and spiking patterns are also identified by a short-term prediction. The experimental observations, which agree with published findings in theoretical neuronal models, demonstrate the existence and reveal the dynamics of a neuronal transition from chaotic bursting to chaotic spiking in the nervous system.
NASA Astrophysics Data System (ADS)
Schwindling, Jerome
2010-04-01
This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p.) corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.
Neural Network Function Classifier
2003-02-07
neural network sets. Each of the neural networks in a particular set is trained to recognize a particular data set type. The best function representation of the data set is determined from the neural network output. The system comprises sets of trained neural networks having neural networks trained to identify different types of data. The number of neural networks within each neural network set will depend on the number of function types that are represented. The system further comprises
Rosselló, Josep L; Canals, Vicens; Oliver, Antoni; Morro, Antoni
2014-08-01
The brain is characterized by performing many diverse processing tasks ranging from elaborate processes such as pattern recognition, memory or decision making to more simple functionalities such as linear filtering in image processing. Understanding the mechanisms by which the brain is able to produce such a different range of cortical operations remains a fundamental problem in neuroscience. Here we show a study about which processes are related to chaotic and synchronized states based on the study of in-silico implementation of Stochastic Spiking Neural Networks (SSNN). The measurements obtained reveal that chaotic neural ensembles are excellent transmission and convolution systems since mutual information between signals is minimized. At the same time, synchronized cells (that can be understood as ordered states of the brain) can be associated to more complex nonlinear computations. In this sense, we experimentally show that complex and quick pattern recognition processes arise when both synchronized and chaotic states are mixed. These measurements are in accordance with in vivo observations related to the role of neural synchrony in pattern recognition and to the speed of the real biological process. We also suggest that the high-level adaptive mechanisms of the brain that are the Hebbian and non-Hebbian learning rules can be understood as processes devoted to generate the appropriate clustering of both synchronized and chaotic ensembles. The measurements obtained from the hardware implementation of different types of neural systems suggest that the brain processing can be governed by the superposition of these two complementary states with complementary functionalities (nonlinear processing for synchronized states and information convolution and parallelization for chaotic).
Using chaotic neural nets to compress, store, and transmit information
NASA Astrophysics Data System (ADS)
Basti, Gianfranco; Perrone, Antonio L.; Cocciolo, Paola
1994-03-01
In order to find a very efficient technique to compress, store, and transmit to earth information from a satellite we developed a scheme of chaotic neural net using a new technique of extraction of unstable orbits within a chaotic attractor without applying classical embedding dimensions. We illustrate this technique both from the theoretical and the experimental standpoint. From the theoretical standpoint we show that by this extraction technique it is possible to perform a series expansion of a chaotic dynamics directly through all its composing cycles. Finally, we show how to apply these new possibilities deriving from our new technique of chaos detection, characterization, and stabilization to design a chaotic neural net. Because it is possible to profit by all the skeleton of unstable periodic orbits (i.e., all the inner frequencies) characterizing a chaotic attractor to store information, this net can in principle display an exponential increasing of memory capacity with respect to classical attractor nets.
1993-07-01
basic useful theorems and general rules which apply to neural networks (in ’Overview of Neural Network Theory’), studies of training time as the...The Neural Network , Bayes- Gaussian, and k-Nearest Neighbor Classifiers’), an analysis of fuzzy logic and its relationship to neural network (in ’Fuzzy
NASA Technical Reports Server (NTRS)
Thakoor, Anil
1990-01-01
Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.
Synchronization of mobile chaotic oscillator networks
NASA Astrophysics Data System (ADS)
Fujiwara, Naoya; Kurths, Jürgen; Díaz-Guilera, Albert
2016-09-01
We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to the transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.
Generalized classifier neural network.
Ozyildirim, Buse Melis; Avci, Mutlu
2013-03-01
In this work a new radial basis function based classification neural network named as generalized classifier neural network, is proposed. The proposed generalized classifier neural network has five layers, unlike other radial basis function based neural networks such as generalized regression neural network and probabilistic neural network. They are input, pattern, summation, normalization and output layers. In addition to topological difference, the proposed neural network has gradient descent based optimization of smoothing parameter approach and diverge effect term added calculation improvements. Diverge effect term is an improvement on summation layer calculation to supply additional separation ability and flexibility. Performance of generalized classifier neural network is compared with that of the probabilistic neural network, multilayer perceptron algorithm and radial basis function neural network on 9 different data sets and with that of generalized regression neural network on 3 different data sets include only two classes in MATLAB environment. Better classification performance up to %89 is observed. Improved classification performances proved the effectivity of the proposed neural network.
Using neural networks to model chaos
Upadhyay, M.D.
1996-12-31
Two types of neural networks -- backpropagation and radial basis function -- are presented for modeling dynamical systems. They were trained to model the Henon, Ikeda and Tinkerbell dynamical systems by providing a set of points randomly chosen from orbits under the functions. After training, the networks were used to simulate the functions to determine the extent to which they could generate the chaotic attractors associated with these systems.
Neural Network Hurricane Tracker
1998-05-27
data about the hurricane and supplying the data to a trained neural network for yielding a predicted path for the hurricane. The system further includes...a device for displaying the predicted path of the hurricane. A method for using and training the neural network in the system is described. In the...method, the neural network is trained using information about hurricanes in a specific geographical area maintained in a database. The training involves
Traffic chaotic dynamics modeling and analysis of deterministic network
NASA Astrophysics Data System (ADS)
Wu, Weiqiang; Huang, Ning; Wu, Zhitao
2016-07-01
Network traffic is an important and direct acting factor of network reliability and performance. To understand the behaviors of network traffic, chaotic dynamics models were proposed and helped to analyze nondeterministic network a lot. The previous research thought that the chaotic dynamics behavior was caused by random factors, and the deterministic networks would not exhibit chaotic dynamics behavior because of lacking of random factors. In this paper, we first adopted chaos theory to analyze traffic data collected from a typical deterministic network testbed — avionics full duplex switched Ethernet (AFDX, a typical deterministic network) testbed, and found that the chaotic dynamics behavior also existed in deterministic network. Then in order to explore the chaos generating mechanism, we applied the mean field theory to construct the traffic dynamics equation (TDE) for deterministic network traffic modeling without any network random factors. Through studying the derived TDE, we proposed that chaotic dynamics was one of the nature properties of network traffic, and it also could be looked as the action effect of TDE control parameters. A network simulation was performed and the results verified that the network congestion resulted in the chaotic dynamics for a deterministic network, which was identical with expectation of TDE. Our research will be helpful to analyze the traffic complicated dynamics behavior for deterministic network and contribute to network reliability designing and analysis.
1991-01-01
N00014-87-K-0377 TITLE: "Studies in Neural Networks " fl.U Q l~~izie JUL 021991 "" " F.: L9’CO37 "I! c-1(.d Contract No.: N00014-87-K-0377 Final...34) have been very useful, both in understanding the dynamics of neural networks and in engineering networks to perform particular tasks. We have noted...understanding more complex network computation. Interest in applying ideas from biological neural networks to real problems of engineering raises the issues of
Intrinsic adaptation in autonomous recurrent neural networks.
Marković, Dimitrije; Gros, Claudius
2012-02-01
A massively recurrent neural network responds on one side to input stimuli and is autonomously active, on the other side, in the absence of sensory inputs. Stimuli and information processing depend crucially on the quality of the autonomous-state dynamics of the ongoing neural activity. This default neural activity may be dynamically structured in time and space, showing regular, synchronized, bursting, or chaotic activity patterns. We study the influence of nonsynaptic plasticity on the default dynamical state of recurrent neural networks. The nonsynaptic adaption considered acts on intrinsic neural parameters, such as the threshold and the gain, and is driven by the optimization of the information entropy. We observe, in the presence of the intrinsic adaptation processes, three distinct and globally attracting dynamical regimes: a regular synchronized, an overall chaotic, and an intermittent bursting regime. The intermittent bursting regime is characterized by intervals of regular flows, which are quite insensitive to external stimuli, interceded by chaotic bursts that respond sensitively to input signals. We discuss these findings in the context of self-organized information processing and critical brain dynamics.
Probabilistic Analysis of Neural Networks
1990-11-26
provide an understanding of the basic mechanisms of learning and recognition in neural networks . The main areas of progress were analysis of neural ... networks models, study of network connectivity, and investigation of computer network theory.
Neural networks for aircraft control
NASA Technical Reports Server (NTRS)
Linse, Dennis
1990-01-01
Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.
Critical Branching Neural Networks
ERIC Educational Resources Information Center
Kello, Christopher T.
2013-01-01
It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…
Chaotic Modes in Scale Free Opinion Networks
NASA Astrophysics Data System (ADS)
Kusmartsev, Feo V.; Kürten, Karl E.
2010-12-01
In this paper, we investigate processes associated with formation of public opinion in varies directed random, scale free and small-world social networks. The important factor of the opinion formation is the existence of contrarians which were discovered by Granovetter in various social psychology experiments1,2,3 long ago and later introduced in sociophysics by Galam.4 When the density of contrarians increases the system behavior drastically changes at some critical value. At high density of contrarians the system can never arrive to a consensus state and periodically oscillates with different periods depending on specific structure of the network. At small density of the contrarians the behavior is manifold. It depends primary on the initial state of the system. If initially the majority of the population agrees with each other a state of stable majority may be easily reached. However when originally the population is divided in nearly equal parts consensus can never be reached. We model the emergence of collective decision making by considering N interacting agents, whose opinions are described by two state Ising spin variable associated with YES and NO. We show that the dynamical behaviors are very sensitive not only to the density of the contrarians but also to the network topology. We find that a phase of social chaos may arise in various dynamical processes of opinion formation in many realistic models. We compare the prediction of the theory with data describing the dynamics of the average opinion of the USA population collected on a day-by-day basis by varies media sources during the last six month before the final Obama-McCain election. The qualitative ouctome is in reasonable agreement with the prediction of our theory. In fact, the analyses of these data made within the paradigm of our theory indicates that even in this campaign there were chaotic elements where the public opinion migrated in an unpredictable chaotic way. The existence of such a phase
Chaotic Modes in Scale Free Opinion Networks
NASA Astrophysics Data System (ADS)
Kusmartsev, Feo V.; Kürten, Karl E.
In this paper, we investigate processes associated with formation of public opinion in varies directed random, scale free and small-world social networks. The important factor of the opinion formation is the existence of contrarians which were discovered by Granovetter in various social psychology experiments1,2,3 long ago and later introduced in sociophysics by Galam.4 When the density of contrarians increases the system behavior drastically changes at some critical value. At high density of contrarians the system can never arrive to a consensus state and periodically oscillates with different periods depending on specific structure of the network. At small density of the contrarians the behavior is manifold. It depends primary on the initial state of the system. If initially the majority of the population agrees with each other a state of stable majority may be easily reached. However when originally the population is divided in nearly equal parts consensus can never be reached. We model the emergence of collective decision making by considering N interacting agents, whose opinions are described by two state Ising spin variable associated with YES and NO. We show that the dynamical behaviors are very sensitive not only to the density of the contrarians but also to the network topology. We find that a phase of social chaos may arise in various dynamical processes of opinion formation in many realistic models. We compare the prediction of the theory with data describing the dynamics of the average opinion of the USA population collected on a day-by-day basis by varies media sources during the last six month before the final Obama-McCain election. The qualitative ouctome is in reasonable agreement with the prediction of our theory. In fact, the analyses of these data made within the paradigm of our theory indicates that even in this campaign there were chaotic elements where the public opinion migrated in an unpredictable chaotic way. The existence of such a phase
1991-05-01
capture underlying relationships directly from observed behavior is one of the primary capabilities of neural networks. 29 Back P’ropagation Approximailon...model complex behavior patterns. Particularly in areas traditionally addressed by regression and other functional based techniques, neural networks...to.be determined directly from the observed behavior of a system or sample of individuals. This ability should prove important in personnel analysis and
Neural network representation and learning of mappings and their derivatives
NASA Technical Reports Server (NTRS)
White, Halbert; Hornik, Kurt; Stinchcombe, Maxwell; Gallant, A. Ronald
1991-01-01
Discussed here are recent theorems proving that artificial neural networks are capable of approximating an arbitrary mapping and its derivatives as accurately as desired. This fact forms the basis for further results establishing the learnability of the desired approximations, using results from non-parametric statistics. These results have potential applications in robotics, chaotic dynamics, control, and sensitivity analysis. An example involving learning the transfer function and its derivatives for a chaotic map is discussed.
Anderson, J.A.; Markman, A.B.; Viscuso, S.R.; Wisniewski, E.J.
1988-09-01
Neural networks ''compute'' though not in the way that traditional computers do. One must accept their weaknesses to use their strengths. The authors present several applications of a particular non-linear network (the BSB model) to illustrate some of the peculiarities inherent in this architecture.
Tomography using neural networks
NASA Astrophysics Data System (ADS)
Demeter, G.
1997-03-01
We have utilized neural networks for fast evaluation of tomographic data on the MT-1M tokamak. The networks have proven useful in providing the parameters of a nonlinear fit to experimental data, producing results in a fraction of the time required for performing the nonlinear fit. Time required for training the networks makes the method worth applying only if a substantial amount of data are to be evaluated.
Computational chaos in massively parallel neural networks
NASA Technical Reports Server (NTRS)
Barhen, Jacob; Gulati, Sandeep
1989-01-01
A fundamental issue which directly impacts the scalability of current theoretical neural network models to massively parallel embodiments, in both software as well as hardware, is the inherent and unavoidable concurrent asynchronicity of emerging fine-grained computational ensembles and the possible emergence of chaotic manifestations. Previous analyses attributed dynamical instability to the topology of the interconnection matrix, to parasitic components or to propagation delays. However, researchers have observed the existence of emergent computational chaos in a concurrently asynchronous framework, independent of the network topology. Researcher present a methodology enabling the effective asynchronous operation of large-scale neural networks. Necessary and sufficient conditions guaranteeing concurrent asynchronous convergence are established in terms of contracting operators. Lyapunov exponents are computed formally to characterize the underlying nonlinear dynamics. Simulation results are presented to illustrate network convergence to the correct results, even in the presence of large delays.
The Adaptive Kernel Neural Network
1989-10-01
A neural network architecture for clustering and classification is described. The Adaptive Kernel Neural Network (AKNN) is a density estimation...classification layer. The AKNN retains the inherent parallelism common in neural network models. Its relationship to the kernel estimator allows the network to
Synchronization between uncertain nonidentical networks with quantum chaotic behavior
NASA Astrophysics Data System (ADS)
Li, Wenlin; Li, Chong; Song, Heshan
2016-11-01
Synchronization between uncertain nonidentical networks with quantum chaotic behavior is researched. The identification laws of unknown parameters in state equations of network nodes, the adaptive laws of configuration matrix elements and outer coupling strengths are determined based on Lyapunov theorem. The conditions of realizing synchronization between uncertain nonidentical networks are discussed and obtained. Further, Jaynes-Cummings model in physics are taken as the nodes of two networks and simulation results show that the synchronization performance between networks is very stable.
Hyperbolic Hopfield neural networks.
Kobayashi, M
2013-02-01
In recent years, several neural networks using Clifford algebra have been studied. Clifford algebra is also called geometric algebra. Complex-valued Hopfield neural networks (CHNNs) are the most popular neural networks using Clifford algebra. The aim of this brief is to construct hyperbolic HNNs (HHNNs) as an analog of CHNNs. Hyperbolic algebra is a Clifford algebra based on Lorentzian geometry. In this brief, a hyperbolic neuron is defined in a manner analogous to a phasor neuron, which is a typical complex-valued neuron model. HHNNs share common concepts with CHNNs, such as the angle and energy. However, HHNNs and CHNNs are different in several aspects. The states of hyperbolic neurons do not form a circle, and, therefore, the start and end states are not identical. In the quantized version, unlike complex-valued neurons, hyperbolic neurons have an infinite number of states.
NASA Technical Reports Server (NTRS)
Baram, Yoram
1988-01-01
Nested neural networks, consisting of small interconnected subnetworks, allow for the storage and retrieval of neural state patterns of different sizes. The subnetworks are naturally categorized by layers of corresponding to spatial frequencies in the pattern field. The storage capacity and the error correction capability of the subnetworks generally increase with the degree of connectivity between layers (the nesting degree). Storage of only few subpatterns in each subnetworks results in a vast storage capacity of patterns and subpatterns in the nested network, maintaining high stability and error correction capability.
Neural networks in psychiatry.
Hulshoff Pol, Hilleke; Bullmore, Edward
2013-01-01
Over the past three decades numerous imaging studies have revealed structural and functional brain abnormalities in patients with neuropsychiatric diseases. These structural and functional brain changes are frequently found in multiple, discrete brain areas and may include frontal, temporal, parietal and occipital cortices as well as subcortical brain areas. However, while the structural and functional brain changes in patients are found in anatomically separated areas, these are connected through (long distance) fibers, together forming networks. Thus, instead of representing separate (patho)-physiological entities, these local changes in the brains of patients with psychiatric disorders may in fact represent different parts of the same 'elephant', i.e., the (altered) brain network. Recent developments in quantitative analysis of complex networks, based largely on graph theory, have revealed that the brain's structure and functions have features of complex networks. Here we briefly introduce several recent developments in neural network studies relevant for psychiatry, including from the 2013 special issue on Neural Networks in Psychiatry in European Neuropsychopharmacology. We conclude that new insights will be revealed from the neural network approaches to brain imaging in psychiatry that hold the potential to find causes for psychiatric disorders and (preventive) treatments in the future.
Neural networks counting chimes.
Amit, D J
1988-01-01
It is shown that the ideas that led to neural networks capable of recalling associatively and asynchronously temporal sequences of patterns can be extended to produce a neural network that automatically counts the cardinal number in a sequence of identical external stimuli. The network is explicitly constructed, analyzed, and simulated. Such a network may account for the cognitive effect of the automatic counting of chimes to tell the hour. A more general implication is that different electrophysiological responses to identical stimuli, at certain stages of cortical processing, do not necessarily imply synaptic modification, a la Hebb. Such differences may arise from the fact that consecutive identical inputs find the network in different stages of an active temporal sequence of cognitive states. These types of networks are then situated within a program for the study of cognition, which assigns the detection of meaning as the primary role of attractor neural networks rather than computation, in contrast to the parallel distributed processing attitude to the connectionist project. This interpretation is free of homunculus, as well as from the criticism raised against the cognitive model of symbol manipulation. Computation is then identified as the syntax of temporal sequences of quasi-attractors. PMID:3353371
Evolving Neural Network Pattern Classifiers
1994-05-01
This work investigates the application of evolutionary programming for automatically configuring neural network architectures for pattern...evaluating a multitude of neural network model hypotheses. The evolutionary programming search is augmented with the Solis & Wets random optimization
Mathematical Theory of Neural Networks
1994-08-31
This report provides a summary of the grant work by the principal investigators in the area of neural networks . The topics covered deal with...properties) for nets; and the use of neural networks for the control of nonlinear systems.
Neural Network Communications Signal Processing
1994-08-01
This final technical report describes the research and development- results of the Neural Network Communications Signal Processing (NNCSP) Program...The objectives of the NNCSP program are to: (1) develop and implement a neural network and communications signal processing simulation system for the...purpose of exploring the applicability of neural network technology to communications signal processing; (2) demonstrate several configurations of the
Neural Networks for Speech Application.
1987-11-01
This is a general introduction to the reemerging technology called neural networks , and how these networks may provide an important alternative to...traditional forms of computing in speech applications. Neural networks , sometimes called Artificial Neural Systems (ANS), have shown promise for solving
Generalized Adaptive Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1993-01-01
Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.
Improved Autoassociative Neural Networks
NASA Technical Reports Server (NTRS)
Hand, Charles
2003-01-01
Improved autoassociative neural networks, denoted nexi, have been proposed for use in controlling autonomous robots, including mobile exploratory robots of the biomorphic type. In comparison with conventional autoassociative neural networks, nexi would be more complex but more capable in that they could be trained to do more complex tasks. A nexus would use bit weights and simple arithmetic in a manner that would enable training and operation without a central processing unit, programs, weight registers, or large amounts of memory. Only a relatively small amount of memory (to hold the bit weights) and a simple logic application- specific integrated circuit would be needed. A description of autoassociative neural networks is prerequisite to a meaningful description of a nexus. An autoassociative network is a set of neurons that are completely connected in the sense that each neuron receives input from, and sends output to, all the other neurons. (In some instantiations, a neuron could also send output back to its own input terminal.) The state of a neuron is completely determined by the inner product of its inputs with weights associated with its input channel. Setting the weights sets the behavior of the network. The neurons of an autoassociative network are usually regarded as comprising a row or vector. Time is a quantized phenomenon for most autoassociative networks in the sense that time proceeds in discrete steps. At each time step, the row of neurons forms a pattern: some neurons are firing, some are not. Hence, the current state of an autoassociative network can be described with a single binary vector. As time goes by, the network changes the vector. Autoassociative networks move vectors over hyperspace landscapes of possibilities.
NASA Technical Reports Server (NTRS)
Villarreal, James A.
1991-01-01
A whole new arena of computer technologies is now beginning to form. Still in its infancy, neural network technology is a biologically inspired methodology which draws on nature's own cognitive processes. The Software Technology Branch has provided a software tool, Neural Execution and Training System (NETS), to industry, government, and academia to facilitate and expedite the use of this technology. NETS is written in the C programming language and can be executed on a variety of machines. Once a network has been debugged, NETS can produce a C source code which implements the network. This code can then be incorporated into other software systems. Described here are various software projects currently under development with NETS and the anticipated future enhancements to NETS and the technology.
Rule generation from neural networks
Fu, L.
1994-08-01
The neural network approach has proven useful for the development of artificial intelligence systems. However, a disadvantage with this approach is that the knowledge embedded in the neural network is opaque. In this paper, we show how to interpret neural network knowledge in symbolic form. We lay down required definitions for this treatment, formulate the interpretation algorithm, and formally verify its soundness. The main result is a formalized relationship between a neural network and a rule-based system. In addition, it has been demonstrated that the neural network generates rules of better performance than the decision tree approach in noisy conditions. 7 refs.
Deterministic chaos control in neural networks on various topologies
NASA Astrophysics Data System (ADS)
Neto, A. J. F.; Lima, F. W. S.
2017-01-01
Using numerical simulations, we study the control of deterministic chaos in neural networks on various topologies like Voronoi-Delaunay, Barabási-Albert, Small-World networks and Erdös-Rényi random graphs by "pinning" the state of a "special" neuron. We show that the chaotic activity of the networks or graphs, when control is on, can become constant or periodic.
Neural networks for triggering
Denby, B. ); Campbell, M. ); Bedeschi, F. ); Chriss, N.; Bowers, C. ); Nesti, F. )
1990-01-01
Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.
Inverse Optimal Pinning Control for Complex Networks of Chaotic Systems
NASA Astrophysics Data System (ADS)
Sanchez, Edgar N.; Rodriguez, David I.
In this paper, a control strategy based on the inverse optimal control approach is applied for pinning weighted complex networks with chaotic systems at their nodes; additionally, a cost functional is minimized. This control strategy does not require to have the same coupling strength for all node connections.
High-performance neural networks. [Neural computers
Dress, W.B.
1987-06-01
The new Forth hardware architectures offer an intermediate solution to high-performance neural networks while the theory and programming details of neural networks for synthetic intelligence are developed. This approach has been used successfully to determine the parameters and run the resulting network for a synthetic insect consisting of a 200-node ''brain'' with 1760 interconnections. Both the insect's environment and its sensor input have thus far been simulated. However, the frequency-coded nature of the Browning network allows easy replacement of the simulated sensors by real-world counterparts.
Program Helps Simulate Neural Networks
NASA Technical Reports Server (NTRS)
Villarreal, James; Mcintire, Gary
1993-01-01
Neural Network Environment on Transputer System (NNETS) computer program provides users high degree of flexibility in creating and manipulating wide variety of neural-network topologies at processing speeds not found in conventional computing environments. Supports back-propagation and back-propagation-related algorithms. Back-propagation algorithm used is implementation of Rumelhart's generalized delta rule. NNETS developed on INMOS Transputer(R). Predefines back-propagation network, Jordan network, and reinforcement network to assist users in learning and defining own networks. Also enables users to configure other neural-network paradigms from NNETS basic architecture. Small portion of software written in OCCAM(R) language.
Stimulated Photorefractive Optical Neural Networks
1992-12-15
This final report describes research in optical neural networks performed under DARPA sponsorship at Hughes Aircraft Company during the period 1989...in photorefractive crystals. This approach reduces crosstalk and improves the utilization of the optical input device. Successfully implemented neural ... networks include the Perceptron, Bidirectional Associative Memory, and multi-layer backpropagation networks. Up to 104 neurons, 2xl0(7) weights, and
Optical Neural Network Classifier Architectures
1998-04-01
We present an adaptive opto-electronic neural network hardware architecture capable of exploiting parallel optics to realize real-time processing and...function neural network based on a previously demonstrated binary-input version. The greyscale-input capability broadens the range of applications for...a reduced feature set of multiwavelet images to improve training times and discrimination capability of the neural network . The design uses a joint
Analysis of Simple Neural Networks
1988-12-20
ANALYSIS OF SThlPLE NEURAL NETWORKS Chedsada Chinrungrueng Master’s Report Under the Supervision of Prof. Carlo H. Sequin Department of... Neural Networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...and guidJ.nce. I have learned a great deal from his teaching, knowledge, and criti- cism. 1. MOTIVATION ANALYSIS OF SIMPLE NEURAL NETWORKS Chedsada
Neural Networks For Robot Control
2001-04-17
following: (a) Application of artificial neural networks (multi-layer perceptrons, MLPs) for 2D planar robot arm by using the dynamic backpropagation...methods for the adjustment of parameters; and optimization of the architecture; (b) Application of artificial neural networks in controlling closed...studies in controlling dynamic robot arms by using neural networks in real-time process; (2) Research of optimal architectures used in closed-loop systems in order to compare with adaptive and robust control.
Trimaran Resistance Artificial Neural Network
2011-01-01
11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to
Neural Networks, Reliability and Data Analysis
1993-01-01
Neural network technology has been surveyed with the intent of determining the feasibility and impact neural networks may have in the area of...automated reliability tools. Data analysis capabilities of neural networks appear to be very applicable to reliability science due to similar mathematical...tendencies in data.... Neural networks , Reliability, Data analysis, Automated reliability tools, Automated intelligent information processing, Statistical neural network.
[Artificial neural networks in Neurosciences].
Porras Chavarino, Carmen; Salinas Martínez de Lecea, José María
2011-11-01
This article shows that artificial neural networks are used for confirming the relationships between physiological and cognitive changes. Specifically, we explore the influence of a decrease of neurotransmitters on the behaviour of old people in recognition tasks. This artificial neural network recognizes learned patterns. When we change the threshold of activation in some units, the artificial neural network simulates the experimental results of old people in recognition tasks. However, the main contributions of this paper are the design of an artificial neural network and its operation inspired by the nervous system and the way the inputs are coded and the process of orthogonalization of patterns.
Accelerating Learning By Neural Networks
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad; Barhen, Jacob
1992-01-01
Electronic neural networks made to learn faster by use of terminal teacher forcing. Method of supervised learning involves addition of teacher forcing functions to excitations fed as inputs to output neurons. Initially, teacher forcing functions are strong enough to force outputs to desired values; subsequently, these functions decay with time. When learning successfully completed, terminal teacher forcing vanishes, and dynamics or neural network become equivalent to those of conventional neural network. Simulated neural network with terminal teacher forcing learned to produce close approximation of circular trajectory in 400 iterations.
Neural Network Based Montioring and Control of Fluidized Bed.
Bodruzzaman, M.; Essawy, M.A.
1996-04-01
The goal of this project was to develop chaos analysis and neural network-based modeling techniques and apply them to the pressure-drop data obtained from the Fluid Bed Combustion (FBC) system (a small scale prototype model) located at the Federal Energy Technology Center (FETC)-Morgantown. The second goal was to develop neural network-based chaos control techniques and provide a suggestive prototype for possible real-time application to the FBC system. The experimental pressure data were collected from a cold FBC experimental set-up at the Morgantown Center. We have performed several analysis on these data in order to unveil their dynamical and chaotic characteristics. The phase-space attractors were constructed from the one dimensional time series data, using the time-delay embedding method, for both normal and abnormal conditions. Several identifying parameters were also computed from these attractors such as the correlation dimension, the Kolmogorov entropy, and the Lyapunov exponents. These chaotic attractor parameters can be used to discriminate between the normal and abnormal operating conditions of the FBC system. It was found that, the abnormal data has higher correlation dimension, larger Kolmogorov entropy and larger positive Lyapunov exponents as compared to the normal data. Chaotic system control using neural network based techniques were also investigated and compared to conventional chaotic system control techniques. Both types of chaotic system control techniques were applied to some typical chaotic systems such as the logistic, the Henon, and the Lorenz systems. A prototype model for real-time implementation of these techniques has been suggested to control the FBC system. These models can be implemented for real-time control in a next phase of the project after obtaining further measurements from the experimental model. After testing the control algorithms developed for the FBC model, the next step is to implement them on hardware and link them to
NASA Astrophysics Data System (ADS)
Metzler, R.; Kinzel, W.; Kanter, I.
2000-08-01
Several scenarios of interacting neural networks which are trained either in an identical or in a competitive way are solved analytically. In the case of identical training each perceptron receives the output of its neighbor. The symmetry of the stationary state as well as the sensitivity to the used training algorithm are investigated. Two competitive perceptrons trained on mutually exclusive learning aims and a perceptron which is trained on the opposite of its own output are examined analytically. An ensemble of competitive perceptrons is used as decision-making algorithms in a model of a closed market (El Farol Bar problem or the Minority Game. In this game, a set of agents who have to make a binary decision is considered.); each network is trained on the history of minority decisions. This ensemble of perceptrons relaxes to a stationary state whose performance can be better than random.
Prediction and control of chaotic processes using nonlinear adaptive networks
Jones, R.D.; Barnes, C.W.; Flake, G.W.; Lee, K.; Lewis, P.S.; O'Rouke, M.K.; Qian, S.
1990-01-01
We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We then present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series, tidal prediction in Venice lagoon, finite differencing, sonar transient detection, control of nonlinear processes, control of a negative ion source, balancing a double inverted pendulum and design advice for free electron lasers and laser fusion targets.
Electric circuit networks equivalent to chaotic quantum billiards
Bulgakov, Evgeny N.; Maksimov, Dmitrii N.; Sadreev, Almas F.
2005-04-01
We consider two electric RLC resonance networks that are equivalent to quantum billiards. In a network of inductors grounded by capacitors, the eigenvalues of the quantum billiard correspond to the squared resonant frequencies. In a network of capacitors grounded by inductors, the eigenvalues of the billiard are given by the inverse of the squared resonant frequencies. In both cases, the local voltages play the role of the wave function of the quantum billiard. However, unlike for quantum billiards, there is a heat power because of the resistance of the inductors. In the equivalent chaotic billiards, we derive a distribution of the heat power which describes well the numerical statistics.
Criteria for stochastic pinning control of networks of chaotic maps
Mwaffo, Violet; Porfiri, Maurizio; DeLellis, Pietro
2014-03-15
This paper investigates the controllability of discrete-time networks of coupled chaotic maps through stochastic pinning. In this control scheme, the network dynamics are steered towards a desired trajectory through a feedback control input that is applied stochastically to the network nodes. The network controllability is studied by analyzing the local mean square stability of the error dynamics with respect to the desired trajectory. Through the analysis of the spectral properties of salient matrices, a toolbox of conditions for controllability are obtained, in terms of the dynamics of the individual maps, algebraic properties of the network, and the probability distribution of the pinning control. We demonstrate the use of these conditions in the design of a stochastic pinning control strategy for networks of Chirikov standard maps. To elucidate the applicability of the approach, we consider different network topologies and compare five different stochastic pinning strategies through extensive numerical simulations.
Dynamic interactions in neural networks
Arbib, M.A. ); Amari, S. )
1989-01-01
The study of neural networks is enjoying a great renaissance, both in computational neuroscience, the development of information processing models of living brains, and in neural computing, the use of neurally inspired concepts in the construction of intelligent machines. This volume presents models and data on the dynamic interactions occurring in the brain, and exhibits the dynamic interactions between research in computational neuroscience and in neural computing. The authors present current research, future trends and open problems.
Technology Assessment of Neural Networks
1989-02-13
Unlike a Von Neumann type of computer which needs to be programmed to carry out an information-processing function, neural networks are promised as...trainable through a series of trials to learn how to process information. An assessment of the current, near-term (1995), and long-term (2010) trends in Neural Networks is given.
Phase Detection Using Neural Networks.
1997-03-10
A likelihood of detecting a reflected signal characterized by phase discontinuities and background noise is enhanced by utilizing neural networks to...identify coherency intervals. The received signal is processed into a predetermined format such as a digital time series. Neural networks perform
Neural network applications in telecommunications
NASA Technical Reports Server (NTRS)
Alspector, Joshua
1994-01-01
Neural network capabilities include automatic and organized handling of complex information, quick adaptation to continuously changing environments, nonlinear modeling, and parallel implementation. This viewgraph presentation presents Bellcore work on applications, learning chip computational function, learning system block diagram, neural network equalization, broadband access control, calling-card fraud detection, software reliability prediction, and conclusions.
Neural Networks for the Beginner.
ERIC Educational Resources Information Center
Snyder, Robin M.
Motivated by the brain, neural networks are a right-brained approach to artificial intelligence that is used to recognize patterns based on previous training. In practice, one would not program an expert system to recognize a pattern and one would not train a neural network to make decisions from rules; but one could combine the best features of…
Hybrid Neural Network for Pattern Recognition.
1997-02-03
two one-layer neural networks and the second stage comprises a feedforward two-layer neural network . A method for recognizing patterns is also...topological representations of the input patterns using the first and second neural networks. The method further comprises providing a third neural network for...classifying and recognizing the inputted patterns and training the third neural network with a back-propagation algorithm so that the third neural network recognizes at least one interested pattern.
Neural adaptive chaotic control with constrained input using state and output feedback
NASA Astrophysics Data System (ADS)
Gao, Shi-Gen; Dong, Hai-Rong; Sun, Xu-Bin; Ning, Bin
2015-01-01
This paper presents neural adaptive control methods for a class of chaotic nonlinear systems in the presence of constrained input and unknown dynamics. To attenuate the influence of constrained input caused by actuator saturation, an effective auxiliary system is constructed to prevent the stability of closed loop system from being destroyed. Radial basis function neural networks (RBF-NNs) are used in the online learning of the unknown dynamics, which do not require an off-line training phase. Both state and output feedback control laws are developed. In the output feedback case, high-order sliding mode (HOSM) observer is utilized to estimate the unmeasurable system states. Simulation results are presented to verify the effectiveness of proposed schemes. Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA041701), the Fundamental Research Funds for Central Universities of China (Grant No. 2013JBZ007), the National Natural Science Foundation of China (Grant Nos. 61233001, 61322307, 61304196, and 61304157), and the Research Program of Beijing Jiaotong University, China (Grant No. RCS2012ZZ003).
Neural Network Development Tool (NETS)
NASA Technical Reports Server (NTRS)
Baffes, Paul T.
1990-01-01
Artificial neural networks formed from hundreds or thousands of simulated neurons, connected in manner similar to that in human brain. Such network models learning behavior. Using NETS involves translating problem to be solved into input/output pairs, designing network configuration, and training network. Written in C.
Tagliaferri, Roberto; Longo, Giuseppe; Milano, Leopoldo; Acernese, Fausto; Barone, Fabrizio; Ciaramella, Angelo; De Rosa, Rosario; Donalek, Ciro; Eleuteri, Antonio; Raiconi, Giancarlo; Sessa, Salvatore; Staiano, Antonino; Volpicelli, Alfredo
2003-01-01
In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most common tasks of data reduction and data mining. The federation of heterogeneous large astronomical databases which is foreseen in the framework of the astrophysical virtual observatory and national virtual observatory projects, is, however, posing unprecedented data mining and visualization problems which will find a rather natural and user friendly answer in artificial intelligence tools based on NNs, fuzzy sets or genetic algorithms. This review is aimed to both astronomers (who often have little knowledge of the methodological background) and computer scientists (who often know little about potentially interesting applications), and therefore will be structured as follows: after giving a short introduction to the subject, we shall summarize the methodological background and focus our attention on some of the most interesting fields of application, namely: object extraction and classification, time series analysis, noise identification, and data mining. Most of the original work described in the paper has been performed in the framework of the AstroNeural collaboration (Napoli-Salerno).
Neural networks for calibration tomography
NASA Technical Reports Server (NTRS)
Decker, Arthur
1993-01-01
Artificial neural networks are suitable for performing pattern-to-pattern calibrations. These calibrations are potentially useful for facilities operations in aeronautics, the control of optical alignment, and the like. Computed tomography is compared with neural net calibration tomography for estimating density from its x-ray transform. X-ray transforms are measured, for example, in diffuse-illumination, holographic interferometry of fluids. Computed tomography and neural net calibration tomography are shown to have comparable performance for a 10 degree viewing cone and 29 interferograms within that cone. The system of tomography discussed is proposed as a relevant test of neural networks and other parallel processors intended for using flow visualization data.
Modular, Hierarchical Learning By Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Baldi, Pierre F.; Toomarian, Nikzad
1996-01-01
Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.
Neural Networks for Readability Analysis.
ERIC Educational Resources Information Center
McEneaney, John E.
This paper describes and reports on the performance of six related artificial neural networks that have been developed for the purpose of readability analysis. Two networks employ counts of linguistic variables that simulate a traditional regression-based approach to readability. The remaining networks determine readability from "visual…
A Complexity Theory of Neural Networks
1990-04-14
Significant results have been obtained on the computation complexity of analog neural networks , and distribute voting. The computing power and...learning algorithms for limited precision analog neural networks have been investigated. Lower bounds for constant depth, polynomial size analog neural ... networks , and a limited version of discrete neural networks have been obtained. The work on distributed voting has important applications for distributed
Miconi, Thomas
2017-02-23
Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior.
Collective Computation of Neural Network
1990-03-15
Sciences, Beijing ABSTRACT Computational neuroscience is a new branch of neuroscience originating from current research on the theory of computer...scientists working in artificial intelligence engineering and neuroscience . The paper introduces the collective computational properties of model neural...vision research. On this basis, the authors analyzed the significance of the Hopfield model. Key phrases: Computational Neuroscience , Neural Network, Model
Artificial Neural Network Analysis System
2007-11-02
Target detection, multi-target tracking and threat identification of ICBM and its warheads by sensor fusion and data fusion of sensors in a fuzzy neural network system based on the compound eye of a fly.
The holographic neural network: Performance comparison with other neural networks
NASA Astrophysics Data System (ADS)
Klepko, Robert
1991-10-01
The artificial neural network shows promise for use in recognition of high resolution radar images of ships. The holographic neural network (HNN) promises a very large data storage capacity and excellent generalization capability, both of which can be achieved with only a few learning trials, unlike most neural networks which require on the order of thousands of learning trials. The HNN is specially designed for pattern association storage, and mathematically realizes the storage and retrieval mechanisms of holograms. The pattern recognition capability of the HNN was studied, and its performance was compared with five other commonly used neural networks: the Adaline, Hamming, bidirectional associative memory, recirculation, and back propagation networks. The patterns used for testing represented artificial high resolution radar images of ships, and appear as a two dimensional topology of peaks with various amplitudes. The performance comparisons showed that the HNN does not perform as well as the other neural networks when using the same test data. However, modification of the data to make it appear more Gaussian distributed, improved the performance of the network. The HNN performs best if the data is completely Gaussian distributed.
Origin of chaotic transients in excitatory pulse-coupled networks
NASA Astrophysics Data System (ADS)
Zou, Hai-Lin; Li, Menghui; Lai, Choy-Heng; Lai, Ying-Cheng
2012-12-01
We develop an approach to understanding long chaotic transients in networks of excitatory pulse-coupled oscillators. Our idea is to identify a class of attractors, sequentially active firing (SAF) attractors, in terms of the temporal event structure of firing and receipt of pulses. Then all attractors can be classified into two groups: SAF attractors and non-SAF attractors. We establish that long transients typically arise in the transitional region of the parameter space where the SAF attractors are collectively destabilized. Bifurcation behavior of the SAF attractors is analyzed to provide a detailed understanding of the long irregular transients. Although demonstrated using pulse-coupled oscillator networks, our general methodology may be useful in understanding the origin of transient chaos in other types of networked systems, an extremely challenging problem in nonlinear dynamics and complex systems.
Synchronisation and scaling properties of chaotic networks with multiple delays
NASA Astrophysics Data System (ADS)
D'Huys, Otti; Zeeb, Steffen; Jüngling, Thomas; Heiligenthal, Sven; Yanchuk, Serhiy; Kinzel, Wolfgang
2013-07-01
We study chaotic systems with multiple time delays that range over several orders of magnitude. We show that the spectrum of Lyapunov exponents (LEs) in such systems possesses a hierarchical structure, with different parts scaling with the different delays. This leads to different types of chaos, depending on the scaling of the maximal LE. Our results are relevant, in particular, for the synchronisation properties of hierarchical networks (networks of networks) where the nodes of subnetworks are coupled with shorter delays and couplings between different subnetworks are realised with longer delay times. Units within a subnetwork can synchronise if the maximal exponent scales with the shorter delay, long-range synchronisation between different subnetworks is only possible if the maximal exponent scales with the longer delay. The results are illustrated analytically for Bernoulli maps and numerically for tent maps and semiconductor lasers.
VLSI implementation of neural networks.
Wilamowski, B M; Binfet, J; Kaynak, M O
2000-06-01
Currently, fuzzy controllers are the most popular choice for hardware implementation of complex control surfaces because they are easy to design. Neural controllers are more complex and hard to train, but provide an outstanding control surface with much less error than that of a fuzzy controller. There are also some problems that have to be solved before the networks can be implemented on VLSI chips. First, an approximation function needs to be developed because CMOS neural networks have an activation function different than any function used in neural network software. Next, this function has to be used to train the network. Finally, the last problem for VLSI designers is the quantization effect caused by discrete values of the channel length (L) and width (W) of MOS transistor geometries. Two neural networks were designed in 1.5 microm technology. Using adequate approximation functions solved the problem of activation function. With this approach, trained networks were characterized by very small errors. Unfortunately, when the weights were quantized, errors were increased by an order of magnitude. However, even though the errors were enlarged, the results obtained from neural network hardware implementations were superior to the results obtained with fuzzy system approach.
Antenna analysis using neural networks
NASA Technical Reports Server (NTRS)
Smith, William T.
1992-01-01
Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern
Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.
Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu
2016-07-14
This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.
Bodruzzaman, M.
1995-09-27
This report is to review the work done for the fluidized bed combustion (FBC) project in the past three months, and introduce a general research plan for the next six months. In the last two months, a literature review has been performed on most of the previous work done in the areas of chaotic system analysis, chaotic system identification, chaotic system control, neural network models for non-linear and chaotic systems, fluidized bed behavior analysis, and fluidized bed behavior modeling and control. A clear view has been developed on the status of the FBC technology and the main problems that need to be solved.
Locally optimal extracellular stimulation for chaotic desynchronization of neural populations.
Wilson, Dan; Moehlis, Jeff
2014-10-01
We use optimal control theory to design a methodology to find locally optimal stimuli for desynchronization of a model of neurons with extracellular stimulation. This methodology yields stimuli which lead to positive Lyapunov exponents, and hence desynchronizes a neural population. We analyze this methodology in the presence of interneuron coupling to make predictions about the strength of stimulation required to overcome synchronizing effects of coupling. This methodology suggests a powerful alternative to pulsatile stimuli for deep brain stimulation as it uses less energy than pulsatile stimuli, and could eliminate the time consuming tuning process.
Signal Approximation with a Wavelet Neural Network
1992-12-01
specialized electronic devices like the Intel Electronically Trainable Analog Neural Network (ETANN) chip. The WNN representation allows the...accurately approximated with a WNN trained with irregularly sampled data. Signal approximation, Wavelet neural network .
A Neural Network Based Speech Recognition System
1990-02-01
encoder and identifies individual words. This use of neural networks offers two advantages over conventional algorithmic detectors: the detection...environment. Keywords: Artificial intelligence; Neural networks : Back propagation; Speech recognition.
Plant Growth Models Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Bubenheim, David
1997-01-01
In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.
Not Available
1991-01-01
The present conference the application of neural networks to associative memories, neurorecognition, hybrid systems, supervised and unsupervised learning, image processing, neurophysiology, sensation and perception, electrical neurocomputers, optimization, robotics, machine vision, sensorimotor control systems, and neurodynamics. Attention is given to such topics as optimal associative mappings in recurrent networks, self-improving associative neural network models, fuzzy activation functions, adaptive pattern recognition with sparse associative networks, efficient question-answering in a hybrid system, the use of abstractions by neural networks, remote-sensing pattern classification, speech recognition with guided propagation, inverse-step competitive learning, and rotational quadratic function neural networks. Also discussed are electrical load forecasting, evolutionarily stable and unstable strategies, the capacity of recurrent networks, neural net vs control theory, perceptrons for image recognition, storage capacity of bidirectional associative memories, associative random optimization for control, automatic synthesis of digital neural architectures, self-learning robot vision, and the associative dynamics of chaotic neural networks.
Neural Networks for Flight Control
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1996-01-01
Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.
Analysis and Design of Neural Networks
1992-01-01
The training problem for feedforward neural networks is nonlinear parameter estimation that can be solved by a variety of optimization techniques...Much of the literature of neural networks has focused on variants of gradient descent. The training of neural networks using such techniques is known to...be a slow process with more sophisticated techniques not always performing significantly better. It is shown that feedforward neural networks can
Radar System Classification Using Neural Networks
1991-12-01
This study investigated methods of improving the accuracy of neural networks in the classification of large numbers of classes. A literature search...revealed that neural networks have been successful in the radar classification problem, and that many complex problems have been solved using systems...of multiple neural networks . The experiments conducted were based on 32 classes of radar system data. The neural networks were modelled using a program
Neural networks and applications tutorial
NASA Astrophysics Data System (ADS)
Guyon, I.
1991-09-01
The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.
Fault Tolerance of Neural Networks
1994-07-01
Systematic Ap - proach, Proc. Government Microcircuit Application Conf. (GOMAC), San Diego, Nov. 1986. [10] D.E.Goldberg, Genetic Algorithms in Search...s l m n ttempt to develop fault tolerant neural networks. The lows. Given a well-trained network, we first eliminate temp todevlopfaut tlernt eurl ...both ap - proaches, and this resulted in very slight improve- ments over the addition/deletion procedure. 103 Fisher’s Iris data in average case Fisher’s
Artificial neural networks in medicine
Keller, P.E.
1994-07-01
This Technology Brief provides an overview of artificial neural networks (ANN). A definition and explanation of an ANN is given and situations in which an ANN is used are described. ANN applications to medicine specifically are then explored and the areas in which it is currently being used are discussed. Included are medical diagnostic aides, biochemical analysis, medical image analysis and drug development.
Semantic Interpretation of An Artificial Neural Network
1995-12-01
success for stock market analysis/prediction is artificial neural networks. However, knowledge embedded in the neural network is not easily translated...interpret neural network knowledge. The first, called Knowledge Math, extends the use of connection weights, generating rules for general (i.e. non-binary
Model Of Neural Network With Creative Dynamics
NASA Technical Reports Server (NTRS)
Zak, Michail; Barhen, Jacob
1993-01-01
Paper presents analysis of mathematical model of one-neuron/one-synapse neural network featuring coupled activation and learning dynamics and parametrical periodic excitation. Demonstrates self-programming, partly random behavior of suitable designed neural network; believed to be related to spontaneity and creativity of biological neural networks.
How Neural Networks Learn from Experience.
ERIC Educational Resources Information Center
Hinton, Geoffrey E.
1992-01-01
Discusses computational studies of learning in artificial neural networks and findings that may provide insights into the learning abilities of the human brain. Describes efforts to test theories about brain information processing, using artificial neural networks. Vignettes include information concerning how a neural network represents…
Characterization of chaotic attractors under noise: A recurrence network perspective
NASA Astrophysics Data System (ADS)
Jacob, Rinku; Harikrishnan, K. P.; Misra, R.; Ambika, G.
2016-12-01
We undertake a detailed numerical investigation to understand how the addition of white and colored noise to a chaotic time series changes the topology and the structure of the underlying attractor reconstructed from the time series. We use the methods and measures of recurrence plot and recurrence network generated from the time series for this analysis. We explicitly show that the addition of noise obscures the property of recurrence of trajectory points in the phase space which is the hallmark of every dynamical system. However, the structure of the attractor is found to be robust even upto high noise levels of 50%. An advantage of recurrence network measures over the conventional nonlinear measures is that they can be applied on short and non stationary time series data. By using the results obtained from the above analysis, we go on to analyse the light curves from a dominant black hole system and show that the recurrence network measures are capable of identifying the nature of noise contamination in a time series.
Synchronization of networks of chaotic oscillators: Structural and dynamical datasets.
Sevilla-Escoboza, Ricardo; Buldú, Javier M
2016-06-01
We provide the topological structure of a series of N=28 Rössler chaotic oscillators diffusively coupled through one of its variables. The dynamics of the y variable describing the evolution of the individual nodes of the network are given for a wide range of coupling strengths. Datasets capture the transition from the unsynchronized behavior to the synchronized one, as a function of the coupling strength between oscillators. The fact that both the underlying topology of the system and the dynamics of the nodes are given together makes this dataset a suitable candidate to evaluate the interplay between functional and structural networks and serve as a benchmark to quantify the ability of a given algorithm to extract the structural network of connections from the observation of the dynamics of the nodes. At the same time, it is possible to use the dataset to analyze the different dynamical properties (randomness, complexity, reproducibility, etc.) of an ensemble of oscillators as a function of the coupling strength.
BDNF Boosts Spike Fidelity in Chaotic Neural Oscillations
Fujisawa, Shigeyoshi; Yamada, Maki K.; Nishiyama, Nobuyoshi; Matsuki, Norio; Ikegaya, Yuji
2004-01-01
Oscillatory activity and its nonlinear dynamics are of fundamental importance for information processing in the central nervous system. Here we show that in aperiodic oscillations, brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, enhances the accuracy of action potentials in terms of spike reliability and temporal precision. Cultured hippocampal neurons displayed irregular oscillations of membrane potential in response to sinusoidal 20-Hz somatic current injection, yielding wobbly orbits in the phase space, i.e., a strange attractor. Brief application of BDNF suppressed this unpredictable dynamics and stabilized membrane potential fluctuations, leading to rhythmical firing. Even in complex oscillations induced by external stimuli of 40 Hz (γ) on a 5-Hz (θ) carrier, BDNF-treated neurons generated more precisely timed spikes, i.e., phase-locked firing, coupled with θ-phase precession. These phenomena were sensitive to K252a, an inhibitor of tyrosine receptor kinases and appeared attributable to BDNF-evoked Na+ current. The data are the first indication of pharmacological control of endogenous chaos. BDNF diminishes the ambiguity of spike time jitter and thereby might assure neural encoding, such as spike timing-dependent synaptic plasticity. PMID:14990508
Neural networks for atmospheric retrievals
NASA Technical Reports Server (NTRS)
Motteler, Howard E.; Gualtieri, J. A.; Strow, L. Larrabee; Mcmillin, Larry
1993-01-01
We use neural networks to perform retrievals of temperature and water fractions from simulated clear air radiances for the Atmospheric Infrared Sounder (AIRS). Neural networks allow us to make effective use of the large AIRS channel set, and give good performance with noisy input. We retrieve surface temperature, air temperature at 64 distinct pressure levels, and water fractions at 50 distinct pressure levels. Using 728 temperature and surface sensitive channels, the RMS error for temperature retrievals with 0.2K input noise is 1.2K. Using 586 water and temperature sensitive channels, the mean error with 0.2K input noise is 16 percent. Our implementation of backpropagation training for neural networks on the 16,000-processor MasPar MP-1 runs at a rate of 90 million weight updates per second, and allows us to train large networks in a reasonable amount of time. Once trained, the network can be used to perform retrievals quickly on a workstation of moderate power.
Mutual information in a dilute, asymmetric neural network model
NASA Astrophysics Data System (ADS)
Greenfield, Elliot
We study the computational properties of a neural network consisting of binary neurons with dilute asymmetric synaptic connections. This simple model allows us to simulate large networks which can reflect more of the architecture and dynamics of real neural networks. Our main goal is to determine the dynamical behavior that maximizes the network's ability to perform computations. To this end, we apply information theory, measuring the average mutual information between pairs of pre- and post-synaptic neurons. Communication of information between neurons is an essential requirement for collective computation. Previous workers have demonstrated that neural networks with asymmetric connections undergo a transition from ordered to chaotic behavior as certain network parameters, such as the connectivity, are changed. We find that the average mutual information has a peak near the order-chaos transition, implying that the network can most efficiently communicate information between cells in this region. The mutual information peak becomes increasingly pronounced when the basic model is extended to incorporate more biologically realistic features, such as a variable threshold and nonlinear summation of inputs. We find that the peak in mutual information near the phase transition is a robust feature of the system for a wide range of assumptions about post-synaptic integration.
Chaotic, informational and synchronous behaviour of multiplex networks
NASA Astrophysics Data System (ADS)
Baptista, M. S.; Szmoski, R. M.; Pereira, R. F.; Pinto, S. E. De Souza
2016-03-01
The understanding of the relationship between topology and behaviour in interconnected networks would allow to charac- terise and predict behaviour in many real complex networks since both are usually not simultaneously known. Most previous studies have focused on the relationship between topology and synchronisation. In this work, we provide analytical formulas that shows how topology drives complex behaviour: chaos, information, and weak or strong synchronisation; in multiplex net- works with constant Jacobian. We also study this relationship numerically in multiplex networks of Hindmarsh-Rose neurons. Whereas behaviour in the analytically tractable network is a direct but not trivial consequence of the spectra of eigenvalues of the Laplacian matrix, where behaviour may strongly depend on the break of symmetry in the topology of interconnections, in Hindmarsh-Rose neural networks the nonlinear nature of the chemical synapses breaks the elegant mathematical connec- tion between the spectra of eigenvalues of the Laplacian matrix and the behaviour of the network, creating networks whose behaviour strongly depends on the nature (chemical or electrical) of the inter synapses.
Response of the parameters of a neural network to pseudoperiodic time series
NASA Astrophysics Data System (ADS)
Zhao, Yi; Weng, Tongfeng; Small, Michael
2014-02-01
We propose a representation plane constructed from parameters of a multilayer neural network, with the aim of characterizing the dynamical character of a learned time series. We find that fluctuation of this plane reveals distinct features of the time series. Specifically, a periodic representation plane corresponds to a periodic time series, even when contaminated with strong observational noise or dynamical noise. We present a theoretical explanation for how the neural network training algorithm adjusts parameters of this representation plane and thereby encodes the specific characteristics of the underlying system. This ability, which is intrinsic to the architecture of the neural network, can be employed to distinguish the chaotic time series from periodic counterparts. It provides a new path toward identifying the dynamics of pseudoperiodic time series. Furthermore, we extract statistics from the representation plane to quantify its character. We then validate this idea with various numerical data generated by the known periodic and chaotic dynamics and experimentally recorded human electrocardiogram data.
Training Neural Networks with Weight Constraints
1993-03-01
Hardware implementation of artificial neural networks imposes a variety of constraints. Finite weight magnitudes exist in both digital and analog...optimizing a network with weight constraints. Comparisons are made to the backpropagation training algorithm for networks with both unconstrained and hard-limited weight magnitudes. Neural networks , Analog, Digital, Stochastic
Terminal attractors in neural networks
NASA Technical Reports Server (NTRS)
Zak, Michail
1989-01-01
A new type of attractor (terminal attractors) for content-addressable memory, associative memory, and pattern recognition in artificial neural networks operating in continuous time is introduced. The idea of a terminal attractor is based upon a violation of the Lipschitz condition at a fixed point. As a result, the fixed point becomes a singular solution which envelopes the family of regular solutions, while each regular solution approaches such an attractor in finite time. It will be shown that terminal attractors can be incorporated into neural networks such that any desired set of these attractors with prescribed basins is provided by an appropriate selection of the synaptic weights. The applications of terminal attractors for content-addressable and associative memories, pattern recognition, self-organization, and for dynamical training are illustrated.
Fiber optic Adaline neural networks
NASA Astrophysics Data System (ADS)
Ghosh, Anjan K.; Trepka, Jim; Paparao, Palacharla
1993-02-01
Optoelectronic realization of adaptive filters and equalizers using fiber optic tapped delay lines and spatial light modulators has been discussed recently. We describe the design of a single layer fiber optic Adaline neural network which can be used as a bit pattern classifier. In our realization we employ as few electronic devices as possible and use optical computation to utilize the advantages of optics in processing speed, parallelism, and interconnection. The new optical neural network described in this paper is designed for optical processing of guided lightwave signals, not electronic signals. We analyzed the convergence or learning characteristics of the optically implemented Adaline in the presence of errors in the hardware, and we studied methods for improving the convergence rate of the Adaline.
Prototype neural network pattern recognition testbed
NASA Astrophysics Data System (ADS)
Worrell, Steven W.; Robertson, James A.; Varner, Thomas L.; Garvin, Charles G.
1991-02-01
Recent successes ofneural networks has led to an optimistic outlook for neural network applications to image processing(IP). This paperpresents a general architecture for performing comparative studies of neural processing and more conventional IF techniques as well as hybrid pattern recognition (PR) systems. Two hybrid PR systems have been simulated each of which incorporate both conventional and neural processing techniques.
Neural Network for Visual Search Classification
2007-11-02
neural network used to perform visual search classification. The neural network consists of a Learning vector quantization network (LVQ) and a single layer perceptron. The objective of this neural network is to classify the various human visual search patterns into predetermined classes. The classes signify the different search strategies used by individuals to scan the same target pattern. The input search patterns are quantified with respect to an ideal search pattern, determined by the user. A supervised learning rule,
Delayed standard neural network models for control systems.
Liu, Meiqin
2007-09-01
In order to conveniently analyze the stability of recurrent neural networks (RNNs) and successfully synthesize the controllers for nonlinear systems, similar to the nominal model in linear robust control theory, the novel neural network model, named delayed standard neural network model (DSNNM) is presented, which is the interconnection of a linear dynamic system and a bounded static delayed (or nondelayed) nonlinear operator. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability for the continuous-time DSNNMs (CDSNNMs) and discrete-time DSNNMs (DDSNNMs) are derived, whose conditions are formulated as linear matrix inequalities (LMIs). Based on the stability analysis, some state-feedback control laws for the DSNNM with input and output are designed to stabilize the closed-loop systems. Most RNNs and neurocontrol nonlinear systems with (or without) time delays can be transformed into the DSNNMs to be stability-analyzed or stabilization-synthesized in a unified way. In this paper, the DSNNMs are applied to analyzing the stability of the continuous-time and discrete-time RNNs with or without time delays, and synthesizing the state-feedback controllers for the chaotic neural-network-system and discrete-time nonlinear system. It turns out that the DSNNM makes the stability conditions of the RNNs easily verified, and provides a new idea for the synthesis of the controllers for the nonlinear systems.
The LILARTI neural network system
Allen, J.D. Jr.; Schell, F.M.; Dodd, C.V.
1992-10-01
The material of this Technical Memorandum is intended to provide the reader with conceptual and technical background information on the LILARTI neural network system of detail sufficient to confer an understanding of the LILARTI method as it is presently allied and to facilitate application of the method to problems beyond the scope of this document. Of particular importance in this regard are the descriptive sections and the Appendices which include operating instructions, partial listings of program output and data files, and network construction information.
Nakano, Hidehiro; Utani, Akihide; Miyauchi, Arata; Yamamoto, Hisao
2011-04-19
This paper studies chaos-based data gathering scheme in multiple sink wireless sensor networks. In the proposed scheme, each wireless sensor node has a simple chaotic oscillator. The oscillators generate spike signals with chaotic interspike intervals, and are impulsively coupled by the signals via wireless communication. Each wireless sensor node transmits and receives sensor information only in the timing of the couplings. The proposed scheme can exhibit various chaos synchronous phenomena and their breakdown phenomena, and can effectively gather sensor information with the significantly small number of transmissions and receptions compared with the conventional scheme. Also, the proposed scheme can flexibly adapt various wireless sensor networks not only with a single sink node but also with multiple sink nodes. This paper introduces our previous works. Through simulation experiments, we show effectiveness of the proposed scheme and discuss its development potential.
Neural network modeling of emotion
NASA Astrophysics Data System (ADS)
Levine, Daniel S.
2007-03-01
This article reviews the history and development of computational neural network modeling of cognitive and behavioral processes that involve emotion. The exposition starts with models of classical conditioning dating from the early 1970s. Then it proceeds toward models of interactions between emotion and attention. Then models of emotional influences on decision making are reviewed, including some speculative (not and not yet simulated) models of the evolution of decision rules. Through the late 1980s, the neural networks developed to model emotional processes were mainly embodiments of significant functional principles motivated by psychological data. In the last two decades, network models of these processes have become much more detailed in their incorporation of known physiological properties of specific brain regions, while preserving many of the psychological principles from the earlier models. Most network models of emotional processes so far have dealt with positive and negative emotion in general, rather than specific emotions such as fear, joy, sadness, and anger. But a later section of this article reviews a few models relevant to specific emotions: one family of models of auditory fear conditioning in rats, and one model of induced pleasure enhancing creativity in humans. Then models of emotional disorders are reviewed. The article concludes with philosophical statements about the essential contributions of emotion to intelligent behavior and the importance of quantitative theories and models to the interdisciplinary enterprise of understanding the interactions of emotion, cognition, and behavior.
Synchronization in node of complex networks consist of complex chaotic system
Wei, Qiang; Xie, Cheng-jun; Liu, Hong-jun; Li, Yan-hui
2014-07-15
A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.
Synchronization transmission of spatiotemporal chaotic signal in the uncertain time-varying network
NASA Astrophysics Data System (ADS)
Lü, Ling; Chen, Liansong; Han, Changhui; Ge, Lianjun; Gao, Liyu
2017-02-01
In this paper, a new method is presented for the synchronization transmission of spatiotemporal chaotic signal in the uncertain time-varying network. By designing a special function to construct the Lyapunov function of the network, it is sure that the uncertain time-varying network can effectively synchronize the spatiotemporal chaotic signal generated by the synchronization target. At the same time, we also design the identification laws of uncertain parameters and the adaptive laws of the time-varying coupling matrix elements. Especially in our work, the nodes of the uncertain time-varying network and the synchronization target are different. Obviously, this research has the reference value for the application fields.
Feature Extraction Using an Unsupervised Neural Network
1991-05-03
A novel unsupervised neural network for dimensionality reduction which seeks directions emphasizing distinguishing features in the data is presented. A statistical framework for the parameter estimation problem associated with this neural network is given and its connection to exploratory projection pursuit methods is established. The network is shown to minimize a loss function (projection index) over a
Neural networks and MIMD-multiprocessors
NASA Technical Reports Server (NTRS)
Vanhala, Jukka; Kaski, Kimmo
1990-01-01
Two artificial neural network models are compared. They are the Hopfield Neural Network Model and the Sparse Distributed Memory model. Distributed algorithms for both of them are designed and implemented. The run time characteristics of the algorithms are analyzed theoretically and tested in practice. The storage capacities of the networks are compared. Implementations are done using a distributed multiprocessor system.
Neural-Network Computer Transforms Coordinates
NASA Technical Reports Server (NTRS)
Josin, Gary M.
1990-01-01
Numerical simulation demonstrated ability of conceptual neural-network computer to generalize what it has "learned" from few examples. Ability to generalize achieved with even simple neural network (relatively few neurons) and after exposure of network to only few "training" examples. Ability to obtain fairly accurate mappings after only few training examples used to provide solutions to otherwise intractable mapping problems.
Satellite image analysis using neural networks
NASA Technical Reports Server (NTRS)
Sheldon, Roger A.
1990-01-01
The tremendous backlog of unanalyzed satellite data necessitates the development of improved methods for data cataloging and analysis. Ford Aerospace has developed an image analysis system, SIANN (Satellite Image Analysis using Neural Networks) that integrates the technologies necessary to satisfy NASA's science data analysis requirements for the next generation of satellites. SIANN will enable scientists to train a neural network to recognize image data containing scenes of interest and then rapidly search data archives for all such images. The approach combines conventional image processing technology with recent advances in neural networks to provide improved classification capabilities. SIANN allows users to proceed through a four step process of image classification: filtering and enhancement, creation of neural network training data via application of feature extraction algorithms, configuring and training a neural network model, and classification of images by application of the trained neural network. A prototype experimentation testbed was completed and applied to climatological data.
Oil reservoir properties estimation using neural networks
Toomarian, N.B.; Barhen, J.; Glover, C.W.; Aminzadeh, F.
1997-02-01
This paper investigates the applicability as well as the accuracy of artificial neural networks for estimating specific parameters that describe reservoir properties based on seismic data. This approach relies on JPL`s adjoint operators general purpose neural network code to determine the best suited architecture. The authors believe that results presented in this work demonstrate that artificial neural networks produce surprisingly accurate estimates of the reservoir parameters.
Adaptive optimization and control using neural networks
Mead, W.C.; Brown, S.K.; Jones, R.D.; Bowling, P.S.; Barnes, C.W.
1993-10-22
Recent work has demonstrated the ability of neural-network-based controllers to optimize and control machines with complex, non-linear, relatively unknown control spaces. We present a brief overview of neural networks via a taxonomy illustrating some capabilities of different kinds of neural networks. We present some successful control examples, particularly the optimization and control of a small-angle negative ion source.
Neural Network Retinal Model Real Time Implementation
1992-09-02
addresses the specific needs of vision processing. The goal of this SBIR Phase I project has been to take a significant neural network vision...application and to map it onto dedicated hardware for real time implementation. The neural network was already demonstrated using software simulation on a...general purpose computer. During Phase 1, HNC took a neural network model of the retina and, using HNC’s Vision Processor (ViP) prototype hardware
Neural Network False Alarm Filter. Volume 1.
1994-12-01
This effort identified, developed and demonstrated a set of approaches for applying neural network learning techniques to the development of a real... neural network models, 9 fault report causes and 12 common groups of BIT techniques was identified. From this space, 4 unique, high-potential...of their strengths and weaknesses were performed along with cost/ benefit analyses. This study concluded that the best candidates for neural network insert
A Neural Network Object Recognition System
1990-07-01
useful for exploring different neural network configurations. There are three main computation phases of a model based object recognition system...segmentation, feature extraction, and object classification. This report focuses on the object classification stage. For segmentation, a neural network based...are available with the current system. Neural network based feature extraction may be added at a later date. The classification stage consists of a
Neural Networks Applied to Signal Processing
1989-09-01
DTIC FILE COpy NAVAL POSTGRADUATE SCHOOL . Monterey, California Lf 0 (0 V’ STATES 4 THESIS NEURAL NETWORKS APPLIED TO SIGNAL PROCESSING by Mark D...FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO NO NO ACCESSION NO. 11. TITLE (Include Security Classification) NEURAL NETWORKS APPLIED TO...for public release; distribution is unlimited Neural Networks Applied to Signal Processing by Mark D. Baehre Captain, United States Army B.S., United
A Complexity Theory of Neural Networks
1991-08-09
Significant progress has been made in laying the foundations of a complexity theory of neural networks . The fundamental complexity classes have been...identified and studied. The class of problems solvable by small, shallow neural networks has been found to be the same class even if (1) probabilistic...behaviour (2)Multi-valued logic, and (3)analog behaviour, are allowed (subject to certain resonable technical assumptions). Neural networks can be
Chimera-like States in Modular Neural Networks
NASA Astrophysics Data System (ADS)
Hizanidis, Johanne; Kouvaris, Nikos E.; Gorka, Zamora-López; Díaz-Guilera, Albert; Antonopoulos, Chris G.
2016-01-01
Chimera states, namely the coexistence of coherent and incoherent behavior, were previously analyzed in complex networks. However, they have not been extensively studied in modular networks. Here, we consider a neural network inspired by the connectome of the C. elegans soil worm, organized into six interconnected communities, where neurons obey chaotic bursting dynamics. Neurons are assumed to be connected with electrical synapses within their communities and with chemical synapses across them. As our numerical simulations reveal, the coaction of these two types of coupling can shape the dynamics in such a way that chimera-like states can happen. They consist of a fraction of synchronized neurons which belong to the larger communities, and a fraction of desynchronized neurons which are part of smaller communities. In addition to the Kuramoto order parameter ρ, we also employ other measures of coherence, such as the chimera-like χ and metastability λ indices, which quantify the degree of synchronization among communities and along time, respectively. We perform the same analysis for networks that share common features with the C. elegans neural network. Similar results suggest that under certain assumptions, chimera-like states are prominent phenomena in modular networks, and might provide insight for the behavior of more complex modular networks.
Transient Spatiotemporal Chaos in a Synaptically Coupled Neural Network
NASA Astrophysics Data System (ADS)
Lafranceschina, Jacopo; Wackerbauer, Renate
2014-03-01
Spatiotemporal chaos is transient in a diffusively coupled Morris-Lecar neural network. This study shows that the addition of synaptic coupling in the ring network reduces the average lifetime of spatiotemporal chaos for small to intermediate coupling strength and almost all numbers of synapses. For large coupling strength, close to the threshold of excitation, the average lifetime increases beyond the value for only diffusive coupling, and the collapse to the rest state dominates over the collapse to a traveling pulse state. The regime of spatiotemporal chaos is characterized by a slightly increasing Lyaponov exponent and degree of phase coherence as the number of synaptic links increases. The presence of transient spatiotemporal chaos in a network of coupled neurons and the associated chaotic saddle provides a possibility for switching between metastable states observed in information processing and brain function. This research is supported by the University of Alaska Fairbanks.
Neural network architecture for crossbar switch control
NASA Technical Reports Server (NTRS)
Troudet, Terry P.; Walters, Stephen M.
1991-01-01
A Hopfield neural network architecture for the real-time control of a crossbar switch for switching packets at maximum throughput is proposed. The network performance and processing time are derived from a numerical simulation of the transitions of the neural network. A method is proposed to optimize electronic component parameters and synaptic connections, and it is fully illustrated by the computer simulation of a VLSI implementation of 4 x 4 neural net controller. The extension to larger size crossbars is demonstrated through the simulation of an 8 x 8 crossbar switch controller, where the performance of the neural computation is discussed in relation to electronic noise and inhomogeneities of network components.
Neural network based system for equipment surveillance
Vilim, R.B.; Gross, K.C.; Wegerich, S.W.
1998-04-28
A method and system are disclosed for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process. 33 figs.
Neural network based system for equipment surveillance
Vilim, Richard B.; Gross, Kenneth C.; Wegerich, Stephan W.
1998-01-01
A method and system for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process.
Advances in neural networks research: an introduction.
Kozma, Robert; Bressler, Steven; Perlovsky, Leonid; Venayagamoorthy, Ganesh Kumar
2009-01-01
The present Special Issue "Advances in Neural Networks Research: IJCNN2009" provides a state-of-art overview of the field of neural networks. It includes 39 papers from selected areas of the 2009 International Joint Conference on Neural Networks (IJCNN2009). IJCNN2009 took place on June 14-19, 2009 in Atlanta, Georgia, USA, and it represents an exemplary collaboration between the International Neural Networks Society and the IEEE Computational Intelligence Society. Topics in this issue include neuroscience and cognitive science, computational intelligence and machine learning, hybrid techniques, nonlinear dynamics and chaos, various soft computing technologies, intelligent signal processing and pattern recognition, bioinformatics and biomedicine, and engineering applications.
Electronic neural networks for global optimization
NASA Technical Reports Server (NTRS)
Thakoor, A. P.; Moopenn, A. W.; Eberhardt, S.
1990-01-01
An electronic neural network with feedback architecture, implemented in analog custom VLSI is described. Its application to problems of global optimization for dynamic assignment is discussed. The convergence properties of the neural network hardware are compared with computer simulation results. The neural network's ability to provide optimal or near optimal solutions within only a few neuron time constants, a speed enhancement of several orders of magnitude over conventional search methods, is demonstrated. The effect of noise on the circuit dynamics and the convergence behavior of the neural network hardware is also examined.
Neural Networks for Rapid Design and Analysis
NASA Technical Reports Server (NTRS)
Sparks, Dean W., Jr.; Maghami, Peiman G.
1998-01-01
Artificial neural networks have been employed for rapid and efficient dynamics and control analysis of flexible systems. Specifically, feedforward neural networks are designed to approximate nonlinear dynamic components over prescribed input ranges, and are used in simulations as a means to speed up the overall time response analysis process. To capture the recursive nature of dynamic components with artificial neural networks, recurrent networks, which use state feedback with the appropriate number of time delays, as inputs to the networks, are employed. Once properly trained, neural networks can give very good approximations to nonlinear dynamic components, and by their judicious use in simulations, allow the analyst the potential to speed up the analysis process considerably. To illustrate this potential speed up, an existing simulation model of a spacecraft reaction wheel system is executed, first conventionally, and then with an artificial neural network in place.
Aerodynamic Design Using Neural Networks
NASA Technical Reports Server (NTRS)
Rai, Man Mohan; Madavan, Nateri K.
2003-01-01
The design of aerodynamic components of aircraft, such as wings or engines, involves a process of obtaining the most optimal component shape that can deliver the desired level of component performance, subject to various constraints, e.g., total weight or cost, that the component must satisfy. Aerodynamic design can thus be formulated as an optimization problem that involves the minimization of an objective function subject to constraints. A new aerodynamic design optimization procedure based on neural networks and response surface methodology (RSM) incorporates the advantages of both traditional RSM and neural networks. The procedure uses a strategy, denoted parameter-based partitioning of the design space, to construct a sequence of response surfaces based on both neural networks and polynomial fits to traverse the design space in search of the optimal solution. Some desirable characteristics of the new design optimization procedure include the ability to handle a variety of design objectives, easily impose constraints, and incorporate design guidelines and rules of thumb. It provides an infrastructure for variable fidelity analysis and reduces the cost of computation by using less-expensive, lower fidelity simulations in the early stages of the design evolution. The initial or starting design can be far from optimal. The procedure is easy and economical to use in large-dimensional design space and can be used to perform design tradeoff studies rapidly. Designs involving multiple disciplines can also be optimized. Some practical applications of the design procedure that have demonstrated some of its capabilities include the inverse design of an optimal turbine airfoil starting from a generic shape and the redesign of transonic turbines to improve their unsteady aerodynamic characteristics.
Neural networks for nuclear spectroscopy
Keller, P.E.; Kangas, L.J.; Hashem, S.; Kouzes, R.T.
1995-12-31
In this paper two applications of artificial neural networks (ANNs) in nuclear spectroscopy analysis are discussed. In the first application, an ANN assigns quality coefficients to alpha particle energy spectra. These spectra are used to detect plutonium contamination in the work environment. The quality coefficients represent the levels of spectral degradation caused by miscalibration and foreign matter affecting the instruments. A set of spectra was labeled with quality coefficients by an expert and used to train the ANN expert system. Our investigation shows that the expert knowledge of spectral quality can be transferred to an ANN system. The second application combines a portable gamma-ray spectrometer with an ANN. In this system the ANN is used to automatically identify, radioactive isotopes in real-time from their gamma-ray spectra. Two neural network paradigms are examined: the linear perception and the optimal linear associative memory (OLAM). A comparison of the two paradigms shows that OLAM is superior to linear perception for this application. Both networks have a linear response and are useful in determining the composition of an unknown sample when the spectrum of the unknown is a linear superposition of known spectra. One feature of this technique is that it uses the whole spectrum in the identification process instead of only the individual photo-peaks. For this reason, it is potentially more useful for processing data from lower resolution gamma-ray spectrometers. This approach has been tested with data generated by Monte Carlo simulations and with field data from sodium iodide and Germanium detectors. With the ANN approach, the intense computation takes place during the training process. Once the network is trained, normal operation consists of propagating the data through the network, which results in rapid identification of samples. This approach is useful in situations that require fast response where precise quantification is less important.
Flow Control Using Neural Networks
2007-11-02
FEB 93 - 31 DEC 96 4. TITLE AND SUBTITLE 5 . FUNDING NUMBERS FLOW CONTROL USING NEURAL NETWORKS F49620-93-1-0135 61102F 6. AUTHOR(S) 2307/BS THORWALD...OFFICE OF SCIENTIFIC RESEARCH (AFOSRO AGENCY REPORT NUMBER 110 DUNCAN AVENUE, ROOM B115 BOLLING AFB DC 20332- 8050 11. SUPPLEMENTARY NOTES 12a...signals. Figure 5 shows a time series for an actuator that performs a ramp motion in the streamwise direction over about 1 % of the TS period and remains
Neural Network Classifies Teleoperation Data
NASA Technical Reports Server (NTRS)
Fiorini, Paolo; Giancaspro, Antonio; Losito, Sergio; Pasquariello, Guido
1994-01-01
Prototype artificial neural network, implemented in software, identifies phases of telemanipulator tasks in real time by analyzing feedback signals from force sensors on manipulator hand. Prototype is early, subsystem-level product of continuing effort to develop automated system that assists in training and supervising human control operator: provides symbolic feedback (e.g., warnings of impending collisions or evaluations of performance) to operator in real time during successive executions of same task. Also simplifies transition between teleoperation and autonomous modes of telerobotic system.
The Laplacian spectrum of neural networks.
de Lange, Siemon C; de Reus, Marcel A; van den Heuvel, Martijn P
2014-01-13
The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these "conventional" graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks.
Lyapunov exponents from CHUA's circuit time series using artificial neural networks
NASA Technical Reports Server (NTRS)
Gonzalez, J. Jesus; Espinosa, Ismael E.; Fuentes, Alberto M.
1995-01-01
In this paper we present the general problem of identifying if a nonlinear dynamic system has a chaotic behavior. If the answer is positive the system will be sensitive to small perturbations in the initial conditions which will imply that there is a chaotic attractor in its state space. A particular problem would be that of identifying a chaotic oscillator. We present an example of three well known different chaotic oscillators where we have knowledge of the equations that govern the dynamical systems and from there we can obtain the corresponding time series. In a similar example we assume that we only know the time series and, finally, in another example we have to take measurements in the Chua's circuit to obtain sample points of the time series. With the knowledge about the time series the phase plane portraits are plotted and from them, by visual inspection, it is concluded whether or not the system is chaotic. This method has the problem of uncertainty and subjectivity and for that reason a different approach is needed. A quantitative approach is the computation of the Lyapunov exponents. We describe several methods for obtaining them and apply a little known method of artificial neural networks to the different examples mentioned above. We end the paper discussing the importance of the Lyapunov exponents in the interpretation of the dynamic behavior of biological neurons and biological neural networks.
Three dimensional living neural networks
NASA Astrophysics Data System (ADS)
Linnenberger, Anna; McLeod, Robert R.; Basta, Tamara; Stowell, Michael H. B.
2015-08-01
We investigate holographic optical tweezing combined with step-and-repeat maskless projection micro-stereolithography for fine control of 3D positioning of living cells within a 3D microstructured hydrogel grid. Samples were fabricated using three different cell lines; PC12, NT2/D1 and iPSC. PC12 cells are a rat cell line capable of differentiation into neuron-like cells NT2/D1 cells are a human cell line that exhibit biochemical and developmental properties similar to that of an early embryo and when exposed to retinoic acid the cells differentiate into human neurons useful for studies of human neurological disease. Finally induced pluripotent stem cells (iPSC) were utilized with the goal of future studies of neural networks fabricated from human iPSC derived neurons. Cells are positioned in the monomer solution with holographic optical tweezers at 1064 nm and then are encapsulated by photopolymerization of polyethylene glycol (PEG) hydrogels formed by thiol-ene photo-click chemistry via projection of a 512x512 spatial light modulator (SLM) illuminated at 405 nm. Fabricated samples are incubated in differentiation media such that cells cease to divide and begin to form axons or axon-like structures. By controlling the position of the cells within the encapsulating hydrogel structure the formation of the neural circuits is controlled. The samples fabricated with this system are a useful model for future studies of neural circuit formation, neurological disease, cellular communication, plasticity, and repair mechanisms.
Neural Network Controlled Visual Saccades
NASA Astrophysics Data System (ADS)
Johnson, Jeffrey D.; Grogan, Timothy A.
1989-03-01
The paper to be presented will discuss research on a computer vision system controlled by a neural network capable of learning through classical (Pavlovian) conditioning. Through the use of unconditional stimuli (reward and punishment) the system will develop scan patterns of eye saccades necessary to differentiate and recognize members of an input set. By foveating only those portions of the input image that the system has found to be necessary for recognition the drawback of computational explosion as the size of the input image grows is avoided. The model incorporates many features found in animal vision systems, and is governed by understandable and modifiable behavior patterns similar to those reported by Pavlov in his classic study. These behavioral patterns are a result of a neuronal model, used in the network, explicitly designed to reproduce this behavior.
ROBUST TIMING AND MOTOR PATTERNS BY TAMING CHAOS IN RECURRENT NEURAL NETWORKS
Laje, Rodrigo; Buonomano, Dean V.
2013-01-01
The brain’s ability to tell time and produce complex spatiotemporal motor patterns is critical to anticipating the next ring of a telephone or playing a musical instrument. One class of models proposes that these abilities emerge from dynamically changing patterns of neural activity generated within recurrent neural networks. However, the relevant dynamic regimes of recurrent networks are highly sensitive to noise, i.e., chaotic. We describe a firing rate model that tells time on the order of seconds and generates complex spatiotemporal patterns in the presence of high levels of noise. This is achieved through the tuning of the recurrent connections. The network operates in a novel dynamic regime that exhibits coexisting chaotic and locally stable trajectories. These stable patterns function as “dynamic attractors” and provide a novel feature characteristic of biological systems: the ability to “return” to the pattern being generated in the face of perturbations. PMID:23708144
Hand Gesture Recognition Using Neural Networks.
1996-05-01
inherent in the model. The high gesture recognition rates and quick network retraining times found in the present study suggest that a neural network approach to gesture recognition be further evaluated.
A new formulation for feedforward neural networks.
Razavi, Saman; Tolson, Bryan A
2011-10-01
Feedforward neural network is one of the most commonly used function approximation techniques and has been applied to a wide variety of problems arising from various disciplines. However, neural networks are black-box models having multiple challenges/difficulties associated with training and generalization. This paper initially looks into the internal behavior of neural networks and develops a detailed interpretation of the neural network functional geometry. Based on this geometrical interpretation, a new set of variables describing neural networks is proposed as a more effective and geometrically interpretable alternative to the traditional set of network weights and biases. Then, this paper develops a new formulation for neural networks with respect to the newly defined variables; this reformulated neural network (ReNN) is equivalent to the common feedforward neural network but has a less complex error response surface. To demonstrate the learning ability of ReNN, in this paper, two training methods involving a derivative-based (a variation of backpropagation) and a derivative-free optimization algorithms are employed. Moreover, a new measure of regularization on the basis of the developed geometrical interpretation is proposed to evaluate and improve the generalization ability of neural networks. The value of the proposed geometrical interpretation, the ReNN approach, and the new regularization measure are demonstrated across multiple test problems. Results show that ReNN can be trained more effectively and efficiently compared to the common neural networks and the proposed regularization measure is an effective indicator of how a network would perform in terms of generalization.
Extrapolation limitations of multilayer feedforward neural networks
NASA Technical Reports Server (NTRS)
Haley, Pamela J.; Soloway, Donald
1992-01-01
The limitations of backpropagation used as a function extrapolator were investigated. Four common functions were used to investigate the network's extrapolation capability. The purpose of the experiment was to determine whether neural networks are capable of extrapolation and, if so, to determine the range for which networks can extrapolate. The authors show that neural networks cannot extrapolate and offer an explanation to support this result.
Problem Specific applications for Neural Networks
1988-12-01
97 iv List Of Figures Figure Page 1. Neural Network Models ...... ............. 2 2. A Single - Layer Perceptron ..... ........... 4...the network is in use. Three of the most well-known neural networks are the single - layer perceptron , the multi-layer perceptron, and the Kohonen self...three of these networks can accept discrete (binary) or continuous inputs (5:6). 3 Single-Laver Perceptron. The single - layer perceptron (shown in Figure 2
Drift chamber tracking with neural networks
Lindsey, C.S.; Denby, B.; Haggerty, H.
1992-10-01
We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.
Bodruzzaman, M.
1995-12-31
This report summarizes work on chaotic behavior control in FBC systems. An update is given to the chaos control method designed to control the chaotic behavior in an FBC system; this method inludes a fully recurrent neural network called the Dynamic System Imitator (DSI). DSI mimics the behavior of a wide variety of dynamic systems in the real world; it was used for modeling linear, nonlinear and chaotic systems, and is also used for iterative prediction of chaotic system behavior. A general methodology for using the DSI to control a nonlinear system is applied to control the chaotic behavior of the Lorenz System. A plan is also outlined for using this method to the FBC system for predicting and controlling its chaotic behavior. Chaotic pressure data from an experimental FBC system was obtained (from METC) on normal and abnormal mixing. Results of chaos analysis applied to these data are presented. These techniques are used to identify the system behavior at different conditions, estimate system order, construct the system attractor, and locate the chaotic behavior in the pressure-drop time series data. Preliminary analysis show that both normal and abnormal conditions of FBC have chaotic characteristics. Objective is to develop a neuro-chaos controller to preserve the normal operational performance of the system.
Coherence resonance in bursting neural networks.
Kim, June Hoan; Lee, Ho Jun; Min, Cheol Hong; Lee, Kyoung J
2015-10-01
Synchronized neural bursts are one of the most noticeable dynamic features of neural networks, being essential for various phenomena in neuroscience, yet their complex dynamics are not well understood. With extrinsic electrical and optical manipulations on cultured neural networks, we demonstrate that the regularity (or randomness) of burst sequences is in many cases determined by a (few) low-dimensional attractor(s) working under strong neural noise. Moreover, there is an optimal level of noise strength at which the regularity of the interburst interval sequence becomes maximal-a phenomenon of coherence resonance. The experimental observations are successfully reproduced through computer simulations on a well-established neural network model, suggesting that the same phenomena may occur in many in vivo as well as in vitro neural networks.
Neural Network Classification of Cerebral Embolic Signals
2007-11-02
application of new signal processing techniques to the analysis and classification of embolic signals. We applied a Wavelet Neural Network algorithm...to approximate the embolic signals, with the parameters of the wavelet nodes being used to train a Neural Network to classify these signals as resulting from normal flow, or from gaseous or solid emboli.
Multidisciplinary Studies of Integrated Neural Network Systems
1994-03-01
They accomplish this by partitioning the system into functional sub-units in a quasi-hierarchical structure of neural network modules. We studied...three specific examples of this system integration strategy and modeled their operation for the purpose of creating new neural network architectures and
Neural Network Research: A Personal Perspective,
1988-03-01
These vision preprocessor and ART autonomous classifier examples are just two of the many neural network architectures now being developed by...computational theories with natural realizations as real-time adaptive neural network architectures with promising properties for tackling some of the
Neural Network Based Helicopter Low Airspeed Indicator
1996-10-24
This invention relates generally to virtual sensors and, more particularly, to a means and method utilizing a neural network for estimating...helicopter airspeed at speeds below about 50 knots using only fixed system parameters (i.e., parameters measured or determined in a reference frame fixed relative to the helicopter fuselage) as inputs to the neural network .
Evolving Neural Networks for Nonlinear Control.
1996-09-30
An approach to creating Amorphous Recurrent Neural Networks (ARNN) using Genetic Algorithms (GA) called 2pGA has been developed and shown to be...effective in evolving neural networks for the control and stabilization of both linear and nonlinear plants, the optimal control for a nonlinear regulator
Online guidance updates using neural networks
NASA Astrophysics Data System (ADS)
Filici, Cristian; Sánchez Peña, Ricardo S.
2010-02-01
The aim of this article is to present a method for the online guidance update for a launcher ascent trajectory that is based on the utilization of a neural network approximator. Generation of training patterns and selection of the input and output spaces of the neural network are presented, and implementation issues are discussed. The method is illustrated by a 2-dimensional launcher simulation.
Neural network based architectures for aerospace applications
NASA Technical Reports Server (NTRS)
Ricart, Richard
1987-01-01
A brief history of the field of neural networks research is given and some simple concepts are described. In addition, some neural network based avionics research and development programs are reviewed. The need for the United States Air Force and NASA to assume a leadership role in supporting this technology is stressed.
Isolated Speech Recognition Using Artificial Neural Networks
2007-11-02
In this project Artificial Neural Networks are used as research tool to accomplish Automated Speech Recognition of normal speech. A small size...the first stage of this work are satisfactory and thus the application of artificial neural networks in conjunction with cepstral analysis in isolated word recognition holds promise.
Self-organization of neural networks
NASA Astrophysics Data System (ADS)
Clark, John W.; Winston, Jeffrey V.; Rafelski, Johann
1984-05-01
The plastic development of a neural-network model operating autonomously in discrete time is described by the temporal modification of interneuronal coupling strengths according to momentary neural activity. A simple algorithm (“brainwashing”) is found which, applied to nets with initially quasirandom connectivity, leads to model networks with properties conductive to the simulation of memory and learning phenomena.
Neural network classification - A Bayesian interpretation
NASA Technical Reports Server (NTRS)
Wan, Eric A.
1990-01-01
The relationship between minimizing a mean squared error and finding the optimal Bayesian classifier is reviewed. This provides a theoretical interpretation for the process by which neural networks are used in classification. A number of confidence measures are proposed to evaluate the performance of the neural network classifier within a statistical framework.
Radiation Behavior of Analog Neural Network Chip
NASA Technical Reports Server (NTRS)
Langenbacher, H.; Zee, F.; Daud, T.; Thakoor, A.
1996-01-01
A neural network experiment conducted for the Space Technology Research Vehicle (STRV-1) 1-b launched in June 1994. Identical sets of analog feed-forward neural network chips was used to study and compare the effects of space and ground radiation on the chips. Three failure mechanisms are noted.
Medical image analysis with artificial neural networks.
Jiang, J; Trundle, P; Ren, J
2010-12-01
Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging.
Neural Networks for Handwritten English Alphabet Recognition
NASA Astrophysics Data System (ADS)
Perwej, Yusuf; Chaturvedi, Ashish
2011-04-01
This paper demonstrates the use of neural networks for developing a system that can recognize hand-written English alphabets. In this system, each English alphabet is represented by binary values that are used as input to a simple feature extraction system, whose output is fed to our neural network system.
A Survey of Neural Network Publications.
ERIC Educational Resources Information Center
Vijayaraman, Bindiganavale S.; Osyk, Barbara
This paper is a survey of publications on artificial neural networks published in business journals for the period ending July 1996. Its purpose is to identify and analyze trends in neural network research during that period. This paper shows which topics have been heavily researched, when these topics were researched, and how that research has…
Applications of Neural Networks in Finance.
ERIC Educational Resources Information Center
Crockett, Henry; Morrison, Ronald
1994-01-01
Discusses research with neural networks in the area of finance. Highlights include bond pricing, theoretical exposition of primary bond pricing, bond pricing regression model, and an example that created networks with corporate bonds and NeuralWare Neuralworks Professional H software using the back-propagation technique. (LRW)
Neural Network Algorithm for Particle Loading
J. L. V. Lewandowski
2003-04-25
An artificial neural network algorithm for continuous minimization is developed and applied to the case of numerical particle loading. It is shown that higher-order moments of the probability distribution function can be efficiently renormalized using this technique. A general neural network for the renormalization of an arbitrary number of moments is given.
Adaptive Neurons For Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1990-01-01
Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.
Neural networks applications to control and computations
NASA Technical Reports Server (NTRS)
Luxemburg, Leon A.
1994-01-01
Several interrelated problems in the area of neural network computations are described. First an interpolation problem is considered, then a control problem is reduced to a problem of interpolation by a neural network via Lyapunov function approach, and finally a new, faster method of learning as compared with the gradient descent method, was introduced.
Forecasting Jet Fuel Prices Using Artificial Neural Networks.
1995-03-01
Artificial neural networks provide a new approach to commodity forecasting that does not require algorithm or rule development. Neural networks have...NeuralWare, more people can take advantage of the power of artificial neural networks . This thesis provides an introduction to neural networks, and reviews
Introduction to Concepts in Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Niebur, Dagmar
1995-01-01
This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.
Oscillations and chaos in neural networks: an exactly solvable model.
Wang, L P; Pichler, E E; Ross, J
1990-01-01
We consider a randomly diluted higher-order network with noise, consisting of McCulloch-Pitts neurons that interact by Hebbian-type connections. For this model, exact dynamical equations are derived and solved for both parallel and random sequential updating algorithms. For parallel dynamics, we find a rich spectrum of different behaviors including static retrieving and oscillatory and chaotic phenomena in different parts of the parameter space. The bifurcation parameters include first- and second-order neuronal interaction coefficients and a rescaled noise level, which represents the combined effects of the random synaptic dilution, interference between stored patterns, and additional background noise. We show that a marked difference in terms of the occurrence of oscillations or chaos exists between neural networks with parallel and random sequential dynamics. Images PMID:2251287
Pruning artificial neural networks using neural complexity measures.
Jorgensen, Thomas D; Haynes, Barry P; Norlund, Charlotte C F
2008-10-01
This paper describes a new method for pruning artificial neural networks, using a measure of the neural complexity of the neural network. This measure is used to determine the connections that should be pruned. The measure computes the information-theoretic complexity of a neural network, which is similar to, yet different from previous research on pruning. The method proposed here shows how overly large and complex networks can be reduced in size, whilst retaining learnt behaviour and fitness. The technique proposed here helps to discover a network topology that matches the complexity of the problem it is meant to solve. This novel pruning technique is tested in a robot control domain, simulating a racecar. It is shown, that the proposed pruning method is a significant improvement over the most commonly used pruning method Magnitude Based Pruning. Furthermore, some of the pruned networks prove to be faster learners than the benchmark network that they originate from. This means that this pruning method can also help to unleash hidden potential in a network, because the learning time decreases substantially for a pruned a network, due to the reduction of dimensionality of the network.
Enhancing neural-network performance via assortativity
Franciscis, Sebastiano de; Johnson, Samuel; Torres, Joaquin J.
2011-03-15
The performance of attractor neural networks has been shown to depend crucially on the heterogeneity of the underlying topology. We take this analysis a step further by examining the effect of degree-degree correlations - assortativity - on neural-network behavior. We make use of a method recently put forward for studying correlated networks and dynamics thereon, both analytically and computationally, which is independent of how the topology may have evolved. We show how the robustness to noise is greatly enhanced in assortative (positively correlated) neural networks, especially if it is the hub neurons that store the information.
Enhancing neural-network performance via assortativity.
de Franciscis, Sebastiano; Johnson, Samuel; Torres, Joaquín J
2011-03-01
The performance of attractor neural networks has been shown to depend crucially on the heterogeneity of the underlying topology. We take this analysis a step further by examining the effect of degree-degree correlations--assortativity--on neural-network behavior. We make use of a method recently put forward for studying correlated networks and dynamics thereon, both analytically and computationally, which is independent of how the topology may have evolved. We show how the robustness to noise is greatly enhanced in assortative (positively correlated) neural networks, especially if it is the hub neurons that store the information.
Sunspot prediction using neural networks
NASA Technical Reports Server (NTRS)
Villarreal, James; Baffes, Paul
1990-01-01
The earliest systematic observance of sunspot activity is known to have been discovered by the Chinese in 1382 during the Ming Dynasty (1368 to 1644) when spots on the sun were noticed by looking at the sun through thick, forest fire smoke. Not until after the 18th century did sunspot levels become more than a source of wonderment and curiosity. Since 1834 reliable sunspot data has been collected by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Naval Observatory. Recently, considerable effort has been placed upon the study of the effects of sunspots on the ecosystem and the space environment. The efforts of the Artificial Intelligence Section of the Mission Planning and Analysis Division of the Johnson Space Center involving the prediction of sunspot activity using neural network technologies are described.
Wavelet differential neural network observer.
Chairez, Isaac
2009-09-01
State estimation for uncertain systems affected by external noises is an important problem in control theory. This paper deals with a state observation problem when the dynamic model of a plant contains uncertainties or it is completely unknown. Differential neural network (NN) approach is applied in this uninformative situation but with activation functions described by wavelets. A new learning law, containing an adaptive adjustment rate, is suggested to imply the stability condition for the free parameters of the observer. Nominal weights are adjusted during the preliminary training process using the least mean square (LMS) method. Lyapunov theory is used to obtain the upper bounds for the weights dynamics as well as for the mean squared estimation error. Two numeric examples illustrate this approach: first, a nonlinear electric system, governed by the Chua's equation and second the Lorentz oscillator. Both systems are assumed to be affected by external perturbations and their parameters are unknown.
Tampa Electric Neural Network Sootblowing
Mark A. Rhode
2002-09-30
Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NO{sub x} formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent soot-blowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, online, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce {sub x} emissions and improve heat rate
Tampa Electric Neural Network Sootblowing
Mark A. Rhode
2004-09-30
Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NOx formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent sootblowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate around
Tampa Electric Neural Network Sootblowing
Mark A. Rhode
2004-03-31
Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NOx formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing co-funding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent sootblowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate around
Tampa Electric Neural Network Sootblowing
Mark A. Rhode
2003-12-31
Boiler combustion dynamics change continuously due to several factors including coal quality, boiler loading, ambient conditions, changes in slag/soot deposits and the condition of plant equipment. NO{sub x} formation, Particulate Matter (PM) emissions, and boiler thermal performance are directly affected by the sootblowing practices on a unit. As part of its Power Plant Improvement Initiative program, the US DOE is providing cofunding (DE-FC26-02NT41425) and NETL is the managing agency for this project at Tampa Electric's Big Bend Station. This program serves to co-fund projects that have the potential to increase thermal efficiency and reduce emissions from coal-fired utility boilers. A review of the Big Bend units helped identify intelligent sootblowing as a suitable application to achieve the desired objectives. The existing sootblower control philosophy uses sequential schemes, whose frequency is either dictated by the control room operator or is timed based. The intent of this project is to implement a neural network based intelligent soot-blowing system, in conjunction with state-of-the-art controls and instrumentation, to optimize the operation of a utility boiler and systematically control boiler fouling. Utilizing unique, on-line, adaptive technology, operation of the sootblowers can be dynamically controlled based on real-time events and conditions within the boiler. This could be an extremely cost-effective technology, which has the ability to be readily and easily adapted to virtually any pulverized coal fired boiler. Through unique on-line adaptive technology, Neural Network-based systems optimize the boiler operation by accommodating equipment performance changes due to wear and maintenance activities, adjusting to fluctuations in fuel quality, and improving operating flexibility. The system dynamically adjusts combustion setpoints and bias settings in closed-loop supervisory control to simultaneously reduce NO{sub x} emissions and improve heat rate
Neural networks for damage identification
Paez, T.L.; Klenke, S.E.
1997-11-01
Efforts to optimize the design of mechanical systems for preestablished use environments and to extend the durations of use cycles establish a need for in-service health monitoring. Numerous studies have proposed measures of structural response for the identification of structural damage, but few have suggested systematic techniques to guide the decision as to whether or not damage has occurred based on real data. Such techniques are necessary because in field applications the environments in which systems operate and the measurements that characterize system behavior are random. This paper investigates the use of artificial neural networks (ANNs) to identify damage in mechanical systems. Two probabilistic neural networks (PNNs) are developed and used to judge whether or not damage has occurred in a specific mechanical system, based on experimental measurements. The first PNN is a classical type that casts Bayesian decision analysis into an ANN framework; it uses exemplars measured from the undamaged and damaged system to establish whether system response measurements of unknown origin come from the former class (undamaged) or the latter class (damaged). The second PNN establishes the character of the undamaged system in terms of a kernel density estimator of measures of system response; when presented with system response measures of unknown origin, it makes a probabilistic judgment whether or not the data come from the undamaged population. The physical system used to carry out the experiments is an aerospace system component, and the environment used to excite the system is a stationary random vibration. The results of damage identification experiments are presented along with conclusions rating the effectiveness of the approaches.
Bob, P; Susta, M; Procházková-Vecerová, A; Kukleta, M; Pavlát, J; Jagla, F; Raboch, J
2006-01-01
According to recent findings activation of anterior cingulate cortex (ACC) is related to detecting cognitive conflict. This conflict related activation elicits autonomic responses which can be assessed by psychophysiological measures such as heart rate variability calculated as beat to beat R-R intervals (RRI). Recent findings in neuroscience also suggest that cognitive conflict is related to specific nonlinear chaotic changes of the signal generated by neural systems. The present study used Stroop word-color test as an experimental approach to psychophysiological study of cognitive conflict in connection with RRI measurement, psychometric measurement of limbic irritability (LSCL-33), depression (BDI-II) and calculation of largest Lyapunov exponents in nonlinear data analysis of RRI time series. Significant correlation 0.61 between largest Lyapunov exponents and LSCL-33 found in this study indicate that a defect of neural inhibition during conflicting Stroop task is closely related to limbic irritability. Because limbic irritability is probably closely related to epileptiform abnormalities in the temporolimbic structures, this result might represent useful instrument for indication of anticonvulsant treatment in depressive patients who are resistant to antidepressant medication.
Self: an adaptive pressure arising from self-organization, chaotic dynamics, and neural Darwinism.
Bruzzo, Angela Alessia; Vimal, Ram Lakhan Pandey
2007-12-01
In this article, we establish a model to delineate the emergence of "self" in the brain making recourse to the theory of chaos. Self is considered as the subjective experience of a subject. As essential ingredients of subjective experiences, our model includes wakefulness, re-entry, attention, memory, and proto-experiences. The stability as stated by chaos theory can potentially describe the non-linear function of "self" as sensitive to initial conditions and can characterize it as underlying order from apparently random signals. Self-similarity is discussed as a latent menace of a pathological confusion between "self" and "others". Our test hypothesis is that (1) consciousness might have emerged and evolved from a primordial potential or proto-experience in matter, such as the physical attractions and repulsions experienced by electrons, and (2) "self" arises from chaotic dynamics, self-organization and selective mechanisms during ontogenesis, while emerging post-ontogenically as an adaptive pressure driven by both volume and synaptic-neural transmission and influencing the functional connectivity of neural nets (structure).
Nonlinear programming with feedforward neural networks.
Reifman, J.
1999-06-02
We provide a practical and effective method for solving constrained optimization problems by successively training a multilayer feedforward neural network in a coupled neural-network/objective-function representation. Nonlinear programming problems are easily mapped into this representation which has a simpler and more transparent method of solution than optimization performed with Hopfield-like networks and poses very mild requirements on the functions appearing in the problem. Simulation results are illustrated and compared with an off-the-shelf optimization tool.
VLSI Cells Placement Using the Neural Networks
Azizi, Hacene; Zouaoui, Lamri; Mokhnache, Salah
2008-06-12
The artificial neural networks have been studied for several years. Their effectiveness makes it possible to expect high performances. The privileged fields of these techniques remain the recognition and classification. Various applications of optimization are also studied under the angle of the artificial neural networks. They make it possible to apply distributed heuristic algorithms. In this article, a solution to placement problem of the various cells at the time of the realization of an integrated circuit is proposed by using the KOHONEN network.
Traveling phase waves in asymmetric networks of noisy chaotic attractors
NASA Astrophysics Data System (ADS)
Peron, Thomas K. DM.; Kurths, Jürgen; Rodrigues, Francisco A.; Schimansky-Geier, Lutz; Sonnenschein, Bernard
2016-10-01
We explore identical Rössler systems organized into two equally sized groups, among which differing positive and negative in- and out-coupling strengths are allowed. With this asymmetric coupling, we analyze patterns in the phase dynamics that coexist with chaotic amplitudes. We specifically investigate traveling phase waves where the oscillators settle on a new rhythm different from their own. We show that these waves are possible even without coherence in the phase angles. It is further demonstrated that the emergence of these incoherent traveling waves depends on the type of coupling, not on the individual dynamics of the Rössler systems. Together with the study of noise effects, our results suggest a promising new avenue toward the interplay of chaotic, noisy, coherent, and incoherent collective dynamics.
Traveling phase waves in asymmetric networks of noisy chaotic attractors.
Peron, Thomas K Dm; Kurths, Jürgen; Rodrigues, Francisco A; Schimansky-Geier, Lutz; Sonnenschein, Bernard
2016-10-01
We explore identical Rössler systems organized into two equally sized groups, among which differing positive and negative in- and out-coupling strengths are allowed. With this asymmetric coupling, we analyze patterns in the phase dynamics that coexist with chaotic amplitudes. We specifically investigate traveling phase waves where the oscillators settle on a new rhythm different from their own. We show that these waves are possible even without coherence in the phase angles. It is further demonstrated that the emergence of these incoherent traveling waves depends on the type of coupling, not on the individual dynamics of the Rössler systems. Together with the study of noise effects, our results suggest a promising new avenue toward the interplay of chaotic, noisy, coherent, and incoherent collective dynamics.
Neural network regulation driven by autonomous neural firings
NASA Astrophysics Data System (ADS)
Cho, Myoung Won
2016-07-01
Biological neurons naturally fire spontaneously due to the existence of a noisy current. Such autonomous firings may provide a driving force for network formation because synaptic connections can be modified due to neural firings. Here, we study the effect of autonomous firings on network formation. For the temporally asymmetric Hebbian learning, bidirectional connections lose their balance easily and become unidirectional ones. Defining the difference between reciprocal connections as new variables, we could express the learning dynamics as if Ising model spins interact with each other in magnetism. We present a theoretical method to estimate the interaction between the new variables in a neural system. We apply the method to some network systems and find some tendencies of autonomous neural network regulation.
Object detection using pulse coupled neural networks.
Ranganath, H S; Kuntimad, G
1999-01-01
This paper describes an object detection system based on pulse coupled neural networks. The system is designed and implemented to illustrate the power, flexibility and potential the pulse coupled neural networks have in real-time image processing. In the preprocessing stage, a pulse coupled neural network suppresses noise by smoothing the input image. In the segmentation stage, a second pulse coupled neural-network iteratively segments the input image. During each iteration, with the help of a control module, the segmentation network deletes regions that do not satisfy the retention criteria from further processing and produces an improved segmentation of the retained image. In the final stage each group of connected regions that satisfies the detection criteria is identified as an instance of the object of interest.
A neural network prototyping package within IRAF
NASA Technical Reports Server (NTRS)
Bazell, D.; Bankman, I.
1992-01-01
We outline our plans for incorporating a Neural Network Prototyping Package into the IRAF environment. The package we are developing will allow the user to choose between different types of networks and to specify the details of the particular architecture chosen. Neural networks consist of a highly interconnected set of simple processing units. The strengths of the connections between units are determined by weights which are adaptively set as the network 'learns'. In some cases, learning can be a separate phase of the user cycle of the network while in other cases the network learns continuously. Neural networks have been found to be very useful in pattern recognition and image processing applications. They can form very general 'decision boundaries' to differentiate between objects in pattern space and they can be used for associative recall of patterns based on partial cures and for adaptive filtering. We discuss the different architectures we plan to use and give examples of what they can do.
Description of interatomic interactions with neural networks
NASA Astrophysics Data System (ADS)
Hajinazar, Samad; Shao, Junping; Kolmogorov, Aleksey N.
Neural networks are a promising alternative to traditional classical potentials for describing interatomic interactions. Recent research in the field has demonstrated how arbitrary atomic environments can be represented with sets of general functions which serve as an input for the machine learning tool. We have implemented a neural network formalism in the MAISE package and developed a protocol for automated generation of accurate models for multi-component systems. Our tests illustrate the performance of neural networks and known classical potentials for a range of chemical compositions and atomic configurations. Supported by NSF Grant DMR-1410514.
Pricing financial derivatives with neural networks
NASA Astrophysics Data System (ADS)
Morelli, Marco J.; Montagna, Guido; Nicrosini, Oreste; Treccani, Michele; Farina, Marco; Amato, Paolo
2004-07-01
Neural network algorithms are applied to the problem of option pricing and adopted to simulate the nonlinear behavior of such financial derivatives. Two different kinds of neural networks, i.e. multi-layer perceptrons and radial basis functions, are used and their performances compared in detail. The analysis is carried out both for standard European options and American ones, including evaluation of the Greek letters, necessary for hedging purposes. Detailed numerical investigation show that, after a careful phase of training, neural networks are able to predict the value of options and Greek letters with high accuracy and competitive computational time.
Genetic algorithm for neural networks optimization
NASA Astrophysics Data System (ADS)
Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta
2004-11-01
This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.
Noise cancellation of memristive neural networks.
Wen, Shiping; Zeng, Zhigang; Huang, Tingwen; Yu, Xinghuo
2014-12-01
This paper investigates noise cancellation problem of memristive neural networks. Based on the reproducible gradual resistance tuning in bipolar mode, a first-order voltage-controlled memristive model is employed with asymmetric voltage thresholds. Since memristive devices are especially tiny to be densely packed in crossbar-like structures and possess long time memory needed by neuromorphic synapses, this paper shows how to approximate the behavior of synapses in neural networks using this memristive device. Also certain templates of memristive neural networks are established to implement the noise cancellation.
Multispectral image fusion using neural networks
NASA Technical Reports Server (NTRS)
Kagel, J. H.; Platt, C. A.; Donaven, T. W.; Samstad, E. A.
1990-01-01
A prototype system is being developed to demonstrate the use of neural network hardware to fuse multispectral imagery. This system consists of a neural network IC on a motherboard, a circuit card assembly, and a set of software routines hosted by a PC-class computer. Research in support of this consists of neural network simulations fusing 4 to 7 bands of Landsat imagery and fusing (separately) multiple bands of synthetic imagery. The simulations, results, and a description of the prototype system are presented.
Multispectral-image fusion using neural networks
NASA Astrophysics Data System (ADS)
Kagel, Joseph H.; Platt, C. A.; Donaven, T. W.; Samstad, Eric A.
1990-08-01
A prototype system is being developed to demonstrate the use of neural network hardware to fuse multispectral imagery. This system consists of a neural network IC on a motherboard a circuit card assembly and a set of software routines hosted by a PC-class computer. Research in support of this consists of neural network simulations fusing 4 to 7 bands of Landsat imagery and fusing (separately) multiple bands of synthetic imagery. The simulations results and a description of the prototype system are presented. 1.
Neural network with formed dynamics of activity
Dunin-Barkovskii, V.L.; Osovets, N.B.
1995-03-01
The problem of developing a neural network with a given pattern of the state sequence is considered. A neural network structure and an algorithm, of forming its bond matrix which lead to an approximate but robust solution of the problem are proposed and discussed. Limiting characteristics of the serviceability of the proposed structure are studied. Various methods of visualizing dynamic processes in a neural network are compared. Possible applications of the results obtained for interpretation of neurophysiological data and in neuroinformatics systems are discussed.
Neural networks techniques applied to reservoir engineering
Flores, M.; Barragan, C.
1995-12-31
Neural Networks are considered the greatest technological advance since the transistor. They are expected to be a common household item by the year 2000. An attempt to apply Neural Networks to an important geothermal problem has been made, predictions on the well production and well completion during drilling in a geothermal field. This was done in Los Humeros geothermal field, using two common types of Neural Network models, available in commercial software. Results show the learning capacity of the developed model, and its precision in the predictions that were made.
Stock market index prediction using neural networks
NASA Astrophysics Data System (ADS)
Komo, Darmadi; Chang, Chein-I.; Ko, Hanseok
1994-03-01
A neural network approach to stock market index prediction is presented. Actual data of the Wall Street Journal's Dow Jones Industrial Index has been used for a benchmark in our experiments where Radial Basis Function based neural networks have been designed to model these indices over the period from January 1988 to Dec 1992. A notable success has been achieved with the proposed model producing over 90% prediction accuracies observed based on monthly Dow Jones Industrial Index predictions. The model has also captured both moderate and heavy index fluctuations. The experiments conducted in this study demonstrated that the Radial Basis Function neural network represents an excellent candidate to predict stock market index.
Nonequilibrium landscape theory of neural networks.
Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin
2013-11-05
The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.
An Introduction to Neural Networks for Hearing Aid Noise Recognition.
ERIC Educational Resources Information Center
Kim, Jun W.; Tyler, Richard S.
1995-01-01
This article introduces the use of multilayered artificial neural networks in hearing aid noise recognition. It reviews basic principles of neural networks, and offers an example of an application in which a neural network is used to identify the presence or absence of noise in speech. The ability of neural networks to "learn" the…
Results of the neural network investigation
NASA Astrophysics Data System (ADS)
Uvanni, Lee A.
1992-04-01
Rome Laboratory has designed and implemented a neural network based automatic target recognition (ATR) system under contract F30602-89-C-0079 with Booz, Allen & Hamilton (BAH), Inc., of Arlington, Virginia. The system utilizes a combination of neural network paradigms and conventional image processing techniques in a parallel environment on the IE- 2000 SUN 4 workstation at Rome Laboratory. The IE-2000 workstation was designed to assist the Air Force and Department of Defense to derive the needs for image exploitation and image exploitation support for the late 1990s - year 2000 time frame. The IE-2000 consists of a developmental testbed and an applications testbed, both with the goal of solving real world problems on real-world facilities for image exploitation. To fully exploit the parallel nature of neural networks, 18 Inmos T800 transputers were utilized, in an attempt to provide a near- linear speed-up for each subsystem component implemented on them. The initial design contained three well-known neural network paradigms, each modified by BAH to some extent: the Selective Attention Neocognitron (SAN), the Binary Contour System/Feature Contour System (BCS/FCS), and Adaptive Resonance Theory 2 (ART-2), and one neural network designed by BAH called the Image Variance Exploitation Network (IVEN). Through rapid prototyping, the initial system evolved into a completely different final design, called the Neural Network Image Exploitation System (NNIES), where the final system consists of two basic components: the Double Variance (DV) layer and the Multiple Object Detection And Location System (MODALS). A rapid prototyping neural network CAD Tool, designed by Booz, Allen & Hamilton, was used to rapidly build and emulate the neural network paradigms. Evaluation of the completed ATR system included probability of detections and probability of false alarms among other measures.
Recognition of Telugu characters using neural networks.
Sukhaswami, M B; Seetharamulu, P; Pujari, A K
1995-09-01
The aim of the present work is to recognize printed and handwritten Telugu characters using artificial neural networks (ANNs). Earlier work on recognition of Telugu characters has been done using conventional pattern recognition techniques. We make an initial attempt here of using neural networks for recognition with the aim of improving upon earlier methods which do not perform effectively in the presence of noise and distortion in the characters. The Hopfield model of neural network working as an associative memory is chosen for recognition purposes initially. Due to limitation in the capacity of the Hopfield neural network, we propose a new scheme named here as the Multiple Neural Network Associative Memory (MNNAM). The limitation in storage capacity has been overcome by combining multiple neural networks which work in parallel. It is also demonstrated that the Hopfield network is suitable for recognizing noisy printed characters as well as handwritten characters written by different "hands" in a variety of styles. Detailed experiments have been carried out using several learning strategies and results are reported. It is shown here that satisfactory recognition is possible using the proposed strategy. A detailed preprocessing scheme of the Telugu characters from digitized documents is also described.
Neural Networks for Dynamic Flight Control
1993-12-01
uses the Adaline (22) model for development of the neural networks. Neural Graphics and other AFIT applications use a slightly different model. The...primary difference in the Nguyen application is that the Adaline uses the nonlinear function .f(a) = tanh(a) where standard backprop uses the sigmoid
Radar signal categorization using a neural network
NASA Technical Reports Server (NTRS)
Anderson, James A.; Gately, Michael T.; Penz, P. Andrew; Collins, Dean R.
1991-01-01
Neural networks were used to analyze a complex simulated radar environment which contains noisy radar pulses generated by many different emitters. The neural network used is an energy minimizing network (the BSB model) which forms energy minima - attractors in the network dynamical system - based on learned input data. The system first determines how many emitters are present (the deinterleaving problem). Pulses from individual simulated emitters give rise to separate stable attractors in the network. Once individual emitters are characterized, it is possible to make tentative identifications of them based on their observed parameters. As a test of this idea, a neural network was used to form a small data base that potentially could make emitter identifications.
Nonlinear adaptive trajectory tracking using dynamic neural networks.
Poznyak, A S; Yu, W; Sanchez, E N; Perez, J P
1999-01-01
In this paper the adaptive nonlinear identification and trajectory tracking are discussed via dynamic neural networks. By means of a Lyapunov-like analysis we determine stability conditions for the identification error. Then we analyze the trajectory tracking error by a local optimal controller. An algebraic Riccati equation and a differential one are used for the identification and the tracking error analysis. As our main original contributions, we establish two theorems: the first one gives a bound for the identification error and the second one establishes a bound for the tracking error. We illustrate the effectiveness of these results by two examples: the second-order relay system with multiple isolated equilibrium points and the chaotic system given by Duffing equation.
Constructive Autoassociative Neural Network for Facial Recognition
Fernandes, Bruno J. T.; Cavalcanti, George D. C.; Ren, Tsang I.
2014-01-01
Autoassociative artificial neural networks have been used in many different computer vision applications. However, it is difficult to define the most suitable neural network architecture because this definition is based on previous knowledge and depends on the problem domain. To address this problem, we propose a constructive autoassociative neural network called CANet (Constructive Autoassociative Neural Network). CANet integrates the concepts of receptive fields and autoassociative memory in a dynamic architecture that changes the configuration of the receptive fields by adding new neurons in the hidden layer, while a pruning algorithm removes neurons from the output layer. Neurons in the CANet output layer present lateral inhibitory connections that improve the recognition rate. Experiments in face recognition and facial expression recognition show that the CANet outperforms other methods presented in the literature. PMID:25542018
A neural network architecture for data classification.
Lezoray, O
2001-02-01
This article aims at showing an architecture of neural networks designed for the classification of data distributed among a high number of classes. A significant gain in the global classification rate can be obtained by using our architecture. This latter is based on a set of several little neural networks, each one discriminating only two classes. The specialization of each neural network simplifies their structure and improves the classification. Moreover, the learning step automatically determines the number of hidden neurons. The discussion is illustrated by tests on databases from the UCI machine learning database repository. The experimental results show that this architecture can achieve a faster learning, simpler neural networks and an improved performance in classification.
Neural Network Solutions to Optical Absorption Spectra
NASA Astrophysics Data System (ADS)
Rosenbrock, Conrad
2012-10-01
Artificial neural networks have been effective in reducing computation time while achieving remarkable accuracy for a variety of difficult physics problems. Neural networks are trained iteratively by adjusting the size and shape of sums of non-linear functions by varying the function parameters to fit results for complex non-linear systems. For smaller structures, ab initio simulation methods can be used to determine absorption spectra under field perturbations. However, these methods are impractical for larger structures. Designing and training an artificial neural network with simulated data from time-dependent density functional theory may allow time-dependent perturbation effects to be calculated more efficiently. I investigate the design considerations and results of neural network implementations for calculating perturbation-coupled electron oscillations in small molecules.
Imbibition well stimulation via neural network design
Weiss, William
2007-08-14
A method for stimulation of hydrocarbon production via imbibition by utilization of surfactants. The method includes use of fuzzy logic and neural network architecture constructs to determine surfactant use.
Temporal Coding in Realistic Neural Networks
NASA Astrophysics Data System (ADS)
Gerasyuta, S. M.; Ivanov, D. V.
1995-10-01
The modification of realistic neural network model have been proposed. The model differs from the Hopfield model because of the two characteristic contributions to synaptic efficacious: the short-time contribution which is determined by the chemical reactions in the synapses and the long-time contribution corresponding to the structural changes of synaptic contacts. The approximation solution of the realistic neural network model equations is obtained. This solution allows us to calculate the postsynaptic potential as function of input. Using the approximate solution of realistic neural network model equations the behaviour of postsynaptic potential of realistic neural network as function of time for the different temporal sequences of stimuli is described. The various outputs are obtained for the different temporal sequences of the given stimuli. These properties of the temporal coding can be exploited as a recognition element capable of being selectively tuned to different inputs.
A neural network for bounded linear programming
Culioli, J.C.; Protopopescu, V.; Britton, C.; Ericson, N. )
1989-01-01
The purpose of this paper is to describe a neural network implementation of an algorithm recently designed at ORNL to solve the Transportation and the Assignment Problems, and, more generally, any explicitly bounded linear program. 9 refs.
Blood glucose prediction using neural network
NASA Astrophysics Data System (ADS)
Soh, Chit Siang; Zhang, Xiqin; Chen, Jianhong; Raveendran, P.; Soh, Phey Hong; Yeo, Joon Hock
2008-02-01
We used neural network for blood glucose level determination in this study. The data set used in this study was collected using a non-invasive blood glucose monitoring system with six laser diodes, each laser diode operating at distinct near infrared wavelength between 1500nm and 1800nm. The neural network is specifically used to determine blood glucose level of one individual who participated in an oral glucose tolerance test (OGTT) session. Partial least squares regression is also used for blood glucose level determination for the purpose of comparison with the neural network model. The neural network model performs better in the prediction of blood glucose level as compared with the partial least squares model.
Using Neural Networks for Sensor Validation
NASA Technical Reports Server (NTRS)
Mattern, Duane L.; Jaw, Link C.; Guo, Ten-Huei; Graham, Ronald; McCoy, William
1998-01-01
This paper presents the results of applying two different types of neural networks in two different approaches to the sensor validation problem. The first approach uses a functional approximation neural network as part of a nonlinear observer in a model-based approach to analytical redundancy. The second approach uses an auto-associative neural network to perform nonlinear principal component analysis on a set of redundant sensors to provide an estimate for a single failed sensor. The approaches are demonstrated using a nonlinear simulation of a turbofan engine. The fault detection and sensor estimation results are presented and the training of the auto-associative neural network to provide sensor estimates is discussed.
Kanamaru, Takashi; Aihara, Kazuyuki
2008-08-01
The synchronous firing of neurons in a pulse-coupled neural network composed of excitatory and inhibitory neurons is analyzed. The neurons are connected by both chemical synapses and electrical synapses among the inhibitory neurons. When electrical synapses are introduced, periodically synchronized firing as well as chaotically synchronized firing is widely observed. Moreover, we find stochastic synchrony where the ensemble-averaged dynamics shows synchronization in the network but each neuron has a low firing rate and the firing of the neurons seems to be stochastic. Stochastic synchrony of chaos corresponding to a chaotic attractor is also found.
Application of artificial neural networks to gaming
NASA Astrophysics Data System (ADS)
Baba, Norio; Kita, Tomio; Oda, Kazuhiro
1995-04-01
Recently, neural network technology has been applied to various actual problems. It has succeeded in producing a large number of intelligent systems. In this article, we suggest that it could be applied to the field of gaming. In particular, we suggest that the neural network model could be used to mimic players' characters. Several computer simulation results using a computer gaming system which is a modified version of the COMMONS GAME confirm our idea.
Using neural networks in software repositories
NASA Technical Reports Server (NTRS)
Eichmann, David (Editor); Srinivas, Kankanahalli; Boetticher, G.
1992-01-01
The first topic is an exploration of the use of neural network techniques to improve the effectiveness of retrieval in software repositories. The second topic relates to a series of experiments conducted to evaluate the feasibility of using adaptive neural networks as a means of deriving (or more specifically, learning) measures on software. Taken together, these two efforts illuminate a very promising mechanism supporting software infrastructures - one based upon a flexible and responsive technology.
Limitations of opto-electronic neural networks
NASA Technical Reports Server (NTRS)
Yu, Jeffrey; Johnston, Alan; Psaltis, Demetri; Brady, David
1989-01-01
Consideration is given to the limitations of implementing neurons, weights, and connections in neural networks for electronics and optics. It is shown that the advantages of each technology are utilized when electronically fabricated neurons are included and a combination of optics and electronics are employed for the weights and connections. The relationship between the types of neural networks being constructed and the choice of technologies to implement the weights and connections is examined.
Predicting Car Production using a Neural Network
2003-04-24
World Almanac Education Group, 2003 [8] E. Petroutsos, Mastering Visual Basic .NET, SYBEX Inc., 2002 [9] D. E. Rumelhart, J. L. McClelland, Parallel...In this example, 100,000 cycles (epochs) were used to train it. The initial weights were randomly selected from values between 1 and -1. Visual ... basic .NET was used to program the neural network [8]. The neural network algorithm followed the steps outlined in [9]. As stated above, a 3 layer
Neural network for image segmentation
NASA Astrophysics Data System (ADS)
Skourikhine, Alexei N.; Prasad, Lakshman; Schlei, Bernd R.
2000-10-01
Image analysis is an important requirement of many artificial intelligence systems. Though great effort has been devoted to inventing efficient algorithms for image analysis, there is still much work to be done. It is natural to turn to mammalian vision systems for guidance because they are the best known performers of visual tasks. The pulse- coupled neural network (PCNN) model of the cat visual cortex has proven to have interesting properties for image processing. This article describes the PCNN application to the processing of images of heterogeneous materials; specifically PCNN is applied to image denoising and image segmentation. Our results show that PCNNs do well at segmentation if we perform image smoothing prior to segmentation. We use PCNN for obth smoothing and segmentation. Combining smoothing and segmentation enable us to eliminate PCNN sensitivity to the setting of the various PCNN parameters whose optimal selection can be difficult and can vary even for the same problem. This approach makes image processing based on PCNN more automatic in our application and also results in better segmentation.
Artificial neural network and medicine.
Khan, Z H; Mohapatra, S K; Khodiar, P K; Ragu Kumar, S N
1998-07-01
The introduction of human brain functions such as perception and cognition into the computer has been made possible by the use of Artificial Neural Network (ANN). ANN are computer models inspired by the structure and behavior of neurons. Like the brain, ANN can recognize patterns, manage data and most significantly, learn. This learning ability, not seen in other computer models simulating human intelligence, constantly improves its functional accuracy as it keeps on performing. Experience is as important for an ANN as it is for man. It is being increasingly used to supplement and even (may be) replace experts, in medicine. However, there is still scope for improvement in some areas. Its ability to classify and interpret various forms of medical data comes as a helping hand to clinical decision making in both diagnosis and treatment. Treatment planning in medicine, radiotherapy, rehabilitation, etc. is being done using ANN. Morbidity and mortality prediction by ANN in different medical situations can be very helpful for hospital management. ANN has a promising future in fundamental research, medical education and surgical robotics.
A neural network simulation package in CLIPS
NASA Technical Reports Server (NTRS)
Bhatnagar, Himanshu; Krolak, Patrick D.; Mcgee, Brenda J.; Coleman, John
1990-01-01
The intrinsic similarity between the firing of a rule and the firing of a neuron has been captured in this research to provide a neural network development system within an existing production system (CLIPS). A very important by-product of this research has been the emergence of an integrated technique of using rule based systems in conjunction with the neural networks to solve complex problems. The systems provides a tool kit for an integrated use of the two techniques and is also extendible to accommodate other AI techniques like the semantic networks, connectionist networks, and even the petri nets. This integrated technique can be very useful in solving complex AI problems.
Hybrid internal model control and proportional control of chaotic dynamical systems.
Qi, Dong-lian; Yao, Liang-bin
2004-01-01
A new chaos control method is proposed to take advantage of chaos or avoid it. The hybrid Internal Model Control and Proportional Control learning scheme are introduced. In order to gain the desired robust performance and ensure the system's stability, Adaptive Momentum Algorithms are also developed. Through properly designing the neural network plant model and neural network controller, the chaotic dynamical systems are controlled while the parameters of the BP neural network are modified. Taking the Lorenz chaotic system as example, the results show that chaotic dynamical systems can be stabilized at the desired orbits by this control strategy.
Logarithmic learning for generalized classifier neural network.
Ozyildirim, Buse Melis; Avci, Mutlu
2014-12-01
Generalized classifier neural network is introduced as an efficient classifier among the others. Unless the initial smoothing parameter value is close to the optimal one, generalized classifier neural network suffers from convergence problem and requires quite a long time to converge. In this work, to overcome this problem, a logarithmic learning approach is proposed. The proposed method uses logarithmic cost function instead of squared error. Minimization of this cost function reduces the number of iterations used for reaching the minima. The proposed method is tested on 15 different data sets and performance of logarithmic learning generalized classifier neural network is compared with that of standard one. Thanks to operation range of radial basis function included by generalized classifier neural network, proposed logarithmic approach and its derivative has continuous values. This makes it possible to adopt the advantage of logarithmic fast convergence by the proposed learning method. Due to fast convergence ability of logarithmic cost function, training time is maximally decreased to 99.2%. In addition to decrease in training time, classification performance may also be improved till 60%. According to the test results, while the proposed method provides a solution for time requirement problem of generalized classifier neural network, it may also improve the classification accuracy. The proposed method can be considered as an efficient way for reducing the time requirement problem of generalized classifier neural network.
Neural networks for segmentation, tracking, and identification
NASA Astrophysics Data System (ADS)
Rogers, Steven K.; Ruck, Dennis W.; Priddy, Kevin L.; Tarr, Gregory L.
1992-09-01
The main thrust of this paper is to encourage the use of neural networks to process raw data for subsequent classification. This article addresses neural network techniques for processing raw pixel information. For this paper the definition of neural networks includes the conventional artificial neural networks such as the multilayer perceptrons and also biologically inspired processing techniques. Previously, we have successfully used the biologically inspired Gabor transform to process raw pixel information and segment images. In this paper we extend those ideas to both segment and track objects in multiframe sequences. It is also desirable for the neural network processing data to learn features for subsequent recognition. A common first step for processing raw data is to transform the data and use the transform coefficients as features for recognition. For example, handwritten English characters become linearly separable in the feature space of the low frequency Fourier coefficients. Much of human visual perception can be modelled by assuming low frequency Fourier as the feature space used by the human visual system. The optimum linear transform, with respect to reconstruction, is the Karhunen-Loeve transform (KLT). It has been shown that some neural network architectures can compute approximations to the KLT. The KLT coefficients can be used for recognition as well as for compression. We tested the use of the KLT on the problem of interfacing a nonverbal patient to a computer. The KLT uses an optimal basis set for object reconstruction. For object recognition, the KLT may not be optimal.
Lecca, Paola; Mura, Ivan; Re, Angela; Barker, Gary C.; Ihekwaba, Adaoha E. C.
2016-01-01
Chaotic behavior refers to a behavior which, albeit irregular, is generated by an underlying deterministic process. Therefore, a chaotic behavior is potentially controllable. This possibility becomes practically amenable especially when chaos is shown to be low-dimensional, i.e., to be attributable to a small fraction of the total systems components. In this case, indeed, including the major drivers of chaos in a system into the modeling approach allows us to improve predictability of the systems dynamics. Here, we analyzed the numerical simulations of an accurate ordinary differential equation model of the gene network regulating sporulation initiation in Bacillus subtilis to explore whether the non-linearity underlying time series data is due to low-dimensional chaos. Low-dimensional chaos is expectedly common in systems with few degrees of freedom, but rare in systems with many degrees of freedom such as the B. subtilis sporulation network. The estimation of a number of indices, which reflect the chaotic nature of a system, indicates that the dynamics of this network is affected by deterministic chaos. The neat separation between the indices obtained from the time series simulated from the model and those obtained from time series generated by Gaussian white and colored noise confirmed that the B. subtilis sporulation network dynamics is affected by low dimensional chaos rather than by noise. Furthermore, our analysis identifies the principal driver of the networks chaotic dynamics to be sporulation initiation phosphotransferase B (Spo0B). We then analyzed the parameters and the phase space of the system to characterize the instability points of the network dynamics, and, in turn, to identify the ranges of values of Spo0B and of the other drivers of the chaotic dynamics, for which the whole system is highly sensitive to minimal perturbation. In summary, we described an unappreciated source of complexity in the B. subtilis sporulation network by gathering
Neural-Network Object-Recognition Program
NASA Technical Reports Server (NTRS)
Spirkovska, L.; Reid, M. B.
1993-01-01
HONTIOR computer program implements third-order neural network exhibiting invariance under translation, change of scale, and in-plane rotation. Invariance incorporated directly into architecture of network. Only one view of each object needed to train network for two-dimensional-translation-invariant recognition of object. Also used for three-dimensional-transformation-invariant recognition by training network on only set of out-of-plane rotated views. Written in C language.
Fast curve fitting using neural networks
NASA Astrophysics Data System (ADS)
Bishop, C. M.; Roach, C. M.
1992-10-01
Neural networks provide a new tool for the fast solution of repetitive nonlinear curve fitting problems. In this article we introduce the concept of a neural network, and we show how such networks can be used for fitting functional forms to experimental data. The neural network algorithm is typically much faster than conventional iterative approaches. In addition, further substantial improvements in speed can be obtained by using special purpose hardware implementations of the network, thus making the technique suitable for use in fast real-time applications. The basic concepts are illustrated using a simple example from fusion research, involving the determination of spectral line parameters from measurements of B iv impurity radiation in the COMPASS-C tokamak.
A neural network for visual pattern recognition
Fukushima, K.
1988-03-01
A modeling approach, which is a synthetic approach using neural network models, continues to gain importance. In the modeling approach, the authors study how to interconnect neurons to synthesize a brain model, which is a network with the same functions and abilities as the brain. The relationship between modeling neutral networks and neurophysiology resembles that between theoretical physics and experimental physics. Modeling takes synthetic approach, while neurophysiology or psychology takes an analytical approach. Modeling neural networks is useful in explaining the brain and also in engineering applications. It brings the results of neurophysiological and psychological research to engineering applications in the most direct way possible. This article discusses a neural network model thus obtained, a model with selective attention in visual pattern recognition.
Lü, Q; Wu, H; Yu, R; Shen, G
2004-08-01
The hydrohaloalkanes have attracted much attention as potential substitutes of chlorofluorocarbons (CFCs) that deplete the ozone layer and lead to great high global warming. Having a short atmospheric lifetime is very important for the potential substitutes that may also induce ozone depletion and yield high global warming gases to be put in use. Quantitative structure-activity relationship (QSAR) studies were presented for their lifetimes aided by the quantum chemistry parameters including net charges, Mulliken overlaps, E(HOMO) and E(LUMO) based on the density functional theory (DFT) at B3PW91 level, and the C-H bond dissociation energy based on AM1 calculations. Outstanding features of the logistic mapping, a simple chaotic system, especially the inherent ability to search the space of interest exhaustively have been utilized. The chaotic mapping aided genetic algorithm artificial neural network training scheme (CGANN) showed better performance than the conventional genetic algorithm ANN training when the structure of the data set was not favorable. The lifetimes of HFCs and HCs appeared to be greatly dependent on their energies of the highest occupied molecular orbitals. The perference of the RMSRE comparing to RMSE as objective function of ANN training was better for the samples of interest with relatively short lifetimes. C(2)H(6) and C(3)H(8) as potential green substitutes of CFCs present relatively short lifetimes.
Solving large scale traveling salesman problems by chaotic neurodynamics.
Hasegawa, Mikio; Ikeguch, Tohru; Aihara, Kazuyuki
2002-03-01
We propose a novel approach for solving large scale traveling salesman problems (TSPs) by chaotic dynamics. First, we realize the tabu search on a neural network, by utilizing the refractory effects as the tabu effects. Then, we extend it to a chaotic neural network version. We propose two types of chaotic searching methods, which are based on two different tabu searches. While the first one requires neurons of the order of n2 for an n-city TSP, the second one requires only n neurons. Moreover, an automatic parameter tuning method of our chaotic neural network is presented for easy application to various problems. Last, we show that our method with n neurons is applicable to large TSPs such as an 85,900-city problem and exhibits better performance than the conventional stochastic searches and the tabu searches.
Artificial Astrocytes Improve Neural Network Performance
Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-01-01
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157
Artificial astrocytes improve neural network performance.
Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-04-19
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
Hardware implementation of stochastic spiking neural networks.
Rosselló, Josep L; Canals, Vincent; Morro, Antoni; Oliver, Antoni
2012-08-01
Spiking Neural Networks, the last generation of Artificial Neural Networks, are characterized by its bio-inspired nature and by a higher computational capacity with respect to other neural models. In real biological neurons, stochastic processes represent an important mechanism of neural behavior and are responsible of its special arithmetic capabilities. In this work we present a simple hardware implementation of spiking neurons that considers this probabilistic nature. The advantage of the proposed implementation is that it is fully digital and therefore can be massively implemented in Field Programmable Gate Arrays. The high computational capabilities of the proposed model are demonstrated by the study of both feed-forward and recurrent networks that are able to implement high-speed signal filtering and to solve complex systems of linear equations.
Structured chaos shapes spike-response noise entropy in balanced neural networks.
Lajoie, Guillaume; Thivierge, Jean-Philippe; Shea-Brown, Eric
2014-01-01
Large networks of sparsely coupled, excitatory and inhibitory cells occur throughout the brain. For many models of these networks, a striking feature is that their dynamics are chaotic and thus, are sensitive to small perturbations. How does this chaos manifest in the neural code? Specifically, how variable are the spike patterns that such a network produces in response to an input signal? To answer this, we derive a bound for a general measure of variability-spike-train entropy. This leads to important insights on the variability of multi-cell spike pattern distributions in large recurrent networks of spiking neurons responding to fluctuating inputs. The analysis is based on results from random dynamical systems theory and is complemented by detailed numerical simulations. We find that the spike pattern entropy is an order of magnitude lower than what would be extrapolated from single cells. This holds despite the fact that network coupling becomes vanishingly sparse as network size grows-a phenomenon that depends on "extensive chaos," as previously discovered for balanced networks without stimulus drive. Moreover, we show how spike pattern entropy is controlled by temporal features of the inputs. Our findings provide insight into how neural networks may encode stimuli in the presence of inherently chaotic dynamics.
Optical neural stimulation modeling on degenerative neocortical neural networks
NASA Astrophysics Data System (ADS)
Zverev, M.; Fanjul-Vélez, F.; Salas-García, I.; Arce-Diego, J. L.
2015-07-01
Neurodegenerative diseases usually appear at advanced age. Medical advances make people live longer and as a consequence, the number of neurodegenerative diseases continuously grows. There is still no cure for these diseases, but several brain stimulation techniques have been proposed to improve patients' condition. One of them is Optical Neural Stimulation (ONS), which is based on the application of optical radiation over specific brain regions. The outer cerebral zones can be noninvasively stimulated, without the common drawbacks associated to surgical procedures. This work focuses on the analysis of ONS effects in stimulated neurons to determine their influence in neuronal activity. For this purpose a neural network model has been employed. The results show the neural network behavior when the stimulation is provided by means of different optical radiation sources and constitute a first approach to adjust the optical light source parameters to stimulate specific neocortical areas.
Sequential state generation by model neural networks.
Kleinfeld, D
1986-01-01
Sequential patterns of neural output activity form the basis of many biological processes, such as the cyclic pattern of outputs that control locomotion. I show how such sequences can be generated by a class of model neural networks that make defined sets of transitions between selected memory states. Sequence-generating networks depend upon the interplay between two sets of synaptic connections. One set acts to stabilize the network in its current memory state, while the second set, whose action is delayed in time, causes the network to make specified transitions between the memories. The dynamic properties of these networks are described in terms of motion along an energy surface. The performance of the networks, both with intact connections and with noisy or missing connections, is illustrated by numerical examples. In addition, I present a scheme for the recognition of externally generated sequences by these networks. PMID:3467316
Some neural networks compute, others don't.
Piccinini, Gualtiero
2008-01-01
I address whether neural networks perform computations in the sense of computability theory and computer science. I explicate and defend the following theses. (1) Many neural networks compute--they perform computations. (2) Some neural networks compute in a classical way. Ordinary digital computers, which are very large networks of logic gates, belong in this class of neural networks. (3) Other neural networks compute in a non-classical way. (4) Yet other neural networks do not perform computations. Brains may well fall into this last class.
On sparsely connected optimal neural networks
Beiu, V.; Draghici, S.
1997-10-01
This paper uses two different approaches to show that VLSI- and size-optimal discrete neural networks are obtained for small fan-in values. These have applications to hardware implementations of neural networks, but also reveal an intrinsic limitation of digital VLSI technology: its inability to cope with highly connected structures. The first approach is based on implementing F{sub n,m} functions. The authors show that this class of functions can be implemented in VLSI-optimal (i.e., minimizing AT{sup 2}) neural networks of small constant fan-ins. In order to estimate the area (A) and the delay (T) of such networks, the following cost functions will be used: (i) the connectivity and the number-of-bits for representing the weights and thresholds--for good estimates of the area; and (ii) the fan-ins and the length of the wires--for good approximates of the delay. The second approach is based on implementing Boolean functions for which the classical Shannon`s decomposition can be used. Such a solution has already been used to prove bounds on the size of fan-in 2 neural networks. They will generalize the result presented there to arbitrary fan-in, and prove that the size is minimized by small fan-in values. Finally, a size-optimal neural network of small constant fan-ins will be suggested for F{sub n,m} functions.
Computational inference of neural information flow networks.
Smith, V Anne; Yu, Jing; Smulders, Tom V; Hartemink, Alexander J; Jarvis, Erich D
2006-11-24
Determining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks.
Artificial Neural Networks and Instructional Technology.
ERIC Educational Resources Information Center
Carlson, Patricia A.
1991-01-01
Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…
Higher-Order Neural Networks Recognize Patterns
NASA Technical Reports Server (NTRS)
Reid, Max B.; Spirkovska, Lilly; Ochoa, Ellen
1996-01-01
Networks of higher order have enhanced capabilities to distinguish between different two-dimensional patterns and to recognize those patterns. Also enhanced capabilities to "learn" patterns to be recognized: "trained" with far fewer examples and, therefore, in less time than necessary to train comparable first-order neural networks.
Orthogonal Patterns In A Binary Neural Network
NASA Technical Reports Server (NTRS)
Baram, Yoram
1991-01-01
Report presents some recent developments in theory of binary neural networks. Subject matter relevant to associate (content-addressable) memories and to recognition of patterns - both of considerable importance in advancement of robotics and artificial intelligence. When probed by any pattern, network converges to one of stored patterns.
Neural-Network Modeling Of Arc Welding
NASA Technical Reports Server (NTRS)
Anderson, Kristinn; Barnett, Robert J.; Springfield, James F.; Cook, George E.; Strauss, Alvin M.; Bjorgvinsson, Jon B.
1994-01-01
Artificial neural networks considered for use in monitoring and controlling gas/tungsten arc-welding processes. Relatively simple network, using 4 welding equipment parameters as inputs, estimates 2 critical weld-bead paramaters within 5 percent. Advantage is computational efficiency.
Neural networks as perpetual information generators
NASA Astrophysics Data System (ADS)
Englisch, Harald; Xiao, Yegao; Yao, Kailun
1991-07-01
The information gain in a neural network cannot be larger than the bit capacity of the synapses. It is shown that the equation derived by Engel et al. [Phys. Rev. A 42, 4998 (1990)] for the strongly diluted network with persistent stimuli contradicts this condition. Furthermore, for any time step the correct equation is derived by taking the correlation between random variables into account.
Electronic device aspects of neural network memories
NASA Technical Reports Server (NTRS)
Lambe, J.; Moopenn, A.; Thakoor, A. P.
1985-01-01
The basic issues related to the electronic implementation of the neural network model (NNM) for content addressable memories are examined. A brief introduction to the principles of the NNM is followed by an analysis of the information storage of the neural network in the form of a binary connection matrix and the recall capability of such matrix memories based on a hardware simulation study. In addition, materials and device architecture issues involved in the future realization of such networks in VLSI-compatible ultrahigh-density memories are considered. A possible space application of such devices would be in the area of large-scale information storage without mechanical devices.
Disruption forecasting at JET using neural networks
NASA Astrophysics Data System (ADS)
Cannas, B.; Fanni, A.; Marongiu, E.; Sonato, P.
2004-01-01
Neural networks are trained to evaluate the risk of plasma disruptions in a tokamak experiment using several diagnostic signals as inputs. A saliency analysis confirms the goodness of the chosen inputs, all of which contribute to the network performance. Tests that were carried out refer to data collected from succesfully terminated and disruption terminated pulses performed during two years of JET tokamak experiments. Results show the possibility of developing a neural network predictor that intervenes well in advance in order to avoid plasma disruption or mitigate its effects.
Multiwavelet neural network and its approximation properties.
Jiao, L; Pan, J; Fang, Y
2001-01-01
A model of multiwavelet-based neural networks is proposed. Its universal and L(2) approximation properties, together with its consistency are proved, and the convergence rates associated with these properties are estimated. The structure of this network is similar to that of the wavelet network, except that the orthonormal scaling functions are replaced by orthonormal multiscaling functions. The theoretical analyses show that the multiwavelet network converges more rapidly than the wavelet network, especially for smooth functions. To make a comparison between both networks, experiments are carried out with the Lemarie-Meyer wavelet network, the Daubechies2 wavelet network and the GHM multiwavelet network, and the results support the theoretical analysis well. In addition, the results also illustrate that at the jump discontinuities, the approximation performance of the two networks are about the same.
Applications of Neural Networks to Adaptive Control
1989-12-01
DTIC ;- E py 00 NAVAL POSTGRADUATE SCHOOL Monterey, California I.$ RDTIC IELECTE fl THESIS BEG7V°U APPLICATIONS OF NEURAL NETWORKS TO ADAPTIVE CONTROL...Second keader E . Robert Wood, Chairman, Department of Aeronautics and Astronautics Gordoii E . Schacher, Dean of Faculty and Graduate Education ii ABSTRACT...23: Network Dynamic Stability for q(t) . ............................. 55 ix Figure 24: Network Dynamic Stability for e (t
Using Neural Networks to Describe Tracer Correlations
NASA Technical Reports Server (NTRS)
Lary, D. J.; Mueller, M. D.; Mussa, H. Y.
2003-01-01
Neural networks are ideally suited to describe the spatial and temporal dependence of tracer-tracer correlations. The neural network performs well even in regions where the correlations are less compact and normally a family of correlation curves would be required. For example, the CH4-N2O correlation can be well described using a neural network trained with the latitude, pressure, time of year, and CH4 volume mixing ratio (v.m.r.). In this study a neural network using Quickprop learning and one hidden layer with eight nodes was able to reproduce the CH4-N2O correlation with a correlation co- efficient of 0.9995. Such an accurate representation of tracer-tracer correlations allows more use to be made of long-term datasets to constrain chemical models. Such as the dataset from the Halogen Occultation Experiment (HALOE) which has continuously observed CH4, (but not N2O) from 1991 till the present. The neural network Fortran code used is available for download.
Learning and diagnosing faults using neural networks
NASA Technical Reports Server (NTRS)
Whitehead, Bruce A.; Kiech, Earl L.; Ali, Moonis
1990-01-01
Neural networks have been employed for learning fault behavior from rocket engine simulator parameters and for diagnosing faults on the basis of the learned behavior. Two problems in applying neural networks to learning and diagnosing faults are (1) the complexity of the sensor data to fault mapping to be modeled by the neural network, which implies difficult and lengthy training procedures; and (2) the lack of sufficient training data to adequately represent the very large number of different types of faults which might occur. Methods are derived and tested in an architecture which addresses these two problems. First, the sensor data to fault mapping is decomposed into three simpler mappings which perform sensor data compression, hypothesis generation, and sensor fusion. Efficient training is performed for each mapping separately. Secondly, the neural network which performs sensor fusion is structured to detect new unknown faults for which training examples were not presented during training. These methods were tested on a task of fault diagnosis by employing rocket engine simulator data. Results indicate that the decomposed neural network architecture can be trained efficiently, can identify faults for which it has been trained, and can detect the occurrence of faults for which it has not been trained.
Neural network technologies for image classification
NASA Astrophysics Data System (ADS)
Korikov, A. M.; Tungusova, A. V.
2015-11-01
We analyze the classes of problems with an objective necessity to use neural network technologies, i.e. representation and resolution problems in the neural network logical basis. Among these problems, image recognition takes an important place, in particular the classification of multi-dimensional data based on information about textural characteristics. These problems occur in aerospace and seismic monitoring, materials science, medicine and other. We reviewed different approaches for the texture description: statistical, structural, and spectral. We developed a neural network technology for resolving a practical problem of cloud image classification for satellite snapshots from the spectroradiometer MODIS. The cloud texture is described by the statistical characteristics of the GLCM (Gray Level Co- Occurrence Matrix) method. From the range of neural network models that might be applied for image classification, we chose the probabilistic neural network model (PNN) and developed an implementation which performs the classification of the main types and subtypes of clouds. Also, we chose experimentally the optimal architecture and parameters for the PNN model which is used for image classification.
Neurale Netwerken en Radarsystemen (Neural Networks and Radar Systems)
1989-08-01
general issues in cognitive science", Parallel distributed processing, Vol 1: Foundations, Rumelhart et al. 1986 pp 110-146 THO rapport Pagina 151 36 D.E...34Neural networks (part 2)",Expert Focus, IEEE Expert, Spring 1988. 61 J.A. Anderson, " Cognitive and Psychological Computations with Neural Models", IEEE...Pagina 154 69 David H. Ackley, Geoffrey E. Hinton and Terrence J. Sejnowski, "A Learning Algorithm for Boltzmann machines", cognitive science 9, 147-169
Estimates on compressed neural networks regression.
Zhang, Yongquan; Li, Youmei; Sun, Jianyong; Ji, Jiabing
2015-03-01
When the neural element number n of neural networks is larger than the sample size m, the overfitting problem arises since there are more parameters than actual data (more variable than constraints). In order to overcome the overfitting problem, we propose to reduce the number of neural elements by using compressed projection A which does not need to satisfy the condition of Restricted Isometric Property (RIP). By applying probability inequalities and approximation properties of the feedforward neural networks (FNNs), we prove that solving the FNNs regression learning algorithm in the compressed domain instead of the original domain reduces the sample error at the price of an increased (but controlled) approximation error, where the covering number theory is used to estimate the excess error, and an upper bound of the excess error is given.
Flexible body control using neural networks
NASA Technical Reports Server (NTRS)
Mccullough, Claire L.
1992-01-01
Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.
Observation of periodic waves in a pulse-coupled neural network.
Johnson, J L; Ritter, D
1993-08-01
A pulse-coupled neural network was implemented, for the first time to our knowledge, in a hybrid electro-optical laboratory demonstration system. Dynamic coherent traveling-wave patterns were observed that repeated their spatial patterns at each locality with a period that depended on the local input pattern and strength. Coherence and periodicity were maintained far beyond the physical limits of the linking receptive fields, suggesting a new mechanism for information transmission in a network with limited local connectivity. With no linking, the output became chaotic because the relative phases increased linearly in time.
Implementing Signature Neural Networks with Spiking Neurons
Carrillo-Medina, José Luis; Latorre, Roberto
2016-01-01
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm—i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data—to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the
Implementing Signature Neural Networks with Spiking Neurons.
Carrillo-Medina, José Luis; Latorre, Roberto
2016-01-01
Spiking Neural Networks constitute the most promising approach to develop realistic Artificial Neural Networks (ANNs). Unlike traditional firing rate-based paradigms, information coding in spiking models is based on the precise timing of individual spikes. It has been demonstrated that spiking ANNs can be successfully and efficiently applied to multiple realistic problems solvable with traditional strategies (e.g., data classification or pattern recognition). In recent years, major breakthroughs in neuroscience research have discovered new relevant computational principles in different living neural systems. Could ANNs benefit from some of these recent findings providing novel elements of inspiration? This is an intriguing question for the research community and the development of spiking ANNs including novel bio-inspired information coding and processing strategies is gaining attention. From this perspective, in this work, we adapt the core concepts of the recently proposed Signature Neural Network paradigm-i.e., neural signatures to identify each unit in the network, local information contextualization during the processing, and multicoding strategies for information propagation regarding the origin and the content of the data-to be employed in a spiking neural network. To the best of our knowledge, none of these mechanisms have been used yet in the context of ANNs of spiking neurons. This paper provides a proof-of-concept for their applicability in such networks. Computer simulations show that a simple network model like the discussed here exhibits complex self-organizing properties. The combination of multiple simultaneous encoding schemes allows the network to generate coexisting spatio-temporal patterns of activity encoding information in different spatio-temporal spaces. As a function of the network and/or intra-unit parameters shaping the corresponding encoding modality, different forms of competition among the evoked patterns can emerge even in the absence
Training Deep Spiking Neural Networks Using Backpropagation
Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael
2016-01-01
Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations. PMID:27877107
Foreign currency rate forecasting using neural networks
NASA Astrophysics Data System (ADS)
Pandya, Abhijit S.; Kondo, Tadashi; Talati, Amit; Jayadevappa, Suryaprasad
2000-03-01
Neural networks are increasingly being used as a forecasting tool in many forecasting problems. This paper discusses the application of neural networks in predicting daily foreign exchange rates between the USD, GBP as well as DEM. We approach the problem from a time-series analysis framework - where future exchange rates are forecasted solely using past exchange rates. This relies on the belief that the past prices and future prices are very close related, and interdependent. We present the result of training a neural network with historical USD-GBP data. The methodology used in explained, as well as the training process. We discuss the selection of inputs to the network, and present a comparison of using the actual exchange rates and the exchange rate differences as inputs. Price and rate differences are the preferred way of training neural network in financial applications. Results of both approaches are present together for comparison. We show that the network is able to learn the trends in the exchange rate movements correctly, and present the results of the prediction over several periods of time.
Training Deep Spiking Neural Networks Using Backpropagation.
Lee, Jun Haeng; Delbruck, Tobi; Pfeiffer, Michael
2016-01-01
Deep spiking neural networks (SNNs) hold the potential for improving the latency and energy efficiency of deep neural networks through data-driven event-based computation. However, training such networks is difficult due to the non-differentiable nature of spike events. In this paper, we introduce a novel technique, which treats the membrane potentials of spiking neurons as differentiable signals, where discontinuities at spike times are considered as noise. This enables an error backpropagation mechanism for deep SNNs that follows the same principles as in conventional deep networks, but works directly on spike signals and membrane potentials. Compared with previous methods relying on indirect training and conversion, our technique has the potential to capture the statistics of spikes more precisely. We evaluate the proposed framework on artificially generated events from the original MNIST handwritten digit benchmark, and also on the N-MNIST benchmark recorded with an event-based dynamic vision sensor, in which the proposed method reduces the error rate by a factor of more than three compared to the best previous SNN, and also achieves a higher accuracy than a conventional convolutional neural network (CNN) trained and tested on the same data. We demonstrate in the context of the MNIST task that thanks to their event-driven operation, deep SNNs (both fully connected and convolutional) trained with our method achieve accuracy equivalent with conventional neural networks. In the N-MNIST example, equivalent accuracy is achieved with about five times fewer computational operations.
Neural network approaches for noisy language modeling.
Li, Jun; Ouazzane, Karim; Kazemian, Hassan B; Afzal, Muhammad Sajid
2013-11-01
Text entry from people is not only grammatical and distinct, but also noisy. For example, a user's typing stream contains all the information about the user's interaction with computer using a QWERTY keyboard, which may include the user's typing mistakes as well as specific vocabulary, typing habit, and typing performance. In particular, these features are obvious in disabled users' typing streams. This paper proposes a new concept called noisy language modeling by further developing information theory and applies neural networks to one of its specific application-typing stream. This paper experimentally uses a neural network approach to analyze the disabled users' typing streams both in general and specific ways to identify their typing behaviors and subsequently, to make typing predictions and typing corrections. In this paper, a focused time-delay neural network (FTDNN) language model, a time gap model, a prediction model based on time gap, and a probabilistic neural network model (PNN) are developed. A 38% first hitting rate (HR) and a 53% first three HR in symbol prediction are obtained based on the analysis of a user's typing history through the FTDNN language modeling, while the modeling results using the time gap prediction model and the PNN model demonstrate that the correction rates lie predominantly in between 65% and 90% with the current testing samples, and 70% of all test scores above basic correction rates, respectively. The modeling process demonstrates that a neural network is a suitable and robust language modeling tool to analyze the noisy language stream. The research also paves the way for practical application development in areas such as informational analysis, text prediction, and error correction by providing a theoretical basis of neural network approaches for noisy language modeling.
Tomov, Petar; Pena, Rodrigo F. O.; Zaks, Michael A.; Roque, Antonio C.
2014-01-01
The cerebral cortex exhibits neural activity even in the absence of external stimuli. This self-sustained activity is characterized by irregular firing of individual neurons and population oscillations with a broad frequency range. Questions that arise in this context, are: What are the mechanisms responsible for the existence of neuronal spiking activity in the cortex without external input? Do these mechanisms depend on the structural organization of the cortical connections? Do they depend on intrinsic characteristics of the cortical neurons? To approach the answers to these questions, we have used computer simulations of cortical network models. Our networks have hierarchical modular architecture and are composed of combinations of neuron models that reproduce the firing behavior of the five main cortical electrophysiological cell classes: regular spiking (RS), chattering (CH), intrinsically bursting (IB), low threshold spiking (LTS), and fast spiking (FS). The population of excitatory neurons is built of RS cells (always present) and either CH or IB cells. Inhibitory neurons belong to the same class, either LTS or FS. Long-lived self-sustained activity states in our network simulations display irregular single neuron firing and oscillatory activity similar to experimentally measured ones. The duration of self-sustained activity strongly depends on the initial conditions, suggesting a transient chaotic regime. Extensive analysis of the self-sustained activity states showed that their lifetime expectancy increases with the number of network modules and is favored when the network is composed of excitatory neurons of the RS and CH classes combined with inhibitory neurons of the LTS class. These results indicate that the existence and properties of the self-sustained cortical activity states depend on both the topology of the network and the neuronal mixture that comprises the network. PMID:25228879
Signal dispersion within a hippocampal neural network
NASA Technical Reports Server (NTRS)
Horowitz, J. M.; Mates, J. W. B.
1975-01-01
A model network is described, representing two neural populations coupled so that one population is inhibited by activity it excites in the other. Parameters and operations within the model represent EPSPs, IPSPs, neural thresholds, conduction delays, background activity and spatial and temporal dispersion of signals passing from one population to the other. Simulations of single-shock and pulse-train driving of the network are presented for various parameter values. Neuronal events from 100 to 300 msec following stimulation are given special consideration in model calculations.
Intelligent neural network classifier for automatic testing
NASA Astrophysics Data System (ADS)
Bai, Baoxing; Yu, Heping
1996-10-01
This paper is concerned with an application of a multilayer feedforward neural network for the vision detection of industrial pictures, and introduces a high characteristics image processing and recognizing system which can be used for real-time testing blemishes, streaks and cracks, etc. on the inner walls of high-accuracy pipes. To take full advantage of the functions of the artificial neural network, such as the information distributed memory, large scale self-adapting parallel processing, high fault-tolerance ability, this system uses a multilayer perceptron as a regular detector to extract features of the images to be inspected and classify them.
Implementation aspects of Graph Neural Networks
NASA Astrophysics Data System (ADS)
Barcz, A.; Szymański, Z.; Jankowski, S.
2013-10-01
This article summarises the results of implementation of a Graph Neural Network classi er. The Graph Neural Network model is a connectionist model, capable of processing various types of structured data, including non- positional and cyclic graphs. In order to operate correctly, the GNN model must implement a transition function being a contraction map, which is assured by imposing a penalty on model weights. This article presents research results concerning the impact of the penalty parameter on the model training process and the practical decisions that were made during the GNN implementation process.
Livermore Big Artificial Neural Network Toolkit
Essen, Brian Van; Jacobs, Sam; Kim, Hyojin; Dryden, Nikoli; Moon, Tim
2016-07-01
LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.
Simulation of photosynthetic production using neural network
NASA Astrophysics Data System (ADS)
Kmet, Tibor; Kmetova, Maria
2013-10-01
This paper deals with neural network based optimal control synthesis for solving optimal control problems with control and state constraints and discrete time delay. The optimal control problem is transcribed into nonlinear programming problem which is implemented with adaptive critic neural network. This approach is applicable to a wide class of nonlinear systems. The proposed simulation methods is illustrated by the optimal control problem of photosynthetic production described by discrete time delay differential equations. Results show that adaptive critic based systematic approach holds promise for obtaining the optimal control with control and state constraints.
Automatic identification of species with neural networks
Jiménez-Segura, Luz Fernanda
2014-01-01
A new automatic identification system using photographic images has been designed to recognize fish, plant, and butterfly species from Europe and South America. The automatic classification system integrates multiple image processing tools to extract the geometry, morphology, and texture of the images. Artificial neural networks (ANNs) were used as the pattern recognition method. We tested a data set that included 740 species and 11,198 individuals. Our results show that the system performed with high accuracy, reaching 91.65% of true positive fish identifications, 92.87% of plants and 93.25% of butterflies. Our results highlight how the neural networks are complementary to species identification. PMID:25392749
Porosity Log Prediction Using Artificial Neural Network
NASA Astrophysics Data System (ADS)
Dwi Saputro, Oki; Lazuardi Maulana, Zulfikar; Dzar Eljabbar Latief, Fourier
2016-08-01
Well logging is important in oil and gas exploration. Many physical parameters of reservoir is derived from well logging measurement. Geophysicists often use well logging to obtain reservoir properties such as porosity, water saturation and permeability. Most of the time, the measurement of the reservoir properties are considered expensive. One of method to substitute the measurement is by conducting a prediction using artificial neural network. In this paper, artificial neural network is performed to predict porosity log data from other log data. Three well from ‘yy’ field are used to conduct the prediction experiment. The log data are sonic, gamma ray, and porosity log. One of three well is used as training data for the artificial neural network which employ the Levenberg-Marquardt Backpropagation algorithm. Through several trials, we devise that the most optimal input training is sonic log data and gamma ray log data with 10 hidden layer. The prediction result in well 1 has correlation of 0.92 and mean squared error of 5.67 x10-4. Trained network apply to other well data. The result show that correlation in well 2 and well 3 is 0.872 and 0.9077 respectively. Mean squared error in well 2 and well 3 is 11 x 10-4 and 9.539 x 10-4. From the result we can conclude that sonic log and gamma ray log could be good combination for predicting porosity with neural network.
Multiple-scale dynamics in neural systems: learning, synchronization and network oscillations
NASA Astrophysics Data System (ADS)
Zhigulin, Valentin P.
Many dynamical processes that take place in neural systems involve interactions between multiple temporal and/or spatial scales which lead to the emergence of new dynamical phenomena. Two of them are studied in this thesis: learning-induced robustness and enhancement of synchronization in small neural circuits; and emergence of global spatio-temporal dynamics from local interactions in neural networks.Chapter 2 presents the study of synchronization of two model neurons coupled through a synapse with spike-timing dependent plasticity (STDP). It shows that this form of learning leads to the enlargement of frequency locking zones and makes synchronization much more robust to noise than classical synchronization mediated by non-plastic synapses. A simple discrete-time map model is presented that enables deep understanding of this phenomenon and demonstrates its generality. Chapter 3 extends these results by demonstrating enhancement of synchronization in a hybrid circuit with living postsynaptic neuron. The robustness of STDP-mediated synchronization is further confirmed with simulations of stochastic plasticity.Chapter 4 studies the entrainment of a heterogeneous network of electrically coupled neurons by periodic stimulation. It demonstrates that, when compared to the case of non-plastic input synapses, inputs with STDP enhance coherence of network oscillations and improve robustness of synchronization to the variability of network properties. The observed mechanism may play a role in synchronization of hippocampal neural ensembles.Chapter 5 proposes a new type of artificial synaptic connection that combines fast reaction of an electrical synapse with plasticity of a chemical synapse. It shows that such synapse mediates regularization of chaos in a circuit of two chaotic bursting neurons and leads to structural stability of the regularized state. Such plastic electrical synapse may be used in the development of robust neural prosthetics.Chapter 6 suggests a new
Experimental fault characterization of a neural network
NASA Technical Reports Server (NTRS)
Tan, Chang-Huong
1990-01-01
The effects of a variety of faults on a neural network is quantified via simulation. The neural network consists of a single-layered clustering network and a three-layered classification network. The percentage of vectors mistagged by the clustering network, the percentage of vectors misclassified by the classification network, the time taken for the network to stabilize, and the output values are all measured. The results show that both transient and permanent faults have a significant impact on the performance of the measured network. The corresponding mistag and misclassification percentages are typically within 5 to 10 percent of each other. The average mistag percentage and the average misclassification percentage are both about 25 percent. After relearning, the percentage of misclassifications is reduced to 9 percent. In addition, transient faults are found to cause the network to be increasingly unstable as the duration of a transient is increased. The impact of link faults is relatively insignificant in comparison with node faults (1 versus 19 percent misclassified after relearning). There is a linear increase in the mistag and misclassification percentages with decreasing hardware redundancy. In addition, the mistag and misclassification percentages linearly decrease with increasing network size.
Payload Invariant Control via Neural Networks: Development and Experimental Evaluation
1989-12-01
control is proposed and experimentally evaluated. An Adaptive Model-Based Neural Network Controller (AMBNNC) uses multilayer perceptron artificial neural ... networks to estimate the payload during high speed manipulator motion. The payload estimate adapts the feedforward compensator to unmodeled system
Chaotic Griffiths Phase with Anomalous Lyapunov Spectra in Coupled Map Networks
NASA Astrophysics Data System (ADS)
Shinoda, Kenji; Kaneko, Kunihiko
2016-12-01
Dynamics of coupled chaotic oscillators on a network are studied using coupled maps. Within a broad range of parameter values representing the coupling strength or the degree of elements, the system repeats formation and split of coherent clusters. The distribution of the cluster size follows a power law with the exponent α , which changes with the parameter values. The number of positive Lyapunov exponents and their spectra are scaled anomalously with the power of the system size with the exponent β , which also changes with the parameters. The scaling relation α ˜2 (β +1 ) is uncovered, which is universal independent of parameters and among random networks.
The labeled systems of multiple neural networks.
Nemissi, M; Seridi, H; Akdag, H
2008-08-01
This paper proposes an implementation scheme of K-class classification problem using systems of multiple neural networks. Usually, a multi-class problem is decomposed into simple sub-problems solved independently using similar single neural networks. For the reason that these sub-problems are not equivalent in their complexity, we propose a system that includes reinforced networks destined to solve complicated parts of the entire problem. Our approach is inspired from principles of the multi-classifiers systems and the labeled classification, which aims to improve performances of the networks trained by the Back-Propagation algorithm. We propose two implementation schemes based on both OAO (one-against-all) and OAA (one-against-one). The proposed models are evaluated using iris and human thigh databases.
Development of programmable artificial neural networks
NASA Technical Reports Server (NTRS)
Meade, Andrew J.
1993-01-01
Conventionally programmed digital computers can process numbers with great speed and precision, but do not easily recognize patterns or imprecise or contradictory data. Instead of being programmed in the conventional sense, artificial neural networks are capable of self-learning through exposure to repeated examples. However, the training of an ANN can be a time consuming and unpredictable process. A general method is being developed to mate the adaptability of the ANN with the speed and precision of the digital computer. This method was successful in building feedforward networks that can approximate functions and their partial derivatives from examples in a single iteration. The general method also allows the formation of feedforward networks that can approximate the solution to nonlinear ordinary and partial differential equations to desired accuracy without the need of examples. It is believed that continued research will produce artificial neural networks that can be used with confidence in practical scientific computing and engineering applications.
A neural network based speech recognition system
NASA Astrophysics Data System (ADS)
Carroll, Edward J.; Coleman, Norman P., Jr.; Reddy, G. N.
1990-02-01
An overview is presented of the development of a neural network based speech recognition system. The two primary tasks involved were the development of a time invariant speech encoder and a pattern recognizer or detector. The speech encoder uses amplitude normalization and a Fast Fourier Transform to eliminate amplitude and frequency shifts of acoustic clues. The detector consists of a back-propagation network which accepts data from the encoder and identifies individual words. This use of neural networks offers two advantages over conventional algorithmic detectors: the detection time is no more than a few network time constants, and its recognition speed is independent of the number of the words in the vocabulary. The completed system has functioned as expected with high tolerance to input variation and with error rates comparable to a commercial system when used in a noisy environment.
Optimal phase synchronization in networks of phase-coherent chaotic oscillators
NASA Astrophysics Data System (ADS)
Skardal, P. S.; Sevilla-Escoboza, R.; Vera-Ávila, V. P.; Buldú, J. M.
2017-01-01
We investigate the existence of an optimal interplay between the natural frequencies of a group of chaotic oscillators and the topological properties of the network they are embedded in. We identify the conditions for achieving phase synchronization in the most effective way, i.e., with the lowest possible coupling strength. Specifically, we show by means of numerical and experimental results that it is possible to define a synchrony alignment function J (ω ,L ) linking the natural frequencies ωi of a set of non-identical phase-coherent chaotic oscillators with the topology of the Laplacian matrix L, the latter accounting for the specific organization of the network of interactions between oscillators. We use the classical Rössler system to show that the synchrony alignment function obtained for phase oscillators can be extended to phase-coherent chaotic systems. Finally, we carry out a series of experiments with nonlinear electronic circuits to show the robustness of the theoretical predictions despite the intrinsic noise and parameter mismatch of the electronic components.
Optimal phase synchronization in networks of phase-coherent chaotic oscillators.
Skardal, P S; Sevilla-Escoboza, R; Vera-Ávila, V P; Buldú, J M
2017-01-01
We investigate the existence of an optimal interplay between the natural frequencies of a group of chaotic oscillators and the topological properties of the network they are embedded in. We identify the conditions for achieving phase synchronization in the most effective way, i.e., with the lowest possible coupling strength. Specifically, we show by means of numerical and experimental results that it is possible to define a synchrony alignment function J(ω,L) linking the natural frequencies ωi of a set of non-identical phase-coherent chaotic oscillators with the topology of the Laplacian matrix L, the latter accounting for the specific organization of the network of interactions between oscillators. We use the classical Rössler system to show that the synchrony alignment function obtained for phase oscillators can be extended to phase-coherent chaotic systems. Finally, we carry out a series of experiments with nonlinear electronic circuits to show the robustness of the theoretical predictions despite the intrinsic noise and parameter mismatch of the electronic components.
A neural network with modular hierarchical learning
NASA Technical Reports Server (NTRS)
Baldi, Pierre F. (Inventor); Toomarian, Nikzad (Inventor)
1994-01-01
This invention provides a new hierarchical approach for supervised neural learning of time dependent trajectories. The modular hierarchical methodology leads to architectures which are more structured than fully interconnected networks. The networks utilize a general feedforward flow of information and sparse recurrent connections to achieve dynamic effects. The advantages include the sparsity of units and connections, the modular organization. A further advantage is that the learning is much more circumscribed learning than in fully interconnected systems. The present invention is embodied by a neural network including a plurality of neural modules each having a pre-established performance capability wherein each neural module has an output outputting present results of the performance capability and an input for changing the present results of the performance capabilitiy. For pattern recognition applications, the performance capability may be an oscillation capability producing a repeating wave pattern as the present results. In the preferred embodiment, each of the plurality of neural modules includes a pre-established capability portion and a performance adjustment portion connected to control the pre-established capability portion.
Neural Network Noise Anomaly Recognition System and Method
2000-10-04
determine when an input waveform deviates from learned noise characteristics. A plurality of neural networks is preferably provided, which each receives a...plurality of samples of intervals or windows of the input waveform. Each of the neural networks produces an output based on whether an anomaly is...detected with respect to the noise, which the neural network is trained to detect. The plurality of outputs of the neural networks is preferably applied to
Analysis of Wideband Beamformers Designed with Artificial Neural Networks
1990-12-01
TECHNICAL REPORT 0-90-1 ANALYSIS OF WIDEBAND BEAMFORMERS DESIGNED WITH ARTIFICIAL NEURAL NETWORKS by Cary Cox Instrumentation Services Division...included. A briel tutorial on beamformers and neural networks is also provided. 14. SUBJECT TERMS 15, NUMBER OF PAGES Artificial neural networks Fecdforwa:,l...Beamformers Designed with Artificial Neural Networks ". The study was conducted under the general supervision of Messrs. George P. Bonner, Chief
Cui, Yiqian; Shi, Junyou; Wang, Zili
2015-11-01
Quantum Neural Networks (QNN) models have attracted great attention since it innovates a new neural computing manner based on quantum entanglement. However, the existing QNN models are mainly based on the real quantum operations, and the potential of quantum entanglement is not fully exploited. In this paper, we proposes a novel quantum neuron model called Complex Quantum Neuron (CQN) that realizes a deep quantum entanglement. Also, a novel hybrid networks model Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) is proposed based on Complex Quantum Neuron (CQN). CRQDNN is a three layer model with both CQN and classical neurons. An infinite impulse response (IIR) filter is embedded in the Networks model to enable the memory function to process time series inputs. The Levenberg-Marquardt (LM) algorithm is used for fast parameter learning. The networks model is developed to conduct time series predictions. Two application studies are done in this paper, including the chaotic time series prediction and electronic remaining useful life (RUL) prediction.
Fu, Chenbo; Lin, Weijie; Huang, Liang; Wang, Xingang
2014-05-01
Synchronization transition in networks of nonlocally coupled chaotic oscillators is investigated. It is found that in reaching the state of global synchronization the networks can stay in various states of partial synchronization. The stability of the partial synchronization states is analyzed by the method of eigenvalue analysis, in which the important roles of the network topological symmetry on synchronization transition are identified. Moreover, for networks possessing multiple topological symmetries, it is found that the synchronization transition can be divided into different stages, with each stage characterized by a unique synchronous pattern of the oscillators. Synchronization transitions in networks of nonsymmetric topology and nonidentical oscillators are also investigated, where the partial synchronization states, although unstable, are found to be still playing important roles in the transitions.
Knowledge learning on fuzzy expert neural networks
NASA Astrophysics Data System (ADS)
Fu, Hsin-Chia; Shann, J.-J.; Pao, Hsiao-Tien
1994-03-01
The proposed fuzzy expert network is an event-driven, acyclic neural network designed for knowledge learning on a fuzzy expert system. Initially, the network is constructed according to a primitive (rough) expert rules including the input and output linguistic variables and values of the system. For each inference rule, it corresponds to an inference network, which contains five types of nodes: Input, Membership-Function, AND, OR, and Defuzzification Nodes. We propose a two-phase learning procedure for the inference network. The first phase is the competitive backpropagation (CBP) training phase, and the second phase is the rule- pruning phase. The CBP learning algorithm in the training phase enables the network to learn the fuzzy rules as precisely as backpropagation-type learning algorithms and yet as quickly as competitive-type learning algorithms. After the CBP training, the rule-pruning process is performed to delete redundant weight connections for simple network structures and yet compatible retrieving performance.
Simplified Learning Scheme For Analog Neural Network
NASA Technical Reports Server (NTRS)
Eberhardt, Silvio P.
1991-01-01
Synaptic connections adjusted one at a time in small increments. Simplified gradient-descent learning scheme for electronic neural-network processor less efficient than better-known back-propagation scheme, but offers two advantages: easily implemented in circuitry because data-access circuitry separated from learning circuitry; and independence of data-access circuitry makes possible to implement feedforward as well as feedback networks, including those of multiple-attractor type. Important in such applications as recognition of patterns.
Auto-associative nanoelectronic neural network
Nogueira, C. P. S. M.; Guimarães, J. G.
2014-05-15
In this paper, an auto-associative neural network using single-electron tunneling (SET) devices is proposed and simulated at low temperature. The nanoelectronic auto-associative network is able to converge to a stable state, previously stored during training. The recognition of the pattern involves decreasing the energy of the input state until it achieves a point of local minimum energy, which corresponds to one of the stored patterns.
Are artificial neural networks black boxes?
Benitez, J M; Castro, J L; Requena, I
1997-01-01
Artificial neural networks are efficient computing models which have shown their strengths in solving hard problems in artificial intelligence. They have also been shown to be universal approximators. Notwithstanding, one of the major criticisms is their being black boxes, since no satisfactory explanation of their behavior has been offered. In this paper, we provide such an interpretation of neural networks so that they will no longer be seen as black boxes. This is stated after establishing the equality between a certain class of neural nets and fuzzy rule-based systems. This interpretation is built with fuzzy rules using a new fuzzy logic operator which is defined after introducing the concept of f-duality. In addition, this interpretation offers an automated knowledge acquisition procedure.
Neural Network Classification of Environmental Samples
1996-12-01
Biological and Artificial Neural Networks. Air Force Institute of Technology, 1990. 24. Rosenblatt. Principles of Neurodynamics . New York, NY: Spartan...Parallel Distributed Processing: Explorations in the Microstructure of Cognition . MIT Press, 1986. 29. Smagt, Patrick P. Van Der. "Minimisation Methods
Psychometric Measurement Models and Artificial Neural Networks
ERIC Educational Resources Information Center
Sese, Albert; Palmer, Alfonso L.; Montano, Juan J.
2004-01-01
The study of measurement models in psychometrics by means of dimensionality reduction techniques such as Principal Components Analysis (PCA) is a very common practice. In recent times, an upsurge of interest in the study of artificial neural networks apt to computing a principal component extraction has been observed. Despite this interest, the…
Localizing Tortoise Nests by Neural Networks.
Barbuti, Roberto; Chessa, Stefano; Micheli, Alessio; Pucci, Rita
2016-01-01
The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating). Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS) which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN). We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours), the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition.
Neural network application to comprehensive engine diagnostics
NASA Technical Reports Server (NTRS)
Marko, Kenneth A.
1994-01-01
We have previously reported on the use of neural networks for detection and identification of faults in complex microprocessor controlled powertrain systems. The data analyzed in those studies consisted of the full spectrum of signals passing between the engine and the real-time microprocessor controller. The specific task of the classification system was to classify system operation as nominal or abnormal and to identify the fault present. The primary concern in earlier work was the identification of faults, in sensors or actuators in the powertrain system as it was exercised over its full operating range. The use of data from a variety of sources, each contributing some potentially useful information to the classification task, is commonly referred to as sensor fusion and typifies the type of problems successfully addressed using neural networks. In this work we explore the application of neural networks to a different diagnostic problem, the diagnosis of faults in newly manufactured engines and the utility of neural networks for process control.
Multidimensional neural growing networks and computer intelligence
Yashchenko, V.A.
1995-03-01
This paper examines information-computation processes in time and in space and some aspects of computer intelligence using multidimensional matrix neural growing networks. In particular, issues of object-oriented {open_quotes}thinking{close_quotes} of computers are considered.
Nonlinear Time Series Analysis via Neural Networks
NASA Astrophysics Data System (ADS)
Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin
This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.
Automatic target identification using neural networks
NASA Astrophysics Data System (ADS)
Abdallah, Mahmoud A.; Samu, Tayib I.; Grissom, William A.
1995-10-01
Neural network theories are applied to attain human-like performance in areas such as speech recognition, statistical mapping, and target recognition or identification. In target identification, one of the difficult tasks has been the extraction of features to be used to train the neural network which is subsequently used for the target's identification. The purpose of this paper is to describe the development of an automatic target identification system using features extracted from a specific class of targets. The extracted features were the graphical representations of the silhouettes of the targets. Image processing techniques and some Fast Fourier Transform (FFT) properties were implemented to extract the features. The FFT eliminates variations in the extracted features due to rotation or scaling. A Neural Network was trained with the extracted features using the Learning Vector Quantization paradigm. An identification system was set up to test the algorithm. The image processing software was interfaced with MATLAB Neural Network Toolbox via a computer program written in C language to automate the target identification process. The system performed well as at classified the objects used to train it irrespective of rotation, scaling, and translation. This automatic target identification system had a classification success rate of about 95%.
Optoelectronic Integrated Circuits For Neural Networks
NASA Technical Reports Server (NTRS)
Psaltis, D.; Katz, J.; Kim, Jae-Hoon; Lin, S. H.; Nouhi, A.
1990-01-01
Many threshold devices placed on single substrate. Integrated circuits containing optoelectronic threshold elements developed for use as planar arrays of artificial neurons in research on neural-network computers. Mounted with volume holograms recorded in photorefractive crystals serving as dense arrays of variable interconnections between neurons.
Neural networks in the former Soviet Union
Wunsch, D.C. II.
1993-01-01
A brief overview is given of neural networks activities in the former Soviet Union that have potential aerospace applications. Activities at institutes in Moscow, the former Leningrad, Kiev, Taganrog, Rostov-on-Don, and Krasnoyarsk are addressed, including the most important scientists involved. 21 refs.
Localizing Tortoise Nests by Neural Networks
2016-01-01
The goal of this research is to recognize the nest digging activity of tortoises using a device mounted atop the tortoise carapace. The device classifies tortoise movements in order to discriminate between nest digging, and non-digging activity (specifically walking and eating). Accelerometer data was collected from devices attached to the carapace of a number of tortoises during their two-month nesting period. Our system uses an accelerometer and an activity recognition system (ARS) which is modularly structured using an artificial neural network and an output filter. For the purpose of experiment and comparison, and with the aim of minimizing the computational cost, the artificial neural network has been modelled according to three different architectures based on the input delay neural network (IDNN). We show that the ARS can achieve very high accuracy on segments of data sequences, with an extremely small neural network that can be embedded in programmable low power devices. Given that digging is typically a long activity (up to two hours), the application of ARS on data segments can be repeated over time to set up a reliable and efficient system, called Tortoise@, for digging activity recognition. PMID:26985660
Neural Network Design on the SRC-6 Reconfigurable Computer
2006-12-01
speeds of FPGA systems. This thesis explores the use of a Feed-forward, Multi-Layer Perceptron (MLP) Artificial Neural Network (ANN) architecture... Implementation of a Fast Artificial Neural Network Library (FANN), Graduate Project Report, Department of Computer Science, University of Copenhagen (DIKU...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited NEURAL NETWORK
Hyperspectral Imagery Classification Using a Backpropagation Neural Network
1993-12-01
A backpropagation neural network was developed and implemented for classifying AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) hyperspectral...imagery. It is a fully interconnected linkage of three layers of neural network . Fifty input layer neurons take in signals from Bands 41 to 90 of the...moderate AVIRIS pixel resolution of 20 meters by 20 meters. Backpropagation neural network , Hyperspectral imagery
Electrically Modifiable Nonvolatile SONOS Synapses for Electronic Neural Networks.
1992-09-30
for the electrically reprogrammable analog conductance in an artificial neural network. We have demonstrated the attractive featuies of this synaptic ...Electrically Modifiable Synaptic Element for VLSI Neural Network Implementation", Proceedings of the 1991 IEEE Nonvolatile Semiconductor Memory Workshop...Nonvolatile Eletrically Modifiable Synaptic Element for VLSI Neural Network Implementation", 11th IEEE Nonvolatile Semiconductor Memory Workshop, 1991. 19. A
[Application of artificial neural networks in infectious diseases].
Xu, Jun-fang; Zhou, Xiao-nong
2011-02-28
With the development of information technology, artificial neural networks has been applied to many research fields. Due to the special features such as nonlinearity, self-adaptation, and parallel processing, artificial neural networks are applied in medicine and biology. This review summarizes the application of artificial neural networks in the relative factors, prediction and diagnosis of infectious diseases in recent years.
Brain tumor grading based on Neural Networks and Convolutional Neural Networks.
Yuehao Pan; Weimin Huang; Zhiping Lin; Wanzheng Zhu; Jiayin Zhou; Wong, Jocelyn; Zhongxiang Ding
2015-08-01
This paper studies brain tumor grading using multiphase MRI images and compares the results with various configurations of deep learning structure and baseline Neural Networks. The MRI images are used directly into the learning machine, with some combination operations between multiphase MRIs. Compared to other researches, which involve additional effort to design and choose feature sets, the approach used in this paper leverages the learning capability of deep learning machine. We present the grading performance on the testing data measured by the sensitivity and specificity. The results show a maximum improvement of 18% on grading performance of Convolutional Neural Networks based on sensitivity and specificity compared to Neural Networks. We also visualize the kernels trained in different layers and display some self-learned features obtained from Convolutional Neural Networks.
Hybrid neural networks--combining abstract and realistic neural units.
Lytton, William W; Hines, Michael
2004-01-01
There is a trade-off in neural network simulation between simulations that embody the details of neuronal biology and those that omit these details in favor of abstractions. The former approach appeals to physiologists and pharmacologists who can directly relate their experimental manipulations to parameter changes in the model. The latter approach appeals to physicists and mathematicians who seek analytic understanding of the behavior of large numbers of coupled simple units. This simplified approach is also valuable for practical reasons a highly simplified unit will run several orders of magnitude faster than a complex, biologically realistic unit. In order to have our cake and eat it, we have developed hybrid networks in the Neuron simulator package. These make use of Neuron's local variable timestep method to permit simplified integrate-and-fire units to move ahead quickly while realistic neurons in the same network are integrated slowly.
Optical implementation of neural networks
NASA Astrophysics Data System (ADS)
Yu, Francis T. S.; Guo, Ruyan
2002-12-01
An adaptive optical neuro-computing (ONC) using inexpensive pocket size liquid crystal televisions (LCTVs) had been developed by the graduate students in the Electro-Optics Laboratory at The Pennsylvania State University. Although this neuro-computing has only 8×8=64 neurons, it can be easily extended to 16×20=320 neurons. The major advantages of this LCTV architecture as compared with other reported ONCs, are low cost and the flexibility to operate. To test the performance, several neural net models are used. These models are Interpattern Association, Hetero-association and unsupervised learning algorithms. The system design considerations and experimental demonstrations are also included.
Neural networks in windprofiler data processing
NASA Astrophysics Data System (ADS)
Weber, H.; Richner, H.; Kretzschmar, R.; Ruffieux, D.
2003-04-01
Wind profilers are basically Doppler radars yielding 3-dimensional wind profiles that are deduced from the Doppler shift caused by turbulent elements in the atmosphere. These signals can be contaminated by other airborne elements such as birds or hydrometeors. Using a feed-forward neural network with one hidden layer and one output unit, birds and hydrometeors can be successfully identified in non-averaged single spectra; theses are subsequently removed in the wind computation. An infrared camera was used to identify birds in one of the beams of the wind profiler. After training the network with about 6000 contaminated data sets, it was able to identify contaminated data in a test data set with a reliability of 96 percent. The assumption was made that the neural network parameters obtained in the beam for which bird data was collected can be transferred to the other beams (at least three beams are needed for computing wind vectors). Comparing the evolution of a wind field with and without the neural network shows a significant improvement of wind data quality. Current work concentrates on training the network also for hydrometeors. It is hoped that the instrument's capability can thus be expanded to measure not only correct winds, but also observe bird migration, estimate precipitation and -- by combining precipitation information with vertical velocity measurement -- the monitoring of the height of the melting layer.
Classifying multispectral data by neural networks
NASA Technical Reports Server (NTRS)
Telfer, Brian A.; Szu, Harold H.; Kiang, Richard K.
1993-01-01
Several energy functions for synthesizing neural networks are tested on 2-D synthetic data and on Landsat-4 Thematic Mapper data. These new energy functions, designed specifically for minimizing misclassification error, in some cases yield significant improvements in classification accuracy over the standard least mean squares energy function. In addition to operating on networks with one output unit per class, a new energy function is tested for binary encoded outputs, which result in smaller network sizes. The Thematic Mapper data (four bands were used) is classified on a single pixel basis, to provide a starting benchmark against which further improvements will be measured. Improvements are underway to make use of both subpixel and superpixel (i.e. contextual or neighborhood) information in tile processing. For single pixel classification, the best neural network result is 78.7 percent, compared with 71.7 percent for a classical nearest neighbor classifier. The 78.7 percent result also improves on several earlier neural network results on this data.
Back propagation neural networks for facial verification
Garnett, A.E.; Solheim, I.; Payne, T.; Castain, R.H.
1992-10-01
We conducted a test to determine the aptitude of neural networks to recognize human faces. The pictures we collected of 511 subjects captured both profiles and many natural expressions. Some of the subjects were wearing glasses, sunglasses, or hats in some of the pictures. The images were compressed by a factor of 100 and converted into image vectors of 1400 pixels. The image vectors were fed into a back propagation neural network with one hidden layer and one output node. The networks were trained to recognize one target person and to reject all other persons. Neural networks for 37 target subjects were trained with 8 different training sets that consisted of different subsets of the data. The networks were then tested on the rest of the data, which consisted of 7000 or more unseen pictures. Results indicate that a false acceptance rate of less than 1 percent can be obtained, and a false rejection rate of 2 percent can be obtained when certain restrictions are followed.
Grouping synchronization in a pulse-coupled network of chaotic spiking oscillators.
Nakano, H; Saito, T
2004-09-01
This paper studies a pulse-coupled network consisting of simple chaotic spiking oscillators (CSOs). If a unit oscillator and its neighbor(s) have (almost) the same parameter values, they exhibit in-phase synchronization of chaos. As the parameter values differ, they exhibit asynchronous phenomena. Based on such behavior, some synchronous groups appear partially in the network. Typical phenomena are verified in the laboratory via a simple test circuit. These phenomena can be evaluated numerically by using an effective mapping procedure. We then apply the proposed network to image segmentation. Using a lattice pulse-coupled network via grouping synchronous phenomena, the input image data can be segmented into some sub-regions.
a Heterosynaptic Learning Rule for Neural Networks
NASA Astrophysics Data System (ADS)
Emmert-Streib, Frank
In this article we introduce a novel stochastic Hebb-like learning rule for neural networks that is neurobiologically motivated. This learning rule combines features of unsupervised (Hebbian) and supervised (reinforcement) learning and is stochastic with respect to the selection of the time points when a synapse is modified. Moreover, the learning rule does not only affect the synapse between pre- and postsynaptic neuron, which is called homosynaptic plasticity, but effects also further remote synapses of the pre- and postsynaptic neuron. This more complex form of synaptic plasticity has recently come under investigations in neurobiology and is called heterosynaptic plasticity. We demonstrate that this learning rule is useful in training neural networks by learning parity functions including the exclusive-or (XOR) mapping in a multilayer feed-forward network. We find, that our stochastic learning rule works well, even in the presence of noise. Importantly, the mean learning time increases with the number of patterns to be learned polynomially, indicating efficient learning.
Fuzzy logic and neural network technologies
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Lea, Robert N.; Savely, Robert T.
1992-01-01
Applications of fuzzy logic technologies in NASA projects are reviewed to examine their advantages in the development of neural networks for aerospace and commercial expert systems and control. Examples of fuzzy-logic applications include a 6-DOF spacecraft controller, collision-avoidance systems, and reinforcement-learning techniques. The commercial applications examined include a fuzzy autofocusing system, an air conditioning system, and an automobile transmission application. The practical use of fuzzy logic is set in the theoretical context of artificial neural systems (ANSs) to give the background for an overview of ANS research programs at NASA. The research and application programs include the Network Execution and Training Simulator and faster training algorithms such as the Difference Optimized Training Scheme. The networks are well suited for pattern-recognition applications such as predicting sunspots, controlling posture maintenance, and conducting adaptive diagnoses.
A Topological Perspective of Neural Network Structure
NASA Astrophysics Data System (ADS)
Sizemore, Ann; Giusti, Chad; Cieslak, Matthew; Grafton, Scott; Bassett, Danielle
The wiring patterns of white matter tracts between brain regions inform functional capabilities of the neural network. Indeed, densely connected and cyclically arranged cognitive systems may communicate and thus perform distinctly. However, previously employed graph theoretical statistics are local in nature and thus insensitive to such global structure. Here we present an investigation of the structural neural network in eight healthy individuals using persistent homology. An extension of homology to weighted networks, persistent homology records both circuits and cliques (all-to-all connected subgraphs) through a repetitive thresholding process, thus perceiving structural motifs. We report structural features found across patients and discuss brain regions responsible for these patterns, finally considering the implications of such motifs in relation to cognitive function.
Neural networks: Application to medical imaging
NASA Technical Reports Server (NTRS)
Clarke, Laurence P.
1994-01-01
The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.
Controlling neural network responsiveness: tradeoffs and constraints
Keren, Hanna; Marom, Shimon
2014-01-01
In recent years much effort is invested in means to control neural population responses at the whole brain level, within the context of developing advanced medical applications. The tradeoffs and constraints involved, however, remain elusive due to obvious complications entailed by studying whole brain dynamics. Here, we present effective control of response features (probability and latency) of cortical networks in vitro over many hours, and offer this approach as an experimental toy for studying controllability of neural networks in the wider context. Exercising this approach we show that enforcement of stable high activity rates by means of closed loop control may enhance alteration of underlying global input–output relations and activity dependent dispersion of neuronal pair-wise correlations across the network. PMID:24808860
Computationally Efficient Neural Network Intrusion Security Awareness
Todd Vollmer; Milos Manic
2009-08-01
An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.
Complex dynamics of a delayed discrete neural network of two nonidentical neurons
Chen, Yuanlong; Huang, Tingwen; Huang, Yu
2014-03-15
In this paper, we discover that a delayed discrete Hopfield neural network of two nonidentical neurons with self-connections and no self-connections can demonstrate chaotic behaviors. To this end, we first transform the model, by a novel way, into an equivalent system which has some interesting properties. Then, we identify the chaotic invariant set for this system and show that the dynamics of this system within this set is topologically conjugate to the dynamics of the full shift map with two symbols. This confirms chaos in the sense of Devaney. Our main results generalize the relevant results of Huang and Zou [J. Nonlinear Sci. 15, 291–303 (2005)], Kaslik and Balint [J. Nonlinear Sci. 18, 415–432 (2008)] and Chen et al. [Sci. China Math. 56(9), 1869–1878 (2013)]. We also give some numeric simulations to verify our theoretical results.
Do neural networks offer something for you?
Ramchandran, S.; Rhinehart, R.R.
1995-11-01
The concept of neural network computation was inspired by the hope to artifically reproduce some of the flexibility and power of the human brain. Human beings can recognize different patterns and voices even though these signals do not have a simple phenomenological understanding. Scientists have developed artificial neural networks (ANNs) for modeling processes that do not have a simple phenomenological explanation, such as voice recognition. Consequently, ANN jargon can be confusing to process and control engineers. In simple terms, ANNs take a nonlinear regression modeling approach. Like any regression curve-fitting approach, a least-squares optimization can generate model parameters. One advantage of ANNs is that they require neither a priori understanding of the process behavior nor phenomenological understanding of the process. ANNs use data describing the input/output relationship in a process to {open_quotes}learn{close_quotes} about the underlying process behavior. As a result of this, ANNs have a wide range of applicability. Furthermore, ANNs are computationally efficient and can replace models that are computationally intensive. This can make real-time online model-based applications practicable. A neural network is a dense mesh of nodes and connections. The basic processing elements of a network are called neurons. Neural networks are organized in layers, and typically consist of at least three layers: an input layer, one or more hidden layers, and an output layer. The input and output layers serve as interfaces that perform appropriate scaling between `real-world` and network data. Hidden layers are so termed because their neurons are hidden to the real-world data. Connections are the means for information flow. Each connection has an associated adjustable weight, w{sub i}. The weight can be regarded as a measure of the importance of the signals between the two neurons. 7 figs.
Neural networks in the process industries
Ben, L.R.; Heavner, L.
1996-12-01
Neural networks, or more precisely, artificial neural networks (ANNs), are rapidly gaining in popularity. They first began to appear on the process-control scene in the early 1990s, but have been a research focus for more than 30 years. Neural networks are really empirical models that approximate the way man thinks neurons in the human brain work. Neural-net technology is not trying to produce computerized clones, but to model nature in an effort to mimic some of the brain`s capabilities. Modeling, for the purposes of this article, means developing a mathematical description of physical phenomena. The physics and chemistry of industrial processes are usually quite complex and sometimes poorly understood. Our process understanding, and our imperfect ability to describe complexity in mathematical terms, limit fidelity of first-principle models. Computational requirements for executing these complex models are a further limitation. It is often not possible to execute first-principle model algorithms at the high rate required for online control. Nevertheless, rigorous first principle models are commonplace design tools. Process control is another matter. Important model inputs are often not available as process measurements, making real-time application difficult. In fact, engineers often use models to infer unavailable measurements. 5 figs.
Exceptional reducibility of complex-valued neural networks.
Kobayashi, Masaki
2010-07-01
A neural network is referred to as minimal if it cannot reduce the number of hidden neurons that maintain the input-output map. The condition in which the number of hidden neurons can be reduced is referred to as reducibility. Real-valued neural networks have only three simple types of reducibility. It can be naturally extended to complex-valued neural networks without bias terms of hidden neurons. However, general complex-valued neural networks have another type of reducibility, referred to herein as exceptional reducibility. In this paper, another type of reducibility is presented, and a method by which to minimize complex-valued neural networks is proposed.
Noise influence on spike activation in a Hindmarsh-Rose small-world neural network
NASA Astrophysics Data System (ADS)
Zhe, Sun; Micheletto, Ruggero
2016-07-01
We studied the role of noise in neural networks, especially focusing on its relation to the propagation of spike activity in a small sized system. We set up a source of information using a single neuron that is constantly spiking. This element called initiator x o feeds spikes to the rest of the network that is initially quiescent and subsequently reacts with vigorous spiking after a transitional period of time. We found that noise quickly suppresses the initiator’s influence and favors spontaneous spike activity and, using a decibel representation of noise intensity, we established a linear relationship between noise amplitude and the interval from the initiator’s first spike and the rest of the network activation. We studied the same process with networks of different sizes (number of neurons) and found that the initiator x o has a measurable influence on small networks, but as the network grows in size, spontaneous spiking emerges disrupting its effects on networks of more than about N = 100 neurons. This suggests that the mechanism of internal noise generation allows information transmission within a small neural neighborhood, but decays for bigger network domains. We also analyzed the Fourier spectrum of the whole network membrane potential and verified that noise provokes the reduction of main θ and α peaks before transitioning into chaotic spiking. However, network size does not reproduce a similar phenomena; instead we recorded a reduction in peaks’ amplitude, a better sharpness and definition of Fourier peaks, but not the evident degeneration to chaos observed with increasing external noise. This work aims to contribute to the understanding of the fundamental mechanisms of propagation of spontaneous spiking in neural networks and gives a quantitative assessment of how noise can be used to control and modulate this phenomenon in Hindmarsh-Rose (H-R) neural networks.
Pruning Neural Networks with Distribution Estimation Algorithms
Cantu-Paz, E
2003-01-15
This paper describes the application of four evolutionary algorithms to the pruning of neural networks used in classification problems. Besides of a simple genetic algorithm (GA), the paper considers three distribution estimation algorithms (DEAs): a compact GA, an extended compact GA, and the Bayesian Optimization Algorithm. The objective is to determine if the DEAs present advantages over the simple GA in terms of accuracy or speed in this problem. The experiments used a feed forward neural network trained with standard back propagation and public-domain and artificial data sets. The pruned networks seemed to have better or equal accuracy than the original fully-connected networks. Only in a few cases, pruning resulted in less accurate networks. We found few differences in the accuracy of the networks pruned by the four EAs, but found important differences in the execution time. The results suggest that a simple GA with a small population might be the best algorithm for pruning networks on the data sets we tested.
Neural network computer simulation of medical aerosols.
Richardson, C J; Barlow, D J
1996-06-01
Preliminary investigations have been conducted to assess the potential for using artificial neural networks to simulate aerosol behaviour, with a view to employing this type of methodology in the evaluation and design of pulmonary drug-delivery systems. Details are presented of the general purpose software developed for these tasks; it implements a feed-forward back-propagation algorithm with weight decay and connection pruning, the user having complete run-time control of the network architecture and mode of training. A series of exploratory investigations is then reported in which different network structures and training strategies are assessed in terms of their ability to simulate known patterns of fluid flow in simple model systems. The first of these involves simulations of cellular automata-generated data for fluid flow through a partially obstructed two-dimensional pipe. The artificial neural networks are shown to be highly successful in simulating the behaviour of this simple linear system, but with important provisos relating to the information content of the training data and the criteria used to judge when the network is properly trained. A second set of investigations is then reported in which similar networks are used to simulate patterns of fluid flow through aerosol generation devices, using training data furnished through rigorous computational fluid dynamics modelling. These more complex three-dimensional systems are modelled with equal success. It is concluded that carefully tailored, well trained networks could provide valuable tools not just for predicting but also for analysing the spatial dynamics of pharmaceutical aerosols.
Membership generation using multilayer neural network
NASA Technical Reports Server (NTRS)
Kim, Jaeseok
1992-01-01
There has been intensive research in neural network applications to pattern recognition problems. Particularly, the back-propagation network has attracted many researchers because of its outstanding performance in pattern recognition applications. In this section, we describe a new method to generate membership functions from training data using a multilayer neural network. The basic idea behind the approach is as follows. The output values of a sigmoid activation function of a neuron bear remarkable resemblance to membership values. Therefore, we can regard the sigmoid activation values as the membership values in fuzzy set theory. Thus, in order to generate class membership values, we first train a suitable multilayer network using a training algorithm such as the back-propagation algorithm. After the training procedure converges, the resulting network can be treated as a membership generation network, where the inputs are feature values and the outputs are membership values in the different classes. This method allows fairly complex membership functions to be generated because the network is highly nonlinear in general. Also, it is to be noted that the membership functions are generated from a classification point of view. For pattern recognition applications, this is highly desirable, although the membership values may not be indicative of the degree of typicality of a feature value in a particular class.
Non-Intrusive Gaze Tracking Using Artificial Neural Networks
1994-01-05
Artificial Neural Networks Shumeet Baluja & Dean...this paper appear in: Baluja, S. & Pomerleau, D.A. "Non-Intrusive Gaze Tracking Using Artificial Neural Networks ", Advances in Neural Information...document hLc-s been opproved t0T 011bhiC leleWOe cad ý’ir/4 its di stT-b’ution Ls •_nii•ite6. - Keywords Gaze Tracking, Artificial Neural Networks ,
A Projection Neural Network for Constrained Quadratic Minimax Optimization.
Liu, Qingshan; Wang, Jun
2015-11-01
This paper presents a projection neural network described by a dynamic system for solving constrained quadratic minimax programming problems. Sufficient conditions based on a linear matrix inequality are provided for global convergence of the proposed neural network. Compared with some of the existing neural networks for quadratic minimax optimization, the proposed neural network in this paper is capable of solving more general constrained quadratic minimax optimization problems, and the designed neural network does not include any parameter. Moreover, the neural network has lower model complexities, the number of state variables of which is equal to that of the dimension of the optimization problems. The simulation results on numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural network.
Toward implementation of artificial neural networks that "really work".
Leon, M. A.; Keller, J.
1997-01-01
Artificial neural networks are established analytical methods in bio-medical research. They have repeatedly outperformed traditional tools for pattern recognition and clinical outcome prediction while assuring continued adaptation and learning. However, successful experimental neural networks systems seldom reach a production state. That is, they are not incorporated into clinical information systems. It could be speculated that neural networks simply must undergo a lengthy acceptance process before they become part of the day to day operations of health care systems. However, our experience trying to incorporate experimental neural networks into information systems lead us to believe that there are technical and operational barriers that greatly difficult neural network implementation. A solution for these problems may be the delineation of policies and procedures for neural network implementation and the development a new class of neural network client/server applications that fit the needs of current clinical information systems. PMID:9357613
Correcting wave predictions with artificial neural networks
NASA Astrophysics Data System (ADS)
Makarynskyy, O.; Makarynska, D.
2003-04-01
The predictions of wind waves with different lead times are necessary in a large scope of coastal and open ocean activities. Numerical wave models, which usually provide this information, are based on deterministic equations that do not entirely account for the complexity and uncertainty of the wave generation and dissipation processes. An attempt to improve wave parameters short-term forecasts based on artificial neural networks is reported. In recent years, artificial neural networks have been used in a number of coastal engineering applications due to their ability to approximate the nonlinear mathematical behavior without a priori knowledge of interrelations among the elements within a system. The common multilayer feed-forward networks, with a nonlinear transfer functions in the hidden layers, were developed and employed to forecast the wave characteristics over one hour intervals starting from one up to 24 hours, and to correct these predictions. Three non-overlapping data sets of wave characteristics, both from a buoy, moored roughly 60 miles west of the Aran Islands, west coast of Ireland, were used to train and validate the neural nets involved. The networks were trained with error back propagation algorithm. Time series plots and scatterplots of the wave characteristics as well as tables with statistics show an improvement of the results achieved due to the correction procedure employed.
Applications of neural networks in training science.
Pfeiffer, Mark; Hohmann, Andreas
2012-04-01
Training science views itself as an integrated and applied science, developing practical measures founded on scientific method. Therefore, it demands consideration of a wide spectrum of approaches and methods. Especially in the field of competitive sports, research questions are usually located in complex environments, so that mainly field studies are drawn upon to obtain broad external validity. Here, the interrelations between different variables or variable sets are mostly of a nonlinear character. In these cases, methods like neural networks, e.g., the pattern recognizing methods of Self-Organizing Kohonen Feature Maps or similar instruments to identify interactions might be successfully applied to analyze data. Following on from a classification of data analysis methods in training-science research, the aim of the contribution is to give examples of varied sports in which network approaches can be effectually used in training science. First, two examples are given in which neural networks are employed for pattern recognition. While one investigation deals with the detection of sporting talent in swimming, the other is located in game sports research, identifying tactical patterns in team handball. The third and last example shows how an artificial neural network can be used to predict competitive performance in swimming.
Functional expansion representations of artificial neural networks
NASA Technical Reports Server (NTRS)
Gray, W. Steven
1992-01-01
In the past few years, significant interest has developed in using artificial neural networks to model and control nonlinear dynamical systems. While there exists many proposed schemes for accomplishing this and a wealth of supporting empirical results, most approaches to date tend to be ad hoc in nature and rely mainly on heuristic justifications. The purpose of this project was to further develop some analytical tools for representing nonlinear discrete-time input-output systems, which when applied to neural networks would give insight on architecture selection, pruning strategies, and learning algorithms. A long term goal is to determine in what sense, if any, a neural network can be used as a universal approximator for nonliner input-output maps with memory (i.e., realized by a dynamical system). This property is well known for the case of static or memoryless input-output maps. The general architecture under consideration in this project was a single-input, single-output recurrent feedforward network.
López-Caraballo, C. H.; Lazzús, J. A.; Salfate, I.; Rojas, P.; Rivera, M.; Palma-Chilla, L.
2015-01-01
An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term x(t + 6). The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σN) from 0.01 to 0.1. PMID:26351449
Character Recognition Using Genetically Trained Neural Networks
Diniz, C.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.
1998-10-01
Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfid recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the amount of
On lateral competition in dynamic neural networks
Bellyustin, N.S.
1995-02-01
Artificial neural networks connected homogeneously, which use retinal image processing methods, are considered. We point out that there are probably two different types of lateral inhibition for each neural element by the neighboring ones-due to the negative connection coefficients between elements and due to the decreasing neuron`s response to a too high input signal. The first case characterized by stable dynamics, which is given by the Lyapunov function, while in the second case, stability is absent and two-dimensional dynamic chaos occurs if the time step in the integration of model equations is large enough. The continuous neural medium approximation is used for analytical estimation in both cases. The result is the partition of the parameter space into domains with qualitatively different dynamic modes. Computer simulations confirm the estimates and show that joining two-dimensional chaos with symmetries provided by the initial and boundary conditions may produce patterns which are genuine pieces of art.
Neural networks as a control methodology
NASA Technical Reports Server (NTRS)
Mccullough, Claire L.
1990-01-01
While conventional computers must be programmed in a logical fashion by a person who thoroughly understands the task to be performed, the motivation behind neural networks is to develop machines which can train themselves to perform tasks, using available information about desired system behavior and learning from experience. There are three goals of this fellowship program: (1) to evaluate various neural net methods and generate computer software to implement those deemed most promising on a personal computer equipped with Matlab; (2) to evaluate methods currently in the professional literature for system control using neural nets to choose those most applicable to control of flexible structures; and (3) to apply the control strategies chosen in (2) to a computer simulation of a test article, the Control Structures Interaction Suitcase Demonstrator, which is a portable system consisting of a small flexible beam driven by a torque motor and mounted on springs tuned to the first flexible mode of the beam. Results of each are discussed.
Neural network models of categorical perception.
Damper, R I; Harnad, S R
2000-05-01
Studies of the categorical perception (CP) of sensory continua have a long and rich history in psychophysics. In 1977, Macmillan, Kaplan, and Creelman introduced the use of signal detection theory to CP studies. Anderson and colleagues simultaneously proposed the first neural model for CP, yet this line of research has been less well explored. In this paper, we assess the ability of neural-network models of CP to predict the psychophysical performance of real observers with speech sounds and artificial/novel stimuli. We show that a variety of neural mechanisms are capable of generating the characteristics of CP. Hence, CP may not be a special model of perception but an emergent property of any sufficiently powerful general learning system.
Speed up Neural Network Learning by GPGPU
NASA Astrophysics Data System (ADS)
Tsuchida, Yuta; Yoshioka, Michifumi
Recently, graphic boards have higher performance with development of 3DCG and movie processing than CPU, and widely used with progress of computer entertainment. Implementation of the General-purpose computing on GPU (GPGPU) become more easier by the integrated development environment, CUDA distributed by NVIDIA. GPU has dozens or a hundred arithmetic circuits, whose allocations are controlled by CUDA. In the previous researches, the implementation of the neural network using GPGPU have been studied, however the learning of networks was not mentioned because the GPU performance is low in conditional processing whereas high in linear algebra processing. Therefore we have proposed two methods. At first, a whole network is implemented as a thread, and some networks are taught in parallel to shorten the time necessary to find the optimal weight coefficients. Secondly, this paper introduces parallelization in the neural network structure, that is, the calculation of neurons in the same layers can be paralleled. And the processes to teach for same network with different patterns are independent also. As a result, the second method is 20 times faster than CPU, and compared with the first proposed method, that is about 6 times faster.
Secure chaotic map based block cryptosystem with application to camera sensor networks.
Guo, Xianfeng; Zhang, Jiashu; Khan, Muhammad Khurram; Alghathbar, Khaled
2011-01-01
Recently, Wang et al. presented an efficient logistic map based block encryption system. The encryption system employs feedback ciphertext to achieve plaintext dependence of sub-keys. Unfortunately, we discovered that their scheme is unable to withstand key stream attack. To improve its security, this paper proposes a novel chaotic map based block cryptosystem. At the same time, a secure architecture for camera sensor network is constructed. The network comprises a set of inexpensive camera sensors to capture the images, a sink node equipped with sufficient computation and storage capabilities and a data processing server. The transmission security between the sink node and the server is gained by utilizing the improved cipher. Both theoretical analysis and simulation results indicate that the improved algorithm can overcome the flaws and maintain all the merits of the original cryptosystem. In addition, computational costs and efficiency of the proposed scheme are encouraging for the practical implementation in the real environment as well as camera sensor network.
Bifurcation mechanisms of regular and chaotic network signaling in brain astrocytes
NASA Astrophysics Data System (ADS)
Matrosov, V. V.; Kazantsev, V. B.
2011-06-01
Bifurcation mechanisms underlying calcium oscillations in the network of astrocytes are investigated. Network model includes the dynamics of intracellular calcium concentration and intercellular diffusion of inositol 1,4,5-trisphosphate through gap junctions. Bifurcation analysis of underlying nonlinear dynamical system is presented. Parameter regions and principle bifurcation boundaries have been delineated and described. We show how variations of the diffusion rate can lead to generation of network calcium oscillations in originally nonoscillating cells. Different scenarios of regular activity and its transitions to chaotic dynamics have been obtained. Then, the bifurcations have been associated with statistical characteristics of calcium signals showing that different bifurcation scenarios yield qualitative changes in experimentally measurable quantities of the astrocyte activity, e.g., statistics of calcium spikes.
Visual grammars and their neural networks
NASA Astrophysics Data System (ADS)
Mjolsness, Eric
1992-07-01
We exhibit a systematic way to derive neural nets for vision problems. It involves formulating a vision problem as Bayesian inference or decision on a comprehensive model of the visual domain given by a probabilistic grammar. A key feature of this grammar is the way in which it eliminates model information, such as object labels, as it produces an image; correspondence problems and other noise removal tasks result. The neural nets that arise most directly are generalized assignment networks. Also there are transformations which naturally yield improved algorithms such as correlation matching in scale space and the Frameville neural nets for high-level vision. Networks derived this way generally have objective functions with spurious local minima; such minima may commonly be avoided by dynamics that include deterministic annealing, for example recent improvements to Mean Field Theory dynamics. The grammatical method of neural net design allows domain knowledge to enter from all levels of the grammar, including `abstract' levels remote from the final image data, and may permit new kinds of learning as well.
Complex Chebyshev-polynomial-based unified model (CCPBUM) neural networks
NASA Astrophysics Data System (ADS)
Jeng, Jin-Tsong; Lee, Tsu-Tian
1998-03-01
In this paper, we propose complex Chebyshev Polynomial Based unified model neural network for the approximation of complex- valued function. Based on this approximate transformable technique, we have derived the relationship between the single-layered neural network and multi-layered perceptron neural network. It is shown that the complex Chebyshev Polynomial Based unified model neural network can be represented as a functional link network that are based on Chebyshev polynomial. We also derived a new learning algorithm for the proposed network. It turns out that the complex Chebyshev Polynomial Based unified model neural network not only has the same capability of universal approximator, but also has faster learning speed than conventional complex feedforward/recurrent neural network.
Automatic breast density classification using neural network
NASA Astrophysics Data System (ADS)
Arefan, D.; Talebpour, A.; Ahmadinejhad, N.; Kamali Asl, A.
2015-12-01
According to studies, the risk of breast cancer directly associated with breast density. Many researches are done on automatic diagnosis of breast density using mammography. In the current study, artifacts of mammograms are removed by using image processing techniques and by using the method presented in this study, including the diagnosis of points of the pectoral muscle edges and estimating them using regression techniques, pectoral muscle is detected with high accuracy in mammography and breast tissue is fully automatically extracted. In order to classify mammography images into three categories: Fatty, Glandular, Dense, a feature based on difference of gray-levels of hard tissue and soft tissue in mammograms has been used addition to the statistical features and a neural network classifier with a hidden layer. Image database used in this research is the mini-MIAS database and the maximum accuracy of system in classifying images has been reported 97.66% with 8 hidden layers in neural network.
Application of neural networks in space construction
NASA Technical Reports Server (NTRS)
Thilenius, Stephen C.; Barnes, Frank
1990-01-01
When trying to decide what task should be done by robots and what tasks should be done by humans with respect to space construction, there has been one decisive barrier which ultimately divides the tasks: can a computer do the job? Von Neumann type computers have great difficulty with problems that the human brain seems to do instantaneously and with little effort. Some of these problems are pattern recognition, speech recognition, content addressable memories, and command interpretation. In an attempt to simulate these talents of the human brain, much research was currently done into the operations and construction of artificial neural networks. The efficiency of the interface between man and machine, robots in particular, can therefore be greatly improved with the use of neural networks. For example, wouldn't it be easier to command a robot to 'fetch an object' rather then having to remotely control the entire operation with remote control?
Neural networks predict tomato maturity stage
NASA Astrophysics Data System (ADS)
Hahn, Federico
1999-03-01
Almost 40% of the total horticultural produce exported from Mexico the USA is tomato, and quality is fundamental for maintaining the market. Many fruits packed at the green-mature stage do not mature towards a red color as they were harvested before achieving its physiological maturity. Tomato gassed for advancing maturation does not respond on those fruits, and repacking is necessary at terminal markets, causing losses to the producer. Tomato spectral signatures are different on each maturity stage and tomato size was poorly correlated against peak wavelengths. A back-propagation neural network was used to predict tomato maturity using reflectance ratios as inputs. Higher success rates were achieved on tomato maturity stage recognition with neural networks than with discriminant analysis.
Privacy-preserving backpropagation neural network learning.
Chen, Tingting; Zhong, Sheng
2009-10-01
With the development of distributed computing environment , many learning problems now have to deal with distributed input data. To enhance cooperations in learning, it is important to address the privacy concern of each data holder by extending the privacy preservation notion to original learning algorithms. In this paper, we focus on preserving the privacy in an important learning model, multilayer neural networks. We present a privacy-preserving two-party distributed algorithm of backpropagation which allows a neural network to be trained without requiring either party to reveal her data to the other. We provide complete correctness and security analysis of our algorithms. The effectiveness of our algorithms is verified by experiments on various real world data sets.
Design of fiber optic adaline neural networks
NASA Astrophysics Data System (ADS)
Ghosh, Anjan K.; Trepka, Jim
1997-03-01
Based on possible optoelectronic realization of adaptive filters and equalizers using fiber optic tapped delay lines and spatial light modulators we describe the design of a single-layer fiber optic Adaline neural network that can be used as a bit pattern classifier. In our design, we employ as few electronic devices as possible and use optical computation to utilize the advantages of optics in processing speed, parallelism, and interconnection. The described new optical neural network design is for optical processing of guided light wave signals, not electronic signals. We analyze the convergence or learning characteristics of the optoelectronic Adaline in the presence of errors in the hardware. We show that with such an optoelectronic Adaline it is possible to detect a desired code word/token/header with good accuracy.
Neural networks for aerosol particles characterization
NASA Astrophysics Data System (ADS)
Berdnik, V. V.; Loiko, V. A.
2016-11-01
Multilayer perceptron neural networks with one, two and three inputs are built to retrieve parameters of spherical homogeneous nonabsorbing particle. The refractive index ranges from 1.3 to 1.7; particle radius ranges from 0.251 μm to 56.234 μm. The logarithms of the scattered radiation intensity are used as input signals. The problem of the most informative scattering angles selection is elucidated. It is shown that polychromatic illumination helps one to increase significantly the retrieval accuracy. In the absence of measurement errors relative error of radius retrieval by the neural network with three inputs is 0.54%, relative error of the refractive index retrieval is 0.84%. The effect of measurement errors on the result of retrieval is simulated.
Pattern recognition, neural networks, and artificial intelligence
NASA Astrophysics Data System (ADS)
Bezdek, James C.
1991-03-01
We write about the relationship between numerical patten recognition and neural-like computation networks. Extensive research that proposes the use of neural models for a wide variety of applications has been conducted in the past few years. Sometimes justification for investigating the potential of neural nets (NNs) is obvious. On the other hand, current enthusiasm for this approach has also led to the use of neural models when the apparent rationale for their use has been justified by what is best described as 'feeding frenzy'. In this latter instance there is at times concomitant lack of concern about many 'side issues' connected with algorithms (e.g., complexity, convergence, stability, robustness and performance validation) that need attention before any computational model becomes part of an operation system. These issues are examined with a view towards guessing how best to integrate and exploit the promise of the neural approach with there efforts aimed at advancing the art and science of pattern recognition and its applications in fielded systems in the next decade.
When Networks Disagree: Ensemble Methods for Hybrid Neural Networks
1992-10-27
takes the form of repeated on-line stochastic gradient descent of randomly initialized nets. However, unlike the combination process in parametric ... estimation which usually takes the form of a simple average in parameter space, the parameters in a neural network take the form of neuronal weights which
Neural network error correction for solving coupled ordinary differential equations
NASA Technical Reports Server (NTRS)
Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.
1992-01-01
A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.
Analog hardware for learning neural networks
NASA Technical Reports Server (NTRS)
Eberhardt, Silvio P. (Inventor)
1991-01-01
This is a recurrent or feedforward analog neural network processor having a multi-level neuron array and a synaptic matrix for storing weighted analog values of synaptic connection strengths which is characterized by temporarily changing one connection strength at a time to determine its effect on system output relative to the desired target. That connection strength is then adjusted based on the effect, whereby the processor is taught the correct response to training examples connection by connection.
Cognitively Inspired Neural Network for Situation Recognition
2010-01-14
Neurodynamics of Higher-Level Cognition and Consciousness, Eds. Perlovsky, 1.I., Kozma, R. Springer Verlag, Heidelberg, Germany. Perlovsky, L.I., Deming...Perlovsky L. I., Kozma R. (2007) Eds. Neurodynamics of Higher-Level Cognition and Consciousness. Heidelberg, Germany: Springer-Verlag. Perlovsky, L.1...AFRL-RY -HS-TR-20 10-0028 Cognitively Inspired Neural Network for Situation Recognition Roman Ilin and Leonid Perlovsky AFRURYHE 80 Scott Drive
Correlation Filter Synthesis Using Neural Networks.
1993-12-01
distortions, and this approach has clear advantages compared to searching stored filters. I)jL.,i.A I £EJTCMD 3 14. SUBJECT TERMS I NUMBER OF...distortions. They also indicate possible significant advantages compared to searching stored filters. ii 1. INTRODUCTION This section briefly...possible significant advantages compared to searching stored filters. The technical effort on correlation filter synthesis using neural networks was
Program PSNN (Plasma Spectroscopy Neural Network)
Morgan, W.L.; Larsen, J.T.
1993-08-01
This program uses the standard ``delta rule`` back-propagation supervised training algorithm for multi-layer neural networks. The inputs are line intensities in arbitrary units, which are then normalized within the program. The outputs are T{sub e}(eV), N{sub e}(cm{sup {minus}3}), and a fractional ionization, which in our testing using H- and He-like spectra, was N(He)/[N(H) + N(He)].
Nonvolatile Array Of Synapses For Neural Network
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1993-01-01
Elements of array programmed with help of ultraviolet light. A 32 x 32 very-large-scale integrated-circuit array of electronic synapses serves as building-block chip for analog neural-network computer. Synaptic weights stored in nonvolatile manner. Makes information content of array invulnerable to loss of power, and, by eliminating need for circuitry to refresh volatile synaptic memory, makes architecture simpler and more compact.
Learning in Neural Networks: VLSI Implementation Strategies
NASA Technical Reports Server (NTRS)
Duong, Tuan Anh
1995-01-01
Fully-parallel hardware neural network implementations may be applied to high-speed recognition, classification, and mapping tasks in areas such as vision, or can be used as low-cost self-contained units for tasks such as error detection in mechanical systems (e.g. autos). Learning is required not only to satisfy application requirements, but also to overcome hardware-imposed limitations such as reduced dynamic range of connections.
Adaptive Filtering Using Recurrent Neural Networks
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.
2005-01-01
A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.
Artificial neural network cardiopulmonary modeling and diagnosis
Kangas, L.J.; Keller, P.E.
1997-10-28
The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis. 12 figs.
Artificial neural network cardiopulmonary modeling and diagnosis
Kangas, Lars J.; Keller, Paul E.
1997-01-01
The present invention is a method of diagnosing a cardiopulmonary condition in an individual by comparing data from a progressive multi-stage test for the individual to a non-linear multi-variate model, preferably a recurrent artificial neural network having sensor fusion. The present invention relies on a cardiovascular model developed from physiological measurements of an individual. Any differences between the modeled parameters and the parameters of an individual at a given time are used for diagnosis.
Neural network architectures to analyze OPAD data
NASA Technical Reports Server (NTRS)
Whitaker, Kevin W.
1992-01-01
A prototype Optical Plume Anomaly Detection (OPAD) system is now installed on the space shuttle main engine (SSME) Technology Test Bed (TTB) at MSFC. The OPAD system requirements dictate the need for fast, efficient data processing techniques. To address this need of the OPAD system, a study was conducted into how artificial neural networks could be used to assist in the analysis of plume spectral data.
Neural network with dynamically adaptable neurons
NASA Technical Reports Server (NTRS)
Tawel, Raoul (Inventor)
1994-01-01
This invention is an adaptive neuron for use in neural network processors. The adaptive neuron participates in the supervised learning phase of operation on a co-equal basis with the synapse matrix elements by adaptively changing its gain in a similar manner to the change of weights in the synapse IO elements. In this manner, training time is decreased by as much as three orders of magnitude.
Development and Organization of Neural Networks.
1988-01-01
the Hopfield relaxation model . 9 br GENERAL POTENTIAL SURFACES AN4D NEURAL NETWORKS Amir Dembo and Ofer Zeitouni Division of Applied Mathematics...Report, June 9, 1987. The Hopfield Model and Beyond, Bachmann, C. M., ARO Technical Report, December 15, 1986. A Relaxation Model for Memory with High...storage efficiencey in the Hopfield model . The original model was capable of accurate storage and retrieval, with some error correction, for up to
Neural Network-Based Hyperspectral Algorithms
2016-06-07
our effort is development of robust numerical inversion algorithms, which will retrieve inherent optical properties of the water column as well as...combination of in-situ and model data of water column variables (IOP’s, depth, bottom type, upwelling radiance, etc.) a neural network non-linear...function approximation model will be used to establish the inverse relationship between upwelling surface radiance and the water column variables, 2
NASA Technical Reports Server (NTRS)
Villarreal, James A.; Shelton, Robert O.
1991-01-01
Introduced here is a novel technique which adds the dimension of time to the well known back propagation neural network algorithm. Cited here are several reasons why the inclusion of automated spatial and temporal associations are crucial to effective systems modeling. An overview of other works which also model spatiotemporal dynamics is furnished. A detailed description is given of the processes necessary to implement the space-time network algorithm. Several demonstrations that illustrate the capabilities and performance of this new architecture are given.
Deep learning in neural networks: an overview.
Schmidhuber, Jürgen
2015-01-01
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. I review deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
Fast implementation of neural network classification
NASA Astrophysics Data System (ADS)
Seo, Guiwon; Ok, Jiheon; Lee, Chulhee
2013-09-01
Most artificial neural networks use a nonlinear activation function that includes sigmoid and hyperbolic tangent functions. Most artificial networks employ nonlinear functions such as these sigmoid and hyperbolic tangent functions, which incur high complexity costs, particularly during hardware implementation. In this paper, we propose new polynomial approximation methods for nonlinear activation functions that can substantially reduce complexity without sacrificing performance. The proposed approximation methods were applied to pattern classification problems. Experimental results show that the processing time was reduced by up to 50% without any performance degradations in terms of computer simulation.
Efficient implementation of neural network deinterlacing
NASA Astrophysics Data System (ADS)
Seo, Guiwon; Choi, Hyunsoo; Lee, Chulhee
2009-02-01
Interlaced scanning has been widely used in most broadcasting systems. However, there are some undesirable artifacts such as jagged patterns, flickering, and line twitters. Moreover, most recent TV monitors utilize flat panel display technologies such as LCD or PDP monitors and these monitors require progressive formats. Consequently, the conversion of interlaced video into progressive video is required in many applications and a number of deinterlacing methods have been proposed. Recently deinterlacing methods based on neural network have been proposed with good results. On the other hand, with high resolution video contents such as HDTV, the amount of video data to be processed is very large. As a result, the processing time and hardware complexity become an important issue. In this paper, we propose an efficient implementation of neural network deinterlacing using polynomial approximation of the sigmoid function. Experimental results show that these approximations provide equivalent performance with a considerable reduction of complexity. This implementation of neural network deinterlacing can be efficiently incorporated in HW implementation.
The next generation of neural network chips
Beiu, V.
1997-08-01
There have been many national and international neural networks research initiatives: USA (DARPA, NIBS), Canada (IRIS), Japan (HFSP) and Europe (BRAIN, GALA TEA, NERVES, ELENE NERVES 2) -- just to mention a few. Recent developments in the field of neural networks, cognitive science, bioengineering and electrical engineering have made it possible to understand more about the functioning of large ensembles of identical processing elements. There are more research papers than ever proposing solutions and hardware implementations are by no means an exception. Two fields (computing and neuroscience) are interacting in ways nobody could imagine just several years ago, and -- with the advent of new technologies -- researchers are focusing on trying to copy the Brain. Such an exciting confluence may quite shortly lead to revolutionary new computers and it is the aim of this invited session to bring to light some of the challenging research aspects dealing with the hardware realizability of future intelligent chips. Present-day (conventional) technology is (still) mostly digital and, thus, occupies wider areas and consumes much more power than the solutions envisaged. The innovative algorithmic and architectural ideals should represent important breakthroughs, paving the way towards making neural network chips available to the industry at competitive prices, in relatively small packages and consuming a fraction of the power required by equivalent digital solutions.
Phase Transitions in Living Neural Networks
NASA Astrophysics Data System (ADS)
Williams-Garcia, Rashid Vladimir
Our nervous systems are composed of intricate webs of interconnected neurons interacting in complex ways. These complex interactions result in a wide range of collective behaviors with implications for features of brain function, e.g., information processing. Under certain conditions, such interactions can drive neural network dynamics towards critical phase transitions, where power-law scaling is conjectured to allow optimal behavior. Recent experimental evidence is consistent with this idea and it seems plausible that healthy neural networks would tend towards optimality. This hypothesis, however, is based on two problematic assumptions, which I describe and for which I present alternatives in this thesis. First, critical transitions may vanish due to the influence of an environment, e.g., a sensory stimulus, and so living neural networks may be incapable of achieving "critical" optimality. I develop a framework known as quasicriticality, in which a relative optimality can be achieved depending on the strength of the environmental influence. Second, the power-law scaling supporting this hypothesis is based on statistical analysis of cascades of activity known as neuronal avalanches, which conflate causal and non-causal activity, thus confounding important dynamical information. In this thesis, I present a new method to unveil causal links, known as causal webs, between neuronal activations, thus allowing for experimental tests of the quasicriticality hypothesis and other practical applications.
Constrained Least Absolute Deviation Neural Networks
Wang, Zhishun; Peterson, Bradley S.
2008-01-01
It is well known that least absolute deviation (LAD) criterion or L1-norm used for estimation of parameters is characterized by robustness, i.e., the estimated parameters are totally resistant (insensitive) to large changes in the sampled data. This is an extremely useful feature, especially, when the sampled data are known to be contaminated by occasionally occurring outliers or by spiky noise. In our previous works, we have proposed the least absolute deviation neural network (LADNN) to solve unconstrained LAD problems. The theoretical proofs and numerical simulations have shown that the LADNN is Lyapunov-stable and it can globally converge to the exact solution to a given unconstrained LAD problem. We have also demonstrated its excellent application value in time-delay estimation. More generally, a practical LAD application problem may contain some linear constraints, such as a set of equalities and/or inequalities, which is called constrained LAD problem, whereas the unconstrained LAD can be considered as a special form of the constrained LAD. In this paper, we present a new neural network called constrained least absolute deviation neural network (CLADNN) to solve general constrained LAD problems. Theoretical proofs and numerical simulations demonstrate that the proposed CLADNN is Lyapunov stable and globally converges to the exact solution to a given constrained LAD problem, independent of initial values. The numerical simulations have also illustrated that the proposed CLADNN can be used to robustly estimate parameters for nonlinear curve fitting, which is extensively used in signal and image processing. PMID:18269958
Random interactions in higher order neural networks
NASA Technical Reports Server (NTRS)
Baldi, Pierre; Venkatesh, Santosh S.
1993-01-01
Recurrent networks of polynomial threshold elements with random symmetric interactions are studied. Precise asymptotic estimates are derived for the expected number of fixed points as a function of the margin of stability. In particular, it is shown that there is a critical range of margins of stability (depending on the degree of polynomial interaction) such that the expected number of fixed points with margins below the critical range grows exponentially with the number of nodes in the network, while the expected number of fixed points with margins above the critical range decreases exponentially with the number of nodes in the network. The random energy model is also briefly examined and links with higher order neural networks and higher order spin glass models made explicit.
Categorization in neural networks and prosopagnosia
NASA Astrophysics Data System (ADS)
Virasoro, M. A.
1989-12-01
Prosopagnosia is a syndrome characterized by a generalized difficulty to visually recognize individual patterns among those that are similar, and can therefore be said to belong to the same category. I suggest that the existence of this disfunction may be an important clue for understanding the categorization process in the brain. In this direction the performance of neural networks under random destruction of synapses is analysed. It is found that in almost every network that stores correlated patterns the coding of the discriminating details between individuals inside a class is more sensitive to noise or to random destruction than the coding that distinguishes between classes. It follows that a process of death and/or deterioration at an intermediate level of intensity, even if it acts randomly on the network may lead to a malfunctioning of the network that resembles prosopagnosia.
Desynchronization in diluted neural networks.
Zillmer, Rüdiger; Livi, Roberto; Politi, Antonio; Torcini, Alessandro
2006-09-01
The dynamical behavior of a weakly diluted fully inhibitory network of pulse-coupled spiking neurons is investigated. Upon increasing the coupling strength, a transition from regular to stochasticlike regime is observed. In the weak-coupling phase, a periodic dynamics is rapidly approached, with all neurons firing with the same rate and mutually phase locked. The strong-coupling phase is characterized by an irregular pattern, even though the maximum Lyapunov exponent is negative. The paradox is solved by drawing an analogy with the phenomenon of "stable chaos," i.e., by observing that the stochasticlike behavior is "limited" to an exponentially long (with the system size) transient. Remarkably, the transient dynamics turns out to be stationary.
Neural networks optimally trained with noisy data
NASA Astrophysics Data System (ADS)
Wong, K. Y. Michael; Sherrington, David
1993-06-01
We study the retrieval behaviors of neural networks which are trained to optimize their performance for an ensemble of noisy example patterns. In particular, we consider (1) the performance overlap, which reflects the performance of the network in an operating condition identical to the training condition; (2) the storage overlap, which reflects the ability of the network to merely memorize the stored information; (3) the attractor overlap, which reflects the precision of retrieval for dilute feedback networks; and (4) the boundary overlap, which defines the boundary of the basin of attraction, and hence the associative ability for dilute feedback networks. We find that for sufficiently low training noise, the network optimizes its overall performance by sacrificing the individual performance of a minority of patterns, resulting in a two-band distribution of the aligning fields. For a narrow range of storage level, the network loses and then regains its retrieval capability when the training noise level increases, and we interpret that this reentrant retrieval behavior is related to competing tendencies in structuring the basins of attraction for the stored patterns. Reentrant behavior is also observed in the space of synaptic interactions, in which the replica symmetric solution of the optimal network destabilizes and then restabilizes when the training noise level increases. We summarize these observations by picturing training noises as an instrument for widening the basins of attractions of the stored patterns at the expense of reducing the precision of retrieval.
Models of neural networks with fuzzy activation functions
NASA Astrophysics Data System (ADS)
Nguyen, A. T.; Korikov, A. M.
2017-02-01
This paper investigates the application of a new form of neuron activation functions that are based on the fuzzy membership functions derived from the theory of fuzzy systems. On the basis of the results regarding neuron models with fuzzy activation functions, we created the models of fuzzy-neural networks. These fuzzy-neural network models differ from conventional networks that employ the fuzzy inference systems using the methods of neural networks. While conventional fuzzy-neural networks belong to the first type, fuzzy-neural networks proposed here are defined as the second-type models. The simulation results show that the proposed second-type model can successfully solve the problem of the property prediction for time – dependent signals. Neural networks with fuzzy impulse activation functions can be widely applied in many fields of science, technology and mechanical engineering to solve the problems of classification, prediction, approximation, etc.
Reducing neural network training time with parallel processing
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.; Lamarsh, William J., II
1995-01-01
Obtaining optimal solutions for engineering design problems is often expensive because the process typically requires numerous iterations involving analysis and optimization programs. Previous research has shown that a near optimum solution can be obtained in less time by simulating a slow, expensive analysis with a fast, inexpensive neural network. A new approach has been developed to further reduce this time. This approach decomposes a large neural network into many smaller neural networks that can be trained in parallel. Guidelines are developed to avoid some of the pitfalls when training smaller neural networks in parallel. These guidelines allow the engineer: to determine the number of nodes on the hidden layer of the smaller neural networks; to choose the initial training weights; and to select a network configuration that will capture the interactions among the smaller neural networks. This paper presents results describing how these guidelines are developed.
A Wavelet Neural Network for SAR Image Segmentation
Wen, Xian-Bin; Zhang, Hua; Wang, Fa-Yu
2009-01-01
This paper proposes a wavelet neural network (WNN) for SAR image segmentation by combining the wavelet transform and an artificial neural network. The WNN combines the multiscale analysis ability of the wavelet transform and the classification capability of the artificial neural network by setting the wavelet function as the transfer function of the neural network. Several SAR images are segmented by the network whose transfer functions are the Morlet and Mexihat functions, respectively. The experimental results show the proposed method is very effective and accurate. PMID:22400005
A neural network short-term forecast of significant thunderstorms
Mccann, D.W. )
1992-09-01
Neural networks, an artificial-intelligence tools that excels in pattern recognition, are reviewed, and a 3-7-h significant thunderstorm forecast developed with this technique is discussed. Two neural networks learned to forecast significant thunderstorms from fields of surface-based lifted index and surface moisture convergence. These networks are sensitive to the patterns that skilled forecasters recognize as occurring prior to strong thunderstorms. The two neural networks are combined operationally at the National Severe Storm Forecast Center into a single hourly product that enhances pattern-recognition skills. Examples of neural network products are shown, and their potential impact on significant thunderstorm forecasting is demonstrated. 22 refs.
The effect of the neural activity on topological properties of growing neural networks.
Gafarov, F M; Gafarova, V R
2016-09-01
The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.
Network traffic anomaly prediction using Artificial Neural Network
NASA Astrophysics Data System (ADS)
Ciptaningtyas, Hening Titi; Fatichah, Chastine; Sabila, Altea
2017-03-01
As the excessive increase of internet usage, the malicious software (malware) has also increase significantly. Malware is software developed by hacker for illegal purpose(s), such as stealing data and identity, causing computer damage, or denying service to other user[1]. Malware which attack computer or server often triggers network traffic anomaly phenomena. Based on Sophos's report[2], Indonesia is the riskiest country of malware attack and it also has high network traffic anomaly. This research uses Artificial Neural Network (ANN) to predict network traffic anomaly based on malware attack in Indonesia which is recorded by Id-SIRTII/CC (Indonesia Security Incident Response Team on Internet Infrastructure/Coordination Center). The case study is the highest malware attack (SQL injection) which has happened in three consecutive years: 2012, 2013, and 2014[4]. The data series is preprocessed first, then the network traffic anomaly is predicted using Artificial Neural Network and using two weight update algorithms: Gradient Descent and Momentum. Error of prediction is calculated using Mean Squared Error (MSE) [7]. The experimental result shows that MSE for SQL Injection is 0.03856. So, this approach can be used to predict network traffic anomaly.
Marginalization in Random Nonlinear Neural Networks
NASA Astrophysics Data System (ADS)
Vasudeva Raju, Rajkumar; Pitkow, Xaq
2015-03-01
Computations involved in tasks like causal reasoning in the brain require a type of probabilistic inference known as marginalization. Marginalization corresponds to averaging over irrelevant variables to obtain the probability of the variables of interest. This is a fundamental operation that arises whenever input stimuli depend on several variables, but only some are task-relevant. Animals often exhibit behavior consistent with marginalizing over some variables, but the neural substrate of this computation is unknown. It has been previously shown (Beck et al. 2011) that marginalization can be performed optimally by a deterministic nonlinear network that implements a quadratic interaction of neural activity with divisive normalization. We show that a simpler network can perform essentially the same computation. These Random Nonlinear Networks (RNN) are feedforward networks with one hidden layer, sigmoidal activation functions, and normally-distributed weights connecting the input and hidden layers. We train the output weights connecting the hidden units to an output population, such that the output model accurately represents a desired marginal probability distribution without significant information loss compared to optimal marginalization. Simulations for the case of linear coordinate transformations show that the RNN model has good marginalization performance, except for highly uncertain inputs that have low amplitude population responses. Behavioral experiments, based on these results, could then be used to identify if this model does indeed explain how the brain performs marginalization.
Brain tumor segmentation with Deep Neural Networks.
Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo
2017-01-01
In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster.
Neural Network Model of Memory Retrieval
Recanatesi, Stefano; Katkov, Mikhail; Romani, Sandro; Tsodyks, Misha
2015-01-01
Human memory can store large amount of information. Nevertheless, recalling is often a challenging task. In a classical free recall paradigm, where participants are asked to repeat a briefly presented list of words, people make mistakes for lists as short as 5 words. We present a model for memory retrieval based on a Hopfield neural network where transition between items are determined by similarities in their long-term memory representations. Meanfield analysis of the model reveals stable states of the network corresponding (1) to single memory representations and (2) intersection between memory representations. We show that oscillating feedback inhibition in the presence of noise induces transitions between these states triggering the retrieval of different memories. The network dynamics qualitatively predicts the distribution of time intervals required to recall new memory items observed in experiments. It shows that items having larger number of neurons in their representation are statistically easier to recall and reveals possible bottlenecks in our ability of retrieving memories. Overall, we propose a neural network model of information retrieval broadly compatible with experimental observations and is consistent with our recent graphical model (Romani et al., 2013). PMID:26732491
Electronic neural network for dynamic resource allocation
NASA Technical Reports Server (NTRS)
Thakoor, A. P.; Eberhardt, S. P.; Daud, T.
1991-01-01
A VLSI implementable neural network architecture for dynamic assignment is presented. The resource allocation problems involve assigning members of one set (e.g. resources) to those of another (e.g. consumers) such that the global 'cost' of the associations is minimized. The network consists of a matrix of sigmoidal processing elements (neurons), where the rows of the matrix represent resources and columns represent consumers. Unlike previous neural implementations, however, association costs are applied directly to the neurons, reducing connectivity of the network to VLSI-compatible 0 (number of neurons). Each row (and column) has an additional neuron associated with it to independently oversee activations of all the neurons in each row (and each column), providing a programmable 'k-winner-take-all' function. This function simultaneously enforces blocking (excitatory/inhibitory) constraints during convergence to control the number of active elements in each row and column within desired boundary conditions. Simulations show that the network, when implemented in fully parallel VLSI hardware, offers optimal (or near-optimal) solutions within only a fraction of a millisecond, for problems up to 128 resources and 128 consumers, orders of magnitude faster than conventional computing or heuristic search methods.
Inducing isolated-desynchronization states in complex network of coupled chaotic oscillators
NASA Astrophysics Data System (ADS)
Lin, Weijie; Li, Huiyan; Ying, Heping; Wang, Xingang
2016-12-01
In a recent study about chaos synchronization in complex networks [Nat. Commun. 5, 4079 (2014), 10.1038/ncomms5079], it is shown that a stable synchronous cluster may coexist with vast asynchronous nodes, resembling the phenomenon of a chimera state observed in a regular network of coupled periodic oscillators. Although of practical significance, this new type of state, namely, the isolated-desynchronization state, is hardly observed in practice due to its strict requirements on the network topology. Here, by the strategy of pinning coupling, we propose an effective method for inducing isolated-desynchronization states in symmetric networks of coupled chaotic oscillators. Theoretical analysis based on eigenvalue analysis shows that, by pinning a group of symmetric nodes in the network, there exists a critical pinning strength beyond which the group of pinned nodes can completely be synchronized while the unpinned nodes remain asynchronous. The feasibility and efficiency of the control method are verified by numerical simulations of both artificial and real-world complex networks with the numerical results in good agreement with the theoretical predictions.
Solving quadratic programming problems by delayed projection neural network.
Yang, Yongqing; Cao, Jinde
2006-11-01
In this letter, the delayed projection neural network for solving convex quadratic programming problems is proposed. The neural network is proved to be globally exponentially stable and can converge to an optimal solution of the optimization problem. Three examples show the effectiveness of the proposed network.
Dynamic Attractors and Basin Class Capacity in Binary Neural Networks
1994-12-21
The wide repertoire of attractors and basins of attraction that appear in dynamic neural networks not only serve as models of brain activity patterns...limitations of static neural networks by use of dynamic attractors and their basins. The results show that dynamic networks have a high capacity for
Advances in Artificial Neural Networks - Methodological Development and Application
Technology Transfer Automated Retrieval System (TEKTRAN)
Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...
Nonlinear system identification and control based on modular neural networks.
Puscasu, Gheorghe; Codres, Bogdan
2011-08-01
A new approach for nonlinear system identification and control based on modular neural networks (MNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This is obtained using a partitioning algorithm. Each local nonlinear model is associated with a nonlinear controller. These are also implemented by neural networks. The switching between the neural controllers is done by a dynamical switcher, also implemented by neural networks, that tracks the different operating points. The proposed multiple modelling and control strategy has been successfully tested on simulated laboratory scale liquid-level system.
Applying neural networks to ultrasonographic texture recognition
NASA Astrophysics Data System (ADS)
Gallant, Jean-Francois; Meunier, Jean; Stampfler, Robert; Cloutier, Jocelyn
1993-09-01
A neural network was trained to classify ultrasound image samples of normal, adenomatous (benign tumor) and carcinomatous (malignant tumor) thyroid gland tissue. The samples themselves, as well as their Fourier spectrum, miscellaneous cooccurrence matrices and 'generalized' cooccurrence matrices, were successively submitted to the network, to determine if it could be trained to identify discriminating features of the texture of the image, and if not, which feature extractor would give the best results. Results indicate that the network could indeed extract some distinctive features from the textures, since it could accomplish a partial classification when trained with the samples themselves. But a significant improvement both in learning speed and performance was observed when it was trained with the generalized cooccurrence matrices of the samples.
Survey on Neural Networks Used for Medical Image Processing.
Shi, Zhenghao; He, Lifeng; Suzuki, Kenji; Nakamura, Tsuyoshi; Itoh, Hidenori
2009-02-01
This paper aims to present a review of neural networks used in medical image processing. We classify neural networks by its processing goals and the nature of medical images. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of neural network application for medical image processing and an outlook for the future research are also discussed. By this survey, we try to answer the following two important questions: (1) What are the major applications of neural networks in medical image processing now and in the nearby future? (2) What are the major strengths and weakness of applying neural networks for solving medical image processing tasks? We believe that this would be very helpful researchers who are involved in medical image processing with neural network techniques.
Financial Time Series Prediction Using Elman Recurrent Random Neural Networks
Wang, Jie; Wang, Jun; Fang, Wen; Niu, Hongli
2016-01-01
In recent years, financial market dynamics forecasting has been a focus of economic research. To predict the price indices of stock markets, we developed an architecture which combined Elman recurrent neural networks with stochastic time effective function. By analyzing the proposed model with the linear regression, complexity invariant distance (CID), and multiscale CID (MCID) analysis methods and taking the model compared with different models such as the backpropagation neural network (BPNN), the stochastic time effective neural network (STNN), and the Elman recurrent neural network (ERNN), the empirical results show that the proposed neural network displays the best performance among these neural networks in financial time series forecasting. Further, the empirical research is performed in testing the predictive effects of SSE, TWSE, KOSPI, and Nikkei225 with the established model, and the corresponding statistical comparisons of the above market indices are also exhibited. The experimental results show that this approach gives good performance in predicting the values from the stock market indices. PMID:27293423
An introduction to bio-inspired artificial neural network architectures.
Fasel, B
2003-03-01
In this introduction to artificial neural networks we attempt to give an overview of the most important types of neural networks employed in engineering and explain shortly how they operate and also how they relate to biological neural networks. The focus will mainly be on bio-inspired artificial neural network architectures and specifically to neo-perceptions. The latter belong to the family of convolutional neural networks. Their topology is somewhat similar to the one of the human visual cortex and they are based on receptive fields that allow, in combination with sub-sampling layers, for an improved robustness with regard to local spatial distortions. We demonstrate the application of artificial neural networks to face analysis--a domain we human beings are particularly good at, yet which poses great difficulties for digital computers running deterministic software programs.
ARMA Neural Networks for Predicting DGPS Pseudorange Correction
NASA Astrophysics Data System (ADS)
Jwo, Dah-Jing; Lee, Tai-Shen; Tseng, Ying-Wei
2004-05-01
In this paper, the Auto-Regressive Moving-Averaging (ARMA) neural networks (NNs) will be incorporated for predicting the differential Global Positioning System (DGPS) pseudorange correction (PRC) information. The neural network is employed to realize the time-varying ARMA implementation. Online training for real-time prediction of the PRC enhances the continuity of service on the differential correction signals and therefore improves the positioning accuracy. When the PRC signal is lost, the ARMA neural network predicted PRC would temporarily provide correction data with very good accuracy. Simulation is conducted for evaluating the ARMA NN based DGPS PRC prediction accuracy. A comparative performance study based on two types of ARMA neural networks, i.e. Back-propagation Neural Network (BPNN) and General Regression Neural Network (GRNN), will be provided.
Higherorder neural network group models for financial simulation.
Zhang, M; Zhang, J C; Fulcher, J
2000-04-01
Real world financial data is often discontinuous and non-smooth. If we attempt to use neural networks to simulate such functions, then accuracy will be a problem. Neural network group models perform this function much better. Both Polynomial Higher Order Neural network Group (PHONG) and Trigonometric polynomial Higher Order Neural network Group (THONG) models are developed. These HONG models are open box, convergent models capable of approximating any kind of piecewise continuous function, to any degree of accuracy. Moreover they are capable of handling higher frequency, higher order non-linear and discontinuous data. Results obtained using a Higher Order Neural network Group financial simulator are presented, which confirm that HONG group models converge without difficulty, and are considerably more accurate than neural network models (more specifically, around twice as good for prediction, and a factor of four improvement in the case of simulation).
Three-dimensional thinning by neural networks
NASA Astrophysics Data System (ADS)
Shen, Jun; Shen, Wei
1995-10-01
3D thinning is widely used in 3D object representation in computer vision and in trajectory planning in robotics to find the topological structure of the free space. In the present paper, we propose a 3D image thinning method by neural networks. Each voxel in the 3D image corresponds to a set of neurons, called 3D Thinron, in the network. Taking the 3D Thinron as the elementary unit, the global structure of the network is a 3D array in which each Thinron is connected with the 26 neighbors in the neighborhood 3 X 3 X 3. As to the Thinron itself, the set of neurons are organized in multiple layers. In the first layer, we have neurons for boundary analysis, connectivity analysis and connectivity verification, taking as input the voxels in the 3 X 3 X 3 neighborhood and the intermediate outputs of neighboring Thinrons. In the second layer, we have the neurons for synthetical analysis to give the intermediate output of Thinron. In the third layer, we have the decision neurons whose state determines the final output. All neurons in the Thinron are the adaline neurons of Widrow, except the connectivity analysis and verification neurons which are nonlinear neurons. With the 3D Thinron neural network, the state transition of the network will take place automatically, and the network converges to the final steady state, which gives the result medial surface of 3D objects, preserving the connectivity in the initial image. The method presented is simulated and tested for 3D images, experimental results are reported.
Energy coding in biological neural networks.
Wang, Rubin; Zhang, Zhikang
2007-09-01
According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, we present a brand new scientific theory that offers an unique mechanism for brain information processing. We demonstrate that the neural coding produced by the activity of the brain is well described by our theory of energy coding. Due to the energy coding model's ability to reveal mechanisms of brain information processing based upon known biophysical properties, we can not only reproduce various experimental results of neuro-electrophysiology, but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, we estimate that the theory has very important consequences for quantitative research of cognitive function.
Training product unit neural networks with genetic algorithms
NASA Technical Reports Server (NTRS)
Janson, D. J.; Frenzel, J. F.; Thelen, D. C.
1991-01-01
The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.
Implementation of Fuzzy Inference Systems Using Neural Network Techniques
1992-03-01
rules required to implement the system, which are usually supplied by ’experts’. One alternative is to use a neural network -type architecture to implement...the fuzzy inference system, and neural network -type training techniques to ’learn’ the control parameters needed by the fuzzy inference system. By...using a generalized version of a neural network , the rules of the fuzzy inference system can be learned without the assistance of experts.
An Artificial Neural Network Control System for Spacecraft Attitude Stabilization
1990-06-01
training is based on the concept of enforced performance. A neural network will learn to meet a specific performance goal if the performance standard...is the only solution to a problem. Performance index training is devised to teach the neural network the time-optimal control law for the system. Real...time adaptation of a neural network in closed loop control of the Crew/Equipment Retriever was demonstrated in computer simulations.
Prediction of Buffet Loads Using Artificial Neural Networks
2001-09-01
The use of artificial neural networks (ANN) for predicting the empennage buffet pressures as a function of aircraft state has been investigated. The...with additional data. The study confirmed that neural networks have a great potential as a method for modelling buffet data. The ability of neural ... networks to accurately predict magnitude and spectral content of unsteady buffet pressures was demonstrated. Based on the ANN methodology investigated, a
Adaptive Control of Visually Guided Grasping in Neural Networks
1990-03-12
U01ITU S.WM NONnumsen Adaptive Control of Visually Guided Grasping in Neural Networks AFOSR-89-&CO030 88-NL-209 L AUTHOrSF 2313/A8 00 61102F (V) Dr...FINAL REPORT ADAPTIVE CONTROL OF VISUALLY GUIDED GRASPING IN NEURAL NETWORKS Neurogen Laboratories Inc. Project Summary Research performed for AFOSR...arm’s length in position and 6 degrees in orientation. Keywords: Neural Networks , Adaptive Motor Control, Sensory-Motor sensation Introduction The human
An Evaluation of Artificial Neural Network Modeling for Manpower Analysis
1993-09-01
This thesis evaluates the capabilities of artificial neural networks in forecasting the take-rates of the Voluntary Separations Incentive/Special...Separations Benefit (VSI/SSB) programs for male, Marine Corps Enlisted Personnel in the grades of E-5 and E-6. The Artificial Neural Networks models are...results indicate that artificial neural networks provide forecasting results at least as good as, if not better than, those obtained using classical
Equations of Learning and Capacity of Layered Neural Networks
1989-05-01
I-ILL ~Ut *4 (V) NWCTP 7013 (0 Equations of Learning and Capacity of 0Layered Neural Networks by Jorge M. Martin Applied Mathematics Research Group...multilayered neural networks that were discovered during the initial phase of the Independent Research project entitled "The Mathematics of Artificial...represent a small contribution to the basic knowledge of the mathematical aspects of the newly emergent theory of Artificial Neural Networks . This
Improved Landmine Detection by Complex-Valued Artificial Neural Networks
2002-12-04
IMPROVED LANDMINE DETECTION BY COMPLEX-VALUED ARTIFICIAL NEURAL NETWORKS Research was Sponsored by: U. S. ARMY RESEARCH OFFICE Program Manager... artificial neural networks in conjunction with fuzzy logic for improved system performance over and above the good results already attained are...of detecting mines. One of the more promising avenues of research in this area involves the use of artificial neural networks [3]. More specifically
One pass learning for generalized classifier neural network.
Ozyildirim, Buse Melis; Avci, Mutlu
2016-01-01
Generalized classifier neural network introduced as a kind of radial basis function neural network, uses gradient descent based optimized smoothing parameter value to provide efficient classification. However, optimization consumes quite a long time and may cause a drawback. In this work, one pass learning for generalized classifier neural network is proposed to overcome this disadvantage. Proposed method utilizes standard deviation of each class to calculate corresponding smoothing parameter. Since different datasets may have different standard deviations and data distributions, proposed method tries to handle these differences by defining two functions for smoothing parameter calculation. Thresholding is applied to determine which function will be used. One of these functions is defined for datasets having different range of values. It provides balanced smoothing parameters for these datasets through logarithmic function and changing the operation range to lower boundary. On the other hand, the other function calculates smoothing parameter value for classes having standard deviation smaller than the threshold value. Proposed method is tested on 14 datasets and performance of one pass learning generalized classifier neural network is compared with that of probabilistic neural network, radial basis function neural network, extreme learning machines, and standard and logarithmic learning generalized classifier neural network in MATLAB environment. One pass learning generalized classifier neural network provides more than a thousand times faster classification than standard and logarithmic generalized classifier neural network. Due to its classification accuracy and speed, one pass generalized classifier neural network can be considered as an efficient alternative to probabilistic neural network. Test results show that proposed method overcomes computational drawback of generalized classifier neural network and may increase the classification performance.
Scalable photonic neural networks for real-time pattern classification
NASA Astrophysics Data System (ADS)
Goldstein, Adam Arthur
1997-11-01
With the rapid advancement of photonic technology in recent years, the potential exists for the incorporation of photonic neural-network research into the development of opto-electronic real-time pattern classification systems. In this dissertation we present three classes of photonic neural-network models that were designed to be compatible with this emerging technology: (1) photonic neural networks based upon probability density estimation, (2) photorefractive neural-network models, and (3) vertically stacked photonic neural networks that utilize hybridized CMOS/GaAs chips and diffractive optical elements. In each case, we show how previously developed neural-network learning algorithms and/or architectures must be adapted in order to allow an efficient photonic implementation. For class (1), we show that conventional 'k-Nearest Neighbors' (k-NN) probability density estimation is not suitable for an analog photonic neural-network hardware implementation, and we introduce a new probability density estimation algorithm called 'Continuous k-Nearest Neighbors' (C-kNN) that is suitable. For class (2), we show that the diffraction-efficiency decay inherent to photorefractive grating formation adversely affects outer-product neural-network learning algorithms, and we introduce a gain and exposure scheduling technique that resolves the incompatibility. For class (3), the use of compact diffractive optical interconnections constrains the corresponding neural-network weights to be fixed and locally connected. We introduce a 3-D Photonic Multichip- Module (3-D PMCM) neural-network architecture that utilizes a fixed diffractive optical layer in conjunction with a programmable electronic layer, to obtain a multi- layer neural network capable of real-time pattern recognition tasks. The design and fabrication of key components of the 3-D PMCM neural-network architecture are presented, together with simulation results for the application of detecting and locating the eyes in an
Position Sensorless Driving of BLDCM Using Neural Networks
NASA Astrophysics Data System (ADS)
Guo, Hai-Jiao; Sagawa, Seiji; Ichinokura, Osamu
A sensorless driving method of brushless DC Motors (BLDCM) using neural network has been studied in this paper. Considering the nonlinear characteristics and the parameter error of the modeling, neural networks are introduced to estimate the electromotive force (EMF). The results of simulation and experiment using offline trained neural networks show the proposed method is useful. In addition, the robustness about the parameters is discussed.
Geophysical phenomena classification by artificial neural networks
NASA Technical Reports Server (NTRS)
Gough, M. P.; Bruckner, J. R.
1995-01-01
Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.
Physical connections between different SSVEP neural networks
Wu, Zhenghua
2016-01-01
This work investigates the mechanism of the Steady-State Visual Evoked Potential (SSVEP). One theory suggests that different SSVEP neural networks exist whose strongest response are located in different frequency bands. This theory is based on the fact that there are similar SSVEP frequency-amplitude response curves in these bands. Previous studies that employed simultaneous stimuli of different frequencies illustrated that the distribution of these networks were similar, but did not discuss the physical connection between them. By comparing the SSVEP power and distribution under a single-eye stimulus and a simultaneous, dual-eye stimulus, this work demonstrates that the distributions of different SSVEP neural networks are similar to each other and that there should be physical overlapping between them. According to the band-pass filter theory in a signal transferring channel, which we propose in this work for the first time, there are different amounts of neurons that are involved under repetitive stimuli of different frequencies and that the response intensity of each neuron is similar to each other so that the total response (i.e., the SSVEP) that is observed from the scalp is different. PMID:26952961
Representational Distance Learning for Deep Neural Networks.
McClure, Patrick; Kriegeskorte, Nikolaus
2016-01-01
Deep neural networks (DNNs) provide useful models of visual representational transformations. We present a method that enables a DNN (student) to learn from the internal representational spaces of a reference model (teacher), which could be another DNN or, in the future, a biological brain. Representational spaces of the student and the teacher are characterized by representational distance matrices (RDMs). We propose representational distance learning (RDL), a stochastic gradient descent method that drives the RDMs of the student to approximate the RDMs of the teacher. We demonstrate that RDL is competitive with other transfer learning techniques for two publicly available benchmark computer vision datasets (MNIST and CIFAR-100), while allowing for architectural differences between student and teacher. By pulling the student's RDMs toward those of the teacher, RDL significantly improved visual classification performance when compared to baseline networks that did not use transfer learning. In the future, RDL may enable combined supervised training of deep neural networks using task constraints (e.g., images and category labels) and constraints from brain-activity measurements, so as to build models that replicate the internal representational spaces of biological brains.
Representational Distance Learning for Deep Neural Networks
McClure, Patrick; Kriegeskorte, Nikolaus
2016-01-01
Deep neural networks (DNNs) provide useful models of visual representational transformations. We present a method that enables a DNN (student) to learn from the internal representational spaces of a reference model (teacher), which could be another DNN or, in the future, a biological brain. Representational spaces of the student and the teacher are characterized by representational distance matrices (RDMs). We propose representational distance learning (RDL), a stochastic gradient descent method that drives the RDMs of the student to approximate the RDMs of the teacher. We demonstrate that RDL is competitive with other transfer learning techniques for two publicly available benchmark computer vision datasets (MNIST and CIFAR-100), while allowing for architectural differences between student and teacher. By pulling the student's RDMs toward those of the teacher, RDL significantly improved visual classification performance when compared to baseline networks that did not use transfer learning. In the future, RDL may enable combined supervised training of deep neural networks using task constraints (e.g., images and category labels) and constraints from brain-activity measurements, so as to build models that replicate the internal representational spaces of biological brains. PMID:28082889
Correlated neural variability in persistent state networks.
Polk, Amber; Litwin-Kumar, Ashok; Doiron, Brent
2012-04-17
Neural activity that persists long after stimulus presentation is a biological correlate of short-term memory. Variability in spiking activity causes persistent states to drift over time, ultimately degrading memory. Models of short-term memory often assume that the input fluctuations to neural populations are independent across cells, a feature that attenuates population-level variability and stabilizes persistent activity. However, this assumption is at odds with experimental recordings from pairs of cortical neurons showing that both the input currents and output spike trains are correlated. It remains unclear how correlated variability affects the stability of persistent activity and the performance of cognitive tasks that it supports. We consider the stochastic long-timescale attractor dynamics of pairs of mutually inhibitory populations of spiking neurons. In these networks, persistent activity was less variable when correlated variability was globally distributed across both populations compared with the case when correlations were locally distributed only within each population. Using a reduced firing rate model with a continuum of persistent states, we show that, when input fluctuations are correlated across both populations, they drive firing rate fluctuations orthogonal to the persistent state attractor, thereby causing minimal stochastic drift. Using these insights, we establish that distributing correlated fluctuations globally as opposed to locally improves network's performance on a two-interval, delayed response discrimination task. Our work shows that the correlation structure of input fluctuations to a network is an important factor when determining long-timescale, persistent population spiking activity.
Neural network for solving convex quadratic bilevel programming problems.
He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie
2014-03-01
In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network.
Developing a Neural Network to Act as a Noise Filter
1992-10-02
This study uses the neural network simulator called NETS to determine if neural networks could perform a non-linear filtering operation to remove...noise from two-dimensional (2-D) data and produce a noise-free image. Application is geared toward the development and performance of neural network filters...including the development of an optional neural network architecture and the use of-criteria in determining how accurate the net filtered noise-to produce a noise-free image.
Application of artificial neural networks to composite ply micromechanics
NASA Technical Reports Server (NTRS)
Brown, D. A.; Murthy, P. L. N.; Berke, L.
1991-01-01
Artificial neural networks can provide improved computational efficiency relative to existing methods when an algorithmic description of functional relationships is either totally unavailable or is complex in nature. For complex calculations, significant reductions in elapsed computation time are possible. The primary goal is to demonstrate the applicability of artificial neural networks to composite material characterization. As a test case, a neural network was trained to accurately predict composite hygral, thermal, and mechanical properties when provided with basic information concerning the environment, constituent materials, and component ratios used in the creation of the composite. A brief introduction on neural networks is provided along with a description of the project itself.
Neural network models: Insights and prescriptions from practical applications
Samad, T.
1995-12-31
Neural networks are no longer just a research topic; numerous applications are now testament to their practical utility. In the course of developing these applications, researchers and practitioners have been faced with a variety of issues. This paper briefly discusses several of these, noting in particular the rich connections between neural networks and other, more conventional technologies. A more comprehensive version of this paper is under preparation that will include illustrations on real examples. Neural networks are being applied in several different ways. Our focus here is on neural networks as modeling technology. However, much of the discussion is also relevant to other types of applications such as classification, control, and optimization.
Optical-Correlator Neural Network Based On Neocognitron
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Stoner, William W.
1994-01-01
Multichannel optical correlator implements shift-invariant, high-discrimination pattern-recognizing neural network based on paradigm of neocognitron. Selected as basic building block of this neural network because invariance under shifts is inherent advantage of Fourier optics included in optical correlators in general. Neocognitron is conceptual electronic neural-network model for recognition of visual patterns. Multilayer processing achieved by iteratively feeding back output of feature correlator to input spatial light modulator and updating Fourier filters. Neural network trained by use of characteristic features extracted from target images. Multichannel implementation enables parallel processing of large number of selected features.
Neural network and its application to CT imaging
Nikravesh, M.; Kovscek, A.R.; Patzek, T.W.
1997-02-01
We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.
Neural networks and their application to nuclear power plant diagnosis
Reifman, J.
1997-10-01
The authors present a survey of artificial neural network-based computer systems that have been proposed over the last decade for the detection and identification of component faults in thermal-hydraulic systems of nuclear power plants. The capabilities and advantages of applying neural networks as decision support systems for nuclear power plant operators and their inherent characteristics are discussed along with their limitations and drawbacks. The types of neural network structures used and their applications are described and the issues of process diagnosis and neural network-based diagnostic systems are identified. A total of thirty-four publications are reviewed.
Using neural networks for dynamic light scattering time series processing
NASA Astrophysics Data System (ADS)
Chicea, Dan
2017-04-01
A basic experiment to record dynamic light scattering (DLS) time series was assembled using basic components. The DLS time series processing using the Lorentzian function fit was considered as reference. A Neural Network was designed and trained using simulated frequency spectra for spherical particles in the range 0–350 nm, assumed to be scattering centers, and the neural network design and training procedure are described in detail. The neural network output accuracy was tested both on simulated and on experimental time series. The match with the DLS results, considered as reference, was good serving as a proof of concept for using neural networks in fast DLS time series processing.
Non-linear state transitions in neural systems: from ion to networks
NASA Astrophysics Data System (ADS)
Liljenström, Hans; Braun, Hans; Århem, Peter
2001-03-01
The activity of neural systems often seems to depend on non-linear threshold effects, where microscopic fluctuations may cause rapid and large effects at a macroscopic level. Single ion channels are found to be capable of eliciting action potentials in small hippocampal interneurons. Computer simulations show that spontaneous neuronal activity can induce global oscillations in networks of neurons. For a small change in some parameter values, the global activity instead becomes chaotic-like. We use experimental as well as computational methods to investigate mechanisms by which neural systems can amplify weak signals and control the system at a larger scale. We also investigate if there are non-random processes in ion channel kinetics and use topological methods for the analysis, also of computer simulations.
Parameterizing Stellar Spectra Using Deep Neural Networks
NASA Astrophysics Data System (ADS)
Li, Xiang-Ru; Pan, Ru-Yang; Duan, Fu-Qing
2017-03-01
Large-scale sky surveys are observing massive amounts of stellar spectra. The large number of stellar spectra makes it necessary to automatically parameterize spectral data, which in turn helps in statistically exploring properties related to the atmospheric parameters. This work focuses on designing an automatic scheme to estimate effective temperature ({T}{eff}), surface gravity ({log}g) and metallicity [Fe/H] from stellar spectra. A scheme based on three deep neural networks (DNNs) is proposed. This scheme consists of the following three procedures: first, the configuration of a DNN is initialized using a series of autoencoder neural networks; second, the DNN is fine-tuned using a gradient descent scheme; third, three atmospheric parameters {T}{eff}, {log}g and [Fe/H] are estimated using the computed DNNs. The constructed DNN is a neural network with six layers (one input layer, one output layer and four hidden layers), for which the number of nodes in the six layers are 3821, 1000, 500, 100, 30 and 1, respectively. This proposed scheme was tested on both real spectra and theoretical spectra from Kurucz’s new opacity distribution function models. Test errors are measured with mean absolute errors (MAEs). The errors on real spectra from the Sloan Digital Sky Survey (SDSS) are 0.1477, 0.0048 and 0.1129 dex for {log}g, {log}{T}{eff} and [Fe/H] (64.85 K for {T}{eff}), respectively. Regarding theoretical spectra from Kurucz’s new opacity distribution function models, the MAE of the test errors are 0.0182, 0.0011 and 0.0112 dex for {log}g, {log}{T}{eff} and [Fe/H] (14.90 K for {T}{eff}), respectively.
Deep Recurrent Neural Networks for Supernovae Classification
NASA Astrophysics Data System (ADS)
Charnock, Tom; Moss, Adam
2017-03-01
We apply deep recurrent neural networks, which are capable of learning complex sequential information, to classify supernovae (code available at https://github.com/adammoss/supernovae). The observational time and filter fluxes are used as inputs to the network, but since the inputs are agnostic, additional data such as host galaxy information can also be included. Using the Supernovae Photometric Classification Challenge (SPCC) data, we find that deep networks are capable of learning about light curves, however the performance of the network is highly sensitive to the amount of training data. For a training size of 50% of the representational SPCC data set (around 104 supernovae) we obtain a type-Ia versus non-type-Ia classification accuracy of 94.7%, an area under the Receiver Operating Characteristic curve AUC of 0.986 and an SPCC figure-of-merit F 1 = 0.64. When using only the data for the early-epoch challenge defined by the SPCC, we achieve a classification accuracy of 93.1%, AUC of 0.977, and F 1 = 0.58, results almost as good as with the whole light curve. By employing bidirectional neural networks, we can acquire impressive classification results between supernovae types I, II and III at an accuracy of 90.4% and AUC of 0.974. We also apply a pre-trained model to obtain classification probabilities as a function of time and show that it can give early indications of supernovae type. Our method is competitive with existing algorithms and has applications for future large-scale photometric surveys.
Resource constrained design of artificial neural networks using comparator neural network
NASA Technical Reports Server (NTRS)
Wah, Benjamin W.; Karnik, Tanay S.
1992-01-01
We present a systematic design method executed under resource constraints for automating the design of artificial neural networks using the back error propagation algorithm. Our system aims at finding the best possible configuration for solving the given application with proper tradeoff between the training time and the network complexity. The design of such a system is hampered by three related problems. First, there are infinitely many possible network configurations, each may take an exceedingly long time to train; hence, it is impossible to enumerate and train all of them to completion within fixed time, space, and resource constraints. Second, expert knowledge on predicting good network configurations is heuristic in nature and is application dependent, rendering it difficult to characterize fully in the design process. A learning procedure that refines this knowledge based on examples on training neural networks for various applications is, therefore, essential. Third, the objective of the network to be designed is ill-defined, as it is based on a subjective tradeoff between the training time and the network cost. A design process that proposes alternate configurations under different cost-performance tradeoff is important. We have developed a Design System which schedules the available time, divided into quanta, for testing alternative network configurations. Its goal is to select/generate and test alternative network configurations in each quantum, and find the best network when time is expended. Since time is limited, a dynamic schedule that determines the network configuration to be tested in each quantum is developed. The schedule is based on relative comparison of predicted training times of alternative network configurations using comparator network paradigm. The comparator network has been trained to compare training times for a large variety of traces of TSSE-versus-time collected during back-propagation learning of various applications.
Neural Network Architectures for General Image Recognition.
1992-07-21
Design Procedure 88 A.5 Examples 92 A.6 Scaling Laws for Cooperative-Competitive Neural Networks 98 A.7 Discussion 100 REFERENCES 101 viii LIST OF...control law for vertical pull-in of the window. The two V2 outputs, NORTH and SOUTH, are subtracted and the window is moved if the thresholds are exceeded...An input pattern, shown in cross-hatching, is irapressed on M neurons. Each input neuron is connected to N hidden neutons and a single output neuron
Artificial Neural Network applied to lightning flashes
NASA Astrophysics Data System (ADS)
Gin, R. B.; Guedes, D.; Bianchi, R.
2013-05-01
The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a
Solving inversion problems with neural networks
NASA Technical Reports Server (NTRS)
Kamgar-Parsi, Behzad; Gualtieri, J. A.
1990-01-01
A class of inverse problems in remote sensing can be characterized by Q = F(x), where F is a nonlinear and noninvertible (or hard to invert) operator, and the objective is to infer the unknowns, x, from the observed quantities, Q. Since the number of observations is usually greater than the number of unknowns, these problems are formulated as optimization problems, which can be solved by a variety of techniques. The feasibility of neural networks for solving such problems is presently investigated. As an example, the problem of finding the atmospheric ozone profile from measured ultraviolet radiances is studied.
Finite time stabilization of delayed neural networks.
Wang, Leimin; Shen, Yi; Ding, Zhixia
2015-10-01
In this paper, the problem of finite time stabilization for a class of delayed neural networks (DNNs) is investigated. The general conditions on the feedback control law are provided to ensure the finite time stabilization of DNNs. Then some specific conditions are derived by designing two different controllers which include the delay-dependent and delay-independent ones. In addition, the upper bound of the settling time for stabilization is estimated. Under fixed control strength, discussions of the extremum of settling time functional are made and a switched controller is designed to optimize the settling time. Finally, numerical simulations are carried out to demonstrate the effectiveness of the obtained results.
Bacterial colony counting by Convolutional Neural Networks.
Ferrari, Alessandro; Lombardi, Stefano; Signoroni, Alberto
2015-01-01
Counting bacterial colonies on microbiological culture plates is a time-consuming, error-prone, nevertheless fundamental task in microbiology. Computer vision based approaches can increase the efficiency and the reliability of the process, but accurate counting is challenging, due to the high degree of variability of agglomerated colonies. In this paper, we propose a solution which adopts Convolutional Neural Networks (CNN) for counting the number of colonies contained in confluent agglomerates, that scored an overall accuracy of the 92.8% on a large challenging dataset. The proposed CNN-based technique for estimating the cardinality of colony aggregates outperforms traditional image processing approaches, becoming a promising approach to many related applications.
Zebrafish tracking using convolutional neural networks
XU, Zhiping; Cheng, Xi En
2017-01-01
Keeping identity for a long term after occlusion is still an open problem in the video tracking of zebrafish-like model animals, and accurate animal trajectories are the foundation of behaviour analysis. We utilize the highly accurate object recognition capability of a convolutional neural network (CNN) to distinguish fish of the same congener, even though these animals are indistinguishable to the human eye. We used data augmentation and an iterative CNN training method to optimize the accuracy for our classification task, achieving surprisingly accurate trajectories of zebrafish of different size and age zebrafish groups over different time spans. This work will make further behaviour analysis more reliable. PMID:28211462
Binaural Sound Localization Using Neural Networks
1991-12-12
by Brennan, involved the implementation of a neural network to model the ability of a bat to discriminate between a mealworm and an inedible object...locate, identify and capture airborne prey (6:2). The sonar returns were collected from the mealworms , spheres and disks at various rotations (90 to...order to meet the criteria. If 75 out of 100 test vectors met the criteria, then P(HHN) = 0.75. P(FBE I E): The probability that a classification error
Zebrafish tracking using convolutional neural networks
NASA Astrophysics Data System (ADS)
Xu, Zhiping; Cheng, Xi En
2017-02-01
Keeping identity for a long term after occlusion is still an open problem in the video tracking of zebrafish-like model animals, and accurate animal trajectories are the foundation of behaviour analysis. We utilize the highly accurate object recognition capability of a convolutional neural network (CNN) to distinguish fish of the same congener, even though these animals are indistinguishable to the human eye. We used data augmentation and an iterative CNN training method to optimize the accuracy for our classification task, achieving surprisingly accurate trajectories of zebrafish of different size and age zebrafish groups over different time spans. This work will make further behaviour analysis more reliable.
Digital Image Compression Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Serra-Ricart, M.; Garrido, L.; Gaitan, V.; Aloy, A.
1993-01-01
The problem of storing, transmitting, and manipulating digital images is considered. Because of the file sizes involved, large amounts of digitized image information are becoming common in modern projects. Our goal is to described an image compression transform coder based on artificial neural networks techniques (NNCTC). A comparison of the compression results obtained from digital astronomical images by the NNCTC and the method used in the compression of the digitized sky survey from the Space Telescope Science Institute based on the H-transform is performed in order to assess the reliability of the NNCTC.
Neural network models for Linear Programming
Culioli, J.C.; Protopopescu, V.; Britton, C.; Ericson, N. )
1989-01-01
The purpose of this paper is to present a neural network that solves the general Linear Programming (LP) problem. In the first part, we recall Hopfield and Tank's circuit for LP and show that although it converges to stable states, it does not, in general, yield admissible solutions. This is due to the penalization treatment of the constraints. In the second part, we propose an approach based on Lagragrange multipliers that converges to primal and dual admissible solutions. We also show that the duality gap (measuring the optimality) can be rendered, in principle, as small as needed. 11 refs.
Characterization of Early Cortical Neural Network ...
We examined the development of neural network activity using microelectrode array (MEA) recordings made in multi-well MEA plates (mwMEAs) over the first 12 days in vitro (DIV). In primary cortical cultures made from postnatal rats, action potential spiking activity was essentially absent on DIV 2 and developed rapidly between DIV 5 and 12. Spiking activity was primarily sporadic and unorganized at early DIV, and became progressively more organized with time in culture, with bursting parameters, synchrony and network bursting increasing between DIV 5 and 12. We selected 12 features to describe network activity and principal components analysis using these features demonstrated a general segregation of data by age at both the well and plate levels. Using a combination of random forest classifiers and Support Vector Machines, we demonstrated that 4 features (CV of within burst ISI, CV of IBI, network spike rate and burst rate) were sufficient to predict the age (either DIV 5, 7, 9 or 12) of each well recording with >65% accuracy. When restricting the classification problem to a binary decision, we found that classification improved dramatically, e.g. 95% accuracy for discriminating DIV 5 vs DIV 12 wells. Further, we present a novel resampling approach to determine the number of wells that might be needed for conducting comparisons of different treatments using mwMEA plates. Overall, these results demonstrate that network development on mwMEA plates is similar to
Phase diagram of spiking neural networks
Seyed-allaei, Hamed
2015-01-01
In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probability of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations, and trials and errors, but here, I take a different perspective, inspired by evolution, I systematically simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable. I stimulate networks with pulses and then measure their: dynamic range, dominant frequency of population activities, total duration of activities, maximum rate of population and the occurrence time of maximum rate. The results are organized in phase diagram. This phase diagram gives an insight into the space of parameters – excitatory to inhibitory ratio, sparseness of connections and synaptic weights. This phase diagram can be used to decide the parameters of a model. The phase diagrams show that networks which are configured according to the common values, have a good dynamic range in response to an impulse and their dynamic range is robust in respect to synaptic weights, and for some synaptic weights they oscillates in α or β frequencies, independent of external stimuli. PMID:25788885
Neural Networks for Signal Processing and Control
NASA Astrophysics Data System (ADS)
Hesselroth, Ted Daniel
Neural networks are developed for controlling a robot-arm and camera system and for processing images. The networks are based upon computational schemes that may be found in the brain. In the first network, a neural map algorithm is employed to control a five-joint pneumatic robot arm and gripper through feedback from two video cameras. The pneumatically driven robot arm employed shares essential mechanical characteristics with skeletal muscle systems. To control the position of the arm, 200 neurons formed a network representing the three-dimensional workspace embedded in a four-dimensional system of coordinates from the two cameras, and learned a set of pressures corresponding to the end effector positions, as well as a set of Jacobian matrices for interpolating between these positions. Because of the properties of the rubber-tube actuators of the arm, the position as a function of supplied pressure is nonlinear, nonseparable, and exhibits hysteresis. Nevertheless, through the neural network learning algorithm the position could be controlled to an accuracy of about one pixel (~3 mm) after two hundred learning steps. Applications of repeated corrections in each step via the Jacobian matrices leads to a very robust control algorithm since the Jacobians learned by the network have to satisfy the weak requirement that they yield a reduction of the distance between gripper and target. The second network is proposed as a model for the mammalian vision system in which backward connections from the primary visual cortex (V1) to the lateral geniculate nucleus play a key role. The application of hebbian learning to the forward and backward connections causes the formation of receptive fields which are sensitive to edges, bars, and spatial frequencies of preferred orientations. The receptive fields are learned in such a way as to maximize the rate of transfer of information from the LGN to V1. Orientational preferences are organized into a feature map in the primary visual
Bayesian neural networks for internet traffic classification.
Auld, Tom; Moore, Andrew W; Gull, Stephen F
2007-01-01
Internet traffic identification is an important tool for network management. It allows operators to better predict future traffic matrices and demands, security personnel to detect anomalous behavior, and researchers to develop more realistic traffic models. We present here a traffic classifier that can achieve a high accuracy across a range of application types without any source or destination host-address or port information. We use supervised machine learning based on a Bayesian trained neural network. Though our technique uses training data with categories derived from packet content, training and testing were done using features derived from packet streams consisting of one or more packet headers. By providing classification without access to the contents of packets, our technique offers wider application than methods that require full packet/payloads for classification. This is a powerful advantage, using samples of classified traffic to permit the categorization of traffic based only upon commonly available information.
Overcoming catastrophic forgetting in neural networks
Kirkpatrick, James; Pascanu, Razvan; Rabinowitz, Neil; Veness, Joel; Desjardins, Guillaume; Rusu, Andrei A.; Milan, Kieran; Quan, John; Ramalho, Tiago; Grabska-Barwinska, Agnieszka; Hassabis, Demis; Clopath, Claudia; Kumaran, Dharshan; Hadsell, Raia
2017-01-01
The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Until now neural networks have not been capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks that they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on a hand-written digit dataset and by learning several Atari 2600 games sequentially. PMID:28292907
A convolutional neural network neutrino event classifier
Aurisano, A.; Radovic, A.; Rocco, D.; ...
2016-09-01
Here, convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology withoutmore » the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.« less
A convolutional neural network neutrino event classifier
Aurisano, A.; Radovic, A.; Rocco, D.; Himmel, A.; Messier, M. D.; Niner, E.; Pawloski, G.; Psihas, F.; Sousa, A.; Vahle, P.
2016-09-01
Here, convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology without the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.
A convolutional neural network neutrino event classifier
NASA Astrophysics Data System (ADS)
Aurisano, A.; Radovic, A.; Rocco, D.; Himmel, A.; Messier, M. D.; Niner, E.; Pawloski, G.; Psihas, F.; Sousa, A.; Vahle, P.
2016-09-01
Convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology without the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration.
Programmable synaptic chip for electronic neural networks
NASA Technical Reports Server (NTRS)
Moopenn, A.; Langenbacher, H.; Thakoor, A. P.; Khanna, S. K.
1988-01-01
A binary synaptic matrix chip has been developed for electronic neural networks. The matrix chip contains a programmable 32X32 array of 'long channel' NMOSFET binary connection elements implemented in a 3-micron bulk CMOS process. Since the neurons are kept off-chip, the synaptic chip serves as a 'cascadable' building block for a multi-chip synaptic network as large as 512X512 in size. As an alternative to the programmable NMOSFET (long channel) connection elements, tailored thin film resistors are deposited, in series with FET switches, on some CMOS test chips, to obtain the weak synaptic connections. Although deposition and patterning of the resistors require additional processing steps, they promise substantial savings in silicon area. The performance of synaptic chip in a 32-neuron breadboard system in an associative memory test application is discussed.
Orthogonal patterns in binary neural networks
NASA Technical Reports Server (NTRS)
Baram, Yoram
1988-01-01
A binary neural network that stores only mutually orthogonal patterns is shown to converge, when probed by any pattern, to a pattern in the memory space, i.e., the space spanned by the stored patterns. The latter are shown to be the only members of the memory space under a certain coding condition, which allows maximum storage of M=(2N) sup 0.5 patterns, where N is the number of neurons. The stored patterns are shown to have basins of attraction of radius N/(2M), within which errors are corrected with probability 1 in a single update cycle. When the probe falls outside these regions, the error correction capability can still be increased to 1 by repeatedly running the network with the same probe.
Feedback neural networks for ARTIST ionogram processing
NASA Astrophysics Data System (ADS)
Galkin, Ivan A.; Reinisch, Bodo W.; Ososkov, Gennadii A.; Zaznobina, Elena G.; Neshyba, Steven P.
1996-09-01
Modern pattern recognition techniques are applied to achieve high quality automatic processing of Digisonde ionograms. An artificial neural network (ANN) was found to be a promising technique for ionospheric echo tracing. A modified rotor model was tested to construct the Hopfield ANN with the mean field theory updating scheme. Tests of the models against various ionospheric data showed that the modified rotor model gives good results where conventional tracing techniques have difficulties. Use of the ANN made it possible to implement a robust scheme of trace interpretation that considers local trace inclination angles available after ANN completes tracing. The interpretation scheme features a new algorithm for ƒ0F1 identification that estimates an α angle for the trace segments in the vicinity of the critical frequency ƒ0F1. First results from off-line tests suggest the potential of implementing new operational autoscaling software in the worldwide Digisonde network.
Unraveling chaotic attractors by complex networks and measurements of stock market complexity
NASA Astrophysics Data System (ADS)
Cao, Hongduo; Li, Ying
2014-03-01
We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel-Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However, developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process.
Unraveling chaotic attractors by complex networks and measurements of stock market complexity.
Cao, Hongduo; Li, Ying
2014-03-01
We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel-Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However, developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process.
Adaptive Neural Network Motion Control of Manipulators with Experimental Evaluations
Puga-Guzmán, S.; Moreno-Valenzuela, J.; Santibáñez, V.
2014-01-01
A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller. PMID:24574910
Adaptive neural network motion control of manipulators with experimental evaluations.
Puga-Guzmán, S; Moreno-Valenzuela, J; Santibáñez, V
2014-01-01
A nonlinear proportional-derivative controller plus adaptive neuronal network compensation is proposed. With the aim of estimating the desired torque, a two-layer neural network is used. Then, adaptation laws for the neural network weights are derived. Asymptotic convergence of the position and velocity tracking errors is proven, while the neural network weights are shown to be uniformly bounded. The proposed scheme has been experimentally validated in real time. These experimental evaluations were carried in two different mechanical systems: a horizontal two degrees-of-freedom robot and a vertical one degree-of-freedom arm which is affected by the gravitational force. In each one of the two experimental set-ups, the proposed scheme was implemented without and with adaptive neural network compensation. Experimental results confirmed the tracking accuracy of the proposed adaptive neural network-based controller.
[Use of artificial neural networks in clinical psychology and psychiatry].
Starzomska, Małgorzata
2003-01-01
Artificial neural networks make a highly specialised tools in data transformation. The human brain has become an inspiration for the makers of artificial neural networks. Although even though artificial neural networks are more frequently used in areas like financial analysis, marketing studies or economical modelling, their application in psychology and medicine has given a lot of promising and fascinating discoveries. It is worth that artificial neurol networks are successfully used in the diagnosis and etiopathogenesis description of various psychiatric disorders such as eating disorders, compulsions, depression or schizophrenia. To sum up, artificial neural networks offer a very promising option of research methodology for modern clinical psychology and psychiatry. The aim of this article is only an illustration of the applications of artificial neural networks in clinical psychology and psychiatry.
Classification of Respiratory Sounds by Using An Artificial Neural Network
2007-11-02
are selected by using dynamic programming. Grow and Learn (GAL) neural network is used for the classification. It is observed that RSs of patients (with asthma) and healthy subjects are successfully classified by the GAL network.
Altered Synchronizations among Neural Networks in Geriatric Depression.
Wang, Lihong; Chou, Ying-Hui; Potter, Guy G; Steffens, David C
2015-01-01
Although major depression has been considered as a manifestation of discoordinated activity between affective and cognitive neural networks, only a few studies have examined the relationships among neural networks directly. Because of the known disconnection theory, geriatric depression could be a useful model in studying the interactions among different networks. In the present study, using independent component analysis to identify intrinsically connected neural networks, we investigated the alterations in synchronizations among neural networks in geriatric depression to better understand the underlying neural mechanisms. Resting-state fMRI data was collected from thirty-two patients with geriatric depression and thirty-two age-matched never-depressed controls. We compared the resting-state activities between the two groups in the default-mode, central executive, attention, salience, and affective networks as well as correlations among these networks. The depression group showed stronger activity than the controls in an affective network, specifically within the orbitofrontal region. However, unlike the never-depressed controls, geriatric depression group lacked synchronized/antisynchronized activity between the affective network and the other networks. Those depressed patients with lower executive function has greater synchronization between the salience network with the executive and affective networks. Our results demonstrate the effectiveness of the between-network analyses in examining neural models for geriatric depression.
A neural network model of harmonic detection
NASA Astrophysics Data System (ADS)
Lewis, Clifford F.
2003-04-01
Harmonic detection theories postulate that a virtual pitch is perceived when a sufficient number of harmonics is present. The harmonics need not be consecutive, but higher harmonics contribute less than lower harmonics [J. Raatgever and F. A. Bilsen, in Auditory Physiology and Perception, edited by Y. Cazals, K. Horner, and L. Demany (Pergamon, Oxford, 1992), pp. 215-222 M. K. McBeath and J. F. Wayand, Abstracts of the Psychonom. Soc. 3, 55 (1998)]. A neural network model is presented that has the potential to simulate this operation. Harmonics are first passed through a bank of rounded exponential filters with lateral inhibition. The results are used as inputs for an autoassociator neural network. The model is trained using harmonic data for symphonic musical instruments, in order to test whether it can self-organize by learning associations between co-occurring harmonics. It is shown that the trained model can complete the pattern for missing-fundamental sounds. The Performance of the model in harmonic detection will be compared with experimental results for humans.
Neural network analysis for hazardous waste characterization
Misra, M.; Pratt, L.Y.; Farris, C.
1995-12-31
This paper is a summary of our work in developing a system for interpreting electromagnetic (EM) and magnetic sensor information from the dig face characterization experimental cell at INEL to determine the depth and nature of buried objects. This project contained three primary components: (1) development and evaluation of several geophysical interpolation schemes for correcting missing or noisy data, (2) development and evaluation of several wavelet compression schemes for removing redundancies from the data, and (3) construction of two neural networks that used the results of steps (1) and (2) to determine the depth and nature of buried objects. This work is a proof-of-concept study that demonstrates the feasibility of this approach. The resulting system was able to determine the nature of buried objects correctly 87% of the time and was able to locate a buried object to within an average error of 0.8 feet. These statistics were gathered based on a large test set and so can be considered reliable. Considering the limited nature of this study, these results strongly indicate the feasibility of this approach, and the importance of appropriate preprocessing of neural network input data.
Spatial analysis using unsupervised neural networks
NASA Astrophysics Data System (ADS)
Murnion, Shane D.
1996-11-01
Site selection case studies are often used in training exercises or demonstrations to illustrate the advantages of using a geographical information system (GIS). A typical site selection case study might answer the question "where should I locate a new convenience store?" Current GIS can solve spatial analysis problems that are well defined efficiently. Unfortunately many "real world" problems are poorly defined, for example combinatorial spatial optimisation problems. In these problems the value of any solution depends on a number of factors, each of which must be changed and tested to generate an optimum solution. The large number of possible combinations that must be examined can render such problems insoluble using conventional analysis techniques. In this paper an example of a combinatorial spatial optimisation problem, which is nonpolynomial complete in nature, is examined. The problem can be defined as finding the optimum location for multiple retail sites, where the chosen retail sites will compete with each other for customers. It is shown that a solution can be determined using a relatively unsophisticated unsupervised Hopfield neural network algorithm. The neural network solution is generated within an efficient time-frame and it is shown that counter-intuitively, the algorithm becomes more efficient as the complexity of the problem increases.
Segmented-memory recurrent neural networks.
Chen, Jinmiao; Chaudhari, Narendra S
2009-08-01
Conventional recurrent neural networks (RNNs) have difficulties in learning long-term dependencies. To tackle this problem, we propose an architecture called segmented-memory recurrent neural network (SMRNN). A symbolic sequence is broken into segments and then presented as inputs to the SMRNN one symbol per cycle. The SMRNN uses separate internal states to store symbol-level context, as well as segment-level context. The symbol-level context is updated for each symbol presented for input. The segment-level context is updated after each segment. The SMRNN is trained using an extended real-time recurrent learning algorithm. We test the performance of SMRNN on the information latching problem, the "two-sequence problem" and the problem of protein secondary structure (PSS) prediction. Our implementation results indicate that SMRNN performs better on long-term dependency problems than conventional RNNs. Besides, we also theoretically analyze how the segmented memory of SMRNN helps learning long-term temporal dependencies and study the impact of the segment length.
Sentence alignment using feed forward neural network.
Fattah, Mohamed Abdel; Ren, Fuji; Kuroiwa, Shingo
2006-12-01
Parallel corpora have become an essential resource for work in multi lingual natural language processing. However, sentence aligned parallel corpora are more efficient than non-aligned parallel corpora for cross language information retrieval and machine translation applications. In this paper, we present a new approach to align sentences in bilingual parallel corpora based on feed forward neural network classifier. A feature parameter vector is extracted from the text pair under consideration. This vector contains text features such as length, punctuate score, and cognate score values. A set of manually prepared training data has been assigned to train the feed forward neural network. Another set of data was used for testing. Using this new approach, we could achieve an error reduction of 60% over length based approach when applied on English-Arabic parallel documents. Moreover this new approach is valid for any language pair and it is quite flexible approach since the feature parameter vector may contain more/less or different features than that we used in our system such as lexical match feature.
Advanced Plasma Diagnostic Analysis using Neural Networks
NASA Astrophysics Data System (ADS)
Tritz, Kevin; Reinke, Matt
2016-10-01
Machine learning techniques, specifically neural networks (NN), are used with sufficient internal complexity to develop an empirically weighted relationship between a set of filtered X-ray emission measurements and the electron temperature (Te) profile for a specific class of discharges on NSTX. The NN response matrix is used to calculate the Te profile directly from the filtered X-ray diode measurements which extends the electron temperature time response from the 60Hz Thomson Scattering profile measurements to fast timescales (>10kHz) and greatly expands the applicability of Te profile information to fast plasma phenomena, such as ELM dynamics. This process can be improved by providing additional information which helps the neural network refine the relationship between Te and the corresponding X-ray emission. NN supplement limited measurements of a particular quantity using related measurements with higher time or spatial resolution. For example, the radiated power (Prad) determined using resistive foil bolometers is related to similar measurements using AXUV diode arrays through a complex and slowly time-evolving quantum efficiency curve in the VUV spectral region. Results from a NN trained using Alcator C-Mod resistive foil bolometry and AXUV diodes are presented, working towards hybrid Prad measurements with the quantitative accuracy of resistive foil bolometers and with the enhanced temporal and spatial resolution of the unfiltered AXUV diode arrays. Work supported by Department of Energy Grant #: DE-FG02-09ER55012.
A gentle introduction to artificial neural networks.
Zhang, Zhongheng
2016-10-01
Artificial neural network (ANN) is a flexible and powerful machine learning technique. However, it is under utilized in clinical medicine because of its technical challenges. The article introduces some basic ideas behind ANN and shows how to build ANN using R in a step-by-step framework. In topology and function, ANN is in analogue to the human brain. There are input and output signals transmitting from input to output nodes. Input signals are weighted before reaching output nodes according to their respective importance. Then the combined signal is processed by activation function. I simulated a simple example to illustrate how to build a simple ANN model using nnet() function. This function allows for one hidden layer with varying number of units in that layer. The basic structure of ANN can be visualized with plug-in plot.nnet() function. The plot function is powerful that it allows for varieties of adjustment to the appearance of the neural networks. Prediction with ANN can be performed with predict() function, similar to that of conventional generalized linear models. Finally, the prediction power of ANN is examined using confusion matrix and average accuracy. It appears that ANN is slightly better than conventional linear model.
Damage identification with probabilistic neural networks
Klenke, S.E.; Paez, T.L.
1995-12-01
This paper investigates the use of artificial neural networks (ANNs) to identify damage in mechanical systems. Two probabilistic neural networks (PNNs) are developed and used to judge whether or not damage has occurred in a specific mechanical system, based on experimental measurements. The first PNN is a classical type that casts Bayesian decision analysis into an ANN framework, it uses exemplars measured from the undamaged and damaged system to establish whether system response measurements of unknown origin come from the former class (undamaged) or the latter class (damaged). The second PNN establishes the character of the undamaged system in terms of a kernel density estimator of measures of system response; when presented with system response measures of unknown origin, it makes a probabilistic judgment whether or not the data come from the undamaged population. The physical system used to carry out the experiments is an aerospace system component, and the environment used to excite the system is a stationary random vibration. The results of damage identification experiments are presented along with conclusions rating the effectiveness of the approaches.
Neural networks for convex hull computation.
Leung, Y; Zhang, J S; Xu, Z B
1997-01-01
Computing convex hull is one of the central problems in various applications of computational geometry. In this paper, a convex hull computing neural network (CHCNN) is developed to solve the related problems in the N-dimensional spaces. The algorithm is based on a two-layered neural network, topologically similar to ART, with a newly developed adaptive training strategy called excited learning. The CHCNN provides a parallel online and real-time processing of data which, after training, yields two closely related approximations, one from within and one from outside, of the desired convex hull. It is shown that accuracy of the approximate convex hulls obtained is around O[K(-1)(N-1/)], where K is the number of neurons in the output layer of the CHCNN. When K is taken to be sufficiently large, the CHCNN can generate any accurate approximate convex hull. We also show that an upper bound exists such that the CHCNN will yield the precise convex hull when K is larger than or equal to this bound. A series of simulations and applications is provided to demonstrate the feasibility, effectiveness, and high efficiency of the proposed algorithm.
D Coordinate Transformation Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Konakoglu, B.; Cakır, L.; Gökalp, E.
2016-10-01
Two coordinate systems used in Turkey, namely the ED50 (European Datum 1950) and ITRF96 (International Terrestrial Reference Frame 1996) coordinate systems. In most cases, it is necessary to conduct transformation from one coordinate system to another. The artificial neural network (ANN) is a new method for coordinate transformation. One of the biggest advantages of the ANN is that it can determine the relationship between two coordinate systems without a mathematical model. The aim of this study was to investigate the performances of three different ANN models (Feed Forward Back Propagation (FFBP), Cascade Forward Back Propagation (CFBP) and Radial Basis Function Neural Network (RBFNN)) with regard to 2D coordinate transformation. To do this, three data sets were used for the same study area, the city of Trabzon. The coordinates of data sets were measured in the ED50 and ITRF96 coordinate systems by using RTK-GPS technique. Performance of each transformation method was investigated by using the coordinate differences between the known and estimated coordinates. The results showed that the ANN algorithms can be used for 2D coordinate transformation in cases where optimum model parameters are selected.