Science.gov

Sample records for chaperone asf1 levels

  1. Identification of small molecules that inhibit the histone chaperone Asf1 and its chromatin function

    PubMed Central

    Seol, Ja-Hwan; Song, Tae-Yang; Oh, Se Eun; Jo, Chanhee; Choi, Ahreum; Kim, Byungho; Park, Jinyoung; Hong, Suji; Song, Ilrang; Jung, Kwan Young; Yang, Jae-Hyun; Park, Hwangseo; Ahn, Jin-Hyun; Han, Jeung-Whan; Cho, Eun-Jung

    2015-01-01

    The eukaryotic genome is packed into chromatin, which is important for the genomic integrity and gene regulation. Chromatin structures are maintained through assembly and disassembly of nucleosomes catalyzed by histone chaperones. Asf1 (anti-silencing function 1) is a highly conserved histone chaperone that mediates histone transfer on/off DNA and promotes histone H3 lysine 56 acetylation at globular core domain of histone H3. To elucidate the role of Asf1 in the modulation of chromatin structure, we screened and identified small molecules that inhibit Asf1 and H3K56 acetylation without affecting other histone modifications. These pyrimidine-2,4,6-trione derivative molecules inhibited the nucleosome assembly mediated by Asf1 in vitro, and reduced the H3K56 acetylation in HeLa cells. Furthermore, production of HSV viral particles was reduced by these compounds. As Asf1 is implicated in genome integrity, cell proliferation, and cancer, current Asf1 inhibitor molecules may offer an opportunity for the therapeutic development for treatment of diseases. [BMB Reports 2015; 48(12): 685-690] PMID:26058396

  2. Histone chaperone ASF1B promotes human β-cell proliferation via recruitment of histone H3.3.

    PubMed

    Paul, Pradyut K; Rabaglia, Mary E; Wang, Chen-Yu; Stapleton, Donald S; Leng, Ning; Kendziorski, Christina; Lewis, Peter W; Keller, Mark P; Attie, Alan D

    2016-12-01

    Anti-silencing function 1 (ASF1) is a histone H3-H4 chaperone involved in DNA replication and repair, and transcriptional regulation. Here, we identify ASF1B, the mammalian paralog to ASF1, as a proliferation-inducing histone chaperone in human β-cells. Overexpression of ASF1B led to distinct transcriptional signatures consistent with increased cellular proliferation and reduced cellular death. Using multiple methods of monitoring proliferation and mitotic progression, we show that overexpression of ASF1B is sufficient to induce human β-cell proliferation. Co-expression of histone H3.3 further augmented β-cell proliferation, whereas suppression of endogenous H3.3 attenuated the stimulatory effect of ASF1B. Using the histone binding-deficient mutant of ASF1B (V94R), we show that histone binding to ASF1B is required for the induction of β-cell proliferation. In contrast to H3.3, overexpression of histone H3 variants H3.1 and H3.2 did not have an impact on ASF1B-mediated induction of proliferation. Our findings reveal a novel role of ASF1B in human β-cell replication and show that ASF1B and histone H3.3A synergistically stimulate human β-cell proliferation.

  3. Roles of histone chaperone CIA/Asf1 in nascent DNA elongation during nucleosome replication.

    PubMed

    Ishikawa, Katsuyuki; Ohsumi, Tatsuya; Tada, Shusuke; Natsume, Ryo; Kundu, Lena Rani; Nozaki, Naohito; Senda, Toshiya; Enomoto, Takemi; Horikoshi, Masami; Seki, Masayuki

    2011-10-01

    The nucleosome, which is composed of DNA wrapped around a histone octamer, is a fundamental unit of chromatin and is duplicated during the eukaryotic DNA replication process. The evolutionarily conserved histone chaperone cell cycle gene 1 (CCG1) interacting factor A/anti-silencing function 1 (CIA/Asf1) is involved in histone transfer and nucleosome reassembly during DNA replication. CIA/Asf1 has been reported to split the histone (H3-H4)(2) tetramer into histone H3-H4 dimer(s) in vitro, raising a possibility that, in DNA replication, CIA/Asf1 is involved in nucleosome disassembly and the promotion of semi-conservative histone H3-H4 dimer deposition onto each daughter strand in vivo. Despite numerous studies on the functional roles of CIA/Asf1, its mechanistic role(s) remains elusive because of lack of biochemical analyses. The biochemical studies described here show that a V94R CIA/Asf1 mutant, which lacks histone (H3-H4)(2) tetramer splitting activity, does not form efficiently a quaternary complex with histones H3-H4 and the minichromosome maintenance 2 (Mcm2) subunit of the Mcm2-7 replicative DNA helicase. Interestingly, the mutant enhances nascent DNA strand synthesis in a cell-free chromosomal DNA replication system using Xenopus egg extracts. These results suggest that CIA/Asf1 in the CIA/Asf1-H3-H4-Mcm2 complex, which is considered to be an intermediate in histone transfer during DNA replication, negatively regulates the progression of the replication fork.

  4. A conserved RAD6-MDM2 ubiquitin ligase machinery targets histone chaperone ASF1A in tumorigenesis.

    PubMed

    Wang, Chen; Chang, Jian-Feng; Yan, Hongli; Wang, Da-Liang; Liu, Yan; Jing, Yuanya; Zhang, Meng; Men, Yu-Long; Lu, Dongdong; Yang, Xiao-Mei; Chen, Su; Sun, Fang-Lin

    2015-10-06

    Chromatin is a highly organized and dynamic structure in eukaryotic cells. The change of chromatin structure is essential in many cellular processes, such as gene transcription, DNA damage repair and others. Anti-silencing function 1 (ASF1) is a histone chaperone that participates in chromatin higher-order organization and is required for appropriate chromatin assembly. In this study, we identified the E2 ubiquitin-conjugating enzyme RAD6 as an evolutionary conserved interacting protein of ASF1 in D. melanogaster and H. sapiens that promotes the turnover of ASF1A by cooperating with a well-known E3 ligase, MDM2, via ubiquitin-proteasome pathway in H. sapiens. Further functional analyses indicated that the interplay between RAD6 and ASF1A associates with tumorigenesis. Together, these data suggest that the RAD6-MDM2 ubiquitin ligase machinery is critical for the degradation of chromatin-related proteins.

  5. The C terminus of the histone chaperone Asf1 cross-links to histone H3 in yeast and promotes interaction with histones H3 and H4.

    PubMed

    Dennehey, Briana K; Noone, Seth; Liu, Wallace H; Smith, Luke; Churchill, Mair E A; Tyler, Jessica K

    2013-02-01

    The central histone H3/H4 chaperone Asf1 comprises a highly conserved globular core and a divergent C-terminal tail. While the function and structure of the Asf1 core are well known, the function of the tail is less well understood. Here, we have explored the role of the yeast (yAsf1) and human (hAsf1a and hAsf1b) Asf1 tails in Saccharomyces cerevisiae. We show, using a photoreactive, unnatural amino acid, that Asf1 tail residue 210 cross-links to histone H3 in vivo and, further, that loss of C-terminal tail residues 211 to 279 weakens yAsf1-histone binding affinity in vitro nearly 200-fold. Via several yAsf1 C-terminal truncations and yeast-human chimeric proteins, we found that truncations at residue 210 increase transcriptional silencing and that the hAsf1a tail partially substitutes for full-length yAsf1 with respect to silencing but that full-length hAsf1b is a better overall substitute for full-length yAsf1. In addition, we show that the C-terminal tail of Asf1 is phosphorylated at T270 in yeast. Loss of this phosphorylation site does not prevent coimmunoprecipitation of yAsf1 and Rad53 from yeast extracts, whereas amino acid residue substitutions at the Asf1-histone H3/H4 interface do. Finally, we show that residue substitutions in yAsf1 near the CAF-1/HIRA interface also influence yAsf1's function in silencing.

  6. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4.

    PubMed

    Natsume, Ryo; Eitoku, Masamitsu; Akai, Yusuke; Sano, Norihiko; Horikoshi, Masami; Senda, Toshiya

    2007-03-15

    CIA (CCG1-interacting factor A)/ASF1, which is the most conserved histone chaperone among the eukaryotes, was genetically identified as a factor for an anti-silencing function (Asf1) by yeast genetic screening. Shortly after that, the CIA-histone-H3-H4 complex was isolated from Drosophila as a histone chaperone CAF-1 stimulator. Human CIA-I/II (ASF1a/b) was identified as a histone chaperone that interacts with the bromodomain-an acetylated-histone-recognizing domain-of CCG1, in the general transcription initiation factor TFIID. Intensive studies have revealed that CIA/ASF1 mediates nucleosome assembly by forming a complex with another histone chaperone in human cells and yeast, and is involved in DNA replication, transcription, DNA repair and silencing/anti-silencing in yeast. CIA/ASF1 was shown as a major storage chaperone for soluble histones in proliferating human cells. Despite all these biochemical and biological functional analyses, the structure-function relationship of the nucleosome assembly/disassembly activity of CIA/ASF1 has remained elusive. Here we report the crystal structure, at 2.7 A resolution, of CIA-I in complex with histones H3 and H4. The structure shows the histone H3-H4 dimer's mutually exclusive interactions with another histone H3-H4 dimer and CIA-I. The carboxy-terminal beta-strand of histone H4 changes its partner from the beta-strand in histone H2A to that of CIA-I through large conformational change. In vitro functional analysis demonstrated that CIA-I has a histone H3-H4 tetramer-disrupting activity. Mutants with weak histone H3-H4 dimer binding activity showed critical functional effects on cellular processes related to transcription. The histone H3-H4 tetramer-disrupting activity of CIA/ASF1 and the crystal structure of the CIA/ASF1-histone-H3-H4 dimer complex should give insights into mechanisms of both nucleosome assembly/disassembly and nucleosome semi-conservative replication.

  7. Histone chaperones ASF1 and NAP1 differentially modulate removal of active histone marks by LID-RPD3 complexes during NOTCH silencing.

    PubMed

    Moshkin, Yuri M; Kan, Tsung Wai; Goodfellow, Henry; Bezstarosti, Karel; Maeda, Robert K; Pilyugin, Maxim; Karch, Francois; Bray, Sarah J; Demmers, Jeroen A A; Verrijzer, C Peter

    2009-09-24

    Histone chaperones are involved in a variety of chromatin transactions. By a proteomics survey, we identified the interaction networks of histone chaperones ASF1, CAF1, HIRA, and NAP1. Here, we analyzed the cooperation of H3/H4 chaperone ASF1 and H2A/H2B chaperone NAP1 with two closely related silencing complexes: LAF and RLAF. NAP1 binds RPD3 and LID-associated factors (RLAF) comprising histone deacetylase RPD3, histone H3K4 demethylase LID/KDM5, SIN3A, PF1, EMSY, and MRG15. ASF1 binds LAF, a similar complex lacking RPD3. ASF1 and NAP1 link, respectively, LAF and RLAF to the DNA-binding Su(H)/Hairless complex, which targets the E(spl) NOTCH-regulated genes. ASF1 facilitates gene-selective removal of the H3K4me3 mark by LAF but has no effect on H3 deacetylation. NAP1 directs high nucleosome density near E(spl) control elements and mediates both H3 deacetylation and H3K4me3 demethylation by RLAF. We conclude that histone chaperones ASF1 and NAP1 differentially modulate local chromatin structure during gene-selective silencing.

  8. CAF-1-induced oligomerization of histones H3/H4 and mutually exclusive interactions with Asf1 guide H3/H4 transitions among histone chaperones and DNA.

    PubMed

    Liu, Wallace H; Roemer, Sarah C; Port, Alex M; Churchill, Mair E A

    2012-12-01

    Anti-silencing function 1 (Asf1) and Chromatin Assembly Factor 1 (CAF-1) chaperone histones H3/H4 during the assembly of nucleosomes on newly replicated DNA. To understand the mechanism of histone H3/H4 transfer among Asf1, CAF-1 and DNA from a thermodynamic perspective, we developed and employed biophysical approaches using full-length proteins in the budding yeast system. We find that the C-terminal tail of Asf1 enhances the interaction of Asf1 with CAF-1. Surprisingly, although H3/H4 also enhances the interaction of Asf1 with the CAF-1 subunit Cac2, H3/H4 forms a tight complex with CAF-1 exclusive of Asf1, with an affinity weaker than Asf1-H3/H4 or H3/H4-DNA interactions. Unlike Asf1, monomeric CAF-1 binds to multiple H3/H4 dimers, which ultimately promotes the formation of (H3/H4)(2) tetramers on DNA. Thus, transition of H3/H4 from the Asf1-associated dimer to the DNA-associated tetramer is promoted by CAF-1-induced H3/H4 oligomerization.

  9. The activity of the histone chaperone yeast Asf1 in the assembly and disassembly of histone H3/H4–DNA complexes

    PubMed Central

    Donham, Douglas C.; Scorgie, Jean K.; Churchill, Mair E. A.

    2011-01-01

    The deposition of the histones H3/H4 onto DNA to give the tetrasome intermediate and the displacement of H3/H4 from DNA are thought to be the first and the last steps in nucleosome assembly and disassembly, respectively. Anti-silencing function 1 (Asf1) is a chaperone of the H3/H4 dimer that functions in both of these processes. However, little is known about the thermodynamics of chaperone–histone interactions or the direct role of Asf1 in the formation or disassembly of histone–DNA complexes. Here, we show that Saccharomyces cerevisiae Asf1 shields H3/H4 from unfavorable DNA interactions and aids the formation of favorable histone–DNA interactions through the formation of disomes. However, Asf1 was unable to disengage histones from DNA for tetrasomes formed with H3/H4 and strong nucleosome positioning DNA sequences or tetrasomes weakened by mutant (H3K56Q/H4) histones or non-positioning DNA sequences. Furthermore, Asf1 did not associate with preformed tetrasomes. These results are consistent with the measured affinity of Asf1 for H3/H4 dimers of 2.5 nM, which is weaker than the association of H3/H4 for DNA. These studies support a mechanism by which Asf1 aids H3/H4 deposition onto DNA but suggest that additional factors or post-translational modifications are required for Asf1 to remove H3/H4 from tetrasome intermediates in chromatin. PMID:21447559

  10. Structural insight into how the human helicase subunit MCM2 may act as a histone chaperone together with ASF1 at the replication fork

    PubMed Central

    Richet, Nicolas; Liu, Danni; Legrand, Pierre; Velours, Christophe; Corpet, Armelle; Gaubert, Albane; Bakail, May; Moal-Raisin, Gwenaelle; Guerois, Raphael; Compper, Christel; Besle, Arthur; Guichard, Berengère; Almouzni, Genevieve; Ochsenbein, Françoise

    2015-01-01

    MCM2 is a subunit of the replicative helicase machinery shown to interact with histones H3 and H4 during the replication process through its N-terminal domain. During replication, this interaction has been proposed to assist disassembly and assembly of nucleosomes on DNA. However, how this interaction participates in crosstalk with histone chaperones at the replication fork remains to be elucidated. Here, we solved the crystal structure of the ternary complex between the histone-binding domain of Mcm2 and the histones H3-H4 at 2.9 Å resolution. Histones H3 and H4 assemble as a tetramer in the crystal structure, but MCM2 interacts only with a single molecule of H3-H4. The latter interaction exploits binding surfaces that contact either DNA or H2B when H3-H4 dimers are incorporated in the nucleosome core particle. Upon binding of the ternary complex with the histone chaperone ASF1, the histone tetramer dissociates and both MCM2 and ASF1 interact simultaneously with the histones forming a 1:1:1:1 heteromeric complex. Thermodynamic analysis of the quaternary complex together with structural modeling support that ASF1 and MCM2 could form a chaperoning module for histones H3 and H4 protecting them from promiscuous interactions. This suggests an additional function for MCM2 outside its helicase function as a proper histone chaperone connected to the replication pathway. PMID:25618846

  11. Structure of the histone chaperone CIA/ASF1-double bromodomain complex linking histone modifications and site-specific histone eviction.

    PubMed

    Akai, Yusuke; Adachi, Naruhiko; Hayashi, Yohei; Eitoku, Masamitsu; Sano, Norihiko; Natsume, Ryo; Kudo, Norio; Tanokura, Masaru; Senda, Toshiya; Horikoshi, Masami

    2010-05-04

    Nucleosomes around the promoter region are disassembled for transcription in response to various signals, such as acetylation and methylation of histones. Although the interactions between histone-acetylation-recognizing bromodomains and factors involved in nucleosome disassembly have been reported, no structural basis connecting histone modifications and nucleosome disassembly has been obtained. Here, we determined at 3.3 A resolution the crystal structure of histone chaperone cell cycle gene 1 (CCG1) interacting factor A/antisilencing function 1 (CIA/ASF1) in complex with the double bromodomain in the CCG1/TAF1/TAF(II)250 subunit of transcription factor IID. Structural, biochemical, and biological studies suggested that interaction between double bromodomain and CIA/ASF1 is required for their colocalization, histone eviction, and pol II entry at active promoter regions. Furthermore, the present crystal structure has characteristics that can connect histone acetylation and CIA/ASF1-mediated histone eviction. These findings suggest that the molecular complex between CIA/ASF1 and the double bromodomain plays a key role in site-specific histone eviction at active promoter regions. The model we propose here is the initial structure-based model of the biological signaling from histone modifications to structural change of the nucleosome (hi-MOST model).

  12. Cell-cycle-regulated control of VSG expression site silencing by histones and histone chaperones ASF1A and CAF-1b in Trypanosoma brucei.

    PubMed

    Alsford, Sam; Horn, David

    2012-11-01

    Antigenic variation in African trypanosomes involves monoallelic expression and reversible silencing of variant surface glycoprotein (VSG) genes found adjacent to telomeres in polycistronic expression sites (ESs). We assessed the impact on ES silencing of five candidate essential chromatin-associated factors that emerged from a genome-wide RNA interference viability screen. Using this approach, we demonstrate roles in VSG ES silencing for two histone chaperones. Defects in S-phase progression in cells depleted for histone H3, or either chaperone, highlight in particular the link between chromatin assembly and DNA replication control. S-phase checkpoint arrest was incomplete, however, allowing G2/M-specific VSG ES derepression following knockdown of histone H3. In striking contrast, knockdown of anti-silencing factor 1A (ASF1A) allowed for derepression at all cell cycle stages, whereas knockdown of chromatin assembly factor 1b (CAF-1b) revealed derepression predominantly in S-phase and G2/M. Our results support a central role for chromatin in maintaining VSG ES silencing. ASF1A and CAF-1b appear to play constitutive and DNA replication-dependent roles, respectively, in the recycling and assembly of chromatin. Defects in these functions typically lead to arrest in S-phase but defective cells can also progress through the cell cycle leading to nucleosome depletion and derepression of telomeric VSG ESs.

  13. The histone chaperone Vps75 forms multiple oligomeric assemblies capable of mediating exchange between histone H3–H4 tetramers and Asf1–H3–H4 complexes

    PubMed Central

    Hammond, Colin M.; Sundaramoorthy, Ramasubramanian; Larance, Mark; Lamond, Angus; Stevens, Michael A.; El-Mkami, Hassane; Norman, David G.; Owen-Hughes, Tom

    2016-01-01

    Vps75 is a histone chaperone that has been historically characterized as homodimer by X-ray crystallography. In this study, we present a crystal structure containing two related tetrameric forms of Vps75 within the crystal lattice. We show Vps75 associates with histones in multiple oligomers. In the presence of equimolar H3–H4 and Vps75, the major species is a reconfigured Vps75 tetramer bound to a histone H3–H4 tetramer. However, in the presence of excess histones, a Vps75 dimer bound to a histone H3–H4 tetramer predominates. We show the Vps75–H3–H4 interaction is compatible with the histone chaperone Asf1 and deduce a structural model of the Vps75–Asf1-H3–H4 (VAH) co-chaperone complex using the Pulsed Electron-electron Double Resonance (PELDOR) technique and cross-linking MS/MS distance restraints. The model provides a molecular basis for the involvement of both Vps75 and Asf1 in Rtt109 catalysed histone H3 K9 acetylation. In the absence of Asf1 this model can be used to generate a complex consisting of a reconfigured Vps75 tetramer bound to a H3–H4 tetramer. This provides a structural explanation for many of the complexes detected biochemically and illustrates the ability of Vps75 to interact with dimeric or tetrameric H3–H4 using the same interaction surface. PMID:27036862

  14. Codanin-1, mutated in the anaemic disease CDAI, regulates Asf1 function in S-phase histone supply

    PubMed Central

    Ask, Katrine; Jasencakova, Zuzana; Menard, Patrice; Feng, Yunpeng; Almouzni, Geneviève; Groth, Anja

    2012-01-01

    Efficient supply of new histones during DNA replication is critical to restore chromatin organization and maintain genome function. The histone chaperone anti-silencing function 1 (Asf1) serves a key function in providing H3.1-H4 to CAF-1 for replication-coupled nucleosome assembly. We identify Codanin-1 as a novel interaction partner of Asf1 regulating S-phase histone supply. Mutations in Codanin-1 can cause congenital dyserythropoietic anaemia type I (CDAI), characterized by chromatin abnormalities in bone marrow erythroblasts. Codanin-1 is part of a cytosolic Asf1–H3.1-H4–Importin-4 complex and binds directly to Asf1 via a conserved B-domain, implying a mutually exclusive interaction with the chaperones CAF-1 and HIRA. Codanin-1 depletion accelerates the rate of DNA replication and increases the level of chromatin-bound Asf1, suggesting that Codanin-1 guards a limiting step in chromatin replication. Consistently, ectopic Codanin-1 expression arrests S-phase progression by sequestering Asf1 in the cytoplasm, blocking histone delivery. We propose that Codanin-1 acts as a negative regulator of Asf1 function in chromatin assembly. This function is compromised by two CDAI mutations that impair complex formation with Asf1, providing insight into the molecular basis for CDAI disease. PMID:22407294

  15. Asf1 facilitates dephosphorylation of Rad53 after DNA double-strand break repair

    PubMed Central

    Tsabar, Michael; Waterman, David P.; Aguilar, Fiona; Katsnelson, Lizabeth; Eapen, Vinay V.; Memisoglu, Gonen; Haber, James E.

    2016-01-01

    To allow for sufficient time to repair DNA double-stranded breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint. In budding yeast, Rad53 (mammalian Chk2) phosphorylation parallels the persistence of the unrepaired DSB and is extinguished when repair is complete in a process termed recovery or when the cells adapt to the DNA damage checkpoint. A strain containing a slowly repaired DSB does not require the histone chaperone Asf1 to resume cell cycle progression after DSB repair. When a second, rapidly repairable DSB is added to this strain, Asf1 becomes required for recovery. Recovery from two repairable DSBs also depends on the histone acetyltransferase Rtt109 and the cullin subunit Rtt101, both of which modify histone H3 that is associated with Asf1. We show that dissociation of histone H3 from Asf1 is required for efficient recovery and that Asf1 is required for complete dephosphorylation of Rad53 when the upstream DNA damage checkpoint signaling is turned off. Our data suggest that the requirements for recovery from the DNA damage checkpoint become more stringent with increased levels of damage and that Asf1 plays a histone chaperone-independent role in facilitating complete Rad53 dephosphorylation following repair. PMID:27222517

  16. Asf1 facilitates dephosphorylation of Rad53 after DNA double-strand break repair.

    PubMed

    Tsabar, Michael; Waterman, David P; Aguilar, Fiona; Katsnelson, Lizabeth; Eapen, Vinay V; Memisoglu, Gonen; Haber, James E

    2016-05-15

    To allow for sufficient time to repair DNA double-stranded breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint. In budding yeast, Rad53 (mammalian Chk2) phosphorylation parallels the persistence of the unrepaired DSB and is extinguished when repair is complete in a process termed recovery or when the cells adapt to the DNA damage checkpoint. A strain containing a slowly repaired DSB does not require the histone chaperone Asf1 to resume cell cycle progression after DSB repair. When a second, rapidly repairable DSB is added to this strain, Asf1 becomes required for recovery. Recovery from two repairable DSBs also depends on the histone acetyltransferase Rtt109 and the cullin subunit Rtt101, both of which modify histone H3 that is associated with Asf1. We show that dissociation of histone H3 from Asf1 is required for efficient recovery and that Asf1 is required for complete dephosphorylation of Rad53 when the upstream DNA damage checkpoint signaling is turned off. Our data suggest that the requirements for recovery from the DNA damage checkpoint become more stringent with increased levels of damage and that Asf1 plays a histone chaperone-independent role in facilitating complete Rad53 dephosphorylation following repair.

  17. Tousled-like kinases phosphorylate Asf1 to promote histone supply during DNA replication

    NASA Astrophysics Data System (ADS)

    Klimovskaia, Ilnaz M.; Young, Clifford; Strømme, Caroline B.; Menard, Patrice; Jasencakova, Zuzana; Mejlvang, Jakob; Ask, Katrine; Ploug, Michael; Nielsen, Michael L.; Jensen, Ole N.; Groth, Anja

    2014-03-01

    During DNA replication, nucleosomes are rapidly assembled on newly synthesized DNA to restore chromatin organization. Asf1, a key histone H3-H4 chaperone required for this process, is phosphorylated by Tousled-like kinases (TLKs). Here, we identify TLK phosphorylation sites by mass spectrometry and dissect how phosphorylation has an impact on human Asf1 function. The divergent C-terminal tail of Asf1a is phosphorylated at several sites, and this is required for timely progression through S phase. Consistent with this, biochemical analysis of wild-type and phospho-mimetic Asf1a shows that phosphorylation enhances binding to histones and the downstream chaperones CAF-1 and HIRA. Moreover, we find that TLK phosphorylation of Asf1a is induced in cells experiencing deficiency of new histones and that TLK interaction with Asf1a involves its histone-binding pocket. We thus propose that TLK signalling promotes histone supply in S phase by targeting histone-free Asf1 and stimulating its ability to shuttle histones to sites of chromatin assembly.

  18. sNASP and ASF1A function through both competitive and compatible modes of histone binding

    PubMed Central

    Bowman, Andrew; Koide, Akiko; Goodman, Jay S.; Colling, Meaghan E.; Zinne, Daria; Koide, Shohei; Ladurner, Andreas G.

    2017-01-01

    Histone chaperones are proteins that interact with histones to regulate the thermodynamic process of nucleosome assembly. sNASP and ASF1 are conserved histone chaperones that interact with histones H3 and H4 and are found in a multi-chaperoning complex in vivo. Previously we identified a short peptide motif within H3 that binds to the TPR domain of sNASP with nanomolar affinity. Interestingly, this peptide motif is sequestered within the known ASF1–H3–H4 interface, raising the question of how these two proteins are found in complex together with histones when they share the same binding site. Here, we show that sNASP contains at least two additional histone interaction sites that, unlike the TPR–H3 peptide interaction, are compatible with ASF1A binding. These surfaces allow ASF1A to form a quaternary complex with both sNASP and H3–H4. Furthermore, we demonstrate that sNASP makes a specific complex with H3 on its own in vitro, but not with H4, suggesting that it could work upstream of ASF1A. Further, we show that sNASP and ASF1A are capable of folding an H3–H4 dimer in vitro under native conditions. These findings reveal a network of binding events that may promote the entry of histones H3 and H4 into the nucleosome assembly pathway. PMID:28123037

  19. Utilizing Targeted Mass Spectrometry to Demonstrate Asf1-Dependent Increases in Residue Specificity for Rtt109-Vps75 Mediated Histone Acetylation

    PubMed Central

    Kuo, Yin-Ming; Henry, Ryan A.; Huang, Liangqun; Chen, Xu; Stargell, Laurie A.; Andrews, Andrew J.

    2015-01-01

    In Saccharomyces cerevisiae, Rtt109, a lysine acetyltransferase (KAT), associates with a histone chaperone, either Vps75 or Asf1. It has been proposed that these chaperones alter the selectivity of Rtt109 or which residues it preferentially acetylates. In the present study, we utilized a label-free quantitative mass spectrometry-based method to determine the steady-state kinetic parameters of acetylation catalyzed by Rtt109-Vps75 on H3 monomer, H3/H4 tetramer, and H3/H4-Asf1 complex. These results show that among these histone conformations, only H3K9 and H3K23 are significantly acetylated under steady-state conditions and that Asf1 promotes H3/H4 acetylation by Rtt109-Vps75. Asf1 equally increases the Rtt109-Vps75 specificity for both of these residues with a maximum stoichiometry of 1:1 (Asf1 to H3/H4), but does not alter the selectivity between these two residues. These data suggest that the H3/H4-Asf1 complex is a substrate for Rtt109-Vps75 without altering selectivity between residues. The deletion of either Rtt109 or Asf1 in vivo results in the same reduction of H3K9 acetylation, suggesting that Asf1 is required for efficient H3K9 acetylation both in vitro and in vivo. Furthermore, we found that the acetylation preference of Rtt109-Vps75 could be directed to H3K56 when those histones already possess modifications, such as those found on histones purified from chicken erythrocytes. Taken together, Vps75 and Asf1 both enhance Rtt109 acetylation for H3/H4, although via different mechanisms, but have little impact on the residue selectivity. Importantly, these results provide evidence that histone chaperones can work together via interactions with either the enzyme or the substrate to more efficiently acetylate histones. PMID:25781956

  20. Structural plasticity of histones H3-H4 facilitates their allosteric exchange between RbAp48 and ASF1

    PubMed Central

    Zhang, Wei; Tyl, Marek; Ward, Richard; Sobott, Frank; Maman, Joseph; Murthy, Andal S.; Watson, Aleksandra A.; Fedorov, Oleg; Bowman, Andrew; Owen-Hughes, Tom; EL-Mkami, Hassane; Murzina, Natalia V.; Norman, David; Laue, Ernest D.

    2012-01-01

    The mechanisms by which histones are disassembled and reassembled into nucleosomes and chromatin structure during DNA replication, repair and transcription are poorly understood. A better understanding of the processes involved is, however, crucial if we are to understand whether and how histone variants and post-translationally modified histones are inherited in an epigenetic manner. To this end we have studied the interaction of histones H3–H4 with the human retinoblastoma-associated protein RbAp48 and their exchange with a second histone chaperone, anti-silencing function protein 1 (ASF1). Exchange of histones H3–H4 between these two histone chaperones plays a central role in the assembly of new nucleosomes and we show here that the H3–H4 complex has a surprising structural plasticity, which is important for this exchange. PMID:23178455

  1. Structural plasticity of histones H3-H4 facilitates their allosteric exchange between RbAp48 and ASF1.

    PubMed

    Zhang, Wei; Tyl, Marek; Ward, Richard; Sobott, Frank; Maman, Joseph; Murthy, Andal S; Watson, Aleksandra A; Fedorov, Oleg; Bowman, Andrew; Owen-Hughes, Tom; El Mkami, Hassane; Murzina, Natalia V; Norman, David G; Laue, Ernest D

    2013-01-01

    The mechanisms by which histones are disassembled and reassembled into nucleosomes and chromatin structure during DNA replication, repair and transcription are poorly understood. A better understanding of the processes involved is, however, crucial if we are to understand whether and how histone variants and post-translationally modified histones are inherited in an epigenetic manner. To this end we have studied the interaction of the histone H3-H4 complex with the human retinoblastoma-associated protein RbAp48 and their exchange with a second histone chaperone, anti-silencing function protein 1 (ASF1). Exchange of histones H3-H4 between these two histone chaperones has a central role in the assembly of new nucleosomes, and we show here that the H3-H4 complex has an unexpected structural plasticity, which is important for this exchange.

  2. Histone chaperone-mediated nucleosome assembly process.

    PubMed

    Fan, Hsiu-Fang; Liu, Zi-Ning; Chow, Sih-Yao; Lu, Yi-Han; Li, Hsin

    2015-01-01

    A huge amount of information is stored in genomic DNA and this stored information resides inside the nucleus with the aid of chromosomal condensation factors. It has been reported that the repeat nucleosome core particle (NCP) consists of 147-bp of DNA and two copies of H2A, H2B, H3 and H4. Regulation of chromosomal structure is important to many processes inside the cell. In vivo, a group of histone chaperones facilitate and regulate nucleosome assembly. How NCPs are constructed with the aid of histone chaperones remains unclear. In this study, the histone chaperone-mediated nucleosome assembly process was investigated using single-molecule tethered particle motion (TPM) experiments. It was found that Asf1 is able to exert more influence than Nap1 and poly glutamate acid (PGA) on the nucleosome formation process, which highlights Asf1's specific role in tetrasome formation. Thermodynamic parameters supported a model whereby energetically favored nucleosomal complexes compete with non-nucleosomal complexes. In addition, our kinetic findings propose the model that histone chaperones mediate nucleosome assembly along a path that leads to enthalpy-favored products with free histones as reaction substrates.

  3. Chaperone-mediated acetylation of histones by Rtt109 identified by quantitative proteomics.

    PubMed

    Abshiru, Nebiyu; Ippersiel, Kevin; Tang, Yong; Yuan, Hua; Marmorstein, Ronen; Verreault, Alain; Thibault, Pierre

    2013-04-09

    Rtt109 is a fungal-specific histone acetyltransferase (HAT) that associates with either Vps75 or Asf1 to acetylate histone H3. Recent biochemical and structural studies suggest that site-specific acetylation of H3 by Rtt109 is dictated by the binding chaperone where Rtt109-Asf1 acetylates K56, while Rtt109-Vps75 acetylates K9 and K27. To gain further insights into the roles of Vps75 and Asf1 in directing site-specific acetylation of H3, we used quantitative proteomics to profile the global and site-specific changes in H3 and H4 during in vitro acetylation assays with Rtt109 and its chaperones. Our analyses showed that Rtt109-Vps75 preferentially acetylates H3 K9 and K23, the former residue being the major acetylation site. At high enzyme-to-substrate ratio, Rtt109 also acetylated K14, K18, K27 and to a lower extent K56 of histone H3. Importantly, this study revealed that in contrast to Rtt109-Vps75, Rtt109-Asf1 displayed a far greater site-specificity, with K56 being the primary site of acetylation. For the first time, we also report the acetylation of histone H4 K12 by Rtt109-Vps75, whereas Rtt109-Asf1 showed no detectable activity toward H4. This article is part of a Special Issue entitled: From protein structures to clinical applications.

  4. Chaperone-mediated acetylation of histones by Rtt109 identified by quantitative proteomics

    PubMed Central

    Abshiru, Nebiyu; Ippersiel, Kevin; Tang, Yong; Yuan, Hua; Marmorstein, Ronen; Verreault, Alain; Thibault, Pierre

    2014-01-01

    Rtt109 is a fungal-specific histone acetyltransferase (HAT) that associates with either Vps75 or Asf1 to acetylate histone H3. Recent biochemical and structural studies suggest that site-specific acetylation of H3 by Rtt109 is dictated by the binding chaperone where Rtt109-Asf1 acetylates K56, while Rtt109-Vps75 acetylates K9 and K27. To gain further insights into the roles of Vps75 and Asf1 in directing site-specific acetylation of H3, we used quantitative proteomics to profile the global and site-specific changes in H3 and H4 during in vitro acetylation assays with Rtt109 and its chaperones. Our analyses showed that Rtt109-Vps75 preferentially acetylates H3 K9 and K23, the former residue being the major acetylation site. At high enzyme to substrate ratio, Rtt109 also acetylated K14, K18, K27 and to a lower extent K56 of histone H3. Importantly, this study revealed that in contrast to Rtt109-Vps75, Rtt109-Asf1 displayed a far greater site-specificity, with K56 being the primary site of acetylation. For the first time, we also report the acetylation of histone H4 K12 by Rtt109-Vps75, whereas Rtt109-Asf1 showed no detectable activity toward H4. PMID:23036725

  5. Dissecting the Molecular Roles of Histone Chaperones in Histone Acetylation by Type B Histone Acetyltransferases (HAT-B).

    PubMed

    Haigney, Allison; Ricketts, M Daniel; Marmorstein, Ronen

    2015-12-18

    The HAT-B enzyme complex is responsible for acetylating newly synthesized histone H4 on lysines K5 and K12. HAT-B is a multisubunit complex composed of the histone acetyltransferase 1 (Hat1) catalytic subunit and the Hat2 (rbap46) histone chaperone. Hat1 is predominantly localized in the nucleus as a member of a trimeric NuB4 complex containing Hat1, Hat2, and a histone H3-H4 specific histone chaperone called Hif1 (NASP). In addition to Hif1 and Hat2, Hat1 interacts with Asf1 (anti-silencing function 1), a histone chaperone that has been reported to be involved in both replication-dependent and -independent chromatin assembly. To elucidate the molecular roles of the Hif1 and Asf1 histone chaperones in HAT-B histone binding and acetyltransferase activity, we have characterized the stoichiometry and binding mode of Hif1 and Asf1 to HAT-B and the effect of this binding on the enzymatic activity of HAT-B. We find that Hif1 and Asf1 bind through different modes and independently to HAT-B, whereby Hif1 binds directly to Hat2, and Asf1 is only capable of interactions with HAT-B through contacts with histones H3-H4. We also demonstrate that HAT-B is significantly more active against an intact H3-H4 heterodimer over a histone H4 peptide, independent of either Hif1 or Asf1 binding. Mutational studies further demonstrate that HAT-B binding to the histone tail regions is not sufficient for this enhanced activity. Based on these data, we propose a model for HAT-B/histone chaperone assembly and acetylation of H3-H4 complexes.

  6. Direct interplay among histones, histone chaperones, and a chromatin boundary protein in the control of histone gene expression.

    PubMed

    Zunder, Rachel M; Rine, Jasper

    2012-11-01

    In Saccharomyces cerevisiae, the histone chaperone Rtt106 binds newly synthesized histone proteins and mediates their delivery into chromatin during transcription, replication, and silencing. Rtt106 is also recruited to histone gene regulatory regions by the HIR histone chaperone complex to ensure S-phase-specific expression. Here we showed that this Rtt106:HIR complex included Asf1 and histone proteins. Mutations in Rtt106 that reduced histone binding reduced Rtt106 enrichment at histone genes, leading to their increased transcription. Deletion of the chromatin boundary element Yta7 led to increased Rtt106:H3 binding, increased Rtt106 enrichment at histone gene regulatory regions, and decreased histone gene transcription at the HTA1-HTB1 locus. These results suggested a unique regulatory mechanism in which Rtt106 sensed the level of histone proteins to maintain the proper level of histone gene transcription. The role of these histone chaperones and Yta7 differed markedly among the histone gene loci, including the two H3-H4 histone gene pairs. Defects in silencing in rtt106 mutants could be partially accounted for by Rtt106-mediated changes in histone gene repression. These studies suggested that feedback mediated by histone chaperone complexes plays a pivotal role in regulating histone gene transcription.

  7. Analysis of the Histone H3.1 Interactome: A Suitable Chaperone for the Right Event

    PubMed Central

    Campos, Eric I.; Smits, Arne H.; Kang, Young-Hoon; Landry, Sébastien; Escobar, Thelma M.; Nayak, Shruti; Ueberheide, Beatrix M.; Durocher, Daniel; Vermeulen, Michiel; Hurwitz, Jerard; Reinberg, Danny

    2015-01-01

    SUMMARY Despite minimal disparity at the sequence level, mammalian H3 variants bind to distinct sets of polypeptides. Though histone H3.1 predominates in cycling cells, our knowledge of the soluble complexes that it forms en route to deposition or following eviction from chromatin remains limited. Here, we provide a comprehensive analysis of the H3.1-binding proteome, with emphasis on its interactions with histone chaperones and components of the replication fork. Quantitative mass spectrometry revealed 170 protein interactions, whereas a large-scale biochemical fractionation of H3.1 and associated enzymatic activities uncovered over twenty stable protein complexes in dividing human cells. The sNASP and ASF1 chaperones play pivotal roles in the processing of soluble histones, but do not associate with the active CDC45/MCM2-7/GINS (CMG) replicative helicase. We also find TONSL-MMS22L to function as a H3-H4 histone chaperone. It associates with the regulatory MCM5 subunit of the replicative helicase. PMID:26527279

  8. Chaperoning erythropoiesis

    PubMed Central

    dos Santos, Camila O.

    2009-01-01

    Multisubunit complexes containing molecular chaperones regulate protein production, stability, and degradation in virtually every cell type. We are beginning to recognize how generalized and tissue-specific chaperones regulate specialized aspects of erythropoiesis. For example, chaperones intersect with erythropoietin signaling pathways to protect erythroid precursors against apoptosis. Molecular chaperones also participate in hemoglobin synthesis, both directly and indirectly. Current knowledge in these areas only scratches the surface of what is to be learned. Improved understanding of how molecular chaperones regulate erythropoietic development and hemoglobin homeostasis should identify biochemical pathways amenable to pharmacologic manipulation in a variety of red blood cell disorders including thalassemia and other anemias associated with hemoglobin instability. PMID:19109556

  9. Levels of metacaspase1 and chaperones related to protein quality control in alcoholic and nonalcoholic steatohepatitis.

    PubMed

    Mendoza, Alejandro S; Dorce, Jacques; Peng, Yue; French, Barbara A; Tillman, Brittany; Li, Jun; French, Samuel W

    2015-02-01

    Efficient management of misfolded or aggregated proteins in ASH and NASH is crucial for continued hepatic viability. Cellular protein quality control systems play an important role in the pathogenesis and progression of ASH and NASH. In a recent study, elevated Mca1 expression counteracted aggregation and accumulation of misfolded proteins and extended the life span of the yeast Saccharomyces cerevisiae (Hill et al, 2014). Mca1 may also associate with Ssa1 and Hsp104 in disaggregation and fragmentation of aggregated proteins and their subsequent degradation through the ER-associated degradation (ERAD) pathway. If degradation is not available, protection of the cellular environment from a misfolded protein is accomplished by its sequestration into two distinct inclusion bodies (Kaganovich et al., 2008) called the JUNQ (JUxta Nuclear Quality control compartment) and the IPOD (Insoluble Protein Deposit). Mca1, Hsp104, Hsp40, Ydj1, Ssa1, VCP/p97, and p62 all play important roles in protein quality control systems. This study aims to measure the expression of Mca1 and related chaperones involved in protein quality control in alcoholic steatohepatitis (ASH), and nonalcoholic steatohepatitis (NASH) compared with normal control liver biopsies. Mca1, Hsp104, Hsp40, Ydj1, Ssa1, VCP/p97, and p62 expressions were measured in three to six formalin-fixed paraffin embedded ASH and NASH liver biopsies and control normal liver specimens by immunofluorescence staining and quantified by immunofluorescence intensity. Mca1, Hsp104, Ydj1 and p62 were significantly upregulated compared to control (p<0.05) in ASH specimens. Hsp40 and VCP/p97 were also uptrending in ASH. In NASH, the only significant difference was the increased expression of Hsp104 compared to control (p<0.05). Ssa1 levels were uptrending in both ASH and NASH specimens. The upregulation of Mca1, Hsp104, Ydj1 and p62 in ASH may be elicited as a response to the chronic exposure of the hepatocytes to the toxicity of alcohol

  10. The histone chaperones Nap1 and Vps75 bind histones H3 and H4 in a tetrameric conformation.

    PubMed

    Bowman, Andrew; Ward, Richard; Wiechens, Nicola; Singh, Vijender; El-Mkami, Hassane; Norman, David George; Owen-Hughes, Tom

    2011-02-18

    Histone chaperones physically interact with histones to direct proper assembly and disassembly of nucleosomes regulating diverse nuclear processes such as DNA replication, promoter remodeling, transcription elongation, DNA damage, and histone variant exchange. Currently, the best-characterized chaperone-histone interaction is that between the ubiquitous chaperone Asf1 and a dimer of H3 and H4. Nucleosome assembly proteins (Nap proteins) represent a distinct class of histone chaperone. Using pulsed electron double resonance (PELDOR) measurements and protein crosslinking, we show that two members of this class, Nap1 and Vps75, bind histones in the tetrameric conformation also observed when they are sequestered within the nucleosome. Furthermore, H3 and H4 trapped in their tetrameric state can be used as substrates in nucleosome assembly and chaperone-mediated lysine acetylation. This alternate mode of histone interaction provides a potential means of maintaining the integrity of the histone tetramer during cycles of nucleosome reassembly.

  11. The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASF1

    PubMed Central

    Osada, Shigehiro; Sutton, Ann; Muster, Nemone; Brown, Christine E.; Yates, John R.; Sternglanz, Rolf; Workman, Jerry L.

    2001-01-01

    It is well established that acetylation of histone and nonhistone proteins is intimately linked to transcriptional activation. However, loss of acetyltransferase activity has also been shown to cause silencing defects, implicating acetylation in gene silencing. The something about silencing (Sas) 2 protein of Saccharomyces cerevisiae, a member of the MYST (MOZ, Ybf2/Sas3, Sas2, and TIP60) acetyltransferase family, promotes silencing at HML and telomeres. Here we identify a ∼450-kD SAS complex containing Sas2p, Sas4p, and the tf2f-related Sas5 protein. Mutations in the conserved acetyl-CoA binding motif of Sas2p are shown to disrupt the ability of Sas2p to mediate the silencing at HML and telomeres, providing evidence for an important role for the acetyltransferase activity of the SAS complex in silencing. Furthermore, the SAS complex is found to interact with chromatin assembly factor Asf1p, and asf1 mutants show silencing defects similar to mutants in the SAS complex. Thus, ASF1-dependent chromatin assembly may mediate the role of the SAS complex in silencing. PMID:11731479

  12. A New Glucocerebrosidase Chaperone Reduces α-Synuclein and Glycolipid Levels in iPSC-Derived Dopaminergic Neurons from Patients with Gaucher Disease and Parkinsonism

    PubMed Central

    Aflaki, Elma; Borger, Daniel K.; Moaven, Nima; Stubblefield, Barbara K.; Rogers, Steven A.; Patnaik, Samarjit; Schoenen, Frank J.; Westbroek, Wendy; Zheng, Wei; Sullivan, Patricia; Fujiwara, Hideji; Sidhu, Rohini; Khaliq, Zayd M; Lopez, Grisel J.; Goldstein, David S.; Ory, Daniel S.; Marugan, Juan

    2016-01-01

    Among the known genetic risk factors for Parkinson disease, mutations in GBA1, the gene responsible for the lysosomal disorder Gaucher disease, are the most common. This genetic link has directed attention to the role of the lysosome in the pathogenesis of parkinsonism. To study how glucocerebrosidase impacts parkinsonism and to evaluate new therapeutics, we generated induced human pluripotent stem cells from four patients with Type 1 (non-neuronopathic) Gaucher disease, two with and two without parkinsonism, and one patient with Type 2 (acute neuronopathic) Gaucher disease, and differentiated them into macrophages and dopaminergic neurons. These cells exhibited decreased glucocerebrosidase activity and stored the glycolipid substrates glucosylceramide and glucosylsphingosine, demonstrating their similarity to patients with Gaucher disease. Dopaminergic neurons from patients with Type 2 and Type 1 Gaucher disease with parkinsonism had reduced dopamine storage and dopamine transporter reuptake. Levels of α-synuclein, a protein present as aggregates in Parkinson disease and related synucleinopathies, were selectively elevated in neurons from the patients with parkinsonism or Type 2 Gaucher disease. The cells were then treated with NCGC607, a small-molecule noninhibitory chaperone of glucocerebrosidase identified by high-throughput screening and medicinal chemistry structure optimization. This compound successfully chaperoned the mutant enzyme, restored glucocerebrosidase activity and protein levels, and reduced glycolipid storage in both iPSC-derived macrophages and dopaminergic neurons, indicating its potential for treating neuronopathic Gaucher disease. In addition, NCGC607 reduced α-synuclein levels in dopaminergic neurons from the patients with parkinsonism, suggesting that noninhibitory small-molecule chaperones of glucocerebrosidase may prove useful for the treatment of Parkinson disease. SIGNIFICANCE STATEMENT Because GBA1 mutations are the most common

  13. Systems biology of molecular chaperone networks.

    PubMed

    Csermely, Péter; Korcsmáros, Tamás; Kovács, István A; Szalay, Máté S; Soti, Csaba

    2008-01-01

    Molecular chaperones are not only fascinating molecular machines that help the folding, refolding, activation or assembly of other proteins, but also have a number of functions. These functions can be understood only by considering the emergent properties of cellular networks--and that of chaperones as special network constituents. As a notable example for the network-related roles of chaperones they may act as genetic buffers stabilizing the phenotype of various cells and organisms, and may serve as potential regulators of evolvability. Why are chaperones special in the context of cellular networks? Chaperones: (1) have weak links, i.e. low affinity, transient interactions with most of their partners; (2) connect hubs, i.e. act as 'masterminds' of the cell being close to several centre proteins with a lot of neighbours; and (3) are in the overlaps of network modules, which confers upon them a special regulatory role. Importantly, chaperones may uncouple or even quarantine modules of protein-protein interaction networks, signalling networks, genetic regulatory networks and membrane organelle networks during stress, which gives an additional chaperone-mediated protection for the cell at the network-level. Moreover, chaperones are essential to rebuild inter-modular contacts after stress by their low affinity, 'quasi-random' sampling of the potential interaction partners in different cellular modules. This opens the way to the chaperone-regulated modular evolution of cellular networks, and helps us to design novel therapeutic and anti-ageing strategies.

  14. Structure of the Rtt109-AcCoA/Vps75 Complex and Implications for Chaperone-Mediated Histone Acetylation

    PubMed Central

    Tang, Yong; Holbert, Marc A.; Delgoshaie, Neda; Wurtele, Hugo; Guillemette, Benoît; Meeth, Katrina; Yuan, Hua; Drogaris, Paul; Lee, Eun-Hye; Durette, Chantal; Thibault, Pierre; Verreault, Alain; Cole, Philip A.; Marmorstein, Ronen

    2011-01-01

    Yeast Rtt109 promotes nucleosome assembly and genome stability by acetylating K9, K27 and K56 of histone H3 through interaction with either of two distinct histone chaperones, Vps75 or Asf1. We report the crystal structure of an Rtt109-AcCoA/Vps75 complex revealing an elongated Vps75 homodimer bound to two globular Rtt109 molecules to form a symmetrical holoenzyme with a ~12 Å diameter central hole. Vps75 and Rtt109 residues that mediate complex formation in the crystals are also important for Rtt109-Vps75 interaction and H3K9/K27 acetylation both in vitro and in yeast cells. The same Rtt109 residues do not participate in Asf1-mediated Rtt109 acetylation in vitro or H3K56 acetylation in yeast cells, demonstrating that Asf1 and Vps75 dictate Rtt109 substrate specificity through distinct mechanisms. These studies also suggest that Vps75 binding stimulates Rtt109 catalytic activity by appropriately presenting the H3–H4 substrate within the central cavity of the holoenzyme to promote H3K9/K27 acetylation of new histones prior to deposition. PMID:21256037

  15. ER stress is associated with reduced ABCA-1 protein levels in macrophages treated with advanced glycated albumin - reversal by a chemical chaperone.

    PubMed

    Castilho, Gabriela; Okuda, Ligia S; Pinto, Raphael S; Iborra, Rodgiro T; Nakandakare, Edna R; Santos, Celio X; Laurindo, Francisco R; Passarelli, Marisa

    2012-07-01

    ATP-binding cassette transporter A1 mediates the export of excess cholesterol from macrophages, contributing to the prevention of atherosclerosis. Advanced glycated albumin (AGE-alb) is prevalent in diabetes mellitus and is associated with the development of atherosclerosis. Independently of changes in ABCA-1 mRNA levels, AGE-alb induces oxidative stress and reduces ABCA-1 protein levels, which leads to macrophage lipid accumulation. These metabolic conditions are known to elicit endoplasmic reticulum (ER) stress. We sought to determine if AGE-alb induces ER stress and unfolded protein response (UPR) in macrophages and how disturbances to the ER could affect ABCA-1 content and cholesterol efflux in macrophages. AGE-alb induced a time-dependent increase in ER stress and UPR markers. ABCA-1 content and cellular cholesterol efflux were reduced by 33% and 47%, respectively, in macrophages treated with AGE-alb, and both were restored by treatment with 4-phenyl butyric acid (a chemical chaperone that alleviates ER stress), but not MG132 (a proteasome inhibitor). Tunicamycin, a classical ER stress inductor, also impaired ABCA-1 expression and cholesterol efflux (showing a decrease of 61% and 82%, respectively), confirming the deleterious effect of ER stress in macrophage cholesterol accumulation. Glycoxidation induces macrophage ER stress, which relates to the reduction in ABCA-1 and in reverse cholesterol transport, endorsing the adverse effect of macrophage ER stress in atherosclerosis. Thus, chemical chaperones that alleviate ER stress may represent a useful tool for the prevention and treatment of atherosclerosis in diabetes.

  16. Purification, crystallization and preliminary X-ray diffraction analysis of the histone chaperone cia1 from fission yeast

    SciTech Connect

    Umehara, Takashi; Otta, Yumi; Tsuganezawa, Keiko; Matsumoto, Takehisa; Tanaka, Akiko; Horikoshi, Masami; Padmanabhan, Balasundaram; Yokoyama, Shigeyuki

    2005-11-01

    The histone chaperone cia1 from fission yeast has been overexpressed in E. coli, purified and crystallized using the vapour-diffusion method. In fission yeast, cia1{sup +} is an essential gene that encodes a histone chaperone, a homologue of human CIA (CCG1-interacting factor A) and budding yeast Asf1p (anti-silencing function-1), which both facilitate nucleosome assembly by interacting with the core histones H3/H4. The conserved domain (residues 1–161) of the cia1{sup +}-encoded protein was expressed in Escherichia coli, purified to near-homogeneity and crystallized by the sitting-drop vapour-diffusion method. The protein was crystallized in the monoclinic space group C2, with unit-cell parameters a = 79.16, b = 40.53, c = 69.79 Å, β = 115.93° and one molecule per asymmetric unit. The crystal diffracted to beyond 2.10 Å resolution using synchrotron radiation.

  17. Ubinuclein-1 confers histone H3.3-specific-binding by the HIRA histone chaperone complex

    PubMed Central

    Daniel Ricketts, M; Frederick, Brian; Hoff, Henry; Tang, Yong; Schultz, David C.; Singh Rai, Taranjit; Grazia Vizioli, Maria; Adams, Peter D.; Marmorstein, Ronen

    2015-01-01

    Histone chaperones bind specific histones to mediate their storage, eviction or deposition from/or into chromatin. The HIRA histone chaperone complex, composed of HIRA, ubinuclein-1 (UBN1) and CABIN1, cooperates with the histone chaperone ASF1a to mediate H3.3-specific binding and chromatin deposition. Here we demonstrate that the conserved UBN1 Hpc2-related domain (HRD) is a novel H3.3-specific-binding domain. Biochemical and biophysical studies show the UBN1-HRD preferentially binds H3.3/H4 over H3.1/H4. X-ray crystallographic and mutational studies reveal that conserved residues within the UBN1-HRD and H3.3 G90 as key determinants of UBN1–H3.3-binding specificity. Comparison of the structure with the unrelated H3.3-specific chaperone DAXX reveals nearly identical points of contact between the chaperone and histone in the proximity of H3.3 G90, although the mechanism for H3.3 G90 recognition appears to be distinct. This study points to UBN1 as the determinant of H3.3-specific binding and deposition by the HIRA complex. PMID:26159857

  18. A molecular mechanism of chaperone-client recognition

    PubMed Central

    He, Lichun; Sharpe, Timothy; Mazur, Adam; Hiller, Sebastian

    2016-01-01

    Molecular chaperones are essential in aiding client proteins to fold into their native structure and in maintaining cellular protein homeostasis. However, mechanistic aspects of chaperone function are still not well understood at the atomic level. We use nuclear magnetic resonance spectroscopy to elucidate the mechanism underlying client recognition by the adenosine triphosphate-independent chaperone Spy at the atomic level and derive a structural model for the chaperone-client complex. Spy interacts with its partially folded client Im7 by selective recognition of flexible, locally frustrated regions in a dynamic fashion. The interaction with Spy destabilizes a partially folded client but spatially compacts an unfolded client conformational ensemble. By increasing client backbone dynamics, the chaperone facilitates the search for the native structure. A comparison of the interaction of Im7 with two other chaperones suggests that the underlying principle of recognizing frustrated segments is of a fundamental nature. PMID:28138538

  19. Human cytomegalovirus specifically controls the levels of the endoplasmic reticulum chaperone BiP/GRP78, which is required for virion assembly.

    PubMed

    Buchkovich, Nicholas J; Maguire, Tobi G; Yu, Yongjun; Paton, Adrienne W; Paton, James C; Alwine, James C

    2008-01-01

    The endoplasmic reticulum (ER) chaperone BiP/GRP78 regulates ER function and the unfolded protein response (UPR). Human cytomegalovirus infection of human fibroblasts induces the UPR but modifies it to benefit viral replication. BiP/GRP78 protein levels are tightly regulated during infection, rising after 36 h postinfection (hpi), peaking at 60 hpi, and decreasing thereafter. To determine the effects of this regulation on viral replication, BiP/GRP78 was depleted using the SubAB subtilase cytotoxin, which rapidly and specifically cleaves BiP/GRP78. Toxin treatment of infected cells for 12-h periods beginning at 36, 48, 60, and 84 hpi caused complete loss of BiP but had little effect on viral protein synthesis. However, progeny virion formation was significantly inhibited, suggesting that BiP/GRP78 is important for virion formation. Electron microscopic analysis showed that infected cells were resistant to the toxin and showed none of the cytotoxic effects seen in uninfected cells. However, all viral activity in the cytoplasm ceased, with nucleocapsids remaining in the nucleus or concentrated in the cytoplasmic space just outside of the outer nuclear membrane. These data suggest that one effect of the controlled expression of BiP/GRP78 in infected cells is to aid in cytoplasmic virion assembly and egress.

  20. Molecular functions of the histone acetyltransferase chaperone complex Rtt109-Vps75

    SciTech Connect

    Berndsen, Christopher E; Tsubota, Toshiaki; Lindner, Scott E; Lee, Susan; Holton, James M; Kaufman, Paul D; Keck, James L; Denu, John M

    2010-01-12

    Histone acetylation and nucleosome remodeling regulate DNA damage repair, replication and transcription. Rtt109, a recently discovered histone acetyltransferase (HAT) from Saccharomyces cerevisiae, functions with the histone chaperone Asf1 to acetylate lysine K56 on histone H3 (H3K56), a modification associated with newly synthesized histones. In vitro analysis of Rtt109 revealed that Vps75, a Nap1 family histone chaperone, could also stimulate Rtt109-dependent acetylation of H3K56. However, the molecular function of the Rtt109-Vps75 complex remains elusive. Here we have probed the molecular functions of Vps75 and the Rtt109-Vps75 complex through biochemical, structural and genetic means. We find that Vps75 stimulates the kcat of histone acetylation by {approx}100-fold relative to Rtt109 alone and enhances acetylation of K9 in the H3 histone tail. Consistent with the in vitro evidence, cells lacking Vps75 showed a substantial reduction (60%) in H3K9 acetylation during S phase. X-ray structural, biochemical and genetic analyses of Vps75 indicate a unique, structurally dynamic Nap1-like fold that suggests a potential mechanism of Vps75-dependent activation of Rtt109. Together, these data provide evidence for a multifunctional HAT-chaperone complex that acetylates histone H3 and deposits H3-H4 onto DNA, linking histone modification and nucleosome assembly.

  1. Bacterial proteostasis balances energy and chaperone utilization efficiently.

    PubMed

    Santra, Mantu; Farrell, Daniel W; Dill, Ken A

    2017-03-28

    Chaperones are protein complexes that help to fold and disaggregate a cell's proteins. It is not understood how four major chaperone systems of Escherichia coli work together in proteostasis: the recognition, sorting, folding, and disaggregating of the cell's many different proteins. Here, we model this machine. We combine extensive data on chaperoning, folding, and aggregation rates with expression levels of proteins and chaperones measured at different growth rates. We find that the proteostasis machine recognizes and sorts a client protein based on two biophysical properties of the client's misfolded state (M state): its stability and its kinetic accessibility from its unfolded state (U state). The machine is energy-efficient (the sickest proteins use the most ATP-expensive chaperones), comprehensive (it can handle any type of protein), and economical (the chaperone concentrations are just high enough to keep the whole proteome folded and disaggregated but no higher). The cell needs higher chaperone levels in two situations: fast growth (when protein production rates are high) and very slow growth (to mitigate the effects of protein degradation). This type of model complements experimental knowledge by showing how the various chaperones work together to achieve the broad folding and disaggregation needs of the cell.

  2. Bacterial proteostasis balances energy and chaperone utilization efficiently

    PubMed Central

    Santra, Mantu; Farrell, Daniel W.; Dill, Ken A.

    2017-01-01

    Chaperones are protein complexes that help to fold and disaggregate a cell’s proteins. It is not understood how four major chaperone systems of Escherichia coli work together in proteostasis: the recognition, sorting, folding, and disaggregating of the cell’s many different proteins. Here, we model this machine. We combine extensive data on chaperoning, folding, and aggregation rates with expression levels of proteins and chaperones measured at different growth rates. We find that the proteostasis machine recognizes and sorts a client protein based on two biophysical properties of the client’s misfolded state (M state): its stability and its kinetic accessibility from its unfolded state (U state). The machine is energy-efficient (the sickest proteins use the most ATP-expensive chaperones), comprehensive (it can handle any type of protein), and economical (the chaperone concentrations are just high enough to keep the whole proteome folded and disaggregated but no higher). The cell needs higher chaperone levels in two situations: fast growth (when protein production rates are high) and very slow growth (to mitigate the effects of protein degradation). This type of model complements experimental knowledge by showing how the various chaperones work together to achieve the broad folding and disaggregation needs of the cell. PMID:28292901

  3. Genome-wide cooperation by HAT Gcn5, remodeler SWI/SNF, and chaperone Ydj1 in promoter nucleosome eviction and transcriptional activation

    PubMed Central

    Qiu, Hongfang; Chereji, Răzvan V.; Hu, Cuihua; Cole, Hope A.; Rawal, Yashpal; Clark, David J.; Hinnebusch, Alan G.

    2016-01-01

    Chaperones, nucleosome remodeling complexes, and histone acetyltransferases have been implicated in nucleosome disassembly at promoters of particular yeast genes, but whether these cofactors function ubiquitously, as well as the impact of nucleosome eviction on transcription genome-wide, is poorly understood. We used chromatin immunoprecipitation of histone H3 and RNA polymerase II (Pol II) in mutants lacking single or multiple cofactors to address these issues for about 200 genes belonging to the Gcn4 transcriptome, of which about 70 exhibit marked reductions in H3 promoter occupancy on induction by amino acid starvation. Examining four target genes in a panel of mutants indicated that SWI/SNF, Gcn5, the Hsp70 cochaperone Ydj1, and chromatin-associated factor Yta7 are required downstream from Gcn4 binding, whereas Asf1/Rtt109, Nap1, RSC, and H2AZ are dispensable for robust H3 eviction in otherwise wild-type cells. Using ChIP-seq to interrogate all 70 exemplar genes in single, double, and triple mutants implicated Gcn5, Snf2, and Ydj1 in H3 eviction at most, but not all, Gcn4 target promoters, with Gcn5 generally playing the greatest role and Ydj1 the least. Remarkably, these three cofactors cooperate similarly in H3 eviction at virtually all yeast promoters. Defective H3 eviction in cofactor mutants was coupled with reduced Pol II occupancies for the Gcn4 transcriptome and the most highly expressed uninduced genes, but the relative Pol II levels at most genes were unaffected or even elevated. These findings indicate that nucleosome eviction is crucial for robust transcription of highly expressed genes but that other steps in gene activation are more rate-limiting for most other yeast genes. PMID:26602697

  4. Molecular chaperones and photoreceptor function

    PubMed Central

    Kosmaoglou, Maria; Schwarz, Nele; Bett, John S.; Cheetham, Michael E.

    2008-01-01

    Molecular chaperones facilitate and regulate protein conformational change within cells. This encompasses many fundamental cellular processes: including the correct folding of nascent chains; protein transport and translocation; signal transduction and protein quality control. Chaperones are, therefore, important in several forms of human disease, including neurodegeneration. Within the retina, the highly specialized photoreceptor cell presents a fascinating paradigm to investigate the specialization of molecular chaperone function and reveals unique chaperone requirements essential to photoreceptor function. Mutations in several photoreceptor proteins lead to protein misfolding mediated neurodegeneration. The best characterized of these are mutations in the molecular light sensor, rhodopsin, which cause autosomal dominant retinitis pigmentosa. Rhodopsin biogenesis is likely to require chaperones, while rhodopsin misfolding involves molecular chaperones in quality control and the cellular response to protein aggregation. Furthermore, the specialization of components of the chaperone machinery to photoreceptor specific roles has been revealed by the identification of mutations in molecular chaperones that cause inherited retinal dysfunction and degeneration. These chaperones are involved in several important cellular pathways and further illuminate the essential and diverse roles of molecular chaperones. PMID:18490186

  5. Molecular chaperones and neuronal proteostasis

    PubMed Central

    Smith, Heather L.; Li, Wenwen; Cheetham, Michael E.

    2015-01-01

    Protein homeostasis (proteostasis) is essential for maintaining the functionality of the proteome. The disruption of proteostasis, due to genetic mutations or an age-related decline, leads to aberrantly folded proteins that typically lose their function. The accumulation of misfolded and aggregated protein is also cytotoxic and has been implicated in the pathogenesis of neurodegenerative diseases. Neurons have developed an intrinsic protein quality control network, of which molecular chaperones are an essential component. Molecular chaperones function to promote efficient folding and target misfolded proteins for refolding or degradation. Increasing molecular chaperone expression can suppress protein aggregation and toxicity in numerous models of neurodegenerative disease; therefore, molecular chaperones are considered exciting therapeutic targets. Furthermore, mutations in several chaperones cause inherited neurodegenerative diseases. In this review, we focus on the importance of molecular chaperones in neurodegenerative diseases, and discuss the advances in understanding their protective mechanisms. PMID:25770416

  6. Structural Basis for the Recognition of Histone H4 by the Histone-Chaperone RbAp46

    PubMed Central

    Murzina, Natalia V.; Pei, Xue-Yuan; Zhang, Wei; Sparkes, Mike; Vicente-Garcia, Jose; Pratap, J. Venkatesh; McLaughlin, Stephen H.; Ben-Shahar, Tom Rolef; Verreault, Alain; Luisi, Ben F.; Laue, Ernest D.

    2008-01-01

    Summary RbAp46 and RbAp48 (pRB-associated proteins p46 and p48, also known as RBBP7 and RBBP4, respectively) are highly homologous histone chaperones that play key roles in establishing and maintaining chromatin structure. We report here the crystal structure of human RbAp46 bound to histone H4. RbAp46 folds into a seven-bladed β propeller structure and binds histone H4 in a groove formed between an N-terminal α helix and an extended loop inserted into blade six. Surprisingly, histone H4 adopts a different conformation when interacting with RbAp46 than it does in either the nucleosome or in the complex with ASF1, another histone chaperone. Our structural and biochemical results suggest that when a histone H3/H4 dimer (or tetramer) binds to RbAp46 or RbAp48, helix 1 of histone H4 unfolds to interact with the histone chaperone. We discuss the implications of our findings for the assembly and function of RbAp46 and RbAp48 complexes. PMID:18571423

  7. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks.

    PubMed

    Huang, Hongda; Strømme, Caroline B; Saredi, Giulia; Hödl, Martina; Strandsby, Anne; González-Aguilera, Cristina; Chen, Shoudeng; Groth, Anja; Patel, Dinshaw J

    2015-08-01

    During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase, chaperones histones H3-H4. Our first structure shows an H3-H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3-H4 dimer. Mutational analyses show that the MCM2 HBD is required for MCM2-7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3-H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling histones genome wide during DNA replication.

  8. Chaperone activation by unfolding.

    PubMed

    Foit, Linda; George, Jenny S; Zhang, Bin W; Brooks, Charles L; Bardwell, James C A

    2013-04-02

    Conditionally disordered proteins can alternate between highly ordered and less ordered configurations under physiological conditions. Whereas protein function is often associated with the ordered conformation, for some of these conditionally unstructured proteins, the opposite applies: Their activation is associated with their unfolding. An example is the small periplasmic chaperone HdeA, which is critical for the ability of enteric bacterial pathogens like Escherichia coli to survive passage through extremely acidic environments, such as the human stomach. At neutral pH, HdeA is a chaperone-inactive dimer. On a shift to low pH, however, HdeA monomerizes, partially unfolds, and becomes rapidly active in preventing the aggregation of substrate proteins. By mutating two aspartic acid residues predicted to be responsible for the pH-dependent monomerization of HdeA, we have succeeded in isolating an HdeA mutant that is active at neutral pH. We find this HdeA mutant to be substantially destabilized, partially unfolded, and mainly monomeric at near-neutral pH at a concentration at which it prevents aggregation of a substrate protein. These results provide convincing evidence for direct activation of a protein by partial unfolding.

  9. Histone chaperone networks shaping chromatin function.

    PubMed

    Hammond, Colin M; Strømme, Caroline B; Huang, Hongda; Patel, Dinshaw J; Groth, Anja

    2017-03-01

    The association of histones with specific chaperone complexes is important for their folding, oligomerization, post-translational modification, nuclear import, stability, assembly and genomic localization. In this way, the chaperoning of soluble histones is a key determinant of histone availability and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin.

  10. Dissecting the Escherichia coli periplasmic chaperone network using differential proteomics

    PubMed Central

    Vertommen, Didier; Silhavy, Thomas J.; Collet, Jean-Francois

    2013-01-01

    β-barrel proteins, or outer membrane proteins (OMPs), perform many essential functions in Gram-negative bacteria, but questions remain about the mechanism by which they are assembled into the outer membrane (OM). In Escherichia coli, β-barrels are escorted across the periplasm by chaperones, most notably SurA and Skp. However, the contributions of these two chaperones to the assembly of the OM proteome remained unclear. We used differential proteomics to determine how the elimination of Skp and SurA affects the assembly of many OMPs. We have shown that removal of Skp has no impact on the levels of the 63 identified OM proteins. However, depletion of SurA in the skp strain has a marked impact on the OM proteome, diminishing the levels of almost all β-barrel proteins. Our results are consistent with a model in which SurA plays a primary chaperone role in E. coli. Furthermore, they suggest that while no OMPs prefer the Skp chaperone pathway in wild-type cells, most can use Skp efficiently when SurA is absent. Our data, which provide a unique glimpse into the protein content of the non-viable surA skp mutant, clarify the roles of the periplasmic chaperones in E. coli. PMID:22589188

  11. Altered mRNA Levels of Glucocorticoid Receptor, Mineralocorticoid Receptor, and Co-Chaperones (FKBP5 and PTGES3) in the Middle Frontal Gyrus of Autism Spectrum Disorder Subjects.

    PubMed

    Patel, Neil; Crider, Amanda; Pandya, Chirayu D; Ahmed, Anthony O; Pillai, Anilkumar

    2016-05-01

    Although stress has been implicated in the pathophysiology of autistic spectrum disorder (ASD), it is not known whether glucocorticoid receptor (GR) levels are altered in the brain of subjects with ASD. The messenger RNA (mRNA) levels of GR isoforms (GRα, GRβ, GRγ, and GRP), mineralocorticoid receptor (MR), GR co-chaperones (FKBP5, PTGES3, and BAG1), and inflammatory cytokines (IL-6, IL-1β, and IFN-γ) were examined in the postmortem middle frontal gyrus tissues of 13 ASD and 13 age-matched controls by qRT-PCR. The protein levels were examined by Western blotting. We found significant decreases in GRα (64%), GRγ (48%), GRP (20%) and MR (46%) mRNA levels in ASD subjects as compared to controls. However, significant increases in FKBP5 (42%) and PTGES3 (35%) mRNA levels were observed in ASD subjects. There were no differences in the mRNA levels of GRβ and BAG1 in ASD subjects as compared to controls. MR mRNA was found to be negatively correlated with the diagnostic score for abnormality of development. On the protein level, significant reductions in GR and MR, but no change in FKBP5 and PTGES3 were found in ASD subjects as compared to controls. Moreover, we observed significant increases in IL-1β and IFN-γ mRNA levels in ASD subjects, and these cytokines were negatively associated with GR levels. Our data, for the first time, reports dysregulation of GR, MR, FKBP5, and PTGES3 in ASD and suggest a possible role of inflammation in altered GR function in ASD.

  12. Survey of molecular chaperone requirement for the biosynthesis of hamster polyomavirus VP1 protein in Saccharomyces cerevisiae.

    PubMed

    Valaviciute, Monika; Norkiene, Milda; Goda, Karolis; Slibinskas, Rimantas; Gedvilaite, Alma

    2016-07-01

    A number of viruses utilize molecular chaperones during various stages of their life cycle. It has been shown that members of the heat-shock protein 70 (Hsp70) chaperone family assist polyomavirus capsids during infection. However, the molecular chaperones that assist the formation of recombinant capsid viral protein 1 (VP1)-derived virus-like particles (VLPs) in yeast remain unclear. A panel of yeast strains with single chaperone gene deletions were used to evaluate the chaperones required for biosynthesis of recombinant hamster polyomavirus capsid protein VP1. The impact of deletion or mild overexpression of chaperone genes was determined in live cells by flow cytometry using enhanced green fluorescent protein (EGFP) fused with VP1. Targeted genetic analysis demonstrated that VP1-EGFP fusion protein levels were significantly higher in yeast strains in which the SSZ1 or ZUO1 genes encoding ribosome-associated complex components were deleted. The results confirmed the participation of cytosolic Hsp70 chaperones and suggested the potential involvement of the Ydj1 and Caj1 co-chaperones and the endoplasmic reticulum chaperones in the biosynthesis of VP1 VLPs in yeast. Likewise, the markedly reduced levels of VP1-EGFP in Δhsc82 and Δhsp82 yeast strains indicated that both Hsp70 and Hsp90 chaperones might assist VP1 VLPs during protein biosynthesis.

  13. Regulation of Neuronal Survival Factor MEF2D by Chaperone-Mediated Autophagy

    PubMed Central

    Yang, Qian; She, Hua; Gearing, Marla; Colla, Emanuela; Lee, Michael; Shacka, John J.; Mao, Zixu

    2009-01-01

    Chaperone-mediated autophagy controls the degradation of selective cytosolic proteins and may protect neurons against degeneration. In a neuronal cell line, we found that chaperone-mediated autophagy regulated the activity of myocyte enhancer factor 2D (MEF2D), a transcription factor required for neuronal survival. MEF2D was observed to continuously shuttle to the cytoplasm, interact with the chaperone Hsc70, and undergo degradation. Inhibition of chaperone-mediated autophagy caused accumulation of inactive MEF2D in the cytoplasm. MEF2D levels were increased in the brains of α-synuclein transgenic mice and patients with Parkinson’s disease. Wild-type α-synuclein and a Parkinson’s disease–associated mutant disrupted the MEF2D-Hsc70 binding and led to neuronal death. Thus, chaperone-mediated autophagy modulates the neuronal survival machinery, and dysregulation of this pathway is associated with Parkinson’s disease. PMID:19119233

  14. Pharmacological Targeting of the Hsp70 Chaperone

    PubMed Central

    Patury, Srikanth; Miyata, Yoshinari; Gestwicki, Jason E.

    2009-01-01

    The molecular chaperone, heat shock protein 70 (Hsp70), acts at multiple steps in a protein’s life cycle, including during the processes of folding, trafficking, remodeling and degradation. To accomplish these various tasks, the activity of Hsp70 is shaped by a host of co-chaperones, which bind to the core chaperone and influence its functions. Genetic studies have strongly linked Hsp70 and its co-chaperones to numerous diseases, including cancer, neurodegeneration and microbial pathogenesis, yet the potential of this chaperone as a therapeutic target remains largely underexplored. Here, we review the current state of Hsp70 as a drug target, with a special emphasis on the important challenges and opportunities imposed by its co-chaperones, protein-protein interactions and allostery. PMID:19860737

  15. Endoplasmic Reticulum Chaperones and Their Roles in the Immunogenicity of Cancer Vaccines

    PubMed Central

    Graner, Michael W.; Lillehei, Kevin O.; Katsanis, Emmanuel

    2015-01-01

    The endoplasmic reticulum (ER) is a major site of passage for proteins en route to other organelles, to the cell surface, and to the extracellular space. It is also the transport route for peptides generated in the cytosol by the proteasome into the ER for loading onto major histocompatibility complex class I (MHC I) molecules for eventual antigen presentation at the cell surface. Chaperones within the ER are critical for many of these processes; however, outside the ER certain of those chaperones may play important and direct roles in immune responses. In some cases, particular ER chaperones have been utilized as vaccines against tumors or infectious disease pathogens when purified from tumor tissue or recombinantly generated and loaded with antigen. In other cases, the cell surface location of ER chaperones has implications for immune responses as well as possible tumor resistance. We have produced heat-shock protein/chaperone protein-based cancer vaccines called “chaperone-rich cell lysate” (CRCL) that are conglomerates of chaperones enriched from solid tumors by an isoelectric focusing technique. These preparations have been effective against numerous murine tumors, as well as in a canine with an advanced lung carcinoma treated with autologous CRCL. We also published extensive proteomic analyses of CRCL prepared from human surgically resected tumor samples. Of note, these preparations contained at least 10 ER chaperones and a number of other residents, along with many other chaperones/heat-shock proteins. Gene ontology and network analyses utilizing these proteins essentially recapitulate the antigen presentation pathways and interconnections. In conjunction with our current knowledge of cell surface/extracellular ER chaperones, these data collectively suggest that a systems-level view may provide insight into the potent immune stimulatory activities of CRCL with an emphasis on the roles of ER components in those processes. PMID:25610811

  16. RNA Chaperones Step Out of Hfq's Shadow.

    PubMed

    Attaiech, Laetitia; Glover, J N Mark; Charpentier, Xavier

    2017-04-01

    The stability and function of regulatory small RNAs (sRNAs) often require a specialized RNA-binding protein called an RNA chaperone. Recent findings show that proteins containing a ProQ/FinO domain constitute a new class of RNA chaperones that could play key roles in post-transcriptional gene regulation throughout bacterial species.

  17. Review: Beta-thalassemia and molecular chaperones.

    PubMed

    Sumera, Afshan; Radhakrishnan, Ammu; Baba, Abdul Aziz; George, Elizabeth

    2015-04-01

    Thalassemia is known as a diverse single gene disorder, which is prevalent worldwide. The molecular chaperones are set of proteins that help in two important processes while protein synthesis and degradation include folding or unfolding and assembly or disassembly, thereby helping in cell homeostasis. This review recaps current knowledge regarding the role of molecular chaperones in thalassemia, with a focus on beta thalassemia.

  18. Chaperone addiction of toxin–antitoxin systems

    PubMed Central

    Bordes, Patricia; Sala, Ambre Julie; Ayala, Sara; Texier, Pauline; Slama, Nawel; Cirinesi, Anne-Marie; Guillet, Valérie; Mourey, Lionel; Genevaux, Pierre

    2016-01-01

    Bacterial toxin–antitoxin (TA) systems, in which a labile antitoxin binds and inhibits the toxin, can promote adaptation and persistence by modulating bacterial growth in response to stress. Some atypical TA systems, known as tripartite toxin–antitoxin–chaperone (TAC) modules, include a molecular chaperone that facilitates folding and protects the antitoxin from degradation. Here we use a TAC module from Mycobacterium tuberculosis as a model to investigate the molecular mechanisms by which classical TAs can become ‘chaperone-addicted'. The chaperone specifically binds the antitoxin at a short carboxy-terminal sequence (chaperone addiction sequence, ChAD) that is not present in chaperone-independent antitoxins. In the absence of chaperone, the ChAD sequence destabilizes the antitoxin, thus preventing toxin inhibition. Chaperone–ChAD pairs can be transferred to classical TA systems or to unrelated proteins and render them chaperone-dependent. This mechanism might be used to optimize the expression and folding of heterologous proteins in bacterial hosts for biotechnological or medical purposes. PMID:27827369

  19. Artemin as an efficient molecular chaperone.

    PubMed

    Shahangian, S Shirin; Rasti, Behnam; Sajedi, Reza H; Khodarahmi, Reza; Taghdir, Majid; Ranjbar, Bijan

    2011-12-01

    Artemin is an abundant thermostable protein in Artemia encysted embryos under stress. It is considered as a stress protein, as its highly regulated expression is associated with stress resistance in this crustacea. In the present study, artemin has been shown to be a potent molecular chaperone with high efficacy. Artemin is capable of inhibiting the chemical aggregation of proteins such as carbonic anhydrase (CA) and horseradish peroxidase (HRP) at unique molar ratios of chaperone to substrates (1:40 and 1:26 for CA and HRP, respectively). Furthermore, it can also enhance refolding yield of these substrates by nearly 50%. The refolding promotion of CA is checked and verified through a sensitive fluorimetric technique. Based on these experiments, artemin showed higher chaperone activity than other chaperones. The evaluation of artemin surface using ANS showed it to be highly hydrophobic, probably resulting in its high efficacy. These results suggest that artemin can be considered a novel low molecular weight chaperone.

  20. Lipid Chaperones and Metabolic Inflammation

    PubMed Central

    Furuhashi, Masato; Ishimura, Shutaro; Ota, Hideki; Miura, Tetsuji

    2011-01-01

    Over the past decade, a large body of evidence has emerged demonstrating an integration of metabolic and immune response pathways. It is now clear that obesity and associated disorders such as insulin resistance and type 2 diabetes are associated with a metabolically driven, low-grade, chronic inflammatory state, referred to as “metaflammation.” Several inflammatory cytokines as well as lipids and metabolic stress pathways can activate metaflammation, which targets metabolically critical organs and tissues including adipocytes and macrophages to adversely affect systemic homeostasis. On the other hand, inside the cell, fatty acid-binding proteins (FABPs), a family of lipid chaperones, as well as endoplasmic reticulum (ER) stress, and reactive oxygen species derived from mitochondria play significant roles in promotion of metabolically triggered inflammation. Here, we discuss the molecular and cellular basis of the roles of FABPs, especially FABP4 and FABP5, in metaflammation and related diseases including obesity, diabetes, and atherosclerosis. PMID:22121495

  1. Chaperone receptors: guiding proteins to intracellular compartments.

    PubMed

    Kriechbaumer, Verena; von Löffelholz, Ottilie; Abell, Ben M

    2012-01-01

    Despite mitochondria and chloroplasts having their own genome, 99% of mitochondrial proteins (Rehling et al., Nat Rev Mol Cell Biol 5:519-530, 2004) and more than 95% of chloroplast proteins (Soll, Curr Opin Plant Biol 5:529-535, 2002) are encoded by nuclear DNA, synthesised in the cytosol and imported post-translationally. Protein targeting to these organelles depends on cytosolic targeting factors, which bind to the precursor, and then interact with membrane receptors to deliver the precursor into a translocase. The molecular chaperones Hsp70 and Hsp90 have been widely implicated in protein targeting to mitochondria and chloroplasts, and receptors capable of recognising these chaperones have been identified at the surface of both these organelles (Schlegel et al., Mol Biol Evol 24:2763-2774, 2007). The role of these chaperone receptors is not fully understood, but they have been shown to increase the efficiency of protein targeting (Young et al., Cell 112:41-50, 2003; Qbadou et al., EMBO J 25:1836-1847, 2006). Whether these receptors contribute to the specificity of targeting is less clear. A class of chaperone receptors bearing tetratricopeptide repeat domains is able to specifically bind the highly conserved C terminus of Hsp70 and/or Hsp90. Interestingly, at least of one these chaperone receptors can be found on each organelle (Schlegel et al., Mol Biol Evol 24:2763-2774, 2007), which suggests a universal role in protein targeting for these chaperone receptors. This review will investigate the role that chaperone receptors play in targeting efficiency and specificity, as well as examining recent in silico approaches to find novel chaperone receptors.

  2. Molecular chaperones: functional mechanisms and nanotechnological applications

    NASA Astrophysics Data System (ADS)

    Rosario Fernández-Fernández, M.; Sot, Begoña; María Valpuesta, José

    2016-08-01

    Molecular chaperones are a group of proteins that assist in protein homeostasis. They not only prevent protein misfolding and aggregation, but also target misfolded proteins for degradation. Despite differences in structure, all types of chaperones share a common general feature, a surface that recognizes and interacts with the misfolded protein. This and other, more specialized properties can be adapted for various nanotechnological purposes, by modification of the original biomolecules or by de novo design based on artificial structures.

  3. A NAP-Family Histone Chaperone Functions in Abiotic Stress Response and Adaptation1[OPEN

    PubMed Central

    Pareek, Ashwani; Singla-Pareek, Sneh Lata

    2016-01-01

    Modulation of gene expression is one of the most significant molecular mechanisms of abiotic stress response in plants. Via altering DNA accessibility, histone chaperones affect the transcriptional competence of genomic loci. However, in contrast to other factors affecting chromatin dynamics, the role of plant histone chaperones in abiotic stress response and adaptation remains elusive. Here, we studied the physiological function of a stress-responsive putative rice (Oryza sativa) histone chaperone of the NAP superfamily: OsNAPL6. We show that OsNAPL6 is a nuclear-localized H3/H4 histone chaperone capable of assembling a nucleosome-like structure. Utilizing overexpression and knockdown approaches, we found a positive correlation between OsNAPL6 expression levels and adaptation to multiple abiotic stresses. Results of comparative transcriptome profiling and promoter-recruitment studies indicate that OsNAPL6 functions during stress response via modulation of expression of various genes involved in diverse functions. For instance, we show that OsNAPL6 is recruited to OsRad51 promoter, activating its expression and leading to more efficient DNA repair and abrogation of programmed cell death under salinity and genotoxic stress conditions. These results suggest that the histone chaperone OsNAPL6 may serve a regulatory role in abiotic stress physiology possibly via modulating nucleosome dynamics at various stress-associated genomic loci. Taken together, our findings establish a hitherto unknown link between histone chaperones and abiotic stress response in plants. PMID:27342307

  4. Supercharging Chaperones: A Meeting Toolkit for Maximizing Learning for Youth and Chaperones

    ERIC Educational Resources Information Center

    Brandt, Brian

    2016-01-01

    Trip and conference chaperones are a wonderful resource in youth development programs. These well-intended volunteers, many parents of youth participating in the event, want the best experience for the youth but are not necessarily trained in positive youth development. A consequence of this circumstance is that not all chaperones provide the best…

  5. Visualizing chaperone-assisted protein folding

    PubMed Central

    Horowitz, Scott; Salmon, Loïc; Koldewey, Philipp; Ahlstrom, Logan S.; Martin, Raoul; Quan, Shu; Afonine, Pavel V.; van den Bedem, Henry; Wang, Lili; Xu, Qingping; Trievel, Raymond C.; Brooks, Charles L.; Bardwell, James CA

    2016-01-01

    Challenges in determining the structures of heterogeneous and dynamic protein complexes have greatly hampered past efforts to obtain a mechanistic understanding of many important biological processes. One such process is chaperone-assisted protein folding, where obtaining structural ensembles of chaperone:substrate complexes would ultimately reveal how chaperones help proteins fold into their native state. To address this problem, we devised a novel structural biology approach based on X-ray crystallography, termed Residual Electron and Anomalous Density (READ). READ enabled us to visualize even sparsely populated conformations of the substrate protein immunity protein 7 (Im7) in complex with the E. coli chaperone Spy. This study resulted in a series of snapshots depicting the various folding states of Im7 while bound to Spy. The ensemble shows that Spy-associated Im7 samples conformations ranging from unfolded to partially folded and native-like states, and reveals how a substrate can explore its folding landscape while bound to a chaperone. PMID:27239796

  6. Chaperones in hepatitis C virus infection

    PubMed Central

    Khachatoorian, Ronik; French, Samuel W

    2016-01-01

    The hepatitis C virus (HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases including cirrhosis and hepatocellular carcinoma. HCV is the most common indication for liver transplantation in patients with cirrhosis worldwide. HCV is an enveloped RNA virus classified in the genus Hepacivirus in the Flaviviridae family. The HCV viral life cycle in a cell can be divided into six phases: (1) binding and internalization; (2) cytoplasmic release and uncoating; (3) viral polyprotein translation and processing; (4) RNA genome replication; (5) encapsidation (packaging) and assembly; and (6) virus morphogenesis (maturation) and secretion. Many host factors are involved in the HCV life cycle. Chaperones are an important group of host cytoprotective molecules that coordinate numerous cellular processes including protein folding, multimeric protein assembly, protein trafficking, and protein degradation. All phases of the viral life cycle require chaperone activity and the interaction of viral proteins with chaperones. This review will present our current knowledge and understanding of the role of chaperones in the HCV life cycle. Analysis of chaperones in HCV infection will provide further insights into viral/host interactions and potential therapeutic targets for both HCV and other viruses. PMID:26783419

  7. The FNIP co-chaperones decelerate the Hsp90 chaperone cycle and enhance drug binding

    PubMed Central

    Woodford, Mark R.; Dunn, Diana M.; Blanden, Adam R.; Capriotti, Dante; Loiselle, David; Prodromou, Chrisostomos; Panaretou, Barry; Hughes, Philip F.; Smith, Aaron; Ackerman, Wendi; Haystead, Timothy A.; Loh, Stewart N.; Bourboulia, Dimitra; Schmidt, Laura S.; Marston Linehan, W.; Bratslavsky, Gennady; Mollapour, Mehdi

    2016-01-01

    Heat shock protein-90 (Hsp90) is an essential molecular chaperone in eukaryotes involved in maintaining the stability and activity of numerous signalling proteins, also known as clients. Hsp90 ATPase activity is essential for its chaperone function and it is regulated by co-chaperones. Here we show that the tumour suppressor FLCN is an Hsp90 client protein and its binding partners FNIP1/FNIP2 function as co-chaperones. FNIPs decelerate the chaperone cycle, facilitating FLCN interaction with Hsp90, consequently ensuring FLCN stability. FNIPs compete with the activating co-chaperone Aha1 for binding to Hsp90, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins. Lastly, downregulation of FNIPs desensitizes cancer cells to Hsp90 inhibitors, whereas FNIPs overexpression in renal tumours compared with adjacent normal tissues correlates with enhanced binding of Hsp90 to its inhibitors. Our findings suggest that FNIPs expression can potentially serve as a predictive indicator of tumour response to Hsp90 inhibitors. PMID:27353360

  8. Chaperones get in touch: the Hip-Hop connection.

    PubMed

    Frydman, J; Höhfeld, J

    1997-03-01

    Recent findings emphasize that different molecular chaperones cooperate during intracellular protein biogenesis. Mechanistic aspects of chaperone cooperation are now emerging from studies on the regulation of certain signal transduction pathways mediated by Hsc70 and Hsp90 in the eukaryotic cytosol. Efficient cooperation appears to be achieved through a defined regulation of Hsc70 activity by the chaperone cofactors Hip and Hop.

  9. Phenylalanine hydroxylase misfolding and pharmacological chaperones.

    PubMed

    Underhaug, Jarl; Aubi, Oscar; Martinez, Aurora

    2012-01-01

    Phenylketonuria (PKU) is a loss-of-function inborn error of metabolism. As many other inherited diseases the main pathologic mechanism in PKU is an enhanced tendency of the mutant phenylalanine hydroxylase (PAH) to misfold and undergo ubiquitin-dependent degradation. Recent alternative approaches with therapeutic potential for PKU aim at correcting the PAH misfolding, and in this respect pharmacological chaperones are the focus of increasing interest. These compounds, which often resemble the natural ligands and show mild competitive inhibition, can rescue the misfolded proteins by stimulating their renaturation in vivo. For PKU, a few studies have proven the stabilization of PKU-mutants in vitro, in cells, and in mice by pharmacological chaperones, which have been found either by using the tetrahydrobiopterin (BH(4)) cofactor as query structure for shape-focused virtual screening or by high-throughput screening of small compound libraries. Both approaches have revealed a number of compounds, most of which bind at the iron-binding site, competitively with respect to BH(4). Furthermore, PAH shares a number of ligands, such as BH(4), amino acid substrates and inhibitors, with the other aromatic amino acid hydroxylases: the neuronal/neuroendocrine enzymes tyrosine hydroxylase (TH) and the tryptophan hydroxylases (TPHs). Recent results indicate that the PAH-targeted pharmacological chaperones should also be tested on TH and the TPHs, and eventually be derivatized to avoid unwanted interactions with these other enzymes. After derivatization and validation in animal models, the PAH-chaperoning compounds represent novel possibilities in the treatment of PKU.

  10. mTORC1 links protein quality and quantity control by sensing chaperone availability.

    PubMed

    Qian, Shu-Bing; Zhang, Xingqian; Sun, Jun; Bennink, Jack R; Yewdell, Jonathan W; Patterson, Cam

    2010-08-27

    Balanced protein synthesis and degradation are crucial for proper cellular function. Protein synthesis is tightly coupled to energy status and nutrient levels by the mammalian target of rapamycin complex 1 (mTORC1). Quality of newly synthesized polypeptides is maintained by the molecular chaperone and ubiquitin-proteasome systems. Little is known about how cells integrate information about the quantity and quality of translational products simultaneously. We demonstrate that cells distinguish moderate reductions in protein quality from severe protein misfolding using molecular chaperones to differentially regulate mTORC1 signaling. Moderate reduction of chaperone availability enhances mTORC1 signaling, whereas stress-induced complete depletion of chaperoning capacity suppresses mTORC1 signaling. Molecular chaperones regulate mTORC1 assembly in coordination with nutrient availability. This mechanism enables mTORC1 to rapidly detect and respond to environmental cues while also sensing intracellular protein misfolding. The tight linkage between protein quality and quantity control provides a plausible mechanism coupling protein misfolding with metabolic dyshomeostasis.

  11. Effect of hesperetin on chaperone activity in selenite-induced cataract

    PubMed Central

    Oka, Mikako; Tamura, Hiroomi; Takehana, Makoto

    2016-01-01

    Abstract Background. Chaperone activity of α-crystallin in the lens works to prevent protein aggregation and is important to maintain the lens transparency. This study evaluated the effect of hesperetin on lens chaperone activity in selenite-induced cataracts. Methodology. Thirteen-day-old rats were divided into four groups. Animals were given hesperetin (groups G2 and G4) or vehicle (G1 and G3) on Days 0, 1, and 2. Rats in G3 and G4 were administered selenite subcutaneously 4 hours after the first hesperetin injection. On Days 2, 4, and 6, cataract grades were evaluated using slit-lamp biomicroscopy. The amount of a-crystallin and chaperone activity in water-soluble fraction were measured after animals sacrificed. Results. G3 on day 4 had developed significant cataract, as an average cataract grading of 4.6 ± 0.2. In contrast, G4 had less severe central opacities and lower stage cataracts than G3, as an average cataract grading of 2.4 ± 0.4. The a-crystallin levels in G3 lenses were lower than in G1, but the same as G4. Additionally, chaperone activity was weaker in G3 lenses than G1, but the same as in G4. Conclusions. Our results suggest that hesperetin can prevent the decreasing lens chaperone activity and a-crystallin water solubility by administered of selenite. PMID:28352791

  12. Degradation of AF1Q by chaperone-mediated autophagy

    SciTech Connect

    Li, Peng; Ji, Min; Lu, Fei; Zhang, Jingru; Li, Huanjie; Cui, Taixing; Li Wang, Xing; Tang, Dongqi; Ji, Chunyan

    2014-09-10

    AF1Q, a mixed lineage leukemia gene fusion partner, is identified as a poor prognostic biomarker for pediatric acute myeloid leukemia (AML), adult AML with normal cytogenetic and adult myelodysplastic syndrome. AF1Q is highly regulated during hematopoietic progenitor differentiation and development but its regulatory mechanism has not been defined clearly. In the present study, we used pharmacological and genetic approaches to influence chaperone-mediated autophagy (CMA) and explored the degradation mechanism of AF1Q. Pharmacological inhibitors of lysosomal degradation, such as chloroquine, increased AF1Q levels, whereas activators of CMA, including 6-aminonicotinamide and nutrient starvation, decreased AF1Q levels. AF1Q interacts with HSPA8 and LAMP-2A, which are core components of the CMA machinery. Knockdown of HSPA8 or LAMP-2A increased AF1Q protein levels, whereas overexpression showed the opposite effect. Using an amino acid deletion AF1Q mutation plasmid, we identified that AF1Q had a KFERQ-like motif which was recognized by HSPA8 for CMA-dependent proteolysis. In conclusion, we demonstrate for the first time that AF1Q can be degraded in lysosomes by CMA. - Highlights: • Chaperone-mediated autophagy (CMA) is involved in the degradation of AF1Q. • Macroautophagy does not contribute to the AF1Q degradation. • AF1Q has a KFERQ-like motif that is recognized by CMA core components.

  13. Study on the chaperone properties of conserved GTPases.

    PubMed

    Wang, Xiang; Xue, Jiaying; Sun, Zhe; Qin, Yan; Gong, Weimin

    2012-01-01

    As a large family of hydrolases, GTPases are widespread in cells and play the very important biological function of hydrolyzing GTP into GDP and inorganic phosphate through binding with it. GTPases are involved in cell cycle regulation, protein synthesis, and protein transportation. Chaperones can facilitate the folding or refolding of nascent peptides and denatured proteins to their native states. However, chaperones do not occur in the native structures in which they can perform their normal biological functions. In the current study, the chaperone activity of the conserved GTPases of Escherichia coli is tested by the chemical denaturation and chaperone-assisted renaturation of citrate synthase and α-glucosidase. The effects of ribosomes and nucleotides on the chaperone activity are also examined. Our data indicate that these conserved GTPases have chaperone properties, and may be ancestral protein folding factors that have appeared before dedicated chaperones.

  14. Emerging novel concept of chaperone therapies for protein misfolding diseases

    PubMed Central

    SUZUKI, Yoshiyuki

    2014-01-01

    Chaperone therapy is a newly developed molecular therapeutic approach to protein misfolding diseases. Among them we found unstable mutant enzyme proteins in a few lysosomal diseases, resulting in rapid intracellular degradation and loss of function. Active-site binding low molecular competitive inhibitors (chemical chaperones) paradoxically stabilized and enhanced the enzyme activity in somatic cells by correction of the misfolding of enzyme protein. They reached the brain through the blood-brain barrier after oral administration, and corrected pathophysiology of the disease. In addition to these inhibitory chaperones, non-competitive chaperones without inhibitory bioactivity are being developed. Furthermore molecular chaperone therapy utilizing the heat shock protein and other chaperone proteins induced by small molecules has been experimentally tried to handle abnormally accumulated proteins as a new approach particularly to neurodegenerative diseases. These three types of chaperones are promising candidates for various types of diseases, genetic or non-genetic, and neurological or non-neurological, in addition to lysosomal diseases. PMID:24814990

  15. Histone chaperone specificity in Rtt109 activation

    PubMed Central

    Park, Young-Jun; Sudhoff, Keely B; Andrews, Andrew J; Stargell, Laurie A; Luger, Karolin

    2008-01-01

    Rtt109 is a histone acetyltransferase that requires a histone chaperone for the acetylation of histone 3 at lysine 56 (H3K56). Rtt109 forms a complex with the chaperone Vps75 in vivo and is implicated in DNA replication and repair. Here we show that both Rtt109 and Vps75 bind histones with high affinity, but only the complex is efficient for catalysis. The C-terminal acidic domain of Vps75 contributes to activation of Rtt109 and is necessary for in vivo functionality of Vps75, but it is not required for interaction with either Rtt109 or histones. We demonstrate that Vps75 is a structural homolog of yeast Nap1 by solving its crystal structure. Nap1 and Vps75 interact with histones and Rtt109 with comparable affinities. However, only Vps75 stimulates Rtt109 enzymatic activity. Our data highlight the functional specificity of Vps75 in Rtt109 activation. PMID:19172749

  16. Role of Streptococcus intermedius DnaK chaperone system in stress tolerance and pathogenicity.

    PubMed

    Tomoyasu, Toshifumi; Tabata, Atsushi; Imaki, Hidenori; Tsuruno, Keigo; Miyazaki, Aya; Sonomoto, Kenji; Whiley, Robert Alan; Nagamune, Hideaki

    2012-01-01

    Streptococcus intermedius is a facultatively anaerobic, opportunistic pathogen that causes purulent infections and abscess formation. The DnaK chaperone system has been characterized in several pathogenic bacteria and seems to have important functions in stress resistance and pathogenicity. However, the role of DnaK in S. intermedius remains unclear. Therefore, we constructed a dnaK knockout mutant that exhibited slow growth, thermosensitivity, accumulation of GroEL in the cell, and reduced cytotoxicity to HepG2 cells. The level of secretion of a major pathogenic factor, intermedilysin, was not affected by dnaK mutation. We further examined the function and property of the S. intermedius DnaK chaperone system by using Escherichia coli ΔdnaK and ΔrpoH mutant strains. S. intermedius DnaK could not complement the thermosensitivity of E. coli ΔdnaK mutant. However, the intact S. intermedius DnaK chaperone system could complement the thermosensitivity and acid sensitivity of E. coli ΔdnaK mutant. The S. intermedius DnaK chaperone system could regulate the activity and stability of the heat shock transcription factor σ(32) in E. coli, although S. intermedius does not utilize σ(32) for heat shock transcription. The S. intermedius DnaK chaperone system was also able to efficiently eliminate the aggregated proteins from ΔrpoH mutant cells. Overall, our data showed that the S. intermedius DnaK chaperone system has important functions in quality control of cellular proteins but has less participation in the modulation of expression of pathogenic factors.

  17. Molecular chaperones and hypoxic-ischemic encephalopathy

    PubMed Central

    Hua, Cong; Ju, Wei-na; Jin, Hang; Sun, Xin; Zhao, Gang

    2017-01-01

    Hypoxic-ischemic encephalopathy (HIE) is a disease that occurs when the brain is subjected to hypoxia, resulting in neuronal death and neurological deficits, with a poor prognosis. The mechanisms underlying hypoxic-ischemic brain injury include excitatory amino acid release, cellular proteolysis, reactive oxygen species generation, nitric oxide synthesis, and inflammation. The molecular and cellular changes in HIE include protein misfolding, aggregation, and destruction of organelles. The apoptotic pathways activated by ischemia and hypoxia include the mitochondrial pathway, the extrinsic Fas receptor pathway, and the endoplasmic reticulum stress-induced pathway. Numerous treatments for hypoxic-ischemic brain injury caused by HIE have been developed over the last half century. Hypothermia, xenon gas treatment, the use of melatonin and erythropoietin, and hypoxic-ischemic preconditioning have proven effective in HIE patients. Molecular chaperones are proteins ubiquitously present in both prokaryotes and eukaryotes. A large number of molecular chaperones are induced after brain ischemia and hypoxia, among which the heat shock proteins are the most important. Heat shock proteins not only maintain protein homeostasis; they also exert anti-apoptotic effects. Heat shock proteins maintain protein homeostasis by helping to transport proteins to their target destinations, assisting in the proper folding of newly synthesized polypeptides, regulating the degradation of misfolded proteins, inhibiting the aggregation of proteins, and by controlling the refolding of misfolded proteins. In addition, heat shock proteins exert anti-apoptotic effects by interacting with various signaling pathways to block the activation of downstream effectors in numerous apoptotic pathways, including the intrinsic pathway, the endoplasmic reticulum-stress mediated pathway and the extrinsic Fas receptor pathway. Molecular chaperones play a key role in neuroprotection in HIE. In this review, we

  18. Recombination of ozone via the chaperon mechanism

    NASA Astrophysics Data System (ADS)

    Ivanov, Mikhail V.; Schinke, Reinhard

    2006-03-01

    The recombination of ozone via the chaperon mechanism, i.e., ArO +O2→Ar+O3 and ArO2+O→Ar+O3, is studied by means of classical trajectories and a pairwise additive Ar -O3 potential energy surface. The recombination rate coefficient has a strong temperature dependence, which approximately can be described by T-n with n ≈3. It is negligible for temperatures above 700 K or so, but it becomes important for low temperatures. The calculations unambiguously affirm the conclusions of Hippler et al. [J. Chem. Phys. 93, 6560 (1990)] and Luther et al. [Phys. Chem. Chem. Phys. 7, 2764 (2005)] that the chaperon mechanism makes a sizable contribution to the recombination of O3 at room temperature and below. The dependence of the chaperon recombination rate coefficient on the isotopomer, studied for two different isotope combinations, is only in rough qualitative agreement with the experimental data. The oxygen atom isotope exchange reaction involving ArO and ArO2 van der Waals complexes is also investigated; the weak binding of O or O2 to Ar has only a small effect.

  19. Chaperones in Polyglutamine Aggregation: Beyond the Q-Stretch

    PubMed Central

    Kuiper, E. F. E.; de Mattos, Eduardo P.; Jardim, Laura B.; Kampinga, Harm H.; Bergink, Steven

    2017-01-01

    Expanded polyglutamine (polyQ) stretches in at least nine unrelated proteins lead to inherited neuronal dysfunction and degeneration. The expansion size in all diseases correlates with age at onset (AO) of disease and with polyQ protein aggregation, indicating that the expanded polyQ stretch is the main driving force for the disease onset. Interestingly, there is marked interpatient variability in expansion thresholds for a given disease. Between different polyQ diseases the repeat length vs. AO also indicates the existence of modulatory effects on aggregation of the upstream and downstream amino acid sequences flanking the Q expansion. This can be either due to intrinsic modulation of aggregation by the flanking regions, or due to differential interaction with other proteins, such as the components of the cellular protein quality control network. Indeed, several lines of evidence suggest that molecular chaperones have impact on the handling of different polyQ proteins. Here, we review factors differentially influencing polyQ aggregation: the Q-stretch itself, modulatory flanking sequences, interaction partners, cleavage of polyQ-containing proteins, and post-translational modifications, with a special focus on the role of molecular chaperones. By discussing typical examples of how these factors influence aggregation, we provide more insight on the variability of AO between different diseases as well as within the same polyQ disorder, on the molecular level. PMID:28386214

  20. Stress and molecular chaperones in disease.

    PubMed

    Macario, A J; Conway de Macario, E

    2000-01-01

    Stress, a common phenomenon in today's society, is suspected of playing a role in the development of disease. Stressors of various types, psychological, physical, and biological, abound. They occur in the working and social environments, in air, soil, water, food, and medicines. Stressors impact on cells directly or indirectly, cause protein denaturation, and elicit a stress response. This is mediated by stress (heat-shock) genes and proteins, among which are those named molecular chaperones because they assist other proteins to achieve and maintain a functional shape (the native configuration), and to recover it when partially lost due to stress. Denatured proteins tend to aggregate and precipitate. The same occurs with abnormal proteins due to mutations, or to failure of post-transcriptional or post-translational mechanisms. These abnormal proteins need the help of molecular chaperones as much as denatured molecules do, especially during stress. A cell with normal antistress mechanisms, including a complete and functional set of chaperones, may be able to withstand stress if its intensity is not beyond that which will cause irreversible protein damage. There is a certain threshold that normal cells have above which they cannot cope with stress. A cell with an abnormal protein that has an intrinsic tendency to misfold and aggregate is more vulnerable to stress than normal counterparts. Furthermore, these abnormal proteins may precipitate even in the absence of stress and cause diseases named proteinopathies. It is possible that stress contributes to the pathogenesis of proteinopathies by promoting protein aggregation, even in cells that possess a normal chaperoning system. Examples of proteinopathies are age-related degenerative disorders with protein deposits in various tissues, most importantly in the brain where the deposits are associated with neuronal degeneration. It is conceivable that stress enhances the progression of these diseases by facilitating

  1. The story of stolen chaperones: how overexpression of Q/N proteins cures yeast prions.

    PubMed

    Derkatch, Irina L; Liebman, Susan W

    2013-01-01

    Prions are self-seeding alternate protein conformations. Most yeast prions contain glutamine/asparagine (Q/N)-rich domains that promote the formation of amyloid-like prion aggregates. Chaperones, including Hsp104 and Sis1, are required to continually break these aggregates into smaller "seeds." Decreasing aggregate size and increasing the number of growing aggregate ends facilitates both aggregate transmission and growth. Our previous work showed that overexpression of 11 proteins with Q/N-rich domains facilitates the de novo aggregation of Sup35 into the [PSI(+)] prion, presumably by a cross-seeding mechanism. We now discuss our recent paper, in which we showed that overexpression of most of these same 11 Q/N-rich proteins, including Pin4C and Cyc8, destabilized pre-existing Q/N rich prions. Overexpression of both Pin4C and Cyc8 caused [PSI(+)] aggregates to enlarge. This is incompatible with a previously proposed "capping" model where the overexpressed Q/N-rich protein poisons, or "caps," the growing aggregate ends. Rather the data match what is expected of a reduction in prion severing by chaperones. Indeed, while Pin4C overexpression does not alter chaperone levels, Pin4C aggregates sequester chaperones away from the prion aggregates. Cyc8 overexpression cures [PSI(+)] by inducing an increase in Hsp104 levels, as excess Hsp104 binds to [PSI(+)] aggregates in a way that blocks their shearing.

  2. Histone chaperones link histone nuclear import and chromatin assembly.

    PubMed

    Keck, Kristin M; Pemberton, Lucy F

    2013-01-01

    Histone chaperones are proteins that shield histones from nonspecific interactions until they are assembled into chromatin. After their synthesis in the cytoplasm, histones are bound by different histone chaperones, subjected to a series of posttranslational modifications and imported into the nucleus. These evolutionarily conserved modifications, including acetylation and methylation, can occur in the cytoplasm, but their role in regulating import is not well understood. As part of histone import complexes, histone chaperones may serve to protect the histones during transport, or they may be using histones to promote their own nuclear localization. In addition, there is evidence that histone chaperones can play an active role in the import of histones. Histone chaperones have also been shown to regulate the localization of important chromatin modifying enzymes. This review is focused on the role histone chaperones play in the early biogenesis of histones, the distinct cytoplasmic subcomplexes in which histone chaperones have been found in both yeast and mammalian cells and the importins/karyopherins and nuclear localization signals that mediate the nuclear import of histones. We also address the role that histone chaperone localization plays in human disease. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.

  3. Action of the Hsp70 chaperone system observed with single proteins

    NASA Astrophysics Data System (ADS)

    Nunes, João M.; Mayer-Hartl, Manajit; Hartl, F. Ulrich; Müller, Daniel J.

    2015-02-01

    In Escherichia coli, the binding of non-native protein substrates to the Hsp70 chaperone DnaK is mediated by the co-chaperone DnaJ. DnaJ accelerates ATP hydrolysis on DnaK, by closing the peptide-binding cleft of DnaK. GrpE catalysed nucleotide exchange and ATP re-binding then lead to substrate release from DnaK, allowing folding. Here we refold immunoglobulin 27 (I27) to better understand how DnaJ-DnaK-GrpE chaperones cooperate. When DnaJ is present, I27 is less likely to misfold and more likely to fold, whereas the unfolded state remains unaffected. Thus, the ‘holdase’ DnaJ shows foldase behaviour. Misfolding of I27 is fully abrogated when DnaJ cooperates with DnaK, which stabilizes the unfolded state and increases the probability of folding. Addition of GrpE shifts the unfolded fraction of I27 to pre-chaperone levels. These insights reveal synergistic mechanisms within the evolutionary highly conserved Hsp70 system that prevent substrates from misfolding and promote their productive transition to the native state.

  4. Consequences of the selective blockage of chaperone-mediated autophagy

    PubMed Central

    Massey, Ashish C.; Kaushik, Susmita; Sovak, Guy; Kiffin, Roberta; Cuervo, Ana Maria

    2006-01-01

    Chaperone-mediated autophagy (CMA) is a selective pathway for the degradation of cytosolic proteins in lysosomes. CMA declines with age because of a decrease in the levels of lysosome-associated membrane protein (LAMP) type 2A, a lysosomal receptor for this pathway. We have selectively blocked the expression of LAMP-2A in mouse fibroblasts in culture and analyzed the cellular consequences of reduced CMA activity. CMA-defective cells maintain normal rates of long-lived protein degradation by up-regulating macroautophagy, the major form of autophagy. Constitutive up-regulation of macroautophagy is unable, however, to compensate for all CMA functions. Thus, CMA-defective cells are more sensitive to stressors, suggesting that, although protein turnover is maintained, the selectivity of CMA is necessary as part of the cellular response to stress. Our results also denote the existence of cross-talk among different forms of autophagy. PMID:16585521

  5. Regulation of organismal proteostasis by trans-cellular chaperone signaling

    PubMed Central

    van Oosten-Hawle, Patricija; Porter, Robert S.; Morimoto, Richard I.

    2013-01-01

    Summary A major challenge for metazoans is to ensure that different tissues each expressing distinctive proteomes are, nevertheless, well protected at an organismal level from proteotoxic stress. We have examined this and show that expression of endogenous metastable protein sensors in muscle cells induces a systemic stress response throughout multiple tissues of C. elegans. Suppression of misfolding in muscle cells can be achieved not only by enhanced expression of HSP90 in muscle cells, but as effective by elevated expression of HSP90 in intestine or neuronal cells. This cell-non-autonomous control of HSP90 expression relies upon transcriptional feedback between somatic tissues that is regulated by the FoxA transcription factor PHA-4. This trans-cellular chaperone signaling response maintains organismal proteostasis when challenged by a local tissue imbalance in folding and provides the basis for a novel form of organismal stress sensing surveillance. PMID:23746847

  6. Chaperones rescue luciferase folding by separating its domains.

    PubMed

    Scholl, Zackary N; Yang, Weitao; Marszalek, Piotr E

    2014-10-10

    Over the last 50 years, significant progress has been made toward understanding how small single-domain proteins fold. However, very little is known about folding mechanisms of medium and large multidomain proteins that predominate the proteomes of all forms of life. Large proteins frequently fold cotranslationally and/or require chaperones. Firefly (Photinus pyralis) luciferase (Luciferase, 550 residues) has been a model of a cotranslationally folding protein whose extremely slow refolding (approximately days) is catalyzed by chaperones. However, the mechanism by which Luciferase misfolds and how chaperones assist Luciferase refolding remains unknown. Here we combine single-molecule force spectroscopy (atomic force microscopy (AFM)/single-molecule force spectroscopy) with steered molecular dynamic computer simulations to unravel the mechanism of chaperone-assisted Luciferase refolding. Our AFM and steered molecular dynamic results show that partially unfolded Luciferase, with the N-terminal domain remaining folded, can refold robustly without chaperones. Complete unfolding causes Luciferase to get trapped in very stable non-native configurations involving interactions between N- and C-terminal residues. However, chaperones allow the completely unfolded Luciferase to refold quickly in AFM experiments, strongly suggesting that chaperones are able to sequester non-natively contacting residues. More generally, we suggest that many chaperones, rather than actively promoting the folding, mimic the ribosomal exit tunnel and physically separate protein domains, allowing them to fold in a cotranslational-like sequential process.

  7. Chaperones Rescue Luciferase Folding by Separating Its Domains*

    PubMed Central

    Scholl, Zackary N.; Yang, Weitao; Marszalek, Piotr E.

    2014-01-01

    Over the last 50 years, significant progress has been made toward understanding how small single-domain proteins fold. However, very little is known about folding mechanisms of medium and large multidomain proteins that predominate the proteomes of all forms of life. Large proteins frequently fold cotranslationally and/or require chaperones. Firefly (Photinus pyralis) luciferase (Luciferase, 550 residues) has been a model of a cotranslationally folding protein whose extremely slow refolding (approximately days) is catalyzed by chaperones. However, the mechanism by which Luciferase misfolds and how chaperones assist Luciferase refolding remains unknown. Here we combine single-molecule force spectroscopy (atomic force microscopy (AFM)/single-molecule force spectroscopy) with steered molecular dynamic computer simulations to unravel the mechanism of chaperone-assisted Luciferase refolding. Our AFM and steered molecular dynamic results show that partially unfolded Luciferase, with the N-terminal domain remaining folded, can refold robustly without chaperones. Complete unfolding causes Luciferase to get trapped in very stable non-native configurations involving interactions between N- and C-terminal residues. However, chaperones allow the completely unfolded Luciferase to refold quickly in AFM experiments, strongly suggesting that chaperones are able to sequester non-natively contacting residues. More generally, we suggest that many chaperones, rather than actively promoting the folding, mimic the ribosomal exit tunnel and physically separate protein domains, allowing them to fold in a cotranslational-like sequential process. PMID:25160632

  8. Toward Instituting a Chaperone Policy in Outpatient Pediatric Clinics

    ERIC Educational Resources Information Center

    Feldman, Kenneth W.; Jenkins, Carol; Laney, Tyler; Seidel, Kristy

    2009-01-01

    Objectives: We sought to evaluate child, parent and medical provider preferences for chaperones for outpatient encounters and to evaluate the acceptability and frequency of utilization following institution of a chaperone policy. Secondarily, we sought to understand what medical history and examinations teens consider "sensitive." Design: We…

  9. Molecular chaperones as rational drug targets for Parkinson's disease therapeutics.

    PubMed

    Kalia, S K; Kalia, L V; McLean, P J

    2010-12-01

    Parkinson's disease is a neurodegenerative movement disorder that is caused, in part, by the loss of dopaminergic neurons within the substantia nigra pars compacta of the basal ganglia. The presence of intracellular protein aggregates, known as Lewy bodies and Lewy neurites, within the surviving nigral neurons is the defining neuropathological feature of the disease. Accordingly, the identification of specific genes mutated in families with Parkinson's disease and of genetic susceptibility variants for idiopathic Parkinson's disease has implicated abnormalities in proteostasis, or the handling and elimination of misfolded proteins, in the pathogenesis of this neurodegenerative disorder. Protein folding and the refolding of misfolded proteins are regulated by a network of interactive molecules, known as the chaperone system, which is composed of molecular chaperones and co-chaperones. The chaperone system is intimately associated with the ubiquitin-proteasome system and the autophagy-lysosomal pathway which are responsible for elimination of misfolded proteins and protein quality control. In addition to their role in proteostasis, some chaperone molecules are involved in the regulation of cell death pathways. Here we review the role of the molecular chaperones Hsp70 and Hsp90, and the cochaperones Hsp40, BAG family members such as BAG5, CHIP and Hip in modulating neuronal death with a focus on dopaminergic neurodegeneration in Parkinson's disease. We also review current progress in preclinical studies aimed at targetting the chaperone system to prevent neurodegeneration. Finally, we discuss potential future chaperone-based therapeutics for the symptomatic treatment and possible disease modification of Parkinson's disease.

  10. Mitochondrial chaperones may be targets for anti-cancer drugs

    Cancer.gov

    Scientists at NCI have found that a mitochondrial chaperone protein, TRAP1, may act indirectly as a tumor suppressor as well as a novel target for developing anti-cancer drugs. Chaperone proteins, such as TRAP1, help other proteins adapt to stress, but sc

  11. Specific Hsp100 Chaperones Determine the Fate of the First Enzyme of the Plastidial Isoprenoid Pathway for Either Refolding or Degradation by the Stromal Clp Protease in Arabidopsis

    PubMed Central

    Pulido, Pablo; Llamas, Ernesto; Llorente, Briardo; Ventura, Salvador; Wright, Louwrance P.; Rodríguez-Concepción, Manuel

    2016-01-01

    The lifespan and activity of proteins depend on protein quality control systems formed by chaperones and proteases that ensure correct protein folding and prevent the formation of toxic aggregates. We previously found that the Arabidopsis thaliana J-protein J20 delivers inactive (misfolded) forms of the plastidial enzyme deoxyxylulose 5-phosphate synthase (DXS) to the Hsp70 chaperone for either proper folding or degradation. Here we show that the fate of Hsp70-bound DXS depends on pathways involving specific Hsp100 chaperones. Analysis of individual mutants for the four Hsp100 chaperones present in Arabidopsis chloroplasts showed increased levels of DXS proteins (but not transcripts) only in those defective in ClpC1 or ClpB3. However, the accumulated enzyme was active in the clpc1 mutant but inactive in clpb3 plants. Genetic evidence indicated that ClpC chaperones might be required for the unfolding of J20-delivered DXS protein coupled to degradation by the Clp protease. By contrast, biochemical and genetic approaches confirmed that Hsp70 and ClpB3 chaperones interact to collaborate in the refolding and activation of DXS. We conclude that specific J-proteins and Hsp100 chaperones act together with Hsp70 to recognize and deliver DXS to either reactivation (via ClpB3) or removal (via ClpC1) depending on the physiological status of the plastid. PMID:26815787

  12. Chaperones as potential therapeutics for Krabbe disease.

    PubMed

    Graziano, Adriana Carol Eleonora; Pannuzzo, Giovanna; Avola, Rosanna; Cardile, Venera

    2016-11-01

    Krabbe's disease (KD) is an autosomal recessive, neurodegenerative disorder. It is classified among the lysosomal storage diseases (LSDs). It was first described in , but the genetic defect for the galactocerebrosidase (GALC) gene was not discovered until the beginning of the 1970s, 20 years before the GALC cloning. Recently, in 2011, the crystal structures of the GALC enzyme and the GALC-product complex were obtained. For this, compared with other LSDs, the research on possible therapeutic interventions is much more recent. Thus, it is not surprising that some treatment options are still under preclinical investigation, whereas their relevance for other pathologies of the same group has already been tested in clinical studies. This is specifically the case for pharmacological chaperone therapy (PCT), a promising strategy for selectively correcting defective protein folding and trafficking and for enhancing enzyme activity by small molecules. These compounds bind directly to a partially folded biosynthetic intermediate, stabilize the protein, and allow completion of the folding process to yield a functional protein. Here, we review the chaperones that have demonstrated potential therapeutics during preclinical studies for KD, underscoring the requirement to invigorate research for KD-addressed PCT that will benefit from recent insights into the molecular understanding of GALC structure, drug design, and development in cellular models. © 2016 Wiley Periodicals, Inc.

  13. Structural and functional significance of the FGL sequence of the periplasmic chaperone Caf1M of Yersinia pestis.

    PubMed

    Chapman, D A; Zavialov, A V; Chernovskaya, T V; Karlyshev, A V; Zav'yalova, G A; Vasiliev, A M; Dudich, I V; Abramov, V M; Zav'yalov, V P; MacIntyre, S

    1999-04-01

    The periplasmic molecular chaperone Caf1M of Yersinia pestis is a typical representative of a subfamily of specific chaperones involved in assembly of surface adhesins with a very simple structure. One characteristic feature of this Caf1M-like subfamily is possession of an extended, variable sequence (termed FGL) between the F1 and subunit binding G1 beta-strands. In contrast, FGS subfamily members, characterized by PapD, have a short F1-G1 loop and are involved in assembly of complex pili. To elucidate the structural and functional significance of the FGL sequence, a mutant Caf1M molecule (dCaf1M), in which the 27 amino acid residues between the F1 and G1 beta-strands had been deleted, was constructed. Expression of the mutated caf1M in Escherichia coli resulted in accumulation of high levels of dCaf1M. The far-UV circular dichroism spectra of the mutant and wild-type proteins were indistinguishable and exhibited practically the same temperature and pH dependencies. Thus, the FGL sequence of Caf1M clearly does not contribute significantly to the stability of the protein conformation. Preferential cleavage of Caf1M by trypsin at Lys-119 confirmed surface exposure of this part of the FGL sequence in the isolated chaperone and periplasmic chaperone-subunit complex. There was no evidence of surface-localized Caf1 subunit in the presence of the Caf1A outer membrane protein and dCaf1M. In contrast to Caf1M, dCaf1M was not able to form a stable complex with Caf1 nor could it protect the subunit from proteolytic degradation in vivo. This demonstration that the FGL sequence is required for stable chaperone-subunit interaction, but not for folding of a stable chaperone, provides a sound basis for future detailed molecular analyses of the FGL subfamily of chaperones.

  14. Structural and Functional Significance of the FGL Sequence of the Periplasmic Chaperone Caf1M of Yersinia pestis

    PubMed Central

    Chapman, David A. G.; Zavialov, Anton V.; Chernovskaya, Tatiana V.; Karlyshev, Andrey V.; Zav’yalova, Galina A.; Vasiliev, Anatoly M.; Dudich, Igor V.; Abramov, Vyacheslav M.; Zav’yalov, Vladimir P.; MacIntyre, Sheila

    1999-01-01

    The periplasmic molecular chaperone Caf1M of Yersinia pestis is a typical representative of a subfamily of specific chaperones involved in assembly of surface adhesins with a very simple structure. One characteristic feature of this Caf1M-like subfamily is possession of an extended, variable sequence (termed FGL) between the F1 and subunit binding G1 β-strands. In contrast, FGS subfamily members, characterized by PapD, have a short F1-G1 loop and are involved in assembly of complex pili. To elucidate the structural and functional significance of the FGL sequence, a mutant Caf1M molecule (dCaf1M), in which the 27 amino acid residues between the F1 and G1 β-strands had been deleted, was constructed. Expression of the mutated caf1M in Escherichia coli resulted in accumulation of high levels of dCaf1M. The far-UV circular dichroism spectra of the mutant and wild-type proteins were indistinguishable and exhibited practically the same temperature and pH dependencies. Thus, the FGL sequence of Caf1M clearly does not contribute significantly to the stability of the protein conformation. Preferential cleavage of Caf1M by trypsin at Lys-119 confirmed surface exposure of this part of the FGL sequence in the isolated chaperone and periplasmic chaperone-subunit complex. There was no evidence of surface-localized Caf1 subunit in the presence of the Caf1A outer membrane protein and dCaf1M. In contrast to Caf1M, dCaf1M was not able to form a stable complex with Caf1 nor could it protect the subunit from proteolytic degradation in vivo. This demonstration that the FGL sequence is required for stable chaperone-subunit interaction, but not for folding of a stable chaperone, provides a sound basis for future detailed molecular analyses of the FGL subfamily of chaperones. PMID:10198004

  15. Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models.

    PubMed

    Sanchez-Martinez, Alvaro; Beavan, Michelle; Gegg, Matthew E; Chau, Kai-Yin; Whitworth, Alexander J; Schapira, Anthony H V

    2016-08-19

    GBA gene mutations are the greatest cause of Parkinson disease (PD). GBA encodes the lysosomal enzyme glucocerebrosidase (GCase) but the mechanisms by which loss of GCase contributes to PD remain unclear. Inhibition of autophagy and the generation of endoplasmic reticulum (ER) stress are both implicated. Mutant GCase can unfold in the ER and be degraded via the unfolded protein response, activating ER stress and reducing lysosomal GCase. Small molecule chaperones that cross the blood brain barrier help mutant GCase refold and traffic correctly to lysosomes are putative treatments for PD. We treated fibroblast cells from PD patients with heterozygous GBA mutations and Drosophila expressing human wild-type, N370S and L444P GBA with the molecular chaperones ambroxol and isofagomine. Both chaperones increased GCase levels and activity, but also GBA mRNA, in control and mutant GBA fibroblasts. Expression of mutated GBA in Drosophila resulted in dopaminergic neuronal loss, a progressive locomotor defect, abnormal aggregates in the ER and increased levels of the ER stress reporter Xbp1-EGFP. Treatment with both chaperones lowered ER stress and prevented the loss of motor function, providing proof of principle that small molecule chaperones can reverse mutant GBA-mediated ER stress in vivo and might prove effective for treating PD.

  16. Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models

    PubMed Central

    Sanchez-Martinez, Alvaro; Beavan, Michelle; Gegg, Matthew E.; Chau, Kai-Yin; Whitworth, Alexander J.; Schapira, Anthony H. V.

    2016-01-01

    GBA gene mutations are the greatest cause of Parkinson disease (PD). GBA encodes the lysosomal enzyme glucocerebrosidase (GCase) but the mechanisms by which loss of GCase contributes to PD remain unclear. Inhibition of autophagy and the generation of endoplasmic reticulum (ER) stress are both implicated. Mutant GCase can unfold in the ER and be degraded via the unfolded protein response, activating ER stress and reducing lysosomal GCase. Small molecule chaperones that cross the blood brain barrier help mutant GCase refold and traffic correctly to lysosomes are putative treatments for PD. We treated fibroblast cells from PD patients with heterozygous GBA mutations and Drosophila expressing human wild-type, N370S and L444P GBA with the molecular chaperones ambroxol and isofagomine. Both chaperones increased GCase levels and activity, but also GBA mRNA, in control and mutant GBA fibroblasts. Expression of mutated GBA in Drosophila resulted in dopaminergic neuronal loss, a progressive locomotor defect, abnormal aggregates in the ER and increased levels of the ER stress reporter Xbp1-EGFP. Treatment with both chaperones lowered ER stress and prevented the loss of motor function, providing proof of principle that small molecule chaperones can reverse mutant GBA-mediated ER stress in vivo and might prove effective for treating PD. PMID:27539639

  17. Cardiomyocyte ryanodine receptor degradation by chaperone-mediated autophagy

    PubMed Central

    Pedrozo, Zully; Torrealba, Natalia; Fernández, Carolina; Gatica, Damian; Toro, Barbra; Quiroga, Clara; Rodriguez, Andrea E.; Sanchez, Gina; Gillette, Thomas G.; Hill, Joseph A.; Donoso, Paulina; Lavandero, Sergio

    2013-01-01

    Time for primary review: 15 days Aims Chaperone-mediated autophagy (CMA) is a selective mechanism for the degradation of soluble cytosolic proteins bearing the sequence KFERQ. These proteins are targeted by chaperones and delivered to lysosomes where they are translocated into the lysosomal lumen and degraded via the lysosome-associated membrane protein type 2A (LAMP-2A). Mutations in LAMP2 that inhibit autophagy result in Danon disease characterized by hypertrophic cardiomyopathy. The ryanodine receptor type 2 (RyR2) plays a key role in cardiomyocyte excitation–contraction and its dysfunction can lead to cardiac failure. Whether RyR2 is degraded by CMA is unknown. Methods and results To induce CMA, cultured neonatal rat cardiomyocytes were treated with geldanamycin (GA) to promote protein degradation through this pathway. GA increased LAMP-2A levels together with its redistribution and colocalization with Hsc70 in the perinuclear region, changes indicative of CMA activation. The inhibition of lysosomes but not proteasomes prevented the loss of RyR2. The recovery of RyR2 content after incubation with GA by siRNA targeting LAMP-2A suggests that RyR2 is degraded via CMA. In silico analysis also revealed that the RyR2 sequence harbours six KFERQ motifs which are required for the recognition Hsc70 and its degradation via CMA. Our data suggest that presenilins are involved in RyR2 degradation by CMA. Conclusion These findings are consistent with a model in which oxidative damage of the RyR2 targets it for turnover by presenilins and CMA, which could lead to removal of damaged or leaky RyR2 channels. PMID:23404999

  18. Epiplakin attenuates experimental mouse liver injury by chaperoning keratin reorganization

    PubMed Central

    Szabo, Sandra; Wögenstein, Karl L.; Österreicher, Christoph H.; Guldiken, Nurdan; Chen, Yu; Doler, Carina; Wiche, Gerhard; Boor, Peter; Haybaeck, Johannes; Strnad, Pavel; Fuchs, Peter

    2015-01-01

    Background & Aims Epiplakin is a member of the plakin protein family and exclusively expressed in epithelial tissues where it binds to keratins. Epiplakin-deficient (Eppk1−/−) mice displayed no obvious spontaneous phenotype, but their keratinocytes showed a faster keratin network breakdown in response to stress. The role of epiplakin in the stressed liver remained to be elucidated. Methods Wild-type (WT) and Eppk1−/− mice were subjected to common bile duct ligation (CBDL) or fed with a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-containing diet. The importance of epiplakin during keratin reorganization was assessed in primary hepatocytes. Results Our experiments revealed that epiplakin is expressed in hepatocytes and cholangiocytes, and binds to keratin 8 (K8) and K18 via multiple domains. In several liver stress models epiplakin and K8 genes displayed identical expression patterns and transgenic K8 overexpression resulted in elevated hepatic epiplakin levels. After CBDL and DDC treatment, Eppk1−/− mice developed a more pronounced liver injury and their livers contained larger amounts of hepatocellular keratin granules, indicating impaired disease-induced keratin network reorganization. In line with these findings, primary Eppk1−/− hepatocytes showed increased formation of keratin aggregates after treatment with the phosphatase inhibitor okadaic acid, a phenotype which was rescued by the chemical chaperone trimethylamine N-oxide (TMAO). Finally, transfection experiments revealed that Eppk1−/− primary hepatocytes were less able to tolerate forced K8 overexpression and that TMAO treatment rescued this phenotype. Conclusion Our data indicate that epiplakin plays a protective role during experimental liver injuries by chaperoning disease-induced keratin reorganization. PMID:25617501

  19. THE PROTEIN TARGETING FACTOR GET3 FUNCTIONS AS AN ATP-INDEPENDENT CHAPERONE UNDER OXIDATIVE STRESS CONDITIONS

    PubMed Central

    Voth, Wilhelm; Schick, Markus; Gates, Stephanie; Li, Sheng; Vilardi, Fabio; Gostimskaya, Irina; Southworth, Daniel R.; Schwappach, Blanche; Jakob, Ursula

    2014-01-01

    Summary Exposure of cells to reactive oxygen species (ROS) causes a rapid and significant drop in intracellular ATP-levels. This energy depletion negatively affects ATP-dependent chaperone systems, making ROS-mediated protein unfolding and aggregation a potentially very challenging problem. Here we show that Get3, a protein involved in ATP-dependent targeting of tail-anchored (TA) proteins under non-stress conditions, turns into an effective ATP-in dependent chaperone when oxidized. Activation of Get3’s chaperone function, which is a fully reversible process, involves disulfide bond formation, metal release and its conversion into distinct, higher oligomeric structures. Mutational studies demonstrate that the chaperone activity of Get3 is functionally distinct from and likely mutually exclusive with its targeting function, and responsible for the oxidative stress sensitive phenotype that has long been noted for yeast cells lacking functional Get3. These results provide convincing evidence that Get3 functions as a redox regulated chaperone, effectively protecting eukaryotic cells against oxidative protein damage. PMID:25242142

  20. Goniothalamin enhances the ATPase activity of the molecular chaperone Hsp90 but inhibits its chaperone activity.

    PubMed

    Yokoyama, Yuhei; Ohtaki, Aguru; Jantan, Ibrahim; Yohda, Masafumi; Nakamoto, Hitoshi

    2015-03-01

    Hsp90 is an ATP-dependent molecular chaperone that is involved in important cellular pathways such as signal transduction pathways. It is a potential cancer drug target because it plays a critical role for stabilization and activation of oncoproteins. Thus, small molecule compounds that control the Hsp90 function are useful to elucidate potential lead compounds against cancer. We studied effect of a naturally occurring styryl-lactone goniothalamin on the activity of Hsp90. Although many drugs targeting Hsp90 inhibit the ATPase activity of Hsp90, goniothalamin enhanced rather than inhibited the ATPase activity of a cyanobacterial Hsp90 (HtpG) and a yeast Hsp90. It increased both K(m) and k(cat) of the Hsp90s. Domain competition assays and tryptophan fluorescence measurements with various truncated derivatives of HtpG indicated that goniothalamin binds to the N-terminal domain of HtpG. Goniothalamin did not influence on the interaction of HtpG with a non-native protein or the anti-aggregation activity of HtpG significantly. However, it inhibited the activity of HtpG that assists refolding of a non-native protein in cooperation with the Hsp70 chaperone system. This is the first report to show that a small molecule that binds to the N-terminal domain of Hsp90 activates its ATPase activity, while inhibiting the chaperone function of Hsp90.

  1. Co-chaperone HSJ1a dually regulates the proteasomal degradation of ataxin-3.

    PubMed

    Gao, Xue-Chao; Zhou, Chen-Jie; Zhou, Zi-Ren; Zhang, Yu-Hang; Zheng, Xue-Ming; Song, Ai-Xin; Hu, Hong-Yu

    2011-01-01

    Homo sapiens J domain protein (HSJ1) is a J-domain containing co-chaperone that is known to stimulate ATPase activity of HSP70 chaperone, while it also harbors two ubiquitin (Ub)-interacting motifs (UIMs) that may bind with ubiquitinated substrates and potentially function in protein degradation. We studied the effects of HSJ1a on the protein levels of both normal and the disease--related polyQ-expanded forms of ataxin-3 (Atx3) in cells. The results demonstrate that the N-terminal J-domain and the C-terminal UIM domain of HSJ1a exert opposite functions in regulating the protein level of cellular overexpressed Atx3. This dual regulation is dependent on the binding of the J-domain with HSP70, and the UIM domain with polyUb chains. The J-domain down-regulates the protein level of Atx3 through HSP70 mediated proteasomal degradation, while the UIM domain may alleviate this process via maintaining the ubiquitinated Atx3. We propose that co-chaperone HSJ1a orchestrates the balance of substrates in stressed cells in a Yin-Yang manner.

  2. Promiscuous Substrate Recognition in Folding and Assembly Activities of the Trigger Factor Chaperone

    SciTech Connect

    Martinez-Hackert, E.; Hendrickson, W

    2009-01-01

    Trigger factor (TF) is a molecular chaperone that binds to bacterial ribosomes where it contacts emerging nascent chains, but TF is also abundant free in the cytosol where its activity is less well characterized. In vitro studies show that TF promotes protein refolding. We find here that ribosome-free TF stably associates with and rescues from misfolding a large repertoire of full-length proteins. We identify over 170 members of this cytosolic Escherichia coli TF substrate proteome, including ribosomal protein S7. We analyzed the biochemical properties of a TF:S7 complex from Thermotoga maritima and determined its crystal structure. Thereby, we obtained an atomic-level picture of a promiscuous chaperone in complex with a physiological substrate protein. The structure of the complex reveals the molecular basis of substrate recognition by TF, indicates how TF could accelerate protein folding, and suggests a role for TF in the biogenesis of protein complexes.

  3. Histone chaperones: assisting histone traffic and nucleosome dynamics.

    PubMed

    Gurard-Levin, Zachary A; Quivy, Jean-Pierre; Almouzni, Geneviève

    2014-01-01

    The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.

  4. Chaperone-assisted refolding of Escherichia coli maltodextrin glucosidase.

    PubMed

    Paul, Subhankar; Punam, Shashikala; Chaudhuri, Tapan K

    2007-11-01

    In vitro refolding of maltodextrin glucosidase, a 69 kDa monomeric Escherichia coli protein, was studied in the presence of glycerol, dimethylsulfoxide, trimethylamine-N-oxide, ethylene glycol, trehalose, proline and chaperonins GroEL and GroES. Different osmolytes, namely proline, glycerol, trimethylamine-N-oxide and dimethylsulfoxide, also known as chemical chaperones, assist in protein folding through effective inhibition of the aggregation process. In the present study, it was observed that a few chemical chaperones effectively reduced the aggregation process of maltodextrin glucosidase and hence the in vitro refolding was substantially enhanced, with ethylene glycol being the exception. Although, the highest recovery of active maltodextrin glucosidase was achieved through the ATP-mediated GroEL/GroES-assisted refolding of denatured protein, the yield of correctly folded protein from glycerol- or proline-assisted spontaneous refolding process was closer to the chaperonin-assisted refolding. It was also observed that the combined application of chemical chaperones and molecular chaperone was more productive than their individual contribution towards the in vitro refolding of maltodextrin glucosidase. The chemical chaperones, except ethylene glycol, were found to provide different degrees of protection to maltodextrin glucosidase from thermal denaturation, whereas proline caused the highest protection. The observations from the present studies conclusively demonstrate that chemical or molecular chaperones, or the combination of both chaperones, could be used in the efficient refolding of recombinant E. coli maltodextrin glucosidase, which enhances the possibility of identifying or designing suitable small molecules that can act as chemical chaperones in the efficient refolding of various aggregate-prone proteins of commercial and medical importance.

  5. Structural basis for the antifolding activity of a molecular chaperone

    PubMed Central

    Huang, Chengdong; Rossi, Paolo; Saio, Tomohide; Kalodimos, Charalampos G.

    2016-01-01

    Molecular chaperones act on non-native proteins in the cell to prevent their aggregation, premature folding or misfolding. Different chaperones often exert distinct effects, such as acceleration or delay of folding, on client proteins via mechanisms that are poorly understood. Here we report the solution structure of SecB, a chaperone that exhibits strong antifolding activity, in complex with alkaline phosphatase (PhoA) and maltose binding protein (MBP) captured in their unfolded states. SecB uses long hydrophobic grooves that run around its disk-like shape to recognize and bind to multiple hydrophobic segments across the length of the non-native proteins. The multivalent binding mode results in proteins wrapping around SecB. This unique complex architecture alters the kinetics of protein binding to SecB and confers strong antifolding activity on the chaperone. The data show how the different architectures of chaperones result in distinct binding modes with non-native proteins that ultimately define the activity of the chaperone. PMID:27501151

  6. Structural basis for the antifolding activity of a molecular chaperone

    NASA Astrophysics Data System (ADS)

    Huang, Chengdong; Rossi, Paolo; Saio, Tomohide; Kalodimos, Charalampos G.

    2016-09-01

    Molecular chaperones act on non-native proteins in the cell to prevent their aggregation, premature folding or misfolding. Different chaperones often exert distinct effects, such as acceleration or delay of folding, on client proteins via mechanisms that are poorly understood. Here we report the solution structure of SecB, a chaperone that exhibits strong antifolding activity, in complex with alkaline phosphatase and maltose-binding protein captured in their unfolded states. SecB uses long hydrophobic grooves that run around its disk-like shape to recognize and bind to multiple hydrophobic segments across the length of non-native proteins. The multivalent binding mode results in proteins wrapping around SecB. This unique complex architecture alters the kinetics of protein binding to SecB and confers strong antifolding activity on the chaperone. The data show how the different architectures of chaperones result in distinct binding modes with non-native proteins that ultimately define the activity of the chaperone.

  7. Molecular chaperone-mediated nuclear protein dynamics.

    PubMed

    Echtenkamp, Frank J; Freeman, Brian C

    2014-05-01

    Homeostasis requires effective action of numerous biological pathways including those working along a genome. The variety of processes functioning in the nucleus is considerable, yet the number of employed factors eclipses this total. Ideally, individual components assemble into distinct complexes and serially operate along a pathway to perform work. Adding to the complexity is a multitude of fluctuating internal and external signals that must be monitored to initiate, continue or halt individual activities. While cooperative interactions between proteins of the same process provide a mechanism for rapid and precise assembly, the inherent stability of such organized structures interferes with the proper timing of biological events. Further prolonging the longevity of biological complexes are crowding effects resulting from the high concentration of intracellular macromolecules. Hence, accessory proteins are required to destabilize the various assemblies to efficiently transition between structures, avoid off-pathway competitive interactions, and to terminate pathway activity. We suggest that molecular chaperones have evolved, in part, to manage these challenges by fostering a general and continuous dynamic protein environment within the nucleus.

  8. Multiscale Modeling of a Conditionally Disordered pH-Sensing Chaperone

    PubMed Central

    Ahlstrom, Logan S.; Law, Sean M.; Dickson, Alex; Brooks, Charles L.

    2015-01-01

    The pH-sensing chaperone HdeA promotes the survival of enteropathogenic bacteria during transit through the harshly acidic environment of the mammalian stomach. At low pH, HdeA transitions from an inactive, folded, dimer to chaperone-active, disordered, monomers to protect against the acid-induced aggregation of periplasmic proteins. Toward achieving a detailed mechanistic understanding of the pH response of HdeA, we develop a multiscale modeling approach to capture its pH-dependent thermodynamics. Our approach combines pKa calculations from all-atom constant pH molecular dynamics simulations with coarse-grained modeling, and yields new, atomic-level, insights into HdeA chaperone function that can be directly tested by experiment. “pH triggers” that significantly destabilize the dimer are each located near the N-terminus of a helix, suggesting that their neutralization at low pH destabilizes the helix macrodipole as a mechanism of monomer disordering. Moreover, we observe a non-monotonic change in the pH-dependent stability of HdeA, with maximal stability of the dimer near pH 5. This affect is attributed to the protonation Glu37, which exhibits an anomalously high pKa value and is located within the hydrophobic dimer interface. Finally, the pH-dependent binding pathway of HdeA comprises a partially unfolded, dimeric intermediate that becomes increasingly stable relative to the native dimer at lower pH values and displays key structural features for chaperone-substrate interaction. We anticipate that the insights from our model will help inform ongoing NMR and biochemical investigations. PMID:25584862

  9. Hsp31 Is a Stress Response Chaperone That Intervenes in the Protein Misfolding Process*

    PubMed Central

    Tsai, Chai-jui; Aslam, Kiran; Drendel, Holli M.; Asiago, Josephat M.; Goode, Kourtney M.; Paul, Lake N.; Rochet, Jean-Christophe; Hazbun, Tony R.

    2015-01-01

    The Saccharomyces cerevisiae heat shock protein Hsp31 is a stress-inducible homodimeric protein that is involved in diauxic shift reprogramming and has glyoxalase activity. We show that substoichiometric concentrations of Hsp31 can abrogate aggregation of a broad array of substrates in vitro. Hsp31 also modulates the aggregation of α-synuclein (αSyn), a target of the chaperone activity of human DJ-1, an Hsp31 homolog. We demonstrate that Hsp31 is able to suppress the in vitro fibrillization or aggregation of αSyn, citrate synthase and insulin. Chaperone activity was also observed in vivo because constitutive overexpression of Hsp31 reduced the incidence of αSyn cytoplasmic foci, and yeast cells were rescued from αSyn-generated proteotoxicity upon Hsp31 overexpression. Moreover, we showed that Hsp31 protein levels are increased by H2O2, in the diauxic phase of normal growth conditions, and in cells under αSyn-mediated proteotoxic stress. We show that Hsp31 chaperone activity and not the methylglyoxalase activity or the autophagy pathway drives the protective effects. We also demonstrate reduced aggregation of the Sup35 prion domain, PrD-Sup35, as visualized by fluorescent protein fusions. In addition, Hsp31 acts on its substrates prior to the formation of large aggregates because Hsp31 does not mutually localize with prion aggregates, and it prevents the formation of detectable in vitro αSyn fibrils. These studies establish that the protective role of Hsp31 against cellular stress is achieved by chaperone activity that intervenes early in the protein misfolding process and is effective on a wide spectrum of substrate proteins, including αSyn and prion proteins. PMID:26306045

  10. Multiscale modeling of a conditionally disordered pH-sensing chaperone.

    PubMed

    Ahlstrom, Logan S; Law, Sean M; Dickson, Alex; Brooks, Charles L

    2015-04-24

    The pH-sensing chaperone HdeA promotes the survival of enteropathogenic bacteria during transit through the harshly acidic environment of the mammalian stomach. At low pH, HdeA transitions from an inactive, folded, dimer to chaperone-active, disordered, monomers to protect against the acid-induced aggregation of periplasmic proteins. Toward achieving a detailed mechanistic understanding of the pH response of HdeA, we develop a multiscale modeling approach to capture its pH-dependent thermodynamics. Our approach combines pK(a) (logarithmic acid dissociation constant) calculations from all-atom constant pH molecular dynamics simulations with coarse-grained modeling and yields new, atomic-level, insights into HdeA chaperone function that can be directly tested by experiment. "pH triggers" that significantly destabilize the dimer are each located near the N-terminus of a helix, suggesting that their neutralization at low pH destabilizes the helix macrodipole as a mechanism of monomer disordering. Moreover, we observe a non-monotonic change in the pH-dependent stability of HdeA, with maximal stability of the dimer near pH5. This affect is attributed to the protonation Glu37, which exhibits an anomalously high pK(a) value and is located within the hydrophobic dimer interface. Finally, the pH-dependent binding pathway of HdeA comprises a partially unfolded, dimeric intermediate that becomes increasingly stable relative to the native dimer at lower pH values and displays key structural features for chaperone-substrate interaction. We anticipate that the insights from our model will help inform ongoing NMR and biochemical investigations.

  11. Type III secretion chaperones of Pseudomonas syringae protect effectors from Lon-associated degradation.

    PubMed

    Losada, Liliana C; Hutcheson, Steven W

    2005-02-01

    The hrp type III secretion system (TTSS) of Pseudomonas syringae translocates effector proteins into the cytoplasm of host cells. Proteolysis of HrpR by Lon has been shown to negatively regulate the hrp TTSS. The inability to bypass Lon-associated effects on the regulatory system by ectopic expression of the known regulators suggested a second site of action for Lon in TTSS-dependent effector secretion. In this study we report that TTSS-dependent effectors are subject to the proteolytic degradation that appears to be rate-limiting to secretion. The half-lives of the effectors AvrPto, AvrRpt2, HopPsyA, HopPsyB1, HopPtoB2, HopPsyV1, HopPtoG and HopPtoM were substantially higher in bacteria lacking Lon. TTSS-dependent secretion of several effectors was enhanced from Lon mutants. A primary role for chaperones appears to be protection of effectors from Lon-associated degradation prior to secretion. When coexpressed with their cognate chaperone, HopPsyB1, HopPsyV1 and HopPtoM were at least 10 times more stable in strains expressing Lon. Distinct Lon-targeting and chaperone-binding domains were identified in HopPtoM. The results imply that Lon is involved at two distinct levels in the regulation of the P. syringae TTSS: regulation of assembly of the secreton and modulation of effector secretion.

  12. Chemical Chaperones Improve Protein Secretion and Rescue Mutant Factor VIII in Mice with Hemophilia A

    PubMed Central

    Milanov, Peter; Abriss, Daniela; Ungerer, Christopher; Quade-Lyssy, Patricia; Simpson, Jeremy C.; Pepperkok, Rainer; Seifried, Erhard; Tonn, Torsten

    2012-01-01

    Inefficient intracellular protein trafficking is a critical issue in the pathogenesis of a variety of diseases and in recombinant protein production. Here we investigated the trafficking of factor VIII (FVIII), which is affected in the coagulation disorder hemophilia A. We hypothesized that chemical chaperones may be useful to enhance folding and processing of FVIII in recombinant protein production, and as a therapeutic approach in patients with impaired FVIII secretion. A tagged B-domain-deleted version of human FVIII was expressed in cultured Chinese Hamster Ovary cells to mimic the industrial production of this important protein. Of several chemical chaperones tested, the addition of betaine resulted in increased secretion of FVIII, by increasing solubility of intracellular FVIII aggregates and improving transport from endoplasmic reticulum to Golgi. Similar results were obtained in experiments monitoring recombinant full-length FVIII. Oral betaine administration also increased FVIII and factor IX (FIX) plasma levels in FVIII or FIX knockout mice following gene transfer. Moreover, in vitro and in vivo applications of betaine were also able to rescue a trafficking-defective FVIII mutant (FVIIIQ305P). We conclude that chemical chaperones such as betaine might represent a useful treatment concept for hemophilia and other diseases caused by deficient intracellular protein trafficking. PMID:22973456

  13. Roles of silkworm endoplasmic reticulum chaperones in the secretion of recombinant proteins expressed by baculovirus system.

    PubMed

    Imai, Saki; Kusakabe, Takahiro; Xu, Jian; Li, Zhiqing; Shirai, Shintaro; Mon, Hiroaki; Morokuma, Daisuke; Lee, Jae Man

    2015-11-01

    Baculovirus expression vector system (BEVS) is widely used for production of recombinant eukaryotic proteins in insect larvae or cultured cells. BEVS has advantages over bacterial expression system in producing post-translationally modified secreted proteins. However, for some unknown reason, it is very difficult for insects to secrete sufficiently for certain proteins of interest. To understand the reasons why insect cells fail to secrete some kinds of recombinant proteins, we here employed three mammalian proteins as targets, EPO, HGF, and Wnt3A, with different secretion levels in BEVS and investigated their mRNA transcriptions from the viral genome, subcellular localizations, and interactions with silkworm ER chaperones. Moreover, we observed that no significantly influence on the secretion amounts of all three proteins when depleting or overexpressing most endogenous ER chaperone genes in cultured silkworm cells. However, among all detected ER chaperones, the depletion of BiP severely decreased the recombinant protein secretion in BEVS, indicating the possible central role of Bip in silkworm secretion pathway.

  14. Molecular Chaperone Calnexin Regulates the Function of Drosophila Sodium Channel Paralytic

    PubMed Central

    Xiao, Xi; Chen, Changyan; Yu, Tian-Ming; Ou, Jiayao; Rui, Menglong; Zhai, Yuanfen; He, Yijing; Xue, Lei; Ho, Margaret S.

    2017-01-01

    Neuronal activity mediated by voltage-gated channels provides the basis for higher-order behavioral tasks that orchestrate life. Chaperone-mediated regulation, one of the major means to control protein quality and function, is an essential route for controlling channel activity. Here we present evidence that Drosophila ER chaperone Calnexin colocalizes and interacts with the α subunit of sodium channel Paralytic. Co-immunoprecipitation analysis indicates that Calnexin interacts with Paralytic protein variants that contain glycosylation sites Asn313, 325, 343, 1463, and 1482. Downregulation of Calnexin expression results in a decrease in Paralytic protein levels, whereas overexpression of the Calnexin C-terminal calcium-binding domain triggers an increase reversely. Genetic analysis using adult climbing, seizure-induced paralysis, and neuromuscular junction indicates that lack of Calnexin expression enhances Paralytic-mediated locomotor deficits, suppresses Paralytic-mediated ghost bouton formation, and regulates minature excitatory junction potentials (mEJP) frequency and latency time. Taken together, our findings demonstrate a need for chaperone-mediated regulation on channel activity during locomotor control, providing the molecular basis for channlopathies such as epilepsy. PMID:28326013

  15. Pharmacological Chaperone Therapy: Preclinical Development, Clinical Translation, and Prospects for the Treatment of Lysosomal Storage Disorders

    PubMed Central

    Parenti, Giancarlo; Andria, Generoso; Valenzano, Kenneth J

    2015-01-01

    Lysosomal storage disorders (LSDs) are a group of inborn metabolic diseases caused by mutations in genes that encode proteins involved in different lysosomal functions, in most instances acidic hydrolases. Different therapeutic approaches have been developed to treat these disorders. Pharmacological chaperone therapy (PCT) is an emerging approach based on small-molecule ligands that selectively bind and stabilize mutant enzymes, increase their cellular levels, and improve lysosomal trafficking and activity. Compared to other approaches, PCT shows advantages, particularly in terms of oral administration, broad biodistribution, and positive impact on patients' quality of life. After preclinical in vitro and in vivo studies, PCT is now being translated in the first clinical trials, either as monotherapy or in combination with enzyme replacement therapy, for some of the most prevalent LSDs. For some LSDs, the results of the first clinical trials are encouraging and warrant further development. Future research in the field of PCT will be directed toward the identification of novel chaperones, including new allosteric drugs, and the exploitation of synergies between chaperone treatment and other therapeutic approaches. PMID:25881001

  16. Pharmacological Chaperone Therapy: Preclinical Development, Clinical Translation, and Prospects for the Treatment of Lysosomal Storage Disorders.

    PubMed

    Parenti, Giancarlo; Andria, Generoso; Valenzano, Kenneth J

    2015-07-01

    Lysosomal storage disorders (LSDs) are a group of inborn metabolic diseases caused by mutations in genes that encode proteins involved in different lysosomal functions, in most instances acidic hydrolases. Different therapeutic approaches have been developed to treat these disorders. Pharmacological chaperone therapy (PCT) is an emerging approach based on small-molecule ligands that selectively bind and stabilize mutant enzymes, increase their cellular levels, and improve lysosomal trafficking and activity. Compared to other approaches, PCT shows advantages, particularly in terms of oral administration, broad biodistribution, and positive impact on patients' quality of life. After preclinical in vitro and in vivo studies, PCT is now being translated in the first clinical trials, either as monotherapy or in combination with enzyme replacement therapy, for some of the most prevalent LSDs. For some LSDs, the results of the first clinical trials are encouraging and warrant further development. Future research in the field of PCT will be directed toward the identification of novel chaperones, including new allosteric drugs, and the exploitation of synergies between chaperone treatment and other therapeutic approaches.

  17. Molecular chaperones encoded by a reduced nucleus: the cryptomonad nucleomorph.

    PubMed

    Archibald, J M; Cavalier-Smith, T; Maier, U; Douglas, S

    2001-06-01

    Molecular chaperones mediate the correct folding of nascent or denatured proteins and are found in both the organelles and cytoplasm of eukaryotic cells. Cryptomonad algae are unusual in possessing an extra cytoplasmic compartment (the periplastid space), the result of having engulfed and retained a photosynthetic eukaryote. Within the periplastid space is a diminutive nucleus (the nucleomorph) that encodes mostly genes for its own expression as well as a few needed by the plastid. Two plastid-encoded chaperones (GroEL and DnaK) and a nucleomorph-encoded chaperone (Cpn60) have been reported from the cryptomonad, Guillardia theta. Here we analyse G. theta nucleomorph genes for members of the cytosolic HSP70 and HSP90 families of molecular chaperones, a heat shock transcription factor (HSF), and all eight subunits of the group II chaperonin, CCT. These are presumably all active in the periplastid space, assisting in the maturation of polypeptides required by the cell; we propose a central role for them also in the structure and assembly of a putative relict mitotic apparatus. Curiously, none of the genes for co-chaperones of HSP70, HSP90, or CCT have been detected in the nucleomorph genome; they are either not needed or are encoded in the host nuclear genome and targeted back into the periplastid space. Endoplasmic reticulum (ER) homologs of HSP70 and HSP90 are also not present. Striking differences in the degree of conservation of the various nucleomorph-encoded molecular chaperones were observed. While the G. theta HSP70 and HSP90 homologs are well conserved, each of the eight CCT subunits (alpha, beta, gamma, delta, epsilon, eta, theta, and zeta) is remarkably divergent. Such differences are likely evidence for reduced/different functional constraints on the various molecular chaperones functioning in the periplastid space.

  18. Fab Chaperone-Assisted RNA Crystallography (Fab CARC).

    PubMed

    Sherman, Eileen; Archer, Jennifer; Ye, Jing-Dong

    2016-01-01

    Recent discovery of structured RNAs such as ribozymes and riboswitches shows that there is still much to learn about the structure and function of RNAs. Knowledge learned can be employed in both biochemical research and clinical applications. X-ray crystallography gives unparalleled atomic-level structural detail from which functional inferences can be deduced. However, the difficulty in obtaining high-quality crystals and their phasing information make it a very challenging task. RNA crystallography is particularly arduous due to several factors such as RNA's paucity of surface chemical diversity, lability, repetitive anionic backbone, and flexibility, all of which are counterproductive to crystal packing. Here we describe Fab chaperone assisted RNA crystallography (CARC), a systematic technique to increase RNA crystallography success by facilitating crystal packing as well as expediting phase determination through molecular replacement of conserved Fab domains. Major steps described in this chapter include selection of a synthetic Fab library displayed on M13 phage against a structured RNA crystallization target, ELISA for initial choice of binding Fabs, Fab expression followed by protein A affinity then cation exchange chromatography purification, final choice of Fab by binding specificity and affinity as determined by a dot blot assay, and lastly gel filtration purification of a large quantity of chosen Fabs for crystallization.

  19. Bacterial Discrimination by FISH using Molecular Chaperon GroE

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Maruyama, A.; Kurusu, Y.

    2004-12-01

    FISH(Fluorescence In Situ hybridization) is a powerful method for the analysis of the phylogenetic classification of microorganism in the environment. In many cases, 16s rRNA sequences of microorganisms are employed as target probe. Here we showed that novel probe was used in FISH in order to discriminate among the bacteria including psychrophile, mesophile, and thermophile. Molecular Chaperon GroE is a best characterized protein based on Escherichia coli and essential for bacterial proliferation. In E. coli, the amount of GroEL protein per cell reaches to about 5% of total cellualr protein at heat-shock response. This response occurred at transcription levels, the amount of groEL mRNA increases at about 10-fold per cell, reaches to 0.4% of total synthesized RNA. Therefore, we considered that groEL gene was employed FISH analysis as a target probe. Moreover, we found that Gly-Gly-Met (GGM) repeats in the carboxy-terminal of GroEL strongly conserved among psychrophile and mesophile, but not thermophile. In this report, we attempted to discriminate among the bacteria including psychrophile, mesophile, and thermophile by FISH using the specific sequence of GroEL as a probe. Furthermore, we proposed the novel phylogenetic trees based on the amino acids sequences of carboxy-terminal of GroEL for bacterial evolution by temperature adaptation.

  20. A new perspective in Parkinson's disease, chaperone-mediated autophagy.

    PubMed

    Li, Boyu; Zhang, Yun; Yuan, Yuhe; Chen, Naihong

    2011-05-01

    Parkinson's disease (PD) is an age-related neurodegenerative disease characterized by loss of dopaminergic neurons and aggregation of alpha-synuclein. Although the role of alpha-synuclein in the pathology of PD is still unclear, the fact that its aggregation contributes to the loss of dopaminergic neurons has been confirmed. Therefore, controlling the alpha-synuclein protein level may be critical for PD pathogenesis and may provide potential therapeutics. Wild-type alpha-synuclein is physiologically degraded by chaperone-mediated autophagy (CMA), and dysfunction of CMA results in alpha-synuclein aggregation and compensative macroautophagy activation which finally leads to cell death. Therefore, CMA may participate in PD pathogenesis as a very important factor, and up-regulating CMA activity could degrade overloaded alpha-synuclein. In view of potential compensative effects, maintenance of the balance of CMA activity will be another major challenge in the future development of the therapeutic strategy. Herein we review the current knowledge of the role of CMA in PD.

  1. Inhibitors of the AAA+ Chaperone p97

    PubMed Central

    Chapman, Eli; Maksim, Nick; de la Cruz, Fabian; La Clair, James J.

    2015-01-01

    It is remarkable that a pathway as ubiquitous as protein quality control can be targeted to treat cancer. Bortezomib, an inhibitor of the proteasome, was first approved by the US Food and Drug Administration (FDA) more than 10 years ago to treat refractory myeloma and later extended to lymphoma. Its use has increased the survival rate of myeloma patients by as much as three years. This success was followed with the recent accelerated approval of the natural product derived proteasome inhibitor carfilzomib (Kyprolis®), which is used to treat patients with bortezomib-resistant multiple myeloma. The success of these two drugs has validated protein quality control as a viable target to fight select cancers, but begs the question why are proteasome inhibitors limited to lymphoma and myeloma? More recently, these limitations have encouraged the search for additional targets within the protein quality control system that might offer heightened cancer cell specificity, enhanced clinical utility, a lower rate of resistance, reduced toxicity, and mitigated side effects. One promising target is p97, an ATPase associated with various cellular activities (AAA+) chaperone. p97 figures prominently in protein quality control as well as serving a variety of other cellular functions associated with cancer. More than a decade ago, it was determined that up-regulation of p97 in many forms of cancer correlates with a poor clinical outcome. Since these initial discoveries, a mechanistic explanation for this observation has been partially illuminated, but details are lacking. Understandably, given this clinical correlation, myriad roles within the cell, and its importance in protein quality control, p97 has emerged as a potential therapeutic target. This review provides an overview of efforts towards the discovery of small molecule inhibitors of p97, offering a synopsis of efforts that parallel the excellent reviews that currently exist on p97 structure, function, and physiology. PMID

  2. A Novel Method for Assessing the Chaperone Activity of Proteins

    PubMed Central

    Hristozova, Nevena; Tompa, Peter; Kovacs, Denes

    2016-01-01

    Protein chaperones are molecular machines which function both during homeostasis and stress conditions in all living organisms. Depending on their specific function, molecular chaperones are involved in a plethora of cellular processes by playing key roles in nascent protein chain folding, transport and quality control. Among stress protein families–molecules expressed during adverse conditions, infection, and diseases–chaperones are highly abundant. Their molecular functions range from stabilizing stress-susceptible molecules and membranes to assisting the refolding of stress-damaged proteins, thereby acting as protective barriers against cellular damage. Here we propose a novel technique to test and measure the capability for protective activity of known and putative chaperones in a semi-high throughput manner on a plate reader. The current state of the art does not allow the in vitro measurements of chaperone activity in a highly parallel manner with high accuracy or high reproducibility, thus we believe that the method we report will be of significant benefit in this direction. The use of this method may lead to a considerable increase in the number of experimentally verified proteins with such functions, and may also allow the dissection of their molecular mechanism for a better understanding of their function. PMID:27564234

  3. Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice.

    PubMed

    Cummings, C J; Sun, Y; Opal, P; Antalffy, B; Mestril, R; Orr, H T; Dillmann, W H; Zoghbi, H Y

    2001-07-01

    Many neurodegenerative diseases are caused by gain-of-function mechanisms in which the disease-causing protein is altered, becomes toxic to the cell, and aggregates. Among these 'proteinopathies' are Alzheimer's and Parkinson's disease, prion disorders and polyglutamine diseases. Members of this latter group, also known as triplet repeat diseases, are caused by the expansion of unstable CAG repeats coding for glutamine within the respective proteins. Spinocerebellar ataxia type 1 (SCA1) is one such disease, characterized by loss of motor coordination due to the degeneration of cerebellar Purkinje cells and brain stem neurons. In SCA1 and several other polyglutamine diseases, the expanded protein aggregates into nuclear inclusions (NIs). Because these NIs accumulate molecular chaperones, ubiquitin and proteasomal subunits--all components of the cellular protein re-folding and degradation machinery--we hypothesized that protein misfolding and impaired protein clearance might underlie the pathogenesis of polyglutamine diseases. Over-expressing specific chaperones reduces protein aggregation in transfected cells and suppresses neurodegeneration in invertebrate animal models of polyglutamine disorders. To determine whether enhancing chaperone activity could mitigate the phenotype in a mammalian model, we crossbred SCA1 mice with mice over-expressing a molecular chaperone (inducible HSP70 or iHSP70). We found that high levels of HSP70 did indeed afford protection against neurodegeneration.

  4. Control of cell cycle and cell growth by molecular chaperones.

    PubMed

    Aldea, Martí; Garí, Eloi; Colomina, Neus

    2007-11-01

    Cells adapt their size to both intrinsic and extrinsic demands and, among them, those that stem from growth and proliferation rates are crucial for cell size homeostasis. Here we revisit mechanisms that regulate cell cycle and cell growth in budding yeast. Cyclin Cln3, the most upstream activator of Start, is retained at the endoplasmic reticulum in early G(1) and released by specific chaperones in late G(1) to initiate the cell cycle. On one hand, these chaperones are rate-limiting for release of Cln3 and cell cycle entry and, on the other hand, they are required for key biosynthetic processes. We propose a model whereby the competition for specialized chaperones between growth and cycle machineries could gauge biosynthetic rates and set a critical size threshold at Start.

  5. ER chaperones in neurodegenerative disease: Folding and beyond.

    PubMed

    Garcia-Huerta, Paula; Bargsted, Leslie; Rivas, Alexis; Matus, Soledad; Vidal, Rene L

    2016-10-01

    Proteins along the secretory pathway are co-translationally translocated into the lumen of the endoplasmic reticulum (ER) as unfolded polypeptide chains. Afterwards, they are usually modified with N-linked glycans, correctly folded and stabilized by disulfide bonds. ER chaperones and folding enzymes control these processes. The accumulation of unfolded proteins in the ER activates a signaling response, termed the unfolded protein response (UPR). The hallmark of this response is the coordinated transcriptional up-regulation of ER chaperones and folding enzymes. In order to discuss the importance of the proper folding of certain substrates we will address the role of ER chaperones in normal physiological conditions and examine different aspects of its contribution in neurodegenerative disease. This article is part of a Special Issue entitled SI:ER stress.

  6. The conformational dynamics of the mitochondrial Hsp70 chaperone.

    PubMed

    Mapa, Koyeli; Sikor, Martin; Kudryavtsev, Volodymyr; Waegemann, Karin; Kalinin, Stanislav; Seidel, Claus A M; Neupert, Walter; Lamb, Don C; Mokranjac, Dejana

    2010-04-09

    Heat shock proteins 70 (Hsp70) represent a ubiquitous and conserved family of molecular chaperones involved in a plethora of cellular processes. The dynamics of their ATP hydrolysis-driven and cochaperone-regulated conformational cycle are poorly understood. We used fluorescence spectroscopy to analyze, in real time and at single-molecule resolution, the effects of nucleotides and cochaperones on the conformation of Ssc1, a mitochondrial member of the family. We report that the conformation of its ADP state is unexpectedly heterogeneous, in contrast to a uniform ATP state. Substrates are actively involved in determining the conformation of Ssc1. The J protein Mdj1 does not interact transiently with the chaperone, as generally believed, but rather is released slowly upon ATP hydrolysis. Analysis of the major bacterial Hsp70 revealed important differences between highly homologous members of the family, possibly explaining tuning of Hsp70 chaperones to meet specific functions in different organisms and cellular compartments.

  7. Conformational dynamics of the molecular chaperone Hsp90

    PubMed Central

    Krukenberg, Kristin A.; Street, Timothy O.; Lavery, Laura A.; Agard, David A.

    2016-01-01

    The molecular chaperone Hsp90 is an essential eukaryotic protein that makes up 1–2% of all cytosolic proteins. Hsp90 is vital for the maturation and maintenance of a wide variety of substrate proteins largely involved in signaling and regulatory processes. Many of these substrates have also been implicated in cancer and other diseases making Hsp90 an attractive target for therapeutics. Hsp90 is a highly dynamic and flexible molecule that can adapt its conformation to the wide variety of substrate proteins with which it acts. Large conformational rearrangements are also required for the activation of these client proteins. One driving force for these rearrangements is the intrinsic ATPase activity of Hsp90, as seen with other chaperones. However, unlike other chaperones, studies have shown that the ATPase cycle of Hsp90 is not conformationally deterministic. That is, rather than dictating the conformational state, ATP binding and hydrolysis shifts the equilibrium between a pre-existing set of conformational states in an organism-dependent manner. In vivo Hsp90 functions as part of larger heterocomplexes. The binding partners of Hsp90, co-chaperones, assist in the recruitment and activation of substrates, and many co-chaperones further regulate the conformational dynamics of Hsp90 by shifting the conformational equilibrium towards a particular state. Studies have also suggested alternative mechanisms for the regulation of Hsp90’s conformation. In this review, we discuss the structural and biochemical studies leading to our current understanding of the conformational dynamics of Hsp90 and the role that nucleotide, co-chaperones, post-translational modification and clients play in regulating Hsp90’s conformation. We also discuss the effects of current Hsp90 inhibitors on conformation and the potential for developing small molecules that inhibit Hsp90 by disrupting the conformational dynamics. PMID:21414251

  8. Orchestration of secretory protein folding by ER chaperones

    PubMed Central

    Gidalevitz, Tali; Stevens, Fred; Argon, Yair

    2013-01-01

    The endoplasmic reticulum is a major compartment of protein biogenesis in the cell, dedicated to production of secretory, membrane and organelle proteins. The secretome has distinct structural and post-translational characteristics, since folding in the ER occurs in an environment that is distinct in terms of its ionic composition, dynamics and requirements for quality contol. The folding machinery in the ER therefore includes chaperones and folding enzymes that introduce, monitor and react to disulfide bonds, glycans, and fluctuations of luminal calcium. We describe the major chaperone networks in the lumen and discuss how they have distinct modes of operation that enable cells to accomplish highly efficient production of the secretome. PMID:23507200

  9. Specific Chaperones and Regulatory Domains in Control of Amyloid Formation*

    PubMed Central

    Landreh, Michael; Rising, Anna; Presto, Jenny; Jörnvall, Hans; Johansson, Jan

    2015-01-01

    Many proteins can form amyloid-like fibrils in vitro, but only about 30 amyloids are linked to disease, whereas some proteins form physiological amyloid-like assemblies. This raises questions of how the formation of toxic protein species during amyloidogenesis is prevented or contained in vivo. Intrinsic chaperoning or regulatory factors can control the aggregation in different protein systems, thereby preventing unwanted aggregation and enabling the biological use of amyloidogenic proteins. The molecular actions of these chaperones and regulators provide clues to the prevention of amyloid disease, as well as to the harnessing of amyloidogenic proteins in medicine and biotechnology. PMID:26354437

  10. A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways

    PubMed Central

    Taipale, Mikko; Tucker, George; Peng, Jian; Krykbaeva, Irina; Lin, Zhen-Yuan; Larsen, Brett; Choi, Hyungwon; Berger, Bonnie; Gingras, Anne-Claude; Lindquist, Susan

    2014-01-01

    Chaperones are abundant cellular proteins that promote the folding and function of their substrate proteins (clients). In vivo, chaperones also associate with a large and diverse set of co-factors (co-chaperones) that regulate their specificity and function. However, how these co-chaperones regulate protein folding and whether they have chaperone-independent biological functions is largely unknown. We have combined mass spectrometry and quantitative high-throughput LUMIER assays to systematically characterize the chaperone/co-chaperone/client interaction network in human cells. We uncover hundreds of novel chaperone clients, delineate their participation in specific co-chaperone complexes, and establish a surprisingly distinct network of protein/protein interactions for co-chaperones. As a salient example of the power of such analysis, we establish that NUDC family co-chaperones specifically associate with structurally related but evolutionarily distinct β-propeller folds. We provide a framework for deciphering the proteostasis network, its regulation in development and disease, and expand the use of chaperones as sensors for drug/target engagement. PMID:25036637

  11. RNA chaperones buffer deleterious mutations in E. coli

    PubMed Central

    Rudan, Marina; Schneider, Dominique; Warnecke, Tobias; Krisko, Anita

    2015-01-01

    Both proteins and RNAs can misfold into non-functional conformations. Protein chaperones promote native folding of nascent polypeptides and refolding of misfolded species, thereby buffering mutations that compromise protein structure and function. Here, we show that RNA chaperones can also act as mutation buffers that enhance organismal fitness. Using competition assays, we demonstrate that overexpression of select RNA chaperones, including three DEAD box RNA helicases (DBRHs) (CsdA, SrmB, RhlB) and the cold shock protein CspA, improves fitness of two independently evolved Escherichia coli mutator strains that have accumulated deleterious mutations during short- and long-term laboratory evolution. We identify strain-specific mutations that are deleterious and subject to buffering when introduced individually into the ancestral genotype. For DBRHs, we show that buffering requires helicase activity, implicating RNA structural remodelling in the buffering process. Our results suggest that RNA chaperones might play a fundamental role in RNA evolution and evolvability. DOI: http://dx.doi.org/10.7554/eLife.04745.001 PMID:25806682

  12. Reconfiguration of the proteasome during chaperone-mediated assembly.

    PubMed

    Park, Soyeon; Li, Xueming; Kim, Ho Min; Singh, Chingakham Ranjit; Tian, Geng; Hoyt, Martin A; Lovell, Scott; Battaile, Kevin P; Zolkiewski, Michal; Coffino, Philip; Roelofs, Jeroen; Cheng, Yifan; Finley, Daniel

    2013-05-23

    The proteasomal ATPase ring, comprising Rpt1-Rpt6, associates with the heptameric α-ring of the proteasome core particle (CP) in the mature proteasome, with the Rpt carboxy-terminal tails inserting into pockets of the α-ring. Rpt ring assembly is mediated by four chaperones, each binding a distinct Rpt subunit. Here we report that the base subassembly of the Saccharomyces cerevisiae proteasome, which includes the Rpt ring, forms a high-affinity complex with the CP. This complex is subject to active dissociation by the chaperones Hsm3, Nas6 and Rpn14. Chaperone-mediated dissociation was abrogated by a non-hydrolysable ATP analogue, indicating that chaperone action is coupled to nucleotide hydrolysis by the Rpt ring. Unexpectedly, synthetic Rpt tail peptides bound α-pockets with poor specificity, except for Rpt6, which uniquely bound the α2/α3-pocket. Although the Rpt6 tail is not visualized within an α-pocket in mature proteasomes, it inserts into the α2/α3-pocket in the base-CP complex and is important for complex formation. Thus, the Rpt-CP interface is reconfigured when the lid complex joins the nascent proteasome to form the mature holoenzyme.

  13. Pharmacological chaperones for human α-N-acetylgalactosaminidase

    PubMed Central

    Clark, Nathaniel E.; Metcalf, Matthew C.; Best, Daniel; Fleet, George W. J.; Garman, Scott C.

    2012-01-01

    Schindler/Kanzaki disease is an inherited metabolic disease with no current treatment options. This neurologic disease results from a defect in the lysosomal α-N-acetylgalactosaminidase (α-NAGAL) enzyme. In this report, we show evidence that the iminosugar DGJNAc can inhibit, stabilize, and chaperone human α-NAGAL both in vitro and in vivo. We demonstrate that a related iminosugar DGJ (currently in phase III clinical trials for another metabolic disorder, Fabry disease) can also chaperone human α-NAGAL in Schindler/Kanzaki disease. The 1.4- and 1.5-Å crystal structures of human α-NAGAL complexes reveal the different binding modes of iminosugars compared with glycosides. We show how differences in two functional groups result in >9 kcal/mol of additional binding energy and explain the molecular interactions responsible for the unexpectedly high affinity of the pharmacological chaperones. These results open two avenues for treatment of Schindler/Kanzaki disease and elucidate the atomic basis for pharmacological chaperoning in the entire family of lysosomal storage diseases. PMID:23045655

  14. Hsp100/ClpB Chaperone Function and Mechanism

    SciTech Connect

    Vierling, Elizabeth

    2015-01-27

    The supported research investigated the mechanism of action of a unique class of molecular chaperones in higher plants, the Hsp100/ClpB proteins, with the ultimate goal of defining how these chaperones influence plant growth, development, stress tolerance and productivity. Molecular chaperones are essential effectors of cellular “protein quality control”, which comprises processes that ensure the proper folding, localization, activation and turnover of proteins. Hsp100/ClpB proteins are required for temperature acclimation in plants, optimal seed yield, and proper chloroplast development. The model plant Arabidopsis thaliana and genetic and molecular approaches were used to investigate two of the three members of the Hsp100/ClpB proteins in plants, cytosolic AtHsp101 and chloroplast-localized AtClpB-p. Investigating the chaperone activity of the Hsp100/ClpB proteins addresses DOE goals in that this activity impacts how “plants generate and assemble components” as well as “allowing for their self repair”. Additionally, Hsp100/ClpB protein function in plants is directly required for optimal “utilization of biological energy” and is involved in “mechanisms that control the architecture of energy transduction systems”.

  15. Super Spy variants implicate flexibility in chaperone action

    PubMed Central

    Quan, Shu; Wang, Lili; Petrotchenko, Evgeniy V; Makepeace, Karl AT; Horowitz, Scott; Yang, Jianyi; Zhang, Yang; Borchers, Christoph H; Bardwell, James CA

    2014-01-01

    Experimental study of the role of disorder in protein function is challenging. It has been proposed that proteins utilize disordered regions in the adaptive recognition of their various binding partners. However apart from a few exceptions, defining the importance of disorder in promiscuous binding interactions has proven to be difficult. In this paper, we have utilized a genetic selection that links protein stability to antibiotic resistance to isolate variants of the newly discovered chaperone Spy that show an up to 7 fold improved chaperone activity against a variety of substrates. These “Super Spy” variants show tighter binding to client proteins and are generally more unstable than is wild type Spy and show increases in apparent flexibility. We establish a good relationship between the degree of their instability and the improvement they show in their chaperone activity. Our results provide evidence for the importance of disorder and flexibility in chaperone function. DOI: http://dx.doi.org/10.7554/eLife.01584.001 PMID:24497545

  16. The Ydj1 molecular chaperone facilitates formation of active p60v-src in yeast.

    PubMed Central

    Dey, B; Caplan, A J; Boschelli, F

    1996-01-01

    Molecular chaperones have been implicated in the formation of active p60v-src tyrosine kinase. In Saccharomyces cerevisiae, expression of p60v-src causes cell death, a phenomenon that requires functional Hsp90. We show here that mutations in a member of a second class of chaperones, the yeast dnaJ homologue YDJ1, suppress the lethality caused by p60v-src. One p60v-src-resistant ydj1 mutant, ydj1-39, which has two point mutations in the highly conserved "J" domain, has reduced levels of v-src mRNA and protein. However, a ydj1 null mutant produces normal quantities of active p60v-src, indicating that Ydj1p facilitates, but is not essential for, the formation of active p60v-src. We also report p60v-src-resistance in a previously identified temperature-sensitive ydj1 mutant, ydj1-151. In this mutant, the level of p60v-src remains unaltered, but the protein is much less active in vivo. In addition, p60v-src immunoprecipitates from the ydj1-151 strain contained Hsp90 and Hsp70 in greater amounts than in wild-type strains. Ydj1 protein was also detected in p60v-src immunoprecipitates from both wild-type and ydj1-151 strains. These results indicate that Ydj1p participates in the formation of active p60v-src via molecular chaperone complexes. Images PMID:8741842

  17. Divergent tissue and sex effects of rapamycin on the proteasome-chaperone network of old mice

    PubMed Central

    Rodriguez, Karl A.; Dodds, Sherry G.; Strong, Randy; Galvan, Veronica; Sharp, Z. D.; Buffenstein, Rochelle

    2014-01-01

    Rapamycin, an allosteric inhibitor of the mTOR kinase, increases longevity in mice in a sex-specific manner. In contrast to the widely accepted theory that a loss of proteasome activity is detrimental to both life- and healthspan, biochemical studies in vitro reveal that rapamycin inhibits 20S proteasome peptidase activity. We tested if this unexpected finding is also evident after chronic rapamycin treatment in vivo by measuring peptidase activities for both the 26S and 20S proteasome in liver, fat, and brain tissues of old, male and female mice fed encapsulated chow containing 2.24 mg/kg (14 ppm) rapamycin for 6 months. Further we assessed if rapamycin altered expression of the chaperone proteins known to interact with the proteasome-mediated degradation system (PMDS), heat shock factor 1 (HSF1), and the levels of key mTOR pathway proteins. Rapamycin had little effect on liver proteasome activity in either gender, but increased proteasome activity in female brain lysates and lowered its activity in female fat tissue. Rapamycin-induced changes in molecular chaperone levels were also more substantial in tissues from female animals. Furthermore, mTOR pathway proteins showed more significant changes in female tissues compared to those from males. These data show collectively that there are divergent tissue and sex effects of rapamycin on the proteasome-chaperone network and that these may be linked to the disparate effects of rapamycin on males and females. Further our findings suggest that rapamycin induces indirect regulation of the PMDS/heat-shock response through its modulation of the mTOR pathway rather than via direct interactions between rapamycin and the proteasome. PMID:25414638

  18. Divergent tissue and sex effects of rapamycin on the proteasome-chaperone network of old mice.

    PubMed

    Rodriguez, Karl A; Dodds, Sherry G; Strong, Randy; Galvan, Veronica; Sharp, Z D; Buffenstein, Rochelle

    2014-01-01

    Rapamycin, an allosteric inhibitor of the mTOR kinase, increases longevity in mice in a sex-specific manner. In contrast to the widely accepted theory that a loss of proteasome activity is detrimental to both life- and healthspan, biochemical studies in vitro reveal that rapamycin inhibits 20S proteasome peptidase activity. We tested if this unexpected finding is also evident after chronic rapamycin treatment in vivo by measuring peptidase activities for both the 26S and 20S proteasome in liver, fat, and brain tissues of old, male and female mice fed encapsulated chow containing 2.24 mg/kg (14 ppm) rapamycin for 6 months. Further we assessed if rapamycin altered expression of the chaperone proteins known to interact with the proteasome-mediated degradation system (PMDS), heat shock factor 1 (HSF1), and the levels of key mTOR pathway proteins. Rapamycin had little effect on liver proteasome activity in either gender, but increased proteasome activity in female brain lysates and lowered its activity in female fat tissue. Rapamycin-induced changes in molecular chaperone levels were also more substantial in tissues from female animals. Furthermore, mTOR pathway proteins showed more significant changes in female tissues compared to those from males. These data show collectively that there are divergent tissue and sex effects of rapamycin on the proteasome-chaperone network and that these may be linked to the disparate effects of rapamycin on males and females. Further our findings suggest that rapamycin induces indirect regulation of the PMDS/heat-shock response through its modulation of the mTOR pathway rather than via direct interactions between rapamycin and the proteasome.

  19. Chaperonopathies of senescence and the scrambling of interactions between the chaperoning and the immune systems.

    PubMed

    Macario, Alberto J L; Cappello, Francesco; Zummo, Giovanni; Conway de Macario, Everly

    2010-06-01

    Aging entails progressive deterioration of molecules and supramolecular structures, including Hsp chaperones and their complexes, paralleled by functional decline. Recent research has changed our views on Hsp chaperones. They work inside and outside cells in many locations, alone or forming teams, interacting with cells, receptors, and molecules that are not chaperones, in roles that are not typically attributed to chaperones, such as protein folding. Hsp chaperones form a physiological system with a variety of functions and interactions with other systems, for example, the immune system. We propose that chaperone malfunctioning due to structural damage or gene dysregulation during aging has an impact on the immune system, creating the conditions for an overall malfunction of both systems. Pathological chaperones cannot interact with the immune system as normal ones do, and this leads to an overall readjustment of the interactions that is apparent during senescence and is likely to cause many of its manifestations.

  20. Hsp70-Hsp40 Chaperone Complex Functions in Controlling Polarized Growth by Repressing Hsf1-Driven Heat Stress-Associated Transcription

    PubMed Central

    Liu, Jianhua; Oliferenko, Snezhana

    2013-01-01

    How the molecular mechanisms of stress response are integrated at the cellular level remains obscure. Here we show that the cellular polarity machinery in the fission yeast Schizosaccharomyces pombe undergoes dynamic adaptation to thermal stress resulting in a period of decreased Cdc42 activity and altered, monopolar growth. Cells where the heat stress-associated transcription was genetically upregulated exhibit similar growth patterning in the absence of temperature insults. We identify the Ssa2-Mas5/Hsp70-Hsp40 chaperone complex as repressor of the heat shock transcription factor Hsf1. Cells lacking this chaperone activity constitutively activate the heat-stress-associated transcriptional program. Interestingly, they also exhibit intermittent monopolar growth within a physiological temperature range and are unable to adapt to heat stress. We propose that by negatively regulating the heat stress-associated transcription, the Ssa2-Mas5 chaperone system could optimize cellular growth under different temperature regiments. PMID:24146635

  1. Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target

    PubMed Central

    Asim, Mohammad; Massie, Charles E.; Orafidiya, Folake; Pértega-Gomes, Nelma; Warren, Anne Y.; Esmaeili, Mohsen; Selth, Luke A.; Zecchini, Heather I.; Luko, Katarina; Qureshi, Arham; Baridi, Ajoeb; Menon, Suraj; Madhu, Basetti; Escriu, Carlos; Lyons, Scott; Vowler, Sarah L.; Zecchini, Vincent R.; Shaw, Greg; Hessenkemper, Wiebke; Russell, Roslin; Mohammed, Hisham; Stefanos, Niki; Lynch, Andy G.; Grigorenko, Elena; D’Santos, Clive; Taylor, Chris; Lamb, Alastair; Sriranjan, Rouchelle; Yang, Jiali; Stark, Rory; Dehm, Scott M.; Rennie, Paul S.; Carroll, Jason S.; Griffiths, John R.; Tavaré, Simon; Mills, Ian G.; McEwan, Iain J.; Baniahmad, Aria; Tilley, Wayne D.; Neal, David E.

    2016-01-01

    Background: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. Methods: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ2 tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. Results: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. Conclusions: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa. PMID:26657335

  2. Pharmacological chaperones as a potential therapeutic option in methylmalonic aciduria cblB type

    PubMed Central

    Jorge-Finnigan, Ana; Brasil, Sandra; Underhaug, Jarl; Ruíz-Sala, Pedro; Merinero, Begoña; Banerjee, Ruma; Desviat, Lourdes R.; Ugarte, Magdalena; Martinez, Aurora; Pérez, Belén

    2013-01-01

    Methylmalonic aciduria (MMA) cblB type is caused by mutations in the MMAB gene. This encodes the enzyme ATP:cob(I)alamin adenosyltransferase (ATR), which converts reduced cob(I)alamin to an active adenosylcobalamin cofactor. We recently reported the presence of destabilizing pathogenic mutations that retain some residual ATR activity. The aim of the present study was to seek pharmacological chaperones as a tailored therapy for stabilizing the ATR protein. High-throughput ligand screening of over 2000 compounds was performed; six were found to enhance the thermal stability of purified recombinant ATR. Further studies using a well-established bacterial system in which the recombinant ATR protein was expressed in the presence of these six compounds, showed them all to increase the stability of the wild-type ATR and the p.Ile96Thr mutant proteins. Compound V (N-{[(4-chlorophenyl)carbamothioyl]amino}-2-phenylacetamide) significantly increased this stability and did not act as an inhibitor of the purified protein. Importantly, compound V increased the activity of ATR in patient-derived fibroblasts harboring the destabilizing p.Ile96Thr mutation in a hemizygous state to within control range. When cobalamin was coadministrated with compound V, mutant ATR activity further improved. Oral administration of low doses of compound V to C57BL/6J mice for 12 days, led to increase in steady-state levels of ATR protein in liver and brain (disease-relevant organs). These results hold promise for the clinical use of pharmacological chaperones in MMA cblB type patients harboring chaperone-responsive mutations. PMID:23674520

  3. Coffee enhances the expression of chaperones and antioxidant proteins in rats with nonalcoholic fatty liver disease.

    PubMed

    Salomone, Federico; Li Volti, Giovanni; Vitaglione, Paola; Morisco, Filomena; Fogliano, Vincenzo; Zappalà, Agata; Palmigiano, Angelo; Garozzo, Domenico; Caporaso, Nicola; D'Argenio, Giuseppe; Galvano, Fabio

    2014-06-01

    Coffee consumption is inversely related to the degree of liver injury in patients with nonalcoholic fatty liver disease (NAFLD). Molecular mediators contributing to coffee's beneficial effects in NAFLD remain to be elucidated. In this study, we administrated decaffeinated espresso coffee or vehicle to rats fed an high-fat diet (HFD) for 12 weeks and examined the effects of coffee on liver injury by using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) proteomic analysis combined with mass spectrometry. Rats fed an HFD and water developed panacinar steatosis, lobular inflammation, and mild fibrosis, whereas rats fed an HFD and coffee exhibited only mild steatosis. Coffee consumption increased liver expression of the endoplasmic reticulum chaperones glucose-related protein 78 and protein disulfide-isomerase A3; similarly, coffee drinking enhanced the expression of the mitochondrial chaperones heat stress protein 70 and DJ-1. Furthermore, in agreement with reduced hepatic levels of 8-isoprostanes and 8-hydroxy-2'-deoxyguanosine, proteomic analysis showed that coffee consumption induces the expression of master regulators of redox status (i.e., peroxiredoxin 1, glutathione S-transferase α2, and D-dopachrome tautomerase). Last, proteomics revealed an association of coffee intake with decreased expression of electron transfer flavoprotein subunit α, a component of the mitochondrial respiratory chain, involved in de novo lipogenesis. In this study, we were able to identify by proteomic analysis the stress proteins mediating the antioxidant effects of coffee; moreover, we establish for the first time the contribution of specific coffee-induced endoplasmic reticulum and mitochondrial chaperones ensuring correct protein folding and degradation in the liver.

  4. Modulation of the chaperone heat shock cognate 70 by embryonic (pro)insulin correlates with prevention of apoptosis

    PubMed Central

    de la Rosa, Enrique J.; Vega-Núñez, Elena; Morales, Aixa V.; Serna, José; Rubio, Eva; de Pablo, Flora

    1998-01-01

    Insights have emerged concerning insulin function during development, from the finding that apoptosis during chicken embryo neurulation is prevented by prepancreatic (pro)insulin. While characterizing the molecules involved in this survival effect of insulin, we found insulin-dependent regulation of the molecular chaperone heat shock cognate 70 kDa (Hsc70), whose cloning in chicken is reported here. This chaperone, generally considered constitutively expressed, showed regulation of its mRNA and protein levels in unstressed embryos during early development. More important, Hsc70 levels were found to depend on endogenous (pro)insulin, as shown by using antisense oligodeoxynucleotides against (pro)insulin mRNA in cultured neurulating embryos. Further, in the cultured embryos, apoptosis affected mainly cells with the lowest level of Hsc70, as shown by simultaneous Hsc70 immunostaining and terminal deoxynucleotidyltransferase-mediated UTP nick end labeling. These results argue in favor of Hsc70 involvement, modulated by embryonic (pro)insulin, in the prevention of apoptosis during early development and suggest a role for a molecular chaperone in normal embryogenesis. PMID:9707581

  5. The chaperone like function of the nonhistone protein HMGB1

    SciTech Connect

    Osmanov, Taner; Ugrinova, Iva; Pasheva, Evdokia

    2013-03-08

    Highlights: ► The HMGB1 protein strongly enhanced the formation of nucleosome particles. ► The target of HMGB1 action as a chaperone is the DNA not the histone octamer. ► The acetylation of HMGB1 decreases the stimulating effect of the protein. -- Abstract: Almost all essential nuclear processes as replication, repair, transcription and recombination require the chromatin template to be correctly unwound and than repackaged. The major strategy that the cell uses to overcome the nucleosome barrier is the proper removal of the histone octamer and subsequent deposition onto DNA. Important factors in this multi step phenomenon are the histone chaperones that can assemble nucleosome arrays in vitro in the absence of ATP. The nonhistone protein HMGB1 is a good candidate for a chaperone as its molecule consists of two DNA binding motives, Box’s A and B, and a long nonstructured C tail highly negatively charged. HMGB1 protein is known as a nuclear “architectural” factor for its property to bind preferentially to distorted DNA structures and was reported to kink the double helix. Our experiments show that in the classical stepwise dialysis method for nucleosome assembly the addition of HMGB1 protein stimulates more than two times the formation of middle-positioned nucleosomes. The stimulation effect persists in dialysis free experiment when the reconstitution is possible only in the presence of a chaperone. The addition of HMGB1 protein strongly enhanced the formation of a nucleosome in a dose dependant manner. Our results show that the target of HMGB1 action as a chaperone is the DNA fragment not the histone octamer. One possible explanation for the stimulating effect of HMGB1 is the “architectural” property of the protein to associate with the middle of the DNA fragment and to kink it. The acquired V shaped DNA structure is probably conformationals more favorable to wrap around the prefolded histone octamer. We tested also the role of the post

  6. Molecular Chaperones and the Assembly of the Prion Ure2p in Vitro*

    PubMed Central

    Savistchenko, Jimmy; Krzewska, Joanna; Fay, Nicolas; Melki, Ronald

    2008-01-01

    The protein Ure2 from Saccharomyces cerevisiae possesses prion properties at the origin of the [URE3] trait. In vivo, a high molecular weight form of inactive Ure2p is associated to [URE3]. The faithful and continued propagation of [URE3]is dependent on the expression levels of molecular chaperones from the Hsp100, -70, and -40 families; however, so far, their role is not fully documented. Here we investigate the effects of molecular chaperones from the Hsp40, Hsp70, Hsp90, and Hsp100 families and the chaperonin CCT/Tric on the assembly of full-length Ure2p. We show that Hsp104p greatly stimulates Ure2p aggregation, whereas Ssa1p, Ydj1p, Sis1p, and Hsp82p inhibit aggregation to different extents. The nature of the high molecular weight Ure2p species that forms in the presence of the different molecular chaperones and their nucleotide dependence is described. We show that Hsp104p favors the aggregation of Ure2p into non-fibrillar high molecular weight particles, whereas Ssa1p, Ydj1p, Sis1p, and Hsp82p sequester Ure2p in spherical oligomers. Using fluorescently labeled full-length Ure2p and Ure2p-(94–354) and fluorescence polarization, we show that Ssa1p binding to Ure2p is ATP-dependent, whereas that of Hsp104p is not. We also show that Ssa1p preferentially interacts with the N-terminal domain of Ure2p that is critical for prion propagation, whereas Ydj1p preferentially interacts with the C-terminal domain of the protein, and we discuss the significance of this observation. Finally, the affinities of Ssa1p, Ydj1p, and Hsp104p for Ure2p are determined. Our in vitro observations bring new insight into the mechanism by which molecular chaperones influence the propagation of [URE3]. PMID:18400756

  7. Drug Development in Conformational Diseases: A Novel Family of Chemical Chaperones that Bind and Stabilise Several Polymorphic Amyloid Structures.

    PubMed

    Sablón-Carrazana, Marquiza; Fernández, Isaac; Bencomo, Alberto; Lara-Martínez, Reyna; Rivera-Marrero, Suchitil; Domínguez, Guadalupe; Pérez-Perera, Rafaela; Jiménez-García, Luis Felipe; Altamirano-Bustamante, Nelly F; Diaz-Delgado, Massiel; Vedrenne, Fernand; Rivillas-Acevedo, Lina; Pasten-Hidalgo, Karina; Segura-Valdez, María de Lourdes; Islas-Andrade, Sergio; Garrido-Magaña, Eulalia; Perera-Pintado, Alejandro; Prats-Capote, Anaís; Rodríguez-Tanty, Chryslaine; Altamirano-Bustamante, Myriam M

    2015-01-01

    The increasing prevalence of conformational diseases, including Alzheimer's disease, type 2 Diabetes Mellitus and Cancer, poses a global challenge at many different levels. It has devastating effects on the sufferers as well as a tremendous economic impact on families and the health system. In this work, we apply a cross-functional approach that combines ideas, concepts and technologies from several disciplines in order to study, in silico and in vitro, the role of a novel chemical chaperones family (NCHCHF) in processes of protein aggregation in conformational diseases. Given that Serum Albumin (SA) is the most abundant protein in the blood of mammals, and Bovine Serum Albumin (BSA) is an off-the-shelf protein available in most labs around the world, we compared the ligandability of BSA:NCHCHF with the interaction sites in the Human Islet Amyloid Polypeptide (hIAPP):NCHCHF, and in the amyloid pharmacophore fragments (Aβ17-42 and Aβ16-21):NCHCHF. We posit that the merging of this interaction sites is a meta-structure of pharmacophore which allows the development of chaperones that can prevent protein aggregation at various states from: stabilizing the native state to destabilizing oligomeric state and protofilament. Furthermore to stabilize fibrillar structures, thus decreasing the amount of toxic oligomers in solution, as is the case with the NCHCHF. The paper demonstrates how a set of NCHCHF can be used for studying and potentially treating the various physiopathological stages of a conformational disease. For instance, when dealing with an acute phase of cytotoxicity, what is needed is the recruitment of cytotoxic oligomers, thus chaperone F, which accelerates fiber formation, would be very useful; whereas in a chronic stage it is better to have chaperones A, B, C, and D, which stabilize the native and fibril structures halting self-catalysis and the creation of cytotoxic oligomers as a consequence of fiber formation. Furthermore, all the chaperones are able

  8. Drug Development in Conformational Diseases: A Novel Family of Chemical Chaperones that Bind and Stabilise Several Polymorphic Amyloid Structures

    PubMed Central

    Bencomo, Alberto; Lara-Martínez, Reyna; Rivera-Marrero, Suchitil; Domínguez, Guadalupe; Pérez-Perera, Rafaela; Jiménez-García, Luis Felipe; Altamirano-Bustamante, Nelly F.; Diaz-Delgado, Massiel; Vedrenne, Fernand; Rivillas-Acevedo, Lina; Pasten-Hidalgo, Karina; Segura-Valdez, María de Lourdes; Islas-Andrade, Sergio; Garrido-Magaña, Eulalia; Perera-Pintado, Alejandro; Prats-Capote, Anaís; Rodríguez-Tanty, Chryslaine; Altamirano-Bustamante, Myriam M.

    2015-01-01

    The increasing prevalence of conformational diseases, including Alzheimer's disease, type 2 Diabetes Mellitus and Cancer, poses a global challenge at many different levels. It has devastating effects on the sufferers as well as a tremendous economic impact on families and the health system. In this work, we apply a cross-functional approach that combines ideas, concepts and technologies from several disciplines in order to study, in silico and in vitro, the role of a novel chemical chaperones family (NCHCHF) in processes of protein aggregation in conformational diseases. Given that Serum Albumin (SA) is the most abundant protein in the blood of mammals, and Bovine Serum Albumin (BSA) is an off-the-shelf protein available in most labs around the world, we compared the ligandability of BSA:NCHCHF with the interaction sites in the Human Islet Amyloid Polypeptide (hIAPP):NCHCHF, and in the amyloid pharmacophore fragments (Aβ17–42 and Aβ16–21):NCHCHF. We posit that the merging of this interaction sites is a meta-structure of pharmacophore which allows the development of chaperones that can prevent protein aggregation at various states from: stabilizing the native state to destabilizing oligomeric state and protofilament. Furthermore to stabilize fibrillar structures, thus decreasing the amount of toxic oligomers in solution, as is the case with the NCHCHF. The paper demonstrates how a set of NCHCHF can be used for studying and potentially treating the various physiopathological stages of a conformational disease. For instance, when dealing with an acute phase of cytotoxicity, what is needed is the recruitment of cytotoxic oligomers, thus chaperone F, which accelerates fiber formation, would be very useful; whereas in a chronic stage it is better to have chaperones A, B, C, and D, which stabilize the native and fibril structures halting self-catalysis and the creation of cytotoxic oligomers as a consequence of fiber formation. Furthermore, all the chaperones are

  9. Chaperone-mediated specificity in Ras and Rap signaling.

    PubMed

    Azoulay-Alfaguter, Inbar; Strazza, Marianne; Mor, Adam

    2015-01-01

    Ras and Rap proteins are closely related small guanosine triphosphatase (GTPases) that share similar effector-binding domains but operate in a very different signaling networks; Ras has a dominant role in cell proliferation, while Rap mediates cell adhesion. Ras and Rap proteins are regulated by several shared processes such as post-translational modification, phosphorylation, activation by guanine exchange factors and inhibition by GTPase-activating proteins. Sub-cellular localization and trafficking of these proteins to and from the plasma membrane are additional important regulatory features that impact small GTPases function. Despite its importance, the trafficking mechanisms of Ras and Rap proteins are not completely understood. Chaperone proteins play a critical role in trafficking of GTPases and will be the focus of the discussion in this work. We will review several aspects of chaperone biology focusing on specificity toward particular members of the small GTPase family. Understanding this specificity should provide key insights into drug development targeting individual small GTPases.

  10. Chaperoning osteogenesis: new protein-folding disease paradigms.

    PubMed

    Makareeva, Elena; Aviles, Nydea A; Leikin, Sergey

    2011-03-01

    Recent discoveries of severe bone disorders in patients with deficiencies in several endoplasmic reticulum chaperones are reshaping the discussion of type I collagen folding and related diseases. Type I collagen is the most abundant protein in all vertebrates and a crucial structural molecule for bone and other connective tissues. Its misfolding causes bone fragility, skeletal deformity and other tissue failures. Studies of newly discovered bone disorders indicate that collagen folding, chaperones involved in the folding process, cellular responses to misfolding and related bone pathologies might not follow conventional protein folding paradigms. In this review, we examine the features that distinguish collagen folding from that of other proteins and describe the findings that are beginning to reveal how cells manage collagen folding and misfolding. We discuss implications of these studies for general protein folding paradigms, unfolded protein response in cells and protein folding diseases.

  11. Evaluation of Quinazoline analogues as Glucocerebrosidase Inhibitors with Chaperone activity

    PubMed Central

    Marugan, Juan J.; Zheng, Wei; Motabar, Omid; Southall, Noel; Goldin, Ehud; Westbroek, Wendy; K.Stubblefield, Barbara; Sidransky, Ellen; Aungst, Ronald A.; Lea, Wendy A.; Simeonov, Anton; Leister, William; Austin, Christopher P.

    2011-01-01

    Gaucher disease is a Lysosomal Storage Disorder (LSD) caused by deficiency in the enzyme glucocerebrosidase (GC). Small molecule chaperones of protein folding and translocation have been proposed as a promising therapeutic approach to this LSD. Most small molecule chaperones described in the literature contain an iminosugar scaffold. Here we present the discovery and evaluation of a new series of GC inhibitors with a quinazoline core. We demonstrate that this series can improve the translocation of GC to the lysosome in patient-derived cells. To optimize this chemical series, systematic synthetic modifications were performed and the SAR was evaluated and compared using three different readouts of compound activity – enzymatic inhibition, enzyme thermostabilization, and lysosomal translocation of GC. PMID:21250698

  12. Revisiting the Interaction between the Chaperone Skp and Lipopolysaccharide

    PubMed Central

    Burmann, Björn M.; Holdbrook, Daniel A.; Callon, Morgane; Bond, Peter J.; Hiller, Sebastian

    2015-01-01

    The bacterial outer membrane comprises two main classes of components, lipids and membrane proteins. These nonsoluble compounds are conveyed across the aqueous periplasm along specific molecular transport routes: the lipid lipopolysaccharide (LPS) is shuttled by the Lpt system, whereas outer membrane proteins (Omps) are transported by chaperones, including the periplasmic Skp. In this study, we revisit the specificity of the chaperone-lipid interaction of Skp and LPS. High-resolution NMR spectroscopy measurements indicate that LPS interacts with Skp nonspecifically, accompanied by destabilization of the Skp trimer and similar to denaturation by the nonnatural detergent lauryldimethylamine-N-oxide (LDAO). Bioinformatic analysis of amino acid conservation, structural analysis of LPS-binding proteins, and MD simulations further confirm the absence of a specific LPS binding site on Skp, making a biological relevance of the interaction unlikely. Instead, our analysis reveals a highly conserved salt-bridge network, which likely has a role for Skp function. PMID:25809264

  13. Co-chaperones of the mammalian endoplasmic reticulum.

    PubMed

    Melnyk, Armin; Rieger, Heiko; Zimmermann, Richard

    2015-01-01

    In mammalian cells, the rough endoplasmic reticulum or ER plays a central role in the biogenesis of most extracellular plus many organellar proteins and in cellular calcium homeostasis. Therefore, this organelle comprises molecular chaperones that are involved in import, folding/assembly, export, and degradation of polypeptides in millimolar concentrations. In addition, there are calcium channels/pumps and signal transduction components present in the ER membrane that affect and are affected by these processes. The ER lumenal Hsp70, termed immunoglobulin-heavy chain binding protein or BiP, is the central player in all these activities and involves up to seven different co-chaperones, i.e. ER-membrane integrated as well as ER-lumenal Hsp40s, which are termed ERj or ERdj, and two nucleotide exchange factors.

  14. Absence of the Yeast Hsp31 Chaperones of the DJ-1 Superfamily Perturbs Cytoplasmic Protein Quality Control in Late Growth Phase

    PubMed Central

    Amm, Ingo; Norell, Derrick; Wolf, Dieter H.

    2015-01-01

    The Saccharomyces cerevisiae heat shock proteins Hsp31, Hsp32, Hsp33 and Hsp34 belong to the DJ-1/ThiJ/PfpI superfamily which includes the human protein DJ-1 (PARK7) as the most prominent member. Mutations in the DJ-1 gene are directly linked to autosomal recessive, early-onset Parkinson’s disease. DJ-1 acts as an oxidative stress-induced chaperone preventing aggregation and fibrillation of α-synuclein, a critical factor in the development of the disease. In vivo assays in Saccharomyces cerevisiae using the model substrate ΔssCPY*Leu2myc (ΔssCL*myc) as an aggregation-prone misfolded cytoplasmic protein revealed an influence of the Hsp31 chaperone family on the steady state level of this substrate. In contrast to the ubiquitin ligase of the N-end rule pathway Ubr1, which is known to be prominently involved in the degradation process of misfolded cytoplasmic proteins, the absence of the Hsp31 chaperone family does not impair the degradation of newly synthesized misfolded substrate. Also degradation of substrates with strong affinity to Ubr1 like those containing the type 1 N-degron arginine is not affected by the absence of the Hsp31 chaperone family. Epistasis analysis indicates that one function of the Hsp31 chaperone family resides in a pathway overlapping with the Ubr1-dependent degradation of misfolded cytoplasmic proteins. This pathway gains relevance in late growth phase under conditions of nutrient limitation. Additionally, the Hsp31 chaperones seem to be important for maintaining the cellular Ssa Hsp70 activity which is important for Ubr1-dependent degradation. PMID:26466368

  15. Crystal Structures of Cisplatin Bound to a Human Copper Chaperone

    SciTech Connect

    Boal, Amie K.; Rosenzweig, Amy C.

    2010-08-16

    Copper trafficking proteins, including the chaperone Atox1 and the P{sub 1B}-type ATPase ATP7B, have been implicated in cellular resistance to the anticancer drug cisplatin. We have determined two crystal structures of cisplatin-Atox1 adducts that reveal platinum coordination by the conserved CXXC copper-binding motif. Direct interaction of cisplatin with this functionally relevant site has significant implications for understanding the molecular basis for resistance mediated by copper transport pathways.

  16. Generalized iterative annealing model for the action of RNA chaperones

    NASA Astrophysics Data System (ADS)

    Hyeon, Changbong; Thirumalai, D.

    2013-09-01

    As a consequence of the rugged landscape of RNA molecules their folding is described by the kinetic partitioning mechanism according to which only a small fraction (ϕF) reaches the folded state while the remaining fraction of molecules is kinetically trapped in misfolded intermediates. The transition from the misfolded states to the native state can far exceed biologically relevant time. Thus, RNA folding in vivo is often aided by protein cofactors, called RNA chaperones, that can rescue RNAs from a multitude of misfolded structures. We consider two models, based on chemical kinetics and chemical master equation, for describing assisted folding. In the passive model, applicable for class I substrates, transient interactions of misfolded structures with RNA chaperones alone are sufficient to destabilize the misfolded structures, thus entropically lowering the barrier to folding. For this mechanism to be efficient the intermediate ribonucleoprotein complex between collapsed RNA and protein cofactor should have optimal stability. We also introduce an active model (suitable for stringent substrates with small ϕF), which accounts for the recent experimental findings on the action of CYT-19 on the group I intron ribozyme, showing that RNA chaperones do not discriminate between the misfolded and the native states. In the active model, the RNA chaperone system utilizes chemical energy of adenosine triphosphate hydrolysis to repeatedly bind and release misfolded and folded RNAs, resulting in substantial increase of yield of the native state. The theory outlined here shows, in accord with experiments, that in the steady state the native state does not form with unit probability.

  17. A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor

    PubMed Central

    Sawatsubashi, Shun; Murata, Takuya; Lim, Jinseon; Fujiki, Ryoji; Ito, Saya; Suzuki, Eriko; Tanabe, Masahiko; Zhao, Yue; Kimura, Shuhei; Fujiyama, Sally; Ueda, Takashi; Umetsu, Daiki; Ito, Takashi; Takeyama, Ken-ichi; Kato, Shigeaki

    2010-01-01

    Chromatin reorganization is essential for transcriptional control by sequence-specific transcription factors. However, the molecular link between transcriptional control and chromatin reconfiguration remains unclear. By colocalization of the nuclear ecdysone receptor (EcR) on the ecdysone-induced puff in the salivary gland, Drosophila DEK (dDEK) was genetically identified as a coactivator of EcR in both insect cells and intact flies. Biochemical purification and characterization of the complexes containing fly and human DEKs revealed that DEKs serve as histone chaperones via phosphorylation by forming complexes with casein kinase 2. Consistent with the preferential association of the DEK complex with histones enriched in active epigenetic marks, dDEK facilitated H3.3 assembly during puff formation. In some human myeloid leukemia patients, DEK was fused to CAN by chromosomal translocation. This mutation significantly reduced formation of the DEK complex, which is required for histone chaperone activity. Thus, the present study suggests that at least one histone chaperone can be categorized as a type of transcriptional coactivator for nuclear receptors. PMID:20040570

  18. Dynamic periplasmic chaperone reservoir facilitates biogenesis of outer membrane proteins

    PubMed Central

    Costello, Shawn M.; Plummer, Ashlee M.; Fleming, Patrick J.; Fleming, Karen G.

    2016-01-01

    Outer membrane protein (OMP) biogenesis is critical to bacterial physiology because the cellular envelope is vital to bacterial pathogenesis and antibiotic resistance. The process of OMP biogenesis has been studied in vivo, and each of its components has been studied in isolation in vitro. This work integrates parameters and observations from both in vivo and in vitro experiments into a holistic computational model termed “Outer Membrane Protein Biogenesis Model” (OMPBioM). We use OMPBioM to assess OMP biogenesis mathematically in a global manner. Using deterministic and stochastic methods, we are able to simulate OMP biogenesis under varying genetic conditions, each of which successfully replicates experimental observations. We observe that OMPs have a prolonged lifetime in the periplasm where an unfolded OMP makes, on average, hundreds of short-lived interactions with chaperones before folding into its native state. We find that some periplasmic chaperones function primarily as quality-control factors; this function complements the folding catalysis function of other chaperones. Additionally, the effective rate for the β-barrel assembly machinery complex necessary for physiological folding was found to be higher than has currently been observed in vitro. Overall, we find a finely tuned balance between thermodynamic and kinetic parameters maximizes OMP folding flux and minimizes aggregation and unnecessary degradation. In sum, OMPBioM provides a global view of OMP biogenesis that yields unique insights into this essential pathway. PMID:27482090

  19. Cytoprotective Mitochondrial Chaperone TRAP-1 As a Novel Molecular Target in Localized and Metastatic Prostate Cancer

    PubMed Central

    Leav, Irwin; Plescia, Janet; Goel, Hira Lal; Li, Jing; Jiang, Zhong; Cohen, Ronald J.; Languino, Lucia R.; Altieri, Dario C.

    2010-01-01

    Molecular chaperones of the heat shock protein-90 (Hsp90) family promote cell survival, but the molecular requirements of this pathway in tumor progression are not understood. Here, we show that a mitochondria-localized Hsp90 chaperone, tumor necrosis factor receptor-associated protein-1 (TRAP-1), is abundantly and ubiquitously expressed in human high-grade prostatic intraepithelial neoplasia, Gleason grades 3 through 5 prostatic adenocarcinomas, and metastatic prostate cancer, but largely undetectable in normal prostate or benign prostatic hyperplasia in vivo. Prostate lesions formed in genetic models of the disease, including the transgenic adenocarcinoma of the mouse prostate and mice carrying prostate-specific deletion of the phosphatase tensin homolog tumor suppressor (Ptenpc−/−), also exhibit high levels of TRAP-1. Expression of TRAP-1 in nontransformed prostatic epithelial BPH-1 cells inhibited cell death, whereas silencing of TRAP-1 in androgen-independent PC3 or DU145 prostate cancer cells by small interfering RNA enhanced apoptosis. Targeting TRAP-1 with a novel class of mitochondria-directed Hsp90 inhibitors, ie, Gamitrinibs, caused rapid and complete killing of androgen-dependent or -independent prostate cancer, but not BPH-1 cells, whereas reintroduction of TRAP-1 in BPH-1 cells conferred sensitivity to Gamitrinib-induced cell death. These data identify TRAP-1 as a novel mitochondrial survival factor differentially expressed in localized and metastatic prostate cancer compared with normal prostate. Targeting this pathway with Gamitrinibs could be explored as novel molecular therapy in patients with advanced prostate cancer. PMID:19948822

  20. Molecular chaperones-related studies using latent stages of invertebrates exposed to space environment

    NASA Astrophysics Data System (ADS)

    Gusev, O. A.; Alexeev, V. R.; Sychev, V. N.; Okuda, T.; Saigusa, M.

    The latent stages of certain groups of invertebrates such as Artemia and Daphnia cyst Crustacea tuns of water bears Tardigrada are very perspective material for the investigation of the boundaries of the survival of the living organisms in the space environment While the number of authors showed that exposition the space flight causes the alteration in the survivability of the Artemia cysts there is no data about the changes in the stress response on the molecular level after short and long-termed space flight In this report we present preliminary results of the analysis of the expression of hsp90 chaperon in response to the heat shock in the larvae of the Artemia obtained from the cyst exposed to the real space flight onboard ISS for 1 and 6 month in the frame of the Aquarium program 2005-2006 and control ground group The perspectives of the usage of the molecular chaperons hsp in the studies for elucidation of the influence of the open space environment BIORISK and EXPOSE research programs on the immune response end general physiology of the invertebrates in their latent stages are discussed

  1. Pharmacological chaperone reshapes the energy landscape for folding and aggregation of the prion protein

    NASA Astrophysics Data System (ADS)

    Gupta, Amar Nath; Neupane, Krishna; Rezajooei, Negar; Cortez, Leonardo M.; Sim, Valerie L.; Woodside, Michael T.

    2016-06-01

    The development of small-molecule pharmacological chaperones as therapeutics for protein misfolding diseases has proven challenging, partly because their mechanism of action remains unclear. Here we study Fe-TMPyP, a tetrapyrrole that binds to the prion protein PrP and inhibits misfolding, examining its effects on PrP folding at the single-molecule level with force spectroscopy. Single PrP molecules are unfolded with and without Fe-TMPyP present using optical tweezers. Ligand binding to the native structure increases the unfolding force significantly and alters the transition state for unfolding, making it more brittle and raising the barrier height. Fe-TMPyP also binds the unfolded state, delaying native refolding. Furthermore, Fe-TMPyP binding blocks the formation of a stable misfolded dimer by interfering with intermolecular interactions, acting in a similar manner to some molecular chaperones. The ligand thus promotes native folding by stabilizing the native state while also suppressing interactions driving aggregation.

  2. Molecular chaperones in ectothermic marine animals: biochemical function and gene expression.

    PubMed

    Hofmann, Gretchen E; Buckley, Bradley A; Place, Sean P; Zippay, Mackenzie L

    2002-08-01

    The intertidal zone has historically functioned as an important natural laboratory for testing ideas about how physical factors such as temperature influence organismal physiology and in turn influence the distribution patterns of organisms. Key to our understanding of how the physical environment helps structure organismal distribution is the identification of physiological processes that have ecological relevance. We have focused on biochemical- and molecular-level physiology that would contribute to thermal tolerance and maintenance of a functional intracellular protein pool in the face of extreme and fluctuating environmental temperatures. Past research has addressed processes central to protein homeostasis (e.g., protein ubiquitination) and the molecular ecology of molecular chaperones, a.k.a. heat shock proteins (Hsps), in ectothermic animals. In this presentation, we focus on two new developments regarding the biology of heat shock proteins as molecular chaperones in intertidal organisms. First, we present data on the functional characteristics of the transcriptional factor, HSF1 and discuss how these data relate to the plasticity of Hsp gene expression observed in intertidal organisms in nature. Second, we present data on the biochemical function of heat shock proteins purified from our non-model study organisms and discuss the temperature relationships of these molecules as they assist in protein folding in situ.

  3. Crucial HSP70 co–chaperone complex unlocks metazoan protein disaggregation

    PubMed Central

    Nillegoda, Nadinath B.; Kirstein, Janine; Szlachcic, Anna; Berynskyy, Mykhaylo; Stank, Antonia; Stengel, Florian; Arnsburg, Kristin; Gao, Xuechao; Scior, Annika; Aebersold, Ruedi; Guilbride, D. Lys; Wade, Rebecca C.; Morimoto, Richard I.; Mayer, Matthias P.; Bukau, Bernd

    2016-01-01

    Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states1,2. Healthy metazoan cells effectively eliminate intracellular protein aggregates3,4, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems5,6, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro4,7. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control. PMID:26245380

  4. Cellular Pathology of Pelizaeus-Merzbacher Disease Involving Chaperones Associated with Endoplasmic Reticulum Stress

    PubMed Central

    Inoue, Ken

    2017-01-01

    Disease-causing mutations in genes encoding membrane proteins may lead to the production of aberrant polypeptides that accumulate in the endoplasmic reticulum (ER). These mutant proteins have detrimental conformational changes or misfolding events, which result in the triggering of the unfolded protein response (UPR). UPR is a cellular pathway that reduces ER stress by generally inhibiting translation, increasing ER chaperones levels, or inducing cell apoptosis in severe ER stress. This process has been implicated in the cellular pathology of many neurological disorders, including Pelizaeus-Merzbacher disease (PMD). PMD is a rare pediatric disorder characterized by the failure in the myelination process of the central nervous system (CNS). PMD is caused by mutations in the PLP1 gene, which encodes a major myelin membrane protein. Severe clinical PMD phenotypes appear to be the result of cell toxicity, due to the accumulation of PLP1 mutant proteins and not due to the lack of functional PLP1. Therefore, it is important to clarify the pathological mechanisms by which the PLP1 mutants negatively impact the myelin-generating cells, called oligodendrocytes, to overcome this devastating disease. This review discusses how PLP1 mutant proteins change protein homeostasis in the ER of oligodendrocytes, especially focusing on the reaction of ER chaperones against the accumulation of PLP1 mutant proteins that cause PMD. PMID:28286750

  5. Pharmacological chaperone reshapes the energy landscape for folding and aggregation of the prion protein

    PubMed Central

    Gupta, Amar Nath; Neupane, Krishna; Rezajooei, Negar; Cortez, Leonardo M.; Sim, Valerie L.; Woodside, Michael T.

    2016-01-01

    The development of small-molecule pharmacological chaperones as therapeutics for protein misfolding diseases has proven challenging, partly because their mechanism of action remains unclear. Here we study Fe-TMPyP, a tetrapyrrole that binds to the prion protein PrP and inhibits misfolding, examining its effects on PrP folding at the single-molecule level with force spectroscopy. Single PrP molecules are unfolded with and without Fe-TMPyP present using optical tweezers. Ligand binding to the native structure increases the unfolding force significantly and alters the transition state for unfolding, making it more brittle and raising the barrier height. Fe-TMPyP also binds the unfolded state, delaying native refolding. Furthermore, Fe-TMPyP binding blocks the formation of a stable misfolded dimer by interfering with intermolecular interactions, acting in a similar manner to some molecular chaperones. The ligand thus promotes native folding by stabilizing the native state while also suppressing interactions driving aggregation. PMID:27346148

  6. ADP ribosylation adapts an ER chaperone response to short-term fluctuations in unfolded protein load

    PubMed Central

    Petrova, Kseniya; Tomba, Giulia; Vendruscolo, Michele

    2012-01-01

    Gene expression programs that regulate the abundance of the chaperone BiP adapt the endoplasmic reticulum (ER) to unfolded protein load. However, such programs are slow compared with physiological fluctuations in secreted protein synthesis. While searching for mechanisms that fill this temporal gap in coping with ER stress, we found elevated levels of adenosine diphosphate (ADP)–ribosylated BiP in the inactive pancreas of fasted mice and a rapid decline in this modification in the active fed state. ADP ribosylation mapped to Arg470 and Arg492 in the substrate-binding domain of hamster BiP. Mutations that mimic the negative charge of ADP-ribose destabilized substrate binding and interfered with interdomain allosteric coupling, marking ADP ribosylation as a rapid posttranslational mechanism for reversible inactivation of BiP. A kinetic model showed that buffering fluctuations in unfolded protein load with a recruitable pool of inactive chaperone is an efficient strategy to minimize both aggregation and costly degradation of unfolded proteins. PMID:22869598

  7. Methods to study histone chaperone function in nucleosome assembly and chromatin transcription.

    PubMed

    Senapati, Parijat; Sudarshan, Deepthi; Gadad, Shrikanth S; Shandilya, Jayasha; Swaminathan, Venkatesh; Kundu, Tapas K

    2015-01-01

    Histone chaperones are histone interacting proteins that are involved in various stages of histone metabolism in the cell such as histone storage, transport, nucleosome assembly and disassembly. Histone assembly and disassembly are essential processes in certain DNA-templated phenomena such as replication, repair and transcription in eukaryotes. Since the first histone chaperone Nucleoplasmin was discovered in Xenopus, a plethora of histone chaperones have been identified, characterized and their functional significance elucidated in the last 35 years or so. Some of the histone chaperone containing complexes such as FACT have been described to play a significant role in nucleosome disassembly during transcription elongation. We have reported earlier that human Nucleophosmin (NPM1), a histone chaperone belonging to the Nucleoplasmin family, is a co-activator of transcription. In this chapter, we describe several methods that are used to study the histone chaperone activity of proteins and their role in transcription.

  8. Regulation of σ-1 Receptors and Endoplasmic Reticulum Chaperones in the Brain of Methamphetamine Self-Administering Rats

    PubMed Central

    Hayashi, Teruo; Justinova, Zuzana; Hayashi, Eri; Cormaci, Gianfrancesco; Mori, Tomohisa; Tsai, Shang-Yi; Barnes, Chanel; Goldberg, Steven R.

    2010-01-01

    σ-1 Receptors are endoplasmic reticulum (ER) chaperones that are implicated in the neuroplasticity associated with psychostimulant abuse. We immunocytochemically examined the distribution of σ-1 receptors in the brain of drug-naive rats and then examined the dynamics of σ-1 receptors and other ER chaperones in specific brain subregions of rats that self-administered methamphetamine, received methamphetamine passively, or received only saline injections. σ-1 Receptors were found to be expressed in moderate to high levels in the olfactory bulb, striatum, nucleus accumbens shell, olfactory tubercle, amygdala, hippocampus, red nucleus, ventral tegmental area, substantia nigra, and locus ceruleus. Methamphetamine, whether self-administered or passively received, significantly elevated ER chaperones including the σ-1 receptor, BiP, and calreticulin in the ventral tegmental area and substantia nigra. In the olfactory bulb, however, only the σ-1 receptor chaperone was increased, and this increase occurred only in rats that actively self-administered methamphetamine. Consistent with an increase in σ-1 receptors, extracellular signal-regulated kinase was found to be activated and protein kinase A attenuated in the olfactory bulb of methamphetamine self-administering rats. σ-1 Receptors in the olfactory bulb were found to be colocalized with dopamine D1 receptors. These results indicate that methamphetamine induces ER stress in the ventral tegmental area and substantia nigra in rats whether the drug is received actively or passively. However, the changes seen only in rats that actively self-administered methamphetamine suggest that D1 and σ-1 receptors in the olfactory bulb might play an important role in the motivational conditioning/learning aspects of methamphetamine self-administration in the rat. PMID:19940104

  9. Molecular Interaction between the Chaperone Hsc70 and the N-terminal Flank of Huntingtin Exon 1 Modulates Aggregation*

    PubMed Central

    Monsellier, Elodie; Redeker, Virginie; Ruiz-Arlandis, Gemma; Bousset, Luc; Melki, Ronald

    2015-01-01

    The aggregation of polyglutamine (polyQ)-containing proteins is at the origin of nine neurodegenerative diseases. Molecular chaperones prevent the aggregation of polyQ-containing proteins. The exact mechanism by which they interact with polyQ-containing, aggregation-prone proteins and interfere with their assembly is unknown. Here we dissect the mechanism of interaction between a huntingtin exon 1 fragment of increasing polyQ lengths (HttEx1Qn), the aggregation of which is tightly associated with Huntington's disease, and molecular chaperone Hsc70. We show that Hsc70, together with its Hsp40 co-chaperones, inhibits HttEx1Qn aggregation and modifies the structural, seeding, and infectious properties of the resulting fibrils in a polyQ-independent manner. We demonstrate that Hsc70 binds the 17-residue-long N-terminal flank of HttEx1Qn, and we map Hsc70-HttEx1Qn surface interfaces at the residue level. Finally, we show that this interaction competes with homotypic interactions between the N termini of different HttEx1Qn molecules that trigger the aggregation process. Our results lay the foundations of future therapeutic strategies targeting huntingtin aggregation in Huntington disease. PMID:25505179

  10. The Hsp90 Co-chaperones Sti1, Aha1, and P23 Regulate Adaptive Responses to Antifungal Azoles

    PubMed Central

    Gu, Xiaokui; Xue, Wei; Yin, Yajing; Liu, Hongwei; Li, Shaojie; Sun, Xianyun

    2016-01-01

    Heat Shock Protein 90 (Hsp90) is essential for tumor progression in humans and drug resistance in fungi. However, the roles of its many co-chaperones in antifungal resistance are unknown. In this study, by susceptibility test of Neurospora crassa mutants lacking each of 18 Hsp90/Calcineurin system member genes (including 8 Hsp90 co-chaperone genes) to antifungal drugs and other stresses, we demonstrate that the Hsp90 co-chaperones Sti1 (Hop1 in yeast), Aha1, and P23 (Sba1 in yeast) were required for the basal resistance to antifungal azoles and heat stress. Deletion of any of them resulted in hypersensitivity to azoles and heat. Liquid chromatography–mass spectrometry (LC-MS) analysis showed that the toxic sterols eburicol and 14α-methyl-3,6-diol were significantly accumulated in the sti1 and p23 deletion mutants after ketoconazole treatment, which has been shown before to led to cell membrane stress. At the transcriptional level, Aha1, Sti1, and P23 positively regulate responses to ketoconazole stress by erg11 and erg6, key genes in the ergosterol biosynthetic pathway. Aha1, Sti1, and P23 are highly conserved in fungi, and sti1 and p23 deletion also increased the susceptibility to azoles in Fusarium verticillioides. These results indicate that Hsp90-cochaperones Aha1, Sti1, and P23 are critical for the basal azole resistance and could be potential targets for developing new antifungal agents. PMID:27761133

  11. Reactivation of Aggregated Proteins by the ClpB/DnaK Bi-chaperone System

    PubMed Central

    Zolkiewski, Michal; Chesnokova, Liudmila S.; Witt, Stephan N.

    2016-01-01

    Protein aggregation is a common problem in protein biochemistry and is linked to many cellular pathologies and human diseases. The molecular chaperone ClpB can resolubilize and reactivate aggregated proteins. This unit describes the procedure for following reactivation of an aggregated enzyme glucose-6-phosphate dehydrogenase mediated by ClpB from Escherichia coli in cooperation with another molecular chaperone DnaK. The procedures for purification of these chaperones are also described. PMID:26836408

  12. Gene expression and molecular modeling of the HSP104 chaperone of Trypanosoma cruzi.

    PubMed

    Campos, R A; da Silva, M L; da Costa, G V; Bisch, P M; Peralta, J M; Silva, R; Rondinelli, E; Urményi, T P

    2012-08-06

    Heat shock protein (HSP) 104 is a highly conserved molecular chaperone that catalyzes protein unfolding, disaggregation and degradation under stress conditions. We characterized HSP104 gene structure and expression in Trypanosoma cruzi, a protozoan parasite that causes Chagas' disease. The T. cruzi HSP104 is an 869 amino-acid protein encoded by a single-copy gene that has the highest sequence similarity (76%) with that of T. brucei and the lowest (23%) with that of the human protein. HSP104 transcripts were detected at room temperature, and levels increased after incubation at 37° or 40°C. The HSP104 protein was found at low levels in non-heat-shocked cells, and accumulated continuously up to 24 h at elevated temperatures. We developed a predicted structural model of hexameric T. cruzi HSP104, which showed some conserved features.

  13. The right place at the right time: chaperoning core histone variants.

    PubMed

    Mattiroli, Francesca; D'Arcy, Sheena; Luger, Karolin

    2015-11-01

    Histone proteins dynamically regulate chromatin structure and epigenetic signaling to maintain cell homeostasis. These processes require controlled spatial and temporal deposition and eviction of histones by their dedicated chaperones. With the evolution of histone variants, a network of functionally specific histone chaperones has emerged. Molecular details of the determinants of chaperone specificity for different histone variants are only slowly being resolved. A complete understanding of these processes is essential to shed light on the genuine biological roles of histone variants, their chaperones, and their impact on chromatin dynamics.

  14. The right place at the right time: chaperoning core histone variants

    PubMed Central

    Mattiroli, Francesca; D’Arcy, Sheena; Luger, Karolin

    2015-01-01

    Histone proteins dynamically regulate chromatin structure and epigenetic signaling to maintain cell homeostasis. These processes require controlled spatial and temporal deposition and eviction of histones by their dedicated chaperones. With the evolution of histone variants, a network of functionally specific histone chaperones has emerged. Molecular details of the determinants of chaperone specificity for different histone variants are only slowly being resolved. A complete understanding of these processes is essential to shed light on the genuine biological roles of histone variants, their chaperones, and their impact on chromatin dynamics. PMID:26459557

  15. Tetrahydrobiopterin shows chaperone activity for tyrosine hydroxylase.

    PubMed

    Thöny, Beat; Calvo, Ana C; Scherer, Tanja; Svebak, Randi M; Haavik, Jan; Blau, Nenad; Martinez, Aurora

    2008-07-01

    Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the synthesis of catecholamine neurotransmitters. Primary inherited defects in TH have been associated with l-DOPA responsive and non-responsive dystonia and infantile parkinsonism. In this study, we show that both the cofactor (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)) and the feedback inhibitor and catecholamine product dopamine increase the kinetic stability of human TH isoform 1 in vitro. Activity measurements and synthesis of the enzyme by in vitro transcription-translation revealed a complex regulation by the cofactor including both enzyme inactivation and conformational stabilization. Oral BH(4) supplementation to mice increased TH activity and protein levels in brain extracts, while the Th-mRNA level was not affected. All together our results indicate that the molecular mechanisms for the stabilization are a primary folding-aid effect of BH(4) and a secondary effect by increased synthesis and binding of catecholamine ligands. Our results also establish that orally administered BH(4) crosses the blood-brain barrier and therapeutic regimes based on BH(4) supplementation should thus consider the effect on TH. Furthermore, BH(4) supplementation arises as a putative therapeutic agent in the treatment of brain disorders associated with TH misfolding, such as for the human TH isoform 1 mutation L205P.

  16. Proper Control of Caulobacter crescentus Cell Surface Adhesion Requires the General Protein Chaperone DnaK

    PubMed Central

    Eaton, Daniel S.; Crosson, Sean

    2016-01-01

    ABSTRACT Growth in a surface-attached bacterial community, or biofilm, confers a number of advantages. However, as a biofilm matures, high-density growth imposes stresses on individual cells, and it can become less advantageous for progeny to remain in the community. Thus, bacteria employ a variety of mechanisms to control attachment to and dispersal from surfaces in response to the state of the environment. The freshwater oligotroph Caulobacter crescentus can elaborate a polysaccharide-rich polar organelle, known as the holdfast, which enables permanent surface attachment. Holdfast development is strongly inhibited by the small protein HfiA; mechanisms that control HfiA levels in the cell are not well understood. We have discovered a connection between the essential general protein chaperone, DnaK, and control of C. crescentus holdfast development. C. crescentus mutants partially or completely lacking the C-terminal substrate binding “lid” domain of DnaK exhibit enhanced bulk surface attachment. Partial or complete truncation of the DnaK lid domain increases the probability that any single cell will develop a holdfast by 3- to 10-fold. These results are consistent with the observation that steady-state levels of an HfiA fusion protein are significantly diminished in strains that lack the entire lid domain of DnaK. While dispensable for growth, the lid domain of C. crescentus DnaK is required for proper chaperone function, as evidenced by observed dysregulation of HfiA and holdfast development in strains expressing lidless DnaK mutants. We conclude that DnaK is an important molecular determinant of HfiA stability and surface adhesion control. IMPORTANCE Regulatory control of cell adhesion ensures that bacterial cells can transition between free-living and surface-attached states. We define a role for the essential protein chaperone, DnaK, in the control of Caulobacter crescentus cell adhesion. C. crescentus surface adhesion is mediated by an envelope

  17. Co-expression with the Type 3 Secretion Chaperone CesT from Enterohemorrhagic E. coli Increases Accumulation of Recombinant Tir in Plant Chloroplasts

    PubMed Central

    MacDonald, Jacqueline; Miletic, Sean; Gaildry, Typhanie; Chin-Fatt, Adam; Menassa, Rima

    2017-01-01

    Type 3 secretion systems (T3SSs) are utilized by pathogenic Escherichia coli to infect their hosts and many proteins from these systems are affected by chaperones specific to T3SS-containing bacteria. Toward developing a recombinant vaccine against enterohaemorrhagic E. coli (EHEC), we expressed recombinant T3SS and related proteins from predominant EHEC serotypes in Nicotiana chloroplasts. Nicotiana benthamiana were transiently transformed to express chloroplast-targeted Tir, NleA, and EspD from the EHEC serotype O157:H7; a fusion of EspA proteins from serotypes O157:H7 and O26:H11; and a fusion of epitopes of Tir (Tir-ep) from serotypes O157:H7, O26:H11, O45:H2, and O111:H8. C-terminal GFP reporter fusion constructs were also developed and transiently expressed to confirm subcellular localization and quantify relative expression levels in situ. Recombinant proteins were co-expressed with chaperones specific to each T3SS protein with the goal of increasing their accumulation in the chloroplast. We found that co-expression with the chloroplast-targeted chaperone CesT significantly increases accumulation of recombinant Tir when the latter is either transiently expressed in the nucleus and targeted to the chloroplast of N. benthamiana or stably expressed in transplastomic Nicotiana tabacum. CesT also helped maintain higher levels of Tir:GFP fusion protein over time both in vivo and ex vivo, indicating that the favorable effect of CesT on accumulation of Tir is not specific to a single time point or to fresh material. By contrast, T3SS chaperones CesT, CesAB, CesD, and CesD2 did not increase accumulation of NleA:GFP, EspA:GFP, or EspD:GFP, which suggests dissimilar functioning of these chaperone–substrate combinations. CesT did not increase accumulation of Tir-ep:GFP, which may be due to the absence of the CesT binding domain from this fusion protein. The fusion to GFP improved accumulation of Tir-ep relative to the unfused protein, but not for the other recombinant

  18. Catapult mechanism renders the chaperone action of Hsp70 unidirectional.

    PubMed

    Gisler, S M; Pierpaoli, E V; Christen, P

    1998-06-19

    Molecular chaperones of the Hsp70 type promote the folding and membrane translocation of proteins. The interaction of Hsp70s with polypeptides is linked to ATP binding and hydrolysis. We formed complexes of seven different fluorescence-labeled peptides with DnaK, the Hsp70 homolog of Escherichia coli, and determined the rate of peptide release under two different sets of conditions. (1) Upon addition of ATP to nucleotide-free peptide.DnaK complexes, all tested peptides were released with similar rate constants (2.2 s-1 to 6.7 s-1). (2) In the binding equilibrium of peptide and ATP-liganded DnaK, the dissociation followed one or two-step reactions, depending on the amino acid sequence of the peptide. For the monophasic reactions, the dissociation rate constants diverged by four orders of magnitude from 0.0004 s-1 to 5.7 s-1; for the biphasic reactions, the rate constants of the second, slower isomerization step were in the range from 0.3 s-1 to 0.0005 s-1. The release of the different peptides in case (1) is 1.4 to 14,000 times faster than in case (2). Apparently, binding of ATP induces a transient state of the chaperone which ejects target peptides before the final state of ATP-liganded DnaK is reached. This "catapult" mechanism provides the chaperone cycle with a mode of peptide release that does not correspond with the reverse of peptide binding. By allowing the conformation of the outgoing polypeptide to differ from that of the incoming polypeptide, a futile cycle with respect to conformational work exerted on the target protein is obviated.

  19. Structure of Vps75 and Implications for Histone Chaperone Function

    SciTech Connect

    Tang,Y.; Meeth, K.; Jiang, E.; Luo, c.; Marmostein, R.

    2008-01-01

    The vacuolar protein sorting 75 (Vps75) histone chaperone participates in chromatin assembly and disassembly at both active and inactive genes through the preferential binding to histone H3-H4. Vps75 is also one of two histone chaperones, along with antisilencing factor 1, that promotes histone H3-Lys-56 acetylation by the regulation of Ty1 transposition protein 109 (Rtt109) histone acetyltransferase. Here, we report the x-ray crystal structure of Vps75 and carry out biochemical studies to characterize its interaction with Rtt109. We find that the Vps75 structure forms a homodimeric 'headphone' architecture that includes an extended helical dimerization domain and earmuff domains at opposite ends and sides of the dimerization domain. Despite the similar overall architecture with the yeast nucleosome assembly protein 1 and human SET/TAF-1{beta}/INHAT histone chaperones, Vps75 shows several unique features including the relative disposition of the earmuff domains to the dimerization domain, characteristics of the earmuff domains, and a pronounced cleft at the center of the Vps75 dimer. These differences appear to correlate with the unique function of Vps75 to interact with Rtt109 for histone acetylation. Our biochemical studies reveal that two surfaces on the earmuff domain of Vps75 participate in Rtt109 interaction with a stoichiometry of 2:1, thus leaving the pronounced central cleft of the Vps75 dimer largely accessible for histone binding. Taken together, our data provide a structural framework for understanding how Vps75 mediates both nucleosome assembly and histone acetylation by Rtt109.

  20. A chemical chaperone induces inhomogeneous conformational changes in flexible proteins.

    PubMed

    Hamdane, Djemel; Velours, Christophe; Cornu, David; Nicaise, Magali; Lombard, Murielle; Fontecave, Marc

    2016-07-27

    Organic osmolytes also known as chemical chaperones are major cellular compounds that favor, by an unclear mechanism, protein's compaction and stabilization of the native state. Here, we have examined the chaperone effect of the naturally occurring trimethylamine N-oxide (TMAO) osmolyte on a loosely packed protein (LPP), known to be a highly flexible form, using an apoprotein mutant of the flavin-dependent RNA methyltransferase as a model. Thermal and chemical denaturation experiments showed that TMAO stabilizes the structural integrity of the apoprotein dramatically. The denaturation reaction is irreversible indicating that the stability of the apoprotein is under kinetic control. This result implies that the stabilization is due to a TMAO-induced reconfiguration of the flexible LPP state, which leads to conformational limitations of the apoprotein likely driven by favorable entropic contribution. Evidence for the conformational perturbation of the apoprotein had been obtained through several biophysical approaches notably analytical ultracentrifugation, circular dichroism, fluorescence spectroscopy, labelling experiments and proteolysis coupled to mass spectrometry. Unexpectedly, TMAO promotes an overall elongation or asymmetrical changes of the hydrodynamic shape of the apoprotein without alteration of the secondary structure. The modulation of the hydrodynamic properties of the protein is associated with diverse inhomogenous conformational changes: loss of the solvent accessible cavities resulting in a dried protein matrix; some side-chain residues initially buried become solvent exposed while some others become hidden. Consequently, the TMAO-induced protein state exhibits impaired capability in the flavin binding process. Our study suggests that the nature of protein conformational changes induced by the chemical chaperones may be specific to protein packing and plasticity. This could be an efficient mechanism by which the cell controls and finely tunes the

  1. Chaperone proteins and brain tumors: Potential targets and possible therapeutics1

    PubMed Central

    Graner, Michael W.; Bigner, Darell D.

    2005-01-01

    Chaperone proteins are most notable for the proteo- and cyotoprotective capacities they afford during cellular stress. Under conditions of cellular normalcy, chaperones still play integral roles in the folding of nascent polypeptides into functional entities, in assisting in intracellular/intraorganellar transport, in assembly and maintenance of multi-subunit protein complexes, and in aiding and abetting the degradation of senescent proteins. Tumors frequently have relatively enhanced needs for chaperone number and activity because of the stresses of rapid proliferation, increased metabolism, and overall genetic instability. Thus, it may be possible to take advantage of this reliance that tumor cells have on chaperones by pharmacologic and biologic means. Certain chaperones are abundant in the brain, which implies important roles for them. While it is presumed that the requirements of brain tumors for chaperone proteins are similar to those of any other cell type, tumor or otherwise, very little inquiry has been directed at the possibility of using chaperone proteins as therapeutic targets or even as therapeutic agents against central nervous system malignancies. This review highlights some of the research on the functions of chaperone proteins, on what can be done to modify those functions, and on the physiological responses that tumors and organisms can have to chaperone-targeted or chaperone-based therapies. In particular, this review will also underscore areas of research where brain tumors have been part of the field, although in general those instances are few and far between. This relative dearth of research devoted to chaperone protein targets and therapeutics in brain tumors reveals much untrodden turf to explore for potential treatments of these dreadfully refractive diseases. PMID:16053701

  2. Thanks for asking: Adolescent attitudes and preferences regarding the use of chaperones during physical examinations

    PubMed Central

    Morgan, Renee; Katzman, Debra K; Kaufman, Miriam; Goldberg, Eudice; Toulany, Alene

    2016-01-01

    BACKGROUND: There is no uniformity as to how and when chaperones should be used for general and intimate (genitalia and/or breasts) physical examinations of adolescents. OBJECTIVE: To explore adolescents’ attitudes and preferences regarding the use of medical chaperones during physical examinations. METHODS: The present analysis was a cross-sectional descriptive study performed as part of a quality improvement project in the Adolescent Medicine Clinics at The Hospital for Sick Children (Toronto, Ontario) between January 1 and April 30, 2011. Adolescents 13 to 18 years of age completed an anonymous 10-item, self-administered questionnaire regarding their thoughts on chaperones during physical examinations. Demographic and descriptive data were collected. RESULTS: A total of 127 adolescents participated in the present study. The mean (± SD) age was 16.3±1.5 years and the majority (93.7%) were female. More than one-half (61%) of female adolescents had previous experience with an intimate examination; however, a chaperone was present only 36% of the time. Seventy percent of female adolescents wanted the choice of a chaperone for a general examination compared with 61% for an intimate examination. Among female adolescents with past chaperone experience, 78% wanted the choice of a chaperone for subsequent intimate examinations, compared with 55% among those with no previous chaperone experience. Only 21% believed they would ask for a chaperone if one were not offered. CONCLUSIONS: Although there was variation in adolescents’ attitudes and preferences regarding the use of chaperones, many females indicated a desire to discuss the option of a chaperone for all types of examinations. PMID:27429571

  3. A single amino acid substitution in ORF1 dramatically decreases L1 retrotransposition and provides insight into nucleic acid chaperone activity

    PubMed Central

    Martin, Sandra L.; Bushman, Diane; Wang, Fei; Li, Patrick Wai-Lun; Walker, Ann; Cummiskey, Jessica; Branciforte, Dan; Williams, Mark C.

    2008-01-01

    L1 is a ubiquitous interspersed repeated sequence in mammals that achieved its high copy number by autonomous retrotransposition. Individual L1 elements within a genome differ in sequence and retrotransposition activity. Retrotransposition requires two L1-encoded proteins, ORF1p and ORF2p. Chimeric elements were used to map a 15-fold difference in retrotransposition efficiency between two L1 variants from the mouse genome, TFC and TFspa, to a single amino acid substitution in ORF1p, D159H. The steady-state levels of L1 RNA and protein do not differ significantly between these two elements, yet new insertions are detected earlier and at higher frequency in TFC, indicating that it converts expressed L1 intermediates more effectively into new insertions. The two ORF1 proteins were purified and their nucleic acid binding and chaperone activities were examined in vitro. Although the RNA and DNA oligonucleotide binding affinities of these two ORF1 proteins were largely indistinguishable, D159 was significantly more effective as a nucleic acid chaperone than H159. These findings support a requirement for ORF1p nucleic acid chaperone activity at a late step during L1 retrotransposition, extend the region of ORF1p that is known to be critical for its functional interactions with nucleic acids, and enhance understanding of nucleic acid chaperone activity. PMID:18790804

  4. BtcA, A class IA type III chaperone, interacts with the BteA N-terminal domain through a globular/non-globular mechanism.

    PubMed

    Guttman, Chen; Davidov, Geula; Yahalom, Adi; Shaked, Hadassa; Kolusheva, Sofiya; Bitton, Ronit; Barber-Zucker, Shiran; Chill, Jordan H; Zarivach, Raz

    2013-01-01

    Bordetella pertussis, the etiological agent of "whooping cough" disease, utilizes the type III secretion system (T3SS) to deliver a 69 kDa cytotoxic effector protein, BteA, directly into the host cells. As with other T3SS effectors, prior to its secretion BteA binds BtcA, a 13.9 kDa protein predicted to act as a T3SS class IA chaperone. While this interaction had been characterized for such effector-chaperone pairs in other pathogens, it has yet to be fully investigated in Bordetella. Here we provide the first biochemical proof that BtcA is indeed a class IA chaperone, responsible for the binding of BteA's N-terminal domain. We bring forth extensive evidence that BtcA binds its substrate effector through a dual-interface binding mechanism comprising of non-globular and bi-globular interactions at a moderate micromolar level binding affinity. We demonstrate that the non-globular interactions involve the first 31 N-terminal residues of BteA287 and their removal leads to destabilization of the effector-chaperone complex and lower binding affinities to BtcA. These findings represent an important first step towards a molecular understanding of BteA secretion and cell entry.

  5. Totipotency in the absence of CAF-I: unhindered choices when the chaperone is out.

    PubMed

    Yankulov, Krassimir

    2015-01-01

    Embryonal totipotent cells can produce both embryonic and extraembryonic tissues and can generate whole organisms. In mice this level of genome plasticity is preserved in the 2-cell embryos, but is absent in embryonic cells from later stages of development. Recently it has been demonstrated that totipotent-like cells spontaneously appear in embryonic stem cell cultures and that the depletion of the histone chaperone Chromatin Assembly Factor I (CAF-I) increases the abundance of 2cell-like cells. On the other hand, earlier studies have demonstrated that CAF-I is necessary for epigenetic conversions at the telomeres of S. cerevisiae. This commentary proposes that the absence of CAF-I confers totipotency of embryonic cells and that its activation triggers chromatin changes that reset the epigenome toward cell differentiation.

  6. The Chaperone TRAP1 As a Modulator of the Mitochondrial Adaptations in Cancer Cells

    PubMed Central

    Masgras, Ionica; Sanchez-Martin, Carlos; Colombo, Giorgio; Rasola, Andrea

    2017-01-01

    Mitochondria can receive, integrate, and transmit a variety of signals to shape many biochemical activities of the cell. In the process of tumor onset and growth, mitochondria contribute to the capability of cells of escaping death insults, handling changes in ROS levels, rewiring metabolism, and reprograming gene expression. Therefore, mitochondria can tune the bioenergetic and anabolic needs of neoplastic cells in a rapid and flexible way, and these adaptations are required for cell survival and proliferation in the fluctuating environment of a rapidly growing tumor mass. The molecular bases of pro-neoplastic mitochondrial adaptations are complex and only partially understood. Recently, the mitochondrial molecular chaperone TRAP1 (tumor necrosis factor receptor associated protein 1) was identified as a key regulator of mitochondrial bioenergetics in tumor cells, with a profound impact on neoplastic growth. In this review, we analyze these findings and discuss the possibility that targeting TRAP1 constitutes a new antitumor approach.

  7. Two for the Price of One: A Neuroprotective Chaperone Kit within NAD Synthase Protein NMNAT2

    PubMed Central

    2016-01-01

    One of the most fascinating properties of the brain is the ability to function smoothly across decades of a lifespan. Neurons are nondividing mature cells specialized in fast electrical and chemical communication at synapses. Often, neurons and synapses operate at high levels of activity through sophisticated arborizations of long axons and dendrites that nevertheless stay healthy throughout years. On the other hand, aging and activity-dependent stress strike onto the protein machineries turning proteins unfolded and prone to form pathological aggregates associated with neurodegeneration. How do neurons protect from those insults and remain healthy for their whole life? Ali and colleagues now present a molecular mechanism by which the enzyme nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) acts not only as a NAD synthase involved in axonal maintenance but as a molecular chaperone helping neurons to overcome protein unfolding and protein aggregation. PMID:27454736

  8. The Role of Bacterial Chaperones in the Circulative Transmission of Plant Viruses by Insect Vectors

    PubMed Central

    Kliot, Adi; Ghanim, Murad

    2013-01-01

    Persistent circulative transmission of plant viruses involves complex interactions between the transmitted virus and its insect vector. Several studies have shown that insect vector proteins are involved in the passage and the transmission of the virus. Interestingly, proteins expressed by bacterial endosymbionts that reside in the insect vector, were also shown to influence the transmission of these viruses. Thus far, the transmission of two plant viruses that belong to different virus genera was shown to be facilitated by a bacterial chaperone protein called GroEL. This protein was shown to be implicated in the transmission of Potato leafroll virus (PLRV) by the green peach aphid Myzus persicae, and the transmission of Tomato yellow leaf curl virus (TYLCV) by the sweetpotato whitefly Bemisia tabaci. These tri-trophic levels of interactions and their possible evolutionary implications are reviewed. PMID:23783810

  9. The Role of Copper Chaperone Atox1 in Coupling Redox Homeostasis to Intracellular Copper Distribution

    PubMed Central

    Hatori, Yuta; Lutsenko, Svetlana

    2016-01-01

    Human antioxidant protein 1 (Atox1) is a small cytosolic protein with an essential role in copper homeostasis. Atox1 functions as a copper carrier facilitating copper transfer to the secretory pathway. This process is required for activation of copper dependent enzymes involved in neurotransmitter biosynthesis, iron efflux, neovascularization, wound healing, and regulation of blood pressure. Recently, new cellular roles for Atox1 have emerged. Changing levels of Atox1 were shown to modulate response to cancer therapies, contribute to inflammatory response, and protect cells against various oxidative stresses. It has also become apparent that the activity of Atox1 is tightly linked to the cellular redox status. In this review, we summarize biochemical information related to a dual role of Atox1 as a copper chaperone and an antioxidant. We discuss how these two activities could be linked and contribute to establishing the intracellular copper balance and functional identity of cells during differentiation. PMID:27472369

  10. Two for the Price of One: A Neuroprotective Chaperone Kit within NAD Synthase Protein NMNAT2.

    PubMed

    Lavado-Roldán, Angela; Fernández-Chacón, Rafael

    2016-07-01

    One of the most fascinating properties of the brain is the ability to function smoothly across decades of a lifespan. Neurons are nondividing mature cells specialized in fast electrical and chemical communication at synapses. Often, neurons and synapses operate at high levels of activity through sophisticated arborizations of long axons and dendrites that nevertheless stay healthy throughout years. On the other hand, aging and activity-dependent stress strike onto the protein machineries turning proteins unfolded and prone to form pathological aggregates associated with neurodegeneration. How do neurons protect from those insults and remain healthy for their whole life? Ali and colleagues now present a molecular mechanism by which the enzyme nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) acts not only as a NAD synthase involved in axonal maintenance but as a molecular chaperone helping neurons to overcome protein unfolding and protein aggregation.

  11. Inhibition of HSP70 and a Collagen-Specific Molecular Chaperone (HSP47) Expression in Rat Osteoblasts by Microgravity

    NASA Technical Reports Server (NTRS)

    Kumei, Yasuhiro; Morita, Sadao; Shimokawa, Hitoyata; Ohya, Kei'ichi; Akiyama, Hideo; Hirano, Masahiko; Sams, Clarence F.; Whitson, Peggy A.

    2003-01-01

    Rat osteoblasts were cultured aboard a space shuttle for 4 or 5 days. Cells were exposed to 1alpha, 25 dihydroxyvitamin D(3) during the last 20 h and then solubilized by guanidine solution. The mRNA levels for molecular chaperones were analyzed by semi-quantitative RT-PCR. ELISA was used to quantify TGF-beta1 in the conditioned medium. The HSP70 mRNA levels in the flight cultures were almost completely suppressed, as compared to the ground (1 x g) controls. The inducible HSP70 is known as the major heat shock protein that prevents stress-induced apoptosis. The mean mRNA levels for the constitutive HSC73 in the flight cultures were reduced to 69%, approximately 60% of the ground controls. HSC73 is reported to prevent the pathological state that is induced by disruption of microtubule network. The mean HSP47 mRNA levels in the flight cultures were decreased to 50% and 19% of the ground controls on the 4th and 5th days. Concomitantly, the concentration of TGF-beta1 in the conditioned medium of the flight cultures was reduced to 37% and 19% of the ground controls on the 4th and 5th days. HSP47 is the collagen-specific molecular chaperone that controls collagen processing and quality and is regulated by TGF-beta1. Microgravity differentially modulated the expression of molecular chaperones in osteoblasts, which might be involved in induction and/or prevention of osteopenia in space.

  12. The co-chaperone p23 promotes prostate cancer motility and metastasis

    PubMed Central

    Querol Cano, Laia; Lavery, Derek N.; Sin, Soraya; Spanjaard, Emma; Brooke, Greg N.; Tilman, Jessica D.; Abroaf, Ahmed; Gaughan, Luke; Robson, Craig N.; Heer, Rakesh; Mauri, Francesco; de Rooij, Johan; Driouch, Keltouma; Bevan, Charlotte L.

    2015-01-01

    Prostate cancer is an androgen receptor (AR)-dependent malignancy at initiation and progression, therefore hormone therapy is the primary line of systemic treatment. Despite initial disease regression, tumours inevitably recur and progress to an advanced castration-resistant state a major feature of which is metastasis to the bone. Up-regulation of AR cofactors and chaperones that overcome low hormone conditions to maintain basal AR activity has been postulated as a mechanism of therapy relapse. p23, an essential component of the apo-AR complex, acts also after ligand binding to increase AR transcriptional activity and target gene expression, partly by increasing chromatin-loaded holo-receptor-complexes. Immunohistochemical studies have demonstrated increased p23 expression in advanced prostate cancer. Here, we further characterise p23 roles in AR signalling and show that it modulates cytosolic AR levels in the absence of hormone, confirming a chaperoning function in the aporeceptor complex and suggesting p23 upregulates AR signalling at multiple stages. Moreover, p23 protein levels significantly increased upon treatment with not only androgen but also clinically relevant anti-androgens. This was in contrast to the HSP90 inhibitor 17-AAG, which did not modulate expression of the cochaperone – important given the HSP90-independent roles we and others have previously described for p23. Further, we demonstrate p23 is implicated in prostate cancer cell motility and in acquisition of invasiveness capacity through the expression of specific genes known to participate in cancer progression. This may drive metastatic processes in vivo since analysis of prostate tumour biopsies revealed that high nuclear p23 significantly correlated with shorter survival times and with development of metastases in patients with lower grade tumours. We propose that increased p23 expression may allow cells to acquire a more aggressive phenotype, contributing to disease progression, and

  13. The Molecular Chaperone DnaK Is a Source of Mutational Robustness.

    PubMed

    Aguilar-Rodríguez, José; Sabater-Muñoz, Beatriz; Montagud-Martínez, Roser; Berlanga, Víctor; Alvarez-Ponce, David; Wagner, Andreas; Fares, Mario A

    2016-10-05

    Molecular chaperones, also known as heat-shock proteins, refold misfolded proteins and help other proteins reach their native conformation. Thanks to these abilities, some chaperones, such as the Hsp90 protein or the chaperonin GroEL, can buffer the deleterious phenotypic effects of mutations that alter protein structure and function. Hsp70 chaperones use a chaperoning mechanism different from that of Hsp90 and GroEL, and it is not known whether they can also buffer mutations. Here, we show that they can. To this end, we performed a mutation accumulation experiment in Escherichia coli, followed by whole-genome resequencing. Overexpression of the Hsp70 chaperone DnaK helps cells cope with mutational load and completely avoid the extinctions we observe in lineages evolving without chaperone overproduction. Additionally, our sequence data show that DnaK overexpression increases mutational robustness, the tolerance of its clients to nonsynonymous nucleotide substitutions. We also show that this elevated mutational buffering translates into differences in evolutionary rates on intermediate and long evolutionary time scales. Specifically, we studied the evolutionary rates of DnaK clients using the genomes of E. coli, Salmonella enterica, and 83 other gamma-proteobacteria. We find that clients that interact strongly with DnaK evolve faster than weakly interacting clients. Our results imply that all three major chaperone classes can buffer mutations and affect protein evolution. They illustrate how an individual protein like a chaperone can have a disproportionate effect on the evolution of a proteome.

  14. Information encoded in non-native states drives substrate-chaperone pairing.

    PubMed

    Mapa, Koyeli; Tiwari, Satyam; Kumar, Vignesh; Jayaraj, Gopal Gunanathan; Maiti, Souvik

    2012-09-05

    Many proteins refold in vitro through kinetic folding intermediates that are believed to be by-products of native-state centric evolution. These intermediates are postulated to play only minor roles, if any, in vivo because they lack any information related to translation-associated vectorial folding. We demonstrate that refolding intermediate of a test protein, generated in vitro, is able to find its cognate chaperone, from the whole complement of Escherichia coli soluble chaperones. Cognate chaperone-binding uniquely alters the conformation of non-native substrate. Importantly, precise chaperone targeting of substrates are maintained as long as physiological molar ratios of chaperones remain unaltered. Using a library of different chaperone substrates, we demonstrate that kinetically trapped refolding intermediates contain sufficient structural features for precise targeting to cognate chaperones. We posit that evolution favors sequences that, in addition to coding for a functional native state, encode folding intermediates with higher affinity for cognate chaperones than noncognate ones.

  15. Ambroxol as a pharmacological chaperone for mutant glucocerebrosidase.

    PubMed

    Bendikov-Bar, Inna; Maor, Gali; Filocamo, Mirella; Horowitz, Mia

    2013-02-01

    Gaucher disease (GD) is characterized by accumulation of glucosylceramide in lysosomes due to mutations in the GBA1 gene encoding the lysosomal hydrolase β-glucocerebrosidase (GCase). The disease has a broad spectrum of phenotypes, which were divided into three different Types; Type 1 GD is not associated with primary neurological disease while Types 2 and 3 are associated with central nervous system disease. GCase molecules are synthesized on endoplasmic reticulum (ER)-bound polyribosomes, translocated into the ER and following modifications and correct folding, shuttle to the lysosomes. Mutant GCase molecules, which fail to fold correctly, undergo ER associated degradation (ERAD) in the proteasomes, the degree of which is one of the factors that determine GD severity. Several pharmacological chaperones have already been shown to assist correct folding of mutant GCase molecules in the ER, thus facilitating their trafficking to the lysosomes. Ambroxol, a known expectorant, is one such chaperone. Here we show that ambroxol increases both the lysosomal fraction and the enzymatic activity of several mutant GCase variants in skin fibroblasts derived from Type 1 and Type 2 GD patients.

  16. Azasugar inhibitors as pharmacological chaperones for Krabbe disease

    SciTech Connect

    Hill, Chris H.; Viuff, Agnete H.; Spratley, Samantha J.; Salamone, Stéphane; Christensen, Stig H.; Read, Randy J.; Moriarty, Nigel W.; Jensen, Henrik H.; Deane, Janet E.

    2015-03-23

    Krabbe disease is a devastating neurodegenerative disorder characterized by rapid demyelination of nerve fibers. This disease is caused by defects in the lysosomal enzyme β-galactocerebrosidase (GALC), which hydrolyzes the terminal galactose from glycosphingolipids. These lipids are essential components of eukaryotic cell membranes: substrates of GALC include galactocerebroside, the primary lipid component of myelin, and psychosine, a cytotoxic metabolite. Mutations of GALC that cause misfolding of the protein may be responsive to pharmacological chaperone therapy (PCT), whereby small molecules are used to stabilize these mutant proteins, thus correcting trafficking defects and increasing residual catabolic activity in cells. Here we describe a new approach for the synthesis of galacto-configured azasugars and the characterization of their interaction with GALC using biophysical, biochemical and crystallographic methods. We identify that the global stabilization of GALC conferred by azasugar derivatives, measured by fluorescence-based thermal shift assays, is directly related to their binding affinity, measured by enzyme inhibition. X-ray crystal structures of these molecules bound in the GALC active site reveal which residues participate in stabilizing interactions, show how potency is achieved and illustrate the penalties of aza/iminosugar ring distortion. The structure–activity relationships described here identify the key physical properties required of pharmacological chaperones for Krabbe disease and highlight the potential of azasugars as stabilizing agents for future enzyme replacement therapies. This work lays the foundation for new drug-based treatments of Krabbe disease.

  17. Azasugar inhibitors as pharmacological chaperones for Krabbe disease

    DOE PAGES

    Hill, Chris H.; Viuff, Agnete H.; Spratley, Samantha J.; ...

    2015-03-23

    Krabbe disease is a devastating neurodegenerative disorder characterized by rapid demyelination of nerve fibers. This disease is caused by defects in the lysosomal enzyme β-galactocerebrosidase (GALC), which hydrolyzes the terminal galactose from glycosphingolipids. These lipids are essential components of eukaryotic cell membranes: substrates of GALC include galactocerebroside, the primary lipid component of myelin, and psychosine, a cytotoxic metabolite. Mutations of GALC that cause misfolding of the protein may be responsive to pharmacological chaperone therapy (PCT), whereby small molecules are used to stabilize these mutant proteins, thus correcting trafficking defects and increasing residual catabolic activity in cells. Here we describe amore » new approach for the synthesis of galacto-configured azasugars and the characterization of their interaction with GALC using biophysical, biochemical and crystallographic methods. We identify that the global stabilization of GALC conferred by azasugar derivatives, measured by fluorescence-based thermal shift assays, is directly related to their binding affinity, measured by enzyme inhibition. X-ray crystal structures of these molecules bound in the GALC active site reveal which residues participate in stabilizing interactions, show how potency is achieved and illustrate the penalties of aza/iminosugar ring distortion. The structure–activity relationships described here identify the key physical properties required of pharmacological chaperones for Krabbe disease and highlight the potential of azasugars as stabilizing agents for future enzyme replacement therapies. This work lays the foundation for new drug-based treatments of Krabbe disease.« less

  18. Structural Basis of Pharmacological Chaperoning for Human β-Galactosidase*

    PubMed Central

    Suzuki, Hironori; Ohto, Umeharu; Higaki, Katsumi; Mena-Barragán, Teresa; Aguilar-Moncayo, Matilde; Ortiz Mellet, Carmen; Nanba, Eiji; Garcia Fernandez, Jose M.; Suzuki, Yoshiyuki; Shimizu, Toshiyuki

    2014-01-01

    GM1 gangliosidosis and Morquio B disease are autosomal recessive diseases caused by the defect in the lysosomal β-galactosidase (β-Gal), frequently related to misfolding and subsequent endoplasmic reticulum-associated degradation. Pharmacological chaperone (PC) therapy is a newly developed molecular therapeutic approach by using small molecule ligands of the mutant enzyme that are able to promote the correct folding and prevent endoplasmic reticulum-associated degradation and promote trafficking to the lysosome. In this report, we describe the enzymological properties of purified recombinant human β-GalWT and two representative mutations in GM1 gangliosidosis Japanese patients, β-GalR201C and β-GalI51T. We have also evaluated the PC effect of two competitive inhibitors of β-Gal. Moreover, we provide a detailed atomic view of the recognition mechanism of these compounds in comparison with two structurally related analogues. All compounds bind to the active site of β-Gal with the sugar-mimicking moiety making hydrogen bonds to active site residues. Moreover, the binding affinity, the enzyme selectivity, and the PC potential are strongly affected by the mono- or bicyclic structure of the core as well as the orientation, nature, and length of the exocyclic substituent. These results provide understanding on the mechanism of action of β-Gal selective chaperoning by newly developed PC compounds. PMID:24737316

  19. Synthetic cation-selective nanotube: Permeant cations chaperoned by anions

    NASA Astrophysics Data System (ADS)

    Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho

    2011-01-01

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  20. Anticancer Gold(III) Porphyrins Target Mitochondrial Chaperone Hsp60.

    PubMed

    Hu, Di; Liu, Yungen; Lai, Yau-Tsz; Tong, Ka-Chung; Fung, Yi-Man; Lok, Chun-Nam; Che, Chi-Ming

    2016-01-22

    Identification of the molecular target(s) of anticancer metal complexes is a formidable challenge since most of them are unstable toward ligand exchange reaction(s) or biological reduction under physiological conditions. Gold(III) meso-tetraphenylporphyrin (gold-1 a) is notable for its high stability in biological milieux and potent in vitro and in vivo anticancer activities. Herein, extensive chemical biology approaches employing photo-affinity labeling, click chemistry, chemical proteomics, cellular thermal shift, saturation-transfer difference NMR, protein fluorescence quenching, and protein chaperone assays were used to provide compelling evidence that heat-shock protein 60 (Hsp60), a mitochondrial chaperone and potential anticancer target, is a direct target of gold-1 a in vitro and in cells. Structure-activity studies with a panel of non-porphyrin gold(III) complexes and other metalloporphyrins revealed that Hsp60 inhibition is specifically dependent on both the gold(III) ion and the porphyrin ligand.

  1. Pharmacological chaperone approaches for rescuing GPCR mutants: Current state, challenges, and screening strategies.

    PubMed

    Beerepoot, Pieter; Nazari, Reza; Salahpour, Ali

    2017-03-01

    A substantial number of G-protein coupled receptors (GPCRs) genetic disorders are due to mutations that cause misfolding or dysfunction of the receptor product. Pharmacological chaperoning approaches can rescue such mutant receptors by stabilizing protein conformations that behave similar to the wild type protein. For example, this can be achieved by improving folding efficiency and/or interaction with chaperone proteins. Although efficacy of pharmacological chaperones has been demonstrated in vitro for a variety of GPCRs, translation to clinical use has been limited. In this paper we discuss the history of pharmacological chaperones of GPCR's and other membrane proteins, the challenges in translation to the clinic, and the use of different assays for pharmacological chaperone discovery.

  2. Unfolding the Therapeutic Potential of Chemical Chaperones for Age-related Macular Degeneration

    PubMed Central

    Sauer, Theodor; Patel, Mrinali; Chan, Chi-Chao; Tuo, Jingsheng

    2008-01-01

    SUMMARY Recent studies suggest that pathological processes involved in age-related macular degeneration (AMD) might induce endoplasmic reticulum (ER) stress. Growing evidence demonstrates the ability of chemical chaperones to decrease ER stress and ameliorate ER stress-related disease phenotypes, suggesting that the field of chaperone therapy might hold novel treatments for AMD. In this review, we examine the evidence suggesting a role for ER stress in AMD. Furthermore, we discuss the use of chaperone therapy for the treatment of ER stress-associated diseases, including other neurodegenerative diseases and retinopathies. Finally, we examine strategies for identifying potential chaperone compounds and for experimentally demonstrating chaperone activity in in vitro and in vivo models of human disease. PMID:18528533

  3. Effect of the Surface Charge of Artificial Chaperones on the Refolding of Thermally Denatured Lysozymes.

    PubMed

    Huang, Fan; Shen, Liangliang; Wang, Jianzu; Qu, Aoting; Yang, Huiru; Zhang, Zhenkun; An, Yingli; Shi, Linqi

    2016-02-17

    Artificial chaperones are of great interest in fighting protein misfolding and aggregation for the protection of protein bioactivity. A comprehensive understanding of the interaction between artificial chaperones and proteins is critical for the effective utilization of these materials in biomedicine. In this work, we fabricated three kinds of artificial chaperones with different surface charges based on mixed-shell polymeric micelles (MSPMs), and investigated their protective effect for lysozymes under thermal stress. It was found that MSPMs with different surface charges showed distinct chaperone-like behavior, and the neutral MSPM with PEG shell and PMEO2MA hydrophobic domain at high temperature is superior to the negatively and positively charged one, because of the excessive electrostatic interactions between the protein and charged MSPMs. The results may benefit to optimize this kind of artificial chaperone with enhanced properties and expand their application in the future.

  4. Targeting the molecular chaperone SlyD to inhibit bacterial growth with a small molecule

    PubMed Central

    Kumar, Amit; Balbach, Jochen

    2017-01-01

    Molecular chaperones are essential molecules for cell growth, whereby they maintain protein homeostasis. Because of their central cellular function, bacterial chaperones might be potential candidates for drug targets. Antimicrobial resistance is currently one of the greatest threats to human health, with gram-negative bacteria being of major concern. We found that a Cu2+ complex readily crosses the bacterial cell wall and inhibits SlyD, which is a molecular chaperone, cis/trans peptidyl prolyl isomerise (PPIase) and involved in various other metabolic pathways. The Cu2+ complex binds to the active sites of SlyD, which suppresses its PPIase and chaperone activities. Significant cell growth retardation could be observed for pathogenic bacteria (e.g., Staphylococcus aureus and Pseudomonas aeruginosa). We anticipate that rational development of drugs targeting molecular chaperones might help in future control of pathogenic bacterial growth, in an era of rapidly increasing antibiotic resistance. PMID:28176839

  5. Structural analysis of Mycobacterium tuberculosis homologues of the eukaryotic proteasome assembly chaperone 2 (PAC2).

    PubMed

    Bai, Lin; Jastrab, Jordan B; Isasa, Marta; Hu, Kuan; Yu, Hongjun; Gygi, Steven P; Darwin, K Heran; Li, Huilin

    2017-02-13

    A previous bioinformatics analysis identified the Mycobacterium tuberculosis (M. tuberculosis) proteins Rv2125 and Rv2714 as orthologs of the eukaryotic proteasome assembly chaperone 2 (PAC2). We set out to investigate whether Rv2125 or Rv2714 could function in proteasome assembly. We solved the crystal structure of Rv2125 at 3.0 Å resolution, which showed an overall fold similar to that of the PAC2 family proteins that include the archaeal PbaB and the yeast Pba1. However, Rv2125 and Rv2714 formed trimers, whereas PbaB forms tetramers and Pba1 dimerizes with Pba2. We also found that purified Rv2125 and Rv2714 could not bind to M. tuberculosis 20S core particles. Finally, proteomic analysis showed that the levels of known proteasome component and substrate proteins were not affected by disruption of Rv2125 in M. tuberculosis Our work suggests that Rv2125 does not participate in bacterial proteasome assembly or function.Importance Although many bacteria do not encode proteasomes, M. tuberculosis not only uses proteasomes, it has also evolved a post-translational modification system called pupylation to deliver proteins to the proteasome. Proteasomes are essential for M. tuberculosis to cause lethal infections in animals, thus determining how proteasomes are assembled may help identify new ways to combat tuberculosis. We solved the structure of a predicted proteasome assembly factor, Rv2125, and isolated a genetic mutant of Rv2125 in M. tuberculosis Our structural, biochemical, and genetic studies indicate that Rv2125 and Rv2714 do not function as proteasome assembly chaperones and are unlikely to have roles in proteasome biology in mycobacteria.

  6. Role of Chaperone-Mediated Autophagy Dysfunctions in the Pathogenesis of Parkinson’s Disease

    PubMed Central

    Sala, Gessica; Marinig, Daniele; Arosio, Alessandro; Ferrarese, Carlo

    2016-01-01

    Chaperone-mediated autophagy (CMA) represents a selective form of autophagy involved in the degradation of specific soluble proteins containing a pentapeptide motif that is recognized by a cytosolic chaperone able to deliver proteins to the lysosomes for degradation. Physiologically, CMA contributes to maintain crucial cellular functions including energetic balance and protein quality control. Dysfunctions in CMA have been associated to the pathogenesis of several neurodegenerative diseases characterized by accumulation and aggregation of proteins identified as CMA substrates. In particular, increasing evidence highlights the existence of a strong relationship between CMA defects and Parkinson’s disease (PD). Several mutations associated with familial forms of PD (SNCA, LRRK2, UCHL1 and DJ-1) have been demonstrated to block or reduce the activity of CMA, the main catabolic pathway for alpha-synuclein (asyn). CMA dysfunctions also leads to a mislocalization and inactivation of the transcription factor MEF2D that plays a key-role in the survival of dopaminergic neurons. Furthermore, reduced levels of CMA markers have been observed in post mortem brain samples from PD patients. The aim of this review article is to provide an organic revision of evidence for the involvement of CMA dysfunctions in the pathogenesis of PD. Updated findings obtained in patient’s specimens will be resumed, and results deriving from in vivo and in vitro studies will be discussed to evidence the current knowledge on the molecular mechanisms underlying CMA alterations in PD. Finally, the possibility of up-regulating CMA pathway as promising neuroprotective strategy will be considered. PMID:28066181

  7. Sulfonylurea receptor 1 mutations that cause opposite insulin secretion defects with chemical chaperone exposure.

    PubMed

    Pratt, Emily B; Yan, Fei-Fei; Gay, Joel W; Stanley, Charles A; Shyng, Show-Ling

    2009-03-20

    The beta-cell ATP-sensitive potassium (K(ATP)) channel composed of sulfonylurea receptor SUR1 and potassium channel Kir6.2 serves a key role in insulin secretion regulation by linking glucose metabolism to cell excitability. Mutations in SUR1 or Kir6.2 that decrease channel function are typically associated with congenital hyperinsulinism, whereas those that increase channel function are associated with neonatal diabetes. Here we report that two hyperinsulinism-associated SUR1 missense mutations, R74W and E128K, surprisingly reduce channel inhibition by intracellular ATP, a gating defect expected to yield the opposite disease phenotype neonatal diabetes. Under normal conditions, both mutant channels showed poor surface expression due to retention in the endoplasmic reticulum, accounting for the loss of channel function phenotype in the congenital hyperinsulinism patients. This trafficking defect, however, could be corrected by treating cells with the oral hypoglycemic drugs sulfonylureas, which we have shown previously to act as small molecule chemical chaperones for K(ATP) channels. The R74W and E128K mutants thus rescued to the cell surface paradoxically exhibited ATP sensitivity 6- and 12-fold lower than wild-type channels, respectively. Further analyses revealed a nucleotide-independent decrease in mutant channel intrinsic open probability, suggesting the mutations may reduce ATP sensitivity by causing functional uncoupling between SUR1 and Kir6.2. In insulin-secreting cells, rescue of both mutant channels to the cell surface led to hyperpolarized membrane potentials and reduced insulin secretion upon glucose stimulation. Our results show that sulfonylureas, as chemical chaperones, can dictate manifestation of the two opposite insulin secretion defects by altering the expression levels of the disease mutants.

  8. Sulfonylurea Receptor 1 Mutations That Cause Opposite Insulin Secretion Defects with Chemical Chaperone Exposure*S⃞

    PubMed Central

    Pratt, Emily B.; Yan, Fei-Fei; Gay, Joel W.; Stanley, Charles A.; Shyng, Show-Ling

    2009-01-01

    The β-cell ATP-sensitive potassium (KATP) channel composed of sulfonylurea receptor SUR1 and potassium channel Kir6.2 serves a key role in insulin secretion regulation by linking glucose metabolism to cell excitability. Mutations in SUR1 or Kir6.2 that decrease channel function are typically associated with congenital hyperinsulinism, whereas those that increase channel function are associated with neonatal diabetes. Here we report that two hyperinsulinism-associated SUR1 missense mutations, R74W and E128K, surprisingly reduce channel inhibition by intracellular ATP, a gating defect expected to yield the opposite disease phenotype neonatal diabetes. Under normal conditions, both mutant channels showed poor surface expression due to retention in the endoplasmic reticulum, accounting for the loss of channel function phenotype in the congenital hyperinsulinism patients. This trafficking defect, however, could be corrected by treating cells with the oral hypoglycemic drugs sulfonylureas, which we have shown previously to act as small molecule chemical chaperones for KATP channels. The R74W and E128K mutants thus rescued to the cell surface paradoxically exhibited ATP sensitivity 6- and 12-fold lower than wild-type channels, respectively. Further analyses revealed a nucleotide-independent decrease in mutant channel intrinsic open probability, suggesting the mutations may reduce ATP sensitivity by causing functional uncoupling between SUR1 and Kir6.2. In insulin-secreting cells, rescue of both mutant channels to the cell surface led to hyperpolarized membrane potentials and reduced insulin secretion upon glucose stimulation. Our results show that sulfonylureas, as chemical chaperones, can dictate manifestation of the two opposite insulin secretion defects by altering the expression levels of the disease mutants. PMID:19151370

  9. The Hsc66-Hsc20 Chaperone System in Escherichia coli: Chaperone Activity and Interactions with the DnaK-DnaJ-GrpE System

    PubMed Central

    Silberg, Jonathan J.; Hoff, Kevin G.; Vickery, Larry E.

    1998-01-01

    Hsc66, a stress-70 protein, and Hsc20, a J-type accessory protein, comprise a newly described Hsp70-type chaperone system in addition to DnaK-DnaJ-GrpE in Escherichia coli. Because endogenous substrates for the Hsc66-Hsc20 system have not yet been identified, we investigated chaperone-like activities of Hsc66 and Hsc20 by their ability to suppress aggregation of denatured model substrate proteins, such as rhodanese, citrate synthase, and luciferase. Hsc66 suppressed aggregation of rhodanese and citrate synthase, and ATP caused effects consistent with complex destabilization typical of other Hsp70-type chaperones. Differences in the activities of Hsc66 and DnaK, however, suggest that these chaperones have dissimilar substrate specificity profiles. Hsc20, unlike DnaJ, did not exhibit intrinsic chaperone activity and appears to function solely as a regulatory cochaperone protein for Hsc66. Possible interactions between the Hsc66-Hsc20 and DnaK-DnaJ-GrpE chaperone systems were also investigated by measuring the effects of cochaperone proteins on Hsp70 ATPase activities. The nucleotide exchange factor GrpE did not stimulate the ATPase activity of Hsc66 and thus appears to function specifically with DnaK. Cross-stimulation by the cochaperones Hsc20 and DnaJ was observed, but the requirement for supraphysiological concentrations makes it unlikely that these interactions occur significantly in vivo. Together these results suggest that Hsc66-Hsc20 and DnaK-DnaJ-GrpE comprise separate molecular chaperone systems with distinct, nonoverlapping cellular functions. PMID:9852006

  10. M1 of Murine Gamma-Herpesvirus 68 Induces Endoplasmic Reticulum Chaperone Production

    PubMed Central

    Feng, Jiaying; Gong, Danyang; Fu, Xudong; Wu, Ting-ting; Wang, Jane; Chang, Jennifer; Zhou, Jingting; Lu, Gang; Wang, Yibin; Sun, Ren

    2015-01-01

    Viruses rely on host chaperone network to support their infection. In particular, the endoplasmic reticulum (ER) resident chaperones play key roles in synthesizing and processing viral proteins. Influx of a large amount of foreign proteins exhausts the folding capacity in ER and triggers the unfolded protein response (UPR). A fully-executed UPR comprises signaling pathways that induce ER folding chaperones, increase protein degradation, block new protein synthesis and may eventually activate apoptosis, presenting both opportunities and threats to the virus. Here, we define a role of the MHV-68M1 gene in differential modulation of UPR pathways to enhance ER chaperone production. Ectopic expression of M1 markedly induces ER chaperone genes and expansion of ER. The M1 protein accumulates in ER during infection and this localization is indispensable for its function, suggesting M1 acts from the ER. We found that M1 protein selectively induces the chaperon-producing pathways (IRE1, ATF6) while, interestingly, sparing the translation-blocking arm (PERK). We identified, for the first time, a viral factor capable of selectively intervening the initiation of ER stress signaling to induce chaperon production. This finding provides a unique opportunity of using viral protein as a tool to define the activation mechanisms of individual UPR pathways. PMID:26615759

  11. Catalysis of protein folding by chaperones accelerates evolutionary dynamics in adapting cell populations.

    PubMed

    Cetinbaş, Murat; Shakhnovich, Eugene I

    2013-01-01

    Although molecular chaperones are essential components of protein homeostatic machinery, their mechanism of action and impact on adaptation and evolutionary dynamics remain controversial. Here we developed a physics-based ab initio multi-scale model of a living cell for population dynamics simulations to elucidate the effect of chaperones on adaptive evolution. The 6-loci genomes of model cells encode model proteins, whose folding and interactions in cellular milieu can be evaluated exactly from their genome sequences. A genotype-phenotype relationship that is based on a simple yet non-trivially postulated protein-protein interaction (PPI) network determines the cell division rate. Model proteins can exist in native and molten globule states and participate in functional and all possible promiscuous non-functional PPIs. We find that an active chaperone mechanism, whereby chaperones directly catalyze protein folding, has a significant impact on the cellular fitness and the rate of evolutionary dynamics, while passive chaperones, which just maintain misfolded proteins in soluble complexes have a negligible effect on the fitness. We find that by partially releasing the constraint on protein stability, active chaperones promote a deeper exploration of sequence space to strengthen functional PPIs, and diminish the non-functional PPIs. A key experimentally testable prediction emerging from our analysis is that down-regulation of chaperones that catalyze protein folding significantly slows down the adaptation dynamics.

  12. Flagellin Polymerisation Control by a Cytosolic Export Chaperone

    PubMed Central

    Auvray, Frédéric; Thomas, Joanne; Fraser, Gillian M.; Hughes, Colin

    2008-01-01

    Assembly of the long helical filament of the bacterial flagellum requires polymerisation of ca 20,000 flagellin (FliC) monomeric subunits into the growing structure extending from the cell surface. Here, we show that export of Salmonella flagellin is facilitated specifically by a cytosolic protein, FliS, and that FliS binds to the FliC C-terminal helical domain, which contributes to stabilisation of flagellin subunit interactions during polymerisation. Stable complexes of FliS with flagellin were assembled efficiently in vitro, apparently by FliS homodimers binding to FliC monomers. The data suggest that FliS acts as a substrate-specific chaperone, preventing premature interaction of newly synthesised flagellin subunits in the cytosol. Compatible with this view, FliS was able to prevent in vitro polymerisation of FliC into filaments. PMID:11327763

  13. Adenosine diphosphate restricts the protein remodeling activity of the Hsp104 chaperone to Hsp70 assisted disaggregation

    PubMed Central

    Kłosowska, Agnieszka; Chamera, Tomasz; Liberek, Krzysztof

    2016-01-01

    Hsp104 disaggregase provides thermotolerance in yeast by recovering proteins from aggregates in cooperation with the Hsp70 chaperone. Protein disaggregation involves polypeptide extraction from aggregates and its translocation through the central channel of the Hsp104 hexamer. This process relies on adenosine triphosphate (ATP) hydrolysis. Considering that Hsp104 is characterized by low affinity towards ATP and is strongly inhibited by adenosine diphosphate (ADP), we asked how Hsp104 functions at the physiological levels of adenine nucleotides. We demonstrate that physiological levels of ADP highly limit Hsp104 activity. This inhibition, however, is moderated by the Hsp70 chaperone, which allows efficient disaggregation by supporting Hsp104 binding to aggregates but not to non-aggregated, disordered protein substrates. Our results point to an additional level of Hsp104 regulation by Hsp70, which restricts the potentially toxic protein unfolding activity of Hsp104 to the disaggregation process, providing the yeast protein-recovery system with substrate specificity and efficiency in ATP consumption. DOI: http://dx.doi.org/10.7554/eLife.15159.001 PMID:27223323

  14. Modulation of deregulated chaperone-mediated autophagy by a phosphopeptide

    PubMed Central

    Macri, Christophe; Wang, Fengjuan; Tasset, Inmaculada; Schall, Nicolas; Page, Nicolas; Briand, Jean-Paul; Cuervo, Ana Maria; Muller, Sylviane

    2015-01-01

    The P140 peptide, a 21-mer linear peptide (sequence 131–151) generated from the spliceosomal SNRNP70/U1–70K protein, contains a phosphoserine residue at position 140. It significantly ameliorates clinical manifestations in autoimmune patients with systemic lupus erythematosus and enhances survival in MRL/lpr lupus-prone mice. Previous studies showed that after P140 treatment, there is an accumulation of autophagy markers sequestosome 1/p62 and MAP1LC3-II in MRL/lpr B cells, consistent with a downregulation of autophagic flux. We now identify chaperone-mediated autophagy (CMA) as a target of P140 and demonstrate that its inhibitory effect on CMA is likely tied to its ability to alter the composition of HSPA8/HSC70 heterocomplexes. As in the case of HSPA8, expression of the limiting CMA component LAMP2A, which is increased in MRL/lpr B cells, is downregulated after P140 treatment. We also show that P140, but not the unphosphorylated peptide, uses the clathrin-dependent endo-lysosomal pathway to enter into MRL/lpr B lymphocytes and accumulates in the lysosomal lumen where it may directly hamper lysosomal HSPA8 chaperoning functions, and also destabilize LAMP2A in lysosomes as a result of its effect on HSP90AA1. This dual effect may interfere with the endogenous autoantigen processing and loading to major histocompatibility complex class II molecules and as a consequence, lead to lower activation of autoreactive T cells. These results shed light on mechanisms by which P140 can modulate lupus disease and exert its tolerogenic activity in patients. The unique selective inhibitory effect of the P140 peptide on CMA may be harnessed in other pathological conditions in which reduction of CMA activity would be desired. PMID:25719862

  15. Antarctic Krill 454 Pyrosequencing Reveals Chaperone and Stress Transcriptome

    PubMed Central

    Clark, Melody S.; Thorne, Michael A. S.; Toullec, Jean-Yves; Meng, Yan; Guan, Le Luo; Peck, Lloyd S.; Moore, Stephen

    2011-01-01

    Background The Antarctic krill Euphausia superba is a keystone species in the Antarctic food chain. Not only is it a significant grazer of phytoplankton, but it is also a major food item for charismatic megafauna such as whales and seals and an important Southern Ocean fisheries crop. Ecological data suggest that this species is being affected by climate change and this will have considerable consequences for the balance of the Southern Ocean ecosystem. Hence, understanding how this organism functions is a priority area and will provide fundamental data for life history studies, energy budget calculations and food web models. Methodology/Principal Findings The assembly of the 454 transcriptome of E. superba resulted in 22,177 contigs with an average size of 492bp (ranging between 137 and 8515bp). In depth analysis of the data revealed an extensive catalogue of the cellular chaperone systems and the major antioxidant proteins. Full length sequences were characterised for the chaperones HSP70, HSP90 and the super-oxide dismutase antioxidants, with the discovery of potentially novel duplications of these genes. The sequence data contained 41,470 microsatellites and 17,776 Single Nucleotide Polymorphisms (SNPs/INDELS), providing a resource for population and also gene function studies. Conclusions This paper details the first 454 generated data for a pelagic Antarctic species or any pelagic crustacean globally. The classical “stress proteins”, such as HSP70, HSP90, ferritin and GST were all highly expressed. These genes were shown to be over expressed in the transcriptomes of Antarctic notothenioid fish and hypothesized as adaptations to living in the cold, with the associated problems of decreased protein folding efficiency and increased vulnerability to damage by reactive oxygen species. Hence, these data will provide a major resource for future physiological work on krill, but in particular a suite of “stress” genes for studies understanding marine

  16. Neuronal gamma-aminobutyric acid (GABA) type A receptors undergo cognate ligand chaperoning in the endoplasmic reticulum by endogenous GABA

    PubMed Central

    Wang, Ping; Eshaq, Randa S.; Meshul, Charles K.; Moore, Cynthia; Hood, Rebecca L.; Leidenheimer, Nancy J.

    2015-01-01

    GABAA receptors mediate fast inhibitory neurotransmission in the brain. Dysfunction of these receptors is associated with various psychiatric/neurological disorders and drugs targeting this receptor are widely used therapeutic agents. Both the efficacy and plasticity of GABAA receptor-mediated neurotransmission depends on the number of surface GABAA receptors. An understudied aspect of receptor cell surface expression is the post-translational regulation of receptor biogenesis within the endoplasmic reticulum (ER). We have previously shown that exogenous GABA can act as a ligand chaperone of recombinant GABAA receptors in the early secretory pathway leading us to now investigate whether endogenous GABA facilitates the biogenesis of GABAA receptors in primary cerebral cortical cultures. In immunofluorescence labeling experiments, we have determined that neurons expressing surface GABAA receptors contain both GABA and its degradative enzyme GABA transaminase (GABA-T). Treatment of neurons with GABA-T inhibitors, a treatment known to increase intracellular GABA levels, decreases the interaction of the receptor with the ER quality control protein calnexin, concomittantly increasing receptor forward-trafficking and plasma membrane insertion. The effect of GABA-T inhibition on the receptor/calnexin interaction is not due to the activation of surface GABAA or GABAB receptors. Consistent with our hypothesis that GABA acts as a cognate ligand chaperone in the ER, immunogold-labeling of rodent brain slices reveals the presence of GABA within the rough ER. The density of this labeling is similar to that present in mitochondria, the organelle in which GABA is degraded. Lastly, the effect of GABA-T inhibition on the receptor/calnexin interaction was prevented by pretreatment with a GABA transporter inhibitor. Together, these data indicate that endogenous GABA acts in the rough ER as a cognate ligand chaperone to facilitate the biogenesis of neuronal GABAA receptors. PMID

  17. Copper modulates the degradation of copper chaperone for Cu,Zn superoxide dismutase by the 26 S proteosome.

    PubMed

    Bertinato, Jesse; L'Abbé, Mary R

    2003-09-12

    Copper chaperones are copper-binding proteins that directly insert copper into specific targets, preventing the accumulation of free copper ions that can be toxic to the cell. Despite considerable advances in the understanding of copper transfer from copper chaperones to their target, to date, there is no information regarding how the activity of these proteins is regulated in higher eukaryotes. The insertion of copper into the antioxidant enzyme Cu,Zn superoxide dismutase (SOD1) depends on the copper chaperone for SOD1 (CCS). We have recently reported that CCS protein is increased in tissues of rats fed copper-deficient diets suggesting that copper may regulate CCS expression. Here we show that whereas copper deficiency increased CCS protein in rats, mRNA level was unaffected. Rodent and human cell lines cultured in the presence of the specific copper chelator 2,3,2-tetraamine displayed a dose-dependent increase in CCS protein that could be reversed with the addition of copper but not iron or zinc to the cells. Switching cells from copper-deficient to copper-rich medium promoted the rapid degradation of CCS, which could be blocked by the proteosome inhibitors MG132 and lactacystin but not a cysteine protease inhibitor or inhibitors of the lysosomal degradation pathway. In addition, CCS degradation was slower in copper-deficient cells than in cells cultured in copper-rich medium. Together, these data show that copper regulates CCS expression by modulating its degradation by the 26 S proteosome and suggest a novel role for CCS in prioritizing the utilization of copper when it is scarce.

  18. Improved 1, 2, 4-butanetriol production from an engineered Escherichia coli by co-expression of different chaperone proteins.

    PubMed

    Lu, Xinyao; He, Shuying; Zong, Hong; Song, Jian; Chen, Wen; Zhuge, Bin

    2016-09-01

    1, 2, 4-Butanetriol (BT) is a high-value non-natural chemical and has important applications in polymers, medical production and military industry. In the constructed BT biosynthesis pathway from xylose in Escherichia coli, the xylose dehydrogenase (Xdh) and the benzoylformate decarboxylase (MdlC) are heterologous enzymes and the activity of MdlC is the key limiting factor for BT production. In this study, six chaperone protein systems were introduced into the engineered E. coli harboring the recombinant BT pathway. The chaperone GroES-GroEL was beneficial to Xdh activity but had a negative effect on MdlC activity and BT titer. The plasmid pTf16 containing the tig gene (trigger factor) was beneficial to Xdh and MdlC activities and improved the BT titer from 0.42 to 0.56 g/l from 20 g/l xylose. However, co-expression of trigger factor and GroES-GroEL simultaneously reduced the activity of MdlC and had no effect on the BT production. The plasmid pKJE7 harboring dnaK-dnaJ-grpE showed significant negative effects on these enzyme activities and cell growth, leading to completely restrained the BT production. Similarly, co-expression of DnaKJ-GrpPE and GroES-GroEL simultaneously reduced Xdh and MdlC activities and decreased the BT titer by 45.2 %. The BT production of the engineered E. coli harboring pTf16 was further improved to the highest level at 1.01 g/l under pH control (pH 7). This work showed the potential application of chaperone proteins in microorganism engineering to get high production of target compounds as an effective and valuable tool.

  19. More than one way to control hair growth: regulatory mechanisms in enterobacteria that affect fimbriae assembled by the chaperone/usher pathway.

    PubMed

    Clegg, Steven; Wilson, Janet; Johnson, Jeremiah

    2011-05-01

    Many gram-negative enterobacteria produce surface-associated fimbriae that facilitate attachment and adherence to eucaryotic cells and tissues. These organelles are believed to play an important role during infection by enabling bacteria to colonize specific niches within their hosts. One class of these fimbriae is assembled using a periplasmic chaperone and membrane-associated scaffolding protein that has been referred to as an usher because of its function in fimbrial biogenesis. The presence of multiple types of fimbriae assembled by the chaperone/usher pathway can be found both within a single bacterial species and also among different genera. One way of controlling fimbrial assembly in these bacteria is at the genetic level by positively or negatively regulating fimbrial gene expression. This minireview considers the mechanisms that have been described to control fimbrial gene expression and uses specific examples to demonstrate both unique and shared properties of such regulatory mechanisms.

  20. The Salmonella type III secretion system virulence effector forms a new hexameric chaperone assembly for export of effector/chaperone complexes

    DOE PAGES

    Tsai, Chi -Lin; Burkinshaw, Brianne J.; Strynadka, Natalie C. J.; ...

    2014-12-08

    Bacteria hijack eukaryotic cells by injecting virulence effectors into host cytosol with a type III secretion system (T3SS). Effectors are targeted with their cognate chaperones to hexameric T3SS ATPase at the bacterial membrane's cytosolic face. In this issue of the Journal of Bacteriology, Roblin et al. (P. Roblin, F. Dewitte, V. Villeret, E. G. Biondi, and C. Bompard, J Bacteriol 197:688–698, 2015, http://dx.doi.org/10.1128/JB.02294-14) show that the T3SS chaperone SigE of Salmonella can form hexameric rings rather than dimers when bound to its cognate effector, SopB, implying a novel multimeric association for chaperone/effector complexes with their ATPase.

  1. The Salmonella type III secretion system virulence effector forms a new hexameric chaperone assembly for export of effector/chaperone complexes

    SciTech Connect

    Tsai, Chi -Lin; Burkinshaw, Brianne J.; Strynadka, Natalie C. J.; Tainer, John A.

    2014-12-08

    Bacteria hijack eukaryotic cells by injecting virulence effectors into host cytosol with a type III secretion system (T3SS). Effectors are targeted with their cognate chaperones to hexameric T3SS ATPase at the bacterial membrane's cytosolic face. In this issue of the Journal of Bacteriology, Roblin et al. (P. Roblin, F. Dewitte, V. Villeret, E. G. Biondi, and C. Bompard, J Bacteriol 197:688–698, 2015, http://dx.doi.org/10.1128/JB.02294-14) show that the T3SS chaperone SigE of Salmonella can form hexameric rings rather than dimers when bound to its cognate effector, SopB, implying a novel multimeric association for chaperone/effector complexes with their ATPase.

  2. A Common Structural Motif in the Binding of Virulence Factors to Bacterial Secretion Chaperones

    SciTech Connect

    Lilic,M.; Vujanac, M.; Stebbins, C.

    2006-01-01

    Salmonella invasion protein A (SipA) is translocated into host cells by a type III secretion system (T3SS) and comprises two regions: one domain binds its cognate type III secretion chaperone, InvB, in the bacterium to facilitate translocation, while a second domain functions in the host cell, contributing to bacterial uptake by polymerizing actin. We present here the crystal structures of the SipA chaperone binding domain (CBD) alone and in complex with InvB. The SipA CBD is found to consist of a nonglobular polypeptide as well as a large globular domain, both of which are necessary for binding to InvB. We also identify a structural motif that may direct virulence factors to their cognate chaperones in a diverse range of pathogenic bacteria. Disruption of this structural motif leads to a destabilization of several chaperone-substrate complexes from different species, as well as an impairment of secretion in Salmonella.

  3. Histone chaperones FACT and Spt6 prevent histone variants from turning into histone deviants.

    PubMed

    Jeronimo, Célia; Robert, François

    2016-05-01

    Histone variants are specialized histones which replace their canonical counterparts in specific nucleosomes. Together with histone post-translational modifications and DNA methylation, they contribute to the epigenome. Histone variants are incorporated at specific locations by the concerted action of histone chaperones and ATP-dependent chromatin remodelers. Recent studies have shown that the histone chaperone FACT plays key roles in preventing pervasive incorporation of two histone variants: H2A.Z and CenH3/CENP-A. In addition, Spt6, another histone chaperone, was also shown to be important for appropriate H2A.Z localization. FACT and Spt6 are both associated with elongating RNA polymerase II. Based on these two examples, we propose that the establishment and maintenance of histone variant genomic distributions depend on a transcription-coupled epigenome editing (or surveillance) function of histone chaperones.

  4. Evolution of the Chaperone/Usher Assembly Pathway: Fimbrial Classification Goes Greek†

    PubMed Central

    Nuccio, Sean-Paul; Bäumler, Andreas J.

    2007-01-01

    Summary: Many Proteobacteria use the chaperone/usher pathway to assemble proteinaceous filaments on the bacterial surface. These filaments can curl into fimbrial or nonfimbrial surface structures (e.g., a capsule or spore coat). This article reviews the phylogeny of operons belonging to the chaperone/usher assembly class to explore the utility of establishing a scheme for subdividing them into clades of phylogenetically related gene clusters. Based on usher amino acid sequence comparisons, our analysis shows that the chaperone/usher assembly class is subdivided into six major phylogenetic clades, which we have termed α-, β-, γ-, κ-, π-, and σ-fimbriae. Members of each clade share related operon structures and encode fimbrial subunits with similar protein domains. The proposed classification system offers a simple and convenient method for assigning newly discovered chaperone/usher systems to one of the six major phylogenetic groups. PMID:18063717

  5. Cooperative Subunit Refolding of a Light-Harvesting Protein through a Self-Chaperone Mechanism.

    PubMed

    Laos, Alistair J; Dean, Jacob C; Toa, Zi S D; Wilk, Krystyna E; Scholes, Gregory D; Curmi, Paul M G; Thordarson, Pall

    2017-01-27

    The fold of a protein is encoded by its amino acid sequence, but how complex multimeric proteins fold and assemble into functional quaternary structures remains unclear. Here we show that two structurally different phycobiliproteins refold and reassemble in a cooperative manner from their unfolded polypeptide subunits, without biological chaperones. Refolding was confirmed by ultrafast broadband transient absorption and two-dimensional electronic spectroscopy to probe internal chromophores as a marker of quaternary structure. Our results demonstrate a cooperative, self-chaperone refolding mechanism, whereby the β-subunits independently refold, thereby templating the folding of the α-subunits, which then chaperone the assembly of the native complex, quantitatively returning all coherences. Our results indicate that subunit self-chaperoning is a robust mechanism for heteromeric protein folding and assembly that could also be applied in self-assembled synthetic hierarchical systems.

  6. FGL chaperone-assembled fimbrial polyadhesins: anti-immune armament of Gram-negative bacterial pathogens.

    PubMed

    Zavialov, Anton; Zav'yalova, Galina; Korpela, Timo; Zav'yalov, Vladimir

    2007-07-01

    This review summarizes the current knowledge on the structure, function, assembly, and biomedical applications of the family of adhesive fimbrial organelles assembled on the surface of Gram-negative pathogens via the FGL chaperone/usher pathway. Recent studies revealed the unique structural and functional properties of these organelles, distinguishing them from a related family, FGS chaperone-assembled adhesive pili. The FGL chaperone-assembled organelles consist of linear polymers of one or two types of protein subunits, each possessing one or two independent adhesive sites specific to different host cell receptors. This structural organization enables these fimbrial organelles to function as polyadhesins. Fimbrial polyadhesins may ensure polyvalent fastening of bacteria to the host cells, aggregating their receptors and triggering subversive signals that allow pathogens to evade immune defense. The FGL chaperone-assembled fimbrial polyadhesins are attractive targets for vaccine and drug design.

  7. Dissecting functional similarities of ribosome-associated chaperones from Saccharomyces cerevisiae and Escherichia coli.

    PubMed

    Rauch, Thomas; Hundley, Heather A; Pfund, Chris; Wegrzyn, Renee D; Walter, William; Kramer, Günter; Kim, So-Young; Craig, Elizabeth A; Deuerling, Elke

    2005-07-01

    Ribosome-tethered chaperones that interact with nascent polypeptide chains have been identified in both prokaryotic and eukaryotic systems. However, these ribosome-associated chaperones share no sequence similarity: bacterial trigger factors (TF) form an independent protein family while the yeast machinery is Hsp70-based. The absence of any component of the yeast machinery results in slow growth at low temperatures and sensitivity to aminoglycoside protein synthesis inhibitors. After establishing that yeast ribosomal protein Rpl25 is able to recruit TF to ribosomes when expressed in place of its Escherichia coli homologue L23, the ribosomal TF tether, we tested whether such divergent ribosome-associated chaperones are functionally interchangeable. E. coli TF was expressed in yeast cells that lacked the endogenous ribosome-bound machinery. TF associated with yeast ribosomes, cross-linked to yeast nascent polypeptides and partially complemented the aminoglycoside sensitivity, demonstrating that ribosome-associated chaperones from divergent organisms share common functions, despite their lack of sequence similarity.

  8. The Role of the Co-Chaperone, CHIP, in Androgen-Independent Prostate Cancer

    DTIC Science & Technology

    2012-02-01

    Award Number: W81XWH-06-1-0285 TITLE: The Role of the Co-Chaperone, CHIP, in Androgen-Independent Prostate Cancer ...AND SUBTITLE 5a. CONTRACT NUMBER The Role of the Co-Chaperone, CHIP, in Androgen Independent Prostate Cancer 5b. GRANT NUMBER W81XWH-06-1...ADT), is the mainstay of treatment for patients with locally advanced or metastatic prostate cancer . This therapy is only temporizing, however

  9. Heterogeneous binding of the SH3 client protein to the DnaK molecular chaperone

    PubMed Central

    Lee, Jung Ho; Zhang, Dongyu; Hughes, Christopher; Okuno, Yusuke; Sekhar, Ashok; Cavagnero, Silvia

    2015-01-01

    The molecular chaperone heat shock protein 70 (Hsp70) plays a vital role in cellular processes, including protein folding and assembly, and helps prevent aggregation under physiological and stress-related conditions. Although the structural changes undergone by full-length client proteins upon interaction with DnaK (i.e., Escherichia coli Hsp70) are fundamental to understand chaperone-mediated protein folding, these changes are still largely unexplored. Here, we show that multiple conformations of the SRC homology 3 domain (SH3) client protein interact with the ADP-bound form of the DnaK chaperone. Chaperone-bound SH3 is largely unstructured yet distinct from the unfolded state in the absence of DnaK. The bound client protein shares a highly flexible N terminus and multiple slowly interconverting conformations in different parts of the sequence. In all, there is significant structural and dynamical heterogeneity in the DnaK-bound client protein, revealing that proteins may undergo some conformational sampling while chaperone-bound. This result is important because it shows that the surface of the Hsp70 chaperone provides an aggregation-free environment able to support part of the search for the native state. PMID:26195753

  10. Organismal proteostasis: role of cell-nonautonomous regulation and transcellular chaperone signaling

    PubMed Central

    van Oosten-Hawle, Patricija; Morimoto, Richard I.

    2014-01-01

    Protein quality control is essential in all organisms and regulated by the proteostasis network (PN) and cell stress response pathways that maintain a functional proteome to promote cellular health. In this review, we describe how metazoans employ multiple modes of cell-nonautonomous signaling across tissues to integrate and transmit the heat-shock response (HSR) for balanced expression of molecular chaperones. The HSR and other cell stress responses such as the unfolded protein response (UPR) can function autonomously in single-cell eukaryotes and tissue culture cells; however, within the context of a multicellular animal, the PN is regulated by cell-nonautonomous signaling through specific sensory neurons and by the process of transcellular chaperone signaling. These newly identified forms of stress signaling control the PN between neurons and nonneuronal somatic tissues to achieve balanced tissue expression of chaperones in response to environmental stress and to ensure that metastable aggregation-prone proteins expressed within any single tissue do not generate local proteotoxic risk. Transcellular chaperone signaling leads to the compensatory expression of chaperones in other somatic tissues of the animal, perhaps preventing the spread of proteotoxic damage. Thus, communication between subcellular compartments and across different cells and tissues maintains proteostasis when challenged by acute stress and upon chronic expression of metastable proteins. We propose that transcellular chaperone signaling provides a critical control step for the PN to maintain cellular and organismal health span. PMID:25030693

  11. Amyloid-β oligomers are sequestered by both intracellular and extracellular chaperones

    PubMed Central

    Narayan, Priyanka; Meehan, Sarah; Carver, John A.; Wilson, Mark R.; Dobson, Christopher M.; Klenerman, David

    2016-01-01

    The aberrant aggregation of the amyloid-β peptide into β-sheet rich, fibrillar structures proceeds via a heterogeneous ensemble of oligomeric intermediates that have been associated with neurotoxicity in Alzheimer’s disease (AD). Of particular interest in this context are the mechanisms by which molecular chaperones, part of the primary biological defenses against protein misfolding, influence Aβ aggregation. We have used single-molecule fluorescence techniques to compare the interactions between distinct aggregation states (monomers, oligomers, amyloid fibrils) of the AD-associated amyloid-β(1-40) peptide, and two molecular chaperones, both of which are upregulated in the brains of patients with AD and have been found colocalized with Aβ in senile plaques. One of the chaperones, αB-crystallin, is primarily found inside cells while the other, clusterin, is predominantly located in the extracellular environment. We find that both chaperones bind to misfolded oligomeric species and form long-lived complexes thereby preventing both their further growth into fibrils and their dissociation. From these studies, we conclude that these chaperones have a common mechanism of action based on sequestering Aβ oligomers. This conclusion suggests that these chaperones, both of which are ATP-independent, are able to inhibit potentially pathogenic Aβ oligomer-associated processes whether they occur in the extracellular or intracellular environment. PMID:23106396

  12. Conformational dynamics of a membrane protein chaperone enables spatially regulated substrate capture and release

    PubMed Central

    Liang, Fu-Cheng; Kroon, Gerard; McAvoy, Camille Z.; Chi, Chris; Wright, Peter E.; Shan, Shu-ou

    2016-01-01

    Membrane protein biogenesis poses enormous challenges to cellular protein homeostasis and requires effective molecular chaperones. Compared with chaperones that promote soluble protein folding, membrane protein chaperones require tight spatiotemporal coordination of their substrate binding and release cycles. Here we define the chaperone cycle for cpSRP43, which protects the largest family of membrane proteins, the light harvesting chlorophyll a/b-binding proteins (LHCPs), during their delivery. Biochemical and NMR analyses demonstrate that cpSRP43 samples three distinct conformations. The stromal factor cpSRP54 drives cpSRP43 to the active state, allowing it to tightly bind substrate in the aqueous compartment. Bidentate interactions with the Alb3 translocase drive cpSRP43 to a partially inactive state, triggering selective release of LHCP’s transmembrane domains in a productive unloading complex at the membrane. Our work demonstrates how the intrinsic conformational dynamics of a chaperone enables spatially coordinated substrate capture and release, which may be general to other ATP-independent chaperone systems. PMID:26951662

  13. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals

    SciTech Connect

    Sasaki, Kentaro; Kim, Myung-Hee; Imai, Ryozo

    2007-12-21

    Bacterial cold shock proteins (CSPs) are RNA chaperones that unwind RNA secondary structures. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 (AtCSP2) contains a domain that is shared with bacterial CSPs. Here we showed that AtCSP2 binds to RNA and unwinds nucleic acid duplex. Heterologous expression of AtCSP2 complemented cold sensitivity of an Escherichia coli csp quadruple mutant, indicating that AtCSP2 function as a RNA chaperone in E. coli. AtCSP2 mRNA and protein levels increased during cold acclimation, but the protein accumulation was most prominent after 10 days of cold treatment. AtCSP2 promoter::GUS transgenic plants revealed that AtCSP2 is expressed only in root and shoot apical regions during vegetative growth but is expressed in reproductive organs such as pollens, ovules and embryos. These data indicated that AtCSP2 is involved in developmental processes as well as cold adaptation. Localization of AtCSP2::GFP in nucleolus and cytoplasm suggested different nuclear and cytosolic RNA targets.

  14. A method for expression and purification of soluble, active Hsp47, a collagen-specific molecular chaperone.

    PubMed

    Thomson, C A; Ananthanarayanan, V S

    2001-10-01

    Hsp47 is regarded as a collagen-specific chaperone with several suggested roles in collagen biosynthesis under normal and disease conditions. We describe here a procedure for the expression and purification of Hsp47 in Escherichia coli using the IMPACT expression system (New England Biolabs) where the guest gene is fused to the adduct, intein, with a chitin-binding domain. Use of this system resulted in relatively high levels of soluble Hsp47 compared to other available protocols, especially when the bacterial cells were induced at 14 degrees C instead of 37 degrees C. The cell lysate was passed through a chitin-Sepharose affinity column and Hsp47 was cleaved from intein using beta-mercaptoethanol. Minor degradation products were subsequently removed using a hydroxylapatite column to yield milligram amounts of pure and active protein suitable for structural studies. Gel electrophoretic analysis of the purified protein indicated the presence of a small proportion of trimeric species when non-reducing conditions were used. The ability to form a trimer may be important for its role as a chaperone. The IMPACT system allows for radiolabelling of purified Hsp47 with (35)S for use in binding experiments. Illustrative data on collagen binding by (35)S-Hsp47 are shown.

  15. Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity

    PubMed Central

    Chen, Yaqin; Wu, Zhihong; Zhao, Shuiping; Xiang, Rong

    2016-01-01

    Obesity, which is characteristic by chronic inflammation, is defined as abnormal or excessive fat accumulation in adipose tissues. Endoplasmic reticulum (ER) stress is increased in adipose tissue of obese state and is known to be strongly associated with chronic inflammation. The aim of this study was to investigate the effect of ER stress on adipokine secretion in obese mice and explore the potential mechanisms. In this study, we found high-fat diet induced-obesity contributed to strengthened ER stress and triggered chronic inflammation in adipose tissue. Chemical chaperones, 4-PBA and TUDCA, modified metabolic disorders and decreased the levels of inflammatory cytokines in obese mice fed a high-fat diet. The alleviation of ER stress is in accordance with the decrease of free cholesterol in adipose tissue. Furthermore chemical chaperones suppress NF-κB activity in adipose tissue of obese mice in vivo. In vitro studies showed IKK/NF-κB may be involved in the signal transduction of adipokine secretion dysfunction induced by ER stress. The present study revealed the possibility that inhibition of ER stress may be a novel drug target for metabolic abnormalities associated with obesity. Further studies are now needed to characterize the initial incentive of sustained ER stress in obese. PMID:27271106

  16. Chaperone Hsp47 Drives Malignant Growth and Invasion by Modulating an ECM Gene Network.

    PubMed

    Zhu, Jieqing; Xiong, Gaofeng; Fu, Hanjiang; Evers, B Mark; Zhou, Binhua P; Xu, Ren

    2015-04-15

    The extracellular matrix (ECM) is a determining factor in the tumor microenvironment that restrains or promotes malignant growth. In this report, we show how the molecular chaperone protein Hsp47 functions as a nodal hub in regulating an ECM gene transcription network. A transcription network analysis showed that Hsp47 expression was activated during breast cancer development and progression. Hsp47 silencing reprogrammed human breast cancer cells to form growth-arrested and/or noninvasive structures in 3D cultures, and to limit tumor growth in xenograft assays by reducing deposition of collagen and fibronectin. Coexpression network analysis also showed that levels of microRNA(miR)-29b and -29c were inversely correlated with expression of Hsp47 and ECM network genes in human breast cancer tissues. We found that miR-29 repressed expression of Hsp47 along with multiple ECM network genes. Ectopic expression of miR-29b suppressed malignant phenotypes of breast cancer cells in 3D culture. Clinically, increased expression of Hsp47 and reduced levels of miR-29b and -29c were associated with poor survival outcomes in breast cancer patients. Our results show that Hsp47 is regulated by miR-29 during breast cancer development and progression, and that increased Hsp47 expression promotes cancer progression in part by enhancing deposition of ECM proteins.

  17. Dictyostelium discoideum Ax2 as an Assay System for Screening of Pharmacological Chaperones for Phenylketonuria Mutations.

    PubMed

    Kim, Yu-Min; Yang, Yun Gyeong; Kim, Hye-Lim; Park, Young Shik

    2015-06-01

    In this study, we developed an assay system for missense mutations in human phenylalanine hydroxylases (hPAHs). To demonstrate the reliability of the system, eight mutant proteins (F39L, K42I, L48S, I65T, R252Q, L255V, S349L, and R408W) were expressed in a mutant strain (pah(-)) of Dictyostelium discoideum Ax2 disrupted in the indigenous gene encoding PAH. The transformed pah- cells grown in FM minimal medium were measured for growth rate and PAH activity to reveal a positive correlation between them. The protein level of hPAH was also determined by western blotting to show the impact of each mutation on protein stability and catalytic activity. The result was highly compatible with the previous ones obtained from other expression systems, suggesting that Dictyostelium is a dependable alternative to other expression systems. Furthermore, we found that both the protein level and activity of S349L and R408W, which were impaired severely in protein stability, were rescued in HL5 nutrient medium. Although the responsible component(s) remains unidentified, this unexpected finding showed an important advantage of our expression system for studying unstable proteins. As an economic and stable cell-based expression system, our development will contribute to mass-screening of pharmacological chaperones for missense PAH mutations as well as to the in-depth characterization of individual mutations.

  18. Gigaxonin controls vimentin organization through a tubulin chaperone-independent pathway

    PubMed Central

    Cleveland, Don W.; Yamanaka, Koji; Bomont, Pascale

    2009-01-01

    Gigaxonin mutations cause the fatal human neurodegenerative disorder giant axonal neuropathy (GAN). Broad deterioration of the nervous system in GAN patients is accompanied by massive disorganization of intermediate filaments (IFs) both in neurons and many non-neuronal cells. With newly developed antibodies, gigaxonin is now shown to be expressed at extremely low levels throughout the nervous system. In lymphoblast cell lines derived from severe and mild forms of GAN, mutations in gigaxonin are shown to yield highly unstable proteins, thereby permitting a rapid diagnostic test for the spectrum of GAN mutations as an alternative to invasive nerve biopsy or systematic sequencing of the GAN gene. Gigaxonin has been proposed as a substrate adaptor for an E3 ubiquitin ligase, which affects proteasome-dependent degradation of microtubule-related proteins including MAP1B, MAP8 and the tubulin folding chaperone TBCB. We demonstrate that, unlike its counterpart TBCE, TBCB only moderately destabilizes microtubules. Neither TBCB abundance nor microtubule organization or densities are altered in GAN mutant fibroblasts, thus demonstrating that altered TBCB levels are not primary determinants of IF disorganization in GAN. Characteristic GAN mutant-induced ovoid aggregates of vimentin are not produced in normal fibroblasts after disrupting microtubule assembly, either by TBCE overexpression or depolymerizing drugs. Thus, IF disorganization in GAN fibroblasts is independent of TBCB and microtubule loss and must be regulated by a yet unidentified mechanism. PMID:19168853

  19. Photoreceptor IFT complexes containing chaperones, guanylyl cyclase 1 and rhodopsin.

    PubMed

    Bhowmick, Reshma; Li, Mei; Sun, Jun; Baker, Sheila A; Insinna, Christine; Besharse, Joseph C

    2009-06-01

    Intraflagellar transport (IFT) provides a mechanism for the transport of cilium-specific proteins, but the mechanisms for linkage of cargo and IFT proteins have not been identified. Using the sensory outer segments (OS) of photoreceptors, which are derived from sensory cilia, we have identified IFT-cargo complexes containing IFT proteins, kinesin 2 family proteins, two photoreceptor-specific membrane proteins, guanylyl cyclase 1 (GC1, Gucy2e) and rhodopsin (RHO), and the chaperones, mammalian relative of DNAJ, DnajB6 (MRJ), and HSC70 (Hspa8). Analysis of these complexes leads to a model in which MRJ through its binding to IFT88 and GC1 plays a critical role in formation or stabilization of the IFT-cargo complexes. Consistent with the function of MRJ in the activation of HSC70 ATPase activity, Mg-ATP enhances the co-IP of GC1, RHO, and MRJ with IFT proteins. Furthermore, RNAi knockdown of MRJ in IMCD3 cells expressing GC1-green fluorescent protein (GFP) reduces cilium membrane targeting of GC1-GFP without apparent effect on cilium elongation.

  20. Activation of a bacterial lipase by its chaperone.

    PubMed Central

    Hobson, A H; Buckley, C M; Aamand, J L; Jørgensen, S T; Diderichsen, B; McConnell, D J

    1993-01-01

    The gene lipA of Pseudomonas cepacia DSM 3959 encodes a prelipase from which a signal peptide is cleaved during secretion, producing a mature extracellular lipase. Expression of lipase in several heterologous hosts depends on the presence of another gene, limA, in cis or in trans. Lipase protein has been overproduced in Escherichia coli in the presence and absence of the lipase modulator gene limA. Therefore, limA is not required for the transcription of lipA or for the translation of the lipA mRNA. However, no lipase activity is observed in the absence of limA. limA has been overexpressed and encodes a 33-kDa protein, Lim. If lipase protein is denatured in 8 M urea and the urea is removed by dialysis, lipase activity is quantitatively recovered provided Lim protein is present during renaturation. Lip and Lim proteins form a complex precipitable either by an anti-lipase or anti-Lim antibody. The Lim protein has therefore the properties of a chaperone. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7685908

  1. A Novel Function of Molecular Chaperone HSP70

    PubMed Central

    Halasi, Marianna; Váraljai, Renáta; Benevolenskaya, Elizaveta; Gartel, Andrei L.

    2016-01-01

    The oncogenic transcription factor FOXM1 is overexpressed in the majority of human cancers, and it is a potential target for anticancer therapy. We identified proteasome inhibitors as the first type of drugs that target FOXM1 in cancer cells. Here we found that HSP90 inhibitor PF-4942847 and heat shock also suppress FOXM1. The common effector, which was induced after treatment with proteasome and HSP90 inhibitors or heat shock, was the molecular chaperone HSP70. We show that HSP70 binds to FOXM1 following proteotoxic stress and that HSP70 inhibits FOXM1 DNA-binding ability. Inhibition of FOXM1 transcriptional autoregulation by HSP70 leads to the suppression of FOXM1 protein expression. In addition, HSP70 suppression elevates FOXM1 expression, and simultaneous inhibition of FOXM1 and HSP70 increases the sensitivity of human cancer cells to anticancer drug-induced apoptosis. Overall, we determined the unique and novel mechanism of FOXM1 suppression by proteasome inhibitors. PMID:26559972

  2. Diabetic Peripheral Neuropathy: Should a Chaperone Accompany Our Therapeutic Approach?

    PubMed Central

    Farmer, Kevin L.; Li, Chengyuan

    2012-01-01

    Diabetic peripheral neuropathy (DPN) is a common complication of diabetes that is associated with axonal atrophy, demyelination, blunted regenerative potential, and loss of peripheral nerve fibers. The development and progression of DPN is due in large part to hyperglycemia but is also affected by insulin deficiency and dyslipidemia. Although numerous biochemical mechanisms contribute to DPN, increased oxidative/nitrosative stress and mitochondrial dysfunction seem intimately associated with nerve dysfunction and diminished regenerative capacity. Despite advances in understanding the etiology of DPN, few approved therapies exist for the pharmacological management of painful or insensate DPN. Therefore, identifying novel therapeutic strategies remains paramount. Because DPN does not develop with either temporal or biochemical uniformity, its therapeutic management may benefit from a multifaceted approach that inhibits pathogenic mechanisms, manages inflammation, and increases cytoprotective responses. Finally, exercise has long been recognized as a part of the therapeutic management of diabetes, and exercise can delay and/or prevent the development of painful DPN. This review presents an overview of existing therapies that target both causal and symptomatic features of DPN and discusses the role of up-regulating cytoprotective pathways via modulating molecular chaperones. Overall, it may be unrealistic to expect that a single pharmacologic entity will suffice to ameliorate the multiple symptoms of human DPN. Thus, combinatorial therapies that target causal mechanisms and enhance endogenous reparative capacity may enhance nerve function and improve regeneration in DPN if they converge to decrease oxidative stress, improve mitochondrial bioenergetics, and increase response to trophic factors. PMID:22885705

  3. Pharmacological Chaperoning: A Potential Treatment for PMM2-CDG.

    PubMed

    Yuste-Checa, Patricia; Brasil, Sandra; Gámez, Alejandra; Underhaug, Jarl; Desviat, Lourdes R; Ugarte, Magdalena; Pérez-Cerdá, Celia; Martinez, Aurora; Pérez, Belén

    2017-02-01

    The congenital disorder of glycosylation (CDG) due to phosphomannomutase 2 deficiency (PMM2-CDG), the most common N-glycosylation disorder, is a multisystem disease for which no effective treatment is available. The recent functional characterization of disease-causing mutations described in patients with PMM2-CDG led to the idea of a therapeutic strategy involving pharmacological chaperones (PC) to rescue PMM2 loss-of-function mutations. The present work describes the high-throughput screening, by differential scanning fluorimetry, of 10,000 low-molecular-weight compounds from a commercial library, to search for possible PCs for the enzyme PMM2. This exercise identified eight compounds that increased the thermal stability of PMM2. Of these, four compounds functioned as potential PCs that significantly increased the stability of several destabilizing and oligomerization mutants and also increased PMM activity in a disease model of cells overexpressing PMM2 mutations. Structural analysis revealed one of these compounds to provide an excellent starting point for chemical optimization since it passed tests based on a number of pharmacochemical quality filters. The present results provide the first proof-of-concept of a possible treatment for PMM2-CDG and describe a promising chemical structure as a starting point for the development of new therapeutic agents for this severe orphan disease.

  4. Withaferin A Analogs That Target the AAA+ Chaperone p97

    PubMed Central

    Wijeratne, E. M. Kithsiri; Xu, Ya-ming; Kang, MinJin; Wu, Tongde; Lau, Eric C.; Mesa, Celestina; Mason, Damian J.; Brown, Robert V.; Clair, James J. La; Gunatilaka, A. A. Leslie; Zhang, Donna D.; Chapman, Eli

    2015-01-01

    Understanding the mode of action (MOA) of many natural products can be puzzling with mechanistic clues that seem to lack a common thread. One such puzzle lies in the evaluation of the antitumor properties of the natural product withaferin A (WFA). A variety of seemingly unrelated pathways have been identified to explain its activity, suggesting a lack of selectivity. We now show that WFA acts as an inhibitor of the chaperone, p97, both in vitro and in cell models in addition to inhibiting the proteasome in vitro. Through medicinal chemistry, we have refined the activity of WFA toward p97 and away from the proteasome. Subsequent studies indicated that these WFA analogs retained p97 activity and cytostatic activity in cell models, suggesting that the modes of action reported for WFA could be connected by proteostasis modulation. Through this endeavor, we highlight how the parallel integration of medicinal chemistry with chemical biology offers a potent solution to one of natures’ intriguing molecular puzzles. PMID:26006219

  5. Sulphur shuttling across a chaperone during molybdenum cofactor maturation.

    PubMed

    Arnoux, Pascal; Ruppelt, Christian; Oudouhou, Flore; Lavergne, Jérôme; Siponen, Marina I; Toci, René; Mendel, Ralf R; Bittner, Florian; Pignol, David; Magalon, Axel; Walburger, Anne

    2015-02-04

    Formate dehydrogenases (FDHs) are of interest as they are natural catalysts that sequester atmospheric CO2, generating reduced carbon compounds with possible uses as fuel. FDHs activity in Escherichia coli strictly requires the sulphurtransferase EcFdhD, which likely transfers sulphur from IscS to the molybdenum cofactor (Mo-bisPGD) of FDHs. Here we show that EcFdhD binds Mo-bisPGD in vivo and has submicromolar affinity for GDP-used as a surrogate of the molybdenum cofactor's nucleotide moieties. The crystal structure of EcFdhD in complex with GDP shows two symmetrical binding sites located on the same face of the dimer. These binding sites are connected via a tunnel-like cavity to the opposite face of the dimer where two dynamic loops, each harbouring two functionally important cysteine residues, are present. On the basis of structure-guided mutagenesis, we propose a model for the sulphuration mechanism of Mo-bisPGD where the sulphur atom shuttles across the chaperone dimer.

  6. Proteins with RNA Chaperone Activity: A World of Diverse Proteins with a Common Task—Impediment of RNA Misfolding

    PubMed Central

    Semrad, Katharina

    2011-01-01

    Proteins with RNA chaperone activity are ubiquitous proteins that play important roles in cellular mechanisms. They prevent RNA from misfolding by loosening misfolded structures without ATP consumption. RNA chaperone activity is studied in vitro and in vivo using oligonucleotide- or ribozyme-based assays. Due to their functional as well as structural diversity, a common chaperoning mechanism or universal motif has not yet been identified. A growing database of proteins with RNA chaperone activity has been established based on evaluation of chaperone activity via the described assays. Although the exact mechanism is not yet understood, it is more and more believed that disordered regions within proteins play an important role. This possible mechanism and which proteins were found to possess RNA chaperone activity are discussed here. PMID:21234377

  7. The effect of Arg on the structure perturbation and chaperone activity of α-crystallin in the presence of the crowding agent, dextran.

    PubMed

    Ghahghaei, Arezou; Mohammadian, Somaye

    2014-09-01

    α-Crystallin is a protein that is expressed at high levels in all vertebrate eye lenses. It has a molecular weight of 20 kDa and is composed of two subunits: αA and αB. α-Crystallin is a member of the small heat shock protein (sHsps) family that has been shown to prevent protein aggregation. Small molecules are organic compounds that have low molecular weight (<800 Da). Arginin (Arg) is a small molecule and has been shown to prevent protein aggregation through interaction with partially folded intermediates. In this study, the effect of Arg on the chaperone activity of α-crystallin in the presence of dextran, as a crowding agent, against ordered and disordered aggregation of different target proteins (α-lactalbumin, ovotransferrin, and catalase) has been investigated. The experiments were done using visible absorption spectroscopy, ThT-binding assay, fluorescence spectroscopy, and CD spectroscopy. The results showed that in amorphous aggregation and amyloid fibril formation, both in the presence and absence of dextran, Arg had a positive effect on the chaperone action of α-crystallin. However, in the presence of dextran, the effect of Arg on the chaperone ability of α-crystallin was less than in its absence. Thus, our result suggests that crowding interior media decreases the positive effect of Arg on the chaperone ability of α-crystallin. This is a very important issue, since we are trying to find a mechanism to protect living cells against the toxic effect of protein aggregation.

  8. Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein.

    PubMed

    Adachi, Hiroaki; Katsuno, Masahisa; Minamiyama, Makoto; Sang, Chen; Pagoulatos, Gerassimos; Angelidis, Charalampos; Kusakabe, Moriaki; Yoshiki, Atsushi; Kobayashi, Yasushi; Doyu, Manabu; Sobue, Gen

    2003-03-15

    Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of the polyglutamine (polyQ) tract within the androgen receptor (AR). The nuclear inclusions consisting of the mutant AR protein are characteristic and combine with many components of ubiquitin-proteasome and molecular chaperone pathways, raising the possibility that misfolding and altered degradation of mutant AR may be involved in the pathogenesis. We have reported that the overexpression of heat shock protein (HSP) chaperones reduces mutant AR aggregation and cell death in a neuronal cell model (Kobayashi et al., 2000). To determine whether increasing the expression level of chaperone improves the phenotype in a mouse model, we cross-bred SBMA transgenic mice with mice overexpressing the inducible form of human HSP70. We demonstrated that high expression of HSP70 markedly ameliorated the motor function of the SBMA model mice. In double-transgenic mice, the nuclear-localized mutant AR protein, particularly that of the large complex form, was significantly reduced. Monomeric mutant AR was also reduced in amount by HSP70 overexpression, suggesting the enhanced degradation of mutant AR. These findings suggest that HSP70 overexpression ameliorates SBMA phenotypes in mice by reducing nuclear-localized mutant AR, probably caused by enhanced mutant AR degradation. Our study may provide the basis for the development of an HSP70-related therapy for SBMA and other polyQ diseases.

  9. Maturation of the tyrosine kinase c-src as a kinase and as a substrate depends on the molecular chaperone Hsp90

    PubMed Central

    Xu, Yang; Singer, Mike A.; Lindquist, Susan

    1999-01-01

    Although Hsp90 displays general chaperone activity in vitro, few substrates of the chaperone have been identified in vivo, and the characteristics that render these substrates dependent on Hsp90 remain elusive. To investigate this issue, we exploited a paradoxical observation: several unrelated oncogenic viral tyrosine kinases, including v-src, attain their native conformation after association with Hsp90, yet their nearly identical cellular homologs interact only weakly with the chaperone. It has been controversial whether Hsp90 is vital for normal maturation of the cellular kinases or is simply binding a misfolded subfraction of the proteins. By modulating Hsp90 levels in Saccharomyces cerevisiae, we determined that Hsp90 is indeed necessary for the maturation of c-src (the normal homolog of v-src). c-src maturation is, however, less sensitive to Hsp90 perturbations than is v-src maturation. Dependence of the two proteins on Hsp90 does not correspond to their relative efficiency in reaching their final destination (the plasma membrane); we observed that in yeast, unlike in vertebrate cells, neither c-src nor v-src concentrate in the membrane. Expression of different v/c-src chimeras in cells carrying wild-type or temperature-sensitive Hsp90 alleles revealed that the difference between the proteins instead arises from multiple, naturally occurring mutations in the C-terminal region of v-src. PMID:9874780

  10. Leveling

    USGS Publications Warehouse

    1966-01-01

    Geodetic leveling by the U.S. Geological Survey provides a framework of accurate elevations for topographic mapping. Elevations are referred to the Sea Level Datum of 1929. Lines of leveling may be run either with automatic or with precise spirit levels, by either the center-wire or the three-wire method. For future use, the surveys are monumented with bench marks, using standard metal tablets or other marking devices. The elevations are adjusted by least squares or other suitable method and are published in lists of control.

  11. Chaperone-Assisted Protein Folding Is Critical for Yellow Fever Virus NS3/4A Cleavage and Replication

    PubMed Central

    Bozzacco, Leonia; Yi, Zhigang; Andreo, Ursula; Conklin, Claire R.; Li, Melody M. H.; Rice, Charles M.

    2016-01-01

    ABSTRACT DNAJC14, a heat shock protein 40 (Hsp40) cochaperone, assists with Hsp70-mediated protein folding. Overexpressed DNAJC14 is targeted to sites of yellow fever virus (YFV) replication complex (RC) formation, where it interacts with viral nonstructural (NS) proteins and inhibits viral RNA replication. How RCs are assembled and the roles of chaperones in this coordinated process are largely unknown. We hypothesized that chaperones are diverted from their normal cellular protein quality control function to play similar roles during viral infection. Here, we show that DNAJC14 overexpression affects YFV polyprotein processing and alters RC assembly. We monitored YFV NS2A-5 polyprotein processing by the viral NS2B-3 protease in DNAJC14-overexpressing cells. Notably, DNAJC14 mutants that did not inhibit YFV replication had minimal effects on polyprotein processing, while overexpressed wild-type DNAJC14 affected the NS3/4A and NS4A/2K cleavage sites, resulting in altered NS3-to-NS3-4A ratios. This suggests that DNAJC14's folding activity normally modulates NS3/4A/2K cleavage events to liberate appropriate levels of NS3 and NS4A and promote RC formation. We introduced amino acid substitutions at the NS3/4A site to alter the levels of the NS3 and NS4A products and examined their effects on YFV replication. Residues with reduced cleavage efficiency did not support viral RNA replication, and only revertant viruses with a restored wild-type arginine or lysine residue at the NS3/4A site were obtained. We conclude that DNAJC14 inhibition of RC formation upon DNAJC14 overexpression is likely due to chaperone dysregulation and that YFV probably utilizes DNAJC14's cochaperone function to modulate processing at the NS3/4A site as a mechanism ensuring virus replication. IMPORTANCE Flaviviruses are single-stranded RNA viruses that cause a wide range of illnesses. Upon host cell entry, the viral genome is translated on endoplasmic reticulum (ER) membranes to produce a single

  12. AR-12 Inhibits Multiple Chaperones Concomitant With Stimulating Autophagosome Formation Collectively Preventing Virus Replication.

    PubMed

    Booth, Laurence; Roberts, Jane L; Ecroyd, Heath; Tritsch, Sarah R; Bavari, Sina; Reid, St Patrick; Proniuk, Stefan; Zukiwski, Alexander; Jacob, Abraham; Sepúlveda, Claudia S; Giovannoni, Federico; García, Cybele C; Damonte, Elsa; González-Gallego, Javier; Tuñón, María J; Dent, Paul

    2016-10-01

    We have recently demonstrated that AR-12 (OSU-03012) reduces the function and ATPase activities of multiple HSP90 and HSP70 family chaperones. Combined knock down of chaperones or AR-12 treatment acted to reduce the expression of virus receptors and essential glucosidase proteins. Combined knock down of chaperones or AR-12 treatment inactivated mTOR and elevated ATG13 S318 phosphorylation concomitant with inducing an endoplasmic reticulum stress response that in an eIF2α-dependent fashion increased Beclin1 and LC3 expression and autophagosome formation. Over-expression of chaperones prevented the reduction in receptor/glucosidase expression, mTOR inactivation, the ER stress response, and autophagosome formation. AR-12 reduced the reproduction of viruses including Mumps, Influenza, Measles, Junín, Rubella, HIV (wild type and protease resistant), and Ebola, an effect replicated by knock down of multiple chaperone proteins. AR-12-stimulated the co-localization of Influenza, EBV and HIV virus proteins with LC3 in autophagosomes and reduced viral protein association with the chaperones HSP90, HSP70, and GRP78. Knock down of Beclin1 suppressed drug-induced autophagosome formation and reduced the anti-viral protection afforded by AR-12. In an animal model of hemorrhagic fever virus, a transient exposure of animals to low doses of AR-12 doubled animal survival from ∼30% to ∼60% and suppressed liver damage as measured by ATL, GGT and LDH release. Thus through inhibition of chaperone protein functions; reducing the production, stability and processing of viral proteins; and stimulating autophagosome formation/viral protein degradation, AR-12 acts as a broad-specificity anti-viral drug in vitro and in vivo. We argue future patient studies with AR-12 are warranted. J. Cell. Physiol. 231: 2286-2302, 2016. © 2016 Wiley Periodicals, Inc.

  13. CSPα, a Molecular Co-chaperone Essential for Short and Long-Term Synaptic Maintenance

    PubMed Central

    Lopez-Ortega, Elena; Ruiz, Rocío; Tabares, Lucia

    2017-01-01

    Cysteine string protein α (CSPα) is a vesicle protein located in the presynaptic terminal of most synapses. CSPα is an essential molecular co-chaperone that facilitates the correct folding of proteins and the assembly of the exocytic machinery. The absence of this protein leads to altered neurotransmitter release and neurodegeneration in multiple model systems, from flies to mice. In humans, CSPα mutations are associated with the development of neuronal ceroid lipofuscinosis (NCL), a neurodegenerative disease characterized by intracellular accumulation of lysosomal material. Here, we review the physiological role of CSPα and the pathology resulting from the homozygous deletion of the gene or its mutations. In addition, we investigate whether long-term moderate reduction of the protein produces motor dysfunction. We found that 1-year-old CSPα heterozygous mice display a reduced ability to sustain motor unit recruitment during repetitive stimulation, which indicates that physiological levels of CSPα are required for normal neuromuscular responses in mice and, likely, in humans. PMID:28239331

  14. Molecular chaperone Jiv promotes the RNA replication of classical swine fever virus.

    PubMed

    Guo, Kangkang; Li, Haimin; Tan, Xuechao; Wu, Mengmeng; Lv, Qizhuang; Liu, Wei; Zhang, Yanming

    2017-03-24

    The nonstructural protein 2 (NS2) of classical swine fever virus (CSFV) is a self-splicing ribozyme wherein the precursor protein NS2-3 is cleaved, and the cleavage efficiency of NS2-3 is crucial to the replication of viral RNA. However, the proteolytic activity of NS2 autoprotease may be achieved through a cellular chaperone called J-domain protein interacting with viral protein (Jiv) or its fragment Jiv90, as evidence suggests that Jiv is required for the proper functioning of the NS2 protein of bovine viral diarrhea virus. Hence, the expression of Jiv may be correlated with the replication efficiency of CSFV RNA. We investigated the expression levels of Jiv and viral RNA in CSFV-infected cells and tissues using Real-time RT-PCR or Western blot analysis. The obtained results show that Jiv90 possibly plays an important role in the lifecycle of CSFV because the distribution of Jiv90 protein shows a positive correlation with the viral load of CSFV. Furthermore, the overexpression or knockdown of Jiv90 in swine cells can also significantly promote or decrease the viral load, respectively. The detection of Flow cytometry shows that the overexpression of Jiv90 prolongs the G1 phase of cell cycles but has no effect on apoptosis. These findings are likely to be of benefit in clarifying the pathogenesis of the CSFV.

  15. Silencing of natural transformation by an RNA chaperone and a multitarget small RNA

    PubMed Central

    Attaiech, Laetitia; Boughammoura, Aïda; Brochier-Armanet, Céline; Allatif, Omran; Peillard-Fiorente, Flora; Edwards, Ross A.; Omar, Ayat R.; MacMillan, Andrew M.; Glover, Mark; Charpentier, Xavier

    2016-01-01

    A highly conserved DNA uptake system allows many bacteria to actively import and integrate exogenous DNA. This process, called natural transformation, represents a major mechanism of horizontal gene transfer (HGT) involved in the acquisition of virulence and antibiotic resistance determinants. Despite evidence of HGT and the high level of conservation of the genes coding the DNA uptake system, most bacterial species appear non-transformable under laboratory conditions. In naturally transformable species, the DNA uptake system is only expressed when bacteria enter a physiological state called competence, which develops under specific conditions. Here, we investigated the mechanism that controls expression of the DNA uptake system in the human pathogen Legionella pneumophila. We found that a repressor of this system displays a conserved ProQ/FinO domain and interacts with a newly characterized trans-acting sRNA, RocR. Together, they target mRNAs of the genes coding the DNA uptake system to control natural transformation. This RNA-based silencing represents a previously unknown regulatory means to control this major mechanism of HGT. Importantly, these findings also show that chromosome-encoded ProQ/FinO domain-containing proteins can assist trans-acting sRNAs and that this class of RNA chaperones could play key roles in post-transcriptional gene regulation throughout bacterial species. PMID:27432973

  16. Overlapping transport and chaperone-binding functions within a bacterial twin-arginine signal peptide.

    PubMed

    Grahl, Sabine; Maillard, Julien; Spronk, Chris A E M; Vuister, Geerten W; Sargent, Frank

    2012-03-01

    The twin-arginine translocation (Tat) pathway is a protein targeting system present in many prokaryotes. The physiological role of the Tat pathway is the transmembrane translocation of fully-folded proteins, which are targeted by N-terminal signal peptides bearing conserved SRRxFLK 'twin-arginine' amino acid motifs. In Escherichia coli the majority of Tat targeted proteins bind redox cofactors and it is important that only mature, cofactor-loaded precursors are presented for export. Cellular processes have been unearthed that sequence these events, for example the signal peptide of the periplasmic nitrate reductase (NapA) is bound by a cytoplasmic chaperone (NapD) that is thought to regulate assembly and export of the enzyme. In this work, genetic, biophysical and structural approaches were taken to dissect the interaction between NapD and the NapA signal peptide. A NapD binding epitope was identified towards the N-terminus of the signal peptide, which overlapped significantly with the twin-arginine targeting motif. NMR spectroscopy revealed that the signal peptide adopted a α-helical conformation when bound by NapD, and substitution of single residues within the NapA signal peptide was sufficient to disrupt the interaction. This work provides an increased level of understanding of signal peptide function on the bacterial Tat pathway.

  17. Cold shock protein 1 chaperones mRNAs during translation in Arabidopsis thaliana.

    PubMed

    Juntawong, Piyada; Sorenson, Reed; Bailey-Serres, Julia

    2013-06-01

    RNA binding proteins (RBPs) function post-transcriptionally to fine-tune gene regulation. Arabidopsis thaliana has four Gly-rich, zinc finger-containing RBPs called cold shock proteins 1-4 (CSP1-CSP4), that possess an evolutionary conserved cold shock domain. Here, we determined that CSP1 associates with polyribosomes (polysomes) via an RNA-mediated interaction. Both the abundance and polysomal co-fractionation of CSP1 was enhanced in the cold (4°C), but did not influence global levels of polysomes, which were minimally perturbed by above freezing cold temperatures. Using a polyclonal antiserum, CSP1 was co-immunopurified with several hundred transcripts from rosettes of plants cultivated at 23°C or transferred to 4°C for 12 h. CSP1-associated mRNAs were characterized by G+C-rich 5' untranslated regions and gene ontologies related to cellular respiration, mRNA binding and translation. The majority of the CSP1-associated mRNAs were constitutively expressed and stable in the cold. CSP1 abundance was correlated with improved translation of ribosomal protein mRNAs during cold stress and improved maintenance of homeostasis and translation of mRNAs under water-deficit stress. In summary, CSP1 selectively chaperones mRNAs, providing translational enhancement during stress.

  18. Sti1 and Cdc37 can stabilize Hsp90 in chaperone complexes with a protein kinase.

    PubMed

    Lee, Paul; Shabbir, Arsalan; Cardozo, Christopher; Caplan, Avrom J

    2004-04-01

    Hsp90 functions in association with several cochaperones for folding of protein kinases and transcription factors, although the relative contribution of each to the overall reaction is unknown. We assayed the role of nine different cochaperones in the activation of Ste11, a Saccharomyces cerevisiae mitogen-activated protein kinase kinase kinase. Studies on signaling via this protein kinase pathway was measured by alpha-factor-stimulated induction of FIG1 or lacZ, and repression of HHF1. Several cochaperone mutants tested had reduced FIG1 induction or HHF1 repression, although to differing extents. The greatest defects were in cpr7Delta, sse1Delta, and ydj1Delta mutants. Assays of Ste11 kinase activity revealed a pattern of defects in the cochaperone mutant strains that were similar to the gene expression studies. Overexpression of CDC37, a chaperone required for protein kinase folding, suppressed defects the sti1Delta mutant back to wild-type levels. CDC37 overexpression also restored stable Hsp90 binding to the Ste11 protein kinase domain in the sti1Delta mutant strain. These data suggest that Cdc37 and Sti1 have functional overlap in stabilizing Hsp90:client complexes. Finally, we show that Cns1 functions in MAP kinase signaling in association with Cpr7.

  19. Ribosomal crystallography: peptide bond formation, chaperone assistance and antibiotics activity.

    PubMed

    Yonath, Ada

    2005-08-31

    The peptidyl transferase center (PTC) is located in a protein free environment, thus confirming that the ribosome is a ribozyme. This arched void has dimensions suitable for accommodating the 3' ends of the A-and the P-site tRNAs, and is situated within a universal sizable symmetry-related region that connects all ribosomal functional centers involved in amino-acid polymerization. The linkage between the elaborate PTC architecture and the A-site tRNA position revealed that the A- to P-site passage of the tRNA 3' end is performed by a rotatory motion, which leads to stereochemistry suitable for peptide bond formation and for substrate mediated catalysis, thus suggesting that the PTC evolved by gene-fusion. Adjacent to the PTC is the entrance of the protein exit tunnel, shown to play active roles in sequence-specific gating of nascent chains and in responding to cellular signals. This tunnel also provides a site that may be exploited for local co-translational folding and seems to assist in nascent chain trafficking into the hydrophobic space formed by the first bacterial chaperone, the trigger factor. Many antibiotics target ribosomes. Although the ribosome is highly conserved, subtle sequence and/or conformational variations enable drug selectivity, thus facilitating clinical usage. Comparisons of high-resolution structures of complexes of antibiotics bound to ribosomes from eubacteria resembling pathogens, to an archaeon that shares properties with eukaryotes and to its mutant that allows antibiotics binding, demonstrated the unambiguous difference between mere binding and therapeutical effectiveness. The observed variability in antibiotics inhibitory modes, accompanied by the elucidation of the structural basis to antibiotics mechanism justifies expectations for structural based improved properties of existing compounds as well as for the development of novel drugs.

  20. The expanding proteome of the molecular chaperone HSP90

    PubMed Central

    Samant, Rahul S; Clarke, Paul A

    2012-01-01

    The molecular chaperone HSP90 maintains the activity and stability of a diverse set of “client” proteins that play key roles in normal and disease biology. Around 20 HSP90 inhibitors that deplete the oncogenic clientele have entered clinical trials for cancer. However, the full extent of the HSP90-dependent proteome, which encompasses not only clients but also proteins modulated by downstream transcriptional responses, is still incompletely characterized and poorly understood. Earlier large-scale efforts to define the HSP90 proteome have been valuable but are incomplete because of limited technical sensitivity. Here, we discuss previous large-scale surveys of proteome perturbations induced by HSP90 inhibitors in light of a significant new study using state-of-the-art stable isotope labeling by amino acids (SILAC) technology combined with more sensitive high-resolution mass spectrometry (MS) that extends the catalog of proteomic changes in inhibitor-treated cancer cells. Among wide-ranging changes, major functional responses include downregulation of protein kinase activity and the DNA damage response alongside upregulation of the protein degradation machinery. Despite this improved proteomic coverage, there was surprisingly little overlap with previous studies. This may be due in part to technical issues but is likely also due to the variability of the HSP90 proteome with the inhibitor conditions used, the cancer cell type and the genetic status of client proteins. We suggest future proteomic studies to address these factors, to help distinguish client protein components from indirect transcriptional components and to address other key questions in fundamental and translational HSP90 research. Such studies should also reveal new biomarkers for patient selection and novel targets for therapeutic intervention. PMID:22421145

  1. Biologic activities of molecular chaperones and pharmacologic chaperone imidazole-containing dipeptide-based compounds: natural skin care help and the ultimate challenge: implication for adaptive responses in the skin.

    PubMed

    Babizhayev, Mark A; Nikolayev, Gennady M; Nikolayeva, Juliana G; Yegorov, Yegor E

    2012-03-01

    Accumulation of molecular damage and increased molecular heterogeneity are hallmarks of photoaged skin and pathogenesis of human cutaneous disease. Growing evidence demonstrates the ability of molecular chaperone proteins and of pharmacologic chaperones to decrease the environmental stress and ameliorate the oxidation stress-related and glycation disease phenotypes, suggesting that the field of chaperone therapy might hold novel treatments for skin diseases and aging. In this review, we examine the evidence suggesting a role for molecular chaperone proteins in the skin and their inducer and protecting agents: pharmacologic chaperone imidazole dipeptide-based agents (carcinine and related compounds) in cosmetics and dermatology. Furthermore, we discuss the use of chaperone therapy for the treatment of skin photoaging diseases and other skin pathologies that have a component of increased glycation and/or free radical-induced oxidation in their genesis. We examine biologic activities of molecular and pharmacologic chaperones, including strategies for identifying potential chaperone compounds and for experimentally demonstrating chaperone activity in in vitro and in vivo models of human skin disease. This allows the protein to function and traffic to the appropriate location in the skin, thereby increasing protein activity and cellular function and reducing stress on skin cells. The benefits of imidazole dipeptide antioxidants with transglycating activity (such as carcinine) in skin care are that they help protect and repair cell membrane damage and help retain youthful, younger-looking skin. All skin types will benefit from daily, topical application of pharmacologic chaperone antioxidants, anti-irritants, in combination with water-binding protein agents that work to mimic the structure and function of healthy skin. General strategies are presented addressing ground techniques to improve absorption of usually active chaperone proteins and dipeptide compounds, include

  2. Immunization of mice with a novel recombinant molecular chaperon confers protection against Brucella melitensis infection.

    PubMed

    Ghasemi, Amir; Jeddi-Tehrani, Mahmood; Mautner, Josef; Salari, Mohammad Hossein; Zarnani, Amir-Hassan

    2014-11-20

    Brucella spp. are zoonotic Gram-negative intracellular pathogens with the ability to survive and replicate in phagocytes. It has been shown that bacterial proteins expressed abundantly in this niche are stress-related proteins capable of triggering effective immune responses. BMEI1549 is a molecular chaperone designated DnaK that is expressed under stress conditions and helps to prevent formation of protein aggregates. In order to study the potential of DnaK as a prospective Brucella subunit vaccine, immunogenicity and protective efficacy of recombinant DnaK from Brucella melitensis was evaluated in BALB/c mice. The dnak gene was cloned, expressed in Escherichia coli, and the resulting recombinant protein used as subunit vaccine. DnaK-immunized mice showed a strong lymphocyte proliferative response to in vitro antigen stimulation. Although comparable levels of antigen-specific IgG2a and IgG1 were observed in immunized mice, high amounts of IFN-γ, IL-12 and IL-6, no detectable level of IL-4 and very low levels of IL-10 and IL-5 were produced by splenocytes of vaccinated mice suggesting induction of a Th1 dominant immune response by DnaK. Compared to control animals, mice vaccinated with DnaK exhibited a significant degree of protection against subsequent Brucella infection (p<0.001), albeit this protection was less than the protection conferred by Rev.1 (p<0.05). A further increase in protection was observed, when DnaK was combined with recombinant Omp31. Notably, this combination, as opposed to each component alone, induced statistically similar level of protection as induced by Rev.1 suggesting that DnaK could be viewed as a promising candidate for the development of a subunit vaccine against brucellosis.

  3. Hsp72 chaperone function is dispensable for protection against stress-induced apoptosis.

    PubMed

    Chow, Ari M; Steel, Rohan; Anderson, Robin L

    2009-05-01

    In addition to its role as a molecular chaperone, heat shock protein 72 (Hsp72) protects cells against a wide range of apoptosis inducing stresses. However, it is unclear if these two roles are functionally related or whether Hsp72 inhibits apoptosis by a mechanism independent of chaperone activity. The N-terminal adenosine triphosphatase domain, substrate-binding domain and the C-terminal EEVD regulatory motif of Hsp72 are all essential for chaperone activity. In this study, we show that Hsp72 mutants with a functional substrate-binding domain but lacking chaperone activity retain their ability to protect cells against apoptosis induced by heat and tumor necrosis factor alpha. In contrast, a deletion mutant lacking a functional substrate-binding domain has no protective capacity. The ability of the Hsp72 substrate-binding domain to inhibit apoptosis independent of the regulatory effects of the adenosine triphosphate-binding domain indicates that the inhibition of apoptosis may involve a stable binding interaction with a regulatory substrate rather than Hsp72 chaperone activity.

  4. A Quantitative Characterization of Nucleoplasmin/Histone Complexes Reveals Chaperone Versatility

    PubMed Central

    Fernández-Rivero, Noelia; Franco, Aitor; Velázquez-Campoy, Adrian; Alonso, Edurne; Muga, Arturo; Prado, Adelina

    2016-01-01

    Nucleoplasmin (NP) is an abundant histone chaperone in vertebrate oocytes and embryos involved in storing and releasing maternal histones to establish and maintain the zygotic epigenome. NP has been considered a H2A–H2B histone chaperone, and recently it has been shown that it can also interact with H3-H4. However, its interaction with different types of histones has not been quantitatively studied so far. We show here that NP binds H2A–H2B, H3-H4 and linker histones with Kd values in the subnanomolar range, forming different complexes. Post-translational modifications of NP regulate exposure of the polyGlu tract at the disordered distal face of the protein and induce an increase in chaperone affinity for all histones. The relative affinity of NP for H2A–H2B and linker histones and the fact that they interact with the distal face of the chaperone could explain their competition for chaperone binding, a relevant process in NP-mediated sperm chromatin remodelling during fertilization. Our data show that NP binds H3-H4 tetramers in a nucleosomal conformation and dimers, transferring them to DNA to form disomes and tetrasomes. This finding might be relevant to elucidate the role of NP in chromatin disassembly and assembly during replication and transcription. PMID:27558753

  5. Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes

    PubMed Central

    Requena, Jose M.; Montalvo, Ana M.; Fraga, Jorge

    2015-01-01

    Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges) for drug discovery and improving of current treatments against leishmaniasis. PMID:26167482

  6. Evolution of a plant-specific copper chaperone family for chloroplast copper homeostasis

    SciTech Connect

    Blaby-Haas, Crysten E.; Padilla-Benavides, Teresita; Stübe, Roland; Argüello, José M.; Merchant, Sabeeha S.

    2014-12-02

    Metallochaperones traffic copper (Cu+) from its point of entry at the plasma membrane to its destination. In plants, one destination is the chloroplast, which houses plastocyanin, a Cu-dependent electron transfer protein involved in photosynthesis. In this paper, we present a previously unidentified Cu+ chaperone that evolved early in the plant lineage by an alternative-splicing event of the pre-mRNA encoding the chloroplast P-type ATPase in Arabidopsis 1 (PAA1). In several land plants, recent duplication events created a separate chaperone-encoding gene coincident with loss of alternative splicing. The plant-specific Cu+ chaperone delivers Cu+ with specificity for PAA1, which is flipped in the envelope relative to prototypical bacterial ATPases, compatible with a role in Cu+ import into the stroma and consistent with the canonical catalytic mechanism of these enzymes. The ubiquity of the chaperone suggests conservation of this Cu+-delivery mechanism and provides a unique snapshot into the evolution of a Cu+ distribution pathway. Finally, we also provide evidence for an interaction between PAA2, the Cu+-ATPase in thylakoids, and the Cu+-chaperone for Cu/Zn superoxide dismutase (CCS), uncovering a Cu+ network that has evolved to fine-tune Cu+ distribution.

  7. Yeast prions are useful for studying protein chaperones and protein quality control.

    PubMed

    Masison, Daniel C; Reidy, Michael

    2015-01-01

    Protein chaperones help proteins adopt and maintain native conformations and play vital roles in cellular processes where proteins are partially folded. They comprise a major part of the cellular protein quality control system that protects the integrity of the proteome. Many disorders are caused when proteins misfold despite this protection. Yeast prions are fibrous amyloid aggregates of misfolded proteins. The normal action of chaperones on yeast prions breaks the fibers into pieces, which results in prion replication. Because this process is necessary for propagation of yeast prions, even small differences in activity of many chaperones noticeably affect prion phenotypes. Several other factors involved in protein processing also influence formation, propagation or elimination of prions in yeast. Thus, in much the same way that the dependency of viruses on cellular functions has allowed us to learn much about cell biology, the dependency of yeast prions on chaperones presents a unique and sensitive way to monitor the functions and interactions of many components of the cell's protein quality control system. Our recent work illustrates the utility of this system for identifying and defining chaperone machinery interactions.

  8. Evolution of a plant-specific copper chaperone family for chloroplast copper homeostasis

    DOE PAGES

    Blaby-Haas, Crysten E.; Padilla-Benavides, Teresita; Stübe, Roland; ...

    2014-12-02

    Metallochaperones traffic copper (Cu+) from its point of entry at the plasma membrane to its destination. In plants, one destination is the chloroplast, which houses plastocyanin, a Cu-dependent electron transfer protein involved in photosynthesis. In this paper, we present a previously unidentified Cu+ chaperone that evolved early in the plant lineage by an alternative-splicing event of the pre-mRNA encoding the chloroplast P-type ATPase in Arabidopsis 1 (PAA1). In several land plants, recent duplication events created a separate chaperone-encoding gene coincident with loss of alternative splicing. The plant-specific Cu+ chaperone delivers Cu+ with specificity for PAA1, which is flipped in themore » envelope relative to prototypical bacterial ATPases, compatible with a role in Cu+ import into the stroma and consistent with the canonical catalytic mechanism of these enzymes. The ubiquity of the chaperone suggests conservation of this Cu+-delivery mechanism and provides a unique snapshot into the evolution of a Cu+ distribution pathway. Finally, we also provide evidence for an interaction between PAA2, the Cu+-ATPase in thylakoids, and the Cu+-chaperone for Cu/Zn superoxide dismutase (CCS), uncovering a Cu+ network that has evolved to fine-tune Cu+ distribution.« less

  9. Calcyclin Binding Protein/Siah-1 Interacting Protein Is a Hsp90 Binding Chaperone

    PubMed Central

    Góral, Agnieszka; Bieganowski, Paweł; Prus, Wiktor; Krzemień-Ojak, Łucja; Kądziołka, Beata; Fabczak, Hanna; Filipek, Anna

    2016-01-01

    The Hsp90 chaperone activity is tightly regulated by interaction with many co-chaperones. Since CacyBP/SIP shares some sequence homology with a known Hsp90 co-chaperone, Sgt1, in this work we performed a set of experiments in order to verify whether CacyBP/SIP can interact with Hsp90. By applying the immunoprecipitation assay we have found that CacyBP/SIP binds to Hsp90 and that the middle (M) domain of Hsp90 is responsible for this binding. Furthermore, the proximity ligation assay (PLA) performed on HEp-2 cells has shown that the CacyBP/SIP-Hsp90 complexes are mainly localized in the cytoplasm of these cells. Using purified proteins and applying an ELISA we have shown that Hsp90 interacts directly with CacyBP/SIP and that the latter protein does not compete with Sgt1 for the binding to Hsp90. Moreover, inhibitors of Hsp90 do not perturb CacyBP/SIP-Hsp90 binding. Luciferase renaturation assay and citrate synthase aggregation assay with the use of recombinant proteins have revealed that CacyBP/SIP exhibits chaperone properties. Also, CacyBP/SIP-3xFLAG expression in HEp-2 cells results in the appearance of more basic Hsp90 forms in 2D electrophoresis, which may indicate that CacyBP/SIP dephosphorylates Hsp90. Altogether, the obtained results suggest that CacyBP/SIP is involved in regulation of the Hsp90 chaperone machinery. PMID:27249023

  10. Characteristics analysis of the luzA gene encoding chaperone from Photobacterium leiognathi related to bioluminescence.

    PubMed

    Lin, J W; Lin, B J; Chen, H Y; Weng, S F

    1998-03-27

    Nucleotide sequence of the luzA gene (GenBank accession No. AF039303) from Photobacterium leiognathi ATCC 25521 (NCIMB 2193) has been determined, and the chaperone encoded by the luzA gene was deduced. The LuzA chaperone has a calculated M(r) 26,295 and comprises 230 amino acid residues; the hydrophobic alpha-helix N-terminal 21 amino acid residues MKKTIFALLFMSVFI SYPSFA is the leader peptide, therefore the matured LuzA chaperone has a calculated M(r) 23,871 and comprises 209 amino acid residues only. The periplasmic LuzA chaperone is the protein concerned with the protein folding, assembly and stability. The luzA gene and the related genes are closely linked to the sod gene, that encoding Cu/Zn superoxide dismutase enables to enhance bioluminescence of the lux operon; the gene order of the luzA gene and related genes is -ufo'-luzA-ufoI-ufoII-ter->-R&R'-sod-ufo-- >. In trans complementation bioluminoassays in vivo elicit that the LuzA chaperone might be not directly concerned with bioluminescence of the lux operon from P. leiognathi in E. coli, but might enable to stabilize the proteins related to bioluminescence. The unidentified ufoII gene closely linked to the luzA gene is able to enhance bioluminescence.

  11. Is Catalytic Activity of Chaperones a Selectable Trait for the Emergence of Heat Shock Response?

    PubMed Central

    Çetinbaş, Murat; Shakhnovich, Eugene I.

    2015-01-01

    Although heat shock response is ubiquitous in bacterial cells, the underlying physical chemistry behind heat shock response remains poorly understood. To study the response of cell populations to heat shock we employ a physics-based ab initio model of living cells where protein biophysics (i.e., folding and protein-protein interactions in crowded cellular environments) and important aspects of proteins homeostasis are coupled with realistic population dynamics simulations. By postulating a genotype-phenotype relationship we define a cell division rate in terms of functional concentrations of proteins and protein complexes, whose Boltzmann stabilities of folding and strengths of their functional interactions are exactly evaluated from their sequence information. We compare and contrast evolutionary dynamics for two models of chaperon action. In the active model, foldase chaperones function as nonequilibrium machines to accelerate the rate of protein folding. In the passive model, holdase chaperones form reversible complexes with proteins in their misfolded conformations to maintain their solubility. We find that only cells expressing foldase chaperones are capable of genuine heat shock response to the increase in the amount of unfolded proteins at elevated temperatures. In response to heat shock, cells’ limited resources are redistributed differently for active and passive models. For the active model, foldase chaperones are overexpressed at the expense of downregulation of high abundance proteins, whereas for the passive model; cells react to heat shock by downregulating their high abundance proteins, as their low abundance proteins are upregulated. PMID:25606691

  12. Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes.

    PubMed

    Requena, Jose M; Montalvo, Ana M; Fraga, Jorge

    2015-01-01

    Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges) for drug discovery and improving of current treatments against leishmaniasis.

  13. Molecular chaperones in lactic acid bacteria: physiological consequences and biochemical properties.

    PubMed

    Sugimoto, Shinya; Abdullah-Al-Mahin; Sonomoto, Kenji

    2008-10-01

    Recently, lactic acid bacteria (LAB) have attracted much attention because of their potential application to probiotics and industrial applications as starters for dairy products or lactic acid fermentation. Additional emphasis is also being paid to them as commensal bacteria in gastrointestinal tract. Since LAB exhibit a stress response, insight into the relationship between stress proteins such as molecular chaperones and stress tolerance or adaptation is increasing gradually along with current research examining these important bacteria. Similar to other bacteria, one of the major stress-response systems in LAB is the expression of molecular chaperones. The recently completed genome sequencing of various LAB strains, combined with the development of advanced molecular techniques, have enabled us to identify molecular chaperones and to understand their regulation systems in response to various stresses. Furthermore, recent biochemical studies provided novel insight into the molecular mechanisms of LAB chaperone systems. This review highlights the physiological consequences and biochemical properties of molecular chaperones (especially sHsps, Hsp70, and Hsp100) in LAB and their use in biotechnological applications.

  14. Recognition and targeting mechanisms by chaperones in flagellum assembly and operation.

    PubMed

    Khanra, Nandish; Rossi, Paolo; Economou, Anastassios; Kalodimos, Charalampos G

    2016-08-30

    The flagellum is a complex bacterial nanomachine that requires the proper assembly of several different proteins for its function. Dedicated chaperones are central in preventing aggregation or undesired interactions of flagellar proteins, including their targeting to the export gate. FliT is a key flagellar chaperone that binds to several flagellar proteins in the cytoplasm, including its cognate filament-capping protein FliD. We have determined the solution structure of the FliT chaperone in the free state and in complex with FliD and the flagellar ATPase FliI. FliT adopts a four-helix bundle and uses a hydrophobic surface formed by the first three helices to recognize its substrate proteins. We show that the fourth helix constitutes the binding site for FlhA, a membrane protein at the export gate. In the absence of a substrate protein FliT adopts an autoinhibited structure wherein both the binding sites for substrates and FlhA are occluded. Substrate binding to FliT activates the complex for FlhA binding and thus targeting of the chaperone-substrate complex to the export gate. The activation and targeting mechanisms reported for FliT appear to be shared among the other flagellar chaperones.

  15. Affinity chromatography of chaperones based on denatured proteins: Analysis of cell lysates of different origin.

    PubMed

    Marchenko, N Yu; Sikorskaya, E V; Marchenkov, V V; Kashparov, I A; Semisotnov, G V

    2016-03-01

    Molecular chaperones are involved in folding, oligomerization, transport, and degradation of numerous cellular proteins. Most of chaperones are heat-shock proteins (HSPs). A number of diseases of various organisms are accompanied by changes in the structure and functional activity of chaperones, thereby revealing their vital importance. One of the fundamental properties of chaperones is their ability to bind polypeptides lacking a rigid spatial structure. Here, we demonstrate that affinity chromatography using sorbents with covalently attached denatured proteins allows effective purification and quantitative assessment of their bound protein partners. Using pure Escherichia coli chaperone GroEL (Hsp60), the capacity of denatured pepsin or lysozyme-based affinity sorbents was evaluated as 1 mg and 1.4 mg of GroEL per 1 ml of sorbent, respectively. Cell lysates of bacteria (E. coli, Thermus thermophilus, and Yersinia pseudotuberculosis), archaea (Halorubrum lacusprofundi) as well as the lysate of rat liver mitochondria were analyzed using affinity carrier with denatured lysozyme. It was found that, apart from Hsp60, other proteins with a molecular weight of about 100, 50, 40, and 20 kDa are able to interact with denatured lysozyme.

  16. Functional adaptations of the bacterial chaperone trigger factor to extreme environmental temperatures.

    PubMed

    Godin-Roulling, Amandine; Schmidpeter, Philipp A M; Schmid, Franz X; Feller, Georges

    2015-07-01

    Trigger factor (TF) is the first molecular chaperone interacting cotranslationally with virtually all nascent polypeptides synthesized by the ribosome in bacteria. Thermal adaptation of chaperone function was investigated in TFs from the Antarctic psychrophile Pseudoalteromonas haloplanktis, the mesophile Escherichia coli and the hyperthermophile Thermotoga maritima. This series covers nearly all temperatures encountered by bacteria. Although structurally homologous, these TFs display strikingly distinct properties that are related to the bacterial environmental temperature. The hyperthermophilic TF strongly binds model proteins during their folding and protects them from heat-induced misfolding and aggregation. It decreases the folding rate and counteracts the fast folding rate imposed by high temperature. It also functions as a carrier of partially folded proteins for delivery to downstream chaperones ensuring final maturation. By contrast, the psychrophilic TF displays weak chaperone activities, showing that these functions are less important in cold conditions because protein folding, misfolding and aggregation are slowed down at low temperature. It efficiently catalyses prolyl isomerization at low temperature as a result of its increased cellular concentration rather than from an improved activity. Some chaperone properties of the mesophilic TF possibly reflect its function as a cold shock protein in E. coli.

  17. Hsp72 chaperone function is dispensable for protection against stress-induced apoptosis

    PubMed Central

    Chow, Ari M.; Steel, Rohan

    2008-01-01

    In addition to its role as a molecular chaperone, heat shock protein 72 (Hsp72) protects cells against a wide range of apoptosis inducing stresses. However, it is unclear if these two roles are functionally related or whether Hsp72 inhibits apoptosis by a mechanism independent of chaperone activity. The N-terminal adenosine triphosphatase domain, substrate-binding domain and the C-terminal EEVD regulatory motif of Hsp72 are all essential for chaperone activity. In this study, we show that Hsp72 mutants with a functional substrate-binding domain but lacking chaperone activity retain their ability to protect cells against apoptosis induced by heat and tumor necrosis factor alpha. In contrast, a deletion mutant lacking a functional substrate-binding domain has no protective capacity. The ability of the Hsp72 substrate-binding domain to inhibit apoptosis independent of the regulatory effects of the adenosine triphosphate-binding domain indicates that the inhibition of apoptosis may involve a stable binding interaction with a regulatory substrate rather than Hsp72 chaperone activity. PMID:18819021

  18. Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity

    PubMed Central

    Mack, Korrie L.; Shorter, James

    2016-01-01

    Cells have evolved a sophisticated proteostasis network to ensure that proteins acquire and retain their native structure and function. Critical components of this network include molecular chaperones and protein disaggregases, which function to prevent and reverse deleterious protein misfolding. Nevertheless, proteostasis networks have limits, which when exceeded can have fatal consequences as in various neurodegenerative disorders, including Parkinson's disease and amyotrophic lateral sclerosis. A promising strategy is to engineer proteostasis networks to counter challenges presented by specific diseases or specific proteins. Here, we review efforts to enhance the activity of individual molecular chaperones or protein disaggregases via engineering and directed evolution. Remarkably, enhanced global activity or altered substrate specificity of various molecular chaperones, including GroEL, Hsp70, ClpX, and Spy, can be achieved by minor changes in primary sequence and often a single missense mutation. Likewise, small changes in the primary sequence of Hsp104 yield potentiated protein disaggregases that reverse the aggregation and buffer toxicity of various neurodegenerative disease proteins, including α-synuclein, TDP-43, and FUS. Collectively, these advances have revealed key mechanistic and functional insights into chaperone and disaggregase biology. They also suggest that enhanced chaperones and disaggregases could have important applications in treating human disease as well as in the purification of valuable proteins in the pharmaceutical sector. PMID:27014702

  19. Is catalytic activity of chaperones a selectable trait for the emergence of heat shock response?

    PubMed

    Çetinbaş, Murat; Shakhnovich, Eugene I

    2015-01-20

    Although heat shock response is ubiquitous in bacterial cells, the underlying physical chemistry behind heat shock response remains poorly understood. To study the response of cell populations to heat shock we employ a physics-based ab initio model of living cells where protein biophysics (i.e., folding and protein-protein interactions in crowded cellular environments) and important aspects of proteins homeostasis are coupled with realistic population dynamics simulations. By postulating a genotype-phenotype relationship we define a cell division rate in terms of functional concentrations of proteins and protein complexes, whose Boltzmann stabilities of folding and strengths of their functional interactions are exactly evaluated from their sequence information. We compare and contrast evolutionary dynamics for two models of chaperon action. In the active model, foldase chaperones function as nonequilibrium machines to accelerate the rate of protein folding. In the passive model, holdase chaperones form reversible complexes with proteins in their misfolded conformations to maintain their solubility. We find that only cells expressing foldase chaperones are capable of genuine heat shock response to the increase in the amount of unfolded proteins at elevated temperatures. In response to heat shock, cells' limited resources are redistributed differently for active and passive models. For the active model, foldase chaperones are overexpressed at the expense of downregulation of high abundance proteins, whereas for the passive model; cells react to heat shock by downregulating their high abundance proteins, as their low abundance proteins are upregulated.

  20. Sigma-1 receptor chaperone and brain-derived neurotrophic factor: emerging links between cardiovascular disease and depression.

    PubMed

    Hashimoto, Kenji

    2013-01-01

    Epidemiological studies have demonstrated a close relationship between depression and cardiovascular disease (CVD). Although it is known that the central nervous system (CNS) contributes to this relationship, the detailed mechanisms involved in this process remain unclear. Recent studies suggest that the endoplasmic reticulum (ER) molecular chaperone sigma-1 receptor and brain-derived neurotrophic factor (BDNF) play a role in the pathophysiology of CVD and depression. Several meta-analysis studies have showed that levels of BDNF in the blood of patients with major depressive disorder (MDD) are lower than normal controls, indicating that blood BDNF might be a biomarker for depression. Furthermore, blood levels of BDNF in patients with CVD are also lower than normal controls. A recent study using conditional BDNF knock-out mice in animal models of myocardial infarction highlighted the role of CNS-mediated mechanisms in the cardioprotective effects of BDNF. In addition, a recent study shows that decreased levels of sigma-1 receptor in the mouse brain contribute to the association between heart failure and depression. Moreover, sigma-1 receptor agonists, including the endogenous neurosteroid dehydroepiandosterone (DHEA) and the selective serotonin reuptake inhibitor (SSRI) fluvoxamine, show potent cardioprotective and antidepressive effects in rodents, via sigma-1 receptor stimulation. Interestingly, agonist activation of sigma-1 receptors increased the secretion of mature BDNF from its precursor proBDNF via chaperone activity in the ER. Given the role of ER stress in the pathophysiology of CVD and MDD, the author will discuss the potential link between sigma-1 receptors and BDNF-TrkB pathway in the pathophysiology of these two diseases. Finally, the author will make a case for potent sigma-1 receptor agonists and TrkB agonists as new potential therapeutic drugs for depressive patients with CVD.

  1. RNA-binding properties and RNA chaperone activity of human peroxiredoxin 1

    SciTech Connect

    Kim, Ji-Hee; Lee, Jeong-Mi; Lee, Hae Na; Kim, Eun-Kyung; Ha, Bin; Ahn, Sung-Min; Jang, Ho Hee; Lee, Sang Yeol

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer hPrx1 has RNA-binding properties. Black-Right-Pointing-Pointer hPrx1 exhibits helix-destabilizing activity. Black-Right-Pointing-Pointer Cold stress increases hPrx1 level in the nuclear fraction. Black-Right-Pointing-Pointer hPrx1 enhances the viability of cells exposed to cold stress. -- Abstract: Human peroxiredoxin 1 (hPrx1), a member of the peroxiredoxin family, detoxifies peroxide substrates and has been implicated in numerous biological processes, including cell growth, proliferation, differentiation, apoptosis, and redox signaling. To date, Prx1 has not been implicated in RNA metabolism. Here, we investigated the ability of hPrx1 to bind RNA and act as an RNA chaperone. In vitro, hPrx1 bound to RNA and DNA, and unwound nucleic acid duplexes. hPrx1 also acted as a transcription anti-terminator in an assay using an Escherichia coli strain containing a stem-loop structure upstream of the chloramphenicol resistance gene. The overall cellular level of hPrx1 expression was not increased at low temperatures, but the nuclear level of hPrx1 was increased. In addition, hPrx1 overexpression enhanced the survival of cells exposed to cold stress, whereas hPrx1 knockdown significantly reduced cell survival under the same conditions. These findings suggest that hPrx1 may perform biological functions as a RNA-binding protein, which are distinctive from known functions of hPrx1 as a reactive oxygen species scavenger.

  2. Restored mutant receptor:Corticoid binding in chaperone complexes by trimethylamine N-oxide

    PubMed Central

    Miller, Aaron L.; Elam, W. Austin; Johnson, Betty H.; Khan, Shagufta H.; Kumar, Raj; Thompson, E. Brad

    2017-01-01

    Without a glucocorticoid (GC) ligand, the transcription factor glucocorticoid receptor (GR) is largely cytoplasmic, with its GC-binding domain held in high affinity conformation by a cluster of chaperones. Binding a GC causes serial dis- and re-associations with chaperones, translocation of the GR to the nucleus, where it binds to DNA sites and associates with coregulatory proteins and basic transcription complexes. Herein, we describe the effects of a potent protective osmolyte, trimethylamine N-oxide (TMAO), on a conditions-dependent “activation-labile” mutant GR (GRact/l), which under GR-activating conditions cannot bind GCs in cells or in cell cytosols. In both cells and cytosols, TMAO restores binding to GRact/l by stabilizing it in complex with chaperones. Cells bathed in much lower concentrations of TMAO than those required in vitro show restoration of GC binding, presumably due to intracellular molecular crowding effects. PMID:28301576

  3. Structural insights on two hypothetical secretion chaperones from Xanthomonas axonopodis pv. citri.

    PubMed

    Fattori, Juliana; Prando, Alessandra; Assis, Leandro H P; Aparicio, Ricardo; Tasic, Ljubica

    2011-06-01

    Several Gram-negative bacterial pathogens have developed type III secretion systems (T3SSs) to deliver virulence proteins directly into eukaryotic cells in a process essential for many diseases. The type III secretion processes require customized chaperones with high specificity for binding partners, thus providing the secretion to occur. Due to the very low sequence similarities among secretion chaperones, annotation and discrimination of a great majority of them is extremely difficult and a task with low scores even if genes are encountered that codify for small (<20 kDa) proteins with low pI and a tendency to dimerise. Concerning about this, herein, we present structural features on two hypothetical T3SSs chaperones belonging to plant pathogen Xanthomonas axonopodis pv. citri and suggest how low resolution models based on Small Angle X-ray Scattering patterns can provide new structural insights that could be very helpful in their analysis and posterior classification.

  4. Chaperone Proteins in the Central Nervous System and Peripheral Nervous System after Nerve Injury.

    PubMed

    Ousman, Shalina S; Frederick, Ariana; Lim, Erin-Mai F

    2017-01-01

    Injury to axons of the central nervous system (CNS) and the peripheral nervous system (PNS) is accompanied by the upregulation and downregulation of numerous molecules that are involved in mediating nerve repair, or in augmentation of the original damage. Promoting the functions of beneficial factors while reducing the properties of injurious agents determines whether regeneration and functional recovery ensues. A number of chaperone proteins display reduced or increased expression following CNS and PNS damage (crush, transection, contusion) where their roles have generally been found to be protective. For example, chaperones are involved in mediating survival of damaged neurons, promoting axon regeneration and remyelination and, improving behavioral outcomes. We review here the various chaperone proteins that are involved after nervous system axonal damage, the functions that they impact in the CNS and PNS, and the possible mechanisms by which they act.

  5. Crystal structure of archaeal homolog of proteasome-assembly chaperone PbaA.

    PubMed

    Sikdar, Arunima; Satoh, Tadashi; Kawasaki, Masato; Kato, Koichi

    2014-10-24

    Formation of the eukaryotic proteasome is not a spontaneous process but a highly ordered process assisted by several assembly chaperones. In contrast, archaeal proteasome subunits can spontaneously assemble into an active form. Recent bioinformatic analysis identified the proteasome-assembly chaperone-like proteins, PbaA and PbaB, in archaea. Our previous study showed that the PbaB homotetramer functions as a proteasome activator through its tentacle-like C-terminal segments. However, a functional role of the other homolog PbaA has remained elusive. Here we determined the 2.25-Å resolution structure of PbaA, illustrating its disparate tertiary and quaternary structures compared with PbaB. PbaA forms a homopentamer in which the C-terminal segments, with a putative proteasome-activating motif, are packed against the core. These findings offer deeper insights into the molecular evolution relationships between the proteasome-assembly chaperones and the proteasome activators.

  6. Structural Basis for Protein anti-Aggregation Activity of the Trigger Factor Chaperone*

    PubMed Central

    Saio, Tomohide; Guan, Xiao; Rossi, Paolo; Economou, Anastassios; Kalodimos, Charalampos G.

    2014-01-01

    Molecular chaperones prevent aggregation and misfolding of proteins but scarcity of structural data has impeded an understanding of the recognition and anti-aggregation mechanisms. Here we report the solution structure, dynamics and energetics of three Trigger Factor (TF) chaperone molecules in complex with alkaline phosphatase (PhoA) captured in the unfolded state. Our data show that TF uses multiple sites to bind to several regions of the PhoA substrate protein primarily through hydrophobic contacts. NMR relaxation experiments show that TF interacts with PhoA in a highly dynamic fashion but as the number and length of the PhoA regions engaged by TF increases, a more stable complex gradually emerges. Multivalent binding keeps the substrate protein in an extended, unfolded conformation. The results show how molecular chaperones recognize unfolded polypeptides and how by acting as unfoldases and holdases prevent the aggregation and premature (mis)folding of unfolded proteins. PMID:24812405

  7. Chaperone Proteins in the Central Nervous System and Peripheral Nervous System after Nerve Injury

    PubMed Central

    Ousman, Shalina S.; Frederick, Ariana; Lim, Erin-Mai F.

    2017-01-01

    Injury to axons of the central nervous system (CNS) and the peripheral nervous system (PNS) is accompanied by the upregulation and downregulation of numerous molecules that are involved in mediating nerve repair, or in augmentation of the original damage. Promoting the functions of beneficial factors while reducing the properties of injurious agents determines whether regeneration and functional recovery ensues. A number of chaperone proteins display reduced or increased expression following CNS and PNS damage (crush, transection, contusion) where their roles have generally been found to be protective. For example, chaperones are involved in mediating survival of damaged neurons, promoting axon regeneration and remyelination and, improving behavioral outcomes. We review here the various chaperone proteins that are involved after nervous system axonal damage, the functions that they impact in the CNS and PNS, and the possible mechanisms by which they act. PMID:28270745

  8. Acetylation of αA-crystallin in the human lens: Effects on structure and chaperone function

    PubMed Central

    Nagaraj, Ram H.; Nahomi, Rooban B.; Shanthakumar, Shilpa; Linetsky, Mikhail; Padmanabha, Smitha; Pasupuleti, Nagarekha; Wang, Benlian; Santhoshkumar, Puttur; Panda, Alok Kumar; Biswas, Ashis

    2011-01-01

    α-Crystallin is a major protein in the human lens that is perceived to help to maintain the transparency of the lens through its chaperone function. In this study, we demonstrate that many lens proteins including αA-crystallin are acetylated in vivo. We found that K70 and K99 in αA-crystallin and, K92 and K166 in αB-crystallin are acetylated in the human lens.To determine the effect of acetylation on the chaperone function and structural changes, αA-crystallin was acetylated using acetic anhydride. The resulting protein showed strong immunoreactivity against a Nε-acetyllysine antibody, which was directly related to the degree of acetylation. When compared to the unmodified protein, the chaperone function of the in vitro acetylated αA-crystallin was higher against three of the four different client proteins tested. Because a lysine (residue 70; K70) in αA-crystallin is acetylated in vivo, we generated a protein with an acetylation mimic, replacing Lys70 with glutamine (K70Q). The K70Q mutant protein showed increased chaperone function against three client proteins compared to the Wt protein but decreased chaperone function against γ-crystallin. The acetylated protein displayed higher surface hydrophobicity and tryptophan fluorescence, had altered secondary and tertiary structures and displayed decreased thermodynamic stability. Together, our data suggest that acetylation of αA-crystallin occurs in the human lens and that it could affect the chaperone function of αA-crystallin. PMID:22120592

  9. Quantification of interaction strengths between chaperones and tetratricopeptide repeat domain-containing membrane proteins.

    PubMed

    Schweiger, Regina; Soll, Jürgen; Jung, Kirsten; Heermann, Ralf; Schwenkert, Serena

    2013-10-18

    The three tetratricopeptide repeat domain-containing docking proteins Toc64, OM64, and AtTPR7 reside in the chloroplast, mitochondrion, and endoplasmic reticulum of Arabidopsis thaliana, respectively. They are suggested to act during post-translational protein import by association with chaperone-bound preprotein complexes. Here, we performed a detailed biochemical, biophysical, and computational analysis of the interaction between Toc64, OM64, and AtTPR7 and the five cytosolic chaperones HSP70.1, HSP90.1, HSP90.2, HSP90.3, and HSP90.4. We used surface plasmon resonance spectroscopy in combination with Interaction Map® analysis to distinguish between chaperone oligomerization and docking protein-chaperone interactions and to calculate binding affinities for all tested interactions. Complementary to this, we applied pulldown assays as well as microscale thermophoresis as surface immobilization independent techniques. The data revealed that OM64 prefers HSP70 over HSP90, whereas Toc64 binds all chaperones with comparable affinities. We could further show that AtTPR7 is able to bind HSP90 in addition to HSP70. Moreover, differences between the HSP90 isoforms were detected and revealed a weaker binding for HSP90.1 to AtTPR7 and OM64, showing that slight differences in the amino acid composition or structure of the chaperones influence binding to the tetratricopeptide repeat domain. The combinatory approach of several methods provided a powerful toolkit to determine binding affinities of similar interaction partners in a highly quantitative manner.

  10. Analysis of the potency of various low molecular weight chemical chaperones to prevent protein aggregation.

    PubMed

    Upagupta, Chandak; Carlisle, Rachel E; Dickhout, Jeffrey G

    2017-04-22

    Newly translated proteins must undergo proper folding to ensure their function. To enter a low energy state, misfolded proteins form aggregates, which are associated with many degenerative diseases, such as Huntington's disease and chronic kidney disease (CKD). Recent studies have shown the use of low molecular weight chemical chaperones to be an effective method of reducing protein aggregation in various cell types. This study demonstrates a novel non-biased assay to assess the molecular efficacy of these compounds at preventing protein misfolding and/or aggregation. This assay utilizes a thioflavin T fluorescent stain to provide a qualitative and quantitative measure of protein misfolding within cells. The functionality of this method was first assessed in renal proximal tubule epithelial cells treated with various endoplasmic reticulum (ER) stress inducers. Once established in the renal model system, we analyzed the ability of some known chemical chaperones to reduce ER stress. A total of five different compounds were selected: 4-phenylbutyrate (4-PBA), docosahexaenoic acid (DHA), tauroursodeoxycholic acid, trehalose, and glycerol. The dose-dependent effects of these compounds at reducing thapsigargin-induced ER stress was then analyzed, and used to determine their EC50 values. Of the chaperones, 4-PBA and DHA provided the greatest reduction of ER stress and did so at relatively low concentrations. Upon analyzing the efficiency of these compounds and their corresponding structures, it was determined that chaperones with a localized hydrophilic, polar end followed by a long hydrophobic chain, such as 4-PBA and DHA, were most effective at reducing ER stress. This study provides some insight into the use of low molecular weight chemical chaperones and may serve as the first step towards developing new chaperones of greater potency thereby providing potential treatments for diseases caused by protein aggregation.

  11. Chaperone roles for TMAO and HSP70 during hyposmotic stress in the spiny dogfish shark (Squalus acanthias).

    PubMed

    MacLellan, Robyn J; Tunnah, Louise; Barnett, David; Wright, Patricia A; MacCormack, Tyson; Currie, Suzanne

    2015-10-01

    Salinity decreases are experienced by many marine elasmobranchs. To understand how these fishes cope with hyposmotic stress on a cellular level, we used the spiny dogfish shark (Squalus acanthias) as a model to test whether a reciprocal relationship exists between the cell's two primary protein protection mechanisms, the chemical (e.g., trimethylamine oxide, TMAO) and molecular (e.g., heat shock protein 70, HSP70) chaperone systems. This relationship is interesting given that many elasmobranchs are expected to gain water and lose osmolytes, chemical chaperones, and ions as they osmoconform to new, lowered salinity. Dogfish were cannulated for repeated blood sampling and exposed to 70% seawater (SW) for 48 h. These hyposmotic conditions had no effect on red blood cell (RBC) and white muscle TMAO concentrations, and did not result in HSP70 induction or signs of protein damage (i.e., increased ubiquitin), suggesting that TMAO levels were sufficiently protective in these tissues. However, in the gill, we observed a significant decrease in TMAO concentration and a significant induction of HSP70 as well as signs of protein damage. In the face of this cellular stress response, gill Na(+)/K(+)-ATPase (NKA) activity significantly increased during hyposmotic conditions, as expected. We suggest that this functional preservation in the gill is partly the result of HSP70 induction with lowered salinity. We conclude a reciprocal relationship between TMAO and HSP70 in the gills of dogfish as a result of in vivo hyposmotic stress. When osmotically induced protein damage surpasses the protective capacity of remaining TMAO, HSP70 is induced to preserve tissue and organismal function.

  12. The Chaperone ClpX Stimulates Expression of Staphylococcus aureus Protein A by Rot Dependent and Independent Pathways

    PubMed Central

    Jelsbak, Lotte; Ingmer, Hanne; Valihrach, Lukás; Cohn, Marianne Thorup; Christiansen, Mie H. G.; Kallipolitis, Birgitte H.; Frees, Dorte

    2010-01-01

    The Clp ATPases (Hsp100) constitute a family of closely related proteins that have protein reactivating and remodelling activities typical of molecular chaperones. In Staphylococcus aureus the ClpX chaperone is essential for virulence and for transcription of spa encoding Protein A. The present study was undertaken to elucidate the mechanism by which ClpX stimulates expression of Protein A. For this purpose, we prepared antibodies directed against Rot, an activator of spa transcription, and demonstrated that cells devoid of ClpX contain three-fold less Rot than wild-type cells. By varying Rot expression from an inducible promoter we showed that expression of Protein A requires a threshold level of Rot. In the absence of ClpX the Rot content is reduced below this threshold level, hence, explaining the substantially reduced Protein A expression in the clpX mutant. Experiments addressed at pinpointing the role of ClpX in Rot synthesis revealed that ClpX is required for translation of Rot. Interestingly, translation of the spa mRNA was, like the rot mRNA, enhanced by ClpX. These data demonstrate that ClpX performs dual roles in regulating Protein A expression, as ClpX stimulates transcription of spa by enhancing translation of Rot, and that ClpX additionally is required for full translation of the spa mRNA. The current findings emphasize that ClpX has a central role in fine-tuning virulence regulation in S. aureus. PMID:20856878

  13. Copy-choice recombination by reverse transcriptases: Reshuffling of genetic markers mediated by RNA chaperones

    PubMed Central

    Negroni, Matteo; Buc, Henri

    2000-01-01

    Copy-choice recombination efficiently reshuffles genetic markers in retroviruses. In vivo, the folding of the genomic RNA is controlled by the nucleocapsid protein (NC). We show that binding of NC onto the acceptor RNA molecule is sufficient to enhance recombination, providing evidence for a mechanism where the structure of the acceptor template determines the template switch. NC as well as another RNA chaperone (StpA) converts recombination into a widespread process no longer restricted to rare hot spots, an effect maximized when both the NC and the reverse transcriptase come from HIV-1. These data suggest that RNA chaperones confer a higher genetic flexibility to retroviruses. PMID:10829081

  14. Quantifying the role of chaperones in protein translocation by computational modeling

    PubMed Central

    Assenza, Salvatore; De Los Rios, Paolo; Barducci, Alessandro

    2015-01-01

    The molecular chaperone Hsp70 plays a central role in the import of cytoplasmic proteins into organelles, driving their translocation by binding them from the organellar interior. Starting from the experimentally-determined structure of the E. coli Hsp70, we computed, by means of molecular simulations, the effective free-energy profile for substrate translocation upon chaperone binding. We then used the resulting free energy to quantitatively characterize the kinetics of the import process, whose comparison with unassisted translocation highlights the essential role played by Hsp70 in importing cytoplasmic proteins. PMID:25988176

  15. The RNA Chaperone Hfq Promotes Fitness of Actinobacillus pleuropneumoniae during Porcine Pleuropneumonia

    PubMed Central

    Subashchandrabose, Sargurunathan; Leveque, Rhiannon M.; Kirkwood, Roy N.; Kiupel, Matti

    2013-01-01

    Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, an economically important disease of pigs. The hfq gene in A. pleuropneumoniae, encoding the RNA chaperone and posttranscriptional regulator Hfq, is upregulated during infection of porcine lungs. To investigate the role of this in vivo-induced gene in A. pleuropneumoniae, an hfq mutant strain was constructed. The hfq mutant was defective in biofilm formation on abiotic surfaces. The level of pgaC transcript, encoding the biosynthesis of poly-β-1,6-N-acetylglucosamine (PNAG), a major biofilm matrix component, was lower and PNAG content was 10-fold lower in the hfq mutant than in the wild-type strain. When outer membrane proteins were examined, cysteine synthase, implicated in resistance to oxidative stress and tellurite, was not found at detectable levels in the absence of Hfq. The hfq mutant displayed enhanced sensitivity to superoxide generated by methyl viologen and tellurite. These phenotypes were readily reversed by complementation with the hfq gene expressed from its native promoter. The role of Hfq in the fitness of A. pleuropneumoniae was assessed in a natural host infection model. The hfq mutant failed to colonize porcine lungs and was outcompeted by the wild-type strain (median competitive index of 2 × 10−5). Our data demonstrate that the in vivo-induced gene hfq is involved in the regulation of PNAG-dependent biofilm formation, resistance to superoxide stress, and the fitness and virulence of A. pleuropneumoniae in pigs and begin to elucidate the role of an in vivo-induced gene in the pathogenesis of pleuropneumonia. PMID:23732171

  16. The RNA chaperone Hfq promotes fitness of Actinobacillus pleuropneumoniae during porcine pleuropneumonia.

    PubMed

    Subashchandrabose, Sargurunathan; Leveque, Rhiannon M; Kirkwood, Roy N; Kiupel, Matti; Mulks, Martha H

    2013-08-01

    Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, an economically important disease of pigs. The hfq gene in A. pleuropneumoniae, encoding the RNA chaperone and posttranscriptional regulator Hfq, is upregulated during infection of porcine lungs. To investigate the role of this in vivo-induced gene in A. pleuropneumoniae, an hfq mutant strain was constructed. The hfq mutant was defective in biofilm formation on abiotic surfaces. The level of pgaC transcript, encoding the biosynthesis of poly-β-1,6-N-acetylglucosamine (PNAG), a major biofilm matrix component, was lower and PNAG content was 10-fold lower in the hfq mutant than in the wild-type strain. When outer membrane proteins were examined, cysteine synthase, implicated in resistance to oxidative stress and tellurite, was not found at detectable levels in the absence of Hfq. The hfq mutant displayed enhanced sensitivity to superoxide generated by methyl viologen and tellurite. These phenotypes were readily reversed by complementation with the hfq gene expressed from its native promoter. The role of Hfq in the fitness of A. pleuropneumoniae was assessed in a natural host infection model. The hfq mutant failed to colonize porcine lungs and was outcompeted by the wild-type strain (median competitive index of 2 × 10(-5)). Our data demonstrate that the in vivo-induced gene hfq is involved in the regulation of PNAG-dependent biofilm formation, resistance to superoxide stress, and the fitness and virulence of A. pleuropneumoniae in pigs and begin to elucidate the role of an in vivo-induced gene in the pathogenesis of pleuropneumonia.

  17. Hold on to your friends: Dedicated chaperones of ribosomal proteins: Dedicated chaperones mediate the safe transfer of ribosomal proteins to their site of pre-ribosome incorporation.

    PubMed

    Pillet, Benjamin; Mitterer, Valentin; Kressler, Dieter; Pertschy, Brigitte

    2017-01-01

    Eukaryotic ribosomes are assembled from their components, the ribosomal RNAs and ribosomal proteins, in a tremendously complex, multi-step process, which primarily takes place in the nuclear compartment. Therefore, most ribosomal proteins have to travel from the cytoplasm to their incorporation site on pre-ribosomes within the nucleus. However, due to their particular characteristics, such as a highly basic amino acid composition and the presence of unstructured extensions, ribosomal proteins are especially prone to aggregation and degradation in their unassembled state, hence specific mechanisms must operate to ensure their safe delivery. Recent studies have uncovered a group of proteins, termed dedicated chaperones, specialized in accompanying and guarding individual ribosomal proteins. In this essay, we review how these dedicated chaperones utilize different folds to interact with their ribosomal protein clients and how they ensure their soluble expression and interconnect their intracellular transport with their efficient assembly into pre-ribosomes.

  18. Mammalian Fe-S proteins: definition of a consensus motif recognized by the co-chaperone HSC20

    PubMed Central

    Maio, N.; Rouault, T. A.

    2017-01-01

    Iron-sulfur (Fe-S) clusters are inorganic cofactors that are fundamental to several biological processes in all three kingdoms of life. In most organisms, Fe-S clusters are initially assembled on a scaffold protein, ISCU, and subsequently transferred to target proteins or to intermediate carriers by a dedicated chaperone/co-chaperone system. The delivery of assembled Fe-S clusters to recipient proteins is a crucial step in the biogenesis of Fe-S proteins, and, in mammals, it relies on the activity of a multiprotein transfer complex that contains the chaperone HSPA9, the co-chaperone HSC20 and the scaffold ISCU. How the transfer complex efficiently engages recipient Fe-S target proteins involves specific protein interactions that are not fully understood. This mini review focuses on recent insights into the molecular mechanism of amino acid motif recognition and discrimination by the co-chaperone HSC20, which guides Fe-S cluster delivery. PMID:27714045

  19. A [Cu]rious Ribosomal Profiling Pattern Leads to the Discovery of Ribosomal Frameshifting in the Synthesis of a Copper Chaperone.

    PubMed

    Atkins, John F; Loughran, Gary; Baranov, Pavel V

    2017-01-19

    In many bacteria, separate genes encode a copper binding chaperone and a copper efflux pump, but in some the chaperone encoding gene has been elusive. In this issue of Molecular Cell, Meydan et al. (2017) report that ribosomes translating the ORF that encodes the copper pump frequently frameshift and terminate to produce the copper chaperone.

  20. Juvenile Hormone Differentially Regulates Two Grp78 Genes Encoding Protein Chaperones Required for Insect Fat Body Cell Homeostasis and Vitellogenesis.

    PubMed

    Luo, Maowu; Li, Dong; Wang, Zhiming; Guo, Wei; Kang, Le; Zhou, Shutang

    2017-03-29

    Juvenile hormone (JH) has a well-known role in stimulating insect vitellogenesis (i.e. yolk deposition) and oocyte maturation, but the molecular mechanisms of JH action in insect reproduction are unclear. Glucose-regulated protein of 78 kDa (Grp78) is a heat shock protein 70 kDa family member and one of the most abundant chaperones in the endoplasmic reticulum (ER) where it helps fold newly synthesized peptides. Because of its prominent role in protein folding and also ER stress, we hypothesized that Grp78 might be involved in fat body cell homeostasis and vitellogenesis and a regulatory target of JH. We report here that the migratory locust Locusta migratoria possesses two Grp78 genes that are differentially regulated by JH. We found that Grp78-1 is regulated by JH through Mcm4/7-dependent DNA replication and polyploidization, whereas Grp78-2 expression is directly activated by the JH-receptor complex comprising Methoprene-tolerant and Taiman proteins. Interestingly, Grp78-2 expression in the fat body is about 10-fold higher than that of Grp78-1 Knockdown of either Grp78-1 or Grp78-2 significantly reduced levels of vitellogenin (Vg) protein, accompanied by retarded maturation of oocytes. Depletion of both Grp78-1 and Grp78-2 resulted in ER stress and apoptosis in the fat body and in severely defective Vg synthesis and oocyte maturation. These results indicate a crucial role of Grp78 in JH-dependent vitellogenesis and egg production. The presence and differential regulation of two Grp78 genes in L. migratoria likely help accelerate the production of this chaperone in the fat body to facilitate folding of massively synthesized Vg and other proteins.

  1. Chaperones are the target in aloe-emodin-induced human lung nonsmall carcinoma H460 cell apoptosis.

    PubMed

    Lai, Miao-Ying; Hour, Mann-Jen; Wing-Cheung Leung, Henry; Yang, Wen-Hui; Lee, Hong-Zin

    2007-11-14

    Our previous study has demonstrated that aloe-emodin induced a significant change in the expression of apoptosis-related proteins in H460 cells. However, the molecular mechanisms underlying the biological effects of aloe-emodin still remain unknown. The present study applied 2D electrophoresis (pH range 4-7) to the proteins involved in aloe-emodin (40 muM)-induced H460 cell apoptosis. Eleven proteins were found to markedly change. These altered proteins were identified as ATP synthase, vimentin, HSP60, HSP70 and protein disulfide isomerase. Aloe-emodin caused a time-dependent decrease in intracellular ATP levels, which might be related to direct inhibition of ATP synthase. We also observed that the activity of mitochondria was injured by aloe-emodin. These data clearly demonstrated that mitochondria may play a critical role in aloe-emodin-induced H460 cell death. Many reports emphasize that chaperones have a complex role in apoptosis. The present study suggested that the increasing protein expression of HSP60, HSP70, 150 kDa oxygen-regulated protein and protein disulfide isomerase is involved in aloe-emodin-induced H460 cell apoptosis. HSP70, 150 kDa oxygen-regulated protein and protein disulfide isomerase are endoplasmic reticulum chaperone. Therefore, we hypothesized that the increasing endoplasmic reticulum stress serves to promote H460 cell apoptosis after treatment with aloe-emodin. We also demonstrated aloe-emodin-induced H460 cell death through caspase-3 apoptotic pathway, but not apoptosis-inducing factor apoptotic pathway.

  2. The RNA Chaperone Hfq Impacts Growth, Metabolism and Production of Virulence Factors in Yersinia enterocolitica

    PubMed Central

    Kakoschke, Tamara; Kakoschke, Sara; Magistro, Giuseppe; Schubert, Sören; Borath, Marc; Heesemann, Jürgen; Rossier, Ombeline

    2014-01-01

    To adapt to changes in environmental conditions, bacteria regulate their gene expression at the transcriptional but also at the post-transcriptional level, e.g. by small RNAs (sRNAs) which modulate mRNA stability and translation. The conserved RNA chaperone Hfq mediates the interaction of many sRNAs with their target mRNAs, thereby playing a global role in fine-tuning protein production. In this study, we investigated the significance of Hfq for the enteropathogen Yersina enterocolitica serotype O:8. Hfq facilitated optimal growth in complex and minimal media. Our comparative protein analysis of parental and hfq-negative strains suggested that Hfq promotes lipid metabolism and transport, cell redox homeostasis, mRNA translation and ATP synthesis, and negatively affects carbon and nitrogen metabolism, transport of siderophore and peptides and tRNA synthesis. Accordingly, biochemical tests indicated that Hfq represses ornithine decarboxylase activity, indole production and utilization of glucose, mannitol, inositol and 1,2-propanediol. Moreover, Hfq repressed production of the siderophore yersiniabactin and its outer membrane receptor FyuA. In contrast, hfq mutants exhibited reduced urease production. Finally, strains lacking hfq were more susceptible to acidic pH and oxidative stress. Unlike previous reports in other Gram-negative bacteria, Hfq was dispensable for type III secretion encoded by the virulence plasmid. Using a chromosomally encoded FLAG-tagged Hfq, we observed increased production of Hfq-FLAG in late exponential and stationary phases. Overall, Hfq has a profound effect on metabolism, resistance to stress and modulates the production of two virulence factors in Y. enterocolitica, namely urease and yersiniabactin. PMID:24454955

  3. Pilot study using ambroxol as a pharmacological chaperone in type 1 Gaucher disease.

    PubMed

    Zimran, Ari; Altarescu, Gheona; Elstein, Deborah

    2013-02-01

    The purpose of this pilot was to assess the tolerability and efficacy of ambroxol as a pharmacological chaperone in patients with symptomatic, type 1 Gaucher disease who present with measurable disease parameters but are not receiving enzyme replacement therapy (ERT) in order to provide proof of concept and/or ascertain the suitability of ambroxol for a larger clinical trial. The Israeli Ministry of Health Form 29c was employed to prescribe ambroxol for off-label use. Twelve patients were dispensed 2 capsules of 75 mg of ambroxol daily for 6 months. There were 8 females (66.7%). Mean age at entry was 41.1 (range: 24-63) years. Mean body weight at entry was 66.4 (range: 46.5-100) kg. One patient withdrew because of a hypersensitivity reaction, one because of elective splenectomy. No patient experienced clinically relevant deterioration in disease parameters measured. One patient achieved a robust response relative to baseline: +16.2% hemoglobin; +32.9% platelets; -2.8% liver volume; and -14.4% spleen volume. Three patients, including the above one, elected to continue on ambroxol for a further 6 months: hemoglobin levels and liver volumes were relatively stable, but platelet counts further increased in the above patient (+52.6% from baseline) and spleen volumes decreased further in all three patients (-6.4%, -18.6%, and -23.4% from baseline). Thus, ambroxol may be a safe option for Gaucher disease patients with potential disease-specific efficacy and should be expanded into a clinical trial using higher doses and placebo-controlled design.

  4. Sex, Scavengers, and Chaperones: Transcriptome Secrets of Divergent Symbiodinium Thermal Tolerances.

    PubMed

    Levin, Rachel A; Beltran, Victor H; Hill, Ross; Kjelleberg, Staffan; McDougald, Diane; Steinberg, Peter D; van Oppen, Madeleine J H

    2016-09-01

    Corals rely on photosynthesis by their endosymbiotic dinoflagellates (Symbiodinium spp.) to form the basis of tropical coral reefs. High sea surface temperatures driven by climate change can trigger the loss of Symbiodinium from corals (coral bleaching), leading to declines in coral health. Different putative species (genetically distinct types) as well as conspecific populations of Symbiodinium can confer differing levels of thermal tolerance to their coral host, but the genes that govern dinoflagellate thermal tolerance are unknown. Here we show physiological and transcriptional responses to heat stress by a thermo-sensitive (physiologically susceptible at 32 °C) type C1 Symbiodinium population and a thermo-tolerant (physiologically healthy at 32 °C) type C1 Symbiodinium population. After nine days at 32 °C, neither population exhibited physiological stress, but both displayed up-regulation of meiosis genes by ≥ 4-fold and enrichment of meiosis functional gene groups, which promote adaptation. After 13 days at 32 °C, the thermo-sensitive population suffered a significant decrease in photosynthetic efficiency and increase in reactive oxygen species (ROS) leakage from its cells, whereas the thermo-tolerant population showed no signs of physiological stress. Correspondingly, only the thermo-tolerant population demonstrated up-regulation of a range of ROS scavenging and molecular chaperone genes by ≥ 4-fold and enrichment of ROS scavenging and protein-folding functional gene groups. The physiological and transcriptional responses of the Symbiodinium populations to heat stress directly correlate with the bleaching susceptibilities of corals that harbored these same Symbiodinium populations. Thus, our study provides novel, foundational insights into the molecular basis of dinoflagellate thermal tolerance and coral bleaching.

  5. Cisplatin binds human copper chaperone Atox1 and promotes unfolding in vitro

    PubMed Central

    Palm, Maria E.; Weise, Christoph F.; Lundin, Christina; Wingsle, Gunnar; Nygren, Yvonne; Björn, Erik; Naredi, Peter; Wolf-Watz, Magnus; Wittung-Stafshede, Pernilla

    2011-01-01

    Cisplatin (cisPt), Pt(NH3)2Cl2, is a cancer drug believed to kill cells via DNA binding and damage. Recent work has implied that the cellular copper (Cu) transport machinery may be involved in cisPt cell export and drug resistance. Normally, the Cu chaperone Atox1 binds Cu(I) via two cysteines and delivers the metal to metal-binding domains of ATP7B; the ATP7B domains then transfer the metal to the Golgi lumen for loading on cuproenzymes. Here, we use spectroscopic methods to test if cisPt interacts with purified Atox1 in solution in vitro. We find that cisPt binds to Atox1’s metal-binding site regardless of the presence of Cu or not: When Cu is bound to Atox1, the near-UV circular dichroism signals indicate Cu-Pt interactions. From NMR data, it is evident that cisPt binds to the folded protein. CisPt-bound Atox1 is however not stable over time and the protein begins to unfold and aggregate. The reaction rates are limited by slow cisPt dechlorination. CisPt-induced unfolding of Atox1 is specific because this effect was not observed for two unrelated proteins that also bind cisPt. Our study demonstrates that Atox1 is a candidate for cisPt drug resistance: By binding to Atox1 in the cytoplasm, cisPt transport to DNA may be blocked. In agreement with this model, cell line studies demonstrate a correlation between Atox1 expression levels, and cisplatin resistance. PMID:21482801

  6. Sex, Scavengers, and Chaperones: Transcriptome Secrets of Divergent Symbiodinium Thermal Tolerances

    PubMed Central

    Levin, Rachel A.; Beltran, Victor H.; Hill, Ross; Kjelleberg, Staffan; McDougald, Diane; Steinberg, Peter D.; van Oppen, Madeleine J. H.

    2016-01-01

    Corals rely on photosynthesis by their endosymbiotic dinoflagellates (Symbiodinium spp.) to form the basis of tropical coral reefs. High sea surface temperatures driven by climate change can trigger the loss of Symbiodinium from corals (coral bleaching), leading to declines in coral health. Different putative species (genetically distinct types) as well as conspecific populations of Symbiodinium can confer differing levels of thermal tolerance to their coral host, but the genes that govern dinoflagellate thermal tolerance are unknown. Here we show physiological and transcriptional responses to heat stress by a thermo-sensitive (physiologically susceptible at 32 °C) type C1 Symbiodinium population and a thermo-tolerant (physiologically healthy at 32 °C) type C1 Symbiodinium population. After nine days at 32 °C, neither population exhibited physiological stress, but both displayed up-regulation of meiosis genes by ≥ 4-fold and enrichment of meiosis functional gene groups, which promote adaptation. After 13 days at 32 °C, the thermo-sensitive population suffered a significant decrease in photosynthetic efficiency and increase in reactive oxygen species (ROS) leakage from its cells, whereas the thermo-tolerant population showed no signs of physiological stress. Correspondingly, only the thermo-tolerant population demonstrated up-regulation of a range of ROS scavenging and molecular chaperone genes by ≥ 4-fold and enrichment of ROS scavenging and protein-folding functional gene groups. The physiological and transcriptional responses of the Symbiodinium populations to heat stress directly correlate with the bleaching susceptibilities of corals that harbored these same Symbiodinium populations. Thus, our study provides novel, foundational insights into the molecular basis of dinoflagellate thermal tolerance and coral bleaching. PMID:27301593

  7. Protein aggregation can inhibit clathrin-mediated endocytosis by chaperone competition

    PubMed Central

    Yu, Anan; Shibata, Yoko; Shah, Bijal; Calamini, Barbara; Lo, Donald C.; Morimoto, Richard I.

    2014-01-01

    Protein conformational diseases exhibit complex pathologies linked to numerous molecular defects. Aggregation of a disease-associated protein causes the misfolding and aggregation of other proteins, but how this interferes with diverse cellular pathways is unclear. Here, we show that aggregation of neurodegenerative disease-related proteins (polyglutamine, huntingtin, ataxin-1, and superoxide dismutase-1) inhibits clathrin-mediated endocytosis (CME) in mammalian cells by aggregate-driven sequestration of the major molecular chaperone heat shock cognate protein 70 (HSC70), which is required to drive multiple steps of CME. CME suppression was also phenocopied by HSC70 RNAi depletion and could be restored by conditionally increasing HSC70 abundance. Aggregation caused dysregulated AMPA receptor internalization and also inhibited CME in primary neurons expressing mutant huntingtin, showing direct relevance of our findings to the pathology in neurodegenerative diseases. We propose that aggregate-associated chaperone competition leads to both gain-of-function and loss-of-function phenotypes as chaperones become functionally depleted from multiple clients, leading to the decline of multiple cellular processes. The inherent properties of chaperones place them at risk, contributing to the complex pathologies of protein conformational diseases. PMID:24706768

  8. Plant Leucine Aminopeptidases Moonlight as Molecular Chaperones to Alleviate Stress-induced Damage*

    PubMed Central

    Scranton, Melissa A.; Yee, Ashley; Park, Sang-Youl; Walling, Linda L.

    2012-01-01

    Leucine aminopeptidases (LAPs) are present in animals, plants, and microbes. In plants, there are two classes of LAPs. The neutral LAPs (LAP-N and its orthologs) are constitutively expressed and detected in all plants, whereas the stress-induced acidic LAPs (LAP-A) are expressed only in a subset of the Solanaceae. LAPs have a role in insect defense and act as a regulator of the late branch of wound signaling in Solanum lycopersicum (tomato). Although the mechanism of LAP-A action is unknown, it has been presumed that LAP peptidase activity is essential for regulating wound signaling. Here we show that plant LAPs are bifunctional. Using three assays to monitor protein protection from heat-induced damage, it was shown that the tomato LAP-A and LAP-N and the Arabidopsis thaliana LAP1 and LAP2 are molecular chaperones. Assays using LAP-A catalytic site mutants demonstrated that LAP-A chaperone activity was independent of its peptidase activity. Furthermore, disruption of the LAP-A hexameric structure increased chaperone activity. Together, these data identify a new class of molecular chaperones and a new function for the plant LAPs as well as suggesting new mechanisms for LAP action in the defense of solanaceous plants against stress. PMID:22493451

  9. Single molecule DNA interaction kinetics of retroviral nucleic acid chaperone proteins

    NASA Astrophysics Data System (ADS)

    Williams, Mark

    2010-03-01

    Retroviral nucleocapsid (NC) proteins are essential for several viral replication processes including specific genomic RNA packaging and reverse transcription. The nucleic acid chaperone activity of NC facilitates the latter process. In this study, we use single molecule biophysical methods to quantify the DNA interactions of wild type and mutant human immunodeficiency virus type 1 (HIV-1) NC and Gag and human T-cell leukemia virus type 1 (HTLV-1) NC. We find that the nucleic acid interaction properties of these proteins differ significantly, with HIV-1 NC showing rapid protein binding kinetics, significant duplex destabilization, and strong DNA aggregation, all properties that are critical components of nucleic acid chaperone activity. In contrast, HTLV-1 NC exhibits significant destabilization activity but extremely slow DNA interaction kinetics and poor aggregating capability, which explains why HTLV-1 NC is a poor nucleic acid chaperone. To understand these results, we developed a new single molecule method for quantifying protein dissociation kinetics, and applied this method to probe the DNA interactions of wild type and mutant HIV-1 and HTLV-1 NC. We find that mutations to aromatic and charged residues strongly alter the proteins' nucleic acid interaction kinetics. Finally, in contrast to HIV-1 NC, HIV-1 Gag, the nucleic acid packaging protein that contains NC as a domain, exhibits relatively slow binding kinetics, which may negatively impact its ability to act as a nucleic acid chaperone.

  10. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding

    PubMed Central

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central “hubs”. Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates. PMID:26394388

  11. Chaperone Activity of Small Heat Shock Proteins Underlies Therapeutic Efficacy in Experimental Autoimmune Encephalomyelitis*

    PubMed Central

    Kurnellas, Michael P.; Brownell, Sara E.; Su, Leon; Malkovskiy, Andrey V.; Rajadas, Jayakumar; Dolganov, Gregory; Chopra, Sidharth; Schoolnik, Gary K.; Sobel, Raymond A.; Webster, Jonathan; Ousman, Shalina S.; Becker, Rachel A.; Steinman, Lawrence; Rothbard, Jonathan B.

    2012-01-01

    To determine whether the therapeutic activity of αB crystallin, small heat shock protein B5 (HspB5), was shared with other human sHsps, a set of seven human family members, a mutant of HspB5 G120 known to exhibit reduced chaperone activity, and a mycobacterial sHsp were expressed and purified from bacteria. Each of the recombinant proteins was shown to be a functional chaperone, capable of inhibiting aggregation of denatured insulin with varying efficiency. When injected into mice at the peak of disease, they were all effective in reducing the paralysis in experimental autoimmune encephalomyelitis. Additional structure activity correlations between chaperone activity and therapeutic function were established when linear regions within HspB5 were examined. A single region, corresponding to residues 73–92 of HspB5, forms amyloid fibrils, exhibited chaperone activity, and was an effective therapeutic for encephalomyelitis. The linkage of the three activities was further established by demonstrating individual substitutions of critical hydrophobic amino acids in the peptide resulted in the loss of all of the functions. PMID:22955287

  12. Chaperone-driven polymer translocation through nanopore: Spatial distribution and binding energy.

    PubMed

    Abdolvahab, Rouhollah Haji

    2017-04-01

    Chaperones are binding proteins working as a driving force in biopolymer translocation. They bind to the biopolymer near the pore and prevent its backsliding. Chaperones may have different spatial distributions. Recently, we showed the importance of their spatial distribution in translocation and its effects on the sequence dependency of the translocation time. Here we focus on homopolymers and exponential distribution. Because of the exponential distribution of chaperones, the energy dependency of the translocation time will change. Here we find a minimum in translocation time versus binding effective energy (EBE) curve. The same trend can be seen in the scaling exponent of time versus polymer length, [Formula: see text] ([Formula: see text]), when plotted against EBE. Interestingly in some special cases, e.g. chaperones of size [Formula: see text] and with an exponential distribution rate of [Formula: see text], the minimum even reaches to an amount of less than 1 ([Formula: see text]). We explain the possibility of this rare result. Moreover, based on a theoretical discussion we show that, by taking into account the velocity dependency of the translocation on polymer length, one can truly predict the value of this minimum.

  13. A conserved co-chaperone is required for virulence in fungal plant pathogens.

    PubMed

    Lo Presti, Libera; López Díaz, Cristina; Turrà, David; Di Pietro, Antonio; Hampel, Martin; Heimel, Kai; Kahmann, Regine

    2016-02-01

    The maize pathogenic fungus Ustilago maydis experiences endoplasmic reticulum (ER) stress during plant colonization and relies on the unfolded protein response (UPR) to cope with this stress. We identified the U. maydis co-chaperone, designated Dnj1, as part of this conserved cellular response to ER stress. ∆dnj1 cells are sensitive to the ER stressor tunicamycin and display a severe virulence defect in maize infection assays. A dnj1 mutant allele unable to stimulate the ATPase activity of chaperones phenocopies the null allele. A Dnj1-mCherry fusion protein localizes in the ER and interacts with the luminal chaperone Bip1. The Fusarium oxysporum Dnj1 ortholog contributes to the virulence of this fungal pathogen in tomato plants. Unlike the human ortholog, F. oxysporum Dnj1 partially rescues the virulence defect of the Ustilago dnj1 mutant. By enabling the fungus to restore ER homeostasis and maintain a high secretory activity, Dnj1 contributes to the establishment of a compatible interaction with the host. Dnj1 orthologs are present in many filamentous fungi, but are absent in budding and fission yeasts. We postulate a conserved and essential role during virulence for this class of co-chaperones.

  14. Integrity of N- and C-termini is important for E. coli Hsp31 chaperone activity.

    PubMed

    Sastry, M S R; Zhou, Weibin; Baneyx, François

    2009-07-01

    Hsp31 is a stress-inducible molecular chaperone involved in the management of protein misfolding at high temperatures and in the development of acid resistance in starved E. coli. Each subunit of the Hsp31 homodimer consists of two structural domains connected by a flexible linker that sits atop a continuous tract of nonpolar residues adjacent to a hydrophobic bowl defined by the dimerization interface. Previously, we proposed that while the bowl serves as a binding site for partially folded species at physiological temperatures, chaperone function under heat shock conditions requires that folding intermediates further anneal to high-affinity binding sites that become uncovered upon thermally induced motion of the linker. In support of a mechanism requiring that client proteins first bind to the bowl, we show here that fusion of a 20-residue-long hexahistidine tag to the N-termini of Hsp31 abolishes chaperone activity at all temperatures by inducing reversible structural changes that interfere with substrate binding. We further demonstrate that extending the C-termini of Hsp31 with short His tags selectively suppresses chaperone function at high temperatures by interfering with linker movement. The structural and functional sensitivity of Hsp31 to lengthening is consistent with the high degree of conservation of class I Hsp31 orthologs and will serve as a cautionary tale on the implications of affinity tagging.

  15. Hsp40 function in yeast prion propagation: Amyloid diversity necessitates chaperone functional complexity.

    PubMed

    Sporn, Zachary A; Hines, Justin K

    2015-01-01

    Yeast prions are heritable protein-based elements, most of which are formed of amyloid aggregates that rely on the action of molecular chaperones for transmission to progeny. Prions can form distinct amyloid structures, known as 'strains' in mammalian systems, that dictate both pathological progression and cross-species infection barriers. In yeast these same amyloid structural polymorphisms, called 'variants', dictate the intensity of prion-associated phenotypes and stability in mitosis. We recently reported that [PSI(+)] prion variants differ in the fundamental domain requirements for one chaperone, the Hsp40/J-protein Sis1, which are mutually exclusive between 2 different yeast prions, demonstrating a functional plurality for Sis1. Here we extend that analysis to incorporate additional data that collectively support the hypothesis that Sis1 has multiple functional roles that can be accomplished by distinct sets of domains. These functions are differentially required by distinct prions and prion variants. We also present new data regarding Hsp104-mediated prion elimination and show that some Sis1 functions, but not all, are conserved in the human homolog Hdj1/DNAJB1. Importantly, of the 10 amyloid-based prions indentified to date in Saccharomyces cerevisiae, the chaperone requirements of only 4 are known, leaving a great diversity of amyloid structures, and likely modes of amyloid-chaperone interaction, largely unexplored.

  16. Histone chaperone activity of Arabidopsis thaliana NRP1 is blocked by cytochrome c.

    PubMed

    González-Arzola, Katiuska; Díaz-Quintana, Antonio; Rivero-Rodríguez, Francisco; Velázquez-Campoy, Adrián; De la Rosa, Miguel A; Díaz-Moreno, Irene

    2016-12-06

    Higher-order plants and mammals use similar mechanisms to repair and tolerate oxidative DNA damage. Most studies on the DNA repair process have focused on yeast and mammals, in which histone chaperone-mediated nucleosome disassembly/reassembly is essential for DNA to be accessible to repair machinery. However, little is known about the specific role and modulation of histone chaperones in the context of DNA damage in plants. Here, the histone chaperone NRP1, which is closely related to human SET/TAF-Iβ, was found to exhibit nucleosome assembly activity in vitro and to accumulate in the chromatin of Arabidopsis thaliana after DNA breaks. In addition, this work establishes that NRP1 binds to cytochrome c, thereby preventing the former from binding to histones. Since NRP1 interacts with cytochrome c at its earmuff domain, that is, its histone-binding domain, cytochrome c thus competes with core histones and hampers the activity of NRP1 as a histone chaperone. Altogether, the results obtained indicate that the underlying molecular mechanisms in nucleosome disassembly/reassembly are highly conserved throughout evolution, as inferred from the similar inhibition of plant NRP1 and human SET/TAF-Iβ by cytochrome c during DNA damage response.

  17. A gatekeeper chaperone complex directs translocator secretion during Type Three Secretion

    SciTech Connect

    Archuleta, Tara L.; Spiller, Benjamin W.; Kubori, Tomoko

    2014-11-06

    Many Gram-negative bacteria use Type Three Secretion Systems (T3SS) to deliver effector proteins into host cells. These protein delivery machines are composed of cytosolic components that recognize substrates and generate the force needed for translocation, the secretion conduit, formed by a needle complex and associated membrane spanning basal body, and translocators that form the pore in the target cell. A defined order of secretion in which needle component proteins are secreted first, followed by translocators, and finally effectors, is necessary for this system to be effective. While the secreted effectors vary significantly between organisms, the ~20 individual protein components that form the T3SS are conserved in many pathogenic bacteria. One such conserved protein, referred to as either a plug or gatekeeper, is necessary to prevent unregulated effector release and to allow efficient translocator secretion. The mechanism by which translocator secretion is promoted while effector release is inhibited by gatekeepers is unknown. We present the structure of the Chlamydial gatekeeper, CopN, bound to a translocator-specific chaperone. The structure identifies a previously unknown interface between gatekeepers and translocator chaperones and reveals that in the gatekeeper-chaperone complex the canonical translocator-binding groove is free to bind translocators. Thus, structure-based mutagenesis of the homologous complex in Shigella reveals that the gatekeeper-chaperone-translocator complex is essential for translocator secretion and for the ordered secretion of translocators prior to effectors.

  18. The chaperone activity and toxicity of ambroxol on Gaucher cells and normal mice.

    PubMed

    Luan, Zhuo; Li, Linjing; Higaki, Katsumi; Nanba, Eiji; Suzuki, Yoshiyuki; Ohno, Kousaku

    2013-04-01

    Gaucher disease (GD), caused by a defect of acid β-glucosidase (β-Glu), is one of the most common sphingolipidoses. Recently, ambroxol, an FDA-approved drug used to treat airway mucus hypersecretion and hyaline membrane disease in newborns, was identified as a chemical chaperone for GD. In the present study, we investigated the chaperone activity and toxicity of ambroxol on both cultured GD patient cells and normal mice. We found that ambroxol treatment significantly increased N370S, F213I, N188S/G193W and R120W mutant β-Glu activities in GD fibroblasts with low cytotoxicity. Additionally, we measured the β-Glu activity in the tissues of normal mice which received water containing increasing concentrations of ambroxol ad libitum for one week. No serious adverse effect was observed during this experiment. Ambroxol significantly increased the β-Glu activity in the spleen, heart and cerebellum of the mice. This result showed its oral availability and wide distribution and chaperone activity in the tissues, including the brain, and its lack of acute toxicity. These characteristics of ambroxol would make it a potential therapeutic chaperone in the treatment of GD with neurological manifestations.

  19. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding.

    PubMed

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central "hubs". Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates.

  20. A gatekeeper chaperone complex directs translocator secretion during Type Three Secretion

    DOE PAGES

    Archuleta, Tara L.; Spiller, Benjamin W.; Kubori, Tomoko

    2014-11-06

    Many Gram-negative bacteria use Type Three Secretion Systems (T3SS) to deliver effector proteins into host cells. These protein delivery machines are composed of cytosolic components that recognize substrates and generate the force needed for translocation, the secretion conduit, formed by a needle complex and associated membrane spanning basal body, and translocators that form the pore in the target cell. A defined order of secretion in which needle component proteins are secreted first, followed by translocators, and finally effectors, is necessary for this system to be effective. While the secreted effectors vary significantly between organisms, the ~20 individual protein components thatmore » form the T3SS are conserved in many pathogenic bacteria. One such conserved protein, referred to as either a plug or gatekeeper, is necessary to prevent unregulated effector release and to allow efficient translocator secretion. The mechanism by which translocator secretion is promoted while effector release is inhibited by gatekeepers is unknown. We present the structure of the Chlamydial gatekeeper, CopN, bound to a translocator-specific chaperone. The structure identifies a previously unknown interface between gatekeepers and translocator chaperones and reveals that in the gatekeeper-chaperone complex the canonical translocator-binding groove is free to bind translocators. Thus, structure-based mutagenesis of the homologous complex in Shigella reveals that the gatekeeper-chaperone-translocator complex is essential for translocator secretion and for the ordered secretion of translocators prior to effectors.« less

  1. Recognition and targeting mechanisms by chaperones in flagellum assembly and operation

    PubMed Central

    Khanra, Nandish; Rossi, Paolo; Economou, Anastassios; Kalodimos, Charalampos G.

    2016-01-01

    The flagellum is a complex bacterial nanomachine that requires the proper assembly of several different proteins for its function. Dedicated chaperones are central in preventing aggregation or undesired interactions of flagellar proteins, including their targeting to the export gate. FliT is a key flagellar chaperone that binds to several flagellar proteins in the cytoplasm, including its cognate filament-capping protein FliD. We have determined the solution structure of the FliT chaperone in the free state and in complex with FliD and the flagellar ATPase FliI. FliT adopts a four-helix bundle and uses a hydrophobic surface formed by the first three helices to recognize its substrate proteins. We show that the fourth helix constitutes the binding site for FlhA, a membrane protein at the export gate. In the absence of a substrate protein FliT adopts an autoinhibited structure wherein both the binding sites for substrates and FlhA are occluded. Substrate binding to FliT activates the complex for FlhA binding and thus targeting of the chaperone–substrate complex to the export gate. The activation and targeting mechanisms reported for FliT appear to be shared among the other flagellar chaperones. PMID:27528687

  2. Plant leucine aminopeptidases moonlight as molecular chaperones to alleviate stress-induced damage.

    PubMed

    Scranton, Melissa A; Yee, Ashley; Park, Sang-Youl; Walling, Linda L

    2012-05-25

    Leucine aminopeptidases (LAPs) are present in animals, plants, and microbes. In plants, there are two classes of LAPs. The neutral LAPs (LAP-N and its orthologs) are constitutively expressed and detected in all plants, whereas the stress-induced acidic LAPs (LAP-A) are expressed only in a subset of the Solanaceae. LAPs have a role in insect defense and act as a regulator of the late branch of wound signaling in Solanum lycopersicum (tomato). Although the mechanism of LAP-A action is unknown, it has been presumed that LAP peptidase activity is essential for regulating wound signaling. Here we show that plant LAPs are bifunctional. Using three assays to monitor protein protection from heat-induced damage, it was shown that the tomato LAP-A and LAP-N and the Arabidopsis thaliana LAP1 and LAP2 are molecular chaperones. Assays using LAP-A catalytic site mutants demonstrated that LAP-A chaperone activity was independent of its peptidase activity. Furthermore, disruption of the LAP-A hexameric structure increased chaperone activity. Together, these data identify a new class of molecular chaperones and a new function for the plant LAPs as well as suggesting new mechanisms for LAP action in the defense of solanaceous plants against stress.

  3. Malaria heat shock proteins: drug targets that chaperone other drug targets.

    PubMed

    Pesce, E-R; Cockburn, I L; Goble, J L; Stephens, L L; Blatch, G L

    2010-06-01

    Ongoing research into the chaperone systems of malaria parasites, and particularly of Plasmodium falciparum, suggests that heat shock proteins (Hsps) could potentially be an excellent class of drug targets. The P. falciparum genome encodes a vast range and large number of chaperones, including 43 Hsp40, six Hsp70, and three Hsp90 proteins (PfHsp40s, PfHsp70s and PfHsp90s), which are involved in a number of fundamental cellular processes including protein folding and assembly, protein translocation, signal transduction and the cellular stress response. Despite the fact that Hsps are relatively conserved across different species, PfHsps do exhibit a considerable number of unique structural and functional features. One PfHsp90 is thought to be sufficiently different to human Hsp90 to allow for selective targeting. PfHsp70s could potentially be used as drug targets in two ways: either by the specific inhibition of Hsp70s by small molecule modulators, as well as disruption of the interactions between Hsp70s and co-chaperones such as the Hsp70/Hsp90 organising protein (Hop) and Hsp40s. Of the many PfHsp40s present on the parasite, there are certain unique or essential members which are considered to have good potential as drug targets. This review critically evaluates the potential of Hsps as malaria drug targets, as well as the use of chaperones as aids in the heterologous expression of other potential malarial drug targets.

  4. Stimulation of Estrogen Receptor Signaling in Breast Cancer by a Novel Chaperone Synuclein Gamma

    DTIC Science & Technology

    2006-06-01

    AD_________________ Award Number: W81XWH- 04 -1-0569 TITLE: Stimulation of estrogen receptor...Stimulation of estrogen receptor signaling in breast cancer by a novel chaperone 5a. CONTRACT NUMBER synuclein gamma 5b. GRANT NUMBER W81XWH- 04 -1...UNIT NUMBER 7 . PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER North Shore University Hospital

  5. Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation

    PubMed Central

    Zheng, Xu; Krakowiak, Joanna; Patel, Nikit; Beyzavi, Ali; Ezike, Jideofor; Khalil, Ahmad S; Pincus, David

    2016-01-01

    Heat shock factor (Hsf1) regulates the expression of molecular chaperones to maintain protein homeostasis. Despite its central role in stress resistance, disease and aging, the mechanisms that control Hsf1 activity remain unresolved. Here we show that in budding yeast, Hsf1 basally associates with the chaperone Hsp70 and this association is transiently disrupted by heat shock, providing the first evidence that a chaperone repressor directly regulates Hsf1 activity. We develop and experimentally validate a mathematical model of Hsf1 activation by heat shock in which unfolded proteins compete with Hsf1 for binding to Hsp70. Surprisingly, we find that Hsf1 phosphorylation, previously thought to be required for activation, in fact only positively tunes Hsf1 and does so without affecting Hsp70 binding. Our work reveals two uncoupled forms of regulation - an ON/OFF chaperone switch and a tunable phosphorylation gain - that allow Hsf1 to flexibly integrate signals from the proteostasis network and cell signaling pathways. DOI: http://dx.doi.org/10.7554/eLife.18638.001 PMID:27831465

  6. Stress response in the ascidian Ciona intestinalis: transcriptional profiling of genes for the heat shock protein 70 chaperone system under heat stress and endoplasmic reticulum stress.

    PubMed

    Fujikawa, Tetsuya; Munakata, Takeo; Kondo, Shin-ichi; Satoh, Nori; Wada, Shuichi

    2010-03-01

    The genome of Ciona intestinalis contains eight genes for HSP70 superfamily proteins, 36 genes for J-proteins, a gene for a J-like protein, and three genes for BAG family proteins. To understand the stress responses of genes in the HSP70 chaperone system comprehensively, the transcriptional profiles of these 48 genes under heat stress and endoplasmic reticulum (ER) stress were studied using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Heat stress treatment increased the messenger RNA (mRNA) levels of six HSP70 superfamily genes, eight J-protein family genes, and two BAG family genes. In the cytoplasmic group of the DnaK subfamily of the HSP70 family, Ci-HSPA1/6/7-like was the only heat-inducible gene and Ci-HSPA2/8 was the only constitutively active gene which showed striking simplicity in comparison with other animals that have been examined genome-wide so far. Analyses of the time course and temperature dependency of the heat stress responses showed that the induction of Ci-HSPA1/6/7-like expression rises to a peak after heat stress treatment at 28 degrees C (10 degrees C upshift from control temperature) for 1 h. ER stress treatment with Brefeldin A, a drug that is known to act as ER stress inducer, increased the mRNA levels of four HSP70 superfamily genes and four J-protein family genes. Most stress-inducible genes are conserved between Ciona and vertebrates, as expected from a close evolutionary relationship between them. The present study characterized the stress responses of HSP70 chaperone system genes in Ciona for the first time and provides essential data for comprehensive understanding of the functions of the HSP70 chaperone system.

  7. Sequence and domain conservation of the coelacanth Hsp40 and Hsp90 chaperones suggests conservation of function.

    PubMed

    Bishop, Özlem Tastan; Edkins, Adrienne Lesley; Blatch, Gregory Lloyd

    2014-09-01

    Molecular chaperones and their associated co-chaperones play an important role in preserving and regulating the active conformational state of cellular proteins. The chaperone complement of the Indonesian Coelacanth, Latimeria menadoensis, was elucidated using transcriptomic sequences. Heat shock protein 90 (Hsp90) and heat shock protein 40 (Hsp40) chaperones, and associated co-chaperones were focused on, and homologous human sequences were used to search the sequence databases. Coelacanth homologs of the cytosolic, mitochondrial and endoplasmic reticulum (ER) homologs of human Hsp90 were identified, as well as all of the major co-chaperones of the cytosolic isoform. Most of the human Hsp40s were found to have coelacanth homologs, and the data suggested that all of the chaperone machinery for protein folding at the ribosome, protein translocation to cellular compartments such as the ER and protein degradation were conserved. Some interesting similarities and differences were identified when interrogating human, mouse, and zebrafish homologs. For example, DnaJB13 is predicted to be a non-functional Hsp40 in humans, mouse, and zebrafish due to a corrupted histidine-proline-aspartic acid (HPD) motif, while the coelacanth homolog has an intact HPD. These and other comparisons enabled important functional and evolutionary questions to be posed for future experimental studies.

  8. Protein folding rates and thermodynamic stability are key determinants for interaction with the Hsp70 chaperone system

    PubMed Central

    Sekhar, Ashok; Lam, Hon Nam; Cavagnero, Silvia

    2012-01-01

    The Hsp70 family of molecular chaperones participates in vital cellular processes including the heat shock response and protein homeostasis. E. coli's Hsp70, known as DnaK, works in concert with the DnaJ and GrpE co-chaperones (K/J/E chaperone system), and mediates cotranslational and post-translational protein folding in the cytoplasm. While the role of the K/J/E chaperones is well understood in the presence of large substrates unable to fold independently, it is not known if and how K/J/E modulates the folding of smaller proteins able to fold even in the absence of chaperones. Here, we combine experiments and computation to evaluate the significance of kinetic partitioning as a model to describe the interplay between protein folding and binding to the K/J/E chaperone system. First, we target three nonobligatory substrates, that is, proteins that do not require chaperones to fold. The experimentally observed chaperone association of these client proteins during folding is entirely consistent with predictions from kinetic partitioning. Next, we develop and validate a computational model (CHAMP70) that assumes kinetic partitioning of substrates between folding and interaction with K/J/E. CHAMP70 quantitatively predicts the experimentally measured interaction of RNase HD as it refolds in the presence of various chaperones. CHAMP70 shows that substrates are posed to interact with K/J/E only if they are slow-folding proteins with a folding rate constant kf <50 s−1, and/or thermodynamically unstable proteins with a folding free energy ΔG0UN ≥−2 kcal mol−1. Hence, the K/J/E system is tuned to use specific protein folding rates and thermodynamic stabilities as substrate selection criteria. PMID:22886941

  9. ANKYRIN REPEAT-CONTAINING PROTEIN 2A is an essential molecular chaperone for peroxisomal membrane-bound ASCORBATE PEROXIDASE3 in Arabidopsis.

    PubMed

    Shen, Guoxin; Kuppu, Sundaram; Venkataramani, Sujatha; Wang, Jing; Yan, Juqiang; Qiu, Xiaoyun; Zhang, Hong

    2010-03-01

    Arabidopsis thaliana ANKYRIN REPEAT-CONTAINING PROTEIN 2A (AKR2A) interacts with peroxisomal membrane-bound ASCORBATE PEROXIDASE3 (APX3). This interaction involves the C-terminal sequence of APX3 (i.e., a transmembrane domain plus a few basic amino acid residues). The specificity of the AKR2A-APX3 interaction suggests that AKR2A may function as a molecular chaperone for APX3 because binding of AKR2A to the transmembrane domain can prevent APX3 from forming aggregates after translation. Analysis of three akr2a mutants indicates that these mutant plants have reduced steady state levels of APX3. Reduced expression of AKR2A using RNA interference also leads to reduced steady state levels of APX3 and reduced targeting of APX3 to peroxisomes in plant cells. Since AKR2A also binds specifically to the chloroplast OUTER ENVELOPE PROTEIN7 (OEP7) and is required for the biogenesis of OEP7, AKR2A may serve as a molecular chaperone for OEP7 as well. The pleiotropic phenotype of akr2a mutants indicates that AKR2A plays many important roles in plant cellular metabolism and is essential for plant growth and development.

  10. The Endoplasmic Reticulum Chaperone GRP78/BiP Modulates Prion Propagation in vitro and in vivo

    PubMed Central

    Park, Kyung-Won; Eun Kim, Gyoung; Morales, Rodrigo; Moda, Fabio; Moreno-Gonzalez, Ines; Concha-Marambio, Luis; Lee, Amy S.; Hetz, Claudio; Soto, Claudio

    2017-01-01

    Prion diseases are fatal neurodegenerative disorders affecting several mammalian species, characterized by the accumulation of the misfolded form of the prion protein, which is followed by the induction of endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR). GRP78, also called BiP, is a master regulator of the UPR, reducing ER stress levels and apoptosis due to an enhancement of the cellular folding capacity. Here, we studied the role of GRP78 in prion diseases using several in vivo and in vitro approaches. Our results show that a reduction in the expression of this molecular chaperone accelerates prion pathogenesis in vivo. In addition, we observed that prion replication in cell culture was inversely related to the levels of expression of GRP78 and that both proteins interact in the cellular context. Finally, incubation of PrPSc with recombinant GRP78 led to the dose-dependent reduction of protease-resistant PrPSc in vitro. Our results uncover a novel role of GRP78 in reducing prion pathogenesis, suggesting that modulating its levels/activity may offer a novel opportunity for designing therapeutic approaches for these diseases. These findings may also have implications for other diseases involving the accumulation of misfolded proteins. PMID:28333162

  11. Evolutionary silence of the acid chaperone protein HdeB in enterohemorrhagic Escherichia coli O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Periplasmic chaperones HdeA and HdeB are known to be important for cell survival at low pH (pH<3) in E. coli and Shigella spp. Here we investigated the roles of these two acid chaperones in survival of various enterohemorrhagic E. coli (EHEC) following exposure to pH 2.0. Similar to K-12 strains, th...

  12. Prion-Associated Toxicity is Rescued by Elimination of Cotranslational Chaperones

    PubMed Central

    Keefer, Kathryn M.; True, Heather L.

    2016-01-01

    The nascent polypeptide-associated complex (NAC) is a highly conserved but poorly characterized triad of proteins that bind near the ribosome exit tunnel. The NAC is the first cotranslational factor to bind to polypeptides and assist with their proper folding. Surprisingly, we found that deletion of NAC subunits in Saccharomyces cerevisiae rescues toxicity associated with the strong [PSI+] prion. This counterintuitive finding can be explained by changes in chaperone balance and distribution whereby the folding of the prion protein is improved and the prion is rendered nontoxic. In particular, the ribosome-associated Hsp70 Ssb is redistributed away from Sup35 prion aggregates to the nascent chains, leading to an array of aggregation phenotypes that can mimic both overexpression and deletion of Ssb. This toxicity rescue demonstrates that chaperone modification can block key steps of the prion life cycle and has exciting implications for potential treatment of many human protein conformational disorders. PMID:27828954

  13. Structure of Glycerol Dehydratase Reactivase: A New Type of Molecular Chaperone

    SciTech Connect

    Liao, Der-Ing; Reiss, Lisa; Turner, Jr., Ivan; Dotson, Garry

    2010-03-08

    The function of glycerol dehydratase (GDH) reactivase is to remove damaged coenzyme B{sub 12} from GDH that has suffered mechanism-based inactivation. The structure of GDH reactivase from Klebsiella pneumoniae was determined at 2.4 {angstrom} resolution by the single isomorphous replacement with anomalous signal (SIR/AS) method. Each tetramer contains two elongated 63 kDa {alpha} subunits and two globular 14 kDa {beta} subunits. The {alpha} subunit contains structural features resembling both GroEL and Hsp70 groups of chaperones, and it appears chaperone like in its interactions with ATP. The fold of the {beta} subunit resembles that of the {beta} subunit of glycerol dehydratase, except that it lacks some coenzyme B12 binding elements. A hypothesis for the reactivation mechanism of reactivase is proposed based on these structural features.

  14. Transthyretin Amyloidosis: Chaperone Concentration Changes and Increased Proteolysis in the Pathway to Disease

    PubMed Central

    Ribeiro, Raquel; Gilberto, Samuel; Gomes, Ricardo A.; Ferreira, António; Mateus, Élia; Barroso, Eduardo; Coelho, Ana V.; Freire, Ana Ponces; Cordeiro, Carlos

    2015-01-01

    Transthyretin amyloidosis is a conformational pathology characterized by the extracellular formation of amyloid deposits and the progressive impairment of the peripheral nervous system. Point mutations in this tetrameric plasma protein decrease its stability and are linked to disease onset and progression. Since non-mutated transthyretin also forms amyloid in systemic senile amyloidosis and some mutation bearers are asymptomatic throughout their lives, non-genetic factors must also be involved in transthyretin amyloidosis. We discovered, using a differential proteomics approach, that extracellular chaperones such as fibrinogen, clusterin, haptoglobin, alpha-1-anti-trypsin and 2-macroglobulin are overrepresented in transthyretin amyloidosis. Our data shows that a complex network of extracellular chaperones are over represented in human plasma and we speculate that they act synergistically to cope with amyloid prone proteins. Proteostasis may thus be as important as point mutations in transthyretin amyloidosis. PMID:26147092

  15. Structure of the hypothetical Mycoplasma protein, MPN555, suggestsa chaperone function

    SciTech Connect

    Schulze-Gahmen, Ursula; Aono, Shelly; Chen, Shengfeng; Yokota,Hisao; Kim, Rosalind; Kim, Sung-Hou

    2005-06-15

    The crystal structure of the hypothetical protein MPN555from Mycoplasma pneumoniae (gi pbar 1673958) has been determined to a resolution of 2.8 Angstrom using anomalous diffraction data at the Sepeak wavelength. Structure determination revealed a mostly alpha-helical protein with a three-lobed shape. The three lobes or fingers delineate a central binding groove and additional grooves between lobes 1 and 3, and between lobes 2 and 3. For one of the molecules in the asymmetric unit,the central binding pocket was filled with a peptide from the uncleaved N-terminal affinity tag. The MPN555 structure has structural homology to two bacterial chaperone proteins, SurA and trigger factor from Escherichia coli. The structural data and the homology to other chaperone for MPN555.

  16. The Histone Chaperones FACT and Spt6 Restrict H2A.Z from Intragenic Locations

    PubMed Central

    Jeronimo, Célia; Watanabe, Shinya; Kaplan, Craig D.; Peterson, Craig L.; Robert, François

    2015-01-01

    SUMMARY H2A.Z is a highly conserved histone variant involved in several key nuclear processes. It is incorporated into promoters by SWR-C-related chromatin remodeling complexes, but whether it is also actively excluded from non-promoter regions is not clear. Here, we provide genomic and biochemical evidence that RNA polymerase II (RNAPII) elongation-associated histone chaperones FACT and Spt6 both contribute to restricting H2A.Z from intragenic regions. In the absence of FACT or Spt6, the lack of efficient nucleosome reassembly coupled to pervasive incorporation of H2A.Z by mislocalized SWR-C alters chromatin composition and contributes to cryptic initiation. Thus, chaperone-mediated H2A.Z confinement is crucial for restricting the chromatin signature of gene promoters, which otherwise may license or promote cryptic transcription. PMID:25959393

  17. Copper accumulation and compartmentalization in mouse fibroblast lacking metallothionein and copper chaperone, Atox1

    SciTech Connect

    Miyayama, Takamitsu; Suzuki, Kazuo T.; Ogra, Yasumitsu

    2009-06-01

    Copper (Cu) is the active center of some enzymes because of its redox-active property, although that property could have harmful effects. Because of this, cells have strict regulation/detoxification systems for this metal. In this study, multi-disciplinary approaches, such as speciation and elemental imaging of Cu, were applied to reveal the detoxification mechanisms for Cu in cells bearing a defect in Cu-regulating genes. Although Cu concentration in metallothionein (MT)-knockout cells was increased by the knockdown of the Cu chaperone, Atox1, the concentrations of the Cu influx pump, Ctr1, and another Cu chaperone, Ccs, were paradoxically increased; namely, the cells responded to the Cu deficiency despite the fact that cellular Cu concentration was actually increased. Cu imaging showed that the elevated Cu was compartmentalized in cytoplasmic vesicles. Together, the results point to the novel roles of MT and cytoplasmic vesicles in the detoxification of Cu in mammalian cells.

  18. Structure of the human histone chaperone FACT Spt16 N-terminal domain.

    PubMed

    Marcianò, G; Huang, D T

    2016-02-01

    The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding.

  19. Amphiphilic polysaccharide nanoballs: a new building block for nanogel biomedical engineering and artificial chaperones.

    PubMed

    Takahashi, Haruko; Sawada, Shin-Ichi; Akiyoshi, Kazunari

    2011-01-25

    Enzymatically synthesized glycogen (ESG), a highly branched (1→4)(1→6)-linked α-glucan, is a new monodisperse spherical hyperbranched nanoparticle (molecular weight, 10(6)-10(7); diameter, 20-30 nm), polysaccharide nanoball. Amphiphilic ESG nanoballs were synthesized by introducing a cholesterol group to enzymatically synthesized glycogen (CHESG). CHESG assembled into a structure containing a few molecules to form cluster nanogels (approximately 35 nm in diameter) in water. The cluster nanogels were dissociated by the addition of cyclodextrin (CD) to form a supramolecular CHESG-CD nanocomplex due to complexation with the cholesterol group and CD. The CHESG nanogel showed high capacity for complexation with proteins, and the CHESG-CD nanocomplex showed high chaperone-like activity for thermal stabilization of enzymes. CHESG has great potential to become a new building block for nanogel biomedical engineering and to act as an artificial chaperone for protein engineering.

  20. Dimeric and trimeric triazole based molecules as a new class of Hsp90 molecular chaperone inhibitors.

    PubMed

    Terracciano, Stefania; Chini, Maria Giovanna; Piaz, Fabrizio Dal; Vassallo, Antonio; Riccio, Raffaele; Bruno, Ines; Bifulco, Giuseppe

    2013-07-01

    In the last decade Hsp90 inhibitors have emerged as attractive candidates for the development of new potent anticancer therapeutics. In order to identify novel agents able to block the chaperone activity, following a structure-based approach, we used in silico screening to direct the synthesis of potential inhibitors bearing the triazole scaffold, a widespread motif in drug-like molecules. Docking results, performed on a larger collection of dimeric and trimeric triazole derivatives, suggested the synthesis of some molecules showing different calculated binding energies and modes. Surface Plasmon Resonance Binding assay, performed on the synthesized compounds, allow to identify a series of molecules able to potently interact with the target enzyme and to disclose an interesting hit: compound 2b showed to interact with the ATP binding site in the N-terminus domain of Hsp90 and to efficiently inhibit the chaperone activity.

  1. Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase.

    PubMed

    Kumazaki, Kaoru; Kishimoto, Toshiki; Furukawa, Arata; Mori, Hiroyuki; Tanaka, Yoshiki; Dohmae, Naoshi; Ishitani, Ryuichiro; Tsukazaki, Tomoya; Nureki, Osamu

    2014-12-03

    Bacterial YidC, an evolutionally conserved membrane protein, functions as a membrane protein chaperone in cooperation with the Sec translocon and as an independent insertase for membrane proteins. In Gram-negative bacteria, the transmembrane and periplasmic regions of YidC interact with the Sec proteins, forming a multi-protein complex for Sec-dependent membrane protein integration. Here, we report the crystal structure of full-length Escherichia coli YidC. The structure reveals that a hydrophilic groove, formed by five transmembrane helices, is a conserved structural feature of YidC, as compared to the previous YidC structure from Bacillus halodurans, which lacks a periplasmic domain. Structural mapping of the substrate- or Sec protein-contact sites suggested the importance of the groove for the YidC functions as a chaperone and an insertase, and provided structural insight into the multi-protein complex.

  2. 1.15 Å resolution structure of the proteasome-assembly chaperone Nas2 PDZ domain

    SciTech Connect

    Singh, Chingakham R.; Lovell, Scott; Mehzabeen, Nurjahan; Chowdhury, Wasimul Q.; Geanes, Eric S.; Battaile, Kevin P.; Roelofs, Jeroen

    2014-03-25

    The proteasome-assembly chaperone Nas2 binds to the proteasome subunit Rpt5 using its PDZ domain. The structure of the Nas2 PDZ domain has been determined. The 26S proteasome is a 2.5 MDa protease dedicated to the degradation of ubiquitinated proteins in eukaryotes. The assembly of this complex containing 66 polypeptides is assisted by at least nine proteasome-specific chaperones. One of these, Nas2, binds to the proteasomal AAA-ATPase subunit Rpt5. The PDZ domain of Nas2 binds to the C-terminal tail of Rpt5; however, it does not require the C-terminus of Rpt5 for binding. Here, the 1.15 Å resolution structure of the PDZ domain of Nas2 is reported. This structure will provide a basis for further insights regarding the structure and function of Nas2 in proteasome assembly.

  3. Chemical chaperone TUDCA prevents apoptosis and improves survival during polymicrobial sepsis in mice

    PubMed Central

    Doerflinger, Marcel; Glab, Jason; Nedeva, Christina; Jose, Irvin; Lin, Ann; O’Reilly, Lorraine; Allison, Cody; Pellegrini, Marc; Hotchkiss, Richard S.; Puthalakath, Hamsa

    2016-01-01

    Sepsis-induced lymphopenia is a major cause of morbidities in intensive care units and in populations with chronic conditions such as renal failure, diabetes, HIV and alcohol abuse. Currently, other than supportive care and antibiotics, there are no treatments for this condition. We developed an in vitro assay to understand the role of the ER-stress-mediated apoptosis process in lymphocyte death during polymicrobial sepsis, which was reproducible in in vivo mouse models. Modulating ER stress using chemical chaperones significantly reduced the induction of the pro-apoptotic protein Bim both in vitro and in mice. Furthermore, in a ‘two-hit’ pneumonia model in mice, we have been able to demonstrate that administration of the chemical chaperone TUDCA helped to maintain lymphocyte homeostasis by significantly reducing lymphocyte apoptosis and this correlated with four-fold improvement in survival. Our results demonstrate a novel therapeutic opportunity for treating sepsis-induced lymphopenia in humans. PMID:27694827

  4. Dephosphorylation of alpha(s)- and beta-caseins and its effect on chaperone activity: a structural and functional investigation.

    PubMed

    Koudelka, Tomas; Hoffmann, Peter; Carver, John A

    2009-07-08

    Milk casein proteins can act as molecular chaperones: under conditions of stress, such as elevated temperature, molecular chaperones stabilize proteins from unfolding, aggregating, and precipitating. In this study, alpha(s)- and beta-caseins were dephosphorylated using alkaline phosphatase. A structural and functional investigation was undertaken to determine the effect of dephosphorylation on the chaperone activity of alpha(s)- and beta-caseins against two types of protein misfolding, i.e., amorphous aggregation and amyloid fibril assembly. The dephosphorylation of alpha(s)- and beta-caseins resulted in a decrease in the chaperone efficiency against both heat- and reduction-induced amorphously aggregating target proteins. In contrast, dephosphorylation had no effect on the chaperone activity of alpha(s)- and beta-caseins against the amyloid-forming target protein kappa-casein. Circular dichroism and fluorescence spectroscopic data indicated that the loss of negative charge associated with dephosphorylation led to an increase in ordered structure of alpha(s)- and beta-caseins. It is concluded that the flexible, dynamic, and relatively unstructured and amphiphatic nature of alpha(s)- and beta-caseins is important in their chaperone action.

  5. Chlamydia trachomatis Slc1 is a type III secretion chaperone that enhances the translocation of its invasion effector substrate TARP.

    PubMed

    Brinkworth, Amanda J; Malcolm, Denise S; Pedrosa, António T; Roguska, Katarzyna; Shahbazian, Sevanna; Graham, James E; Hayward, Richard D; Carabeo, Rey A

    2011-10-01

    Bacterial type III secretion system (T3SS) chaperones pilot substrates to the export apparatus in a secretion-competent state, and are consequently central to the translocation of effectors into target cells. Chlamydia trachomatis is a genetically intractable obligate intracellular pathogen that utilizes T3SS effectors to trigger its entry into mammalian cells. The only well-characterized T3SS effector is TARP (translocated actin recruitment protein), but its chaperone is unknown. Here we exploited a known structural signature to screen for putative type III secretion chaperones encoded within the C. trachomatis genome. Using bacterial two-hybrid, co-precipitation, cross-linking and size exclusion chromatography we show that Slc1 (SycE-like chaperone 1; CT043) specifically interacts with a 200-amino-acid residue N-terminal region of TARP (TARP¹⁻²⁰⁰). Slc1 formed homodimers in vitro, as shown in cross-linking and gel filtration experiments. Biochemical analysis of an isolated Slc1-TARP¹⁻²⁰⁰ complex was consistent with a characteristic 2:1 chaperone-effector stoichiometry. Furthermore, Slc1 was co-immunoprecipitated with TARP from C. trachomatis elementary bodies. Also, coexpression of Slc1 specifically enhanced host cell translocation of TARP by a heterologous Yersinia enterocolitica T3SS. Taken together, we propose Slc1 as a chaperone of the C. trachomatis T3SS effector TARP.

  6. Chaperone activities of bovine and camel beta-caseins: Importance of their surface hydrophobicity in protection against alcohol dehydrogenase aggregation.

    PubMed

    Barzegar, Abolfazl; Yousefi, Reza; Sharifzadeh, Ahmad; Dalgalarrondo, Michèle; Chobert, Jean-Marc; Ganjali, Mohammad Reza; Norouzi, Parviz; Ehsani, Mohammad Reza; Niasari-Naslaji, Amir; Saboury, Ali Akbar; Haertlé, Thomas; Moosavi-Movahedi, Ali Akbar

    2008-05-01

    Beta-casein (beta-CN) showing properties of intrinsically unstructured proteins (IUP) displays many similarities with molecular chaperones and shows anti-aggregation activity in vitro. Chaperone activities of bovine and camel beta-CN were studied using alcohol dehydrogenase (ADH) as a substrate. To obtain an adequate relevant information about the chaperone capacities of studied caseins, three different physical parameters including chaperone constant (k(c), microM(-1)), thermal aggregation constant (k(T), degrees C(-1)) and aggregation rate constant (k(t), min(-1)) were measured. Bovine beta-CN displays greater chaperone activity than camel beta-CN. Fluorescence studies of 8-anilino-1-naphthalenesulfonic acid (ANS) binding demonstrated that bovine beta-CN is doted with larger effective hydrophobic surfaces at all studied temperatures than camel beta-CN. Greater relative hydrophobicity of bovine beta-CN than camel beta-CN may be a factor responsible for stronger interactions of bovine beta-CN with the aggregation-prone pre denatured molecular species of the substrate ADH, which resulted in greater chaperone activity of bovine beta-CN.

  7. Histone H1 chaperone activity of TAF-I is regulated by its subtype-dependent intramolecular interaction.

    PubMed

    Kajitani, Kaori; Kato, Kohsuke; Nagata, Kyosuke

    2017-03-02

    Linker histone H1 is involved in the regulation of gene activity through the maintenance of higher-order chromatin structure. Previously, we have shown that template activating factor-I (TAF-I or protein SET) is involved in linker histone H1 dynamics as a histone H1 chaperone. In human and murine cells, two TAF-I subtypes exist, namely TAF-Iα and TAF-Iβ. TAF-I has a highly acidic amino acid cluster in its C-terminal region and forms homo- or heterodimers through its dimerization domain. Both dimer formation and the C-terminal region of TAF-I are essential for the histone chaperone activity. TAF-Iα exhibits less histone chaperone activity compared with TAF-Iβ even though TAF-Iα and β differ only in their N-terminal regions. However, it is unclear how subtype-specific TAF-I activities are regulated. Here, we have shown that the N-terminal region of TAF-Iα autoinhibits its histone chaperone activity via intramolecular interaction with its C-terminal region. When the interaction between the N- and C-terminal regions of TAF-Iα is disrupted, TAF-Iα shows a histone chaperone activity similar to that of TAF-Iβ. Taken together, these results provide mechanistic insights into the concept that fine tuning of TAF-I histone H1 chaperone activity relies on the subtype compositions of the TAF-I dimer.

  8. Metabolic and Chaperone Gene Loss Marks the Origin of Animals: Evidence for Hsp104 and Hsp78 Chaperones Sharing Mitochondrial Enzymes as Clients

    PubMed Central

    Erives, Albert J.; Fassler, Jan S.

    2015-01-01

    The evolution of animals involved acquisition of an emergent gene repertoire for gastrulation. Whether loss of genes also co-evolved with this developmental reprogramming has not yet been addressed. Here, we identify twenty-four genetic functions that are retained in fungi and choanoflagellates but undetectable in animals. These lost genes encode: (i) sixteen distinct biosynthetic functions; (ii) the two ancestral eukaryotic ClpB disaggregases, Hsp78 and Hsp104, which function in the mitochondria and cytosol, respectively; and (iii) six other assorted functions. We present computational and experimental data that are consistent with a joint function for the differentially localized ClpB disaggregases, and with the possibility of a shared client/chaperone relationship between the mitochondrial Fe/S homoaconitase encoded by the lost LYS4 gene and the two ClpBs. Our analyses lead to the hypothesis that the evolution of gastrulation-based multicellularity in animals led to efficient extraction of nutrients from dietary sources, loss of natural selection for maintenance of energetically expensive biosynthetic pathways, and subsequent loss of their attendant ClpB chaperones. PMID:25710177

  9. Identification of Core Segment of Amyloidal Peptide Mediated by Chaperone Molecules by using Scanning Tunneling Microscopy.

    PubMed

    Yu, Yue; Yang, Yanlian; Wang, Chen

    2015-10-05

    We illustrate in this work that pristine assemblies of amyloidal peptides can be obtained by perturbations of reduced scanning bias, and show a broad distribution in peptide length. In contrast, the chaperone-mediated peptide co-assembly presents ordered lamellar structures with a homogeneous distribution in length, which could be attributed to the core segment of the peptide. The efforts are beneficial for gaining insight into the aggregation propensity of peptides and inter-peptide interactions.

  10. Stretched Extracellular Matrix Proteins Turn Fouling and Are Functionally Rescued by the Chaperones Albumin and Casein

    PubMed Central

    2009-01-01

    While evidence is mounting that cells exploit protein unfolding for mechanochemical signal conversion (mechanotransduction), what mechanisms are in place to deal with the unwanted consequences of exposing hydrophobic residues upon force-induced protein unfolding? Here, we show that mechanical chaperones exist that can transiently bind to hydrophobic residues that are freshly exposed by mechanical force. The stretch-upregulated binding of albumin or casein to fibronectin fibers is reversible and does not inhibit fiber contraction once the tension is released. PMID:19743815

  11. Discovery of Benzisoxazoles as Potent Inhibitors of Chaperone Heat Shock Protein 90

    SciTech Connect

    Gopalsamy, Ariamala; Shi, Mengxiao; Golas, Jennifer; Vogan, Erik; Jacob, Jaison; Johnson, Mark; Lee, Frederick; Nilakantan, Ramaswamy; Petersen, Roseann; Svenson, Kristin; Chopra, Rajiv; Tam, May S.; Wen, Yingxia; Ellingboe, John; Arndt, Kim; Boschelli, Frank

    2008-08-11

    Heat shock protein 90 (Hsp90) is a molecular chaperone that is responsible for activating many signaling proteins and is a promising target in tumor biology. We have identified small-molecule benzisoxazole derivatives as Hsp90 inhibitors. Crystallographic studies show that these compounds bind in the ATP binding pocket interacting with the Asp93. Structure based optimization led to the identification of potent analogues, such as 13, with good biochemical profiles.

  12. The conformational bases for the two functionalities of 2-cysteine peroxiredoxins as peroxidase and chaperone

    PubMed Central

    Dietz, Karl-Josef

    2013-01-01

    2-Cysteine peroxiredoxins (2-CysPrxs) are ubiquitous and highly abundant proteins that serve multiple functions as peroxidases, chaperones, and thiol oxidases and in redox-dependent cell signalling. The chloroplast protein plays a role in seedling development and protection of the photosynthetic apparatus. This study aimed to unequivocally link conformation and function. To this end, a set of non-tagged site-directed mutagenized At2-CysPrx variants was engineered, which mimicked the conformational states and their specific functions: hyperoxidized form (C54D), reduced form (C54S, C176S), oxidized form (C54DC176K), phosphorylated form (T92D), reduced ability for oligomerization by interfering with the dimer–dimer interface (F84R) and a C-terminally truncated form [ΔC (–20 aa)]. These variants were fully or partly fixed in their quaternary structure and function, respectively, and were analysed for their conformational state and peroxidase and chaperone activity, as well as for their sensitivity to hyperoxidation. The presence of a His6-tag strongly influenced the properties of the protein. The ΔC variant became insensitive to hyperoxidation, while T92D and F84R became more sensitive. The C54D variant revealed the highest chaperone activity. The highest peroxidase activity was observed for the F84R and ΔC variants. Efficient interaction with NADP-dependent thioredoxin reductase C depended on the presence of Cys residues and the C-terminal tail. The results suggest that the structural flexibility is important for the switch between peroxidase and chaperone function and that evolution has conserved the functional switch instead of maximizing a single function. These variants are ideal tools for future conformation-specific studies in vivo and in vitro. PMID:23828546

  13. Copper Chaperone Antioxidant Protein1 Is Essential for Copper Homeostasis1[W][OA

    PubMed Central

    Shin, Lung-Jiun; Lo, Jing-Chi; Yeh, Kuo-Chen

    2012-01-01

    Copper (Cu) is essential for plant growth but toxic in excess. Specific molecular mechanisms maintain Cu homeostasis to facilitate its use and avoid the toxicity. Cu chaperones, proteins containing a Cu-binding domain(s), are thought to assist Cu intracellular homeostasis by their Cu-chelating ability. In Arabidopsis (Arabidopsis thaliana), two Cu chaperones, Antioxidant Protein1 (ATX1) and ATX1-Like Copper Chaperone (CCH), share high sequence homology. Previously, their Cu-binding capabilities were demonstrated and interacting molecules were identified. To understand the physiological functions of these two chaperones, we characterized the phenotype of atx1 and cch mutants and the cchatx1 double mutant in Arabidopsis. The shoot and root growth of atx1 and cchatx1 but not cch was specifically hypersensitive to excess Cu but not excess iron, zinc, or cadmium. The activities of antioxidant enzymes in atx1 and cchatx1 were markedly regulated in response to excess Cu, which confirms the phenotype of Cu hypersensitivity. Interestingly, atx1 and cchatx1 were sensitive to Cu deficiency. Overexpression of ATX1 not only enhanced Cu tolerance and accumulation in excess Cu conditions but also tolerance to Cu deficiency. In addition, the Cu-binding motif MXCXXC of ATX1 was required for these physiological functions. ATX1 was previously proposed to be involved in Cu homeostasis by its Cu-binding activity and interaction with the Cu transporter Heavy metal-transporting P-type ATPase5. In this study, we demonstrate that ATX1 plays an essential role in Cu homeostasis in conferring tolerance to excess Cu and Cu deficiency. The possible mechanism is discussed. PMID:22555879

  14. Structural and Functional Characterization of Pseudomonas aeruginosa CupB Chaperones

    PubMed Central

    Cai, Xun; Wang, Rui; Filloux, Alain; Waksman, Gabriel; Meng, Guoyu

    2011-01-01

    Pseudomonas aeruginosa, an important human pathogen, is estimated to be responsible for ∼10% of nosocomial infections worldwide. The pathogenesis of P. aeruginosa starts from its colonization in the damaged tissue or medical devices (e.g. catheters, prothesis and implanted heart valve etc.) facilitated by several extracellular adhesive factors including fimbrial pili. Several clusters containing fimbrial genes have been previously identified on the P. aeruginosa chromosome and named cup [1]. The assembly of the CupB pili is thought to be coordinated by two chaperones, CupB2 and CupB4. However, due to the lack of structural and biochemical data, their chaperone activities remain speculative. In this study, we report the 2.5 Å crystal structure of P. aeruginosa CupB2. Based on the structure, we further tested the binding specificity of CupB2 and CupB4 towards CupB1 (the presumed major pilus subunit) and CupB6 (the putative adhesin) using limited trypsin digestion and strep-tactin pull-down assay. The structural and biochemical data suggest that CupB2 and CupB4 might play different, but not redundant, roles in CupB secretion. CupB2 is likely to be the chaperone of CupB1, and CupB4 could be the chaperone of CupB4:CupB5:CupB6, in which the interaction of CupB4 and CupB6 might be mediated via CupB5. PMID:21304995

  15. Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle.

    PubMed

    Siligardi, Giuliano; Hu, Bin; Panaretou, Barry; Piper, Peter W; Pearl, Laurence H; Prodromou, Chrisostomos

    2004-12-10

    ATP hydrolysis by the Hsp90 molecular chaperone requires a connected set of conformational switches triggered by ATP binding to the N-terminal domain in the Hsp90 dimer. Central to this is a segment of the structure, which closes like a "lid" over bound ATP, promoting N-terminal dimerization and assembly of a competent active site. Hsp90 mutants that influence these conformational switches have strong effects on ATPase activity. ATPase activity is specifically regulated by Hsp90 co-chaperones, which directly influence the conformational switches. Here we have analyzed the effect of Hsp90 mutations on binding (using isothermal titration calorimetry and difference circular dichroism) and ATPase regulation by the co-chaperones Aha1, Sti1 (Hop), and Sba1 (p23). The ability of Sti1 to bind Hsp90 and arrest its ATPase activity was not affected by any of the mutants screened. Sba1 bound in the presence of AMPPNP to wild-type and ATPase hyperactive mutants with similar affinity but only very weakly to hypoactive mutants despite their wild-type ATP affinity. Unexpectedly, in all cases Sba1 bound to Hsp90 with a 1:2 molar stoichiometry. Aha1 binding to mutants was similar to wild-type, but the -fold activation of their ATPase varied substantially between mutants. Analysis of complex formation with co-chaperone mixtures showed Aha1 and p50cdc37 able to bind Hsp90 simultaneously but without direct interaction. Sba1 and p50cdc37 bound independently to Hsp90-AMPPNP but not together. These data indicated that Sba1 and Aha1 regulate Hsp90 by influencing the conformational state of the "ATP lid" and consequent N-terminal dimerization, whereas Sti1 does not.

  16. Conversion of scFv peptide-binding specificity for crystal chaperone development

    SciTech Connect

    Pai, Jennifer C.; Culver, Jeffrey A.; Drury, Jason E.; Motani, Rakesh S.; Lieberman, Raquel L.; Maynard, Jennifer A.

    2012-02-07

    In spite of advances in protein expression and purification over the last decade, many proteins remain recalcitrant to structure determination by X-ray crystallography. One emerging tactic to obtain high-quality protein crystals for structure determination, particularly in the case of membrane proteins, involves co-crystallization with a protein-specific antibody fragment. Here, we report the development of new recombinant single-chain antibody fragments (scFv) capable of binding a specific epitope that can be introduced into internal loops of client proteins. The previously crystallized hexa-histidine-specific 3D5 scFv antibody was modified in the complementary determining region and by random mutagenesis, in conjunction with phage display, to yield scFvs with new biochemical characteristics and binding specificity. Selected variants include those specific for the hexa-histidine peptide with increased expression, solubility (up to 16.6 mg/ml) and sub-micromolar affinity, and those with new specificity for the EE hexa-peptide (EYMPME) and nanomolar affinity. Complexes of one such chaperone with model proteins harboring either an internal or a terminal EE tag were isolated by gel filtration. The 3.1 {angstrom} resolution structure of this chaperone reveals a binding surface complementary to the EE peptide and a {approx}52 {angstrom} channel in the crystal lattice. Notably, in spite of 85% sequence identity, and nearly identical crystallization conditions, the engineered scFv crystallizes in a different space group than the parent 3D5 scFv, and utilizes two new crystal contacts. These engineered scFvs represent a new class of chaperones that may eliminate the need for de novo identification of candidate chaperones from large antibody libraries.

  17. Enhancing functional production of a chaperone-dependent lipase in Escherichia coli using the dual expression cassette plasmid

    PubMed Central

    2012-01-01

    Abstracts Background The lipase subfamilies I.1 and I.2 show more than 33% homology in the amino acid sequences and most members share another common property that their genes are clustered with the secondary genes whose protein products are required for folding the lipase into an active conformation and secretion into the culture medium. In previous studies, the lipase (LipA) and its chaperone (LipB) from Ralstonia sp. M1 were overexpressed in E. coli and the lipase was successfully refolded in vitro. The purpose of this study was to enhance the production of the active lipase LipA from Ralstonia sp. M1 in the heterologous host E. coli without in vitro refolding process, using two-plasmid co-expression systems and dual expression cassette plasmid systems. Results To produce more active lipase from Ralstonia sp. M1 in E. coli without in vitro refolding process but with the help of overexpression of the chaperone (LipB1 and LipB3 corresponding to 56-aa truncated and 26-aa truncated chaperone LipB), six different expression systems including 2 two-plasmid co-expression systems (E. coli BL21/pELipABa + pELipB1k and BL21/pELipABa + pELipB3k) and 4 dual expression cassette plasmid systems (BL21/pELipAB-LipB1a, BL21/pELipAB-LipB3a, BL21/pELipA-LipB1a, and BL21/pELipA-LipB3a) were constructed. The two-plasmid co-expression systems (E. coli BL21/pELipABa + pELipB1k and BL21/pELipABa + pELipB3k) produced the active lipase at a level of 4 times as high as the single expression cassette plasmid system E. coli BL21/pELipABa did. For the first time, the dual expression cassette plasmid systems BL21/pELipAB-LipB1a and BL21/pELipAB-LipB3a yielded 29- and 19-fold production of the active lipase in comparison with the single expression cassette plasmid system E. coli BL21/pELipABa, respectively. Although the lipase amount was equally expressed in all these expression systems (40% of total cellular protein) and only a small fraction of the overexpressed lipase was folded in vivo

  18. N. meningitidis 1681 is a member of the FinO family of RNA chaperones

    PubMed Central

    Chaulk, Steven; Lu, Jun; Tan, Kemin; Arthur, David C; Edwards, Ross A; Frost, Laura S; Joachimiak, Andrzej

    2010-01-01

    The conjugative transfer of F-like plasmids between bacteria is regulated by the plasmid-encoded RNA chaperone, FinO, which facilitates sense—antisense RNA interactions to regulate plasmid gene expression. FinO was thought to adopt a unique structure, however many putative homologs have been identified in microbial genomes and are considered members of the FinO_conjugation_repressor superfamily. We were interested in determining whether other members were also able to bind RNA and promote duplex formation, suggesting that this motif does indeed identify a putative RNA chaperone. We determined the crystal structure of the N. meningitidis MC58 protein NMB1681. It revealed striking similarity to FinO, with a conserved fold and a large, positively charged surface that could function in RNA interactions. Using assays developed to study FinO-FinP sRNA interactions, NMB1681, like FinO, bound tightly to FinP RNA stem-loops with short 5′ and 3′ single-stranded tails but not to ssRNA. It also was able to catalyze strand exchange between an RNA duplex and a complementary single-strand, and facilitated duplexing between complementary RNA hairpins. Finally, NMB1681 was able to rescue a finO deficiency and repress F plasmid conjugation. This study strongly suggests that NMB1681 is a FinO-like RNA chaperone that likely regulates gene expression through RNA-based mechanisms in N. meningitidis. PMID:21045552

  19. New insights into the roles of molecular chaperones in Chlamydomonas and Volvox.

    PubMed

    Nordhues, André; Miller, Stephen M; Mühlhaus, Timo; Schroda, Michael

    2010-01-01

    The unicellular green alga Chlamydomonas reinhardtii has been used as a model organism for many decades, mainly to study photosynthesis and flagella/cilia. Only recently, Chlamydomonas has received much attention because of its ability to produce hydrogen and nonpolar lipids that have promise as biofuels. The best-studied multicellular cousin of Chlamydomonas reinhardtii is Volvox carteri, whose life cycle comprises events that have clear parallels in higher plants and/or animals, making it an excellent system in which to study fundamental developmental processes. Molecular chaperones are proteins that guide other cellular proteins through their life cycle. They assist in de novo folding of nascent chains, mediate assembly and disassembly of protein complexes, facilitate protein transport across membranes, disassemble protein aggregates, fold denatured proteins back to the native state, and transfer unfoldable proteins to proteolytic degradation. Hence, molecular chaperones regulate protein function under all growth conditions and play important roles in many basic cellular and developmental processes. The aim of this chapter is to describe recent advances toward understanding molecular chaperone biology in Chlamydomonas and Volvox.

  20. Hsp70 chaperones are non-equilibrium machines that achieve ultra-affinity by energy consumption.

    PubMed

    De Los Rios, Paolo; Barducci, Alessandro

    2014-05-27

    70-kDa Heat shock proteins are ATP-driven molecular chaperones that perform a myriad of essential cellular tasks. Although structural and biochemical studies have shed some light on their functional mechanism, the fundamental issue of the role of energy consumption, due to ATP-hydrolysis, has remained unaddressed. Here we establish a clear connection between the non-equilibrium nature of Hsp70, due to ATP hydrolysis, and the determining feature of its function, namely its high affinity for its substrates. Energy consumption can indeed decrease the dissociation constant of the chaperone-substrate complex by several orders of magnitude with respect to an equilibrium scenario. We find that the biochemical requirements for observing such ultra-affinity coincide with the physiological conditions in the cell. Our results rationalize several experimental observations and pave the way for further analysis of non-equilibrium effects underlying chaperone functions.DOI: http://dx.doi.org/10.7554/eLife.02218.001.

  1. Procollagen triple helix assembly: an unconventional chaperone-assisted folding paradigm.

    PubMed

    Makareeva, Elena; Leikin, Sergey

    2007-10-10

    Fibers composed of type I collagen triple helices form the organic scaffold of bone and many other tissues, yet the energetically preferred conformation of type I collagen at body temperature is a random coil. In fibers, the triple helix is stabilized by neighbors, but how does it fold? The observations reported here reveal surprising features that may represent a new paradigm for folding of marginally stable proteins. We find that human procollagen triple helix spontaneously folds into its native conformation at 30-34 degrees C but not at higher temperatures, even in an environment emulating Endoplasmic Reticulum (ER). ER-like molecular crowding by nonspecific proteins does not affect triple helix folding or aggregation of unfolded chains. Common ER chaperones may prevent aggregation and misfolding of procollagen C-propeptide in their traditional role of binding unfolded polypeptide chains. However, such binding only further destabilizes the triple helix. We argue that folding of the triple helix requires stabilization by preferential binding of chaperones to its folded, native conformation. Based on the triple helix folding temperature measured here and published binding constants, we deduce that HSP47 is likely to do just that. It takes over 20 HSP47 molecules to stabilize a single triple helix at body temperature. The required 50-200 microM concentration of free HSP47 is not unusual for heat-shock chaperones in ER, but it is 100 times higher than used in reported in vitro experiments, which did not reveal such stabilization.

  2. CCT2 Mutations Evoke Leber Congenital Amaurosis due to Chaperone Complex Instability

    PubMed Central

    Minegishi, Yuriko; Sheng, XunLun; Yoshitake, Kazutoshi; Sergeev, Yuri; Iejima, Daisuke; Shibagaki, Yoshio; Monma, Norikazu; Ikeo, Kazuho; Furuno, Masaaki; Zhuang, Wenjun; Liu, Yani; Rong, Weining; Hattori, Seisuke; Iwata, Takeshi

    2016-01-01

    Leber congenital amaurosis (LCA) is a hereditary early-onset retinal dystrophy that is accompanied by severe macular degeneration. In this study, novel compound heterozygous mutations were identified as LCA-causative in chaperonin-containing TCP-1, subunit 2 (CCT2), a gene that encodes the molecular chaperone protein, CCTβ. The zebrafish mutants of CCTβ are known to exhibit the eye phenotype while its mutation and association with human disease have been unknown. The CCT proteins (CCT α-θ) forms ring complex for its chaperon function. The LCA mutants of CCTβ, T400P and R516H, are biochemically instable and the affinity for the adjacent subunit, CCTγ, was affected distinctly in both mutants. The patient-derived induced pluripotent stem cells (iPSCs), carrying these CCTβ mutants, were less proliferative than the control iPSCs. Decreased proliferation under Cct2 knockdown in 661W cells was significantly rescued by wild-type CCTβ expression. However, the expression of T400P and R516H didn’t exhibit the significant effect. In mouse retina, both CCTβ and CCTγ are expressed in the retinal ganglion cells and connecting cilium of photoreceptor cells. The Cct2 knockdown decreased its major client protein, transducing β1 (Gβ1). Here we report the novel LCA mutations in CCTβ and the impact of chaperon disability by these mutations in cellular biology. PMID:27645772

  3. Efficient antibody production in the methylotrophic yeast Ogataea minuta by overexpression of chaperones.

    PubMed

    Suzuki, Takeshi; Baba, Satoshi; Ono, Minako; Nonaka, Koichi; Ichikawa, Kimihisa; Yabuta, Masayuki; Ito, Rie; Chiba, Yasunori

    2017-03-26

    A production system for a therapeutic monoclonal antibody was developed using the methylotrophic yeast Ogataea minuta IFO10746. The genetically engineered O. minuta secreted a detectable amount of anti-TRAIL receptor antibody into the culture supernatant, and the secreted antibody was purified by multiple column chromatography steps. In the purification process, both fully and partially assembled antibodies were detected and isolated. The fully assembled antibody from O. minuta showed almost the same biological activity as that derived from mammalian cells despite the distinct glycosylation profile, whereas the partially assembled antibody showed no cytotoxic activity. To increase the production of active antibody in O. minuta, we overexpressed selected chaperone proteins (included protein disulfide isomerase (OmPDI1), thiol oxidase (OmERO1), and immunoglobulin heavy chain binding protein (OmKAR2)) known to assist in the proper folding (in the endoplasmic reticulum) of proteins destined for secretion. Each of these chaperones enhanced antibody secretion, and together these three factors yielded 16-fold higher antibody accumulation while increasing the ratio of the fully assembled antibody compared to that from the parental strain. Supplementation of a rhodanine-3-acetic acid derivative (R3AD_1c), an inhibitor of O-mannosylation, further increased the secretion of the correctly assembled antibody. These results indicated that the co-overexpression of chaperones is an effective way to produce the correctly assembled antibody in O. minuta.

  4. Cloning and characterization of three hypothetical secretion chaperone proteins from Xanthomonas axonopodis pv. citri.

    PubMed

    Tasic, Ljubica; Borin, Paula F L; Khater, Leti Cia; Ramos, Carlos H I

    2007-06-01

    Xanthomonas axonopodis pv. citri (Xac) causes citrus canker in plantations around the world and is of particular significance in Brazil where its incidence has risen exponentially over the past decade. Approximately one third of the predicted Xac open reading frames show no homology, or homology with very low score with that of known sequences. It is believed that Xac utilizes secretion systems to transfer virulence proteins into susceptible eukaryotic cells. This process is assisted by secretion chaperones that maintain virulence proteins partly or completely unfolded during translocation. We have cloned three of these hypothetical secretion chaperones: XAC0419 and XAC1346 from type III secretion system (TTSS) and XACb0033 from type IV secretion system (TFSS). All proteins were cloned in a pET23a vector (Novagen), expressed at 37 degrees C using a BL21(DE3)pLysS Escherichia coli strain and purified by ion exchange and gel-filtration chromatographic methods. Pure proteins were characterized using spectroscopic measurements: circular dichroism, and both static and lifetime emission fluorescence in the case of XACb0033. The analyzed proteins are stable at elevated temperatures (up to 65 degrees C) and exhibit alpha-helix content from approximately 30% (XACb003) to approximately 87% (XAC1346). XACb0033 exhibits lifetimes in the fluorescence experiments that indicate different neighborhoods for its tryptophan residues. These chaperones have the characteristics of TTSS and TFSS: all are small, with a high alpha-helix content, and without ATP-binding or ATP-hydrolyzing activity.

  5. Chaperoning G Protein-Coupled Receptors: From Cell Biology to Therapeutics

    PubMed Central

    Conn, P. Michael

    2014-01-01

    G protein-coupled receptors (GPCRs) are membrane proteins that traverse the plasma membrane seven times (hence, are also called 7TM receptors). The polytopic structure of GPCRs makes the folding of GPCRs difficult and complex. Indeed, many wild-type GPCRs are not folded optimally, and defects in folding are the most common cause of genetic diseases due to GPCR mutations. Both general and receptor-specific molecular chaperones aid the folding of GPCRs. Chemical chaperones have been shown to be able to correct the misfolding in mutant GPCRs, proving to be important tools for studying the structure-function relationship of GPCRs. However, their potential therapeutic value is very limited. Pharmacological chaperones (pharmacoperones) are potentially important novel therapeutics for treating genetic diseases caused by mutations in GPCR genes that resulted in misfolded mutant proteins. Pharmacoperones also increase cell surface expression of wild-type GPCRs; therefore, they could be used to treat diseases that do not harbor mutations in GPCRs. Recent studies have shown that indeed pharmacoperones work in both experimental animals and patients. High-throughput assays have been developed to identify new pharmacoperones that could be used as therapeutics for a number of endocrine and other genetic diseases. PMID:24661201

  6. Gene expression in primary cultured astrocytes affected by aluminum: alteration of chaperons involved in protein folding

    PubMed Central

    Aremu, David A.; Ezomo, Ojeiru F.

    2010-01-01

    Objectives Aluminum is notorious as a neurotoxic metal. The aim of our study was to determine whether endoplasmic reticulum (ER) stress is involved in aluminum-induced apoptosis in astrocytes. Methods Mitochondrial RNA (mRNA) was analyzed by reverse transcription (RT)-PCR following pulse exposure of aluminum glycinate to primary cultured astrocytes. Tunicamycin was used as a positive control. Results Gene expression analysis revealed that Ire1β was up-regulated in astrocytes exposed to aluminum while Ire1α was up-regulated by tunicamycin. Exposure to aluminum glycinate, in contrast to tunicamycin, seemed to down-regulate mRNA expression of many genes, including the ER resident molecular chaperone BiP/Grp78 and Ca2+-binding chaperones (calnexin and calreticulin), as well as stanniocalcin 2 and OASIS. The down-regulation or non-activation of the molecular chaperons, whose expressions are known to be protective by increasing protein folding, may spell doom for the adaptive response. Exposure to aluminum did not have any significant effects on the expression of Bax and Bcl2 in astrocytes. Conclusions The results of this study demonstrate that aluminum may induce apoptosis in astrocytes via ER stress by impairing the protein-folding machinery. PMID:21432213

  7. Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes

    PubMed Central

    Angelov, Dimitar; Bondarenko, Vladimir A; Almagro, Sébastien; Menoni, Hervé; Mongélard, Fabien; Hans, Fabienne; Mietton, Flore; Studitsky, Vasily M; Hamiche, Ali; Dimitrov, Stefan; Bouvet, Philippe

    2006-01-01

    Remodeling machines play an essential role in the control of gene expression, but how their activity is regulated is not known. Here we report that the nuclear protein nucleolin possesses a histone chaperone activity and that this factor greatly enhances the activity of the chromatin remodeling machineries SWI/SNF and ACF. Interestingly, nucleolin is able to induce the remodeling by SWI/SNF of macroH2A, but not of H2ABbd nucleosomes, which are otherwise resistant to remodeling. This new histone chaperone promotes the destabilization of the histone octamer, helping the dissociation of a H2A–H2B dimer, and stimulates the SWI/SNF-mediated transfer of H2A–H2B dimers. Furthermore, nucleolin facilitates transcription through the nucleosome, which is reminiscent of the activity of the FACT complex. This work defines new functions for histone chaperones in chromatin remodeling and regulation of transcription and explains how nucleolin could act on transcription. PMID:16601700

  8. A review of acquired thermotolerance, heat shock proteins, and molecular chaperones in archaea

    SciTech Connect

    Trent, J.D.

    1996-05-01

    Acquired thermotolerance, the associated synthesis of heat-shock proteins (HSPs) under stress conditions, and the role of HSPs as molecular chaperones under normal growth conditions have been studied extensively in eukaryotes and bacteria, whereas research in these areas in archaea is only beginning. All organisms have evolved a variety of strategies for coping with high-temperature stress, and among these strategies is the increased synthesis of HSPs. The facts that both high temperatures and chemical stresses induce the HSPs and that some of the HSPs recognize and bind to unfolded proteins in vitro have led to the theory that the function of HSPs is to prevent protein aggregation in vivo. The facts that some HSPs are abundant under normal growth conditions and that they assist in protein folding in vitro have led to the theory that they assist protein folding in vivo; in this role, they are referred to as molecular chaperones. The limited research on acquired thermotolerance, HSPs, and molecular chaperones in archaea, particularly the hyperthermophilic archaea, suggests that these extremophiles provide a new perspective in these areas of research, both because they are members of a separate phylogenetic domain and because they have evolved to live under extreme conditions.

  9. Elucidating the mechanism of substrate recognition by the bacterial Hsp90 molecular chaperone

    PubMed Central

    Street, Timothy O.; Zeng, Xiaohui; Pellarin, Riccardo; Bonomi, Massimiliano; Sali, Andrej; Kelly, Mark J.S.; Chu, Feixia; Agard, David A.

    2017-01-01

    Hsp90 is a conformationally dynamic molecular chaperone known to promote the folding and activation of a broad array of protein substrates (“clients”). Hsp90 is believed to preferentially interact with partially folded substrates, and it has been hypothesized that the chaperone can significantly alter substrate structure as a mechanism to alter the substrate functional state. However, critically testing the mechanism of substrate recognition and remodeling by Hsp90 has been challenging. Using a partially folded protein as a model system, we find that the bacterial Hsp90 adapts its conformation to the substrate, forming a binding site that spans the middle and C-terminal domains of the chaperone. Crosslinking and NMR measurements indicate that Hsp90 binds to a large partially-folded region of the substrate and significantly alters both its local and long-range structure. These findings implicate Hsp90’s conformational dynamics in its ability to bind and remodel partially folded proteins. Moreover, native-state hydrogen exchange indicates that Hsp90 can also interact with partially folded states only transiently populated from within a thermodynamically stable native state ensemble. These results suggest a general mechanism by which Hsp90 can recognize and remodel native proteins by binding and remodeling partially folded states that are transiently sampled from within the native ensemble. PMID:24726919

  10. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    SciTech Connect

    Bakkouri, Majida El; Pow, Andre; Mulichak, Anne; Cheung, Kevin L.Y.; Artz, Jennifer D.; Amani, Mehrnaz; Fell, Stuart; de Koning-Ward, Tania F.; Goodman, C. Dean; McFadden, Geoffrey I.; Ortega, Joaquin; Hui, Raymond; Houry, Walid A.

    2015-02-09

    The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  11. The crystal structure of the Hsp90 co-chaperone Cpr7 from Saccharomyces cerevisiae.

    PubMed

    Qiu, Yu; Ge, Qiangqiang; Wang, Mingxing; Lv, Hui; Ebrahimi, Mohammad; Niu, Liwen; Teng, Maikun; Li, Xu

    2017-02-09

    The versatility of Hsp90 can be attributed to the variety of co-chaperone proteins that modulate the role of Hsp90 in many cellular processes. As a co-chaperone of Hsp90, Cpr7 is essential for accelerating the cell growth in an Hsp90-containing trimeric complex. Here, we report the crystal structure of Cpr7 at a resolution of 1.8Å. It consists of an N-terminal PPI domain and a C-terminal TPR domain, and exhibits a U-shape conformation. Our studies revealed the aggregation state of Cpr7 in solution and the interaction properties between Cpr7 and the MEEVD sequence from the C-terminus of Hsp90. In addition, the structure and sequence analysis between Cpr7 and homologues revealed the structure basis both for the function differences between Cpr6 and Cpr7 and the functional complements between Cns1 and Cpr7. Our studies facilitate the understanding of Cpr7 and provide decent insights into the molecular mechanisms of the Hsp90 co-chaperone pathway.

  12. Structure of the human histone chaperone FACT Spt16 N-terminal domain

    SciTech Connect

    Marcianò, G.; Huang, D. T.

    2016-01-22

    The Spt16–SSRP1 heterodimer is a histone chaperone that plays an important role in regulating chromatin assembly. Here, a crystal structure of the N-terminal domain of human Spt16 is presented and it is shown that this domain may contribute to histone binding. The histone chaperone FACT plays an important role in facilitating nucleosome assembly and disassembly during transcription. FACT is a heterodimeric complex consisting of Spt16 and SSRP1. The N-terminal domain of Spt16 resembles an inactive aminopeptidase. How this domain contributes to the histone chaperone activity of FACT remains elusive. Here, the crystal structure of the N-terminal domain (NTD) of human Spt16 is reported at a resolution of 1.84 Å. The structure adopts an aminopeptidase-like fold similar to those of the Saccharomyces cerevisiae and Schizosaccharomyces pombe Spt16 NTDs. Isothermal titration calorimetry analyses show that human Spt16 NTD binds histones H3/H4 with low-micromolar affinity, suggesting that Spt16 NTD may contribute to histone binding in the FACT complex. Surface-residue conservation and electrostatic analysis reveal a conserved acidic patch that may be involved in histone binding.

  13. Structure of the Spt16 Middle Domain Reveals Functional Features of the Histone Chaperone FACT*

    PubMed Central

    Kemble, David J.; Whitby, Frank G.; Robinson, Howard; McCullough, Laura L.; Formosa, Tim; Hill, Christopher P.

    2013-01-01

    The histone chaperone FACT is an essential and abundant heterodimer found in all eukaryotes. Here we report a crystal structure of the middle domain of the large subunit of FACT (Spt16-M) to reveal a double pleckstrin homology architecture. This structure was found previously in the Pob3-M domain of the small subunit of FACT and in the related histone chaperone Rtt106, although Spt16-M is distinguished from these structures by the presence of an extended α-helix and a C-terminal addition. Consistent with our finding that the double pleckstrin homology structure is common to these three histone chaperones and reports that Pob3 and Rtt106 double pleckstrin homology domains bind histones H3-H4, we also find that Spt16-M binds H3-H4 with low micromolar affinity. Our structure provides a framework for interpreting a large body of genetic data regarding the physiological functions of FACT, including the identification of potential interaction surfaces for binding histones or other proteins. PMID:23417676

  14. Pharmacological Enhancement of α-Glucosidase by the Allosteric Chaperone N-acetylcysteine

    PubMed Central

    Porto, Caterina; Ferrara, Maria C; Meli, Massimiliano; Acampora, Emma; Avolio, Valeria; Rosa, Margherita; Cobucci-Ponzano, Beatrice; Colombo, Giorgio; Moracci, Marco; Andria, Generoso; Parenti, Giancarlo

    2012-01-01

    Pompe disease (PD) is a metabolic myopathy due to the deficiency of the lysosomal enzyme α-glucosidase (GAA). The only approved treatment for this disorder, enzyme replacement with recombinant human GAA (rhGAA), has shown limited therapeutic efficacy in some PD patients. Pharmacological chaperone therapy (PCT), either alone or in combination with enzyme replacement, has been proposed as an alternative therapeutic strategy. However, the chaperones identified so far also are active site-directed molecules and potential inhibitors of target enzymes. We demonstrated that N-acetylcysteine (NAC) is a novel allosteric chaperone for GAA. NAC improved the stability of rhGAA as a function of pH and temperature without disrupting its catalytic activity. A computational analysis of NAC–GAA interactions confirmed that NAC does not interact with GAA catalytic domain. NAC enhanced the residual activity of mutated GAA in cultured PD fibroblasts and in COS7 cells overexpressing mutated GAA. NAC also enhanced rhGAA efficacy in PD fibroblasts. In cells incubated with NAC and rhGAA, GAA activities were 3.7–8.7-fold higher than those obtained in cells treated with rhGAA alone. In a PD mouse model the combination of NAC and rhGAA resulted in better correction of enzyme activity in liver, heart, diaphragm and gastrocnemia, compared to rhGAA alone. PMID:22990675

  15. Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo

    PubMed Central

    Langlois, Christine R.; Serio, Tricia R.

    2016-01-01

    Prions are a group of proteins that can adopt a spectrum of metastable conformations in vivo. These alternative states change protein function and are self-replicating and transmissible, creating protein-based elements of inheritance and infectivity. Prion conformational flexibility is encoded in the amino acid composition and sequence of the protein, which dictate its ability not only to form an ordered aggregate known as amyloid but also to maintain and transmit this structure in vivo. But, while we can effectively predict amyloid propensity in vitro, the mechanism by which sequence elements promote prion propagation in vivo remains unclear. In yeast, propagation of the [PSI+] prion, the amyloid form of the Sup35 protein, has been linked to an oligopeptide repeat region of the protein. Here, we demonstrate that this region is composed of separable functional elements, the repeats themselves and a repeat proximal region, which are both required for efficient prion propagation. Changes in the numbers of these elements do not alter the physical properties of Sup35 amyloid, but their presence promotes amyloid fragmentation, and therefore maintenance, by molecular chaperones. Rather than acting redundantly, our observations suggest that these sequence elements make complementary contributions to prion propagation, with the repeat proximal region promoting chaperone binding to and the repeats promoting chaperone processing of Sup35 amyloid. PMID:27814358

  16. Pahenu1 is a mouse model for tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency and promotes analysis of the pharmacological chaperone mechanism in vivo.

    PubMed

    Gersting, Søren W; Lagler, Florian B; Eichinger, Anna; Kemter, Kristina F; Danecka, Marta K; Messing, Dunja D; Staudigl, Michael; Domdey, Katharina A; Zsifkovits, Clemens; Fingerhut, Ralph; Glossmann, Hartmut; Roscher, Adelbert A; Muntau, Ania C

    2010-05-15

    The recent approval of sapropterin dihydrochloride, the synthetic form of 6[R]-l-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)), for the treatment of phenylketonuria (PKU) as the first pharmacological chaperone drug initiated a paradigm change in the treatment of monogenetic diseases. Symptomatic treatment is now replaced by a causal pharmacological therapy correcting misfolding of the defective phenylalanine hydroxylase (PAH) in numerous patients. Here, we disclose BH(4) responsiveness in Pah(enu1), a mouse model for PAH deficiency. Loss of function resulted from loss of PAH, a consequence of misfolding, aggregation, and accelerated degradation of the enzyme. BH(4) attenuated this triad by conformational stabilization augmenting the effective PAH concentration. This led to the rescue of the biochemical phenotype and enzyme function in vivo. Combined in vitro and in vivo analyses revealed a selective pharmaceutical action of BH(4) confined to the pathological metabolic state. Our data provide new molecular-level insights into the mechanisms underlying protein misfolding with loss of function and support a general model of pharmacological chaperone-induced stabilization of protein conformation to correct this intracellular phenotype. Pah(enu1) will be essential for pharmaceutical drug optimization and to design individually tailored therapies.

  17. Loss of function mutation in LARP7, chaperone of 7SK ncRNA, causes a syndrome of facial dysmorphism, intellectual disability, and primordial dwarfism.

    PubMed

    Alazami, Anas M; Al-Owain, Mohammad; Alzahrani, Fatema; Shuaib, Taghreed; Al-Shamrani, Hussain; Al-Falki, Yahya H; Al-Qahtani, Saleh M; Alsheddi, Tarfa; Colak, Dilek; Alkuraya, Fowzan S

    2012-10-01

    Primordial dwarfism (PD) is a clinically and genetically heterogeneous condition. Various molecular mechanisms are known to underlie the disease including impaired mitotic mechanics, abnormal IGF2 expression, perturbed DNA damage response, defective spliceosomal machinery, and abnormal replication licensing. Here, we describe a syndromic form of PD associated with severe intellectual disability and distinct facial features in a large multiplex Saudi family. Analysis reveals a novel underlying mechanism for PD involving depletion of 7SK, an abundant cellular noncoding RNA (ncRNA), due to mutation of its chaperone LARP7. We show that 7SK levels are tightly linked to LARP7 expression across cell lines, and that this chaperone is ubiquitously expressed in the mouse embryo. The 7SK is known to influence the expression of a wide array of genes through its inhibitory effect on the positive transcription elongation factor b (P-TEFb) as well as its competing role in HMGA1-mediated transcriptional regulation. This study documents a critical role played by ncRNA in human development and adds to the growing list of molecular mechanisms that, when perturbed, converge on the PD phenotype.

  18. The Second RNA Chaperone, Hfq2, Is Also Required for Survival under Stress and Full Virulence of Burkholderia cenocepacia J2315▿

    PubMed Central

    Ramos, Christian G.; Sousa, Sílvia A.; Grilo, André M.; Feliciano, Joana R.; Leitão, Jorge H.

    2011-01-01

    Burkholderia cenocepacia J2315 is a highly virulent and epidemic clinical isolate of the B. cepacia complex (Bcc), a group of bacteria that have emerged as important pathogens to cystic fibrosis patients. This bacterium, together with all Bcc strains and a few other prokaryotes, is unusual for encoding in its genome two distinct and functional Hfq-like proteins. In this work, we show results indicating that the 188-amino-acid Hfq2 protein is required for the full virulence and stress resistance of B. cenocepacia J2315, despite the presence on its genome of the functional 79-amino-acid Hfq protein encoded by the hfq gene. Similar to other Hfq proteins, Hfq2 is able to bind RNA. However, Hfq2 is unique in its ability to apparently form trimers in vitro. Maximal transcription of hfq was observed in B. cenocepacia J2315 cells in the early exponential phase of growth. In contrast, hfq2 transcription reached maximal levels in cells in the stationary phase, depending on the CepR quorum-sensing regulator. These results suggest that tight regulation of the expression of these two RNA chaperones is required to maximize the fitness and virulence of this bacterium. In addition, the ability of Hfq2 to bind DNA, not observed for Hfq, suggests that Hfq2 might play additional roles besides acting as an RNA chaperone. PMID:21278292

  19. Stability of the human Hsp90-p50Cdc37 chaperone complex against nucleotides and Hsp90 inhibitors, and the influence of phosphorylation by casein kinase 2.

    PubMed

    Olesen, Sanne H; Ingles, Donna J; Zhu, Jin-Yi; Martin, Mathew P; Betzi, Stephane; Georg, Gunda I; Tash, Joseph S; Schönbrunn, Ernst

    2015-01-19

    The molecular chaperone Hsp90 is regulated by co-chaperones such as p50Cdc37, which recruits a wide selection of client protein kinases. Targeted disruption of the Hsp90-p50Cdc37 complex by protein-protein interaction (PPI) inhibitors has emerged as an alternative strategy to treat diseases characterized by aberrant Hsp90 activity. Using isothermal microcalorimetry, ELISA and GST-pull down assays we evaluated reported Hsp90 inhibitors and nucleotides for their ability to inhibit formation of the human Hsp90β-p50Cdc37 complex, reconstituted in vitro from full-length proteins. Hsp90 inhibitors, including the proposed PPI inhibitors gedunin and H2-gamendazole, did not affect the interaction of Hsp90 with p50Cdc37 in vitro. Phosphorylation of Hsp90 and p50Cdc37 by casein kinase 2 (CK2) did not alter the thermodynamic signature of complex formation. However, the phosphorylated complex was vulnerable to disruption by ADP (IC50 = 32 µM), while ATP, AMPPNP and Hsp90 inhibitors remained largely ineffective. The differential inhibitory activity of ADP suggests that phosphorylation by CK2 primes the complex for dissociation in response to a drop in ATP/ADP levels. The approach applied herein provides robust assays for a comprehensive biochemical evaluation of potential effectors of the Hsp90-p50Cdc37 complex, such as phosphorylation by a kinase or the interaction with small molecule ligands.

  20. Changes in macroautophagy, chaperone-mediated autophagy, and mitochondrial metabolism in murine skeletal and cardiac muscle during aging

    PubMed Central

    Zhou, Jin; Yun Chong, Shu; Lim, Andrea; Singh, Brijesh K.; Sinha, Rohit A.; Salmon, Adam B.; Yen, Paul M.

    2017-01-01

    Aging causes a general decline in cellular metabolic activity, and function in different tissues and whole body homeostasis. However, the understanding about the metabolomic and autophagy changes in skeletal muscle and heart during aging is still limited. We thus examined markers for macroautophagy, chaperone-mediated autophagy (CMA), mitochondrial quality control, as well as cellular metabolites in skeletal and cardiac muscle from young (5 months old) and aged (27 months old) mice. We found decreased autophagic degradation of p62 and increased ubiquitinated proteins in both tissues from aged mice, suggesting a decline in macroautophagy during aging. In skeletal muscle from aged mice, there also was a decline in LC3B-I conjugation to phosphatidylethanolamine (PE) possibly due to decreased protein levels of ATG3 and ATG12-ATG5. The CMA markers, LAMP-2A and Hsc70, and mitochondrial turnover markers, Drp1, PINK1 and PGC1α also were decreased. Metabolomics analysis showed impaired β-oxidation in heart of aged mice, whereas increased branched-chain amino acids (BCAAs) and ceramide levels were found in skeletal muscle of aged mice that in turn, may contribute to insulin resistance in muscle. Taken together, our studies showed similar declines in macroautophagy but distinct effects on CMA, mitochondrial turnover, and metabolic dysfunction in muscle vs. heart during aging. PMID:28238968

  1. Progress and potential of non-inhibitory small molecule chaperones for the treatment of Gaucher disease and its potential implications for Parkinson disease

    PubMed Central

    Jung, Olive; Patnaik, Samarjit; Marugan, Juan; Sidransky, Ellen; Westbroek, Wendy

    2017-01-01

    Gaucher disease, caused by pathological mutations GBA1, encodes the lysosome-resident enzyme glucocerebrosidase, which cleaves glucosylceramide into glucose and ceramide. In Gaucher disease, glucocerebrosidase deficiency leads to lysosomal accumulation of substrate, primarily in cells of the reticulo-endothelial system. Gaucher disease has broad clinical heterogeneity, and mutations in GBA1 are a risk factor for the development of different synucleinopathies. Insights into the cell biology and biochemistry of glucocerebrosidase have led to new therapeutic approaches for Gaucher disease including small chemical chaperones. Such chaperones facilitate proper enzyme folding and translocation to lysosomes, thereby preventing premature breakdown of the enzyme in the proteasome. This review discusses recent work developing chemical chaperones as a therapy for Gaucher disease, with implications for the treatment of synucleinopathies. It focuses on the development of non-inhibitory glucocerebrosidase chaperones and their therapeutic advantages over inhibitory chaperones, as well as the challenges involved in identifying and validating chemical chaperones. PMID:27098312

  2. The Symbiotic Performance of Chickpea Rhizobia Can Be Improved by Additional Copies of the clpB Chaperone Gene.

    PubMed

    Paço, Ana; Brígido, Clarisse; Alexandre, Ana; Mateos, Pedro F; Oliveira, Solange

    2016-01-01

    The ClpB chaperone is known to be involved in bacterial stress response. Moreover, recent studies suggest that this protein has also a role in the chickpea-rhizobia symbiosis. In order to improve both stress tolerance and symbiotic performance of a chickpea microsymbiont, the Mesorhizobium mediterraneum UPM-Ca36T strain was genetically transformed with pPHU231 containing an extra-copy of the clpB gene. To investigate if the clpB-transformed strain displays an improved stress tolerance, bacterial growth was evaluated under heat and acid stress conditions. In addition, the effect of the extra-copies of the clpB gene in the symbiotic performance was evaluated using plant growth assays (hydroponic and pot trials). The clpB-transformed strain is more tolerant to heat shock than the strain transformed with pPHU231, supporting the involvement of ClpB in rhizobia heat shock tolerance. Both plant growth assays showed that ClpB has an important role in chickpea-rhizobia symbiosis. The nodulation kinetics analysis showed a higher rate of nodule appearance with the clpB-transformed strain. This strain also induced a greater number of nodules and, more notably, its symbiotic effectiveness increased ~60% at pH5 and 83% at pH7, compared to the wild-type strain. Furthermore, a higher frequency of root hair curling was also observed in plants inoculated with the clpB-transformed strain, compared to the wild-type strain. The superior root hair curling induction, nodulation ability and symbiotic effectiveness of the clpB-transformed strain may be explained by an increased expression of symbiosis genes. Indeed, higher transcript levels of the nodulation genes nodA and nodC (~3 folds) were detected in the clpB-transformed strain. The improvement of rhizobia by addition of extra-copies of the clpB gene may be a promising strategy to obtain strains with enhanced stress tolerance and symbiotic effectiveness, thus contributing to their success as crop inoculants, particularly under

  3. Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells.

    PubMed

    Ishima, Tamaki; Fujita, Yuko; Hashimoto, Kenji

    2014-03-15

    The sigma-1 receptor chaperone located in the endoplasmic reticulum (ER) may be implicated in the mechanistic action of some antidepressants. The present study was undertaken to examine whether new antidepressant drugs interact with the sigma-1 receptor chaperone. First, we examined the effects of selective serotonin reuptake inhibitors (SSRIs) (fluvoxamine, paroxetine, sertraline, citalopram and escitalopram), serotonin and noradrenaline reuptake inhibitors (SNRIs) (duloxetine, venlafaxine, milnacipran), and mirtazapine, a noradrenaline and specific serotonergic antidepressant (NaSSA), on [(3)H](+)-pentazocine binding to rat brain membranes. Then, we examined the effects of these drugs on nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. The order of potency for drugs at the sigma-1 receptor chaperone was as follows: fluvoxamine>sertraline>fluoxetine>escitalopram>citalopram>paroxetine>duoxetine. Venlafaxine, milnacipran, and mirtazapine showed very weak affinity for this chaperone. Furthermore, fluvoxamine, fluoxetine, escitalopram, and mirtazapine significantly potentiated NGF-induced neurite outgrowth in cell assays, and the effects of all these drugs, excluding mirtazapine, were antagonized by NE-100, a selective antagonist of the sigma-1 receptor chaperone. Moreover, the effects of fluvoxamine and fluoxetine on neurite outgrowth were also antagonized by sertraline, indicating that sertraline may be an antagonist at the sigma-1 receptor chaperone. The effect of mirtazapine on neurite outgrowth was antagonized by the selective 5-hydroxytryptamine1A receptor antagonist WAY-100635. These findings suggest that activation at the sigma-1 receptor chaperone may be involved in the action of some SSRIs, such as fluvoxamine, fluoxetine and escitalopram. In contrast, mirtazapine independently potentiated neurite outgrowth in PC12 cells, indicating that this beneficial effect may mediate its pharmacological effect.

  4. The role of the cytosolic HSP70 chaperone system in diseases caused by misfolding and aberrant trafficking of ion channels.

    PubMed

    Young, Jason C

    2014-03-01

    Protein-folding diseases are an ongoing medical challenge. Many diseases within this group are genetically determined, and have no known cure. Among the examples in which the underlying cellular and molecular mechanisms are well understood are diseases driven by misfolding of transmembrane proteins that normally function as cell-surface ion channels. Wild-type forms are synthesized and integrated into the endoplasmic reticulum (ER) membrane system and, upon correct folding, are trafficked by the secretory pathway to the cell surface. Misfolded mutant forms traffic poorly, if at all, and are instead degraded by the ER-associated proteasomal degradation (ERAD) system. Molecular chaperones can assist the folding of the cytosolic domains of these transmembrane proteins; however, these chaperones are also involved in selecting misfolded forms for ERAD. Given this dual role of chaperones, diseases caused by the misfolding and aberrant trafficking of ion channels (referred to here as ion-channel-misfolding diseases) can be regarded as a consequence of insufficiency of the pro-folding chaperone activity and/or overefficiency of the chaperone ERAD role. An attractive idea is that manipulation of the chaperones might allow increased folding and trafficking of the mutant proteins, and thereby partial restoration of function. This Review outlines the roles of the cytosolic HSP70 chaperone system in the best-studied paradigms of ion-channel-misfolding disease--the CFTR chloride channel in cystic fibrosis and the hERG potassium channel in cardiac long QT syndrome type 2. In addition, other ion channels implicated in ion-channel-misfolding diseases are discussed.

  5. Functional characterization of the chaperon-like protein Cdc48 in cryptogein-induced immune response in tobacco.

    PubMed

    Rosnoblet, Claire; Bègue, Hervé; Blanchard, Cécile; Pichereaux, Carole; Besson-Bard, Angélique; Aimé, Sébastien; Wendehenne, David

    2017-04-01

    Cdc48, a molecular chaperone conserved in different kingdoms, is a member of the AAA+ family contributing to numerous processes in mammals including proteins quality control and degradation, vesicular trafficking, autophagy and immunity. The functions of Cdc48 plant orthologues are less understood. We previously reported that Cdc48 is regulated by S-nitrosylation in tobacco cells undergoing an immune response triggered by cryptogein, an elicitin produced by the oomycete Phytophthora cryptogea. Here, we inv estigated the function of NtCdc48 in cryptogein signalling and induced hypersensitive-like cell death. NtCdc48 was found to accumulate in elicited cells at both the protein and transcript levels. Interestingly, only a small proportion of the overall NtCdc48 population appeared to be S-nitrosylated. Using gel filtration in native conditions, we confirmed that NtCdc48 was present in its hexameric active form. An immunoprecipitation-based strategy following my mass spectrometry analysis led to the identification of about a hundred NtCdc48 partners and underlined its contribution in cellular processes including targeting of ubiquitylated proteins for proteasome-dependent degradation, subcellular trafficking and redox regulation. Finally, the analysis of cryptogein-induced events in NtCdc48-overexpressing cells highlighted a correlation between NtCdc48 expression and hypersensitive cell death. Altogether, this study identified NtCdc48 as a component of cryptogein signalling and plant immunity.

  6. Dimerization and DNA-dependent aggregation of the Escherichia coli nucleoid protein and chaperone CbpA

    PubMed Central

    Cosgriff, Sarah; Chintakayala, Kiran; Chim, Ya Tsz A; Chen, Xinyong; Allen, Stephanie; Lovering, Andrew L; Grainger, David C

    2010-01-01

    The Escherichia coli curved DNA-binding protein A (CbpA) is a nucleoid-associated DNA-binding factor and chaperone that is expressed at high levels as cells enter stationary phase. Using a combination of genetics, biochemistry, structural modelling and single-molecule atomic force microscopy we have examined dimerization of, and DNA binding by, CbpA. Our data show that CbpA dimerization is driven by a hydrophobic surface comprising amino acid side chains W287 and L290 located on the same side of an α helix close to the C-terminus of CbpA. Derivatives of CbpA that are unable to dimerize are also unable to bind DNA. Free in solution, CbpA can exist as either a monomer or dimer. However, when bound to DNA, CbpA forms large aggregates that can protect DNA from degradation by nucleases. These CbpA–DNA aggregates are similar in morphology to protein–DNA complexes formed by the DNA-binding protein from starved cells (Dps), the only other stationary phase-specific nucleoid protein. Conversely, protein–DNA complexes formed by Fis, the major growth phase nucleoid protein, have a markedly different appearance. PMID:20633229

  7. MITRAC7 Acts as a COX1-Specific Chaperone and Reveals a Checkpoint during Cytochrome c Oxidase Assembly.

    PubMed

    Dennerlein, Sven; Oeljeklaus, Silke; Jans, Daniel; Hellwig, Christin; Bareth, Bettina; Jakobs, Stefan; Deckers, Markus; Warscheid, Bettina; Rehling, Peter

    2015-09-08

    Cytochrome c oxidase, the terminal enzyme of the respiratory chain, is assembled from mitochondria- and nuclear-encoded subunits. The MITRAC complex represents the central assembly intermediate during this process as it receives imported subunits and regulates mitochondrial translation of COX1 mRNA. The molecular processes that promote and regulate the progression of assembly downstream of MITRAC are still unknown. Here, we identify MITRAC7 as a constituent of a late form of MITRAC and as a COX1-specific chaperone. MITRAC7 is required for cytochrome c oxidase biogenesis. Surprisingly, loss of MITRAC7 or an increase in its amount causes selective cytochrome c oxidase deficiency in human cells. We demonstrate that increased MITRAC7 levels stabilize and trap COX1 in MITRAC, blocking progression in the assembly process. In contrast, MITRAC7 deficiency leads to turnover of newly synthesized COX1. Accordingly, MITRAC7 affects the biogenesis pathway by stabilizing newly synthesized COX1 in assembly intermediates, concomitantly preventing turnover.

  8. A dual function for chaperones SSB–RAC and the NAC nascent polypeptide–associated complex on ribosomes

    PubMed Central

    Koplin, Ansgar; Preissler, Steffen; Ilina, Yulia; Koch, Miriam; Scior, Annika; Erhardt, Marc

    2010-01-01

    The yeast Hsp70/40 system SSB–RAC (stress 70 B–ribosome-associated complex) binds to ribosomes and contacts nascent polypeptides to assist cotranslational folding. In this study, we demonstrate that nascent polypeptide–associated complex (NAC), another ribosome-tethered system, is functionally connected to SSB–RAC and the cytosolic Hsp70 network. Simultaneous deletions of genes encoding NAC and SSB caused conditional loss of cell viability under protein-folding stress conditions. Furthermore, NAC mutations revealed genetic interaction with a deletion of Sse1, a nucleotide exchange factor regulating the cytosolic Hsp70 network. Cells lacking SSB or Sse1 showed protein aggregation, which is enhanced by additional loss of NAC; however, these mutants differ in their potential client repertoire. Aggregation of ribosomal proteins and biogenesis factors accompanied by a pronounced deficiency in ribosomal particles and translating ribosomes only occurs in ssbΔ and nacΔssbΔ cells, suggesting that SSB and NAC control ribosome biogenesis. Thus, SSB–RAC and NAC assist protein folding and likewise have important functions for regulation of ribosome levels. These findings emphasize the concept that ribosome production is coordinated with the protein-folding capacity of ribosome-associated chaperones. PMID:20368618

  9. Reversible Interactions of Proteins with Mixed Shell Polymeric Micelles: Tuning the Surface Hydrophobic/Hydrophilic Balance toward Efficient Artificial Chaperones.

    PubMed

    Wang, Jianzu; Song, Yiqing; Sun, Pingchuan; An, Yingli; Zhang, Zhenkun; Shi, Linqi

    2016-03-22

    Molecular chaperones can elegantly fine-tune its hydrophobic/hydrophilic balance to assist a broad spectrum of nascent polypeptide chains to fold properly. Such precious property is difficult to be achieved by chaperone mimicking materials due to limited control of their surface characteristics that dictate interactions with unfolded protein intermediates. Mixed shell polymeric micelles (MSPMs), which consist of two kinds of dissimilar polymeric chains in the micellar shell, offer a convenient way to fine-tune surface properties of polymeric nanoparticles. In the current work, we have fabricated ca. 30 kinds of MSPMs with finely tunable hydrophilic/hydrophobic surface properties. We investigated the respective roles of thermosensitive and hydrophilic polymeric chains in the thermodenaturation protection of proteins down to the molecular structure. Although the three kinds of thermosensitive polymers investigated herein can form collapsed hydrophobic domains on the micellar surface, we found distinct capability to capture and release unfolded protein intermediates, due to their respective affinity for proteins. Meanwhile, in terms of the hydrophilic polymeric chains in the micellar shell, poly(ethylene glycol) (PEG) excels in assisting unfolded protein intermediates to refold properly via interacting with the refolding intermediates, resulting in enhanced chaperone efficiency. However, another hydrophilic polymer-poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) severely deteriorates the chaperone efficiency of MSPMs, due to its protein-resistant properties. Judicious combination of thermosensitive and hydrophilic chains in the micellar shell lead to MSPM-based artificial chaperones with optimal efficacy.

  10. Characterization of the human sigma-1 receptor chaperone domain structure and binding immunoglobulin protein (BiP) interactions.

    PubMed

    Ortega-Roldan, Jose Luis; Ossa, Felipe; Schnell, Jason R

    2013-07-19

    The sigma-1 receptor (S1R) is a ligand-regulated membrane protein chaperone involved in the ER stress response. S1R activity is implicated in diseases of the central nervous system including amnesia, schizophrenia, depression, Alzheimer disease, and addiction. S1R has been shown previously to regulate the Hsp70 binding immunoglobulin protein (BiP) and the inositol triphosphate receptor calcium channel through a C-terminal domain. We have developed methods for bacterial expression and reconstitution of the chaperone domain of human S1R into detergent micelles that enable its study by solution NMR spectroscopy. The chaperone domain is found to contain a helix at the N terminus followed by a largely dynamic region and a structured, helical C-terminal region that encompasses a membrane associated domain containing four helices. The helical region at residues ∼198-206 is strongly amphipathic and proposed to anchor the chaperone domain to micelles and membranes. Three of the helices in the C-terminal region closely correspond to previously identified cholesterol and drug recognition sites. In addition, it is shown that the chaperone domain interacts with full-length BiP or the isolated nucleotide binding domain of BiP, but not the substrate binding domain, suggesting that the nucleotide binding domain is sufficient for S1R interactions.

  11. Differential roles of NF-Y transcription factor in ER chaperone expression and neuronal maintenance in the CNS

    PubMed Central

    Yamanaka, Tomoyuki; Tosaki, Asako; Miyazaki, Haruko; Kurosawa, Masaru; Koike, Masato; Uchiyama, Yasuo; Maity, Sankar N.; Misawa, Hidemi; Takahashi, Ryosuke; Shimogori, Tomomi; Hattori, Nobutaka; Nukina, Nobuyuki

    2016-01-01

    The mammalian central nervous system (CNS) contains various types of neurons with different neuronal functions. In contrast to established roles of cell type-specific transcription factors on neuronal specification and maintenance, whether ubiquitous transcription factors have conserved or differential neuronal function remains uncertain. Here, we revealed that inactivation of a ubiquitous factor NF-Y in different sets of neurons resulted in cell type-specific neuropathologies and gene downregulation in mouse CNS. In striatal and cerebellar neurons, NF-Y inactivation led to ubiquitin/p62 pathologies with downregulation of an endoplasmic reticulum (ER) chaperone Grp94, as we previously observed by NF-Y deletion in cortical neurons. In contrast, NF-Y inactivation in motor neurons induced neuronal loss without obvious protein deposition. Detailed analysis clarified downregulation of another ER chaperone Grp78 in addition to Grp94 in motor neurons, and knockdown of both ER chaperones in motor neurons recapitulated the pathology observed after NF-Y inactivation. Finally, additional downregulation of Grp78 in striatal neurons suppressed ubiquitin accumulation induced by NF-Y inactivation, implying that selective ER chaperone downregulation mediates different neuropathologies. Our data suggest distinct roles of NF-Y in protein homeostasis and neuronal maintenance in the CNS by differential regulation of ER chaperone expression. PMID:27687130

  12. Human protein-disulfide isomerase is a redox-regulated chaperone activated by oxidation of domain a'.

    PubMed

    Wang, Chao; Yu, Jiang; Huo, Lin; Wang, Lei; Feng, Wei; Wang, Chih-chen

    2012-01-06

    Protein-disulfide isomerase (PDI), with domains arranged as abb'xa'c, is a key enzyme and chaperone localized in the endoplasmic reticulum (ER) catalyzing oxidative folding and preventing misfolding/aggregation of proteins. It has been controversial whether the chaperone activity of PDI is redox-regulated, and the molecular basis is unclear. Here, we show that both the chaperone activity and the overall conformation of human PDI are redox-regulated. We further demonstrate that the conformational changes are triggered by the active site of domain a', and the minimum redox-regulated cassette is located in b'xa'. The structure of the reduced bb'xa' reveals for the first time that domain a' packs tightly with both domain b' and linker x to form one compact structural module. Oxidation of domain a' releases the compact conformation and exposes the shielded hydrophobic areas to facilitate its high chaperone activity. Thus, the study unequivocally provides mechanistic insights into the redox-regulated chaperone activity of human PDI.

  13. Human Protein-disulfide Isomerase Is a Redox-regulated Chaperone Activated by Oxidation of Domain a′*

    PubMed Central

    Wang, Chao; Yu, Jiang; Huo, Lin; Wang, Lei; Feng, Wei; Wang, Chih-chen

    2012-01-01

    Protein-disulfide isomerase (PDI), with domains arranged as abb′xa′c, is a key enzyme and chaperone localized in the endoplasmic reticulum (ER) catalyzing oxidative folding and preventing misfolding/aggregation of proteins. It has been controversial whether the chaperone activity of PDI is redox-regulated, and the molecular basis is unclear. Here, we show that both the chaperone activity and the overall conformation of human PDI are redox-regulated. We further demonstrate that the conformational changes are triggered by the active site of domain a′, and the minimum redox-regulated cassette is located in b′xa′. The structure of the reduced bb′xa′ reveals for the first time that domain a′ packs tightly with both domain b′ and linker x to form one compact structural module. Oxidation of domain a′ releases the compact conformation and exposes the shielded hydrophobic areas to facilitate its high chaperone activity. Thus, the study unequivocally provides mechanistic insights into the redox-regulated chaperone activity of human PDI. PMID:22090031

  14. Cyclic lipopeptide antibiotics bind to the N-terminal domain of the prokaryotic Hsp90 to inhibit the chaperone activity.

    PubMed

    Minagawa, Shun; Kondoh, Yasumitsu; Sueoka, Keigo; Osada, Hiroyuki; Nakamoto, Hitoshi

    2011-04-01

    Chemical arrays were employed to screen ligands for HtpG, the prokaryotic homologue of Hsp (heat-shock protein) 90. We found that colistins and the closely related polymyxin B interact physically with HtpG. They bind to the N-terminal domain of HtpG specifically without affecting its ATPase activity. The interaction caused inhibition of chaperone function of HtpG that suppresses thermal aggregation of substrate proteins. Further studies were performed with one of these cyclic lipopeptide antibiotics, colistin sulfate salt. It inhibited the chaperone function of the N-terminal domain of HtpG. However, it inhibited neither the chaperone function of the middle domain of HtpG nor that of other molecular chaperones such as DnaK, the prokaryotic homologue of Hsp70, and small Hsp. The addition of colistin sulfate salt increased surface hydrophobicity of the N-terminal domain of HtpG and induced oligomerization of HtpG and its N-terminal domain. These structural changes are discussed in relation to the inhibition of the chaperone function.

  15. Characterization of the Human Sigma-1 Receptor Chaperone Domain Structure and Binding Immunoglobulin Protein (BiP) Interactions*

    PubMed Central

    Ortega-Roldan, Jose Luis; Ossa, Felipe; Schnell, Jason R.

    2013-01-01

    The sigma-1 receptor (S1R) is a ligand-regulated membrane protein chaperone involved in the ER stress response. S1R activity is implicated in diseases of the central nervous system including amnesia, schizophrenia, depression, Alzheimer disease, and addiction. S1R has been shown previously to regulate the Hsp70 binding immunoglobulin protein (BiP) and the inositol triphosphate receptor calcium channel through a C-terminal domain. We have developed methods for bacterial expression and reconstitution of the chaperone domain of human S1R into detergent micelles that enable its study by solution NMR spectroscopy. The chaperone domain is found to contain a helix at the N terminus followed by a largely dynamic region and a structured, helical C-terminal region that encompasses a membrane associated domain containing four helices. The helical region at residues ∼198–206 is strongly amphipathic and proposed to anchor the chaperone domain to micelles and membranes. Three of the helices in the C-terminal region closely correspond to previously identified cholesterol and drug recognition sites. In addition, it is shown that the chaperone domain interacts with full-length BiP or the isolated nucleotide binding domain of BiP, but not the substrate binding domain, suggesting that the nucleotide binding domain is sufficient for S1R interactions. PMID:23760505

  16. Cloning Expression Purification Crystallization and Preliminary X-ray Diffractino Studies of a 12R-LOX-chaperone Complex

    SciTech Connect

    G Deb; K Boeshanes; W Idler; B Ahvazi

    2011-12-31

    Lipoxygenases are a family of nonheme iron-containing dioxygenases. An Escherichia coli expression system producing the bacterial chaperones GroES and GroEL was engineered and successfully used to produce large quantities of recombinant human 12R-LOX (LOXR; MW 80.34 kDa; 701 amino-acid residues). The co-overproduction of the two chaperones with 12R-LOX resulted in increased solubility of 12R-LOX and allowed the purification of milligram amounts of active enzyme for structural studies by X-ray diffraction. The lipoxygenase protein was purified on an affinity column and a gel-filtration column with chaperone protein (MW 57.16 kDa). The LOXR-chaperone complex was crystallized with ligand by the hanging-drop vapor-diffusion method using 1.5 M ammonium hydrogen phosphate as precipitant. The crystals belonged to the monoclinic system, space group P2{sub 1}, with unit-cell parameters a = 138.97, b = 266.11, c = 152.26 {angstrom}, {beta} = 101.07{sup o}. Based on the calculated Matthews coefficient (3.1 {angstrom}3 Da{sup -1}), it is estimated that one molecule of LOXR complexed with two molecules of chaperone is present in the asymmetric unit of the crystal lattice. X-ray diffraction data were collected to 4 {angstrom} resolution using synchrotron radiation.

  17. The Escherichia coli P and Type 1 Pilus Assembly Chaperones PapD and FimC Are Monomeric in Solution

    PubMed Central

    Sarowar, Samema; Hu, Olivia J.; Werneburg, Glenn T.; Thanassi, David G.

    2016-01-01

    ABSTRACT The chaperone/usher pathway is used by Gram-negative bacteria to assemble adhesive surface structures known as pili or fimbriae. Uropathogenic strains of Escherichia coli use this pathway to assemble P and type 1 pili, which facilitate colonization of the kidney and bladder, respectively. Pilus assembly requires a periplasmic chaperone and outer membrane protein termed the usher. The chaperone allows folding of pilus subunits and escorts the subunits to the usher for polymerization into pili and secretion to the cell surface. Based on previous structures of mutant versions of the P pilus chaperone PapD, it was suggested that the chaperone dimerizes in the periplasm as a self-capping mechanism. Such dimerization is counterintuitive because the chaperone G1 strand, important for chaperone-subunit interaction, is buried at the dimer interface. Here, we show that the wild-type PapD chaperone also forms a dimer in the crystal lattice; however, the dimer interface is different from the previously solved structures. In contrast to the crystal structures, we found that both PapD and the type 1 pilus chaperone, FimC, are monomeric in solution. Our findings indicate that pilus chaperones do not sequester their G1 β-strand by forming a dimer. Instead, the chaperones may expose their G1 strand for facile interaction with pilus subunits. We also found that the type 1 pilus adhesin, FimH, is flexible in solution while in complex with its chaperone, whereas the P pilus adhesin, PapGII, is rigid. Our study clarifies a crucial step in pilus biogenesis and reveals pilus-specific differences that may relate to biological function. IMPORTANCE Pili are critical virulence factors for many bacterial pathogens. Uropathogenic E. coli relies on P and type 1 pili assembled by the chaperone/usher pathway to adhere to the urinary tract and establish infection. Studying pilus assembly is important for understanding mechanisms of protein secretion, as well as for identifying points for

  18. New therapeutic approaches for Krabbe disease: The potential of pharmacological chaperones

    PubMed Central

    Spratley, Samantha J.

    2016-01-01

    Missense mutations in the lysosomal hydrolase β‐galactocerebrosidase (GALC) account for at least 40% of known cases of Krabbe disease (KD). Most of these missense mutations are predicted to disrupt the fold of the enzyme, preventing GALC in sufficient amounts from reaching its site of action in the lysosome. The predominant central nervous system (CNS) pathology and the absence of accumulated primary substrate within the lysosome mean that strategies used to treat other lysosomal storage disorders (LSDs) are insufficient in KD, highlighting the still unmet clinical requirement for successful KD therapeutics. Pharmacological chaperone therapy (PCT) is one strategy being explored to overcome defects in GALC caused by missense mutations. In recent studies, several small‐molecule inhibitors have been identified as promising chaperone candidates for GALC. This Review discusses new insights gained from these studies and highlights the importance of characterizing both the chaperone interaction and the underlying mutation to define properly a responsive population and to improve the translation of existing lead molecules into successful KD therapeutics. We also highlight the importance of using multiple complementary methods to monitor PCT effectiveness. Finally, we explore the exciting potential of using combination therapy to ameliorate disease through the use of PCT with existing therapies or with more generalized therapeutics, such as proteasomal inhibition, that have been shown to have synergistic effects in other LSDs. This, alongside advances in CNS delivery of recombinant enzyme and targeted rational drug design, provides a promising outlook for the development of KD therapeutics. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc. PMID:27638604

  19. Transcription initiation factor IID-interactive histone chaperone CIA-II implicated in mammalian spermatogenesis.

    PubMed

    Umehara, Takashi; Horikoshi, Masami

    2003-09-12

    Histones are thought to have specific roles in mammalian spermatogenesis, because several subtypes of histones emerge that are post-translationally modified during spermatogenesis. Though regular assembly of nucleosome is guaranteed by histone chaperones, their involvement in spermatogenesis is yet to be characterized. Here we identified a histone chaperone-related factor, which we designated as CCG1-interacting factor A-II (CIA-II), through interaction with bromodomains of TAFII250/CCG1, which is the largest subunit of human transcription initiation factor IID (TFIID). We found that human CIA-II (hCIA-II) localizes in HeLa nuclei and is highly expressed in testis and other proliferating cell-containing tissues. Expression of mouse CIA-II (mCIA-II) does not occur in the germ cell-lacking testes of adult WBB6F1-W/Wv mutant mice, indicating its expression in testis to be specific to germ cells. Fractionation of testicular germ cells revealed that mCIA-II transcripts accumulate in pachytene spermatocytes but not in spermatids. In addition, the mCIA-II transcripts in testis were present as early as 4 days after birth and decreased at 56 days after birth. These findings indicate that mCIA-II expression in testis is restricted to premeiotic to meiotic stages during spermatogenesis. Also, we found that hCIA-II interacts with histone H3 in vivo and with histones H3/H4 in vitro and that it facilitates supercoiling of circular DNA when it is incubated with core histones and topoisomerase I in vitro. These data suggest that CIA-II is a histone chaperone and is implicated in the regulation of mammalian spermatogenesis.

  20. Tubulin-specific Chaperones: Components of a Molecular Machine that Assembles the α/β Heterodimer

    PubMed Central

    Tian, Guoling; Cowan, Nicholas J.

    2016-01-01

    The tubulin heterodimer consists of one α- and one β-tubulin polypeptide. Neither protein can partition to the native state or assemble into polymerization competent heterodimers without the concerted action of a series of chaperone proteins including five tubulin-specific chaperones termed TBCA-TBCE. TBCA and TBCB bind to and stabilize newly synthesized quasi-native β- and α-tubulin polypeptides following their generation via multiple rounds of ATP-dependent interaction with the cytosolic chaperonin, CCT. There is free exchange β-tubulin between TBCA and TBCD, and of α-tubulin between TBCB and TBCE, resulting in the formation of TBCD/β and TBCE/α, respectively. The latter two complexes interact, forming a supercomplex (TBCD/α/TBCD/β). Discharge of the native α/β heterodimer occurs via interaction of the supercomplex with TBCC, which results in the triggering of TBC-bound β-tubulin-bound (E-site) GTP hydrolysis. This reaction acts as a switch for disassembly of the supercomplex and the release of GDP-bound heterodimer, which becomes polymerization competent following spontaneous E-site exchange with GTP. The tubulin-specific chaperones thus function together as a tubulin assembly machine, marrying the α- and β-tubulin subunits into a tightly associated heterodimer. The existence of this evolutionarily conserved pathway explains why it has never proved possible to isolate α- or β-tubulin as stable independent entities in the absence of their cognate partners, and implies that each exists and is maintained in the heterodimer in a non-minimal energy state. Here we describe methods for the purification of recombinant TBC’s as biologically active proteins following their expression in a variety of host/vector systems. PMID:23973072

  1. Functional Analysis of the Hsp93/ClpC Chaperone at the Chloroplast Envelope.

    PubMed

    Flores-Pérez, Úrsula; Bédard, Jocelyn; Tanabe, Noriaki; Lymperopoulos, Panagiotis; Clarke, Adrian K; Jarvis, Paul

    2016-01-01

    The Hsp100-type chaperone Hsp93/ClpC has crucial roles in chloroplast biogenesis. In addition to its role in proteolysis in the stroma, biochemical and genetic evidence led to the hypothesis that this chaperone collaborates with the inner envelope TIC complex to power preprotein import. Recently, it was suggested that Hsp93, working together with the Clp proteolytic core, can confer a protein quality control mechanism at the envelope. Thus, the role of envelope-localized Hsp93, and the mechanism by which it participates in protein import, remain unclear. To analyze the function of Hsp93 in protein import independently of its ClpP association, we created a mutant of Hsp93 affecting its ClpP-binding motif (PBM) (Hsp93[P-]), which is essential for the chaperone's interaction with the Clp proteolytic core. The Hsp93[P-] construct was ineffective at complementing the pale-yellow phenotype of hsp93 Arabidopsis (Arabidopsis thaliana) mutants, indicating that the PBM is essential for Hsp93 function. As expected, the PBM mutation negatively affected the degradation activity of the stromal Clp protease. The mutation also disrupted association of Hsp93 with the Clp proteolytic core at the envelope, without affecting the envelope localization of Hsp93 itself or its association with the TIC machinery, which we demonstrate to be mediated by a direct interaction with Tic110. Nonetheless, Hsp93[P-] expression did not detectably improve the protein import efficiency of hsp93 mutant chloroplasts. Thus, our results do not support the proposed function of Hsp93 in protein import propulsion, but are more consistent with the notion of Hsp93 performing a quality control role at the point of import.

  2. HSP33 in eukaryotes - an evolutionary tale of a chaperone adapted to photosynthetic organisms.

    PubMed

    Segal, Na'ama; Shapira, Michal

    2015-06-01

    HSP33 was originally identified in bacteria as a redox-sensitive chaperone that protects unfolded proteins from aggregation. Here, we describe a eukaryote ortholog of HSP33 from the green algae Chlamydomonas reinhardtii, which appears to play a protective role under light-induced oxidizing conditions. The algal HSP33 exhibits chaperone activity, as shown by citrate synthase aggregation assays. Studies from the Jakob laboratory established that activation of the bacterial HSP33 upon its oxidation initiates by the release of pre-bound Zn from the well conserved Zn-binding motif Cys-X-Cys-Xn -Cys-X-X-Cys, and is followed by significant structural changes (Reichmann et al., ). Unlike the bacterial protein, the HSP33 from C. reinhardtii had lost the first cysteine residue of its center, diminishing Zn-binding activity under all conditions. As a result, the algal protein can be easily activated by minor structural changes in response to oxidation and/or excess heat. An attempt to restore the missing first cysteine did not have a major effect on Zn-binding and on the mode of activation. Replacement of all remaining cysteines abolished completely any residual Zn binding, although the chaperone activation was maintained. A phylogenetic analysis of the algal HSP33 showed that it clusters with the cyanobacterial protein, in line with its biochemical localization to the chloroplast. Indeed, expression of the algal HSP33 increases in response to light-induced oxidative stress, which is experienced routinely by photosynthetic organisms. Despite the fact that no ortholog could be found in higher eukaryotes, its abundance in all algal species examined could have a biotechnological relevance.

  3. Secreted protein acidic and rich in cysteine is a matrix scavenger chaperone.

    PubMed

    Chlenski, Alexandre; Guerrero, Lisa J; Salwen, Helen R; Yang, Qiwei; Tian, Yufeng; Morales La Madrid, Andres; Mirzoeva, Salida; Bouyer, Patrice G; Xu, David; Walker, Matthew; Cohn, Susan L

    2011-01-01

    Secreted Protein Acidic and Rich in Cysteine (SPARC) is one of the major non-structural proteins of the extracellular matrix (ECM) in remodeling tissues. The functional significance of SPARC is emphasized by its origin in the first multicellular organisms and its high degree of evolutionary conservation. Although SPARC has been shown to act as a critical modulator of ECM remodeling with profound effects on tissue physiology and architecture, no plausible molecular mechanism of its action has been proposed. In the present study, we demonstrate that SPARC mediates the disassembly and degradation of ECM networks by functioning as a matricellular chaperone. While it has low affinity to its targets inside the cells where the Ca(2+) concentrations are low, high extracellular concentrations of Ca(2+) activate binding to multiple ECM proteins, including collagens. We demonstrated that in vitro, this leads to the inhibition of collagen I fibrillogenesis and disassembly of pre-formed collagen I fibrils by SPARC at high Ca(2+) concentrations. In cell culture, exogenous SPARC was internalized by the fibroblast cells in a time- and concentration-dependent manner. Pulse-chase assay further revealed that internalized SPARC is quickly released outside the cell, demonstrating that SPARC shuttles between the cell and ECM. Fluorescently labeled collagen I, fibronectin, vitronectin, and laminin were co-internalized with SPARC by fibroblasts, and semi-quantitative Western blot showed that SPARC mediates internalization of collagen I. Using a novel 3-dimensional model of fluorescent ECM networks pre-deposited by live fibroblasts, we demonstrated that degradation of ECM depends on the chaperone activity of SPARC. These results indicate that SPARC may represent a new class of scavenger chaperones, which mediate ECM degradation, remodeling and repair by disassembling ECM networks and shuttling ECM proteins into the cell. Further understanding of this mechanism may provide insight into the

  4. Chaperone-enhanced purification of unconventional myosin 15, a molecular motor specialized for stereocilia protein trafficking

    PubMed Central

    Bird, Jonathan E.; Takagi, Yasuharu; Billington, Neil; Strub, Marie-Paule; Sellers, James R.; Friedman, Thomas B.

    2014-01-01

    Unconventional myosin 15 is a molecular motor expressed in inner ear hair cells that transports protein cargos within developing mechanosensory stereocilia. Mutations of myosin 15 cause profound hearing loss in humans and mice; however, the properties of this motor and its regulation within the stereocilia organelle are unknown. To address these questions, we expressed a subfragment 1-like (S1) truncation of mouse myosin 15, comprising the predicted motor domain plus three light-chain binding sites. Following unsuccessful attempts to express functional myosin 15-S1 using the Spodoptera frugiperda (Sf9)-baculovirus system, we discovered that coexpression of the muscle-myosin–specific chaperone UNC45B, in addition to the chaperone heat-shock protein 90 (HSP90) significantly increased the yield of functional protein. Surprisingly, myosin 15-S1 did not bind calmodulin with high affinity. Instead, the IQ domains bound essential and regulatory light chains that are normally associated with class II myosins. We show that myosin 15-S1 is a barbed-end–directed motor that moves actin filaments in a gliding assay (∼430 nm·s−1 at 30 °C), using a power stroke of 7.9 nm. The maximum ATPase rate (kcat ∼6 s−1) was similar to the actin-detachment rate (kdet = 6.2 s−1) determined in single molecule optical trapping experiments, indicating that myosin 15-S1 was rate limited by transit through strongly actin-bound states, similar to other processive myosin motors. Our data further indicate that in addition to folding muscle myosin, UNC45B facilitates maturation of an unconventional myosin. We speculate that chaperone coexpression may be a simple method to optimize the purification of other myosin motors from Sf9 insect cells. PMID:25114250

  5. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress

    PubMed Central

    Liang, Jingjing; Sagum, Cari A.; Bedford, Mark T.; Sudol, Marius; Han, Ziying

    2017-01-01

    Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles. PMID:28076420

  6. Liposomes as chaperone mimics with controllable affinity toward heat-denatured formate dehydrogenase from Candida boidinii.

    PubMed

    Yoshimoto, Makoto; Kozono, Ryohei; Tsubomura, Naoki

    2015-01-20

    Chaperone machinery in living systems can catch denatured enzymes and induce their reactivation. Chaperone mimics are beneficial for applying enzymatic reactions in vitro. In this work, the affinity between liposomes and thermally denatured enzymes was controlled to stabilize the enzyme activity. The model enzyme is formate dehydrogenase from Candida boidinii (CbFDH) which is a homodimer and negatively charged in the phosphate buffer solution (pH 7.2) used. The activity of free CbFDH readily decreased at 58 °C following the first-order kinetics with the half-life t1/2 of 27 min. The turbidity measurements showed that the denatured enzyme molecules formed aggregates. The liposomes composed of zwitterionic phosphatidylcholines (PCs) stabilized the CbFDH activity at 58 °C, as revealed with six different PCs. The PC liposomes were indicated to bind to the aggregate-prone enzyme molecules, allowing reactivation at 25 °C. The cofactor β-reduced nicotinamide adenine dinucleotide (NADH) also stabilized the enzyme activity. The affinity between liposomes and denatured CbFDH could be modulated by incorporating cationic 1,2-dioleoyloxy-3-trimethylammonium propane chloride (DOTAP) in PC membranes. The t1/2 values significantly increased in the presence of liposomes ([lipid] = 1.5 mM) composed of PC and DOTAP at the mole fraction f(D) of 0.1. On the other hand, the DOTAP-rich liposomes (f(D) ≥ 0.7) showed strong affinity toward denatured CbFDH, accelerating its deactivation. The liposomes with low charge density function as chaperone mimics that can efficiently catch the denatured enzymes without interfering with their intramolecular interaction for reactivation.

  7. The G Protein α Chaperone Ric-8 as a Potential Therapeutic Target

    PubMed Central

    Papasergi, Makaía M.; Patel, Bharti R.

    2015-01-01

    Resistance to inhibitors of cholinesterase (Ric-8)A and Ric-8B are essential genes that encode positive regulators of heterotrimeric G protein α subunits. Controversy persists surrounding the precise way(s) that Ric-8 proteins affect G protein biology and signaling. Ric-8 proteins chaperone nucleotide-free Gα-subunit states during biosynthetic protein folding prior to G protein heterotrimer assembly. In organisms spanning the evolutionary window of Ric-8 expression, experimental perturbation of Ric-8 genes results in reduced functional abundances of G proteins because G protein α subunits are misfolded and degraded rapidly. Ric-8 proteins also act as Gα-subunit guanine nucleotide exchange factors (GEFs) in vitro. However, Ric-8 GEF activity could strictly be an in vitro phenomenon stemming from the ability of Ric-8 to induce partial Gα unfolding, thereby enhancing GDP release. Ric-8 GEF activity clearly differs from the GEF activity of G protein–coupled receptors (GPCRs). G protein βγ is inhibitory to Ric-8 action but obligate for receptors. It remains an open question whether Ric-8 has dual functions in cells and regulates G proteins as both a molecular chaperone and GEF. Clearly, Ric-8 has a profound influence on heterotrimeric G protein function. For this reason, we propose that Ric-8 proteins are as yet untested therapeutic targets in which pharmacological inhibition of the Ric-8/Gα protein–protein interface could serve to attenuate the effects of disease-causing G proteins (constitutively active mutants) and/or GPCR signaling. This minireview will chronicle the understanding of Ric-8 function, provide a comparative discussion of the Ric-8 molecular chaperoning and GEF activities, and support the case for why Ric-8 proteins should be considered potential targets for development of new therapies. PMID:25319541

  8. Effects of pH and Iminosugar Pharmacological Chaperones on Lysosomal Glycosidase Structure and Stability

    SciTech Connect

    Lieberman, Raquel L.; D’aquino, J. Alejandro; Ringe, Dagmar; Petsko, Gregory A.

    2009-06-05

    Human lysosomal enzymes acid-{beta}-glucosidase (GCase) and acid-{alpha}-galactosidase ({alpha}-Gal A) hydrolyze the sphingolipids glucosyl- and globotriaosylceramide, respectively, and mutations in these enzymes lead to the lipid metabolism disorders Gaucher and Fabry disease, respectively. We have investigated the structure and stability of GCase and {alpha}-Gal A in a neutral-pH environment reflective of the endoplasmic reticulum and an acidic-pH environment reflective of the lysosome. These details are important for the development of pharmacological chaperone therapy for Gaucher and Fabry disease, in which small molecules bind mutant enzymes in the ER to enable the mutant enzyme to meet quality control requirements for lysosomal trafficking. We report crystal structures of apo GCase at pH 4.5, at pH 5.5, and in complex with the pharmacological chaperone isofagomine (IFG) at pH 7.5. We also present thermostability analysis of GCase at pH 7.4 and 5.2 using differential scanning calorimetry. We compare our results with analogous experiments using {alpha}-Gal A and the chaperone 1-deoxygalactonijirimycin (DGJ), including the first structure of {alpha}-Gal A with DGJ. Both GCase and {alpha}-Gal A are more stable at lysosomal pH with and without their respective iminosugars bound, and notably, the stability of the GCase-IFG complex is pH sensitive. We show that the conformations of the active site loops in GCase are sensitive to ligand binding but not pH, whereas analogous galactose- or DGJ-dependent conformational changes in {alpha}-Gal A are not seen. Thermodynamic parameters obtained from {alpha}-Gal A unfolding indicate two-state, van't Hoff unfolding in the absence of the iminosugar at neutral and lysosomal pH, and non-two-state unfolding in the presence of DGJ. Taken together, these results provide insight into how GCase and {alpha}-Gal A are thermodynamically stabilized by iminosugars and suggest strategies for the development of new pharmacological

  9. The Mitochondrial Chaperone TRAP1 Promotes Neoplastic Growth by Inhibiting Succinate Dehydrogenase

    PubMed Central

    Sciacovelli, Marco; Guzzo, Giulia; Morello, Virginia; Frezza, Christian; Zheng, Liang; Nannini, Nazarena; Calabrese, Fiorella; Laudiero, Gabriella; Esposito, Franca; Landriscina, Matteo; Defilippi, Paola; Bernardi, Paolo; Rasola, Andrea

    2013-01-01

    Summary We report that the mitochondrial chaperone TRAP1, which is induced in most tumor types, is required for neoplastic growth and confers transforming potential to noncancerous cells. TRAP1 binds to and inhibits succinate dehydrogenase (SDH), the complex II of the respiratory chain. The respiratory downregulation elicited by TRAP1 interaction with SDH promotes tumorigenesis by priming the succinate-dependent stabilization of the proneoplastic transcription factor HIF1α independently of hypoxic conditions. These findings provide a mechanistic clue to explain the switch to aerobic glycolysis of tumors and identify TRAP1 as a promising antineoplastic target. PMID:23747254

  10. Membrane chaperoning by members of the PspA/IM30 protein family

    PubMed Central

    Thurotte, Adrien; Brüser, Thomas; Mascher, Thorsten; Schneider, Dirk

    2017-01-01

    ABSTRACT PspA, IM30 (Vipp1) and LiaH, which all belong to the PspA/IM30 protein family, form high molecular weight oligomeric structures. For all proteins membrane binding and protection of the membrane structure and integrity has been shown or postulated. Here we discuss the possible membrane chaperoning activity of PspA, IM30 and LiaH and propose that larger oligomeric structures bind to stressed membrane regions, followed by oligomer disassembly and membrane stabilization by protein monomers or smaller/different oligomeric scaffolds.

  11. The wonderous chaperones: A highlight on therapeutics of cancer and potentially malignant disorders.

    PubMed

    Tyagi, Nutan; Tyagi, Rishi

    2015-01-01

    Diverse environmental and physiological factors are known to induce the transcription of a set of genes encoding special protective molecules known as "molecular chaperones" within our cells. Literature abounds in evidence regarding the varied roles; these "guides" can effectively perform in our system. Highly conserved through evolution, from the prokaryotes to the eukaryotes, these make perfect study tools for verifying their role in both the pathogenesis as well as the therapeutics of varied neurodegenerative, autoimmune and potentially malignant disorders and varied cancer states. We present a concise review of this ever dynamic molecule, highlighting the probable role in a potentially malignant disorder, oral lichen planus.

  12. Substrate and Substrate-Mimetic Chaperone Binding Sites in Human α-Galactosidase A Revealed by Affinity-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Moise, Adrian; Maeser, Stefan; Rawer, Stephan; Eggers, Frederike; Murphy, Mary; Bornheim, Jeff; Przybylski, Michael

    2016-06-01

    Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects.

  13. The early-onset torsion dystonia-associated protein, torsinA, displays molecular chaperone activity in vitro

    PubMed Central

    Burdette, Alexander J.; Churchill, Perry F.; Caldwell, Guy A.

    2010-01-01

    TorsinA is a member of the AAA+ ATPase family of proteins and, notably, is the only known ATPase localized to the ER lumen. It has been suggested to act as a molecular chaperone, while a mutant form associated with early-onset torsion dystonia, a dominantly inherited movement disorder, appears to result in a net loss of function in vivo. Thus far, no studies have examined the chaperone activity of torsinA in vitro. Here we expressed and purified both wild-type (WT) and mutant torsinA fusion proteins in bacteria and examined their ability to function as molecular chaperones by monitoring suppression of luciferase and citrate synthase (CS) aggregation. We also assessed their ability to hold proteins in an intermediate state for refolding. As measured by light scattering and SDS-PAGE, both WT and mutant torsinA effectively, and similarly, suppressed protein aggregation compared to controls. This function was not further enhanced by the presence of ATP. Further, we found that while neither form of torsinA could protect CS from heat-induced inactivation, they were both able to reactivate luciferase when ATP and rabbit reticulocyte lysate were added. This suggests that torsinA holds luciferase in an intermediate state, which can then be refolded in the presence of other chaperones. These data provide conclusive evidence that torsinA acts as a molecular chaperone in vitro and suggests that early-onset torsion dystonia is likely not a consequence of a loss in torsinA chaperone activity but might be an outcome of insufficient torsinA localization at the ER to manage protein folding or trafficking. PMID:20169475

  14. Acid-denatured Green Fluorescent Protein (GFP) as model substrate to study the chaperone activity of protein disulfide isomerase.

    PubMed

    Mares, Rosa E; Meléndez-López, Samuel G; Ramos, Marco A

    2011-01-01

    Green fluorescent protein (GFP) has been widely used in several molecular and cellular biology applications, since it is remarkably stable in vitro and in vivo. Interestingly, native GFP is resistant to the most common chemical denaturants; however, a low fluorescence signal has been observed after acid-induced denaturation. Furthermore, this acid-denatured GFP has been used as substrate in studies of the folding activity of some bacterial chaperones and other chaperone-like molecules. Protein disulfide isomerase enzymes, a family of eukaryotic oxidoreductases that catalyze the oxidation and isomerization of disulfide bonds in nascent polypeptides, play a key role in protein folding and it could display chaperone activity. However, contrasting results have been reported using different proteins as model substrates. Here, we report the further application of GFP as a model substrate to study the chaperone activity of protein disulfide isomerase (PDI) enzymes. Since refolding of acid-denatured GFP can be easily and directly monitored, a simple micro-assay was used to study the effect of the molecular participants in protein refolding assisted by PDI. Additionally, the effect of a well-known inhibitor of PDI chaperone activity was also analyzed. Because of the diversity their functional activities, PDI enzymes are potentially interesting drug targets. Since PDI may be implicated in the protection of cells against ER stress, including cancer cells, inhibitors of PDI might be able to enhance the efficacy of cancer chemotherapy; furthermore, it has been demonstrated that blocking the reductive cleavage of disulfide bonds of proteins associated with the cell surface markedly reduces the infectivity of the human immunodeficiency virus. Although several high-throughput screening (HTS) assays to test PDI reductase activity have been described, we report here a novel and simple micro-assay to test the chaperone activity of PDI enzymes, which is amenable for HTS of PDI

  15. Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone

    PubMed Central

    Xia, Hongjie; Wang, Peipei; Wang, Guang-Chuan; Yang, Jie; Sun, Xianlin; Wu, Wenzhe; Qiu, Yang; Shu, Ting; Zhao, Xiaolu; Yin, Lei; Qin, Cheng-Feng; Hu, Yuanyang; Zhou, Xi

    2015-01-01

    RNA helicases and chaperones are the two major classes of RNA remodeling proteins, which function to remodel RNA structures and/or RNA-protein interactions, and are required for all aspects of RNA metabolism. Although some virus-encoded RNA helicases/chaperones have been predicted or identified, their RNA remodeling activities in vitro and functions in the viral life cycle remain largely elusive. Enteroviruses are a large group of positive-stranded RNA viruses in the Picornaviridae family, which includes numerous important human pathogens. Herein, we report that the nonstructural protein 2CATPase of enterovirus 71 (EV71), which is the major causative pathogen of hand-foot-and-mouth disease and has been regarded as the most important neurotropic enterovirus after poliovirus eradication, functions not only as an RNA helicase that 3′-to-5′ unwinds RNA helices in an adenosine triphosphate (ATP)-dependent manner, but also as an RNA chaperone that destabilizes helices bidirectionally and facilitates strand annealing and complex RNA structure formation independently of ATP. We also determined that the helicase activity is based on the EV71 2CATPase middle domain, whereas the C-terminus is indispensable for its RNA chaperoning activity. By promoting RNA template recycling, 2CATPase facilitated EV71 RNA synthesis in vitro; when 2CATPase helicase activity was impaired, EV71 RNA replication and virion production were mostly abolished in cells, indicating that 2CATPase-mediated RNA remodeling plays a critical role in the enteroviral life cycle. Furthermore, the RNA helicase and chaperoning activities of 2CATPase are also conserved in coxsackie A virus 16 (CAV16), another important enterovirus. Altogether, our findings are the first to demonstrate the RNA helicase and chaperoning activities associated with enterovirus 2CATPase, and our study provides both in vitro and cellular evidence for their potential roles during viral RNA replication. These findings increase our

  16. Delay of diabetic cataract in rats by the antiglycating potential of cumin through modulation of alpha-crystallin chaperone activity.

    PubMed

    Kumar, Pasupulati Anil; Reddy, Paduru Yadagiri; Srinivas, P N B S; Reddy, Geereddy Bhanuprakash

    2009-07-01

    alpha-Crystallin, a molecular chaperone of the eye lens, plays an important role in maintaining the transparency of the lens by preventing the aggregation/inactivation of several proteins and enzymes in addition to its structural role. alpha-Crystallin is a long-lived protein and is susceptible to several posttranslational modifications during aging, more so in certain clinical conditions such as diabetes. Nonenzymatic glycation of lens proteins and decline in the chaperone-like function of alpha-crystallin have been reported in diabetic conditions. Therefore, inhibitors of nonenzymatic protein glycation appear to be a potential target to preserve the chaperone activity of alpha-crystallin and to combat cataract under hyperglycemic conditions. In this study, we investigated the antiglycating potential of cumin in vitro and its ability to modulate the chaperone-like activity of alpha-crystallin vis-à-vis the progression of diabetic cataract in vivo. Aqueous extract of cumin was tested for its antiglycating ability against fructose-induced glycation of goat lens total soluble protein (TSP), alpha-crystallin from goat lens and a nonlenticular protein bovine serum albumin (BSA). The antiglycating potential of cumin was also investigated by feeding streptozotocin (STZ)-induced diabetic rats with diet containing 0.5% cumin powder. The aqueous extract of cumin prevented in vitro glycation of TSP, alpha-crystallin and BSA. Slit lamp examination revealed that supplementation of cumin delayed progression and maturation of STZ-induced cataract in rats. Cumin was effective in preventing glycation of TSP and alpha-crystallin in diabetic lens. Interestingly, feeding of cumin to diabetic rats not only prevented loss of chaperone activity but also attenuated the structural changes of alpha-crystallin in lens. These results indicated that cumin has antiglycating properties that may be attributed to the modulation of chaperone activity of alpha-crystallin, thus delaying cataract in

  17. Chemical chaperone treatment reduces intracellular accumulation of mutant collagen IV and ameliorates the cellular phenotype of a COL4A2 mutation that causes haemorrhagic stroke.

    PubMed

    Murray, Lydia S; Lu, Yinhui; Taggart, Aislynn; Van Regemorter, Nicole; Vilain, Catheline; Abramowicz, Marc; Kadler, Karl E; Van Agtmael, Tom

    2014-01-15

    Haemorrhagic stroke accounts for ∼20% of stroke cases and porencephaly is a clinical consequence of perinatal cerebral haemorrhaging. Here, we report the identification of a novel dominant G702D mutation in the collagen domain of COL4A2 (collagen IV alpha chain 2) in a family displaying porencephaly with reduced penetrance. COL4A2 is the obligatory protein partner of COL4A1 but in contrast to most COL4A1 mutations, the COL4A2 mutation does not lead to eye or kidney disease. Analysis of dermal biopsies from a patient and his unaffected father, who also carries the mutation, revealed that both display basement membrane (BM) defects. Intriguingly, defective collagen IV incorporation into the dermal BM was observed in the patient only and was associated with endoplasmic reticulum (ER) retention of COL4A2 in primary dermal fibroblasts. This intracellular accumulation led to ER stress, unfolded protein response activation, reduced cell proliferation and increased apoptosis. Interestingly, the absence of ER retention of COL4A2 and ER stress in cells from the unaffected father indicate that accumulation and/or clearance of mutant COL4A2 from the ER may be a critical modifier for disease development. Our analysis also revealed that mutant collagen IV is degraded via the proteasome. Importantly, treatment of patient cells with a chemical chaperone decreased intracellular COL4A2 levels, ER stress and apoptosis, demonstrating that reducing intracellular collagen accumulation can ameliorate the cellular phenotype of COL4A2 mutations. Importantly, these data highlight that manipulation of chaperone levels, intracellular collagen accumulation and ER stress are potential therapeutic options for collagen IV diseases including haemorrhagic stroke.

  18. Safety and pharmacodynamic effects of a pharmacological chaperone on α-galactosidase A activity and globotriaosylceramide clearance in Fabry disease: report from two phase 2 clinical studies

    PubMed Central

    2012-01-01

    Background Fabry disease (FD) is a genetic disorder resulting from deficiency of the lysosomal enzyme α-galactosidase A (α-Gal A), which leads to globotriaosylceramide (GL-3) accumulation in multiple tissues. We report on the safety and pharmacodynamics of migalastat hydrochloride, an investigational pharmacological chaperone given orally at 150 mg every-other-day. Methods Two open-label uncontrolled phase 2 studies of 12 and 24 weeks (NCT00283959 and NCT00283933) in 9 males with FD were combined. At multiple time points, α-Gal A activity and GL-3 levels were quantified in blood cells, kidney and skin. GL-3 levels were also evaluated through skin and renal histology. Results Compared to baseline, increased α-Gal A activity of at least 50% was demonstrated in blood, skin and kidney in 6 of 9 patients. Patients’ increased α-Gal A activities paralleled the α-Gal A increases observed in vitro in HEK-293 cells transfected with the corresponding mutant form of the enzyme. The same 6 patients who demonstrated increases of α-Gal A activity also had GL-3 reduction in skin, urine and/or kidney, and had α-Gal A mutations that responded in transfected cells incubated with the drug. The 3 patients who did not show a consistent response in vivo had α-Gal A mutations that did not respond to migalastat HCl in transfected cells. Migalastat HCl was well tolerated. Conclusions Migalastat HCl is a candidate pharmacological chaperone that provides a novel genotype-specific treatment for FD. It enhanced α-Gal A activity and resulted in GL-3 substrate decrease in patients with responsive GLA mutations. Phase 3 studies are ongoing. Trial registration Clinicaltrial.gov: NCT00283959 and NCT00283933 PMID:23176611

  19. The Role of Monocarboxylate Transporters and Their Chaperone CD147 in Lactate Efflux Inhibition and the Anticancer Effects of Terminalia chebula in Neuroblastoma Cell Line N2-A

    PubMed Central

    Messeha, S. S.; Zarmouh, N. O.; Taka, E.; Gendy, S. G.; Shokry, G. R.; Kolta, M. G.; Soliman, K. F. A.

    2016-01-01

    Aims In the presence of oxygen, most of the synthesized pyruvate during glycolysis in the cancer cell of solid tumors is released away from the mitochondria to form lactate (Warburg Effect). To maintain cell homeostasis, lactate is transported across the cell membrane by monocarboxylate transporters (MCTs). The major aim of the current investigation is to identify novel compounds that inhibit lactate efflux that may lead to identifying effective targets for cancer treatment. Study Design In this study, 900 ethanol plant extracts were screened for their lactate efflux inhibition using neuroblastoma (N2-A) cell line. Additionally, we investigated the mechanism of inhibition for the most potent plant extract regarding monocarboxylate transporters expression, and consequences effects on viability, growth, and apoptosis. Methodology The potency of lactate efflux inhibition of ethanol plant extracts was evaluated in N2-A cells by measuring extracellular lactate levels. Caspase 3- activity and acridine orange/ethidium bromide staining were performed to assess the apoptotic effect. The antiproliferative effect was measured using WST assay. Western blotting was performed to quantify protein expression of MCTs and their chaperone CD147 in treated cells lysates. Results Terminalia chebula plant extract was the most potent lactate efflux inhibitor in N2-A cells among the 900 - tested plant extracts. The results obtained show that extract of Terminalia chebula fruits (TCE) significantly (P = 0.05) reduced the expression of the MCT1, MCT3, MCT4 and the chaperone CD147. The plant extract was more potent (IC50 of 3.59 ± 0.26 μg/ml) than the MCT standard inhibitor phloretin (IC50 76.54 ± 3.19 μg/ml). The extract also showed more potency and selective cytotoxicity in cancer cells than DI-TNC1 primary cell line (IC50 7.37 ± 0.28 vs. 17.35 ± 0.19 μg/ml). Moreover, TCE Inhibited N2-A cell growth (IG50 = 5.20 ± 0.30 μg/ml) and induced apoptosis at the 7.5 μg/ml concentration

  20. A Clp/Hsp100 chaperone functions in Myxococcus xanthus sporulation and self-organization.

    PubMed

    Yan, Jinyuan; Garza, Anthony G; Bradley, Michael D; Welch, Roy D

    2012-04-01

    The Clp/Hsp100 proteins are chaperones that play a role in protein degradation and reactivation. In bacteria, they exhibit a high degree of pleiotropy, affecting both individual and multicellular phenotypes. In this article, we present the first characterization of a Clp/Hsp100 homolog in Myxococcus xanthus (MXAN_4832 gene locus). Deletion of MXAN_4832 causes defects in both swarming and aggregation related to cell motility and the production of fibrils, which are an important component of the extracellular matrix of a swarm. The deletion also affects the formation of myxospores during development, causing them to become sensitive to heat. The protein product of MXAN_4832 can act as a chaperone in vitro, providing biochemical evidence in support of our hypothesis that MXAN_4832 is a functional Clp/Hsp100 homolog. There are a total of 12 Clp/Hsp100 homologs in M. xanthus, including MXAN_4832, and, based on its mutational and biochemical characterization, they may well represent an important group.

  1. Mitosomal chaperone modulation during the life cycle of the pathogenic protist Giardia intestinalis.

    PubMed

    Midlej, Victor; Penha, Luciana; Silva, Rosane; de Souza, Wanderley; Benchimol, Marlene

    2016-12-01

    The mitosome is a double-membrane enveloped organelle that is found in few unicellular eukaryotes, one of which is the human intestinal parasitic protist Giardia intestinalis, which also lacks mitochondria and peroxisomes. This flagellated protist grows in vitro as trophozoites and under some conditions, differentiates into cysts, which are characterized by the absence of externalized flagella, a round shape, and the presence of a cyst wall. The presence and distribution of mitosomal proteins, such as giardial iron-sulfur cluster protein (GiIscU), heat-shock protein 70 (mit-HSP70) and giardial chaperonin 60 (GiCpn60), during the process of trophozoite-to-cyst transformation was tracked using confocal laser scanning microscopy and western blotting. During the early stages of the differentiation process (∼12h), there was a significant decrease in the extent of chaperone labeling in the cells, which disappeared after 21h but was recovered during the cyst stage; IscU labeling remained present throughout the differentiation process. This finding was confirmed by mRNA expression analysis, thus indicating that a process modulates the expression of mitosomal chaperones during the G. intestinalis life cycle. Microscopy techniques, such as structured illumination and electron tomography, revealed a novel profile for central mitosomes, as well as the presence of both rounded and elongated mitosomes.

  2. Oridonin Triggers Chaperon-mediated Proteasomal Degradation of BCR-ABL in Leukemia

    PubMed Central

    Huang, Huilin; Weng, Hengyou; Dong, Bowen; Zhao, Panpan; Zhou, Hui; Qu, Lianghu

    2017-01-01

    Inducing degradation of oncoproteins by small molecule compounds has the potential to avoid drug resistance and therefore deserves to be exploited for new therapies. Oridonin is a natural compound with promising antitumor efficacy that can trigger the degradation of oncoproteins; however, the direct cellular targets and underlying mechanisms remain unclear. Here we report that oridonin depletes BCR-ABL through chaperon-mediated proteasomal degradation in leukemia. Mechanistically, oridonin poses oxidative stress in cancer cells and directly binds to cysteines of HSF1, leading to the activation of this master regulator of the chaperone system. The resulting induction of HSP70 and ubiquitin proteins and the enhanced binding to CHIP E3 ligase hence target BCR-ABL for ubiquitin-proteasome degradation. Both wild-type and mutant forms of BCR-ABL can be efficiently degraded by oridonin, supporting its efficacy observed in cultured cells as well as mouse tumor xenograft assays with either imatinib-sensitive or -resistant cells. Collectively, our results identify a novel mechanism by which oridonin induces rapid degradation of BCR-ABL as well as a novel pharmaceutical activator of HSF1 that represents a promising treatment for leukemia. PMID:28128329

  3. Mechanism of Nucleic Acid Chaperone Function of Retroviral Nuceleocapsid (NC) Proteins

    NASA Astrophysics Data System (ADS)

    Rouzina, Ioulia; Vo, My-Nuong; Stewart, Kristen; Musier-Forsyth, Karin; Cruceanu, Margareta; Williams, Mark

    2006-03-01

    Recent studies have highlighted two main activities of HIV-1 NC protein contributing to its function as a universal nucleic acid chaperone. Firstly, it is the ability of NC to weakly destabilize all nucleic acid,(NA), secondary structures, thus resolving the kinetic traps for NA refolding, while leaving the annealed state stable. Secondly, it is the ability of NC to aggregate NA, facilitating the nucleation step of bi-molecular annealing by increasing the local NA concentration. In this work we use single molecule DNA stretching and gel-based annealing assays to characterize these two chaperone activities of NC by using various HIV-1 NC mutants and several other retroviral NC proteins. Our results suggest that two NC functions are associated with its zinc fingers and cationic residues, respectively. NC proteins from other retroviruses have similar activities, although expressed to a different degree. Thus, NA aggregating ability improves, and NA duplex destabilizing activity decreases in the sequence: MLV NC, HIV NC, RSV NC. In contrast, HTLV NC protein works very differently from other NC proteins, and similarly to typical single stranded NA binding proteins. These features of retroviral NCs co-evolved with the structure of their genomes.

  4. Synthesis and folding of a mirror-image enzyme reveals ambidextrous chaperone activity

    PubMed Central

    Weinstock, Matthew T.; Jacobsen, Michael T.; Kay, Michael S.

    2014-01-01

    Mirror-image proteins (composed of d-amino acids) are promising therapeutic agents and drug discovery tools, but as synthesis of larger d-proteins becomes feasible, a major anticipated challenge is the folding of these proteins into their active conformations. In vivo, many large and/or complex proteins require chaperones like GroEL/ES to prevent misfolding and produce functional protein. The ability of chaperones to fold d-proteins is unknown. Here we examine the ability of GroEL/ES to fold a synthetic d-protein. We report the total chemical synthesis of a 312-residue GroEL/ES-dependent protein, DapA, in both l- and d-chiralities, the longest fully synthetic proteins yet reported. Impressively, GroEL/ES folds both l- and d-DapA. This work extends the limits of chemical protein synthesis, reveals ambidextrous GroEL/ES folding activity, and provides a valuable tool to fold d-proteins for drug development and mirror-image synthetic biology applications. PMID:25071217

  5. Nucleotide-dependent switch in proteasome assembly mediated by the Nas6 chaperone.

    PubMed

    Li, Frances; Tian, Geng; Langager, Deanna; Sokolova, Vladyslava; Finley, Daniel; Park, Soyeon

    2017-02-14

    The proteasome is assembled via the nine-subunit lid, nine-subunit base, and 28-subunit core particle (CP). Previous work has shown that the chaperones Rpn14, Nas6, Hsm3, and Nas2 each bind a specific ATPase subunit of the base and antagonize base-CP interaction. Here, we show that the Nas6 chaperone also obstructs base-lid association. Nas6 alternates between these two inhibitory modes according to the nucleotide state of the base. When ATP cannot be hydrolyzed, Nas6 interferes with base-lid, but not base-CP, association. In contrast, under conditions of ATP hydrolysis, Nas6 obstructs base-CP, but not base-lid, association. Modeling of Nas6 into cryoelectron microscopy structures of the proteasome suggests that Nas6 controls both base-lid affinity and base-CP affinity through steric hindrance; Nas6 clashes with the lid in the ATP-hydrolysis-blocked proteasome, but clashes instead with the CP in the ATP-hydrolysis-competent proteasome. Thus, Nas6 provides a dual mechanism to control assembly at both major interfaces of the proteasome.

  6. Improvement of the crystallizability and expression of an RNA crystallization chaperone

    SciTech Connect

    Ravindran, P.; Heroux, A.; Ye, J.-D.

    2011-11-01

    Crystallizing RNA has been an imperative and challenging task in the world of RNA research. Assistive methods such as chaperone-assisted RNA crystallography (CARC), employing monoclonal antibody fragments (Fabs) as crystallization chaperones have enabled us to obtain RNA crystal structures by forming crystal contacts and providing initial phasing information. Despite the early successes, the crystallization of large RNA-Fab complex remains a challenge in practice. The possible reason for this difficulty is that the Fab scaffold has not been optimized for crystallization in complex with RNA. Here, we have used the surface entropy reduction (SER) technique for the optimization of {Delta}C209 P4-P6/Fab2 model system. Protruding lysine and glutamate residues were mutated to a set of alanines or serines to construct Fab2SMA or Fab2SMS. Expression with the shake flask approach was optimized to allow large scale production for crystallization. Crystal screening shows that significantly higher crystal-forming ratio was observed for the mutant complexes. As the chosen SER residues are far away from the CDR regions of the Fab, the same set of mutations can now be directly applied to other Fabs binding to a variety of ribozymes and riboswitches to improve the crystallizability of Fab-RNA complex.

  7. Targeting Hsp90-Cdc37: a promising therapeutic strategy by inhibiting Hsp90 chaperone function.

    PubMed

    Wang, Lei; Li, Li; Gu, Kai; Xu, Xiao-Li; You, Qi-Dong; Sun, Hao-Peng

    2016-05-27

    The Hsp90 chaperone protein regulates the folding, maturation and stability of a wide variety of oncoproteins. In recent years, many Hsp90 inhibitors have entered into the clinical trials while all of them target ATPase showing similar binding capacity and kinds of side-effects so that none have reached to the market. During the regulation progress, numerous protein-protein interactions (PPI) such as Hsp90 and client proteins or cochaperones are involved. With the Hsp90-cochaperones PPI networks being more and more clear, many cancerous proteins have been reported to be tightly correlated to Hsp90-cochaperones PPI. Among them, Hsp90-Cdc37 PPI has been widely reported to associate with numerous protein kinases, making it a novel target for the treatment of cancers. In this paper, we briefly review the strategies and modulators targeting Hsp90-Cdc37 complex including direct and indirect regulation mechanism. Through these discussions we expect to present inspirations for new insights into an alternative way to inhibit Hsp90 chaperone function.

  8. Allosteric drugs: the interaction of antitumor compound MKT-077 with human Hsp70 chaperones.

    PubMed

    Rousaki, Aikaterini; Miyata, Yoshinari; Jinwal, Umesh K; Dickey, Chad A; Gestwicki, Jason E; Zuiderweg, Erik R P

    2011-08-19

    Hsp70 (heat shock protein 70 kDa) chaperones are key to cellular protein homeostasis. However, they also have the ability to inhibit tumor apoptosis and contribute to aberrant accumulation of hyperphosphorylated tau in neuronal cells affected by tauopathies, including Alzheimer's disease. Hence, Hsp70 chaperones are increasingly becoming identified as targets for therapeutic intervention in these widely abundant diseases. Hsp70 proteins are allosteric machines and offer, besides classical active-site targets, also opportunities to target the mechanism of allostery. In this work, it is demonstrated that the action of the potent anticancer compound MKT-077 (1-ethyl-2-[[3-ethyl-5-(3-methylbenzothiazolin-2-yliden)]-4-oxothiazolidin-2-ylidenemethyl] pyridinium chloride) occurs through a differential interaction with Hsp70 allosteric states. MKT-077 is therefore an "allosteric drug." Using NMR spectroscopy, we identify the compound's binding site on human HSPA8 (Hsc70). The binding pose is obtained from NMR-restrained docking calculations, subsequently scored by molecular-dynamics-based energy and solvation computations. Suggestions for the improvement of the compound's properties are made on the basis of the binding location and pose.

  9. Structural and functional homology between periplasmic bacterial molecular chaperones and small heat shock proteins.

    PubMed

    Zav'yalov, V P; Zav'yalova, G A; Denesyuk, A I; Gaestel, M; Korpela, T

    1995-07-01

    The periplasmic Yersinia pestis molecular chaperone Caf1M belongs to a superfamily of bacterial proteins for one of which (PapD protein of Escherichia coli) the immunoglobulin-like fold was solved by X-ray analysis. The N-terminal domain of Caf1M was found to share a 20% amino acid sequence identity with an inclusion body-associated protein IbpB of Escherichia coli. One of the regions that was compared, was 32 amino acids long, and displayed more than 40% identity, probability of random coincidence was 1.2 x 10(-4). IbpB is involved in a superfamily of small heat shock proteins which fulfil the function of molecular chaperone. On the basis of the revealed homology, an immunoglobulin-like one-domain model of IbpB three-dimensional structure was designed which could be a prototype conformation of sHsp's. The structure suggested is in good agreement with the known experimental data obtained for different members of sHsp's superfamily.

  10. Identification of Small Molecule Compounds for Pharmacological Chaperone Therapy of Aspartylglucosaminuria

    PubMed Central

    Banning, Antje; Gülec, Christina; Rouvinen, Juha; Gray, Steven J.; Tikkanen, Ritva

    2016-01-01

    Aspartylglucosaminuria (AGU) is a lysosomal storage disorder that is caused by genetic deficiency of the enzyme aspartylglucosaminidase (AGA) which is involved in glycoprotein degradation. AGU is a progressive disorder that results in severe mental retardation in early adulthood. No curative therapy is currently available for AGU. We have here characterized the consequences of a novel AGU mutation that results in Thr122Lys exchange in AGA, and compared this mutant form to one carrying the worldwide most common AGU mutation, AGU-Fin. We show that T122K mutated AGA is expressed in normal amounts and localized in lysosomes, but exhibits low AGA activity due to impaired processing of the precursor molecule into subunits. Coexpression of T122K with wildtype AGA results in processing of the precursor into subunits, implicating that the mutation causes a local misfolding that prevents the precursor from becoming processed. Similar data were obtained for the AGU-Fin mutant polypeptide. We have here also identified small chemical compounds that function as chemical or pharmacological chaperones for the mutant AGA. Treatment of patient fibroblasts with these compounds results in increased AGA activity and processing, implicating that these substances may be suitable for chaperone mediated therapy for AGU. PMID:27876883

  11. Chaperoning steroidal physiology: lessons from mouse genetic models of Hsp90 and its cochaperones.

    PubMed

    Sanchez, Edwin R

    2012-03-01

    The molecular chaperone Hsp90 is abundant, ubiquitous, and catholic to biological processes in eukaryotes, controlling phosphorylation cascades, protein stability and turnover, client localization and trafficking, and ligand-receptor interactions. Not surprisingly, Hsp90 does not accomplish these activities alone. Instead, an ever-growing number of cochaperones have been identified, leading to an explosion of reports on their molecular and cellular effects on Hsp90 chaperoning of client substrates. Notable among these clients are many members of the steroid receptor family, such as glucocorticoid, androgen, estrogen and progesterone receptors. Cochaperones typically associated with the mature, hormone-competent states of these receptors include p23, the FK506-binding protein 52 (FKBP52), FKBP51, protein phosphatase 5 (PP5) and cyclophilin 40 (Cyp40). The ultimate relevance of these cochaperones to steroid receptor action depends on their physiological effects. In recent years, the first mouse genetic models of these cochaperones have been developed. This work will review the complex and intriguing phenotypes so far obtained in genetically-altered mice and compare them to the known molecular and cellular impacts of cochaperones on steroid receptors. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).

  12. Chaperones are necessary for the expression of catalytically active potato apyrases in prokaryotic cells.

    PubMed

    Porowińska, Dorota; Czarnecka, Joanna; Komoszyński, Michał

    2014-07-01

    NTPDases (nucleoside triphosphate diphosphohydrolases) (also called in plants apyrases) hydrolyze nucleoside 5'-tri- and/or diphosphate bonds producing nucleosides di or monophosphate and inorganic phosphate. For years, studies have been carried out to use both plant and animal enzymes for medicine. Therefore, there is a need to develop an efficient method for the quick production of large amounts of homogeneous proteins with high catalytic activity. Expression of proteins in prokaryotic cells is the most common way for the protein production. The aim of our study was to develop a method of expression of potato apyrase (StAPY4, 5, and 6) genes in bacterial cells under conditions that allowed the production of catalytically active form of these enzymes. Apyrase 4 and 6 were overexpressed in BL21-CodonPlus (DE3) bacteria strain but they were accumulated in inclusion bodies, regardless of the culture conditions and induction method. Co-expression of potato apyrases with molecular chaperones allowed the expression of catalytically active apyrase 5. However, its high nucleotidase activity could be toxic for bacteria and is therefore synthesized in small amounts in cells. Our studies show that each protein requires other conditions for maturation and even small differences in amino acid sequence can essentially affect protein folding regardless of presence of chaperones.

  13. Crystal Structure and Function of Human Nucleoplasmin (Npm2): A Histone Chaperone in Oocytes and Embryos

    SciTech Connect

    O Platonova; I Akey; J Head; C Akey

    2011-12-31

    Human Npm2 is an ortholog of Xenopus nucleoplasmin (Np), a chaperone that binds histones. We have determined the crystal structure of a truncated Npm2-core at 1.9 {angstrom} resolution and show that the N-terminal domains of Npm2 and Np form similar pentamers. This allowed us to model an Npm2 decamer which may be formed by hydrogen bonds between quasi-conserved residues in the interface between two pentamers. Interestingly, the Npm2 pentamer lacks a prototypical A1-acidic tract in each of its subunits. This feature may be responsible for the inability of Npm2-core to bind histones. However, Npm2 with a large acidic tract in its C-terminal tail (Npm2-A2) is able to bind histones and form large complexes. Fluorescence resonance energy transfer experiments and biochemical analysis of loop mutations support the premise that nucleoplasmins form decamers when they bind H2A-H2B dimers and H3-H4 tetramers simultaneously. In the absence of histone tetramers, these chaperones bind H2A-H2B dimers with a single pentamer forming the central hub. When taken together, our data provide insights into the mechanism of histone binding by nucleoplasmins.

  14. The ubiquitin-selective chaperone CDC-48/p97 links myosin assembly to human myopathy.

    PubMed

    Janiesch, Philipp Christoph; Kim, Johnny; Mouysset, Julien; Barikbin, Roja; Lochmüller, Hanns; Cassata, Giuseppe; Krause, Sabine; Hoppe, Thorsten

    2007-04-01

    Protein degradation in eukaryotes often requires the ubiquitin-selective chaperone p97 for substrate recruitment and ubiquitin-chain assembly. However, the physiological relevance of p97, and its role in developmental processes, remain unclear. Here, we discover an unanticipated function for CDC-48/p97 in myosin assembly and myofibril organization, both in Caenorhabditis elegans and humans. The developmentally regulated assembly of a CDC-48-UFD-2-CHN-1 complex links turnover of the myosin-directed chaperone UNC-45 to functional muscle formation. Our data suggest a similarly conserved pathway regulating myosin assembly in humans. Remarkably, mutations in human p97, known to cause hereditary inclusion-body myopathy, abrogate UNC-45 degradation and result in severely disorganized myofibrils, detrimental towards sarcomeric function. These results identify a key role for CDC-48/p97 in the process of myofibre differentiation and maintenance, which is abolished during pathological conditions leading to protein aggregation and inclusion-body formation in human skeletal muscle.

  15. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

    PubMed

    Roundhill, Elizabeth; Turnbull, Doug; Burchill, Susan

    2016-05-01

    Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, <0.9). For the first time, we have demonstrated that mitochondrial MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

  16. Identification of residues on Hsp70 and Hsp90 ubiquitinated by the co-chaperone CHIP

    PubMed Central

    Kundrat, Lenka; Regan, Lynne

    2010-01-01

    Molecular chaperones Hsp70 and Hsp90 are in part responsible for maintaining the viability of cells by facilitating the folding and maturation process of many essential client proteins. The ubiquitin ligase C-terminus of Hsc70 interacting protein (CHIP) has been shown in vitro and in vivo to associate with Hsp70 and Hsp90 and ubiquitinate them; thus targeting them to the proteasome for degradation. Here, we study one facet of this CHIP-mediated turnover by determining the lysine residues on human Hsp70 and Hsp90 ubiquitinated by CHIP. We performed in vitro ubiquitination reactions of the chaperones using purified components and analyzed the samples by tandem mass spectrometry to identify modified lysine residues. Six such ubiquitination sites were identified on Hsp70 (K325, K451, K524, K526, K559, K561) and thirteen ubiquitinated lysine residues were found on Hsp90 (K107, K204, K219, K275, K284, K347, K399, K477, K481, K538, K550, K607, K623). We mapped the ubiquitination sites on homology models of almost full-length human Hsp70 and Hsp90, which were found to cluster in certain regions of the structures. Furthermore, we determined that CHIP forms poly-ubiquitin chains on Hsp70 and Hsp90 linked via K6, K11, K48, and K63. These findings clarify the mode of ubiquitination of Hsp70 and Hsp90 by CHIP which ultimately leads to their degradation. PMID:19913553

  17. OprD Repression upon Metal Treatment Requires the RNA Chaperone Hfq in Pseudomonas aeruginosa

    PubMed Central

    Ducret, Verena; Gonzalez, Manuel R.; Scrignari, Tiziana; Perron, Karl

    2016-01-01

    The metal-specific CzcRS two-component system in Pseudomonas aeruginosa is involved in the repression of the OprD porin, causing in turn carbapenem antibiotic resistance in the presence of high zinc concentration. It has also been shown that CzcR is able to directly regulate the expression of multiple genes including virulence factors. CzcR is therefore an important regulator connecting (i) metal response, (ii) pathogenicity and (iii) antibiotic resistance in P. aeruginosa. Recent data have suggested that other regulators could negatively control oprD expression in the presence of zinc. Here we show that the RNA chaperone Hfq is a key factor acting independently of CzcR for the repression of oprD upon Zn treatment. Additionally, we found that an Hfq-dependent mechanism is necessary for the localization of CzcR to the oprD promoter, mediating oprD transcriptional repression. Furthermore, in the presence of Cu, CopR, the transcriptional regulator of the CopRS two-component system also requires Hfq for oprD repression. Altogether, these results suggest important roles for this RNA chaperone in the context of environment-sensing and antibiotic resistance in P. aeruginosa. PMID:27706108

  18. Visualization of a radical B12 enzyme with its G-protein chaperone

    SciTech Connect

    Jost, Marco; Cracan, Valentin; Hubbard, Paul A.; Banerjee, Ruma; Drennan, Catherine L.

    2015-02-09

    G-protein metallochaperones ensure fidelity during cofactor assembly for a variety of metalloproteins, including adenosylcobalamin (AdoCbl)-dependent methylmalonyl-CoA mutase and hydrogenase, and thus have both medical and biofuel development applications. In this paper, we present crystal structures of IcmF, a natural fusion protein of AdoCbl-dependent isobutyryl-CoA mutase and its corresponding G-protein chaperone, which reveal the molecular architecture of a G-protein metallochaperone in complex with its target protein. These structures show that conserved G-protein elements become ordered upon target protein association, creating the molecular pathways that both sense and report on the cofactor loading state. Structures determined of both apo- and holo-forms of IcmF depict both open and closed enzyme states, in which the cofactor-binding domain is alternatively positioned for cofactor loading and for catalysis. Finally and notably, the G protein moves as a unit with the cofactor-binding domain, providing a visualization of how a chaperone assists in the sequestering of a precious cofactor inside an enzyme active site.

  19. Artificial chaperone-assisted refolding of chemically denatured alpha-amylase.

    PubMed

    Yazdanparast, Razieh; Khodagholi, Fariba; Khodarahmi, Reza

    2005-06-01

    It is now well established that alpha-cyclodextrin (alpha-CD) is a valuable folding agent in refolding processes of several denatured enzyme solutions. The refolding of Gu-HCl denatured alpha-amylase in the dilution-additive mode revealed that alpha-CD enhanced the refolding yield by 20-30% depending upon alpha-CD concentration. However, the refolding efficiency of the Gu-HCl denatured alpha-amylase through the artificial chaperone-assisted method indicated that alpha-CD enhanced the activity recovery of denatured alpha-amylase by almost 50% and also increased the reactivation rate constant relative to the unassisted control sample. The higher refolding efficiency should be due to different mechanism played by alpha-CD in this technique. In addition, our data indicated that higher refolding yields are obtained when the residual Gu-HCl concentration is low in the refolding environment and when the capture agent is removed not in a stepwise manner from the protein-detergent complexes in the stripping step of the whole process. Collectively, the results of this investigation expand the range of procedural variations used to refold different denatured proteins through artificial chaperone-assisted method.

  20. Crystallization of the FaeE chaperone of Escherichia coli F4 fimbriae

    PubMed Central

    Van Molle, Inge; Buts, Lieven; Coppens, Fanny; Qiang, Liu; Wyns, Lode; Loris, Remy; Bouckaert, Julie; De Greve, Henri

    2005-01-01

    F4 (formerly K88) fimbriae from enterotoxigenic Escherichia coli are assembled via the FaeE/FaeD chaperone/usher pathway. The chaperone FaeE crystallizes in three crystal forms, all belonging to space group C2. Crystals of form 1 diffract to 2.3 Å and have unit-cell parameters a = 195.7, b = 78.5, c = 184.6 Å, β = 102.2°. X-ray data for crystal form 2 were collected to 2.7 Å using an SeMet variant of FaeE. The crystals have unit-cell parameters a = 136.4, b = 75.7, c = 69.4 Å, β = 92.8°. Crystals of form 3 were formed in a solution containing the FaeE–FaeG complex and diffract to 2.8 Å. Unit-cell parameters are a = 109.7, b = 78.6, c = 87.8 Å, β = 96.4°. PMID:16511060

  1. Visualization of a radical B12 enzyme with its G-protein chaperone

    DOE PAGES

    Jost, Marco; Cracan, Valentin; Hubbard, Paul A.; ...

    2015-02-09

    G-protein metallochaperones ensure fidelity during cofactor assembly for a variety of metalloproteins, including adenosylcobalamin (AdoCbl)-dependent methylmalonyl-CoA mutase and hydrogenase, and thus have both medical and biofuel development applications. In this paper, we present crystal structures of IcmF, a natural fusion protein of AdoCbl-dependent isobutyryl-CoA mutase and its corresponding G-protein chaperone, which reveal the molecular architecture of a G-protein metallochaperone in complex with its target protein. These structures show that conserved G-protein elements become ordered upon target protein association, creating the molecular pathways that both sense and report on the cofactor loading state. Structures determined of both apo- and holo-forms ofmore » IcmF depict both open and closed enzyme states, in which the cofactor-binding domain is alternatively positioned for cofactor loading and for catalysis. Finally and notably, the G protein moves as a unit with the cofactor-binding domain, providing a visualization of how a chaperone assists in the sequestering of a precious cofactor inside an enzyme active site.« less

  2. A novel mechanism of post-translational modulation of HMGA functions by the histone chaperone nucleophosmin

    PubMed Central

    Arnoldo, Laura; Sgarra, Riccardo; Chiefari, Eusebio; Iiritano, Stefania; Arcidiacono, Biagio; Pegoraro, Silvia; Pellarin, Ilenia; Brunetti, Antonio; Manfioletti, Guidalberto

    2015-01-01

    High Mobility Group A are non-histone nuclear proteins that regulate chromatin plasticity and accessibility, playing an important role both in physiology and pathology. Their activity is controlled by transcriptional, post-transcriptional, and post-translational mechanisms. In this study we provide evidence for a novel modulatory mechanism for HMGA functions. We show that HMGAs are complexed in vivo with the histone chaperone nucleophosmin (NPM1), that this interaction requires the histone-binding domain of NPM1, and that NPM1 modulates both DNA-binding affinity and specificity of HMGAs. By focusing on two human genes whose expression is directly regulated by HMGA1, the Insulin receptor (INSR) and the Insulin-like growth factor-binding protein 1 (IGFBP1) genes, we demonstrated that occupancy of their promoters by HMGA1 was NPM1-dependent, reflecting a mechanism in which the activity of these cis-regulatory elements is directly modulated by NPM1 leading to changes in gene expression. HMGAs need short stretches of AT-rich nucleosome-free regions to bind to DNA. Therefore, many putative HMGA binding sites are present within the genome. Our findings indicate that NPM1, by exerting a chaperoning activity towards HMGAs, may act as a master regulator in the control of DNA occupancy by these proteins and hence in HMGA-mediated gene expression. PMID:25711412

  3. The CENP-T/-W complex is a binding partner of the histone chaperone FACT

    PubMed Central

    Prendergast, Lisa; Müller, Sebastian; Liu, Yiwei; Huang, Hongda; Dingli, Florent; Loew, Damarys; Vassias, Isabelle; Patel, Dinshaw J.; Sullivan, Kevin F.; Almouzni, Geneviève

    2016-01-01

    The CENP-T/-W histone fold complex, as an integral part of the inner kinetochore, is essential for building a proper kinetochore at the centromere in order to direct chromosome segregation during mitosis. Notably, CENP-T/-W is not inherited at centromeres, and new deposition is absolutely required at each cell cycle for kinetochore function. However, the mechanisms underlying this new deposition of CENP-T/-W at centromeres are unclear. Here, we found that CENP-T deposition at centromeres is uncoupled from DNA synthesis. We identified Spt16 and SSRP1, subunits of the H2A–H2B histone chaperone facilitates chromatin transcription (FACT), as CENP-W binding partners through a proteomic screen. We found that the C-terminal region of Spt16 binds specifically to the histone fold region of CENP-T/-W. Furthermore, depletion of Spt16 impairs CENP-T and CENP-W deposition at endogenous centromeres, and site-directed targeting of Spt16 alone is sufficient to ensure local de novo CENP-T accumulation. We propose a model in which the FACT chaperone stabilizes the soluble CENP-T/-W complex in the cell and promotes dynamics of exchange, enabling CENP-T/-W deposition at centromeres. PMID:27284163

  4. Recognition of the centromere-specific histone Cse4 by the chaperone Scm3

    SciTech Connect

    Cho, Uhn-Soo; Harrison, Stephen C.

    2011-09-20

    A specialized nucleosome is a component of all eukaryotic kinetochores. The core of this nucleosome contains a centromere-specific histone, CENP-A (the Cse4 gene product in budding yeast), instead of the usual H3. Assembly of a centromeric nucleosome depends on a specific chaperone, called Scm3 in yeast and HJURP in higher eukaryotes. We describe here the structure of a complex formed by an N-terminal fragment of Scm3 with the histone-fold domains of Cse4, and H4, all prepared as recombinant proteins derived from the budding yeast Kluyveromyces lactis. The contacts of Scm3 with Cse4 explain its selectivity for the centromere-specific histone; key residues at the interface are conserved in HJURP, indicating a common mechanism for centromeric-histone deposition. We also report the structure of a (Cse4 : H4)2 heterotetramer; comparison with the structure of the Scm3:Cse4:H4 complex shows that tetramer formation and DNA-binding require displacement of Scm3 from the nucleosome core. The two structures together suggest that specific contacts between the chaperone and Cse4, rather than an altered overall structure of the nucleosome core, determine the selective presence of Cse4 at centromeres.

  5. Fluorinated Chaperone-β-Cyclodextrin Formulations for β-Glucocerebrosidase Activity Enhancement in Neuronopathic Gaucher Disease.

    PubMed

    García-Moreno, M Isabel; de la Mata, Mario; Sánchez-Fernández, Elena M; Benito, Juan M; Díaz-Quintana, Antonio; Fustero, Santos; Nanba, Eiji; Higaki, Katsumi; Sánchez-Alcázar, José A; García Fernández, José M; Ortiz Mellet, Carmen

    2017-03-09

    Amphiphilic glycomimetics encompassing a rigid, undistortable nortropane skeleton based on 1,6-anhydro-l-idonojirimycin and a polyfluorinated antenna, when formulated as the corresponding inclusion complexes with β-cyclodextrin (βCD), have been shown to behave as pharmacological chaperones (PCs) that efficiently rescue lysosomal β-glucocerebrosidase mutants associated with the neuronopathic variants of Gaucher disease (GD), including the highly refractory L444P/L444P and L444P/P415R single nucleotide polymorphs, in patient fibroblasts. The body of work here presented includes the design criteria for the PC prototype, the synthesis of a series of candidates, the characterization of the PC:βCD complexes, the determination of the selectivity profiles toward a panel of commercial and human lysosomal glycosidases, the evaluation of the chaperoning activity in type 1 (non-neuronopathic), type 2 (acute neuronopathic), and type 3 (adult neuronopathic) GD fibroblasts, the confirmation of the rescuing mechanism by immunolabeling, and the analysis of the PC:GCase binding mode by docking experiments.

  6. Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons

    PubMed Central

    Ma, Jiacheng; Pan, Pan; Anyika, Mercy; Blagg, Brian S. J.; Dobrowsky, Rick T.

    2015-01-01

    We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). Replacing the coumarin core of KU-32 with a meta-fluorinated biphenyl ring system created KU-596, a novobiocin analogue (novologue) that showed neuroprotective activity in a cell-based assay. The current study sought to determine whether KU-596 offers similar therapeutic potential for treating DPN. Administration of 2–20 mg/kg of KU-596 improved diabetes induced hypoalgesia and sensory neuron bioenergetic deficits in a dose-dependent manner. However, the drug could not improve these neuropathic deficits in diabetic heat shock protein 70 knockout (Hsp70 KO) mice. To gain further insight into the mechanisms by which KU-596 improved DPN, we performed transcriptomic analysis of sensory neuron RNA obtained from diabetic wild-type and Hsp70 KO mice using RNA sequencing. Bioinformatic analysis of the differentially expressed genes indicated that diabetes strongly increased inflammatory pathways and that KU-596 therapy effectively reversed these increases independent of Hsp70. In contrast, the effects of KU-596 on decreasing the expression of genes regulating the production of reactive oxygen species were more Hsp70-dependent. These data indicate that modulation of molecular chaperones by novologue therapy offers an effective approach toward correcting nerve dysfunction in DPN but that normalization of inflammatory pathways alone by novologue therapy seems to be insufficient to reverse sensory deficits associated with insensate DPN. PMID:26161583

  7. The Endoplasmic Reticulum Chaperone GRP170: From Immunobiology to Cancer Therapeutics

    PubMed Central

    Wang, Hongxia; Pezeshki, Abdul Mohammad; Yu, Xiaofei; Guo, Chunqing; Subjeck, John R.; Wang, Xiang-Yang

    2014-01-01

    Glucose-regulated protein 170 (GRP170) is the largest member of glucose-regulated protein family that resides in the endoplasmic reticulum (ER). As a component of the ER chaperone network, GRP170 assists in protein folding, assembly, and transportation of secretory or transmembrane proteins. The well documented cytoprotective activity of intracellular GRP170 due to its intrinsic chaperoning property has been shown to provide a survival benefit in cancer cells during tumor progression or metastasis. Accumulating evidence shows that extracellular GRP170 displays a superior capacity in delivering tumor antigens to specialized antigen-presenting cells for cross-presentation, resulting in generation of an anti-tumor immune response dependent on cytotoxic CD8+ T cells. This unique feature of GRP170 provides a molecular basis for using GRP170 as an immunostimulatory adjuvant to develop a recombinant vaccine for therapeutic immunization against cancers. This review summarizes the latest findings in understanding the biological effects of GRP170 on cell functions and tumor progression. The immunomodulating activities of GRP170 during interactions with the innate and adaptive arms of the immune system as well as its therapeutic applications in cancer immunotherapy will be discussed. PMID:25629003

  8. Chaperoned amyloid proteins for immune manipulation: α-Synuclein/Hsp70 shifts immunity toward a modulatory phenotype

    PubMed Central

    Labrador-Garrido, Adahir; Cejudo-Guillén, Marta; Klippstein, Rebecca; De Genst, Erwin J; Tomas-Gallardo, Laura; Leal, María M; Villadiego, Javier; Toledo-Aral, Juan J; Dobson, Christopher M; Pozo, David; Roodveldt, Cintia

    2014-01-01

    α-Synuclein (αSyn) is a 140-residue amyloid-forming protein whose aggregation is linked to Parkinson's disease (PD). It has also been found to play a critical role in the immune imbalance that accompanies disease progression, a characteristic that has prompted the search for an effective αSyn-based immunotherapy. In this study, we have simultaneously exploited two important features of certain heat-shock proteins (HSPs): their classical “chaperone” activities and their recently discovered and diverse “immunoactive” properties. In particular, we have explored the immune response elicited by immunization of C57BL/6 mice with an αSyn/Hsp70 protein combination in the absence of added adjuvant. Our results show differential effects for mice immunized with the αSyn/Hsp70 complex, including a restrained αSyn-specific (IgM and IgG) humoral response as well as minimized alterations in the Treg (CD4+CD25+Foxp3+) and Teff (CD4+Foxp3−) cell populations, as opposed to significant changes in mice immunized with αSyn and Hsp70 alone. Furthermore, in vitro-stimulated splenocytes from immunized mice showed the lowest relative response against αSyn challenge for the “αSyn/Hsp70” experimental group as measured by IFN-γ and IL-17 secretion, and higher IL-10 levels when stimulated with LPS. Finally, serum levels of Th1-cytokine IFN-γ and immunomodulatory IL-10 indicated a unique shift toward an immunomodulatory/immunoprotective phenotype in mice immunized with the αSyn/Hsp70 complex. Overall, we propose the use of functional “HSP-chaperoned amyloid/aggregating proteins” generated with appropriate HSP-substrate protein combinations, such as the αSyn/Hsp70 complex, as a novel strategy for immune-based intervention against synucleinopathies and other amyloid or “misfolding” neurodegenerative disorders. PMID:25866630

  9. Antioxidant and molecular chaperone defences during estivation and arousal in the South American apple snail Pomacea canaliculata.

    PubMed

    Giraud-Billoud, Maximiliano; Vega, Israel A; Tosi, Martín E Rinaldi; Abud, María A; Calderón, María L; Castro-Vazquez, Alfredo

    2013-02-15

    The invasive Pomacea canaliculata estivates during periods of drought and should cope with harmful effects of reoxygenation during arousal. We studied thiobarbituric acid reactive substances (TBARS), enzymatic (superoxide dismutase, SOD and catalase, CAT) and non-enzymatic antioxidants (uric acid and reduced glutathione), and heat shock protein expression (Hsc70, Hsp70 and Hsp90) in (1) active control snails, (2) snails after 45 days of estivation, and (3) aroused snails 20 min and (4) 24 h after water exposure, in midgut gland, kidney and foot. Both kidney and foot (but not the midgut gland) showed a TBARS increase during estivation and a decrease after arousal. Tissue SOD and CAT did not change in any experimental groups. Uric acid increased during estivation in all tissues, and it decreased after arousal in the kidney. Allantoin, the oxidation product of uric acid, remained constant in the midgut gland but it decreased in the kidney until 20 min after arousal; however, allantoin levels rose in both kidney and foot 24 h after arousal. Reduced glutathione decreased during estivation and arousal, in both midgut gland and kidney, and it remained constant in the foot. Hsc70 and Hsp70 kidney levels were stable during the activity-estivation cycle and Hsp90 expression decreases during estivation and recovers in the early arousal. In foot, the expression of Hsp70 and Hsp90 was high during activity and estivation periods and disminished after arousal. Results indicate that a panoply of antioxidant and molecular chaperone defences may be involved during the activity-estivation cycle in this freshwater gastropod.

  10. Inherent chaperone-like activity of aspartic proteases reveals a distant evolutionary relation to double-ψ barrel domains of AAA-ATPases

    PubMed Central

    Hulko, Michael; Lupas, Andrei N.; Martin, Jörg

    2007-01-01

    Chaperones and proteases share the ability to interact with unfolded proteins. Here we show that enzymatically inactive forms of the aspartic proteases HIV-1 protease and pepsin have inherent chaperone-like activity and can prevent the aggregation of denatured substrate proteins. In contrast to proteolysis, which requires dimeric enzymes, chaperone-like activity could be observed also with monomeric domains. The involvement of the active site cleft in the chaperone-like function was demonstrated by the inhibitory effect of peptide substrate inhibitors. The high structural similarity between aspartic proteases and the N-terminal double-ψ barrels of Cdc48-like proteins, which are involved in the unfolding and dissociation of proteins, suggests that they share a common ancestor. The latent chaperone-like activity in aspartic proteases can be seen as a relic that has further evolved to serve substrate binding in the context of proteolytic activity. PMID:17384229

  11. Plantation forestry under global warming: hybrid poplars with improved thermotolerance provide new insights on the in vivo function of small heat shock protein chaperones.

    PubMed

    Merino, Irene; Contreras, Angela; Jing, Zhong-Ping; Gallardo, Fernando; Cánovas, Francisco M; Gómez, Luis

    2014-02-01

    Climate-driven heat stress is a key factor affecting forest plantation yields. While its effects are expected to worsen during this century, breeding more tolerant genotypes has proven elusive. We report here a substantial and durable increase in the thermotolerance of hybrid poplar (Populus tremula×Populus alba) through overexpression of a major small heat shock protein (sHSP) with convenient features. Experimental evidence was obtained linking protective effects in the transgenic events with the unique chaperone activity of sHSPs. In addition, significant positive correlations were observed between phenotype strength and heterologous sHSP accumulation. The remarkable baseline levels of transgene product (up to 1.8% of total leaf protein) have not been reported in analogous studies with herbaceous species. As judged by protein analyses, such an accumulation is not matched either by endogenous sHSPs in both heat-stressed poplar plants and field-grown adult trees. Quantitative real time-polymerase chain reaction analyses supported these observations and allowed us to identify the poplar members most responsive to heat stress. Interestingly, sHSP overaccumulation was not associated with pleiotropic effects that might decrease yields. The poplar lines developed here also outperformed controls under in vitro and ex vitro culture conditions (callus biomass, shoot production, and ex vitro survival), even in the absence of thermal stress. These results reinforce the feasibility of improving valuable genotypes for plantation forestry, a field where in vitro recalcitrance, long breeding cycles, and other practical factors constrain conventional genetic approaches. They also provide new insights into the biological functions of the least understood family of heat shock protein chaperones.

  12. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response.

    PubMed

    Zhang, Hong; Yang, Jie; Wu, Si; Gong, Weibin; Chen, Chang; Perrett, Sarah

    2016-03-25

    DnaK is the major bacterial Hsp70, participating in DNA replication, protein folding, and the stress response. DnaK cooperates with the Hsp40 co-chaperone DnaJ and the nucleotide exchange factor GrpE. Under non-stress conditions, DnaK binds to the heat shock transcription factor σ(32)and facilitates its degradation. Oxidative stress results in temporary inactivation of DnaK due to depletion of cellular ATP and thiol modifications such as glutathionylation until normal cellular ATP levels and a reducing environment are restored. However, the biological significance of DnaK glutathionylation remains unknown, and the mechanisms by which glutathionylation may regulate the activity of DnaK are also unclear. We investigated the conditions under which Escherichia coli DnaK undergoesS-glutathionylation. We observed glutathionylation of DnaK in lysates of E. coli cells that had been subjected to oxidative stress. We also obtained homogeneously glutathionylated DnaK using purified DnaK in the apo state. We found that glutathionylation of DnaK reversibly changes the secondary structure and tertiary conformation, leading to reduced nucleotide and peptide binding ability. The chaperone activity of DnaK was reversibly down-regulated by glutathionylation, accompanying the structural changes. We found that interaction of DnaK with DnaJ, GrpE, or σ(32)becomes weaker when DnaK is glutathionylated, and the interaction is restored upon deglutathionylation. This study confirms that glutathionylation down-regulates the functions of DnaK under oxidizing conditions, and this down-regulation may facilitate release of σ(32)from its interaction with DnaK, thus triggering the heat shock response. Such a mechanism provides a link between oxidative stress and the heat shock response in bacteria.

  13. Lead induces the expression of endoplasmic reticulum chaperones GRP78 and GRP94 in vascular endothelial cells via the JNK-AP-1 pathway.

    PubMed

    Shinkai, Yasuhiro; Yamamoto, Chika; Kaji, Toshiyuki

    2010-04-01

    Lead, a ubiquitous heavy metal, is an important industrial and environmental pollutant that can target the vascular endothelium. To clarify the effects of lead on the unfolded protein response (UPR) and their significance in cytotoxicity, we examined the expression and function of endoplasmic reticulum (ER) chaperones glucose-regulated protein 78 (GRP78) and glucose-regulated protein 94 (GRP94) in vascular endothelial cells. We used bovine aortic endothelial cells as an in vitro model of the vascular endothelium. Exposure of vascular endothelial cells to lead nitrate resulted in a marked induction of GRP78 and GRP94 messenger RNA levels. In response to lead, the expression of GRP78 and GRP94 proteins also significantly increased in a dose- and time-dependent manner. In addition, small interfering RNA (siRNA)-mediated knockdown of GRP78 significantly enhanced lead-induced cytotoxicity. Compared with other metal(loid)s, including cadmium chloride, zinc sulfate, copper sulfate, and sodium arsenite, lead nitrate was found to be the most potent metal to induce these chaperones in endothelial cells. In the examined UPR pathways, lead increased the phosphorylation of inositol-requiring enzyme 1 (IRE1) and c-jun N-terminal kinase (JNK). Interestingly, the lead-induced upregulation of GRP78 and GRP94 was almost completely blocked by the JNK inhibitor SP600125 or activator protein-1 (AP-1) inhibitor curcumin. Taken together, these results suggest that lead induces ER stress, but the induction of GRP78 and GRP94 expression via the JNK-AP-1 pathway functions as a defense mechanism against lead-induced cytotoxicity in vascular endothelial cells.

  14. Plantation Forestry under Global Warming: Hybrid Poplars with Improved Thermotolerance Provide New Insights on the in Vivo Function of Small Heat Shock Protein Chaperones1[C][W

    PubMed Central

    Merino, Irene; Contreras, Angela; Jing, Zhong-Ping; Gallardo, Fernando; Cánovas, Francisco M.; Gómez, Luis

    2014-01-01

    Climate-driven heat stress is a key factor affecting forest plantation yields. While its effects are expected to worsen during this century, breeding more tolerant genotypes has proven elusive. We report here a substantial and durable increase in the thermotolerance of hybrid poplar (Populus tremula × Populus alba) through overexpression of a major small heat shock protein (sHSP) with convenient features. Experimental evidence was obtained linking protective effects in the transgenic events with the unique chaperone activity of sHSPs. In addition, significant positive correlations were observed between phenotype strength and heterologous sHSP accumulation. The remarkable baseline levels of transgene product (up to 1.8% of total leaf protein) have not been reported in analogous studies with herbaceous species. As judged by protein analyses, such an accumulation is not matched either by endogenous sHSPs in both heat-stressed poplar plants and field-grown adult trees. Quantitative real time-polymerase chain reaction analyses supported these observations and allowed us to identify the poplar members most responsive to heat stress. Interestingly, sHSP overaccumulation was not associated with pleiotropic effects that might decrease yields. The poplar lines developed here also outperformed controls under in vitro and ex vitro culture conditions (callus biomass, shoot production, and ex vitro survival), even in the absence of thermal stress. These results reinforce the feasibility of improving valuable genotypes for plantation forestry, a field where in vitro recalcitrance, long breeding cycles, and other practical factors constrain conventional genetic approaches. They also provide new insights into the biological functions of the least understood family of heat shock protein chaperones. PMID:24306533

  15. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response*

    PubMed Central

    Zhang, Hong; Yang, Jie; Wu, Si; Gong, Weibin; Chen, Chang; Perrett, Sarah

    2016-01-01

    DnaK is the major bacterial Hsp70, participating in DNA replication, protein folding, and the stress response. DnaK cooperates with the Hsp40 co-chaperone DnaJ and the nucleotide exchange factor GrpE. Under non-stress conditions, DnaK binds to the heat shock transcription factor σ32 and facilitates its degradation. Oxidative stress results in temporary inactivation of DnaK due to depletion of cellular ATP and thiol modifications such as glutathionylation until normal cellular ATP levels and a reducing environment are restored. However, the biological significance of DnaK glutathionylation remains unknown, and the mechanisms by which glutathionylation may regulate the activity of DnaK are also unclear. We investigated the conditions under which Escherichia coli DnaK undergoes S-glutathionylation. We observed glutathionylation of DnaK in lysates of E. coli cells that had been subjected to oxidative stress. We also obtained homogeneously glutathionylated DnaK using purified DnaK in the apo state. We found that glutathionylation of DnaK reversibly changes the secondary structure and tertiary conformation, leading to reduced nucleotide and peptide binding ability. The chaperone activity of DnaK was reversibly down-regulated by glutathionylation, accompanying the structural changes. We found that interaction of DnaK with DnaJ, GrpE, or σ32 becomes weaker when DnaK is glutathionylated, and the interaction is restored upon deglutathionylation. This study confirms that glutathionylation down-regulates the functions of DnaK under oxidizing conditions, and this down-regulation may facilitate release of σ32 from its interaction with DnaK, thus triggering the heat shock response. Such a mechanism provides a link between oxidative stress and the heat shock response in bacteria. PMID:26823468

  16. Proteomic analysis of exported chaperone/co-chaperone complexes of P. falciparum reveals an array of complex protein-protein interactions

    PubMed Central

    Zhang, Qi; Ma, Cheng; Oberli, Alexander; Zinz, Astrid; Engels, Sonja; Przyborski, Jude M.

    2017-01-01

    Malaria parasites modify their human host cell, the mature erythrocyte. This modification is mediated by a large number of parasite proteins that are exported to the host cell, and is also the underlying cause for the pathology caused by malaria infection. Amongst these proteins are many Hsp40 co-chaperones, and a single Hsp70. These proteins have been implicated in several processes in the host cell, including a potential role in protein transport, however the further molecular players in this process remain obscure. To address this, we have utilized chemical cross-linking followed by mass spectrometry and immunoblotting to isolate and characterize proteins complexes containing an exported Hsp40 (PFE55), and the only known exported Hsp70 (PfHsp70x). Our data reveal that both of these proteins are contained in high molecular weight protein complexes. These complexes are found both in the infected erythrocyte, and within the parasite-derived compartment referred to as the parasitophorous vacuole. Surprisingly, our data also reveal an association of PfHsp70x with components of PTEX, a putative protein translocon within the membrane of the parasitophorous vacuole. Our results suggest that the P. falciparum- infected human erythrocyte contains numerous high molecular weight protein complexes, which may potentially be involved in host cell modification. PMID:28218284

  17. Complex Function for SicA, a Salmonella enterica Serovar Typhimurium Type III Secretion-Associated Chaperone

    PubMed Central

    Tucker, Stephanie C.; Galán, Jorge E.

    2000-01-01

    Salmonella enterica encodes a type III secretion system within a pathogenicity island located at centisome 63 that is essential for virulence. All type III secretion systems require the function of a family of low-molecular-weight proteins that aid the secretion process by acting as partitioning factors and/or secretion pilots. One such protein is SicA, which is encoded immediately upstream of the type III secreted proteins SipB and SipC. We found that the absence of SicA results in the degradation of both SipB and SipC. Interestingly, in the absence of SipC, SipB was not only stable but also secreted at wild-type levels in a sicA mutant background, indicating that SicA is not required for SipB secretion. We also found that SicA is capable of binding both SipB and SipC. These results are consistent with a SicA role as a partitioning factor for SipB and SipC, thereby preventing their premature association and degradation. We also found that introduction of a sicA null mutation results in the lack of expression of SopE, another type III-secreted protein. Such an effect was shown to be transcriptional. Introduction of a loss-of-function sipC mutation into the sicA mutant background rescued sopE expression. These results indicate that the effect of sicA on sopE expression is indirect and most likely exerted through a regulatory factor(s) partitioned by SicA from SipC. These studies therefore describe a surprisingly complex function for the Salmonella enterica type III secretion-associated chaperone SicA. PMID:10735870

  18. Curcumin Suppresses Soluble Tau Dimers and Corrects Molecular Chaperone, Synaptic, and Behavioral Deficits in Aged Human Tau Transgenic Mice*

    PubMed Central

    Ma, Qiu-Lan; Zuo, Xiaohong; Yang, Fusheng; Ubeda, Oliver J.; Gant, Dana J.; Alaverdyan, Mher; Teng, Edmond; Hu, Shuxin; Chen, Ping-Ping; Maiti, Panchanan; Teter, Bruce; Cole, Greg M.; Frautschy, Sally A.

    2013-01-01

    The mechanisms underlying Tau-related synaptic and cognitive deficits and the interrelationships between Tau species, their clearance pathways, and synaptic impairments remain poorly understood. To gain insight into these mechanisms, we examined these interrelationships in aged non-mutant genomic human Tau mice, with established Tau pathology and neuron loss. We also examined how these interrelationships changed with an intervention by feeding mice either a control diet or one containing the brain permeable beta-amyloid and Tau aggregate binding molecule curcumin. Transgene-dependent elevations in soluble and insoluble phospho-Tau monomer and soluble Tau dimers accompanied deficits in behavior, hippocampal excitatory synaptic markers, and molecular chaperones (heat shock proteins (HSPs)) involved in Tau degradation and microtubule stability. In human Tau mice but not control mice, HSP70, HSP70/HSP72, and HSP90 were reduced in membrane-enriched fractions but not in cytosolic fractions. The synaptic proteins PSD95 and NR2B were reduced in dendritic fields and redistributed into perikarya, corresponding to changes observed by immunoblot. Curcumin selectively suppressed levels of soluble Tau dimers, but not of insoluble and monomeric phospho-Tau, while correcting behavioral, synaptic, and HSP deficits. Treatment increased PSD95 co-immunoprecipitating with NR2B and, independent of transgene, increased HSPs implicated in Tau clearance. It elevated HSP90 and HSC70 without increasing HSP mRNAs; that is, without induction of the heat shock response. Instead curcumin differentially impacted HSP90 client kinases, reducing Fyn without reducing Akt. In summary, curcumin reduced soluble Tau and elevated HSPs involved in Tau clearance, showing that even after tangles have formed, Tau-dependent behavioral and synaptic deficits can be corrected. PMID:23264626

  19. Functional characterization of human nucleosome assembly protein-2 (NAP1L4) suggests a role as a histone chaperone

    SciTech Connect

    Rodriguez, P.; Chu, Lee Lee; Kim, Jungho; Pelletier, J.

    1997-09-15

    Histones are thought to play a key role in regulating gene expression at the level of DNA packaging. Recent evidence suggests that transcriptional activation requires competition of transcription factors with histones for binding to regulatory regions and that there may be several mechanisms by which this is achieved. We have characterized a human nucleosome assembly protein, NAP-2, previously identified by positional cloning at 11p15.5, a region implicated in several disease processes including Wilms tumor (WT) etiology. The deduced amino acid sequence of NAP-2 indicates that it encodes a protein with a potential nuclear localization motif and two clusters of highly acidic residues. Functional analysis of recombinant NAP-2 protein purified from Escherichia coli demonstrates that this protein can interact with both core and linker histones. We demonstrate that recombinant NAP-2 can transfer histones onto naked DNA templates. Deletion mutagenesis of NAP-2 demonstrates that both NH3- and COOH-terminal domains are required for histone transfer activity. Subcellular localization studies of NAP-2 indicate that it can shuttle between the cytoplasm and the nucleus, suggesting a role as a histone chaperone. Given the potential role of the human NAP-2 gene (HGMW-approved symbol NAP1L4) in WT etiology, we have elucidated the exon/intron structure of this gene and have analyzed the mutational status of NAP-2 in sporadic WTs. Our results, coupled with tumor suppression assays in G401 WT cells, do not support a role for NAP-2 in the etiology of WT. A putative role for NAP-2 in regulating cellular differentiation is discussed. 59 refs., 7 figs., 1 tab.

  20. LAMP-2C Inhibits MHC Class II Presentation of Cytoplasmic Antigens by Disrupting Chaperone-Mediated Autophagy.

    PubMed

    Pérez, Liliana; McLetchie, Shawna; Gardiner, Gail J; Deffit, Sarah N; Zhou, Delu; Blum, Janice S

    2016-03-15

    Cells use multiple autophagy pathways to sequester macromolecules, senescent organelles, and pathogens. Several conserved isoforms of the lysosome-associated membrane protein-2 (LAMP-2) regulate these pathways influencing immune recognition and responses. LAMP-2A is required for chaperone-mediated autophagy (CMA), which promotes Ag capture and MHC class II (MHCII) presentation in B cells and signaling in T cells. LAMP-2B regulates lysosome maturation to impact macroautophagy and phagocytosis. Yet, far less is known about LAMP-2C function. Whereas LAMP2A and LAMP2B mRNA were broadly detected in human tissues, LAMP2C expression was more limited. Transcripts for the three LAMP2 isoforms increased with B cell activation, although specific gene induction varied depending on TLR versus BCR engagement. To examine LAMP-2C function in human B cells and specifically its role in Ag presentation, we used ectopic gene expression. Increased LAMP-2C expression in B cells did not alter MHCII expression or invariant chain processing, but did perturb cytoplasmic Ag presentation via CMA. MHCII presentation of epitopes from exogenous and membrane Ags was not affected by LAMP-2C expression in B cells. Similarly, changes in B cell LAMP-2C expression did not impact macroautophagy. The gene expression of other LAMP2 isoforms and proteasome and lysosomal proteases activities were unperturbed by LAMP-2C ectopic expression. LAMP-2C levels modulated the steady-state expression of several cytoplasmic proteins that are targeted for degradation by CMA and diminished peptide translocation via this pathway. Thus, LAMP-2C serves as a natural inhibitor of CMA that can selectively skew MHCII presentation of cytoplasmic Ags.

  1. Protein Disulfide Isomerase Chaperone ERP-57 Decreases Plasma Membrane Expression of the Human GnRH Receptor

    PubMed Central

    Yánez, Rodrigo Ayala; Conn, P. Michael

    2012-01-01

    Retention of misfolded proteins by the endoplasmic reticulum (ER) is a quality control mechanism involving the participation of endogenous chaperones such as calnexin (CANX) which interact and restrict plasma membrane expression of gonadotropin releasing hormone receptor (GnRHR), a G protein coupled receptor. CANX also interacts with ERP-57, a thiol oxidoreductase chaperone present in the ER. CANX along with ERP-57, promotes the formation of disulfide bond bridges in nascent proteins. The human GnRH receptor (hGnRHR) is stabilized by two disulfide bond bridges (Cys14-Cys200 and Cys114-Cys196), that, when broken, its expression at plasma membrane decreases. To determine if the presence of chaperones CANX and ERP-57 exert an influence over membrane routing and