Sample records for character recognition algorithms

  1. Multi-frame knowledge based text enhancement for mobile phone captured videos

    NASA Astrophysics Data System (ADS)

    Ozarslan, Suleyman; Eren, P. Erhan

    2014-02-01

    In this study, we explore automated text recognition and enhancement using mobile phone captured videos of store receipts. We propose a method which includes Optical Character Resolution (OCR) enhanced by our proposed Row Based Multiple Frame Integration (RB-MFI), and Knowledge Based Correction (KBC) algorithms. In this method, first, the trained OCR engine is used for recognition; then, the RB-MFI algorithm is applied to the output of the OCR. The RB-MFI algorithm determines and combines the most accurate rows of the text outputs extracted by using OCR from multiple frames of the video. After RB-MFI, KBC algorithm is applied to these rows to correct erroneous characters. Results of the experiments show that the proposed video-based approach which includes the RB-MFI and the KBC algorithm increases the word character recognition rate to 95%, and the character recognition rate to 98%.

  2. Optical character recognition of handwritten Arabic using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Aulama, Mohannad M.; Natsheh, Asem M.; Abandah, Gheith A.; Olama, Mohammed M.

    2011-04-01

    The problem of optical character recognition (OCR) of handwritten Arabic has not received a satisfactory solution yet. In this paper, an Arabic OCR algorithm is developed based on Hidden Markov Models (HMMs) combined with the Viterbi algorithm, which results in an improved and more robust recognition of characters at the sub-word level. Integrating the HMMs represents another step of the overall OCR trends being currently researched in the literature. The proposed approach exploits the structure of characters in the Arabic language in addition to their extracted features to achieve improved recognition rates. Useful statistical information of the Arabic language is initially extracted and then used to estimate the probabilistic parameters of the mathematical HMM. A new custom implementation of the HMM is developed in this study, where the transition matrix is built based on the collected large corpus, and the emission matrix is built based on the results obtained via the extracted character features. The recognition process is triggered using the Viterbi algorithm which employs the most probable sequence of sub-words. The model was implemented to recognize the sub-word unit of Arabic text raising the recognition rate from being linked to the worst recognition rate for any character to the overall structure of the Arabic language. Numerical results show that there is a potentially large recognition improvement by using the proposed algorithms.

  3. Optical character recognition of handwritten Arabic using hidden Markov models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aulama, Mohannad M.; Natsheh, Asem M.; Abandah, Gheith A.

    2011-01-01

    The problem of optical character recognition (OCR) of handwritten Arabic has not received a satisfactory solution yet. In this paper, an Arabic OCR algorithm is developed based on Hidden Markov Models (HMMs) combined with the Viterbi algorithm, which results in an improved and more robust recognition of characters at the sub-word level. Integrating the HMMs represents another step of the overall OCR trends being currently researched in the literature. The proposed approach exploits the structure of characters in the Arabic language in addition to their extracted features to achieve improved recognition rates. Useful statistical information of the Arabic language ismore » initially extracted and then used to estimate the probabilistic parameters of the mathematical HMM. A new custom implementation of the HMM is developed in this study, where the transition matrix is built based on the collected large corpus, and the emission matrix is built based on the results obtained via the extracted character features. The recognition process is triggered using the Viterbi algorithm which employs the most probable sequence of sub-words. The model was implemented to recognize the sub-word unit of Arabic text raising the recognition rate from being linked to the worst recognition rate for any character to the overall structure of the Arabic language. Numerical results show that there is a potentially large recognition improvement by using the proposed algorithms.« less

  4. Document Form and Character Recognition using SVM

    NASA Astrophysics Data System (ADS)

    Park, Sang-Sung; Shin, Young-Geun; Jung, Won-Kyo; Ahn, Dong-Kyu; Jang, Dong-Sik

    2009-08-01

    Because of development of computer and information communication, EDI (Electronic Data Interchange) has been developing. There is OCR (Optical Character Recognition) of Pattern recognition technology for EDI. OCR contributed to changing many manual in the past into automation. But for the more perfect database of document, much manual is needed for excluding unnecessary recognition. To resolve this problem, we propose document form based character recognition method in this study. Proposed method is divided into document form recognition part and character recognition part. Especially, in character recognition, change character into binarization by using SVM algorithm and extract more correct feature value.

  5. Word recognition using a lexicon constrained by first/last character decisions

    NASA Astrophysics Data System (ADS)

    Zhao, Sheila X.; Srihari, Sargur N.

    1995-03-01

    In lexicon based recognition of machine-printed word images, the size of the lexicon can be quite extensive. The recognition performance is closely related to the size of the lexicon. Recognition performance drops quickly when lexicon size increases. Here, we present an algorithm to improve the word recognition performance by reducing the size of the given lexicon. The algorithm utilizes the information provided by the first and last characters of a word to reduce the size of the given lexicon. Given a word image and a lexicon that contains the word in the image, the first and last characters are segmented and then recognized by a character classifier. The possible candidates based on the results given by the classifier are selected, which give us the sub-lexicon. Then a word shape analysis algorithm is applied to produce the final ranking of the given lexicon. The algorithm was tested on a set of machine- printed gray-scale word images which includes a wide range of print types and qualities.

  6. Structural model constructing for optical handwritten character recognition

    NASA Astrophysics Data System (ADS)

    Khaustov, P. A.; Spitsyn, V. G.; Maksimova, E. I.

    2017-02-01

    The article is devoted to the development of the algorithms for optical handwritten character recognition based on the structural models constructing. The main advantage of these algorithms is the low requirement regarding the number of reference images. The one-pass approach to a thinning of the binary character representation has been proposed. This approach is based on the joint use of Zhang-Suen and Wu-Tsai algorithms. The effectiveness of the proposed approach is confirmed by the results of the experiments. The article includes the detailed description of the structural model constructing algorithm’s steps. The proposed algorithm has been implemented in character processing application and has been approved on MNIST handwriting characters database. Algorithms that could be used in case of limited reference images number were used for the comparison.

  7. Iterative cross section sequence graph for handwritten character segmentation.

    PubMed

    Dawoud, Amer

    2007-08-01

    The iterative cross section sequence graph (ICSSG) is an algorithm for handwritten character segmentation. It expands the cross section sequence graph concept by applying it iteratively at equally spaced thresholds. The iterative thresholding reduces the effect of information loss associated with image binarization. ICSSG preserves the characters' skeletal structure by preventing the interference of pixels that causes flooding of adjacent characters' segments. Improving the structural quality of the characters' skeleton facilitates better feature extraction and classification, which improves the overall performance of optical character recognition (OCR). Experimental results showed significant improvements in OCR recognition rates compared to other well-established segmentation algorithms.

  8. Comparison of crisp and fuzzy character networks in handwritten word recognition

    NASA Technical Reports Server (NTRS)

    Gader, Paul; Mohamed, Magdi; Chiang, Jung-Hsien

    1992-01-01

    Experiments involving handwritten word recognition on words taken from images of handwritten address blocks from the United States Postal Service mailstream are described. The word recognition algorithm relies on the use of neural networks at the character level. The neural networks are trained using crisp and fuzzy desired outputs. The fuzzy outputs were defined using a fuzzy k-nearest neighbor algorithm. The crisp networks slightly outperformed the fuzzy networks at the character level but the fuzzy networks outperformed the crisp networks at the word level.

  9. Effectiveness of feature and classifier algorithms in character recognition systems

    NASA Astrophysics Data System (ADS)

    Wilson, Charles L.

    1993-04-01

    At the first Census Optical Character Recognition Systems Conference, NIST generated accuracy data for more than character recognition systems. Most systems were tested on the recognition of isolated digits and upper and lower case alphabetic characters. The recognition experiments were performed on sample sizes of 58,000 digits, and 12,000 upper and lower case alphabetic characters. The algorithms used by the 26 conference participants included rule-based methods, image-based methods, statistical methods, and neural networks. The neural network methods included Multi-Layer Perceptron's, Learned Vector Quantitization, Neocognitrons, and cascaded neural networks. In this paper 11 different systems are compared using correlations between the answers of different systems, comparing the decrease in error rate as a function of confidence of recognition, and comparing the writer dependence of recognition. This comparison shows that methods that used different algorithms for feature extraction and recognition performed with very high levels of correlation. This is true for neural network systems, hybrid systems, and statistically based systems, and leads to the conclusion that neural networks have not yet demonstrated a clear superiority to more conventional statistical methods. Comparison of these results with the models of Vapnick (for estimation problems), MacKay (for Bayesian statistical models), Moody (for effective parameterization), and Boltzmann models (for information content) demonstrate that as the limits of training data variance are approached, all classifier systems have similar statistical properties. The limiting condition can only be approached for sufficiently rich feature sets because the accuracy limit is controlled by the available information content of the training set, which must pass through the feature extraction process prior to classification.

  10. Character recognition using a neural network model with fuzzy representation

    NASA Technical Reports Server (NTRS)

    Tavakoli, Nassrin; Seniw, David

    1992-01-01

    The degree to which digital images are recognized correctly by computerized algorithms is highly dependent upon the representation and the classification processes. Fuzzy techniques play an important role in both processes. In this paper, the role of fuzzy representation and classification on the recognition of digital characters is investigated. An experimental Neural Network model with application to character recognition was developed. Through a set of experiments, the effect of fuzzy representation on the recognition accuracy of this model is presented.

  11. Scene text recognition in mobile applications by character descriptor and structure configuration.

    PubMed

    Yi, Chucai; Tian, Yingli

    2014-07-01

    Text characters and strings in natural scene can provide valuable information for many applications. Extracting text directly from natural scene images or videos is a challenging task because of diverse text patterns and variant background interferences. This paper proposes a method of scene text recognition from detected text regions. In text detection, our previously proposed algorithms are applied to obtain text regions from scene image. First, we design a discriminative character descriptor by combining several state-of-the-art feature detectors and descriptors. Second, we model character structure at each character class by designing stroke configuration maps. Our algorithm design is compatible with the application of scene text extraction in smart mobile devices. An Android-based demo system is developed to show the effectiveness of our proposed method on scene text information extraction from nearby objects. The demo system also provides us some insight into algorithm design and performance improvement of scene text extraction. The evaluation results on benchmark data sets demonstrate that our proposed scheme of text recognition is comparable with the best existing methods.

  12. Character Recognition Using Genetically Trained Neural Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diniz, C.; Stantz, K.M.; Trahan, M.W.

    1998-10-01

    Computationally intelligent recognition of characters and symbols addresses a wide range of applications including foreign language translation and chemical formula identification. The combination of intelligent learning and optimization algorithms with layered neural structures offers powerful techniques for character recognition. These techniques were originally developed by Sandia National Laboratories for pattern and spectral analysis; however, their ability to optimize vast amounts of data make them ideal for character recognition. An adaptation of the Neural Network Designer soflsvare allows the user to create a neural network (NN_) trained by a genetic algorithm (GA) that correctly identifies multiple distinct characters. The initial successfidmore » recognition of standard capital letters can be expanded to include chemical and mathematical symbols and alphabets of foreign languages, especially Arabic and Chinese. The FIN model constructed for this project uses a three layer feed-forward architecture. To facilitate the input of characters and symbols, a graphic user interface (GUI) has been developed to convert the traditional representation of each character or symbol to a bitmap. The 8 x 8 bitmap representations used for these tests are mapped onto the input nodes of the feed-forward neural network (FFNN) in a one-to-one correspondence. The input nodes feed forward into a hidden layer, and the hidden layer feeds into five output nodes correlated to possible character outcomes. During the training period the GA optimizes the weights of the NN until it can successfully recognize distinct characters. Systematic deviations from the base design test the network's range of applicability. Increasing capacity, the number of letters to be recognized, requires a nonlinear increase in the number of hidden layer neurodes. Optimal character recognition performance necessitates a minimum threshold for the number of cases when genetically training the net. And, the amount of noise significantly degrades character recognition efficiency, some of which can be overcome by adding noise during training and optimizing the form of the network's activation fimction.« less

  13. Identification of Matra Region and Overlapping Characters for OCR of Printed Bengali Scripts

    NASA Astrophysics Data System (ADS)

    Goswami, Subhra Sundar

    One of the important reasons for poor recognition rate in optical character recognition (OCR) system is the error in character segmentation. In case of Bangla scripts, the errors occur due to several reasons, which include incorrect detection of matra (headline), over-segmentation and under-segmentation. We have proposed a robust method for detecting the headline region. Existence of overlapping characters (in under-segmented parts) in scanned printed documents is a major problem in designing an effective character segmentation procedure for OCR systems. In this paper, a predictive algorithm is developed for effectively identifying overlapping characters and then selecting the cut-borders for segmentation. Our method can be successfully used in achieving high recognition result.

  14. Sunspot drawings handwritten character recognition method based on deep learning

    NASA Astrophysics Data System (ADS)

    Zheng, Sheng; Zeng, Xiangyun; Lin, Ganghua; Zhao, Cui; Feng, Yongli; Tao, Jinping; Zhu, Daoyuan; Xiong, Li

    2016-05-01

    High accuracy scanned sunspot drawings handwritten characters recognition is an issue of critical importance to analyze sunspots movement and store them in the database. This paper presents a robust deep learning method for scanned sunspot drawings handwritten characters recognition. The convolution neural network (CNN) is one algorithm of deep learning which is truly successful in training of multi-layer network structure. CNN is used to train recognition model of handwritten character images which are extracted from the original sunspot drawings. We demonstrate the advantages of the proposed method on sunspot drawings provided by Chinese Academy Yunnan Observatory and obtain the daily full-disc sunspot numbers and sunspot areas from the sunspot drawings. The experimental results show that the proposed method achieves a high recognition accurate rate.

  15. Principal Component 2-D Long Short-Term Memory for Font Recognition on Single Chinese Characters.

    PubMed

    Tao, Dapeng; Lin, Xu; Jin, Lianwen; Li, Xuelong

    2016-03-01

    Chinese character font recognition (CCFR) has received increasing attention as the intelligent applications based on optical character recognition becomes popular. However, traditional CCFR systems do not handle noisy data effectively. By analyzing in detail the basic strokes of Chinese characters, we propose that font recognition on a single Chinese character is a sequence classification problem, which can be effectively solved by recurrent neural networks. For robust CCFR, we integrate a principal component convolution layer with the 2-D long short-term memory (2DLSTM) and develop principal component 2DLSTM (PC-2DLSTM) algorithm. PC-2DLSTM considers two aspects: 1) the principal component layer convolution operation helps remove the noise and get a rational and complete font information and 2) simultaneously, 2DLSTM deals with the long-range contextual processing along scan directions that can contribute to capture the contrast between character trajectory and background. Experiments using the frequently used CCFR dataset suggest the effectiveness of PC-2DLSTM compared with other state-of-the-art font recognition methods.

  16. Feature Selection Method Based on Neighborhood Relationships: Applications in EEG Signal Identification and Chinese Character Recognition

    PubMed Central

    Zhao, Yu-Xiang; Chou, Chien-Hsing

    2016-01-01

    In this study, a new feature selection algorithm, the neighborhood-relationship feature selection (NRFS) algorithm, is proposed for identifying rat electroencephalogram signals and recognizing Chinese characters. In these two applications, dependent relationships exist among the feature vectors and their neighboring feature vectors. Therefore, the proposed NRFS algorithm was designed for solving this problem. By applying the NRFS algorithm, unselected feature vectors have a high priority of being added into the feature subset if the neighboring feature vectors have been selected. In addition, selected feature vectors have a high priority of being eliminated if the neighboring feature vectors are not selected. In the experiments conducted in this study, the NRFS algorithm was compared with two feature algorithms. The experimental results indicated that the NRFS algorithm can extract the crucial frequency bands for identifying rat vigilance states and identifying crucial character regions for recognizing Chinese characters. PMID:27314346

  17. Signature Verification Based on Handwritten Text Recognition

    NASA Astrophysics Data System (ADS)

    Viriri, Serestina; Tapamo, Jules-R.

    Signatures continue to be an important biometric trait because it remains widely used primarily for authenticating the identity of human beings. This paper presents an efficient text-based directional signature recognition algorithm which verifies signatures, even when they are composed of special unconstrained cursive characters which are superimposed and embellished. This algorithm extends the character-based signature verification technique. The experiments carried out on the GPDS signature database and an additional database created from signatures captured using the ePadInk tablet, show that the approach is effective and efficient, with a positive verification rate of 94.95%.

  18. Recognition and defect detection of dot-matrix text via variation-model based learning

    NASA Astrophysics Data System (ADS)

    Ohyama, Wataru; Suzuki, Koushi; Wakabayashi, Tetsushi

    2017-03-01

    An algorithm for recognition and defect detection of dot-matrix text printed on products is proposed. Extraction and recognition of dot-matrix text contains several difficulties, which are not involved in standard camera-based OCR, that the appearance of dot-matrix characters is corrupted and broken by illumination, complex texture in the background and other standard characters printed on product packages. We propose a dot-matrix text extraction and recognition method which does not require any user interaction. The method employs detected location of corner points and classification score. The result of evaluation experiment using 250 images shows that recall and precision of extraction are 78.60% and 76.03%, respectively. Recognition accuracy of correctly extracted characters is 94.43%. Detecting printing defect of dot-matrix text is also important in the production scene to avoid illegal productions. We also propose a detection method for printing defect of dot-matrix characters. The method constructs a feature vector of which elements are classification scores of each character class and employs support vector machine to classify four types of printing defect. The detection accuracy of the proposed method is 96.68 %.

  19. Heuristic algorithm for optical character recognition of Arabic script

    NASA Astrophysics Data System (ADS)

    Yarman-Vural, Fatos T.; Atici, A.

    1996-02-01

    In this paper, a heuristic method is developed for segmentation, feature extraction and recognition of the Arabic script. The study is part of a large project for the transcription of the documents in Ottoman Archives. A geometrical and topological feature analysis method is developed for segmentation and feature extraction stages. Chain code transformation is applied to main strokes of the characters which are then classified by the hidden Markov model (HMM) in the recognition stage. Experimental results indicate that the performance of the proposed method is impressive, provided that the thinning process does not yield spurious branches.

  20. Improved document image segmentation algorithm using multiresolution morphology

    NASA Astrophysics Data System (ADS)

    Bukhari, Syed Saqib; Shafait, Faisal; Breuel, Thomas M.

    2011-01-01

    Page segmentation into text and non-text elements is an essential preprocessing step before optical character recognition (OCR) operation. In case of poor segmentation, an OCR classification engine produces garbage characters due to the presence of non-text elements. This paper describes modifications to the text/non-text segmentation algorithm presented by Bloomberg,1 which is also available in his open-source Leptonica library.2The modifications result in significant improvements and achieved better segmentation accuracy than the original algorithm for UW-III, UNLV, ICDAR 2009 page segmentation competition test images and circuit diagram datasets.

  1. Speech recognition for embedded automatic positioner for laparoscope

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Yin, Qingyun; Wang, Yi; Yu, Daoyin

    2014-07-01

    In this paper a novel speech recognition methodology based on Hidden Markov Model (HMM) is proposed for embedded Automatic Positioner for Laparoscope (APL), which includes a fixed point ARM processor as the core. The APL system is designed to assist the doctor in laparoscopic surgery, by implementing the specific doctor's vocal control to the laparoscope. Real-time respond to the voice commands asks for more efficient speech recognition algorithm for the APL. In order to reduce computation cost without significant loss in recognition accuracy, both arithmetic and algorithmic optimizations are applied in the method presented. First, depending on arithmetic optimizations most, a fixed point frontend for speech feature analysis is built according to the ARM processor's character. Then the fast likelihood computation algorithm is used to reduce computational complexity of the HMM-based recognition algorithm. The experimental results show that, the method shortens the recognition time within 0.5s, while the accuracy higher than 99%, demonstrating its ability to achieve real-time vocal control to the APL.

  2. Recognizing characters of ancient manuscripts

    NASA Astrophysics Data System (ADS)

    Diem, Markus; Sablatnig, Robert

    2010-02-01

    Considering printed Latin text, the main issues of Optical Character Recognition (OCR) systems are solved. However, for degraded handwritten document images, basic preprocessing steps such as binarization, gain poor results with state-of-the-art methods. In this paper ancient Slavonic manuscripts from the 11th century are investigated. In order to minimize the consequences of false character segmentation, a binarization-free approach based on local descriptors is proposed. Additionally local information allows the recognition of partially visible or washed out characters. The proposed algorithm consists of two steps: character classification and character localization. Initially Scale Invariant Feature Transform (SIFT) features are extracted which are subsequently classified using Support Vector Machines (SVM). Afterwards, the interest points are clustered according to their spatial information. Thereby, characters are localized and finally recognized based on a weighted voting scheme of pre-classified local descriptors. Preliminary results show that the proposed system can handle highly degraded manuscript images with background clutter (e.g. stains, tears) and faded out characters.

  3. [A wavelet neural network algorithm of EEG signals data compression and spikes recognition].

    PubMed

    Zhang, Y; Liu, A; Yu, K

    1999-06-01

    A novel method of EEG signals compression representation and epileptiform spikes recognition based on wavelet neural network and its algorithm is presented. The wavelet network not only can compress data effectively but also can recover original signal. In addition, the characters of the spikes and the spike-slow rhythm are auto-detected from the time-frequency isoline of EEG signal. This method is well worth using in the field of the electrophysiological signal processing and time-frequency analyzing.

  4. Character displacement of Cercopithecini primate visual signals

    PubMed Central

    Allen, William L.; Stevens, Martin; Higham, James P.

    2014-01-01

    Animal visual signals have the potential to act as an isolating barrier to prevent interbreeding of populations through a role in species recognition. Within communities of competing species, species recognition signals are predicted to undergo character displacement, becoming more visually distinctive from each other, however this pattern has rarely been identified. Using computational face recognition algorithms to model primate face processing, we demonstrate that the face patterns of guenons (tribe: Cercopithecini) have evolved under selection to become more visually distinctive from those of other guenon species with whom they are sympatric. The relationship between the appearances of sympatric species suggests that distinguishing conspecifics from other guenon species has been a major driver of diversification in guenon face appearance. Visual signals that have undergone character displacement may have had an important role in the tribe’s radiation, keeping populations that became geographically separated reproductively isolated on secondary contact. PMID:24967517

  5. Fuzzy Logic Module of Convolutional Neural Network for Handwritten Digits Recognition

    NASA Astrophysics Data System (ADS)

    Popko, E. A.; Weinstein, I. A.

    2016-08-01

    Optical character recognition is one of the important issues in the field of pattern recognition. This paper presents a method for recognizing handwritten digits based on the modeling of convolutional neural network. The integrated fuzzy logic module based on a structural approach was developed. Used system architecture adjusted the output of the neural network to improve quality of symbol identification. It was shown that proposed algorithm was flexible and high recognition rate of 99.23% was achieved.

  6. Practical vision based degraded text recognition system

    NASA Astrophysics Data System (ADS)

    Mohammad, Khader; Agaian, Sos; Saleh, Hani

    2011-02-01

    Rapid growth and progress in the medical, industrial, security and technology fields means more and more consideration for the use of camera based optical character recognition (OCR) Applying OCR to scanned documents is quite mature, and there are many commercial and research products available on this topic. These products achieve acceptable recognition accuracy and reasonable processing times especially with trained software, and constrained text characteristics. Even though the application space for OCR is huge, it is quite challenging to design a single system that is capable of performing automatic OCR for text embedded in an image irrespective of the application. Challenges for OCR systems include; images are taken under natural real world conditions, Surface curvature, text orientation, font, size, lighting conditions, and noise. These and many other conditions make it extremely difficult to achieve reasonable character recognition. Performance for conventional OCR systems drops dramatically as the degradation level of the text image quality increases. In this paper, a new recognition method is proposed to recognize solid or dotted line degraded characters. The degraded text string is localized and segmented using a new algorithm. The new method was implemented and tested using a development framework system that is capable of performing OCR on camera captured images. The framework allows parameter tuning of the image-processing algorithm based on a training set of camera-captured text images. Novel methods were used for enhancement, text localization and the segmentation algorithm which enables building a custom system that is capable of performing automatic OCR which can be used for different applications. The developed framework system includes: new image enhancement, filtering, and segmentation techniques which enabled higher recognition accuracies, faster processing time, and lower energy consumption, compared with the best state of the art published techniques. The system successfully produced impressive OCR accuracies (90% -to- 93%) using customized systems generated by our development framework in two industrial OCR applications: water bottle label text recognition and concrete slab plate text recognition. The system was also trained for the Arabic language alphabet, and demonstrated extremely high recognition accuracy (99%) for Arabic license name plate text recognition with processing times of 10 seconds. The accuracy and run times of the system were compared to conventional and many states of art methods, the proposed system shows excellent results.

  7. Automatic extraction of numeric strings in unconstrained handwritten document images

    NASA Astrophysics Data System (ADS)

    Haji, M. Mehdi; Bui, Tien D.; Suen, Ching Y.

    2011-01-01

    Numeric strings such as identification numbers carry vital pieces of information in documents. In this paper, we present a novel algorithm for automatic extraction of numeric strings in unconstrained handwritten document images. The algorithm has two main phases: pruning and verification. In the pruning phase, the algorithm first performs a new segment-merge procedure on each text line, and then using a new regularity measure, it prunes all sequences of characters that are unlikely to be numeric strings. The segment-merge procedure is composed of two modules: a new explicit character segmentation algorithm which is based on analysis of skeletal graphs and a merging algorithm which is based on graph partitioning. All the candidate sequences that pass the pruning phase are sent to a recognition-based verification phase for the final decision. The recognition is based on a coarse-to-fine approach using probabilistic RBF networks. We developed our algorithm for the processing of real-world documents where letters and digits may be connected or broken in a document. The effectiveness of the proposed approach is shown by extensive experiments done on a real-world database of 607 documents which contains handwritten, machine-printed and mixed documents with different types of layouts and levels of noise.

  8. A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors

    PubMed Central

    Cheng, Juan; Chen, Xun; Liu, Aiping; Peng, Hu

    2015-01-01

    Sign language recognition (SLR) is an important communication tool between the deaf and the external world. It is highly necessary to develop a worldwide continuous and large-vocabulary-scale SLR system for practical usage. In this paper, we propose a novel phonology- and radical-coded Chinese SLR framework to demonstrate the feasibility of continuous SLR using accelerometer (ACC) and surface electromyography (sEMG) sensors. The continuous Chinese characters, consisting of coded sign gestures, are first segmented into active segments using EMG signals by means of moving average algorithm. Then, features of each component are extracted from both ACC and sEMG signals of active segments (i.e., palm orientation represented by the mean and variance of ACC signals, hand movement represented by the fixed-point ACC sequence, and hand shape represented by both the mean absolute value (MAV) and autoregressive model coefficients (ARs)). Afterwards, palm orientation is first classified, distinguishing “Palm Downward” sign gestures from “Palm Inward” ones. Only the “Palm Inward” gestures are sent for further hand movement and hand shape recognition by dynamic time warping (DTW) algorithm and hidden Markov models (HMM) respectively. Finally, component recognition results are integrated to identify one certain coded gesture. Experimental results demonstrate that the proposed SLR framework with a vocabulary scale of 223 characters can achieve an averaged recognition accuracy of 96.01% ± 0.83% for coded gesture recognition tasks and 92.73% ± 1.47% for character recognition tasks. Besides, it demonstrats that sEMG signals are rather consistent for a given hand shape independent of hand movements. Hence, the number of training samples will not be significantly increased when the vocabulary scale increases, since not only the number of the completely new proposed coded gestures is constant and limited, but also the transition movement which connects successive signs needs no training samples to model even though the same coded gesture performed in different characters. This work opens up a possible new way to realize a practical Chinese SLR system. PMID:26389907

  9. A Novel Phonology- and Radical-Coded Chinese Sign Language Recognition Framework Using Accelerometer and Surface Electromyography Sensors.

    PubMed

    Cheng, Juan; Chen, Xun; Liu, Aiping; Peng, Hu

    2015-09-15

    Sign language recognition (SLR) is an important communication tool between the deaf and the external world. It is highly necessary to develop a worldwide continuous and large-vocabulary-scale SLR system for practical usage. In this paper, we propose a novel phonology- and radical-coded Chinese SLR framework to demonstrate the feasibility of continuous SLR using accelerometer (ACC) and surface electromyography (sEMG) sensors. The continuous Chinese characters, consisting of coded sign gestures, are first segmented into active segments using EMG signals by means of moving average algorithm. Then, features of each component are extracted from both ACC and sEMG signals of active segments (i.e., palm orientation represented by the mean and variance of ACC signals, hand movement represented by the fixed-point ACC sequence, and hand shape represented by both the mean absolute value (MAV) and autoregressive model coefficients (ARs)). Afterwards, palm orientation is first classified, distinguishing "Palm Downward" sign gestures from "Palm Inward" ones. Only the "Palm Inward" gestures are sent for further hand movement and hand shape recognition by dynamic time warping (DTW) algorithm and hidden Markov models (HMM) respectively. Finally, component recognition results are integrated to identify one certain coded gesture. Experimental results demonstrate that the proposed SLR framework with a vocabulary scale of 223 characters can achieve an averaged recognition accuracy of 96.01% ± 0.83% for coded gesture recognition tasks and 92.73% ± 1.47% for character recognition tasks. Besides, it demonstrats that sEMG signals are rather consistent for a given hand shape independent of hand movements. Hence, the number of training samples will not be significantly increased when the vocabulary scale increases, since not only the number of the completely new proposed coded gestures is constant and limited, but also the transition movement which connects successive signs needs no training samples to model even though the same coded gesture performed in different characters. This work opens up a possible new way to realize a practical Chinese SLR system.

  10. Image simulation for automatic license plate recognition

    NASA Astrophysics Data System (ADS)

    Bala, Raja; Zhao, Yonghui; Burry, Aaron; Kozitsky, Vladimir; Fillion, Claude; Saunders, Craig; Rodríguez-Serrano, José

    2012-01-01

    Automatic license plate recognition (ALPR) is an important capability for traffic surveillance applications, including toll monitoring and detection of different types of traffic violations. ALPR is a multi-stage process comprising plate localization, character segmentation, optical character recognition (OCR), and identification of originating jurisdiction (i.e. state or province). Training of an ALPR system for a new jurisdiction typically involves gathering vast amounts of license plate images and associated ground truth data, followed by iterative tuning and optimization of the ALPR algorithms. The substantial time and effort required to train and optimize the ALPR system can result in excessive operational cost and overhead. In this paper we propose a framework to create an artificial set of license plate images for accelerated training and optimization of ALPR algorithms. The framework comprises two steps: the synthesis of license plate images according to the design and layout for a jurisdiction of interest; and the modeling of imaging transformations and distortions typically encountered in the image capture process. Distortion parameters are estimated by measurements of real plate images. The simulation methodology is successfully demonstrated for training of OCR.

  11. Artificial neural networks for document analysis and recognition.

    PubMed

    Marinai, Simone; Gori, Marco; Soda, Giovanni; Society, Computer

    2005-01-01

    Artificial neural networks have been extensively applied to document analysis and recognition. Most efforts have been devoted to the recognition of isolated handwritten and printed characters with widely recognized successful results. However, many other document processing tasks, like preprocessing, layout analysis, character segmentation, word recognition, and signature verification, have been effectively faced with very promising results. This paper surveys the most significant problems in the area of offline document image processing, where connectionist-based approaches have been applied. Similarities and differences between approaches belonging to different categories are discussed. A particular emphasis is given on the crucial role of prior knowledge for the conception of both appropriate architectures and learning algorithms. Finally, the paper provides a critical analysis on the reviewed approaches and depicts the most promising research guidelines in the field. In particular, a second generation of connectionist-based models are foreseen which are based on appropriate graphical representations of the learning environment.

  12. An introduction to kernel-based learning algorithms.

    PubMed

    Müller, K R; Mika, S; Rätsch, G; Tsuda, K; Schölkopf, B

    2001-01-01

    This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis.

  13. Container-code recognition system based on computer vision and deep neural networks

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Li, Tianjian; Jiang, Li; Liang, Xiaoyao

    2018-04-01

    Automatic container-code recognition system becomes a crucial requirement for ship transportation industry in recent years. In this paper, an automatic container-code recognition system based on computer vision and deep neural networks is proposed. The system consists of two modules, detection module and recognition module. The detection module applies both algorithms based on computer vision and neural networks, and generates a better detection result through combination to avoid the drawbacks of the two methods. The combined detection results are also collected for online training of the neural networks. The recognition module exploits both character segmentation and end-to-end recognition, and outputs the recognition result which passes the verification. When the recognition module generates false recognition, the result will be corrected and collected for online training of the end-to-end recognition sub-module. By combining several algorithms, the system is able to deal with more situations, and the online training mechanism can improve the performance of the neural networks at runtime. The proposed system is able to achieve 93% of overall recognition accuracy.

  14. Liquid lens: advances in adaptive optics

    NASA Astrophysics Data System (ADS)

    Casey, Shawn Patrick

    2010-12-01

    'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.

  15. Development of Portable Automatic Number Plate Recognition System on Android Mobile Phone

    NASA Astrophysics Data System (ADS)

    Mutholib, Abdul; Gunawan, Teddy S.; Chebil, Jalel; Kartiwi, Mira

    2013-12-01

    The Automatic Number Plate Recognition (ANPR) System has performed as the main role in various access control and security, such as: tracking of stolen vehicles, traffic violations (speed trap) and parking management system. In this paper, the portable ANPR implemented on android mobile phone is presented. The main challenges in mobile application are including higher coding efficiency, reduced computational complexity, and improved flexibility. Significance efforts are being explored to find suitable and adaptive algorithm for implementation of ANPR on mobile phone. ANPR system for mobile phone need to be optimize due to its limited CPU and memory resources, its ability for geo-tagging image captured using GPS coordinates and its ability to access online database to store the vehicle's information. In this paper, the design of portable ANPR on android mobile phone will be described as follows. First, the graphical user interface (GUI) for capturing image using built-in camera was developed to acquire vehicle plate number in Malaysia. Second, the preprocessing of raw image was done using contrast enhancement. Next, character segmentation using fixed pitch and an optical character recognition (OCR) using neural network were utilized to extract texts and numbers. Both character segmentation and OCR were using Tesseract library from Google Inc. The proposed portable ANPR algorithm was implemented and simulated using Android SDK on a computer. Based on the experimental results, the proposed system can effectively recognize the license plate number at 90.86%. The required processing time to recognize a license plate is only 2 seconds on average. The result is consider good in comparison with the results obtained from previous system that was processed in a desktop PC with the range of result from 91.59% to 98% recognition rate and 0.284 second to 1.5 seconds recognition time.

  16. Text vectorization based on character recognition and character stroke modeling

    NASA Astrophysics Data System (ADS)

    Fan, Zhigang; Zhou, Bingfeng; Tse, Francis; Mu, Yadong; He, Tao

    2014-03-01

    In this paper, a text vectorization method is proposed using OCR (Optical Character Recognition) and character stroke modeling. This is based on the observation that for a particular character, its font glyphs may have different shapes, but often share same stroke structures. Like many other methods, the proposed algorithm contains two procedures, dominant point determination and data fitting. The first one partitions the outlines into segments and second one fits a curve to each segment. In the proposed method, the dominant points are classified as "major" (specifying stroke structures) and "minor" (specifying serif shapes). A set of rules (parameters) are determined offline specifying for each character the number of major and minor dominant points and for each dominant point the detection and fitting parameters (projection directions, boundary conditions and smoothness). For minor points, multiple sets of parameters could be used for different fonts. During operation, OCR is performed and the parameters associated with the recognized character are selected. Both major and minor dominant points are detected as a maximization process as specified by the parameter set. For minor points, an additional step could be performed to test the competing hypothesis and detect degenerated cases.

  17. Partitioning of the degradation space for OCR training

    NASA Astrophysics Data System (ADS)

    Barney Smith, Elisa H.; Andersen, Tim

    2006-01-01

    Generally speaking optical character recognition algorithms tend to perform better when presented with homogeneous data. This paper studies a method that is designed to increase the homogeneity of training data, based on an understanding of the types of degradations that occur during the printing and scanning process, and how these degradations affect the homogeneity of the data. While it has been shown that dividing the degradation space by edge spread improves recognition accuracy over dividing the degradation space by threshold or point spread function width alone, the challenge is in deciding how many partitions and at what value of edge spread the divisions should be made. Clustering of different types of character features, fonts, sizes, resolutions and noise levels shows that edge spread is indeed shown to be a strong indicator of the homogeneity of character data clusters.

  18. Public domain optical character recognition

    NASA Astrophysics Data System (ADS)

    Garris, Michael D.; Blue, James L.; Candela, Gerald T.; Dimmick, Darrin L.; Geist, Jon C.; Grother, Patrick J.; Janet, Stanley A.; Wilson, Charles L.

    1995-03-01

    A public domain document processing system has been developed by the National Institute of Standards and Technology (NIST). The system is a standard reference form-based handprint recognition system for evaluating optical character recognition (OCR), and it is intended to provide a baseline of performance on an open application. The system's source code, training data, performance assessment tools, and type of forms processed are all publicly available. The system recognizes the handprint entered on handwriting sample forms like the ones distributed with NIST Special Database 1. From these forms, the system reads hand-printed numeric fields, upper and lowercase alphabetic fields, and unconstrained text paragraphs comprised of words from a limited-size dictionary. The modular design of the system makes it useful for component evaluation and comparison, training and testing set validation, and multiple system voting schemes. The system contains a number of significant contributions to OCR technology, including an optimized probabilistic neural network (PNN) classifier that operates a factor of 20 times faster than traditional software implementations of the algorithm. The source code for the recognition system is written in C and is organized into 11 libraries. In all, there are approximately 19,000 lines of code supporting more than 550 subroutines. Source code is provided for form registration, form removal, field isolation, field segmentation, character normalization, feature extraction, character classification, and dictionary-based postprocessing. The recognition system has been successfully compiled and tested on a host of UNIX workstations. This paper gives an overview of the recognition system's software architecture, including descriptions of the various system components along with timing and accuracy statistics.

  19. Document image cleanup and binarization

    NASA Astrophysics Data System (ADS)

    Wu, Victor; Manmatha, Raghaven

    1998-04-01

    Image binarization is a difficult task for documents with text over textured or shaded backgrounds, poor contrast, and/or considerable noise. Current optical character recognition (OCR) and document analysis technology do not handle such documents well. We have developed a simple yet effective algorithm for document image clean-up and binarization. The algorithm consists of two basic steps. In the first step, the input image is smoothed using a low-pass filter. The smoothing operation enhances the text relative to any background texture. This is because background texture normally has higher frequency than text does. The smoothing operation also removes speckle noise. In the second step, the intensity histogram of the smoothed image is computed and a threshold automatically selected as follows. For black text, the first peak of the histogram corresponds to text. Thresholding the image at the value of the valley between the first and second peaks of the histogram binarizes the image well. In order to reliably identify the valley, the histogram is smoothed by a low-pass filter before the threshold is computed. The algorithm has been applied to some 50 images from a wide variety of source: digitized video frames, photos, newspapers, advertisements in magazines or sales flyers, personal checks, etc. There are 21820 characters and 4406 words in these images. 91 percent of the characters and 86 percent of the words are successfully cleaned up and binarized. A commercial OCR was applied to the binarized text when it consisted of fonts which were OCR recognizable. The recognition rate was 84 percent for the characters and 77 percent for the words.

  20. Importance of multi-modal approaches to effectively identify cataract cases from electronic health records.

    PubMed

    Peissig, Peggy L; Rasmussen, Luke V; Berg, Richard L; Linneman, James G; McCarty, Catherine A; Waudby, Carol; Chen, Lin; Denny, Joshua C; Wilke, Russell A; Pathak, Jyotishman; Carrell, David; Kho, Abel N; Starren, Justin B

    2012-01-01

    There is increasing interest in using electronic health records (EHRs) to identify subjects for genomic association studies, due in part to the availability of large amounts of clinical data and the expected cost efficiencies of subject identification. We describe the construction and validation of an EHR-based algorithm to identify subjects with age-related cataracts. We used a multi-modal strategy consisting of structured database querying, natural language processing on free-text documents, and optical character recognition on scanned clinical images to identify cataract subjects and related cataract attributes. Extensive validation on 3657 subjects compared the multi-modal results to manual chart review. The algorithm was also implemented at participating electronic MEdical Records and GEnomics (eMERGE) institutions. An EHR-based cataract phenotyping algorithm was successfully developed and validated, resulting in positive predictive values (PPVs) >95%. The multi-modal approach increased the identification of cataract subject attributes by a factor of three compared to single-mode approaches while maintaining high PPV. Components of the cataract algorithm were successfully deployed at three other institutions with similar accuracy. A multi-modal strategy incorporating optical character recognition and natural language processing may increase the number of cases identified while maintaining similar PPVs. Such algorithms, however, require that the needed information be embedded within clinical documents. We have demonstrated that algorithms to identify and characterize cataracts can be developed utilizing data collected via the EHR. These algorithms provide a high level of accuracy even when implemented across multiple EHRs and institutional boundaries.

  1. Image based book cover recognition and retrieval

    NASA Astrophysics Data System (ADS)

    Sukhadan, Kalyani; Vijayarajan, V.; Krishnamoorthi, A.; Bessie Amali, D. Geraldine

    2017-11-01

    In this we are developing a graphical user interface using MATLAB for the users to check the information related to books in real time. We are taking the photos of the book cover using GUI, then by using MSER algorithm it will automatically detect all the features from the input image, after this it will filter bifurcate non-text features which will be based on morphological difference between text and non-text regions. We implemented a text character alignment algorithm which will improve the accuracy of the original text detection. We will also have a look upon the built in MATLAB OCR recognition algorithm and an open source OCR which is commonly used to perform better detection results, post detection algorithm is implemented and natural language processing to perform word correction and false detection inhibition. Finally, the detection result will be linked to internet to perform online matching. More than 86% accuracy can be obtained by this algorithm.

  2. Practical automatic Arabic license plate recognition system

    NASA Astrophysics Data System (ADS)

    Mohammad, Khader; Agaian, Sos; Saleh, Hani

    2011-02-01

    Since 1970's, the need of an automatic license plate recognition system, sometimes referred as Automatic License Plate Recognition system, has been increasing. A license plate recognition system is an automatic system that is able to recognize a license plate number, extracted from image sensors. In specific, Automatic License Plate Recognition systems are being used in conjunction with various transportation systems in application areas such as law enforcement (e.g. speed limit enforcement) and commercial usages such as parking enforcement and automatic toll payment private and public entrances, border control, theft and vandalism control. Vehicle license plate recognition has been intensively studied in many countries. Due to the different types of license plates being used, the requirement of an automatic license plate recognition system is different for each country. [License plate detection using cluster run length smoothing algorithm ].Generally, an automatic license plate localization and recognition system is made up of three modules; license plate localization, character segmentation and optical character recognition modules. This paper presents an Arabic license plate recognition system that is insensitive to character size, font, shape and orientation with extremely high accuracy rate. The proposed system is based on a combination of enhancement, license plate localization, morphological processing, and feature vector extraction using the Haar transform. The performance of the system is fast due to classification of alphabet and numerals based on the license plate organization. Experimental results for license plates of two different Arab countries show an average of 99 % successful license plate localization and recognition in a total of more than 20 different images captured from a complex outdoor environment. The results run times takes less time compared to conventional and many states of art methods.

  3. A Horizontal Tilt Correction Method for Ship License Numbers Recognition

    NASA Astrophysics Data System (ADS)

    Liu, Baolong; Zhang, Sanyuan; Hong, Zhenjie; Ye, Xiuzi

    2018-02-01

    An automatic ship license numbers (SLNs) recognition system plays a significant role in intelligent waterway transportation systems since it can be used to identify ships by recognizing the characters in SLNs. Tilt occurs frequently in many SLNs because the monitors and the ships usually have great vertical or horizontal angles, which decreases the accuracy and robustness of a SLNs recognition system significantly. In this paper, we present a horizontal tilt correction method for SLNs. For an input tilt SLN image, the proposed method accomplishes the correction task through three main steps. First, a MSER-based characters’ center-points computation algorithm is designed to compute the accurate center-points of the characters contained in the input SLN image. Second, a L 1- L 2 distance-based straight line is fitted to the computed center-points using M-estimator algorithm. The tilt angle is estimated at this stage. Finally, based on the computed tilt angle, an affine transformation rotation is conducted to rotate and to correct the input SLN horizontally. At last, the proposed method is tested on 200 tilt SLN images, the proposed method is proved to be effective with a tilt correction rate of 80.5%.

  4. Postprocessing for character recognition using pattern features and linguistic information

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Takatoshi; Okamoto, Masayosi; Horii, Hiroshi

    1993-04-01

    We propose a new method of post-processing for character recognition using pattern features and linguistic information. This method corrects errors in the recognition of handwritten Japanese sentences containing Kanji characters. This post-process method is characterized by having two types of character recognition. Improving the accuracy of the character recognition rate of Japanese characters is made difficult by the large number of characters, and the existence of characters with similar patterns. Therefore, it is not practical for a character recognition system to recognize all characters in detail. First, this post-processing method generates a candidate character table by recognizing the simplest features of characters. Then, it selects words corresponding to the character from the candidate character table by referring to a word and grammar dictionary before selecting suitable words. If the correct character is included in the candidate character table, this process can correct an error, however, if the character is not included, it cannot correct an error. Therefore, if this method can presume a character does not exist in a candidate character table by using linguistic information (word and grammar dictionary). It then can verify a presumed character by character recognition using complex features. When this method is applied to an online character recognition system, the accuracy of character recognition improves 93.5% to 94.7%. This proved to be the case when it was used for the editorials of a Japanese newspaper (Asahi Shinbun).

  5. Post processing for offline Chinese handwritten character string recognition

    NASA Astrophysics Data System (ADS)

    Wang, YanWei; Ding, XiaoQing; Liu, ChangSong

    2012-01-01

    Offline Chinese handwritten character string recognition is one of the most important research fields in pattern recognition. Due to the free writing style, large variability in character shapes and different geometric characteristics, Chinese handwritten character string recognition is a challenging problem to deal with. However, among the current methods over-segmentation and merging method which integrates geometric information, character recognition information and contextual information, shows a promising result. It is found experimentally that a large part of errors are segmentation error and mainly occur around non-Chinese characters. In a Chinese character string, there are not only wide characters namely Chinese characters, but also narrow characters like digits and letters of the alphabet. The segmentation error is mainly caused by uniform geometric model imposed on all segmented candidate characters. To solve this problem, post processing is employed to improve recognition accuracy of narrow characters. On one hand, multi-geometric models are established for wide characters and narrow characters respectively. Under multi-geometric models narrow characters are not prone to be merged. On the other hand, top rank recognition results of candidate paths are integrated to boost final recognition of narrow characters. The post processing method is investigated on two datasets, in total 1405 handwritten address strings. The wide character recognition accuracy has been improved lightly and narrow character recognition accuracy has been increased up by 10.41% and 10.03% respectively. It indicates that the post processing method is effective to improve recognition accuracy of narrow characters.

  6. Approximate string matching algorithms for limited-vocabulary OCR output correction

    NASA Astrophysics Data System (ADS)

    Lasko, Thomas A.; Hauser, Susan E.

    2000-12-01

    Five methods for matching words mistranslated by optical character recognition to their most likely match in a reference dictionary were tested on data from the archives of the National Library of Medicine. The methods, including an adaptation of the cross correlation algorithm, the generic edit distance algorithm, the edit distance algorithm with a probabilistic substitution matrix, Bayesian analysis, and Bayesian analysis on an actively thinned reference dictionary were implemented and their accuracy rates compared. Of the five, the Bayesian algorithm produced the most correct matches (87%), and had the advantage of producing scores that have a useful and practical interpretation.

  7. Optical and digital pattern recognition; Proceedings of the Meeting, Los Angeles, CA, Jan. 13-15, 1987

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Editor); Schenker, Paul (Editor)

    1987-01-01

    The papers presented in this volume provide an overview of current research in both optical and digital pattern recognition, with a theme of identifying overlapping research problems and methodologies. Topics discussed include image analysis and low-level vision, optical system design, object analysis and recognition, real-time hybrid architectures and algorithms, high-level image understanding, and optical matched filter design. Papers are presented on synthetic estimation filters for a control system; white-light correlator character recognition; optical AI architectures for intelligent sensors; interpreting aerial photographs by segmentation and search; and optical information processing using a new photopolymer.

  8. Development of OCR system for portable passport and visa reader

    NASA Astrophysics Data System (ADS)

    Visilter, Yury V.; Zheltov, Sergey Y.; Lukin, Anton A.

    1999-01-01

    The modern passport and visa documents include special machine-readable zones satisfied the ICAO standards. This allows to develop the special passport and visa automatic readers. However, there are some special problems in such OCR systems: low resolution of character images captured by CCD-camera (down to 150 dpi), essential shifts and slopes (up to 10 degrees), rich paper texture under the character symbols, non-homogeneous illumination. This paper presents the structure and some special aspects of OCR system for portable passport and visa reader. In our approach the binarization procedure is performed after the segmentation step, and it is applied to the each character site separately. Character recognition procedure uses the structural information of machine-readable zone. Special algorithms are developed for machine-readable zone extraction and character segmentation.

  9. Importance of multi-modal approaches to effectively identify cataract cases from electronic health records

    PubMed Central

    Rasmussen, Luke V; Berg, Richard L; Linneman, James G; McCarty, Catherine A; Waudby, Carol; Chen, Lin; Denny, Joshua C; Wilke, Russell A; Pathak, Jyotishman; Carrell, David; Kho, Abel N; Starren, Justin B

    2012-01-01

    Objective There is increasing interest in using electronic health records (EHRs) to identify subjects for genomic association studies, due in part to the availability of large amounts of clinical data and the expected cost efficiencies of subject identification. We describe the construction and validation of an EHR-based algorithm to identify subjects with age-related cataracts. Materials and methods We used a multi-modal strategy consisting of structured database querying, natural language processing on free-text documents, and optical character recognition on scanned clinical images to identify cataract subjects and related cataract attributes. Extensive validation on 3657 subjects compared the multi-modal results to manual chart review. The algorithm was also implemented at participating electronic MEdical Records and GEnomics (eMERGE) institutions. Results An EHR-based cataract phenotyping algorithm was successfully developed and validated, resulting in positive predictive values (PPVs) >95%. The multi-modal approach increased the identification of cataract subject attributes by a factor of three compared to single-mode approaches while maintaining high PPV. Components of the cataract algorithm were successfully deployed at three other institutions with similar accuracy. Discussion A multi-modal strategy incorporating optical character recognition and natural language processing may increase the number of cases identified while maintaining similar PPVs. Such algorithms, however, require that the needed information be embedded within clinical documents. Conclusion We have demonstrated that algorithms to identify and characterize cataracts can be developed utilizing data collected via the EHR. These algorithms provide a high level of accuracy even when implemented across multiple EHRs and institutional boundaries. PMID:22319176

  10. Experimental Realization of a Quantum Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Li, Zhaokai; Liu, Xiaomei; Xu, Nanyang; Du, Jiangfeng

    2015-04-01

    The fundamental principle of artificial intelligence is the ability of machines to learn from previous experience and do future work accordingly. In the age of big data, classical learning machines often require huge computational resources in many practical cases. Quantum machine learning algorithms, on the other hand, could be exponentially faster than their classical counterparts by utilizing quantum parallelism. Here, we demonstrate a quantum machine learning algorithm to implement handwriting recognition on a four-qubit NMR test bench. The quantum machine learns standard character fonts and then recognizes handwritten characters from a set with two candidates. Because of the wide spread importance of artificial intelligence and its tremendous consumption of computational resources, quantum speedup would be extremely attractive against the challenges of big data.

  11. Degraded character recognition based on gradient pattern

    NASA Astrophysics Data System (ADS)

    Babu, D. R. Ramesh; Ravishankar, M.; Kumar, Manish; Wadera, Kevin; Raj, Aakash

    2010-02-01

    Degraded character recognition is a challenging problem in the field of Optical Character Recognition (OCR). The performance of an optical character recognition depends upon printed quality of the input documents. Many OCRs have been designed which correctly identifies the fine printed documents. But, very few reported work has been found on the recognition of the degraded documents. The efficiency of the OCRs system decreases if the input image is degraded. In this paper, a novel approach based on gradient pattern for recognizing degraded printed character is proposed. The approach makes use of gradient pattern of an individual character for recognition. Experiments were conducted on character image that is either digitally written or a degraded character extracted from historical documents and the results are found to be satisfactory.

  12. Syntactic/semantic techniques for feature description and character recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, R.C.

    1983-01-01

    The Pattern Analysis Branch, Mapping, Charting and Geodesy (MC/G) Division, of the Naval Ocean Research and Development Activity (NORDA) has been involved over the past several years in the development of algorithms and techniques for computer recognition of free-form handprinted symbols as they appear on the Defense Mapping Agency (DMA) maps and charts. NORDA has made significant contributions to the automation of MC/G through advancing the state of the art in such information extraction techniques. In particular, new concepts in character (symbol) skeletonization, rugged feature measurements, and expert system-oriented decision logic have allowed the development of a very high performancemore » Handprinted Symbol Recognition (HSR) system for identifying depth soundings from naval smooth sheets (accuracies greater than 99.5%). The study reported in this technical note is part of NORDA's continuing research and development in pattern and shape analysis as it applies to Navy and DMA ocean/environment problems. The issue addressed in this technical note deals with emerging areas of syntactic and semantic techniques in pattern recognition as they might apply to the free-form symbol problem.« less

  13. Good initialization model with constrained body structure for scene text recognition

    NASA Astrophysics Data System (ADS)

    Zhu, Anna; Wang, Guoyou; Dong, Yangbo

    2016-09-01

    Scene text recognition has gained significant attention in the computer vision community. Character detection and recognition are the promise of text recognition and affect the overall performance to a large extent. We proposed a good initialization model for scene character recognition from cropped text regions. We use constrained character's body structures with deformable part-based models to detect and recognize characters in various backgrounds. The character's body structures are achieved by an unsupervised discriminative clustering approach followed by a statistical model and a self-build minimum spanning tree model. Our method utilizes part appearance and location information, and combines character detection and recognition in cropped text region together. The evaluation results on the benchmark datasets demonstrate that our proposed scheme outperforms the state-of-the-art methods both on scene character recognition and word recognition aspects.

  14. Hidden Markov models for character recognition.

    PubMed

    Vlontzos, J A; Kung, S Y

    1992-01-01

    A hierarchical system for character recognition with hidden Markov model knowledge sources which solve both the context sensitivity problem and the character instantiation problem is presented. The system achieves 97-99% accuracy using a two-level architecture and has been implemented using a systolic array, thus permitting real-time (1 ms per character) multifont and multisize printed character recognition as well as handwriting recognition.

  15. Recognition of handwritten similar Chinese characters by self-growing probabilistic decision-based neural network.

    PubMed

    Fu, H C; Xu, Y Y; Chang, H Y

    1999-12-01

    Recognition of similar (confusion) characters is a difficult problem in optical character recognition (OCR). In this paper, we introduce a neural network solution that is capable of modeling minor differences among similar characters, and is robust to various personal handwriting styles. The Self-growing Probabilistic Decision-based Neural Network (SPDNN) is a probabilistic type neural network, which adopts a hierarchical network structure with nonlinear basis functions and a competitive credit-assignment scheme. Based on the SPDNN model, we have constructed a three-stage recognition system. First, a coarse classifier determines a character to be input to one of the pre-defined subclasses partitioned from a large character set, such as Chinese mixed with alphanumerics. Then a character recognizer determines the input image which best matches the reference character in the subclass. Lastly, the third module is a similar character recognizer, which can further enhance the recognition accuracy among similar or confusing characters. The prototype system has demonstrated a successful application of SPDNN to similar handwritten Chinese recognition for the public database CCL/HCCR1 (5401 characters x200 samples). Regarding performance, experiments on the CCL/HCCR1 database produced 90.12% recognition accuracy with no rejection, and 94.11% accuracy with 6.7% rejection, respectively. This recognition accuracy represents about 4% improvement on the previously announced performance. As to processing speed, processing before recognition (including image preprocessing, segmentation, and feature extraction) requires about one second for an A4 size character image, and recognition consumes approximately 0.27 second per character on a Pentium-100 based personal computer, without use of any hardware accelerator or co-processor.

  16. Template protection and its implementation in 3D face recognition systems

    NASA Astrophysics Data System (ADS)

    Zhou, Xuebing

    2007-04-01

    As biometric recognition systems are widely applied in various application areas, security and privacy risks have recently attracted the attention of the biometric community. Template protection techniques prevent stored reference data from revealing private biometric information and enhance the security of biometrics systems against attacks such as identity theft and cross matching. This paper concentrates on a template protection algorithm that merges methods from cryptography, error correction coding and biometrics. The key component of the algorithm is to convert biometric templates into binary vectors. It is shown that the binary vectors should be robust, uniformly distributed, statistically independent and collision-free so that authentication performance can be optimized and information leakage can be avoided. Depending on statistical character of the biometric template, different approaches for transforming biometric templates into compact binary vectors are presented. The proposed methods are integrated into a 3D face recognition system and tested on the 3D facial images of the FRGC database. It is shown that the resulting binary vectors provide an authentication performance that is similar to the original 3D face templates. A high security level is achieved with reasonable false acceptance and false rejection rates of the system, based on an efficient statistical analysis. The algorithm estimates the statistical character of biometric templates from a number of biometric samples in the enrollment database. For the FRGC 3D face database, the small distinction of robustness and discriminative power between the classification results under the assumption of uniquely distributed templates and the ones under the assumption of Gaussian distributed templates is shown in our tests.

  17. Multiscale characterization and analysis of shapes

    DOEpatents

    Prasad, Lakshman; Rao, Ramana

    2002-01-01

    An adaptive multiscale method approximates shapes with continuous or uniformly and densely sampled contours, with the purpose of sparsely and nonuniformly discretizing the boundaries of shapes at any prescribed resolution, while at the same time retaining the salient shape features at that resolution. In another aspect, a fundamental geometric filtering scheme using the Constrained Delaunay Triangulation (CDT) of polygonized shapes creates an efficient parsing of shapes into components that have semantic significance dependent only on the shapes' structure and not on their representations per se. A shape skeletonization process generalizes to sparsely discretized shapes, with the additional benefit of prunability to filter out irrelevant and morphologically insignificant features. The skeletal representation of characters of varying thickness and the elimination of insignificant and noisy spurs and branches from the skeleton greatly increases the robustness, reliability and recognition rates of character recognition algorithms.

  18. Counter-propagation network with variable degree variable step size LMS for single switch typing recognition.

    PubMed

    Yang, Cheng-Huei; Luo, Ching-Hsing; Yang, Cheng-Hong; Chuang, Li-Yeh

    2004-01-01

    Morse code is now being harnessed for use in rehabilitation applications of augmentative-alternative communication and assistive technology, including mobility, environmental control and adapted worksite access. In this paper, Morse code is selected as a communication adaptive device for disabled persons who suffer from muscle atrophy, cerebral palsy or other severe handicaps. A stable typing rate is strictly required for Morse code to be effective as a communication tool. This restriction is a major hindrance. Therefore, a switch adaptive automatic recognition method with a high recognition rate is needed. The proposed system combines counter-propagation networks with a variable degree variable step size LMS algorithm. It is divided into five stages: space recognition, tone recognition, learning process, adaptive processing, and character recognition. Statistical analyses demonstrated that the proposed method elicited a better recognition rate in comparison to alternative methods in the literature.

  19. Kannada character recognition system using neural network

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh D. S.; Kamalapuram, Srinivasa K.; Kumar, Ajay B. R.

    2013-03-01

    Handwriting recognition has been one of the active and challenging research areas in the field of pattern recognition. It has numerous applications which include, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. As there is no sufficient number of works on Indian language character recognition especially Kannada script among 15 major scripts in India. In this paper an attempt is made to recognize handwritten Kannada characters using Feed Forward neural networks. A handwritten Kannada character is resized into 20x30 Pixel. The resized character is used for training the neural network. Once the training process is completed the same character is given as input to the neural network with different set of neurons in hidden layer and their recognition accuracy rate for different Kannada characters has been calculated and compared. The results show that the proposed system yields good recognition accuracy rates comparable to that of other handwritten character recognition systems.

  20. Vehicle license plate recognition based on geometry restraints and multi-feature decision

    NASA Astrophysics Data System (ADS)

    Wu, Jianwei; Wang, Zongyue

    2005-10-01

    Vehicle license plate (VLP) recognition is of great importance to many traffic applications. Though researchers have paid much attention to VLP recognition there has not been a fully operational VLP recognition system yet for many reasons. This paper discusses a valid and practical method for vehicle license plate recognition based on geometry restraints and multi-feature decision including statistical and structural features. In general, the VLP recognition includes the following steps: the location of VLP, character segmentation, and character recognition. This paper discusses the three steps in detail. The characters of VLP are always declining caused by many factors, which makes it more difficult to recognize the characters of VLP, therefore geometry restraints such as the general ratio of length and width, the adjacent edges being perpendicular are used for incline correction. Image Moment has been proved to be invariant to translation, rotation and scaling therefore image moment is used as one feature for character recognition. Stroke is the basic element for writing and hence taking it as a feature is helpful to character recognition. Finally we take the image moment, the strokes and the numbers of each stroke for each character image and some other structural features and statistical features as the multi-feature to match each character image with sample character images so that each character image can be recognized by BP neural net. The proposed method combines statistical and structural features for VLP recognition, and the result shows its validity and efficiency.

  1. Toward a Computer Vision-based Wayfinding Aid for Blind Persons to Access Unfamiliar Indoor Environments.

    PubMed

    Tian, Yingli; Yang, Xiaodong; Yi, Chucai; Arditi, Aries

    2013-04-01

    Independent travel is a well known challenge for blind and visually impaired persons. In this paper, we propose a proof-of-concept computer vision-based wayfinding aid for blind people to independently access unfamiliar indoor environments. In order to find different rooms (e.g. an office, a lab, or a bathroom) and other building amenities (e.g. an exit or an elevator), we incorporate object detection with text recognition. First we develop a robust and efficient algorithm to detect doors, elevators, and cabinets based on their general geometric shape, by combining edges and corners. The algorithm is general enough to handle large intra-class variations of objects with different appearances among different indoor environments, as well as small inter-class differences between different objects such as doors and door-like cabinets. Next, in order to distinguish intra-class objects (e.g. an office door from a bathroom door), we extract and recognize text information associated with the detected objects. For text recognition, we first extract text regions from signs with multiple colors and possibly complex backgrounds, and then apply character localization and topological analysis to filter out background interference. The extracted text is recognized using off-the-shelf optical character recognition (OCR) software products. The object type, orientation, location, and text information are presented to the blind traveler as speech.

  2. Toward a Computer Vision-based Wayfinding Aid for Blind Persons to Access Unfamiliar Indoor Environments

    PubMed Central

    Tian, YingLi; Yang, Xiaodong; Yi, Chucai; Arditi, Aries

    2012-01-01

    Independent travel is a well known challenge for blind and visually impaired persons. In this paper, we propose a proof-of-concept computer vision-based wayfinding aid for blind people to independently access unfamiliar indoor environments. In order to find different rooms (e.g. an office, a lab, or a bathroom) and other building amenities (e.g. an exit or an elevator), we incorporate object detection with text recognition. First we develop a robust and efficient algorithm to detect doors, elevators, and cabinets based on their general geometric shape, by combining edges and corners. The algorithm is general enough to handle large intra-class variations of objects with different appearances among different indoor environments, as well as small inter-class differences between different objects such as doors and door-like cabinets. Next, in order to distinguish intra-class objects (e.g. an office door from a bathroom door), we extract and recognize text information associated with the detected objects. For text recognition, we first extract text regions from signs with multiple colors and possibly complex backgrounds, and then apply character localization and topological analysis to filter out background interference. The extracted text is recognized using off-the-shelf optical character recognition (OCR) software products. The object type, orientation, location, and text information are presented to the blind traveler as speech. PMID:23630409

  3. Field programmable gate arrays-based number plate binarization and adjustment for automatic number plate recognition systems

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaojun; Bensaali, Faycal; Sotudeh, Reza

    2013-01-01

    Number plate (NP) binarization and adjustment are important preprocessing stages in automatic number plate recognition (ANPR) systems and are used to link the number plate localization (NPL) and character segmentation stages. Successfully linking these two stages will improve the performance of the entire ANPR system. We present two optimized low-complexity NP binarization and adjustment algorithms. Efficient area/speed architectures based on the proposed algorithms are also presented and have been successfully implemented and tested using the Mentor Graphics RC240 FPGA development board, which together require only 9% of the available on-chip resources of a Virtex-4 FPGA, run with a maximum frequency of 95.8 MHz and are capable of processing one image in 0.07 to 0.17 ms.

  4. Image Segmentation of Historical Handwriting from Palm Leaf Manuscripts

    NASA Astrophysics Data System (ADS)

    Surinta, Olarik; Chamchong, Rapeeporn

    Palm leaf manuscripts were one of the earliest forms of written media and were used in Southeast Asia to store early written knowledge about subjects such as medicine, Buddhist doctrine and astrology. Therefore, historical handwritten palm leaf manuscripts are important for people who like to learn about historical documents, because we can learn more experience from them. This paper presents an image segmentation of historical handwriting from palm leaf manuscripts. The process is composed of three steps: 1) background elimination to separate text and background by Otsu's algorithm 2) line segmentation and 3) character segmentation by histogram of image. The end result is the character's image. The results from this research may be applied to optical character recognition (OCR) in the future.

  5. Chinese character recognition based on Gabor feature extraction and CNN

    NASA Astrophysics Data System (ADS)

    Xiong, Yudian; Lu, Tongwei; Jiang, Yongyuan

    2018-03-01

    As an important application in the field of text line recognition and office automation, Chinese character recognition has become an important subject of pattern recognition. However, due to the large number of Chinese characters and the complexity of its structure, there is a great difficulty in the Chinese character recognition. In order to solve this problem, this paper proposes a method of printed Chinese character recognition based on Gabor feature extraction and Convolution Neural Network(CNN). The main steps are preprocessing, feature extraction, training classification. First, the gray-scale Chinese character image is binarized and normalized to reduce the redundancy of the image data. Second, each image is convoluted with Gabor filter with different orientations, and the feature map of the eight orientations of Chinese characters is extracted. Third, the feature map through Gabor filters and the original image are convoluted with learning kernels, and the results of the convolution is the input of pooling layer. Finally, the feature vector is used to classify and recognition. In addition, the generalization capacity of the network is improved by Dropout technology. The experimental results show that this method can effectively extract the characteristics of Chinese characters and recognize Chinese characters.

  6. Research on pre-processing of QR Code

    NASA Astrophysics Data System (ADS)

    Sun, Haixing; Xia, Haojie; Dong, Ning

    2013-10-01

    QR code encodes many kinds of information because of its advantages: large storage capacity, high reliability, full arrange of utter-high-speed reading, small printing size and high-efficient representation of Chinese characters, etc. In order to obtain the clearer binarization image from complex background, and improve the recognition rate of QR code, this paper researches on pre-processing methods of QR code (Quick Response Code), and shows algorithms and results of image pre-processing for QR code recognition. Improve the conventional method by changing the Souvola's adaptive text recognition method. Additionally, introduce the QR code Extraction which adapts to different image size, flexible image correction approach, and improve the efficiency and accuracy of QR code image processing.

  7. Robust keyword retrieval method for OCRed text

    NASA Astrophysics Data System (ADS)

    Fujii, Yusaku; Takebe, Hiroaki; Tanaka, Hiroshi; Hotta, Yoshinobu

    2011-01-01

    Document management systems have become important because of the growing popularity of electronic filing of documents and scanning of books, magazines, manuals, etc., through a scanner or a digital camera, for storage or reading on a PC or an electronic book. Text information acquired by optical character recognition (OCR) is usually added to the electronic documents for document retrieval. Since texts generated by OCR generally include character recognition errors, robust retrieval methods have been introduced to overcome this problem. In this paper, we propose a retrieval method that is robust against both character segmentation and recognition errors. In the proposed method, the insertion of noise characters and dropping of characters in the keyword retrieval enables robustness against character segmentation errors, and character substitution in the keyword of the recognition candidate for each character in OCR or any other character enables robustness against character recognition errors. The recall rate of the proposed method was 15% higher than that of the conventional method. However, the precision rate was 64% lower.

  8. Mathematical morphology-based shape feature analysis for Chinese character recognition systems

    NASA Astrophysics Data System (ADS)

    Pai, Tun-Wen; Shyu, Keh-Hwa; Chen, Ling-Fan; Tai, Gwo-Chin

    1995-04-01

    This paper proposes an efficient technique of shape feature extraction based on the application of mathematical morphology theory. A new shape complexity index for preclassification of machine printed Chinese Character Recognition (CCR) is also proposed. For characters represented in different fonts/sizes or in a low resolution environment, a more stable local feature such as shape structure is preferred for character recognition. Morphological valley extraction filters are applied to extract the protrusive strokes from four sides of an input Chinese character. The number of extracted local strokes reflects the shape complexity of each side. These shape features of characters are encoded as corresponding shape complexity indices. Based on the shape complexity index, data base is able to be classified into 16 groups prior to recognition procedures. The performance of associating with shape feature analysis reclaims several characters from misrecognized character sets and results in an average of 3.3% improvement of recognition rate from an existing recognition system. In addition to enhance the recognition performance, the extracted stroke information can be further analyzed and classified its own stroke type. Therefore, the combination of extracted strokes from each side provides a means for data base clustering based on radical or subword components. It is one of the best solutions for recognizing high complexity characters such as Chinese characters which are divided into more than 200 different categories and consist more than 13,000 characters.

  9. A super resolution framework for low resolution document image OCR

    NASA Astrophysics Data System (ADS)

    Ma, Di; Agam, Gady

    2013-01-01

    Optical character recognition is widely used for converting document images into digital media. Existing OCR algorithms and tools produce good results from high resolution, good quality, document images. In this paper, we propose a machine learning based super resolution framework for low resolution document image OCR. Two main techniques are used in our proposed approach: a document page segmentation algorithm and a modified K-means clustering algorithm. Using this approach, by exploiting coherence in the document, we reconstruct from a low resolution document image a better resolution image and improve OCR results. Experimental results show substantial gain in low resolution documents such as the ones captured from video.

  10. Rapid Naming Speed and Chinese Character Recognition

    ERIC Educational Resources Information Center

    Liao, Chen-Huei; Georgiou, George K.; Parrila, Rauno

    2008-01-01

    We examined the relationship between rapid naming speed (RAN) and Chinese character recognition accuracy and fluency. Sixty-three grade 2 and 54 grade 4 Taiwanese children were administered four RAN tasks (colors, digits, Zhu-Yin-Fu-Hao, characters), and two character recognition tasks. RAN tasks accounted for more reading variance in grade 4 than…

  11. Design and development of an ancient Chinese document recognition system

    NASA Astrophysics Data System (ADS)

    Peng, Liangrui; Xiu, Pingping; Ding, Xiaoqing

    2003-12-01

    The digitization of ancient Chinese documents presents new challenges to OCR (Optical Character Recognition) research field due to the large character set of ancient Chinese characters, variant font types, and versatile document layout styles, as these documents are historical reflections to the thousands of years of Chinese civilization. After analyzing the general characteristics of ancient Chinese documents, we present a solution for recognition of ancient Chinese documents with regular font-types and layout-styles. Based on the previous work on multilingual OCR in TH-OCR system, we focus on the design and development of two key technologies which include character recognition and page segmentation. Experimental results show that the developed character recognition kernel of 19,635 Chinese characters outperforms our original traditional Chinese recognition kernel; Benchmarked test on printed ancient Chinese books proves that the proposed system is effective for regular ancient Chinese documents.

  12. A comparison study between MLP and convolutional neural network models for character recognition

    NASA Astrophysics Data System (ADS)

    Ben Driss, S.; Soua, M.; Kachouri, R.; Akil, M.

    2017-05-01

    Optical Character Recognition (OCR) systems have been designed to operate on text contained in scanned documents and images. They include text detection and character recognition in which characters are described then classified. In the classification step, characters are identified according to their features or template descriptions. Then, a given classifier is employed to identify characters. In this context, we have proposed the unified character descriptor (UCD) to represent characters based on their features. Then, matching was employed to ensure the classification. This recognition scheme performs a good OCR Accuracy on homogeneous scanned documents, however it cannot discriminate characters with high font variation and distortion.3 To improve recognition, classifiers based on neural networks can be used. The multilayer perceptron (MLP) ensures high recognition accuracy when performing a robust training. Moreover, the convolutional neural network (CNN), is gaining nowadays a lot of popularity for its high performance. Furthermore, both CNN and MLP may suffer from the large amount of computation in the training phase. In this paper, we establish a comparison between MLP and CNN. We provide MLP with the UCD descriptor and the appropriate network configuration. For CNN, we employ the convolutional network designed for handwritten and machine-printed character recognition (Lenet-5) and we adapt it to support 62 classes, including both digits and characters. In addition, GPU parallelization is studied to speed up both of MLP and CNN classifiers. Based on our experimentations, we demonstrate that the used real-time CNN is 2x more relevant than MLP when classifying characters.

  13. Recognition of Handwriting from Electromyography

    PubMed Central

    Linderman, Michael; Lebedev, Mikhail A.; Erlichman, Joseph S.

    2009-01-01

    Handwriting – one of the most important developments in human culture – is also a methodological tool in several scientific disciplines, most importantly handwriting recognition methods, graphology and medical diagnostics. Previous studies have relied largely on the analyses of handwritten traces or kinematic analysis of handwriting; whereas electromyographic (EMG) signals associated with handwriting have received little attention. Here we show for the first time, a method in which EMG signals generated by hand and forearm muscles during handwriting activity are reliably translated into both algorithm-generated handwriting traces and font characters using decoding algorithms. Our results demonstrate the feasibility of recreating handwriting solely from EMG signals – the finding that can be utilized in computer peripherals and myoelectric prosthetic devices. Moreover, this approach may provide a rapid and sensitive method for diagnosing a variety of neurogenerative diseases before other symptoms become clear. PMID:19707562

  14. Parallel processing considerations for image recognition tasks

    NASA Astrophysics Data System (ADS)

    Simske, Steven J.

    2011-01-01

    Many image recognition tasks are well-suited to parallel processing. The most obvious example is that many imaging tasks require the analysis of multiple images. From this standpoint, then, parallel processing need be no more complicated than assigning individual images to individual processors. However, there are three less trivial categories of parallel processing that will be considered in this paper: parallel processing (1) by task; (2) by image region; and (3) by meta-algorithm. Parallel processing by task allows the assignment of multiple workflows-as diverse as optical character recognition [OCR], document classification and barcode reading-to parallel pipelines. This can substantially decrease time to completion for the document tasks. For this approach, each parallel pipeline is generally performing a different task. Parallel processing by image region allows a larger imaging task to be sub-divided into a set of parallel pipelines, each performing the same task but on a different data set. This type of image analysis is readily addressed by a map-reduce approach. Examples include document skew detection and multiple face detection and tracking. Finally, parallel processing by meta-algorithm allows different algorithms to be deployed on the same image simultaneously. This approach may result in improved accuracy.

  15. Methodology for the Evaluation of the Algorithms for Text Line Segmentation Based on Extended Binary Classification

    NASA Astrophysics Data System (ADS)

    Brodic, D.

    2011-01-01

    Text line segmentation represents the key element in the optical character recognition process. Hence, testing of text line segmentation algorithms has substantial relevance. All previously proposed testing methods deal mainly with text database as a template. They are used for testing as well as for the evaluation of the text segmentation algorithm. In this manuscript, methodology for the evaluation of the algorithm for text segmentation based on extended binary classification is proposed. It is established on the various multiline text samples linked with text segmentation. Their results are distributed according to binary classification. Final result is obtained by comparative analysis of cross linked data. At the end, its suitability for different types of scripts represents its main advantage.

  16. Support Vector Machines Trained with Evolutionary Algorithms Employing Kernel Adatron for Large Scale Classification of Protein Structures.

    PubMed

    Arana-Daniel, Nancy; Gallegos, Alberto A; López-Franco, Carlos; Alanís, Alma Y; Morales, Jacob; López-Franco, Adriana

    2016-01-01

    With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels.

  17. A smart sensor architecture based on emergent computation in an array of outer-totalistic cells

    NASA Astrophysics Data System (ADS)

    Dogaru, Radu; Dogaru, Ioana; Glesner, Manfred

    2005-06-01

    A novel smart-sensor architecture is proposed, capable to segment and recognize characters in a monochrome image. It is capable to provide a list of ASCII codes representing the recognized characters from the monochrome visual field. It can operate as a blind's aid or for industrial applications. A bio-inspired cellular model with simple linear neurons was found the best to perform the nontrivial task of cropping isolated compact objects such as handwritten digits or characters. By attaching a simple outer-totalistic cell to each pixel sensor, emergent computation in the resulting cellular automata lattice provides a straightforward and compact solution to the otherwise computationally intensive problem of character segmentation. A simple and robust recognition algorithm is built in a compact sequential controller accessing the array of cells so that the integrated device can provide directly a list of codes of the recognized characters. Preliminary simulation tests indicate good performance and robustness to various distortions of the visual field.

  18. Slant rectification in Russian passport OCR system using fast Hough transform

    NASA Astrophysics Data System (ADS)

    Limonova, Elena; Bezmaternykh, Pavel; Nikolaev, Dmitry; Arlazarov, Vladimir

    2017-03-01

    In this paper, we introduce slant detection method based on Fast Hough Transform calculation and demonstrate its application in industrial system for Russian passports recognition. About 1.5% of this kind of documents appear to be slant or italic. This fact reduces recognition rate, because Optical Recognition Systems are normally designed to process normal fonts. Our method uses Fast Hough Transform to analyse vertical strokes of characters extracted with the help of x-derivative of a text line image. To improve the quality of detector we also introduce field grouping rules. The resulting algorithm allowed to reach high detection quality. Almost all errors of considered approach happen on passports of nonstandard fonts, while slant detector works in appropriate way.

  19. Con-Text: Text Detection for Fine-grained Object Classification.

    PubMed

    Karaoglu, Sezer; Tao, Ran; van Gemert, Jan C; Gevers, Theo

    2017-05-24

    This work focuses on fine-grained object classification using recognized scene text in natural images. While the state-of-the-art relies on visual cues only, this paper is the first work which proposes to combine textual and visual cues. Another novelty is the textual cue extraction. Unlike the state-of-the-art text detection methods, we focus more on the background instead of text regions. Once text regions are detected, they are further processed by two methods to perform text recognition i.e. ABBYY commercial OCR engine and a state-of-the-art character recognition algorithm. Then, to perform textual cue encoding, bi- and trigrams are formed between the recognized characters by considering the proposed spatial pairwise constraints. Finally, extracted visual and textual cues are combined for fine-grained classification. The proposed method is validated on four publicly available datasets: ICDAR03, ICDAR13, Con-Text and Flickr-logo. We improve the state-of-the-art end-to-end character recognition by a large margin of 15% on ICDAR03. We show that textual cues are useful in addition to visual cues for fine-grained classification. We show that textual cues are also useful for logo retrieval. Adding textual cues outperforms visual- and textual-only in fine-grained classification (70.7% to 60.3%) and logo retrieval (57.4% to 54.8%).

  20. Word-level recognition of multifont Arabic text using a feature vector matching approach

    NASA Astrophysics Data System (ADS)

    Erlandson, Erik J.; Trenkle, John M.; Vogt, Robert C., III

    1996-03-01

    Many text recognition systems recognize text imagery at the character level and assemble words from the recognized characters. An alternative approach is to recognize text imagery at the word level, without analyzing individual characters. This approach avoids the problem of individual character segmentation, and can overcome local errors in character recognition. A word-level recognition system for machine-printed Arabic text has been implemented. Arabic is a script language, and is therefore difficult to segment at the character level. Character segmentation has been avoided by recognizing text imagery of complete words. The Arabic recognition system computes a vector of image-morphological features on a query word image. This vector is matched against a precomputed database of vectors from a lexicon of Arabic words. Vectors from the database with the highest match score are returned as hypotheses for the unknown image. Several feature vectors may be stored for each word in the database. Database feature vectors generated using multiple fonts and noise models allow the system to be tuned to its input stream. Used in conjunction with database pruning techniques, this Arabic recognition system has obtained promising word recognition rates on low-quality multifont text imagery.

  1. Comparative implementation of Handwritten and Machine written Gurmukhi text utilizing appropriate parameters

    NASA Astrophysics Data System (ADS)

    Kaur, Jaswinder; Jagdev, Gagandeep, Dr.

    2018-01-01

    Optical character recognition is concerned with the recognition of optically processed characters. The recognition is done offline after the writing or printing has been completed, unlike online recognition where the computer has to recognize the characters instantly as they are drawn. The performance of character recognition depends upon the quality of scanned documents. The preprocessing steps are used for removing low-frequency background noise and normalizing the intensity of individual scanned documents. Several filters are used for reducing certain image details and enabling an easier or faster evaluation. The primary aim of the research work is to recognize handwritten and machine written characters and differentiate them. The language opted for the research work is Punjabi Gurmukhi and tool utilized is Matlab.

  2. Microscopic image analysis for reticulocyte based on watershed algorithm

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Liu, G. F.; Liu, J. G.; Wang, G.

    2007-12-01

    We present a watershed-based algorithm in the analysis of light microscopic image for reticulocyte (RET), which will be used in an automated recognition system for RET in peripheral blood. The original images, obtained by micrography, are segmented by modified watershed algorithm and are recognized in term of gray entropy and area of connective area. In the process of watershed algorithm, judgment conditions are controlled according to character of the image, besides, the segmentation is performed by morphological subtraction. The algorithm was simulated with MATLAB software. It is similar for automated and manual scoring and there is good correlation(r=0.956) between the methods, which is resulted from 50 pieces of RET images. The result indicates that the algorithm for peripheral blood RETs is comparable to conventional manual scoring, and it is superior in objectivity. This algorithm avoids time-consuming calculation such as ultra-erosion and region-growth, which will speed up the computation consequentially.

  3. Character context: a shape descriptor for Arabic handwriting recognition

    NASA Astrophysics Data System (ADS)

    Mudhsh, Mohammed; Almodfer, Rolla; Duan, Pengfei; Xiong, Shengwu

    2017-11-01

    In the handwriting recognition field, designing good descriptors are substantial to obtain rich information of the data. However, the handwriting recognition research of a good descriptor is still an open issue due to unlimited variation in human handwriting. We introduce a "character context descriptor" that efficiently dealt with the structural characteristics of Arabic handwritten characters. First, the character image is smoothed and normalized, then the character context descriptor of 32 feature bins is built based on the proposed "distance function." Finally, a multilayer perceptron with regularization is used as a classifier. On experimentation with a handwritten Arabic characters database, the proposed method achieved a state-of-the-art performance with recognition rate equal to 98.93% and 99.06% for the 66 and 24 classes, respectively.

  4. Handwritten recognition of Tamil vowels using deep learning

    NASA Astrophysics Data System (ADS)

    Ram Prashanth, N.; Siddarth, B.; Ganesh, Anirudh; Naveen Kumar, Vaegae

    2017-11-01

    We come across a large volume of handwritten texts in our daily lives and handwritten character recognition has long been an important area of research in pattern recognition. The complexity of the task varies among different languages and it so happens largely due to the similarity between characters, distinct shapes and number of characters which are all language-specific properties. There have been numerous works on character recognition of English alphabets and with laudable success, but regional languages have not been dealt with very frequently and with similar accuracies. In this paper, we explored the performance of Deep Belief Networks in the classification of Handwritten Tamil vowels, and conclusively compared the results obtained. The proposed method has shown satisfactory recognition accuracy in light of difficulties faced with regional languages such as similarity between characters and minute nuances that differentiate them. We can further extend this to all the Tamil characters.

  5. The DSFPN, a new neural network for optical character recognition.

    PubMed

    Morns, L P; Dlay, S S

    1999-01-01

    A new type of neural network for recognition tasks is presented in this paper. The network, called the dynamic supervised forward-propagation network (DSFPN), is based on the forward only version of the counterpropagation network (CPN). The DSFPN, trains using a supervised algorithm and can grow dynamically during training, allowing subclasses in the training data to be learnt in an unsupervised manner. It is shown to train in times comparable to the CPN while giving better classification accuracies than the popular backpropagation network. Both Fourier descriptors and wavelet descriptors are used for image preprocessing and the wavelets are proven to give a far better performance.

  6. Optical character recognition based on nonredundant correlation measurements.

    PubMed

    Braunecker, B; Hauck, R; Lohmann, A W

    1979-08-15

    The essence of character recognition is a comparison between the unknown character and a set of reference patterns. Usually, these reference patterns are all possible characters themselves, the whole alphabet in the case of letter characters. Obviously, N analog measurements are highly redundant, since only K = log(2)N binary decisions are enough to identify one out of N characters. Therefore, we devised K reference patterns accordingly. These patterns, called principal components, are found by digital image processing, but used in an optical analog computer. We will explain the concept of principal components, and we will describe experiments with several optical character recognition systems, based on this concept.

  7. Children's Recognition of Cartoon Voices.

    ERIC Educational Resources Information Center

    Spence, Melanie J.; Rollins, Pamela R.; Jerger, Susan

    2002-01-01

    A study examined developmental changes in talker recognition skills by assessing 72 children's (ages 3-5) recognition of 20 cartoon characters' voices. Four- and 5-year-old children recognized more of the voices than did 3-year-olds. All children were more accurate at recognizing more familiar characters than less familiar characters. (Contains…

  8. Low-Budget, Cost-Effective OCR: Optical Character Recognition for MS-DOS Micros.

    ERIC Educational Resources Information Center

    Perez, Ernest

    1990-01-01

    Discusses optical character recognition (OCR) for use with MS-DOS microcomputers. Cost effectiveness is considered, three types of software approaches to character recognition are explained, hardware and operation requirements are described, possible library applications are discussed, future OCR developments are suggested, and a list of OCR…

  9. Online recognition of Chinese characters: the state-of-the-art.

    PubMed

    Liu, Cheng-Lin; Jaeger, Stefan; Nakagawa, Masaki

    2004-02-01

    Online handwriting recognition is gaining renewed interest owing to the increase of pen computing applications and new pen input devices. The recognition of Chinese characters is different from western handwriting recognition and poses a special challenge. To provide an overview of the technical status and inspire future research, this paper reviews the advances in online Chinese character recognition (OLCCR), with emphasis on the research works from the 1990s. Compared to the research in the 1980s, the research efforts in the 1990s aimed to further relax the constraints of handwriting, namely, the adherence to standard stroke orders and stroke numbers and the restriction of recognition to isolated characters only. The target of recognition has shifted from regular script to fluent script in order to better meet the requirements of practical applications. The research works are reviewed in terms of pattern representation, character classification, learning/adaptation, and contextual processing. We compare important results and discuss possible directions of future research.

  10. Multi-font printed Mongolian document recognition system

    NASA Astrophysics Data System (ADS)

    Peng, Liangrui; Liu, Changsong; Ding, Xiaoqing; Wang, Hua; Jin, Jianming

    2009-01-01

    Mongolian is one of the major ethnic languages in China. Large amount of Mongolian printed documents need to be digitized in digital library and various applications. Traditional Mongolian script has unique writing style and multi-font-type variations, which bring challenges to Mongolian OCR research. As traditional Mongolian script has some characteristics, for example, one character may be part of another character, we define the character set for recognition according to the segmented components, and the components are combined into characters by rule-based post-processing module. For character recognition, a method based on visual directional feature and multi-level classifiers is presented. For character segmentation, a scheme is used to find the segmentation point by analyzing the properties of projection and connected components. As Mongolian has different font-types which are categorized into two major groups, the parameter of segmentation is adjusted for each group. A font-type classification method for the two font-type group is introduced. For recognition of Mongolian text mixed with Chinese and English, language identification and relevant character recognition kernels are integrated. Experiments show that the presented methods are effective. The text recognition rate is 96.9% on the test samples from practical documents with multi-font-types and mixed scripts.

  11. Recognition of Telugu characters using neural networks.

    PubMed

    Sukhaswami, M B; Seetharamulu, P; Pujari, A K

    1995-09-01

    The aim of the present work is to recognize printed and handwritten Telugu characters using artificial neural networks (ANNs). Earlier work on recognition of Telugu characters has been done using conventional pattern recognition techniques. We make an initial attempt here of using neural networks for recognition with the aim of improving upon earlier methods which do not perform effectively in the presence of noise and distortion in the characters. The Hopfield model of neural network working as an associative memory is chosen for recognition purposes initially. Due to limitation in the capacity of the Hopfield neural network, we propose a new scheme named here as the Multiple Neural Network Associative Memory (MNNAM). The limitation in storage capacity has been overcome by combining multiple neural networks which work in parallel. It is also demonstrated that the Hopfield network is suitable for recognizing noisy printed characters as well as handwritten characters written by different "hands" in a variety of styles. Detailed experiments have been carried out using several learning strategies and results are reported. It is shown here that satisfactory recognition is possible using the proposed strategy. A detailed preprocessing scheme of the Telugu characters from digitized documents is also described.

  12. Visual Similarity of Words Alone Can Modulate Hemispheric Lateralization in Visual Word Recognition: Evidence from Modeling Chinese Character Recognition

    ERIC Educational Resources Information Center

    Hsiao, Janet H.; Cheung, Kit

    2016-01-01

    In Chinese orthography, the most common character structure consists of a semantic radical on the left and a phonetic radical on the right (SP characters); the minority, opposite arrangement also exists (PS characters). Recent studies showed that SP character processing is more left hemisphere (LH) lateralized than PS character processing.…

  13. A System for Mailpiece ZIP Code Assignment through Contextual Analysis. Phase 2

    DTIC Science & Technology

    1991-03-01

    Segmentation Address Block Interpretation Automatic Feature Generation Word Recognition Feature Detection Word Verification Optical Character Recognition Directory...in the Phase III effort. 1.1 Motivation The United States Postal Service (USPS) deploys large numbers of optical character recognition (OCR) machines...4):208-218, November 1986. [2] Gronmeyer, L. K., Ruffin, B. W., Lybanon, M. A., Neely, P. L., and Pierce, S. E. An Overview of Optical Character Recognition (OCR

  14. Common constraints limit Korean and English character recognition in peripheral vision.

    PubMed

    He, Yingchen; Kwon, MiYoung; Legge, Gordon E

    2018-01-01

    The visual span refers to the number of adjacent characters that can be recognized in a single glance. It is viewed as a sensory bottleneck in reading for both normal and clinical populations. In peripheral vision, the visual span for English characters can be enlarged after training with a letter-recognition task. Here, we examined the transfer of training from Korean to English characters for a group of bilingual Korean native speakers. In the pre- and posttests, we measured visual spans for Korean characters and English letters. Training (1.5 hours × 4 days) consisted of repetitive visual-span measurements for Korean trigrams (strings of three characters). Our training enlarged the visual spans for Korean single characters and trigrams, and the benefit transferred to untrained English symbols. The improvement was largely due to a reduction of within-character and between-character crowding in Korean recognition, as well as between-letter crowding in English recognition. We also found a negative correlation between the size of the visual span and the average pattern complexity of the symbol set. Together, our results showed that the visual span is limited by common sensory (crowding) and physical (pattern complexity) factors regardless of the language script, providing evidence that the visual span reflects a universal bottleneck for text recognition.

  15. Common constraints limit Korean and English character recognition in peripheral vision

    PubMed Central

    He, Yingchen; Kwon, MiYoung; Legge, Gordon E.

    2018-01-01

    The visual span refers to the number of adjacent characters that can be recognized in a single glance. It is viewed as a sensory bottleneck in reading for both normal and clinical populations. In peripheral vision, the visual span for English characters can be enlarged after training with a letter-recognition task. Here, we examined the transfer of training from Korean to English characters for a group of bilingual Korean native speakers. In the pre- and posttests, we measured visual spans for Korean characters and English letters. Training (1.5 hours × 4 days) consisted of repetitive visual-span measurements for Korean trigrams (strings of three characters). Our training enlarged the visual spans for Korean single characters and trigrams, and the benefit transferred to untrained English symbols. The improvement was largely due to a reduction of within-character and between-character crowding in Korean recognition, as well as between-letter crowding in English recognition. We also found a negative correlation between the size of the visual span and the average pattern complexity of the symbol set. Together, our results showed that the visual span is limited by common sensory (crowding) and physical (pattern complexity) factors regardless of the language script, providing evidence that the visual span reflects a universal bottleneck for text recognition. PMID:29327041

  16. Trigram-based algorithms for OCR result correction

    NASA Astrophysics Data System (ADS)

    Bulatov, Konstantin; Manzhikov, Temudzhin; Slavin, Oleg; Faradjev, Igor; Janiszewski, Igor

    2017-03-01

    In this paper we consider a task of improving optical character recognition (OCR) results of document fields on low-quality and average-quality images using N-gram models. Cyrillic fields of Russian Federation internal passport are analyzed as an example. Two approaches are presented: the first one is based on hypothesis of dependence of a symbol from two adjacent symbols and the second is based on calculation of marginal distributions and Bayesian networks computation. A comparison of the algorithms and experimental results within a real document OCR system are presented, it's showed that the document field OCR accuracy can be improved by more than 6% for low-quality images.

  17. Identification of handwriting by using the genetic algorithm (GA) and support vector machine (SVM)

    NASA Astrophysics Data System (ADS)

    Zhang, Qigui; Deng, Kai

    2016-12-01

    As portable digital camera and a camera phone comes more and more popular, and equally pressing is meeting the requirements of people to shoot at any time, to identify and storage handwritten character. In this paper, genetic algorithm(GA) and support vector machine(SVM)are used for identification of handwriting. Compare with parameters-optimized method, this technique overcomes two defects: first, it's easy to trap in the local optimum; second, finding the best parameters in the larger range will affects the efficiency of classification and prediction. As the experimental results suggest, GA-SVM has a higher recognition rate.

  18. Building Hierarchical Representations for Oracle Character and Sketch Recognition.

    PubMed

    Jun Guo; Changhu Wang; Roman-Rangel, Edgar; Hongyang Chao; Yong Rui

    2016-01-01

    In this paper, we study oracle character recognition and general sketch recognition. First, a data set of oracle characters, which are the oldest hieroglyphs in China yet remain a part of modern Chinese characters, is collected for analysis. Second, typical visual representations in shape- and sketch-related works are evaluated. We analyze the problems suffered when addressing these representations and determine several representation design criteria. Based on the analysis, we propose a novel hierarchical representation that combines a Gabor-related low-level representation and a sparse-encoder-related mid-level representation. Extensive experiments show the effectiveness of the proposed representation in both oracle character recognition and general sketch recognition. The proposed representation is also complementary to convolutional neural network (CNN)-based models. We introduce a solution to combine the proposed representation with CNN-based models, and achieve better performances over both approaches. This solution has beaten humans at recognizing general sketches.

  19. A Complete OCR System for Tamil Magazine Documents

    NASA Astrophysics Data System (ADS)

    Kokku, Aparna; Chakravarthy, Srinivasa

    We present a complete optical character recognition (OCR) system for Tamil magazines/documents. All the standard elements of OCR process like de-skewing, preprocessing, segmentation, character recognition, and reconstruction are implemented. Experience with OCR problems teaches that for most subtasks of OCR, there is no single technique that gives perfect results for every type of document image. We exploit the ability of neural networks to learn from experience in solving the problems of segmentation and character recognition. Text segmentation of Tamil newsprint poses a new challenge owing to its italic-like font type; problems that arise in recognition of touching and close characters are discussed. Character recognition efficiency varied from 94 to 97% for this type of font. The grouping of blocks into logical units and the determination of reading order within each logical unit helped us in reconstructing automatically the document image in an editable format.

  20. Geometry Of Discrete Sets With Applications To Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Sinha, Divyendu

    1990-03-01

    In this paper we present a new framework for discrete black and white images that employs only integer arithmetic. This framework is shown to retain the essential characteristics of the framework for Euclidean images. We propose two norms and based on them, the permissible geometric operations on images are defined. The basic invariants of our geometry are line images, structure of image and the corresponding local property of strong attachment of pixels. The permissible operations also preserve the 3x3 neighborhoods, area, and perpendicularity. The structure, patterns, and the inter-pattern gaps in a discrete image are shown to be conserved by the magnification and contraction process. Our notions of approximate congruence, similarity and symmetry are similar, in character, to the corresponding notions, for Euclidean images [1]. We mention two discrete pattern recognition algorithms that work purely with integers, and which fit into our framework. Their performance has been shown to be at par with the performance of traditional geometric schemes. Also, all the undesired effects of finite length registers in fixed point arithmetic that plague traditional algorithms, are non-existent in this family of algorithms.

  1. Lip reading using neural networks

    NASA Astrophysics Data System (ADS)

    Kalbande, Dhananjay; Mishra, Akassh A.; Patil, Sanjivani; Nirgudkar, Sneha; Patel, Prashant

    2011-10-01

    Computerized lip reading, or speech reading, is concerned with the difficult task of converting a video signal of a speaking person to written text. It has several applications like teaching deaf and dumb to speak and communicate effectively with the other people, its crime fighting potential and invariance to acoustic environment. We convert the video of the subject speaking vowels into images and then images are further selected manually for processing. However, several factors like fast speech, bad pronunciation, and poor illumination, movement of face, moustaches and beards make lip reading difficult. Contour tracking methods and Template matching are used for the extraction of lips from the face. K Nearest Neighbor algorithm is then used to classify the 'speaking' images and the 'silent' images. The sequence of images is then transformed into segments of utterances. Feature vector is calculated on each frame for all the segments and is stored in the database with properly labeled class. Character recognition is performed using modified KNN algorithm which assigns more weight to nearer neighbors. This paper reports the recognition of vowels using KNN algorithms

  2. Evaluation of image deblurring methods via a classification metric

    NASA Astrophysics Data System (ADS)

    Perrone, Daniele; Humphreys, David; Lamb, Robert A.; Favaro, Paolo

    2012-09-01

    The performance of single image deblurring algorithms is typically evaluated via a certain discrepancy measure between the reconstructed image and the ideal sharp image. The choice of metric, however, has been a source of debate and has also led to alternative metrics based on human visual perception. While fixed metrics may fail to capture some small but visible artifacts, perception-based metrics may favor reconstructions with artifacts that are visually pleasant. To overcome these limitations, we propose to assess the quality of reconstructed images via a task-driven metric. In this paper we consider object classification as the task and therefore use the rate of classification as the metric to measure deblurring performance. In our evaluation we use data with different types of blur in two cases: Optical Character Recognition (OCR), where the goal is to recognise characters in a black and white image, and object classification with no restrictions on pose, illumination and orientation. Finally, we show how off-the-shelf classification algorithms benefit from working with deblurred images.

  3. Electrooculography-based continuous eye-writing recognition system for efficient assistive communication systems

    PubMed Central

    Shinozaki, Takahiro

    2018-01-01

    Human-computer interface systems whose input is based on eye movements can serve as a means of communication for patients with locked-in syndrome. Eye-writing is one such system; users can input characters by moving their eyes to follow the lines of the strokes corresponding to characters. Although this input method makes it easy for patients to get started because of their familiarity with handwriting, existing eye-writing systems suffer from slow input rates because they require a pause between input characters to simplify the automatic recognition process. In this paper, we propose a continuous eye-writing recognition system that achieves a rapid input rate because it accepts characters eye-written continuously, with no pauses. For recognition purposes, the proposed system first detects eye movements using electrooculography (EOG), and then a hidden Markov model (HMM) is applied to model the EOG signals and recognize the eye-written characters. Additionally, this paper investigates an EOG adaptation that uses a deep neural network (DNN)-based HMM. Experiments with six participants showed an average input speed of 27.9 character/min using Japanese Katakana as the input target characters. A Katakana character-recognition error rate of only 5.0% was achieved using 13.8 minutes of adaptation data. PMID:29425248

  4. Robust recognition of degraded machine-printed characters using complementary similarity measure and error-correction learning

    NASA Astrophysics Data System (ADS)

    Hagita, Norihiro; Sawaki, Minako

    1995-03-01

    Most conventional methods in character recognition extract geometrical features such as stroke direction, connectivity of strokes, etc., and compare them with reference patterns in a stored dictionary. Unfortunately, geometrical features are easily degraded by blurs, stains and the graphical background designs used in Japanese newspaper headlines. This noise must be removed before recognition commences, but no preprocessing method is completely accurate. This paper proposes a method for recognizing degraded characters and characters printed on graphical background designs. This method is based on the binary image feature method and uses binary images as features. A new similarity measure, called the complementary similarity measure, is used as a discriminant function. It compares the similarity and dissimilarity of binary patterns with reference dictionary patterns. Experiments are conducted using the standard character database ETL-2 which consists of machine-printed Kanji, Hiragana, Katakana, alphanumeric, an special characters. The results show that this method is much more robust against noise than the conventional geometrical feature method. It also achieves high recognition rates of over 92% for characters with textured foregrounds, over 98% for characters with textured backgrounds, over 98% for outline fonts, and over 99% for reverse contrast characters.

  5. Pc-based car license plate reading

    NASA Astrophysics Data System (ADS)

    Tanabe, Katsuyoshi; Marubayashi, Eisaku; Kawashima, Harumi; Nakanishi, Tadashi; Shio, Akio

    1994-03-01

    A PC-based car license plate recognition system has been developed. The system recognizes Chinese characters and Japanese phonetic hiragana characters as well as six digits on Japanese license plates. The system consists of a CCD camera, vehicle sensors, a strobe unit, a monitoring center, and an i486-based PC. The PC includes in its extension slots: a vehicle detector board, a strobe emitter board, and an image grabber board. When a passing vehicle is detected by the vehicle sensors, the strobe emits a pulse of light. The light pulse is synchronized with the time the vehicle image is frozen on an image grabber board. The recognition process is composed of three steps: image thresholding, character region extraction, and matching-based character recognition. The recognition software can handle obscured characters. Experimental results for hundreds of outdoor images showed high recognition performance within relatively short performance times. The results confirmed that the system is applicable to a wide variety of applications such as automatic vehicle identification and travel time measurement.

  6. A New Pivoting and Iterative Text Detection Algorithm for Biomedical Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Songhua; Krauthammer, Prof. Michael

    2010-01-01

    There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper's key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manuallymore » labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. We demonstrate that our projection histogram-based text detection approach is well suited for text detection in biomedical images, and that the iterative application of the algorithm boosts performance to an F score of .60. We provide a C++ implementation of our algorithm freely available for academic use.« less

  7. Two-stage neural-network-based technique for Urdu character two-dimensional shape representation, classification, and recognition

    NASA Astrophysics Data System (ADS)

    Megherbi, Dalila B.; Lodhi, S. M.; Boulenouar, A. J.

    2001-03-01

    This work is in the field of automated document processing. This work addresses the problem of representation and recognition of Urdu characters using Fourier representation and a Neural Network architecture. In particular, we show that a two-stage Neural Network scheme is used here to make classification of 36 Urdu characters into seven sub-classes namely subclasses characterized by seven proposed and defined fuzzy features specifically related to Urdu characters. We show that here Fourier Descriptors and Neural Network provide a remarkably simple way to draw definite conclusions from vague, ambiguous, noisy or imprecise information. In particular, we illustrate the concept of interest regions and describe a framing method that provides a way to make the proposed technique for Urdu characters recognition robust and invariant to scaling and translation. We also show that a given character rotation is dealt with by using the Hotelling transform. This transform is based upon the eigenvalue decomposition of the covariance matrix of an image, providing a method of determining the orientation of the major axis of an object within an image. Finally experimental results are presented to show the power and robustness of the proposed two-stage Neural Network based technique for Urdu character recognition, its fault tolerance, and high recognition accuracy.

  8. Recognition of Similar Shaped Handwritten Marathi Characters Using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Jane, Archana P.; Pund, Mukesh A.

    2012-03-01

    The growing need have handwritten Marathi character recognition in Indian offices such as passport, railways etc has made it vital area of a research. Similar shape characters are more prone to misclassification. In this paper a novel method is provided to recognize handwritten Marathi characters based on their features extraction and adaptive smoothing technique. Feature selections methods avoid unnecessary patterns in an image whereas adaptive smoothing technique form smooth shape of charecters.Combination of both these approaches leads to the better results. Previous study shows that, no one technique achieves 100% accuracy in handwritten character recognition area. This approach of combining both adaptive smoothing & feature extraction gives better results (approximately 75-100) and expected outcomes.

  9. Early Reading Development in Chinese-Speaking Children with Hearing Loss

    ERIC Educational Resources Information Center

    Chan, Yi-Chih; Yang, You-Jhen

    2018-01-01

    This study aims to explore early reading comprehension in Chinese-speaking children with hearing loss (HL) by examining character recognition and linguistic comprehension. Twenty-five children with HL received three measures relevant to character reading: phonological awareness (PA), morphological awareness (MA), and character recognition; two…

  10. Enhancement Of Reading Accuracy By Multiple Data Integration

    NASA Astrophysics Data System (ADS)

    Lee, Kangsuk

    1989-07-01

    In this paper, a multiple sensor integration technique with neural network learning algorithms is presented which can enhance the reading accuracy of the hand-written numerals. Many document reading applications involve hand-written numerals in a predetermined location on a form, and in many cases, critical data is redundantly described. The amount of a personal check is one such case which is written redundantly in numerals and in alphabetical form. Information from two optical character recognition modules, one specialized for digits and one for words, is combined to yield an enhanced recognition of the amount. The combination can be accomplished by a decision tree with "if-then" rules, but by simply fusing two or more sets of sensor data in a single expanded neural net, the same functionality can be expected with a much reduced system cost. Experimental results of fusing two neural nets to enhance overall recognition performance using a controlled data set are presented.

  11. An Evaluation of PC-Based Optical Character Recognition Systems.

    ERIC Educational Resources Information Center

    Schreier, E. M.; Uslan, M. M.

    1991-01-01

    The review examines six personal computer-based optical character recognition (OCR) systems designed for use by blind and visually impaired people. Considered are OCR components and terms, documentation, scanning and reading, command structure, conversion, unique features, accuracy of recognition, scanning time, speed, and cost. (DB)

  12. Learning through hand- or typewriting influences visual recognition of new graphic shapes: behavioral and functional imaging evidence.

    PubMed

    Longcamp, Marieke; Boucard, Céline; Gilhodes, Jean-Claude; Anton, Jean-Luc; Roth, Muriel; Nazarian, Bruno; Velay, Jean-Luc

    2008-05-01

    Fast and accurate visual recognition of single characters is crucial for efficient reading. We explored the possible contribution of writing memory to character recognition processes. We evaluated the ability of adults to discriminate new characters from their mirror images after being taught how to produce the characters either by traditional pen-and-paper writing or with a computer keyboard. After training, we found stronger and longer lasting (several weeks) facilitation in recognizing the orientation of characters that had been written by hand compared to those typed. Functional magnetic resonance imaging recordings indicated that the response mode during learning is associated with distinct pathways during recognition of graphic shapes. Greater activity related to handwriting learning and normal letter identification was observed in several brain regions known to be involved in the execution, imagery, and observation of actions, in particular, the left Broca's area and bilateral inferior parietal lobules. Taken together, these results provide strong arguments in favor of the view that the specific movements memorized when learning how to write participate in the visual recognition of graphic shapes and letters.

  13. Text Extraction from Scene Images by Character Appearance and Structure Modeling

    PubMed Central

    Yi, Chucai; Tian, Yingli

    2012-01-01

    In this paper, we propose a novel algorithm to detect text information from natural scene images. Scene text classification and detection are still open research topics. Our proposed algorithm is able to model both character appearance and structure to generate representative and discriminative text descriptors. The contributions of this paper include three aspects: 1) a new character appearance model by a structure correlation algorithm which extracts discriminative appearance features from detected interest points of character samples; 2) a new text descriptor based on structons and correlatons, which model character structure by structure differences among character samples and structure component co-occurrence; and 3) a new text region localization method by combining color decomposition, character contour refinement, and string line alignment to localize character candidates and refine detected text regions. We perform three groups of experiments to evaluate the effectiveness of our proposed algorithm, including text classification, text detection, and character identification. The evaluation results on benchmark datasets demonstrate that our algorithm achieves the state-of-the-art performance on scene text classification and detection, and significantly outperforms the existing algorithms for character identification. PMID:23316111

  14. Quantum-Limited Image Recognition

    DTIC Science & Technology

    1989-12-01

    J. S. Bomba ,’Alpha-numeric character recognition using local operations,’ Fall Joint Comput. Conf., 218-224 (1959). 53. D. Barnea and H. Silverman...for Chapter 6 1. J. S. Bomba ,’Alpha-numeric character recognition using local operations,’ Fall Joint Comput. Conf., 218-224 (1959). 2. D. Bamea and H

  15. a Fully Automated Pipeline for Classification Tasks with AN Application to Remote Sensing

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Claesen, M.; Takeda, H.; De Moor, B.

    2016-06-01

    Nowadays deep learning has been intensively in spotlight owing to its great victories at major competitions, which undeservedly pushed `shallow' machine learning methods, relatively naive/handy algorithms commonly used by industrial engineers, to the background in spite of their facilities such as small requisite amount of time/dataset for training. We, with a practical point of view, utilized shallow learning algorithms to construct a learning pipeline such that operators can utilize machine learning without any special knowledge, expensive computation environment, and a large amount of labelled data. The proposed pipeline automates a whole classification process, namely feature-selection, weighting features and the selection of the most suitable classifier with optimized hyperparameters. The configuration facilitates particle swarm optimization, one of well-known metaheuristic algorithms for the sake of generally fast and fine optimization, which enables us not only to optimize (hyper)parameters but also to determine appropriate features/classifier to the problem, which has conventionally been a priori based on domain knowledge and remained untouched or dealt with naïve algorithms such as grid search. Through experiments with the MNIST and CIFAR-10 datasets, common datasets in computer vision field for character recognition and object recognition problems respectively, our automated learning approach provides high performance considering its simple setting (i.e. non-specialized setting depending on dataset), small amount of training data, and practical learning time. Moreover, compared to deep learning the performance stays robust without almost any modification even with a remote sensing object recognition problem, which in turn indicates that there is a high possibility that our approach contributes to general classification problems.

  16. Transfer of Perceptual Expertise: The Case of Simplified and Traditional Chinese Character Recognition

    ERIC Educational Resources Information Center

    Liu, Tianyin; Chuk, Tin Yim; Yeh, Su-Ling; Hsiao, Janet H.

    2016-01-01

    Expertise in Chinese character recognition is marked by reduced holistic processing (HP), which depends mainly on writing rather than reading experience. Here we show that, while simplified and traditional Chinese readers demonstrated a similar level of HP when processing characters shared between the simplified and traditional scripts, simplified…

  17. Maximum mutual information estimation of a simplified hidden MRF for offline handwritten Chinese character recognition

    NASA Astrophysics Data System (ADS)

    Xiong, Yan; Reichenbach, Stephen E.

    1999-01-01

    Understanding of hand-written Chinese characters is at such a primitive stage that models include some assumptions about hand-written Chinese characters that are simply false. So Maximum Likelihood Estimation (MLE) may not be an optimal method for hand-written Chinese characters recognition. This concern motivates the research effort to consider alternative criteria. Maximum Mutual Information Estimation (MMIE) is an alternative method for parameter estimation that does not derive its rationale from presumed model correctness, but instead examines the pattern-modeling problem in automatic recognition system from an information- theoretic point of view. The objective of MMIE is to find a set of parameters in such that the resultant model allows the system to derive from the observed data as much information as possible about the class. We consider MMIE for recognition of hand-written Chinese characters using on a simplified hidden Markov Random Field. MMIE provides improved performance improvement over MLE in this application.

  18. Printed Arabic optical character segmentation

    NASA Astrophysics Data System (ADS)

    Mohammad, Khader; Ayyesh, Muna; Qaroush, Aziz; Tumar, Iyad

    2015-03-01

    A considerable progress in recognition techniques for many non-Arabic characters has been achieved. In contrary, few efforts have been put on the research of Arabic characters. In any Optical Character Recognition (OCR) system the segmentation step is usually the essential stage in which an extensive portion of processing is devoted and a considerable share of recognition errors is attributed. In this research, a novel segmentation approach for machine Arabic printed text with diacritics is proposed. The proposed method reduces computation, errors, gives a clear description for the sub-word and has advantages over using the skeleton approach in which the data and information of the character can be lost. Both of initial evaluation and testing of the proposed method have been developed using MATLAB and shows 98.7% promising results.

  19. Interspecific aggression and character displacement of competitor recognition in Hetaerina damselflies.

    PubMed

    Anderson, Christopher N; Grether, Gregory F

    2010-02-22

    In zones of sympatry between closely related species, species recognition errors in a competitive context can cause character displacement in agonistic signals and competitor recognition functions, just as species recognition errors in a mating context can cause character displacement in mating signals and mate recognition. These two processes are difficult to distinguish because the same traits can serve as both agonistic and mating signals. One solution is to test for sympatric shifts in recognition functions. We studied competitor recognition in Hetaerina damselflies by challenging territory holders with live tethered conspecific and heterospecific intruders. Heterospecific intruders elicited less aggression than conspecific intruders in species pairs with dissimilar wing coloration (H. occisa/H. titia, H. americana/H. titia) but not in species pairs with similar wing coloration (H. occisa/H. cruentata, H. americana/H. cruentata). Natural variation in the area of black wing pigmentation on H. titia intruders correlated negatively with heterospecific aggression. To directly examine the role of wing coloration, we blackened the wings of H. occisa or H. americana intruders and measured responses of conspecific territory holders. This treatment reduced territorial aggression at multiple sites where H. titia is present, but not at allopatric sites. These results provide strong evidence for agonistic character displacement.

  20. Vehicle license plate recognition in dense fog based on improved atmospheric scattering model

    NASA Astrophysics Data System (ADS)

    Tang, Chunming; Lin, Jun; Chen, Chunkai; Dong, Yancheng

    2018-04-01

    An effective method based on improved atmospheric scattering model is proposed in this paper to handle the problem of the vehicle license plate location and recognition in dense fog. Dense fog detection is performed firstly by the top-hat transformation and the vertical edge detection, and the moving vehicle image is separated from the traffic video image. After the vehicle image is decomposed into two layers: structure and texture layers, the glow layer is separated from the structure layer to get the background layer. Followed by performing the mean-pooling and the bicubic interpolation algorithm, the atmospheric light map of the background layer can be predicted, meanwhile the transmission of the background layer is estimated through the grayed glow layer, whose gray value is altered by linear mapping. Then, according to the improved atmospheric scattering model, the final restored image can be obtained by fusing the restored background layer and the optimized texture layer. License plate location is performed secondly by a series of morphological operations, connected domain analysis and various validations. Characters extraction is achieved according to the projection. Finally, an offline trained pattern classifier of hybrid discriminative restricted boltzmann machines (HDRBM) is applied to recognize the characters. Experimental results on thorough data sets are reported to demonstrate that the proposed method can achieve high recognition accuracy and works robustly in the dense fog traffic environment during 24h or one day.

  1. Spatial-frequency spectra of printed characters and human visual perception.

    PubMed

    Põder, Endel

    2003-06-01

    It is well known that certain spatial frequency (SF) bands are more important than others for character recognition. Solomon and Pelli [Nature 369 (1994) 395-397] have concluded that human pattern recognition mechanism is able to use only a narrow band from available SF spectrum of letters. However, the SF spectra of letters themselves have not been studied carefully. Here I report the results of an analysis of SF spectra of printed characters and discuss their relationship to the observed band-pass nature of letter recognition.

  2. Application of the ANNA neural network chip to high-speed character recognition.

    PubMed

    Sackinger, E; Boser, B E; Bromley, J; Lecun, Y; Jackel, L D

    1992-01-01

    A neural network with 136000 connections for recognition of handwritten digits has been implemented using a mixed analog/digital neural network chip. The neural network chip is capable of processing 1000 characters/s. The recognition system has essentially the same rate (5%) as a simulation of the network with 32-b floating-point precision.

  3. State Recognition of Bone Drilling Based on Acoustic Emission in Pedicle Screw Operation.

    PubMed

    Guan, Fengqing; Sun, Yu; Qi, Xiaozhi; Hu, Ying; Yu, Gang; Zhang, Jianwei

    2018-05-09

    Pedicle drilling is an important step in pedicle screw fixation and the most significant challenge in this operation is how to determine a key point in the transition region between cancellous and inner cortical bone. The purpose of this paper is to find a method to achieve the recognition for the key point. After acquiring acoustic emission (AE) signals during the drilling process, this paper proposed a novel frequency distribution-based algorithm (FDB) to analyze the AE signals in the frequency domain after certain processes. Then we select a specific frequency domain of the signal for standard operations and choose a fitting function to fit the obtained sequence. Characters of the fitting function are extracted as outputs for identification of different bone layers. The results, which are obtained by detecting force signal and direct measurement, are given in the paper. Compared with the results above, the results obtained by AE signals are distinguishable for different bone layers and are more accurate and precise. The results of the algorithm are trained and identified by a neural network and the recognition rate reaches 84.2%. The proposed method is proved to be efficient and can be used for bone layer identification in pedicle screw fixation.

  4. A new pivoting and iterative text detection algorithm for biomedical images.

    PubMed

    Xu, Songhua; Krauthammer, Michael

    2010-12-01

    There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper's key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manually labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. We demonstrate that our projection histogram-based text detection approach is well suited for text detection in biomedical images, and that the iterative application of the algorithm boosts performance to an F score of .60. We provide a C++ implementation of our algorithm freely available for academic use. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Character Recognition Method by Time-Frequency Analyses Using Writing Pressure

    NASA Astrophysics Data System (ADS)

    Watanabe, Tatsuhito; Katsura, Seiichiro

    With the development of information and communication technology, personal verification becomes more and more important. In the future ubiquitous society, the development of terminals handling personal information requires the personal verification technology. The signature is one of the personal verification methods; however, the number of characters is limited in the case of the signature and therefore false signature is used easily. Thus, personal identification is difficult from handwriting. This paper proposes a “haptic pen” that extracts the writing pressure, and shows a character recognition method by time-frequency analyses. Although the figures of characters written by different amanuenses are similar, the differences appear in the time-frequency domain. As a result, it is possible to use the proposed character recognition for personal identification more exactly. The experimental results showed the viability of the proposed method.

  6. Combination of dynamic Bayesian network classifiers for the recognition of degraded characters

    NASA Astrophysics Data System (ADS)

    Likforman-Sulem, Laurence; Sigelle, Marc

    2009-01-01

    We investigate in this paper the combination of DBN (Dynamic Bayesian Network) classifiers, either independent or coupled, for the recognition of degraded characters. The independent classifiers are a vertical HMM and a horizontal HMM whose observable outputs are the image columns and the image rows respectively. The coupled classifiers, presented in a previous study, associate the vertical and horizontal observation streams into single DBNs. The scores of the independent and coupled classifiers are then combined linearly at the decision level. We compare the different classifiers -independent, coupled or linearly combined- on two tasks: the recognition of artificially degraded handwritten digits and the recognition of real degraded old printed characters. Our results show that coupled DBNs perform better on degraded characters than the linear combination of independent HMM scores. Our results also show that the best classifier is obtained by linearly combining the scores of the best coupled DBN and the best independent HMM.

  7. Recognition of handprinted characters for automated cartography A progress report

    NASA Technical Reports Server (NTRS)

    Lybanon, M.; Brown, R. M.; Gronmeyer, L. K.

    1980-01-01

    A research program for developing handwritten character recognition techniques is reported. The generation of cartographic/hydrographic manuscripts is overviewed. The performance of hardware/software systems is discussed, along with future research problem areas and planned approaches.

  8. Scene Text Recognition using Similarity and a Lexicon with Sparse Belief Propagation

    PubMed Central

    Weinman, Jerod J.; Learned-Miller, Erik; Hanson, Allen R.

    2010-01-01

    Scene text recognition (STR) is the recognition of text anywhere in the environment, such as signs and store fronts. Relative to document recognition, it is challenging because of font variability, minimal language context, and uncontrolled conditions. Much information available to solve this problem is frequently ignored or used sequentially. Similarity between character images is often overlooked as useful information. Because of language priors, a recognizer may assign different labels to identical characters. Directly comparing characters to each other, rather than only a model, helps ensure that similar instances receive the same label. Lexicons improve recognition accuracy but are used post hoc. We introduce a probabilistic model for STR that integrates similarity, language properties, and lexical decision. Inference is accelerated with sparse belief propagation, a bottom-up method for shortening messages by reducing the dependency between weakly supported hypotheses. By fusing information sources in one model, we eliminate unrecoverable errors that result from sequential processing, improving accuracy. In experimental results recognizing text from images of signs in outdoor scenes, incorporating similarity reduces character recognition error by 19%, the lexicon reduces word recognition error by 35%, and sparse belief propagation reduces the lexicon words considered by 99.9% with a 12X speedup and no loss in accuracy. PMID:19696446

  9. A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors.

    PubMed

    Acevedo-Avila, Ricardo; Gonzalez-Mendoza, Miguel; Garcia-Garcia, Andres

    2016-05-28

    Blob detection is a common task in vision-based applications. Most existing algorithms are aimed at execution on general purpose computers; while very few can be adapted to the computing restrictions present in embedded platforms. This paper focuses on the design of an algorithm capable of real-time blob detection that minimizes system memory consumption. The proposed algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to label blobs depending on their shape and node information. An example application showing the results of a blob detection co-processor has been built on a low-powered field programmable gate array hardware as a step towards developing a smart video surveillance system. The detection method is intended for general purpose application. As such, several test cases focused on character recognition are also examined. The results obtained present a fair trade-off between accuracy and memory requirements; and prove the validity of the proposed approach for real-time implementation on resource-constrained computing platforms.

  10. Contribution of finger tracing to the recognition of Chinese characters.

    PubMed

    Yim-Ng, Y Y; Varley, R; Andrade, J

    2000-01-01

    Finger tracing is a simulation of the act of writing without the use of pen and paper. It is claimed to help in the processing of Chinese characters, possibly by providing additional motor coding. In this study, blindfolded subjects were equally good at identifying Chinese characters and novel visual stimuli through passive movements made with the index finger of the preferred hand and those made with the last finger of that hand. This suggests that finger tracing provides a relatively high level of coding specific to individual characters, but non-specific to motor effectors. Beginning each stroke from the same location, i.e. removing spatial information, impaired recognition of the familiar characters and the novel nonsense figures. Passively tracing the strokes in a random sequence also impaired recognition of the characters. These results therefore suggest that the beneficial effect of finger tracing on writing or recall of Chinese characters is mediated by sequence and spatial information embedded in the motor movements, and that proprioceptive channel may play a part in mediating visuo-spatial information. Finger tracing may be a useful strategy for remediation of Chinese language impairments.

  11. Imaging Systems: What, When, How.

    ERIC Educational Resources Information Center

    Lunin, Lois F.; And Others

    1992-01-01

    The three articles in this special section on document image files discuss intelligent character recognition, including comparison with optical character recognition; selection of displays for document image processing, focusing on paperlike displays; and imaging hardware, software, and vendors, including guidelines for system selection. (MES)

  12. Neural system applied on an invariant industrial character recognition

    NASA Astrophysics Data System (ADS)

    Lecoeuche, Stephane; Deguillemont, Denis; Dubus, Jean-Paul

    1997-04-01

    Besides the variety of fonts, character recognition systems for the industrial world are confronted with specific problems like: the variety of support (metal, wood, paper, ceramics . . .) as well as the variety of marking (printing, engraving, . . .) and conditions of lighting. We present a system that is able to solve a part of this problem. It implements a collaboration between two neural networks. The first network specialized in vision allows the system to extract the character from an image. Besides this capability, we have equipped our system with characteristics allowing it to obtain an invariant model from the presented character. Thus, whatever the position, the size and the orientation of the character during the capture are, the model presented to the input of the second network will be identical. The second network, thanks to a learning phase, permits us to obtain a character recognition system independent of the type of fonts used. Furthermore, its capabilities of generalization permit us to recognize degraded and/or distorted characters. A feedback loop between the two networks permits the first one to modify the quality of vision.The cooperation between these two networks allows us to recognize characters whatever the support and the marking.

  13. A noise-immune cryptographic information protection method for facsimile information transmission and the realization algorithms

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Bardachenko, Vitaliy F.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Ogorodnik, Konstantin V.

    2006-04-01

    We analyse the existent methods of cryptographic defence for the facsimile information transfer, consider their shortcomings and prove the necessity of better information protection degree. The method of information protection that is based on presentation of input data as images is proposed. We offer a new noise-immune algorithm for realization of this method which consists in transformation of an input frame by pixels transposition according to an entered key. At decoding mode the reverse transformation of image with the use of the same key is used. Practical realization of the given method takes into account noise in the transmission channels and information distortions by scanners, faxes and others like that. We show that the given influences are reduced to the transformation of the input image coordinates. We show the algorithm in detail and consider its basic steps. We show the possibility of the offered method by the means of the developed software. The realized algorithm corrects curvature of frames: turn, scaling, fallout of pixels and others like that. At low noise level (loss of pixel information less than 10 percents) it is possible to encode, transfer and decode any types of images and texts with 12-size font character. The software filters for information restore and noise removing allow to transfer fax data with 30 percents pixels loss at 18-size font text. This percent of data loss can be considerably increased by the use of the software character recognition block that can be realized on fuzzy-neural algorithms. Examples of encoding and decryption of images and texts are shown.

  14. Visual field differences in visual word recognition can emerge purely from perceptual learning: evidence from modeling Chinese character pronunciation.

    PubMed

    Hsiao, Janet Hui-Wen

    2011-11-01

    In Chinese orthography, a dominant character structure exists in which a semantic radical appears on the left and a phonetic radical on the right (SP characters); a minority opposite arrangement also exists (PS characters). As the number of phonetic radical types is much greater than semantic radical types, in SP characters the information is skewed to the right, whereas in PS characters it is skewed to the left. Through training a computational model for SP and PS character recognition that takes into account of the locations in which the characters appear in the visual field during learning, but does not assume any fundamental hemispheric processing difference, we show that visual field differences can emerge as a consequence of the fundamental structural differences in information between SP and PS characters, as opposed to the fundamental processing differences between the two hemispheres. This modeling result is also consistent with behavioral naming performance. This work provides strong evidence that perceptual learning, i.e., the information structure of word stimuli to which the readers have long been exposed, is one of the factors that accounts for hemispheric asymmetry effects in visual word recognition. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Performance evaluation methodology for historical document image binarization.

    PubMed

    Ntirogiannis, Konstantinos; Gatos, Basilis; Pratikakis, Ioannis

    2013-02-01

    Document image binarization is of great importance in the document image analysis and recognition pipeline since it affects further stages of the recognition process. The evaluation of a binarization method aids in studying its algorithmic behavior, as well as verifying its effectiveness, by providing qualitative and quantitative indication of its performance. This paper addresses a pixel-based binarization evaluation methodology for historical handwritten/machine-printed document images. In the proposed evaluation scheme, the recall and precision evaluation measures are properly modified using a weighting scheme that diminishes any potential evaluation bias. Additional performance metrics of the proposed evaluation scheme consist of the percentage rates of broken and missed text, false alarms, background noise, character enlargement, and merging. Several experiments conducted in comparison with other pixel-based evaluation measures demonstrate the validity of the proposed evaluation scheme.

  16. Teach Your Computer to Read: Scanners and Optical Character Recognition.

    ERIC Educational Resources Information Center

    Marsden, Jim

    1993-01-01

    Desktop scanners can be used with a software technology called optical character recognition (OCR) to convert the text on virtually any paper document into an electronic form. OCR offers educators new flexibility in incorporating text into tests, lesson plans, and other materials. (MLF)

  17. Optical character recognition reading aid for the visually impaired.

    PubMed

    Grandin, Juan Carlos; Cremaschi, Fabian; Lombardo, Elva; Vitu, Ed; Dujovny, Manuel

    2008-06-01

    An optical character recognition (OCR) reading machine is a significant help for visually impaired patients. An OCR reading machine is used. This instrument can provide a significant help in order to improve the quality of life of patients with low vision or blindness.

  18. Chinese Children's Character Recognition: Visuo-Orthographic, Phonological Processing and Morphological Skills

    ERIC Educational Resources Information Center

    Li, Hong; Shu, Hua; McBride-Chang, Catherine; Liu, Hongyun; Peng, Hong

    2012-01-01

    Tasks tapping visual skills, orthographic knowledge, phonological awareness, speeded naming, morphological awareness and Chinese character recognition were administered to 184 kindergarteners and 273 primary school students from Beijing. Regression analyses indicated that only syllable deletion, morphological construction and speeded number naming…

  19. Mobile-based text recognition from water quality devices

    NASA Astrophysics Data System (ADS)

    Dhakal, Shanti; Rahnemoonfar, Maryam

    2015-03-01

    Measuring water quality of bays, estuaries, and gulfs is a complicated and time-consuming process. YSI Sonde is an instrument used to measure water quality parameters such as pH, temperature, salinity, and dissolved oxygen. This instrument is taken to water bodies in a boat trip and researchers note down different parameters displayed by the instrument's display monitor. In this project, a mobile application is developed for Android platform that allows a user to take a picture of the YSI Sonde monitor, extract text from the image and store it in a file on the phone. The image captured by the application is first processed to remove perspective distortion. Probabilistic Hough line transform is used to identify lines in the image and the corner of the image is then obtained by determining the intersection of the detected horizontal and vertical lines. The image is warped using the perspective transformation matrix, obtained from the corner points of the source image and the destination image, hence, removing the perspective distortion. Mathematical morphology operation, black-hat is used to correct the shading of the image. The image is binarized using Otsu's binarization technique and is then passed to the Optical Character Recognition (OCR) software for character recognition. The extracted information is stored in a file on the phone and can be retrieved later for analysis. The algorithm was tested on 60 different images of YSI Sonde with different perspective features and shading. Experimental results, in comparison to ground-truth results, demonstrate the effectiveness of the proposed method.

  20. Optical character recognition with feature extraction and associative memory matrix

    NASA Astrophysics Data System (ADS)

    Sasaki, Osami; Shibahara, Akihito; Suzuki, Takamasa

    1998-06-01

    A method is proposed in which handwritten characters are recognized using feature extraction and an associative memory matrix. In feature extraction, simple processes such as shifting and superimposing patterns are executed. A memory matrix is generated with singular value decomposition and by modifying small singular values. The method is optically implemented with two liquid crystal displays. Experimental results for the recognition of 25 handwritten alphabet characters clearly shows the effectiveness of the method.

  1. Do dyslexic individuals present a reduced visual attention span? Evidence from visual recognition tasks of non-verbal multi-character arrays.

    PubMed

    Yeari, Menahem; Isser, Michal; Schiff, Rachel

    2017-07-01

    A controversy has recently developed regarding the hypothesis that developmental dyslexia may be caused, in some cases, by a reduced visual attention span (VAS). To examine this hypothesis, independent of phonological abilities, researchers tested the ability of dyslexic participants to recognize arrays of unfamiliar visual characters. Employing this test, findings were rather equivocal: dyslexic participants exhibited poor performance in some studies but normal performance in others. The present study explored four methodological differences revealed between the two sets of studies that might underlie their conflicting results. Specifically, in two experiments we examined whether a VAS deficit is (a) specific to recognition of multi-character arrays as wholes rather than of individual characters within arrays, (b) specific to characters' position within arrays rather than to characters' identity, or revealed only under a higher attention load due to (c) low-discriminable characters, and/or (d) characters' short exposure. Furthermore, in this study we examined whether pure dyslexic participants who do not have attention disorder exhibit a reduced VAS. Although comorbidity of dyslexia and attention disorder is common and the ability to sustain attention for a long time plays a major rule in the visual recognition task, the presence of attention disorder was neither evaluated nor ruled out in previous studies. Findings did not reveal any differences between the performance of dyslexic and control participants on eight versions of the visual recognition task. These findings suggest that pure dyslexic individuals do not present a reduced visual attention span.

  2. Signal detection using support vector machines in the presence of ultrasonic speckle

    NASA Astrophysics Data System (ADS)

    Kotropoulos, Constantine L.; Pitas, Ioannis

    2002-04-01

    Support Vector Machines are a general algorithm based on guaranteed risk bounds of statistical learning theory. They have found numerous applications, such as in classification of brain PET images, optical character recognition, object detection, face verification, text categorization and so on. In this paper we propose the use of support vector machines to segment lesions in ultrasound images and we assess thoroughly their lesion detection ability. We demonstrate that trained support vector machines with a Radial Basis Function kernel segment satisfactorily (unseen) ultrasound B-mode images as well as clinical ultrasonic images.

  3. A study of payload specialist station monitor size constraints. [space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M., III; Shields, N. L., Jr.; Malone, T. B.

    1975-01-01

    Constraints on the CRT display size for the shuttle orbiter cabin are studied. The viewing requirements placed on these monitors were assumed to involve display of imaged scenes providing visual feedback during payload operations and display of alphanumeric characters. Data on target recognition/resolution, target recognition, and range rate detection by human observers were utilized to determine viewing requirements for imaged scenes. Field-of-view and acuity requirements for a variety of payload operations were obtained along with the necessary detection capability in terms of range-to-target size ratios. The monitor size necessary to meet the acuity requirements was established. An empirical test was conducted to determine required recognition sizes for displayed alphanumeric characters. The results of the test were used to determine the number of characters which could be simultaneously displayed based on the recognition size requirements using the proposed monitor size. A CRT display of 20 x 20 cm is recommended. A portion of the display area is used for displaying imaged scenes and the remaining display area is used for alphanumeric characters pertaining to the displayed scene. The entire display is used for the character alone mode.

  4. The Inversion Effect for Chinese Characters is Modulated by Radical Organization.

    PubMed

    Luo, Canhuang; Chen, Wei; Zhang, Ye

    2017-06-01

    In studies of visual object recognition, strong inversion effects accompany the acquisition of expertise and imply the involvement of configural processing. Chinese literacy results in sensitivity to the orthography of Chinese characters. While there is some evidence that this orthographic sensitivity results in an inversion effect, and thus involves configural processing, that processing might depend on exact orthographic properties. Chinese character recognition is believed to involve a hierarchical process, involving at least two lower levels of representation: strokes and radicals. Radicals are grouped into characters according to certain types of structure, i.e. left-right structure, top-bottom structure, or simple characters with only one radical by itself. These types of radical structures vary in both familiarity, and in hierarchical level (compound versus simple characters). In this study, we investigate whether the hierarchical-level or familiarity of radical-structure has an impact on the magnitude of the inversion effect. Participants were asked to do a matching task on pairs of either upright or inverted characters with all the types of structure. Inversion effects were measured based on both reaction time and response sensitivity. While an inversion effect was observed in all 3 conditions, the magnitude of the inversion effect varied with radical structure, being significantly larger for the most familiar type of structure: characters consisting of 2 radicals organized from left to right. These findings indicate that character recognition involves extraction of configural structure as well as radical processing which play different roles in the processing of compound characters and simple characters.

  5. Optical Character Recognition.

    ERIC Educational Resources Information Center

    Converso, L.; Hocek, S.

    1990-01-01

    This paper describes computer-based optical character recognition (OCR) systems, focusing on their components (the computer, the scanner, the OCR, and the output device); how the systems work; and features to consider in selecting a system. A list of 26 questions to ask to evaluate systems for potential purchase is included. (JDD)

  6. Guideline for Optical Character Recognition Forms.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    This publication provides materials relating to the design, preparation, acquisition, inspection, and application of Optical Character Recognition (OCR) forms in data entry systems. Since the materials are advisory and tutorial in nature, this publication has been issued as a guideline rather than as a standard in the Federal Information…

  7. Recognition intent and visual word recognition.

    PubMed

    Wang, Man-Ying; Ching, Chi-Le

    2009-03-01

    This study adopted a change detection task to investigate whether and how recognition intent affects the construction of orthographic representation in visual word recognition. Chinese readers (Experiment 1-1) and nonreaders (Experiment 1-2) detected color changes in radical components of Chinese characters. Explicit recognition demand was imposed in Experiment 2 by an additional recognition task. When the recognition was implicit, a bias favoring the radical location informative of character identity was found in Chinese readers (Experiment 1-1), but not nonreaders (Experiment 1-2). With explicit recognition demands, the effect of radical location interacted with radical function and word frequency (Experiment 2). An estimate of identification performance under implicit recognition was derived in Experiment 3. These findings reflect the joint influence of recognition intent and orthographic regularity in shaping readers' orthographic representation. The implication for the role of visual attention in word recognition was also discussed.

  8. Development of an optical character recognition pipeline for handwritten form fields from an electronic health record.

    PubMed

    Rasmussen, Luke V; Peissig, Peggy L; McCarty, Catherine A; Starren, Justin

    2012-06-01

    Although the penetration of electronic health records is increasing rapidly, much of the historical medical record is only available in handwritten notes and forms, which require labor-intensive, human chart abstraction for some clinical research. The few previous studies on automated extraction of data from these handwritten notes have focused on monolithic, custom-developed recognition systems or third-party systems that require proprietary forms. We present an optical character recognition processing pipeline, which leverages the capabilities of existing third-party optical character recognition engines, and provides the flexibility offered by a modular custom-developed system. The system was configured and run on a selected set of form fields extracted from a corpus of handwritten ophthalmology forms. The processing pipeline allowed multiple configurations to be run, with the optimal configuration consisting of the Nuance and LEADTOOLS engines running in parallel with a positive predictive value of 94.6% and a sensitivity of 13.5%. While limitations exist, preliminary experience from this project yielded insights on the generalizability and applicability of integrating multiple, inexpensive general-purpose third-party optical character recognition engines in a modular pipeline.

  9. Development of an optical character recognition pipeline for handwritten form fields from an electronic health record

    PubMed Central

    Peissig, Peggy L; McCarty, Catherine A; Starren, Justin

    2011-01-01

    Background Although the penetration of electronic health records is increasing rapidly, much of the historical medical record is only available in handwritten notes and forms, which require labor-intensive, human chart abstraction for some clinical research. The few previous studies on automated extraction of data from these handwritten notes have focused on monolithic, custom-developed recognition systems or third-party systems that require proprietary forms. Methods We present an optical character recognition processing pipeline, which leverages the capabilities of existing third-party optical character recognition engines, and provides the flexibility offered by a modular custom-developed system. The system was configured and run on a selected set of form fields extracted from a corpus of handwritten ophthalmology forms. Observations The processing pipeline allowed multiple configurations to be run, with the optimal configuration consisting of the Nuance and LEADTOOLS engines running in parallel with a positive predictive value of 94.6% and a sensitivity of 13.5%. Discussion While limitations exist, preliminary experience from this project yielded insights on the generalizability and applicability of integrating multiple, inexpensive general-purpose third-party optical character recognition engines in a modular pipeline. PMID:21890871

  10. Perceptual expertise: can sensorimotor experience change holistic processing and left-side bias?

    PubMed

    Tso, Ricky Van-yip; Au, Terry Kit-fong; Hsiao, Janet Hui-wen

    2014-09-01

    Holistic processing and left-side bias are both behavioral markers of expert face recognition. By contrast, expert recognition of characters in Chinese orthography involves left-side bias but reduced holistic processing, although faces and Chinese characters share many visual properties. Here, we examined whether this reduction in holistic processing of Chinese characters can be better explained by writing experience than by reading experience. Compared with Chinese nonreaders, Chinese readers who had limited writing experience showed increased holistic processing, whereas Chinese readers who could write characters fluently showed reduced holistic processing. This result suggests that writing and sensorimotor experience can modulate holistic-processing effects and that the reduced holistic processing observed in expert Chinese readers may depend mostly on writing experience. However, both expert writers and writers with limited experience showed similarly stronger left-side bias than novices did in processing mirror-symmetric Chinese characters; left-side bias may therefore be a robust expertise marker for object recognition that is uninfluenced by sensorimotor experience. © The Author(s) 2014.

  11. A New Pivoting and Iterative Text Detection Algorithm for Biomedical Images

    PubMed Central

    Xu, Songhua; Krauthammer, Michael

    2010-01-01

    There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper’s key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manually labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. In this paper, we demonstrate that a projection histogram-based text detection approach is well suited for text detection in biomedical images, with a performance of F score of .60. The approach performs better than comparable approaches for text detection. Further, we show that the iterative application of the algorithm is boosting overall detection performance. A C++ implementation of our algorithm is freely available through email request for academic use. PMID:20887803

  12. Novel Blind Recognition Algorithm of Frame Synchronization Words Based on Soft-Decision in Digital Communication Systems.

    PubMed

    Qin, Jiangyi; Huang, Zhiping; Liu, Chunwu; Su, Shaojing; Zhou, Jing

    2015-01-01

    A novel blind recognition algorithm of frame synchronization words is proposed to recognize the frame synchronization words parameters in digital communication systems. In this paper, a blind recognition method of frame synchronization words based on the hard-decision is deduced in detail. And the standards of parameter recognition are given. Comparing with the blind recognition based on the hard-decision, utilizing the soft-decision can improve the accuracy of blind recognition. Therefore, combining with the characteristics of Quadrature Phase Shift Keying (QPSK) signal, an improved blind recognition algorithm based on the soft-decision is proposed. Meanwhile, the improved algorithm can be extended to other signal modulation forms. Then, the complete blind recognition steps of the hard-decision algorithm and the soft-decision algorithm are given in detail. Finally, the simulation results show that both the hard-decision algorithm and the soft-decision algorithm can recognize the parameters of frame synchronization words blindly. What's more, the improved algorithm can enhance the accuracy of blind recognition obviously.

  13. Visual Similarity of Words Alone Can Modulate Hemispheric Lateralization in Visual Word Recognition: Evidence From Modeling Chinese Character Recognition.

    PubMed

    Hsiao, Janet H; Cheung, Kit

    2016-03-01

    In Chinese orthography, the most common character structure consists of a semantic radical on the left and a phonetic radical on the right (SP characters); the minority, opposite arrangement also exists (PS characters). Recent studies showed that SP character processing is more left hemisphere (LH) lateralized than PS character processing. Nevertheless, it remains unclear whether this is due to phonetic radical position or character type frequency. Through computational modeling with artificial lexicons, in which we implement a theory of hemispheric asymmetry in perception but do not assume phonological processing being LH lateralized, we show that the difference in character type frequency alone is sufficient to exhibit the effect that the dominant type has a stronger LH lateralization than the minority type. This effect is due to higher visual similarity among characters in the dominant type than the minority type, demonstrating the modulation of visual similarity of words on hemispheric lateralization. Copyright © 2015 Cognitive Science Society, Inc.

  14. Intelligent form removal with character stroke preservation

    NASA Astrophysics Data System (ADS)

    Garris, Michael D.

    1996-03-01

    A new technique for intelligent form removal has been developed along with a new method for evaluating its impact on optical character recognition (OCR). All the dominant lines in the image are automatically detected using the Hough line transform and intelligently erased while simultaneously preserving overlapping character strokes by computing line width statistics and keying off of certain visual cues. This new method of form removal operates on loosely defined zones with no image deskewing. Any field in which the writer is provided a horizontal line to enter a response can be processed by this method. Several examples of processed fields are provided, including a comparison of results between the new method and a commercially available forms removal package. Even if this new form removal method did not improve character recognition accuracy, it is still a significant improvement to the technology because the requirement of a priori knowledge of the form's geometric details has been greatly reduced. This relaxes the recognition system's dependence on rigid form design, printing, and reproduction by automatically detecting and removing some of the physical structures (lines) on the form. Using the National Institute of Standards and Technology (NIST) public domain form-based handprint recognition system, the technique was tested on a large number of fields containing randomly ordered handprinted lowercase alphabets, as these letters (especially those with descenders) frequently touch and extend through the line along which they are written. Preserving character strokes improves overall lowercase recognition performance by 3%, which is a net improvement, but a single performance number like this doesn't communicate how the recognition process was really influenced. There is expected to be trade- offs with the introduction of any new technique into a complex recognition system. To understand both the improvements and the trade-offs, a new analysis was designed to compare the statistical distributions of individual confusion pairs between two systems. As OCR technology continues to improve, sophisticated analyses like this are necessary to reduce the errors remaining in complex recognition problems.

  15. Russian Character Recognition using Self-Organizing Map

    NASA Astrophysics Data System (ADS)

    Gunawan, D.; Arisandi, D.; Ginting, F. M.; Rahmat, R. F.; Amalia, A.

    2017-01-01

    The World Tourism Organization (UNWTO) in 2014 released that there are 28 million visitors who visit Russia. Most of the visitors might have problem in typing Russian word when using digital dictionary. This is caused by the letters, called Cyrillic that used by the Russian and the countries around it, have different shape than Latin letters. The visitors might not familiar with Cyrillic. This research proposes an alternative way to input the Cyrillic words. Instead of typing the Cyrillic words directly, camera can be used to capture image of the words as input. The captured image is cropped, then several pre-processing steps are applied such as noise filtering, binary image processing, segmentation and thinning. Next, the feature extraction process is applied to the image. Cyrillic letters recognition in the image is done by utilizing Self-Organizing Map (SOM) algorithm. SOM successfully recognizes 89.09% Cyrillic letters from the computer-generated images. On the other hand, SOM successfully recognizes 88.89% Cyrillic letters from the image captured by the smartphone’s camera. For the word recognition, SOM successfully recognized 292 words and partially recognized 58 words from the image captured by the smartphone’s camera. Therefore, the accuracy of the word recognition using SOM is 83.42%

  16. End-to-end system of license plate localization and recognition

    NASA Astrophysics Data System (ADS)

    Zhu, Siyu; Dianat, Sohail; Mestha, Lalit K.

    2015-03-01

    An end-to-end license plate recognition system is proposed. It is composed of preprocessing, detection, segmentation, and character recognition to find and recognize plates from camera-based still images. The system utilizes connected component (CC) properties to quickly extract the license plate region. A two-stage CC filtering is utilized to address both shape and spatial relationship information to produce high precision and to recall values for detection. Floating peak and valleys of projection profiles are used to cut the license plates into individual characters. A turning function-based method is proposed to quickly and accurately recognize each character. It is further accelerated using curvature histogram-based support vector machine. The INFTY dataset is used to train the recognition system, and MediaLab license plate dataset is used for testing. The proposed system achieved 89.45% F-measure for detection and 87.33% accuracy for overall recognition rate which is comparable to current state-of-the-art systems.

  17. AN OPTICAL CHARACTER RECOGNITION RESEARCH AND DEMONSTRATION PROJECT.

    ERIC Educational Resources Information Center

    1968

    RESEARCH AND DEVELOPMENT OF PROTOTYPE LIBRARY SYSTEMS WHICH UTILIZE OPTICAL CHARACTER RECOGNITION INPUT HAS CENTERED AROUND OPTICAL PAGE READERS AND DOCUMENT READERS. THE STATE-OF-THE-ART OF BOTH THESE OPTICAL SCANNERS IS SUCH THAT BOTH ARE ACCEPTABLE FOR LIBRARY INPUT PREPARATION. A DEMONSTRATION PROJECT UTILIZING THE TWO TYPES OF READERS, SINCE…

  18. Functional Anatomy of Recognition of Chinese Multi-Character Words: Convergent Evidence from Effects of Transposable Nonwords, Lexicality, and Word Frequency.

    PubMed

    Lin, Nan; Yu, Xi; Zhao, Ying; Zhang, Mingxia

    2016-01-01

    This fMRI study aimed to identify the neural mechanisms underlying the recognition of Chinese multi-character words by partialling out the confounding effect of reaction time (RT). For this purpose, a special type of nonword-transposable nonword-was created by reversing the character orders of real words. These nonwords were included in a lexical decision task along with regular (non-transposable) nonwords and real words. Through conjunction analysis on the contrasts of transposable nonwords versus regular nonwords and words versus regular nonwords, the confounding effect of RT was eliminated, and the regions involved in word recognition were reliably identified. The word-frequency effect was also examined in emerged regions to further assess their functional roles in word processing. Results showed significant conjunctional effect and positive word-frequency effect in the bilateral inferior parietal lobules and posterior cingulate cortex, whereas only conjunctional effect was found in the anterior cingulate cortex. The roles of these brain regions in recognition of Chinese multi-character words were discussed.

  19. Functional Anatomy of Recognition of Chinese Multi-Character Words: Convergent Evidence from Effects of Transposable Nonwords, Lexicality, and Word Frequency

    PubMed Central

    Lin, Nan; Yu, Xi; Zhao, Ying; Zhang, Mingxia

    2016-01-01

    This fMRI study aimed to identify the neural mechanisms underlying the recognition of Chinese multi-character words by partialling out the confounding effect of reaction time (RT). For this purpose, a special type of nonword—transposable nonword—was created by reversing the character orders of real words. These nonwords were included in a lexical decision task along with regular (non-transposable) nonwords and real words. Through conjunction analysis on the contrasts of transposable nonwords versus regular nonwords and words versus regular nonwords, the confounding effect of RT was eliminated, and the regions involved in word recognition were reliably identified. The word-frequency effect was also examined in emerged regions to further assess their functional roles in word processing. Results showed significant conjunctional effect and positive word-frequency effect in the bilateral inferior parietal lobules and posterior cingulate cortex, whereas only conjunctional effect was found in the anterior cingulate cortex. The roles of these brain regions in recognition of Chinese multi-character words were discussed. PMID:26901644

  20. Unsupervised categorization method of graphemes on handwritten manuscripts: application to style recognition

    NASA Astrophysics Data System (ADS)

    Daher, H.; Gaceb, D.; Eglin, V.; Bres, S.; Vincent, N.

    2012-01-01

    We present in this paper a feature selection and weighting method for medieval handwriting images that relies on codebooks of shapes of small strokes of characters (graphemes that are issued from the decomposition of manuscripts). These codebooks are important to simplify the automation of the analysis, the manuscripts transcription and the recognition of styles or writers. Our approach provides a precise features weighting by genetic algorithms and a highperformance methodology for the categorization of the shapes of graphemes by using graph coloring into codebooks which are applied in turn on CBIR (Content Based Image Retrieval) in a mixed handwriting database containing different pages from different writers, periods of the history and quality. We show how the coupling of these two mechanisms 'features weighting - graphemes classification' can offer a better separation of the forms to be categorized by exploiting their grapho-morphological, their density and their significant orientations particularities.

  1. Handprinted Forms and Characters

    National Institute of Standards and Technology Data Gateway

    NIST Handprinted Forms and Characters (Web, free access)   NIST Special Database 19 contains NIST's entire corpus of training materials for handprinted document and character recognition. It supersedes NIST Special Databases 3 and 7.

  2. Goal-oriented evaluation of binarization algorithms for historical document images

    NASA Astrophysics Data System (ADS)

    Obafemi-Ajayi, Tayo; Agam, Gady

    2013-01-01

    Binarization is of significant importance in document analysis systems. It is an essential first step, prior to further stages such as Optical Character Recognition (OCR), document segmentation, or enhancement of readability of the document after some restoration stages. Hence, proper evaluation of binarization methods to verify their effectiveness is of great value to the document analysis community. In this work, we perform a detailed goal-oriented evaluation of image quality assessment of the 18 binarization methods that participated in the DIBCO 2011 competition using the 16 historical document test images used in the contest. We are interested in the image quality assessment of the outputs generated by the different binarization algorithms as well as the OCR performance, where possible. We compare our evaluation of the algorithms based on human perception of quality to the DIBCO evaluation metrics. The results obtained provide an insight into the effectiveness of these methods with respect to human perception of image quality as well as OCR performance.

  3. A Linked List-Based Algorithm for Blob Detection on Embedded Vision-Based Sensors

    PubMed Central

    Acevedo-Avila, Ricardo; Gonzalez-Mendoza, Miguel; Garcia-Garcia, Andres

    2016-01-01

    Blob detection is a common task in vision-based applications. Most existing algorithms are aimed at execution on general purpose computers; while very few can be adapted to the computing restrictions present in embedded platforms. This paper focuses on the design of an algorithm capable of real-time blob detection that minimizes system memory consumption. The proposed algorithm detects objects in one image scan; it is based on a linked-list data structure tree used to label blobs depending on their shape and node information. An example application showing the results of a blob detection co-processor has been built on a low-powered field programmable gate array hardware as a step towards developing a smart video surveillance system. The detection method is intended for general purpose application. As such, several test cases focused on character recognition are also examined. The results obtained present a fair trade-off between accuracy and memory requirements; and prove the validity of the proposed approach for real-time implementation on resource-constrained computing platforms. PMID:27240382

  4. Basic test framework for the evaluation of text line segmentation and text parameter extraction.

    PubMed

    Brodić, Darko; Milivojević, Dragan R; Milivojević, Zoran

    2010-01-01

    Text line segmentation is an essential stage in off-line optical character recognition (OCR) systems. It is a key because inaccurately segmented text lines will lead to OCR failure. Text line segmentation of handwritten documents is a complex and diverse problem, complicated by the nature of handwriting. Hence, text line segmentation is a leading challenge in handwritten document image processing. Due to inconsistencies in measurement and evaluation of text segmentation algorithm quality, some basic set of measurement methods is required. Currently, there is no commonly accepted one and all algorithm evaluation is custom oriented. In this paper, a basic test framework for the evaluation of text feature extraction algorithms is proposed. This test framework consists of a few experiments primarily linked to text line segmentation, skew rate and reference text line evaluation. Although they are mutually independent, the results obtained are strongly cross linked. In the end, its suitability for different types of letters and languages as well as its adaptability are its main advantages. Thus, the paper presents an efficient evaluation method for text analysis algorithms.

  5. Basic Test Framework for the Evaluation of Text Line Segmentation and Text Parameter Extraction

    PubMed Central

    Brodić, Darko; Milivojević, Dragan R.; Milivojević, Zoran

    2010-01-01

    Text line segmentation is an essential stage in off-line optical character recognition (OCR) systems. It is a key because inaccurately segmented text lines will lead to OCR failure. Text line segmentation of handwritten documents is a complex and diverse problem, complicated by the nature of handwriting. Hence, text line segmentation is a leading challenge in handwritten document image processing. Due to inconsistencies in measurement and evaluation of text segmentation algorithm quality, some basic set of measurement methods is required. Currently, there is no commonly accepted one and all algorithm evaluation is custom oriented. In this paper, a basic test framework for the evaluation of text feature extraction algorithms is proposed. This test framework consists of a few experiments primarily linked to text line segmentation, skew rate and reference text line evaluation. Although they are mutually independent, the results obtained are strongly cross linked. In the end, its suitability for different types of letters and languages as well as its adaptability are its main advantages. Thus, the paper presents an efficient evaluation method for text analysis algorithms. PMID:22399932

  6. The role of lexical variables in the visual recognition of Chinese characters: A megastudy analysis.

    PubMed

    Sze, Wei Ping; Yap, Melvin J; Rickard Liow, Susan J

    2015-01-01

    Logographic Chinese orthography partially represents both phonology and semantics. By capturing the online processing of a large pool of Chinese characters, we were able to examine the relative salience of specific lexical variables when this nonalphabetic script is read. Using a sample of native mainland Chinese speakers (N = 35), lexical decision latencies for 1560 single characters were collated into a database, before the effects of a comprehensive range of variables were explored. Hierarchical regression analyses determined the unique item-level variance explained by orthographic (frequency, stroke count), semantic (age of learning, imageability, number of meanings), and phonological (consistency, phonological frequency) factors. Orthographic and semantic variables, respectively, accounted for more collective variance than the phonological variables. Significant main effects were further observed for the individual orthographic and semantic predictors. These results are consistent with the idea that skilled readers tend to rely on orthographic and semantic information when processing visually presented characters. This megastudy approach marks an important extension to existing work on Chinese character recognition, which hitherto has relied on factorial designs. Collectively, the findings reported here represent a useful set of empirical constraints for future computational models of character recognition.

  7. Jersey number detection in sports video for athlete identification

    NASA Astrophysics Data System (ADS)

    Ye, Qixiang; Huang, Qingming; Jiang, Shuqiang; Liu, Yang; Gao, Wen

    2005-07-01

    Athlete identification is important for sport video content analysis since users often care about the video clips with their preferred athletes. In this paper, we propose a method for athlete identification by combing the segmentation, tracking and recognition procedures into a coarse-to-fine scheme for jersey number (digital characters on sport shirt) detection. Firstly, image segmentation is employed to separate the jersey number regions with its background. And size/pipe-like attributes of digital characters are used to filter out candidates. Then, a K-NN (K nearest neighbor) classifier is employed to classify a candidate into a digit in "0-9" or negative. In the recognition procedure, we use the Zernike moment features, which are invariant to rotation and scale for digital shape recognition. Synthetic training samples with different fonts are used to represent the pattern of digital characters with non-rigid deformation. Once a character candidate is detected, a SSD (smallest square distance)-based tracking procedure is started. The recognition procedure is performed every several frames in the tracking process. After tracking tens of frames, the overall recognition results are combined to determine if a candidate is a true jersey number or not by a voting procedure. Experiments on several types of sports video shows encouraging result.

  8. A maximally stable extremal region based scene text localization method

    NASA Astrophysics Data System (ADS)

    Xiao, Chengqiu; Ji, Lixin; Gao, Chao; Li, Shaomei

    2015-07-01

    Text localization in natural scene images is an important prerequisite for many content-based image analysis tasks. This paper proposes a novel text localization algorithm. Firstly, a fast pruning algorithm is designed to extract Maximally Stable Extremal Regions (MSER) as basic character candidates. Secondly, these candidates are filtered by using the properties of fitting ellipse and the distribution properties of characters to exclude most non-characters. Finally, a new extremal regions projection merging algorithm is designed to group character candidates into words. Experimental results show that the proposed method has an advantage in speed and achieve relatively high precision and recall rates than the latest published algorithms.

  9. Recognizing Chinese characters in digital ink from non-native language writers using hierarchical models

    NASA Astrophysics Data System (ADS)

    Bai, Hao; Zhang, Xi-wen

    2017-06-01

    While Chinese is learned as a second language, its characters are taught step by step from their strokes to components, radicals to components, and their complex relations. Chinese Characters in digital ink from non-native language writers are deformed seriously, thus the global recognition approaches are poorer. So a progressive approach from bottom to top is presented based on hierarchical models. Hierarchical information includes strokes and hierarchical components. Each Chinese character is modeled as a hierarchical tree. Strokes in one Chinese characters in digital ink are classified with Hidden Markov Models and concatenated to the stroke symbol sequence. And then the structure of components in one ink character is extracted. According to the extraction result and the stroke symbol sequence, candidate characters are traversed and scored. Finally, the recognition candidate results are listed by descending. The method of this paper is validated by testing 19815 copies of the handwriting Chinese characters written by foreign students.

  10. Holistic neural coding of Chinese character forms in bilateral ventral visual system.

    PubMed

    Mo, Ce; Yu, Mengxia; Seger, Carol; Mo, Lei

    2015-02-01

    How are Chinese characters recognized and represented in the brain of skilled readers? Functional MRI fast adaptation technique was used to address this question. We found that neural adaptation effects were limited to identical characters in bilateral ventral visual system while no activation reduction was observed for partially overlapping characters regardless of the spatial location of the shared sub-character components, suggesting highly selective neuronal tuning to whole characters. The consistent neural profile across the entire ventral visual cortex indicates that Chinese characters are represented as mutually distinctive wholes rather than combinations of sub-character components, which presents a salient contrast to the left-lateralized, simple-to-complex neural representations of alphabetic words. Our findings thus revealed the cultural modulation effect on both local neuronal activity patterns and functional anatomical regions associated with written symbol recognition. Moreover, the cross-language discrepancy in written symbol recognition mechanism might stem from the language-specific early-stage learning experience. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Digitization of Full-Text Documents Before Publishing on the Internet: A Case Study Reviewing the Latest Optical Character Recognition Technologies.

    ERIC Educational Resources Information Center

    McClean, Clare M.

    1998-01-01

    Reviews strengths and weaknesses of five optical character recognition (OCR) software packages used to digitize paper documents before publishing on the Internet. Outlines options available and stages of the conversion process. Describes the learning experience of Eurotext, a United Kingdom-based electronic libraries project (eLib). (PEN)

  12. Preliminary Study of the Effect of Incremental Rehearsal with a Morphological Component for Teaching Chinese Character Recognition

    ERIC Educational Resources Information Center

    Kwong, Elena; Burns, Matthew K.

    2016-01-01

    The current study examined the effectiveness of Incremental Rehearsal (IR) for teaching Chinese character recognition using a single-case experimental design. In addition, a morphological component was added to standard IR procedures (IRM) to take into account the role of morphological awareness in Chinese reading. Three kindergarten students in…

  13. Morphological Structure Processing during Word Recognition and Its Relationship to Character Reading among Third-Grade Chinese Children

    ERIC Educational Resources Information Center

    Liu, Duo; McBride-Chang, Catherine

    2014-01-01

    In the present study, we explored the characteristics of morphological structure processing during word recognition among third grade Chinese children and its possible relationship with Chinese character reading. By using the modified priming lexical decision paradigm, a significant morphological structure priming effect was found in the subject…

  14. A New Experiment on Bengali Character Recognition

    NASA Astrophysics Data System (ADS)

    Barman, Sumana; Bhattacharyya, Debnath; Jeon, Seung-Whan; Kim, Tai-Hoon; Kim, Haeng-Kon

    This paper presents a method to use View based approach in Bangla Optical Character Recognition (OCR) system providing reduced data set to the ANN classification engine rather than the traditional OCR methods. It describes how Bangla characters are processed, trained and then recognized with the use of a Backpropagation Artificial neural network. This is the first published account of using a segmentation-free optical character recognition system for Bangla using a view based approach. The methodology presented here assumes that the OCR pre-processor has presented the input images to the classification engine described here. The size and the font face used to render the characters are also significant in both training and classification. The images are first converted into greyscale and then to binary images; these images are then scaled to a fit a pre-determined area with a fixed but significant number of pixels. The feature vectors are then formed extracting the characteristics points, which in this case is simply a series of 0s and 1s of fixed length. Finally, an artificial neural network is chosen for the training and classification process.

  15. An Approach to a Comprehensive Test Framework for Analysis and Evaluation of Text Line Segmentation Algorithms

    PubMed Central

    Brodic, Darko; Milivojevic, Dragan R.; Milivojevic, Zoran N.

    2011-01-01

    The paper introduces a testing framework for the evaluation and validation of text line segmentation algorithms. Text line segmentation represents the key action for correct optical character recognition. Many of the tests for the evaluation of text line segmentation algorithms deal with text databases as reference templates. Because of the mismatch, the reliable testing framework is required. Hence, a new approach to a comprehensive experimental framework for the evaluation of text line segmentation algorithms is proposed. It consists of synthetic multi-like text samples and real handwritten text as well. Although the tests are mutually independent, the results are cross-linked. The proposed method can be used for different types of scripts and languages. Furthermore, two different procedures for the evaluation of algorithm efficiency based on the obtained error type classification are proposed. The first is based on the segmentation line error description, while the second one incorporates well-known signal detection theory. Each of them has different capabilities and convenience, but they can be used as supplements to make the evaluation process efficient. Overall the proposed procedure based on the segmentation line error description has some advantages, characterized by five measures that describe measurement procedures. PMID:22164106

  16. An approach to a comprehensive test framework for analysis and evaluation of text line segmentation algorithms.

    PubMed

    Brodic, Darko; Milivojevic, Dragan R; Milivojevic, Zoran N

    2011-01-01

    The paper introduces a testing framework for the evaluation and validation of text line segmentation algorithms. Text line segmentation represents the key action for correct optical character recognition. Many of the tests for the evaluation of text line segmentation algorithms deal with text databases as reference templates. Because of the mismatch, the reliable testing framework is required. Hence, a new approach to a comprehensive experimental framework for the evaluation of text line segmentation algorithms is proposed. It consists of synthetic multi-like text samples and real handwritten text as well. Although the tests are mutually independent, the results are cross-linked. The proposed method can be used for different types of scripts and languages. Furthermore, two different procedures for the evaluation of algorithm efficiency based on the obtained error type classification are proposed. The first is based on the segmentation line error description, while the second one incorporates well-known signal detection theory. Each of them has different capabilities and convenience, but they can be used as supplements to make the evaluation process efficient. Overall the proposed procedure based on the segmentation line error description has some advantages, characterized by five measures that describe measurement procedures.

  17. Nonlinear filtering for character recognition in low quality document images

    NASA Astrophysics Data System (ADS)

    Diaz-Escobar, Julia; Kober, Vitaly

    2014-09-01

    Optical character recognition in scanned printed documents is a well-studied task, where the captured conditions like sheet position, illumination, contrast and resolution are controlled. Nowadays, it is more practical to use mobile devices for document capture than a scanner. So as a consequence, the quality of document images is often poor owing to presence of geometric distortions, nonhomogeneous illumination, low resolution, etc. In this work we propose to use multiple adaptive nonlinear composite filters for detection and classification of characters. Computer simulation results obtained with the proposed system are presented and discussed.

  18. Radical Sensitivity Is the Key to Understanding Chinese Character Acquisition in Children

    ERIC Educational Resources Information Center

    Tong, Xiuhong; Tong, Xiuli; McBride, Catherine

    2017-01-01

    This study investigated Chinese children's development of sensitivity to positional (orthographic), phonological, and semantic cues of radicals in encoding novel Chinese characters. A newly designed picture-novel character mapping task, along with nonverbal reasoning ability, vocabulary, and Chinese character recognition were administered to 198…

  19. Digital signal processing algorithms for automatic voice recognition

    NASA Technical Reports Server (NTRS)

    Botros, Nazeih M.

    1987-01-01

    The current digital signal analysis algorithms are investigated that are implemented in automatic voice recognition algorithms. Automatic voice recognition means, the capability of a computer to recognize and interact with verbal commands. The digital signal is focused on, rather than the linguistic, analysis of speech signal. Several digital signal processing algorithms are available for voice recognition. Some of these algorithms are: Linear Predictive Coding (LPC), Short-time Fourier Analysis, and Cepstrum Analysis. Among these algorithms, the LPC is the most widely used. This algorithm has short execution time and do not require large memory storage. However, it has several limitations due to the assumptions used to develop it. The other 2 algorithms are frequency domain algorithms with not many assumptions, but they are not widely implemented or investigated. However, with the recent advances in the digital technology, namely signal processors, these 2 frequency domain algorithms may be investigated in order to implement them in voice recognition. This research is concerned with real time, microprocessor based recognition algorithms.

  20. The Impact of a Modified Repeated-Reading Strategy Paired with Optical Character Recognition on the Reading Rates of Students with Visual Impairments

    ERIC Educational Resources Information Center

    Pattillo, Suzan Trefry; Heller, Kathryn Wolf; Smith, Maureen

    2004-01-01

    The repeated-reading strategy and optical character recognition were paired to demonstrate a functional relationship between the combined strategies and two factors: the reading rates of students with visual impairments and the students' self-perceptions, or attitudes, toward reading. The results indicated that all five students increased their…

  1. The Compensatory Effectiveness of Optical Character Recognition/Speech Synthesis on Reading Comprehension of Postsecondary Students with Learning Disabilities.

    ERIC Educational Resources Information Center

    Higgins, Eleanor L.; Raskind, Marshall H.

    1997-01-01

    Thirty-seven college students with learning disabilities were given a reading comprehension task under the following conditions: (1) using an optical character recognition/speech synthesis system; (2) having the text read aloud by a human reader; or (3) reading silently without assistance. Findings indicated that the greater the disability, the…

  2. Native-Language Phonological Interference in Early Hakka-Mandarin Bilinguals' Visual Recognition of Chinese Two-Character Compounds: Evidence from the Semantic-Relatedness Decision Task

    ERIC Educational Resources Information Center

    Wu, Shiyu; Ma, Zheng

    2017-01-01

    Previous research has indicated that, in viewing a visual word, the activated phonological representation in turn activates its homophone, causing semantic interference. Using this mechanism of phonological mediation, this study investigated native-language phonological interference in visual recognition of Chinese two-character compounds by early…

  3. Hybrid neuro-fuzzy approach for automatic vehicle license plate recognition

    NASA Astrophysics Data System (ADS)

    Lee, Hsi-Chieh; Jong, Chung-Shi

    1998-03-01

    Most currently available vehicle identification systems use techniques such as R.F., microwave, or infrared to help identifying the vehicle. Transponders are usually installed in the vehicle in order to transmit the corresponding information to the sensory system. It is considered expensive to install a transponder in each vehicle and the malfunction of the transponder will result in the failure of the vehicle identification system. In this study, novel hybrid approach is proposed for automatic vehicle license plate recognition. A system prototype is built which can be used independently or cooperating with current vehicle identification system in identifying a vehicle. The prototype consists of four major modules including the module for license plate region identification, the module for character extraction from the license plate, the module for character recognition, and the module for the SimNet neuro-fuzzy system. To test the performance of the proposed system, three hundred and eighty vehicle image samples are taken by a digital camera. The license plate recognition success rate of the prototype is approximately 91% while the character recognition success rate of the prototype is approximately 97%.

  4. Document recognition serving people with disabilities

    NASA Astrophysics Data System (ADS)

    Fruchterman, James R.

    2007-01-01

    Document recognition advances have improved the lives of people with print disabilities, by providing accessible documents. This invited paper provides perspectives on the author's career progression from document recognition professional to social entrepreneur applying this technology to help people with disabilities. Starting with initial thoughts about optical character recognition in college, it continues with the creation of accurate omnifont character recognition that did not require training. It was difficult to make a reading machine for the blind in a commercial setting, which led to the creation of a nonprofit social enterprise to deliver these devices around the world. This network of people with disabilities scanning books drove the creation of Bookshare.org, an online library of scanned books. Looking forward, the needs for improved document recognition technology to further lower the barriers to reading are discussed. Document recognition professionals should be proud of the positive impact their work has had on some of society's most disadvantaged communities.

  5. Character recognition from trajectory by recurrent spiking neural networks.

    PubMed

    Jiangrong Shen; Kang Lin; Yueming Wang; Gang Pan

    2017-07-01

    Spiking neural networks are biologically plausible and power-efficient on neuromorphic hardware, while recurrent neural networks have been proven to be efficient on time series data. However, how to use the recurrent property to improve the performance of spiking neural networks is still a problem. This paper proposes a recurrent spiking neural network for character recognition using trajectories. In the network, a new encoding method is designed, in which varying time ranges of input streams are used in different recurrent layers. This is able to improve the generalization ability of our model compared with general encoding methods. The experiments are conducted on four groups of the character data set from University of Edinburgh. The results show that our method can achieve a higher average recognition accuracy than existing methods.

  6. Optical character recognition of camera-captured images based on phase features

    NASA Astrophysics Data System (ADS)

    Diaz-Escobar, Julia; Kober, Vitaly

    2015-09-01

    Nowadays most of digital information is obtained using mobile devices specially smartphones. In particular, it brings the opportunity for optical character recognition in camera-captured images. For this reason many recognition applications have been recently developed such as recognition of license plates, business cards, receipts and street signal; document classification, augmented reality, language translator and so on. Camera-captured images are usually affected by geometric distortions, nonuniform illumination, shadow, noise, which make difficult the recognition task with existing systems. It is well known that the Fourier phase contains a lot of important information regardless of the Fourier magnitude. So, in this work we propose a phase-based recognition system exploiting phase-congruency features for illumination/scale invariance. The performance of the proposed system is tested in terms of miss classifications and false alarms with the help of computer simulation.

  7. Arabic handwritten: pre-processing and segmentation

    NASA Astrophysics Data System (ADS)

    Maliki, Makki; Jassim, Sabah; Al-Jawad, Naseer; Sellahewa, Harin

    2012-06-01

    This paper is concerned with pre-processing and segmentation tasks that influence the performance of Optical Character Recognition (OCR) systems and handwritten/printed text recognition. In Arabic, these tasks are adversely effected by the fact that many words are made up of sub-words, with many sub-words there associated one or more diacritics that are not connected to the sub-word's body; there could be multiple instances of sub-words overlap. To overcome these problems we investigate and develop segmentation techniques that first segment a document into sub-words, link the diacritics with their sub-words, and removes possible overlapping between words and sub-words. We shall also investigate two approaches for pre-processing tasks to estimate sub-words baseline, and to determine parameters that yield appropriate slope correction, slant removal. We shall investigate the use of linear regression on sub-words pixels to determine their central x and y coordinates, as well as their high density part. We also develop a new incremental rotation procedure to be performed on sub-words that determines the best rotation angle needed to realign baselines. We shall demonstrate the benefits of these proposals by conducting extensive experiments on publicly available databases and in-house created databases. These algorithms help improve character segmentation accuracy by transforming handwritten Arabic text into a form that could benefit from analysis of printed text.

  8. Visual Field Differences in Visual Word Recognition Can Emerge Purely from Perceptual Learning: Evidence from Modeling Chinese Character Pronunciation

    ERIC Educational Resources Information Center

    Hsiao, Janet Hui-wen

    2011-01-01

    In Chinese orthography, a dominant character structure exists in which a semantic radical appears on the left and a phonetic radical on the right (SP characters); a minority opposite arrangement also exists (PS characters). As the number of phonetic radical types is much greater than semantic radical types, in SP characters the information is…

  9. A distinguishing method of printed and handwritten legal amount on Chinese bank check

    NASA Astrophysics Data System (ADS)

    Zhu, Ningbo; Lou, Zhen; Yang, Jingyu

    2003-09-01

    While carrying out Optical Chinese Character Recognition, distinguishing the font between printed and handwritten characters at the early phase is necessary, because there is so much difference between the methods on recognizing these two types of characters. In this paper, we proposed a good method on how to banish seals and its relative standards that can judge whether they should be banished. Meanwhile, an approach on clearing up scattered noise shivers after image segmentation is presented. Four sets of classifying features that show discrimination between printed and handwritten characters are well adopted. The proposed approach was applied to an automatic check processing system and tested on about 9031 checks. The recognition rate is more than 99.5%.

  10. Stress reaction process-based hierarchical recognition algorithm for continuous intrusion events in optical fiber prewarning system

    NASA Astrophysics Data System (ADS)

    Qu, Hongquan; Yuan, Shijiao; Wang, Yanping; Yang, Dan

    2018-04-01

    To improve the recognition performance of optical fiber prewarning system (OFPS), this study proposed a hierarchical recognition algorithm (HRA). Compared with traditional methods, which employ only a complex algorithm that includes multiple extracted features and complex classifiers to increase the recognition rate with a considerable decrease in recognition speed, HRA takes advantage of the continuity of intrusion events, thereby creating a staged recognition flow inspired by stress reaction. HRA is expected to achieve high-level recognition accuracy with less time consumption. First, this work analyzed the continuity of intrusion events and then presented the algorithm based on the mechanism of stress reaction. Finally, it verified the time consumption through theoretical analysis and experiments, and the recognition accuracy was obtained through experiments. Experiment results show that the processing speed of HRA is 3.3 times faster than that of a traditional complicated algorithm and has a similar recognition rate of 98%. The study is of great significance to fast intrusion event recognition in OFPS.

  11. A new pre-classification method based on associative matching method

    NASA Astrophysics Data System (ADS)

    Katsuyama, Yutaka; Minagawa, Akihiro; Hotta, Yoshinobu; Omachi, Shinichiro; Kato, Nei

    2010-01-01

    Reducing the time complexity of character matching is critical to the development of efficient Japanese Optical Character Recognition (OCR) systems. To shorten processing time, recognition is usually split into separate preclassification and recognition stages. For high overall recognition performance, the pre-classification stage must both have very high classification accuracy and return only a small number of putative character categories for further processing. Furthermore, for any practical system, the speed of the pre-classification stage is also critical. The associative matching (AM) method has often been used for fast pre-classification, because its use of a hash table and reliance solely on logical bit operations to select categories makes it highly efficient. However, redundant certain level of redundancy exists in the hash table because it is constructed using only the minimum and maximum values of the data on each axis and therefore does not take account of the distribution of the data. We propose a modified associative matching method that satisfies the performance criteria described above but in a fraction of the time by modifying the hash table to reflect the underlying distribution of training characters. Furthermore, we show that our approach outperforms pre-classification by clustering, ANN and conventional AM in terms of classification accuracy, discriminative power and speed. Compared to conventional associative matching, the proposed approach results in a 47% reduction in total processing time across an evaluation test set comprising 116,528 Japanese character images.

  12. Recognition of strong earthquake-prone areas with a single learning class

    NASA Astrophysics Data System (ADS)

    Gvishiani, A. D.; Agayan, S. M.; Dzeboev, B. A.; Belov, I. O.

    2017-05-01

    This article presents a new Barrier recognition algorithm with learning, designed for recognition of earthquake-prone areas. In comparison to the Crust (Kora) algorithm, used by the classical EPA approach, the Barrier algorithm proceeds with learning just on one "pure" high-seismic class. The new algorithm operates in the space of absolute values of the geological-geophysical parameters of the objects. The algorithm is used for recognition of earthquake-prone areas with M ≥ 6.0 in the Caucasus region. Comparative analysis of the Crust and Barrier algorithms justifies their productive coherence.

  13. U.S. Army Research Laboratory (ARL) Corporate Dari Document Transcription and Translation Guidelines

    DTIC Science & Technology

    2012-10-01

    text file format. 15. SUBJECT TERMS Transcription, Translation, guidelines, ground truth, Optical character recognition , OCR, Machine Translation, MT...foreign language into a target language in order to train, test, and evaluate optical character recognition (OCR) and machine translation (MT) embedded...graphic element and should not be transcribed. Elements that are not part of the primary text such as handwritten annotations or stamps should not be

  14. A method of neighbor classes based SVM classification for optical printed Chinese character recognition.

    PubMed

    Zhang, Jie; Wu, Xiaohong; Yu, Yanmei; Luo, Daisheng

    2013-01-01

    In optical printed Chinese character recognition (OPCCR), many classifiers have been proposed for the recognition. Among the classifiers, support vector machine (SVM) might be the best classifier. However, SVM is a classifier for two classes. When it is used for multi-classes in OPCCR, its computation is time-consuming. Thus, we propose a neighbor classes based SVM (NC-SVM) to reduce the computation consumption of SVM. Experiments of NC-SVM classification for OPCCR have been done. The results of the experiments have shown that the NC-SVM we proposed can effectively reduce the computation time in OPCCR.

  15. Handwritten character recognition using background analysis

    NASA Astrophysics Data System (ADS)

    Tascini, Guido; Puliti, Paolo; Zingaretti, Primo

    1993-04-01

    The paper describes a low-cost handwritten character recognizer. It is constituted by three modules: the `acquisition' module, the `binarization' module, and the `core' module. The core module can be logically partitioned into six steps: character dilation, character circumscription, region and `profile' analysis, `cut' analysis, decision tree descent, and result validation. Firstly, it reduces the resolution of the binarized regions and detects the minimum rectangle (MR) which encloses the character; the MR partitions the background into regions that surround the character or are enclosed by it, and allows it to define features as `profiles' and `cuts;' a `profile' is the set of vertical or horizontal minimum distances between a side of the MR and the character itself; a `cut' is a vertical or horizontal image segment delimited by the MR. Then, the core module classifies the character by descending along the decision tree on the basis of the analysis of regions around the character, in particular of the `profiles' and `cuts,' and without using context information. Finally, it recognizes the character or reactivates the core module by analyzing validation test results. The recognizer is largely insensible to character discontinuity and is able to detect Arabic numerals and English alphabet capital letters. The recognition rate of a 32 X 32 pixel character is of about 97% after the first iteration, and of over 98% after the second iteration.

  16. Approximate strip exchanging.

    PubMed

    Roy, Swapnoneel; Thakur, Ashok Kumar

    2008-01-01

    Genome rearrangements have been modelled by a variety of primitives such as reversals, transpositions, block moves and block interchanges. We consider such a genome rearrangement primitive Strip Exchanges. Given a permutation, the challenge is to sort it by using minimum number of strip exchanges. A strip exchanging move interchanges the positions of two chosen strips so that they merge with other strips. The strip exchange problem is to sort a permutation using minimum number of strip exchanges. We present here the first non-trivial 2-approximation algorithm to this problem. We also observe that sorting by strip-exchanges is fixed-parameter-tractable. Lastly we discuss the application of strip exchanges in a different area Optical Character Recognition (OCR) with an example.

  17. Multi-exemplar affinity propagation.

    PubMed

    Wang, Chang-Dong; Lai, Jian-Huang; Suen, Ching Y; Zhu, Jun-Yong

    2013-09-01

    The affinity propagation (AP) clustering algorithm has received much attention in the past few years. AP is appealing because it is efficient, insensitive to initialization, and it produces clusters at a lower error rate than other exemplar-based methods. However, its single-exemplar model becomes inadequate when applied to model multisubclasses in some situations such as scene analysis and character recognition. To remedy this deficiency, we have extended the single-exemplar model to a multi-exemplar one to create a new multi-exemplar affinity propagation (MEAP) algorithm. This new model automatically determines the number of exemplars in each cluster associated with a super exemplar to approximate the subclasses in the category. Solving the model is NP-hard and we tackle it with the max-sum belief propagation to produce neighborhood maximum clusters, with no need to specify beforehand the number of clusters, multi-exemplars, and superexemplars. Also, utilizing the sparsity in the data, we are able to reduce substantially the computational time and storage. Experimental studies have shown MEAP's significant improvements over other algorithms on unsupervised image categorization and the clustering of handwritten digits.

  18. On random field Completely Automated Public Turing Test to Tell Computers and Humans Apart generation.

    PubMed

    Kouritzin, Michael A; Newton, Fraser; Wu, Biao

    2013-04-01

    Herein, we propose generating CAPTCHAs through random field simulation and give a novel, effective and efficient algorithm to do so. Indeed, we demonstrate that sufficient information about word tests for easy human recognition is contained in the site marginal probabilities and the site-to-nearby-site covariances and that these quantities can be embedded directly into certain conditional probabilities, designed for effective simulation. The CAPTCHAs are then partial random realizations of the random CAPTCHA word. We start with an initial random field (e.g., randomly scattered letter pieces) and use Gibbs resampling to re-simulate portions of the field repeatedly using these conditional probabilities until the word becomes human-readable. The residual randomness from the initial random field together with the random implementation of the CAPTCHA word provide significant resistance to attack. This results in a CAPTCHA, which is unrecognizable to modern optical character recognition but is recognized about 95% of the time in a human readability study.

  19. Twelve automated thresholding methods for segmentation of PET images: a phantom study.

    PubMed

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M

    2012-06-21

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  20. Twelve automated thresholding methods for segmentation of PET images: a phantom study

    NASA Astrophysics Data System (ADS)

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M.

    2012-06-01

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  1. Developing Multimedia Supplementary Materials to Support Learning Beginning Level Chinese Characters

    ERIC Educational Resources Information Center

    Xu, Lisha

    2017-01-01

    Studies investigating beginner Chinese learners' character learning strategies found that learners considered orthographic knowledge the most useful factor (Ke, 1998; Shen, 2005). Orthographic recognition correlates with character identification and production and can be used by advanced learners to solve word identification problems (Everson,…

  2. A Survey on Sentiment Classification in Face Recognition

    NASA Astrophysics Data System (ADS)

    Qian, Jingyu

    2018-01-01

    Face recognition has been an important topic for both industry and academia for a long time. K-means clustering, autoencoder, and convolutional neural network, each representing a design idea for face recognition method, are three popular algorithms to deal with face recognition problems. It is worthwhile to summarize and compare these three different algorithms. This paper will focus on one specific face recognition problem-sentiment classification from images. Three different algorithms for sentiment classification problems will be summarized, including k-means clustering, autoencoder, and convolutional neural network. An experiment with the application of these algorithms on a specific dataset of human faces will be conducted to illustrate how these algorithms are applied and their accuracy. Finally, the three algorithms are compared based on the accuracy result.

  3. The effect of character contextual diversity on eye movements in Chinese sentence reading.

    PubMed

    Chen, Qingrong; Zhao, Guoxia; Huang, Xin; Yang, Yiming; Tanenhaus, Michael K

    2017-12-01

    Chen, Huang, et al. (Psychonomic Bulletin & Review, 2017) found that when reading two-character Chinese words embedded in sentence contexts, contextual diversity (CD), a measure of the proportion of texts in which a word appears, affected fixation times to words. When CD is controlled, however, frequency did not affect reading times. Two experiments used the same experimental designs to examine whether there are frequency effects of the first character of two-character words when CD is controlled. In Experiment 1, yoked triples of characters from a control group, a group matched for character CD that is lower in frequency, and a group matched in frequency with the control group, but higher in character CD, were rotated through the same sentence frame. In Experiment 2 each character from a larger set was embedded in a separate sentence frame, allowing for a larger difference in log frequency compared to Experiment 1 (0.8 and 0.4, respectively). In both experiments, early and later eye movement measures were significantly shorter for characters with higher CD than for characters with lower CD, with no effects of character frequency. These results place constraints on models of visual word recognition and suggest ways in which Chinese can be used to tease apart the nature of context effects in word recognition and language processing in general.

  4. Segmental Rescoring in Text Recognition

    DTIC Science & Technology

    2014-02-04

    description relates to rescoring text hypotheses in text recognition based on segmental features. Offline printed text and handwriting recognition (OHR) can... Handwriting , College Park, Md., 2006, which is incorporated by reference here. For the set of training images 202, a character modeler 208 receives

  5. Shape analysis modeling for character recognition

    NASA Astrophysics Data System (ADS)

    Khan, Nadeem A. M.; Hegt, Hans A.

    1998-10-01

    Optimal shape modeling of character-classes is crucial for achieving high performance on recognition of mixed-font, hand-written or (and) poor quality text. A novel scheme is presented in this regard focusing on constructing such structural models that can be hierarchically examined. These models utilize a certain `well-thought' set of shape primitives. They are simplified enough to ignore the inter- class variations in font-type or writing style yet retaining enough details for discrimination between the samples of the similar classes. Thus the number of models per class required can be kept minimal without sacrificing the recognition accuracy. In this connection a flexible multi- stage matching scheme exploiting the proposed modeling is also described. This leads to a system which is robust against various distortions and degradation including those related to cases of touching and broken characters. Finally, we present some examples and test results as a proof-of- concept demonstrating the validity and the robustness of the approach.

  6. DNA-Based Taxonomy in Ecologically Versatile Microalgae: A Re-Evaluation of the Species Concept within the Coccoid Green Algal Genus Coccomyxa (Trebouxiophyceae, Chlorophyta)

    PubMed Central

    Rindi, Fabio; Tempesta, Sabrina; Paoletti, Michela; Pasqualetti, Marcella

    2016-01-01

    Coccomyxa is a genus of unicellular green algae of the class Trebouxiophyceae, well known for its cosmopolitan distribution and great ecological amplitude. The taxonomy of this genus has long been problematic, due to reliance on badly-defined and environmentally variable morphological characters. In this study, based on the discovery of a new species from an extreme habitat, we reassess species circumscription in Coccomyxa, a unicellular genus of the class Trebouxiophyceae, using a combination of ecological and DNA sequence data (analyzed with three different methods of algorithmic species delineation). Our results are compared with those of a recent integrative study of Darienko and colleagues that reassessed the taxonomy of Coccomyxa, recognizing 7 species in the genus. Expanding the dataset from 43 to 61 sequences (SSU + ITS rDNA) resulted in a different delimitation, supporting the recognition of a higher number of species (24 to 27 depending on the analysis used, with the 27-species scenario receiving the strongest support). Among these, C. melkonianii sp. nov. is described from material isolated from a river highly polluted by heavy metals (Rio Irvi, Sardinia, Italy). Analyses performed on ecological characters detected a significant phylogenetic signal in six different characters. We conclude that the 27-species scenario is presently the most realistic for Coccomyxa and we suggest that well-supported lineages distinguishable by ecological preferences should be recognized as different species in this genus. We also recommend that for microbial lineages in which the overall diversity is unknown and taxon sampling is sparse, as is often the case for green microalgae, the results of analyses for algorithmic DNA-based species delimitation should be interpreted with extreme caution. PMID:27028195

  7. Writing affects the brain network of reading in Chinese: a functional magnetic resonance imaging study.

    PubMed

    Cao, Fan; Vu, Marianne; Chan, Derek Ho Lung; Lawrence, Jason M; Harris, Lindsay N; Guan, Qun; Xu, Yi; Perfetti, Charles A

    2013-07-01

    We examined the hypothesis that learning to write Chinese characters influences the brain's reading network for characters. Students from a college Chinese class learned 30 characters in a character-writing condition and 30 characters in a pinyin-writing condition. After learning, functional magnetic resonance imaging collected during passive viewing showed different networks for reading Chinese characters and English words, suggesting accommodation to the demands of the new writing system through short-term learning. Beyond these expected differences, we found specific effects of character writing in greater activation (relative to pinyin writing) in bilateral superior parietal lobules and bilateral lingual gyri in both a lexical decision and an implicit writing task. These findings suggest that character writing establishes a higher quality representation of the visual-spatial structure of the character and its orthography. We found a greater involvement of bilateral sensori-motor cortex (SMC) for character-writing trained characters than pinyin-writing trained characters in the lexical decision task, suggesting that learning by doing invokes greater interaction with sensori-motor information during character recognition. Furthermore, we found a correlation of recognition accuracy with activation in right superior parietal lobule, right lingual gyrus, and left SMC, suggesting that these areas support the facilitative effect character writing has on reading. Finally, consistent with previous behavioral studies, we found character-writing training facilitates connections with semantics by producing greater activation in bilateral middle temporal gyri, whereas pinyin-writing training facilitates connections with phonology by producing greater activation in right inferior frontal gyrus. Copyright © 2012 Wiley Periodicals, Inc.

  8. Handwritten digits recognition based on immune network

    NASA Astrophysics Data System (ADS)

    Li, Yangyang; Wu, Yunhui; Jiao, Lc; Wu, Jianshe

    2011-11-01

    With the development of society, handwritten digits recognition technique has been widely applied to production and daily life. It is a very difficult task to solve these problems in the field of pattern recognition. In this paper, a new method is presented for handwritten digit recognition. The digit samples firstly are processed and features extraction. Based on these features, a novel immune network classification algorithm is designed and implemented to the handwritten digits recognition. The proposed algorithm is developed by Jerne's immune network model for feature selection and KNN method for classification. Its characteristic is the novel network with parallel commutating and learning. The performance of the proposed method is experimented to the handwritten number datasets MNIST and compared with some other recognition algorithms-KNN, ANN and SVM algorithm. The result shows that the novel classification algorithm based on immune network gives promising performance and stable behavior for handwritten digits recognition.

  9. An Improved Iris Recognition Algorithm Based on Hybrid Feature and ELM

    NASA Astrophysics Data System (ADS)

    Wang, Juan

    2018-03-01

    The iris image is easily polluted by noise and uneven light. This paper proposed an improved extreme learning machine (ELM) based iris recognition algorithm with hybrid feature. 2D-Gabor filters and GLCM is employed to generate a multi-granularity hybrid feature vector. 2D-Gabor filter and GLCM feature work for capturing low-intermediate frequency and high frequency texture information, respectively. Finally, we utilize extreme learning machine for iris recognition. Experimental results reveal our proposed ELM based multi-granularity iris recognition algorithm (ELM-MGIR) has higher accuracy of 99.86%, and lower EER of 0.12% under the premise of real-time performance. The proposed ELM-MGIR algorithm outperforms other mainstream iris recognition algorithms.

  10. A Method of Neighbor Classes Based SVM Classification for Optical Printed Chinese Character Recognition

    PubMed Central

    Zhang, Jie; Wu, Xiaohong; Yu, Yanmei; Luo, Daisheng

    2013-01-01

    In optical printed Chinese character recognition (OPCCR), many classifiers have been proposed for the recognition. Among the classifiers, support vector machine (SVM) might be the best classifier. However, SVM is a classifier for two classes. When it is used for multi-classes in OPCCR, its computation is time-consuming. Thus, we propose a neighbor classes based SVM (NC-SVM) to reduce the computation consumption of SVM. Experiments of NC-SVM classification for OPCCR have been done. The results of the experiments have shown that the NC-SVM we proposed can effectively reduce the computation time in OPCCR. PMID:23536777

  11. Neural Network and Letter Recognition.

    NASA Astrophysics Data System (ADS)

    Lee, Hue Yeon

    Neural net architectures and learning algorithms that recognize hand written 36 alphanumeric characters are studied. The thin line input patterns written in 32 x 32 binary array are used. The system is comprised of two major components, viz. a preprocessing unit and a Recognition unit. The preprocessing unit in turn consists of three layers of neurons; the U-layer, the V-layer, and the C -layer. The functions of the U-layer is to extract local features by template matching. The correlation between the detected local features are considered. Through correlating neurons in a plane with their neighboring neurons, the V-layer would thicken the on-cells or lines that are groups of on-cells of the previous layer. These two correlations would yield some deformation tolerance and some of the rotational tolerance of the system. The C-layer then compresses data through the 'Gabor' transform. Pattern dependent choice of center and wavelengths of 'Gabor' filters is the cause of shift and scale tolerance of the system. Three different learning schemes had been investigated in the recognition unit, namely; the error back propagation learning with hidden units, a simple perceptron learning, and a competitive learning. Their performances were analyzed and compared. Since sometimes the network fails to distinguish between two letters that are inherently similar, additional ambiguity resolving neural nets are introduced on top of the above main neural net. The two dimensional Fourier transform is used as the preprocessing and the perceptron is used as the recognition unit of the ambiguity resolver. One hundred different person's handwriting sets are collected. Some of these are used as the training sets and the remainders are used as the test sets. The correct recognition rate of the system increases with the number of training sets and eventually saturates at a certain value. Similar recognition rates are obtained for the above three different learning algorithms. The minimum error rate, 4.9% is achieved for alphanumeric sets when 50 sets are trained. With the ambiguity resolver, it is reduced to 2.5%. In case that only numeral sets are trained and tested, 2.0% error rate is achieved. When only alphabet sets are considered, the error rate is reduced to 1.1%.

  12. Robust wafer identification recognition based on asterisk-shape filter and high-low score comparison method.

    PubMed

    Hsu, Wei-Chih; Yu, Tsan-Ying; Chen, Kuan-Liang

    2009-12-10

    Wafer identifications (wafer ID) can be used to identify wafers from each other so that wafer processing can be traced easily. Wafer ID recognition is one of the problems of optical character recognition. The process to recognize wafer IDs is similar to that used in recognizing car license-plate characters. However, due to some unique characteristics, such as the irregular space between two characters and the unsuccessive strokes of wafer ID, it will not get a good result to recognize wafer ID by directly utilizing the approaches used in car license-plate character recognition. Wafer ID scratches are engraved by a laser scribe almost along the following four fixed directions: horizontal, vertical, plus 45 degrees , and minus 45 degrees orientations. The closer to the center line of a wafer ID scratch, the higher the gray level will be. These and other characteristics increase the difficulty to recognize the wafer ID. In this paper a wafer ID recognition scheme based on an asterisk-shape filter and a high-low score comparison method is proposed to cope with the serious influence of uneven luminance and make recognition more efficiently. Our proposed approach consists of some processing stages. Especially in the final recognition stage, a template-matching method combined with stroke analysis is used as a recognizing scheme. This is because wafer IDs are composed of Semiconductor Equipment and Materials International (SEMI) standard Arabic numbers and English alphabets, and thus the template ID images are easy to obtain. Furthermore, compared with the approach that requires prior training, such as a support vector machine, which often needs a large amount of training image samples, no prior training is required for our approach. The testing results show that our proposed scheme can efficiently and correctly segment out and recognize the wafer ID with high performance.

  13. The activation of segmental and tonal information in visual word recognition.

    PubMed

    Li, Chuchu; Lin, Candise Y; Wang, Min; Jiang, Nan

    2013-08-01

    Mandarin Chinese has a logographic script in which graphemes map onto syllables and morphemes. It is not clear whether Chinese readers activate phonological information during lexical access, although phonological information is not explicitly represented in Chinese orthography. In the present study, we examined the activation of phonological information, including segmental and tonal information in Chinese visual word recognition, using the Stroop paradigm. Native Mandarin speakers named the presentation color of Chinese characters in Mandarin. The visual stimuli were divided into five types: color characters (e.g., , hong2, "red"), homophones of the color characters (S+T+; e.g., , hong2, "flood"), different-tone homophones (S+T-; e.g., , hong1, "boom"), characters that shared the same tone but differed in segments with the color characters (S-T+; e.g., , ping2, "bottle"), and neutral characters (S-T-; e.g., , qian1, "leading through"). Classic Stroop facilitation was shown in all color-congruent trials, and interference was shown in the incongruent trials. Furthermore, the Stroop effect was stronger for S+T- than for S-T+ trials, and was similar between S+T+ and S+T- trials. These findings suggested that both tonal and segmental forms of information play roles in lexical constraints; however, segmental information has more weight than tonal information. We proposed a revised visual word recognition model in which the functions of both segmental and suprasegmental types of information and their relative weights are taken into account.

  14. Benchmark for license plate character segmentation

    NASA Astrophysics Data System (ADS)

    Gonçalves, Gabriel Resende; da Silva, Sirlene Pio Gomes; Menotti, David; Shwartz, William Robson

    2016-09-01

    Automatic license plate recognition (ALPR) has been the focus of many researches in the past years. In general, ALPR is divided into the following problems: detection of on-track vehicles, license plate detection, segmentation of license plate characters, and optical character recognition (OCR). Even though commercial solutions are available for controlled acquisition conditions, e.g., the entrance of a parking lot, ALPR is still an open problem when dealing with data acquired from uncontrolled environments, such as roads and highways when relying only on imaging sensors. Due to the multiple orientations and scales of the license plates captured by the camera, a very challenging task of the ALPR is the license plate character segmentation (LPCS) step, because its effectiveness is required to be (near) optimal to achieve a high recognition rate by the OCR. To tackle the LPCS problem, this work proposes a benchmark composed of a dataset designed to focus specifically on the character segmentation step of the ALPR within an evaluation protocol. Furthermore, we propose the Jaccard-centroid coefficient, an evaluation measure more suitable than the Jaccard coefficient regarding the location of the bounding box within the ground-truth annotation. The dataset is composed of 2000 Brazilian license plates consisting of 14000 alphanumeric symbols and their corresponding bounding box annotations. We also present a straightforward approach to perform LPCS efficiently. Finally, we provide an experimental evaluation for the dataset based on five LPCS approaches and demonstrate the importance of character segmentation for achieving an accurate OCR.

  15. Performance evaluation of MLP and RBF feed forward neural network for the recognition of off-line handwritten characters

    NASA Astrophysics Data System (ADS)

    Rishi, Rahul; Choudhary, Amit; Singh, Ravinder; Dhaka, Vijaypal Singh; Ahlawat, Savita; Rao, Mukta

    2010-02-01

    In this paper we propose a system for classification problem of handwritten text. The system is composed of preprocessing module, supervised learning module and recognition module on a very broad level. The preprocessing module digitizes the documents and extracts features (tangent values) for each character. The radial basis function network is used in the learning and recognition modules. The objective is to analyze and improve the performance of Multi Layer Perceptron (MLP) using RBF transfer functions over Logarithmic Sigmoid Function. The results of 35 experiments indicate that the Feed Forward MLP performs accurately and exhaustively with RBF. With the change in weight update mechanism and feature-drawn preprocessing module, the proposed system is competent with good recognition show.

  16. The Effects of Graphic Similarity on Japanese Recognition of Simplified Chinese Characters

    ERIC Educational Resources Information Center

    Teng, Xiaochun; Yamada, Jun

    2017-01-01

    The pedagogical and theoretical questions addressed in this study relate to the extent to which native Japanese readers with little or no knowledge of Chinese characters recognize Chinese characters that are viewed as abbreviations of the kanji they already know. Three graphic similarity functions (i.e., an orthographically acceptable similarity,…

  17. Interspecific aggression, not interspecific mating, drives character displacement in the wing coloration of male rubyspot damselflies (Hetaerina)

    PubMed Central

    Drury, J. P.; Grether, G. F.

    2014-01-01

    Traits that mediate intraspecific social interactions may overlap in closely related sympatric species, resulting in costly between-species interactions. Such interactions have principally interested investigators studying the evolution of reproductive isolation via reproductive character displacement (RCD) or reinforcement, yet in addition to reproductive interference, interspecific trait overlap can lead to costly between-species aggression. Previous research on rubyspot damselflies (Hetaerina spp.) demonstrated that sympatric shifts in male wing colour patterns and competitor recognition reduce interspecific aggression, supporting the hypothesis that agonistic character displacement (ACD) drove trait shifts. However, a recent theoretical model shows that RCD overshadows ACD if the same male trait is used for both female mate recognition and male competitor recognition. To determine whether female mate recognition is based on male wing coloration in Hetaerina, we conducted a phenotype manipulation experiment. Compared to control males, male H. americana with wings manipulated to resemble a sympatric congener (H. titia) suffered no reduction in mating success. Thus, female mate recognition is not based on species differences in male wing coloration. Experimental males did, however, experience higher interspecific fighting rates and reduced survival compared to controls. These results greatly strengthen the case for ACD and highlight the mechanistic distinction between ACD and RCD. PMID:25339724

  18. Human activity recognition based on feature selection in smart home using back-propagation algorithm.

    PubMed

    Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei

    2014-09-01

    In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Fast title extraction method for business documents

    NASA Astrophysics Data System (ADS)

    Katsuyama, Yutaka; Naoi, Satoshi

    1997-04-01

    Conventional electronic document filing systems are inconvenient because the user must specify the keywords in each document for later searches. To solve this problem, automatic keyword extraction methods using natural language processing and character recognition have been developed. However, these methods are slow, especially for japanese documents. To develop a practical electronic document filing system, we focused on the extraction of keyword areas from a document by image processing. Our fast title extraction method can automatically extract titles as keywords from business documents. All character strings are evaluated for similarity by rating points associated with title similarity. We classified these points as four items: character sitting size, position of character strings, relative position among character strings, and string attribution. Finally, the character string that has the highest rating is selected as the title area. The character recognition process is carried out on the selected area. It is fast because this process must recognize a small number of patterns in the restricted area only, and not throughout the entire document. The mean performance of this method is an accuracy of about 91 percent and a 1.8 sec. processing time for an examination of 100 Japanese business documents.

  20. The Pandora multi-algorithm approach to automated pattern recognition in LAr TPC detectors

    NASA Astrophysics Data System (ADS)

    Marshall, J. S.; Blake, A. S. T.; Thomson, M. A.; Escudero, L.; de Vries, J.; Weston, J.; MicroBooNE Collaboration

    2017-09-01

    The development and operation of Liquid Argon Time Projection Chambers (LAr TPCs) for neutrino physics has created a need for new approaches to pattern recognition, in order to fully exploit the superb imaging capabilities offered by this technology. The Pandora Software Development Kit provides functionality to aid the process of designing, implementing and running pattern recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition: individual algorithms each address a specific task in a particular topology; a series of many tens of algorithms then carefully builds-up a picture of the event. The input to the Pandora pattern recognition is a list of 2D Hits. The output from the chain of over 70 algorithms is a hierarchy of reconstructed 3D Particles, each with an identified particle type, vertex and direction.

  1. Defect Localization Capabilities of a Global Detection Scheme: Spatial Pattern Recognition Using Full-field Vibration Test Data in Plates

    NASA Technical Reports Server (NTRS)

    Saleeb, A. F.; Prabhu, M.; Arnold, S. M. (Technical Monitor)

    2002-01-01

    Recently, a conceptually simple approach, based on the notion of defect energy in material space has been developed and extensively studied (from the theoretical and computational standpoints). The present study focuses on its evaluation from the viewpoint of damage localization capabilities in case of two-dimensional plates; i.e., spatial pattern recognition on surfaces. To this end, two different experimental modal test results are utilized; i.e., (1) conventional modal testing using (white noise) excitation and accelerometer-type sensors and (2) pattern recognition using Electronic speckle pattern interferometry (ESPI), a full field method capable of analyzing the mechanical vibration of complex structures. Unlike the conventional modal testing technique (using contacting accelerometers), these emerging ESPI technologies operate in a non-contacting mode, can be used even under hazardous conditions with minimal or no presence of noise and can simultaneously provide measurements for both translations and rotations. Results obtained have clearly demonstrated the robustness and versatility of the global NDE scheme developed. The vectorial character of the indices used, which enabled the extraction of distinct patterns for localizing damages proved very useful. In the context of the targeted pattern recognition paradigm, two algorithms were developed for the interrogation of test measurements; i.e., intensity contour maps for the damaged index, and the associated defect energy vector field plots.

  2. 3D abnormal behavior recognition in power generation

    NASA Astrophysics Data System (ADS)

    Wei, Zhenhua; Li, Xuesen; Su, Jie; Lin, Jie

    2011-06-01

    So far most research of human behavior recognition focus on simple individual behavior, such as wave, crouch, jump and bend. This paper will focus on abnormal behavior with objects carrying in power generation. Such as using mobile communication device in main control room, taking helmet off during working and lying down in high place. Taking account of the color and shape are fixed, we adopted edge detecting by color tracking to recognize object in worker. This paper introduces a method, which using geometric character of skeleton and its angle to express sequence of three-dimensional human behavior data. Then adopting Semi-join critical step Hidden Markov Model, weighing probability of critical steps' output to reduce the computational complexity. Training model for every behavior, mean while select some skeleton frames from 3D behavior sample to form a critical step set. This set is a bridge linking 2D observation behavior with 3D human joints feature. The 3D reconstruction is not required during the 2D behavior recognition phase. In the beginning of recognition progress, finding the best match for every frame of 2D observed sample in 3D skeleton set. After that, 2D observed skeleton frames sample will be identified as a specifically 3D behavior by behavior-classifier. The effectiveness of the proposed algorithm is demonstrated with experiments in similar power generation environment.

  3. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; Jan de Vries, J.; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Rudolf von Rohr, C.; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2018-01-01

    The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.

  4. Integrative Lifecourse and Genetic Analysis of Military Working Dogs

    DTIC Science & Technology

    2012-10-01

    Recognition), ICR (Intelligent Character Recognition) and HWR ( Handwriting Recognition). A number of various software packages were evaluated and we have...the third-party software is able to recognize check-boxes and columns and do a reasonable job with handwriting – which is does. This workflow will

  5. On grey levels in random CAPTCHA generation

    NASA Astrophysics Data System (ADS)

    Newton, Fraser; Kouritzin, Michael A.

    2011-06-01

    A CAPTCHA is an automatically generated test designed to distinguish between humans and computer programs; specifically, they are designed to be easy for humans but difficult for computer programs to pass in order to prevent the abuse of resources by automated bots. They are commonly seen guarding webmail registration forms, online auction sites, and preventing brute force attacks on passwords. In the following, we address the question: How does adding a grey level to random CAPTCHA generation affect the utility of the CAPTCHA? We treat the problem of generating the random CAPTCHA as one of random field simulation: An initial state of background noise is evolved over time using Gibbs sampling and an efficient algorithm for generating correlated random variables. This approach has already been found to yield highly-readable yet difficult-to-crack CAPTCHAs. We detail how the requisite parameters for introducing grey levels are estimated and how we generate the random CAPTCHA. The resulting CAPTCHA will be evaluated in terms of human readability as well as its resistance to automated attacks in the forms of character segmentation and optical character recognition.

  6. Correlating Petrophysical Well Logs Using Fractal-based Analysis to Identify Changes in the Signal Complexity Across Neutron, Density, Dipole Sonic, and Gamma Ray Tool Types

    NASA Astrophysics Data System (ADS)

    Matthews, L.; Gurrola, H.

    2015-12-01

    Typical petrophysical well log correlation is accomplished by manual pattern recognition leading to subjective correlations. The change in character in a well log is dependent upon the change in the response of the tool to lithology. The petrophysical interpreter looks for a change in one log type that would correspond to the way a different tool responds to the same lithology. To develop an objective way to pick changes in well log characteristics, we adapt a method of first arrival picking used in seismic data to analyze changes in the character of well logs. We chose to use the fractal method developed by Boschetti et al[1] (1996). This method worked better than we expected and we found similar changes in the fractal dimension across very different tool types (sonic vs density vs gamma ray). We reason the fractal response of the log is not dependent on the physics of the tool response but rather the change in the complexity of the log data. When a formation changes physical character in time or space the recorded magnitude in tool data changes complexity at the same time even if the original tool response is very different. The relative complexity of the data regardless of the tool used is dependent upon the complexity of the medium relative to tool measurement. The relative complexity of the recorded magnitude data changes as a tool transitions from one character type to another. The character we are measuring is the roughness or complexity of the petrophysical curve. Our method provides a way to directly compare different log types based on a quantitative change in signal complexity. For example, using changes in data complexity allow us to correlate gamma ray suites with sonic logs within a well and then across to an adjacent well with similar signatures. Our method creates reliable and automatic correlations to be made in data sets beyond the reasonable cognitive limits of geoscientists in both speed and consistent pattern recognition. [1] Fabio Boschetti, Mike D. Dentith, and Ron D. List, (1996). A fractal-based algorithm for detecting first arrivals on seismic traces. Geophysics, Vol.61, No.4, P. 1095-1102.

  7. Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns.

    PubMed

    Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2013-01-01

    A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.

  8. Precise-Spike-Driven Synaptic Plasticity: Learning Hetero-Association of Spatiotemporal Spike Patterns

    PubMed Central

    Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2013-01-01

    A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe. PMID:24223789

  9. Using Singular Value Decomposition to Investigate Degraded Chinese Character Recognition: Evidence from Eye Movements during Reading

    ERIC Educational Resources Information Center

    Wang, Hsueh-Cheng; Schotter, Elizabeth R.; Angele, Bernhard; Yang, Jinmian; Simovici, Dan; Pomplun, Marc; Rayner, Keith

    2013-01-01

    Previous research indicates that removing initial strokes from Chinese characters makes them harder to read than removing final or internal ones. In the present study, we examined the contribution of important components to character configuration via singular value decomposition. The results indicated that when the least important segments, which…

  10. Optimizing the Learning Order of Chinese Characters Using a Novel Topological Sort Algorithm

    PubMed Central

    Wang, Jinzhao

    2016-01-01

    We present a novel algorithm for optimizing the order in which Chinese characters are learned, one that incorporates the benefits of learning them in order of usage frequency and in order of their hierarchal structural relationships. We show that our work outperforms previously published orders and algorithms. Our algorithm is applicable to any scheduling task where nodes have intrinsic differences in importance and must be visited in topological order. PMID:27706234

  11. A GPU-paralleled implementation of an enhanced face recognition algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Liu, Xiyang; Shao, Shuai; Zan, Jiguo

    2013-03-01

    Face recognition algorithm based on compressed sensing and sparse representation is hotly argued in these years. The scheme of this algorithm increases recognition rate as well as anti-noise capability. However, the computational cost is expensive and has become a main restricting factor for real world applications. In this paper, we introduce a GPU-accelerated hybrid variant of face recognition algorithm named parallel face recognition algorithm (pFRA). We describe here how to carry out parallel optimization design to take full advantage of many-core structure of a GPU. The pFRA is tested and compared with several other implementations under different data sample size. Finally, Our pFRA, implemented with NVIDIA GPU and Computer Unified Device Architecture (CUDA) programming model, achieves a significant speedup over the traditional CPU implementations.

  12. Pattern recognition technique

    NASA Technical Reports Server (NTRS)

    Hong, J. P.

    1971-01-01

    Technique operates regardless of pattern rotation, translation or magnification and successfully detects out-of-register patterns. It improves accuracy and reduces cost of various optical character recognition devices and page readers and provides data input to computer.

  13. Selecting a restoration technique to minimize OCR error.

    PubMed

    Cannon, M; Fugate, M; Hush, D R; Scovel, C

    2003-01-01

    This paper introduces a learning problem related to the task of converting printed documents to ASCII text files. The goal of the learning procedure is to produce a function that maps documents to restoration techniques in such a way that on average the restored documents have minimum optical character recognition error. We derive a general form for the optimal function and use it to motivate the development of a nonparametric method based on nearest neighbors. We also develop a direct method of solution based on empirical error minimization for which we prove a finite sample bound on estimation error that is independent of distribution. We show that this empirical error minimization problem is an extension of the empirical optimization problem for traditional M-class classification with general loss function and prove computational hardness for this problem. We then derive a simple iterative algorithm called generalized multiclass ratchet (GMR) and prove that it produces an optimal function asymptotically (with probability 1). To obtain the GMR algorithm we introduce a new data map that extends Kesler's construction for the multiclass problem and then apply an algorithm called Ratchet to this mapped data, where Ratchet is a modification of the Pocket algorithm . Finally, we apply these methods to a collection of documents and report on the experimental results.

  14. Spatiotemporal Pixelization to Increase the Recognition Score of Characters for Retinal Prostheses

    PubMed Central

    Kim, Hyun Seok; Park, Kwang Suk

    2017-01-01

    Most of the retinal prostheses use a head-fixed camera and a video processing unit. Some studies proposed various image processing methods to improve visual perception for patients. However, previous studies only focused on using spatial information. The present study proposes a spatiotemporal pixelization method mimicking fixational eye movements to generate stimulation images for artificial retina arrays by combining spatial and temporal information. Input images were sampled with a resolution that was four times higher than the number of pixel arrays. We subsampled this image and generated four different phosphene images. We then evaluated the recognition scores of characters by sequentially presenting phosphene images with varying pixel array sizes (6 × 6, 8 × 8 and 10 × 10) and stimulus frame rates (10 Hz, 15 Hz, 20 Hz, 30 Hz, and 60 Hz). The proposed method showed the highest recognition score at a stimulus frame rate of approximately 20 Hz. The method also significantly improved the recognition score for complex characters. This method provides a new way to increase practical resolution over restricted spatial resolution by merging the higher resolution image into high-frame time slots. PMID:29073735

  15. Target recognition of ladar range images using slice image: comparison of four improved algorithms

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Cao, Jingya; Wang, Liang; Zhai, Yu; Cheng, Yang

    2017-07-01

    Compared with traditional 3-D shape data, ladar range images possess properties of strong noise, shape degeneracy, and sparsity, which make feature extraction and representation difficult. The slice image is an effective feature descriptor to resolve this problem. We propose four improved algorithms on target recognition of ladar range images using slice image. In order to improve resolution invariance of the slice image, mean value detection instead of maximum value detection is applied in these four improved algorithms. In order to improve rotation invariance of the slice image, three new improved feature descriptors-which are feature slice image, slice-Zernike moments, and slice-Fourier moments-are applied to the last three improved algorithms, respectively. Backpropagation neural networks are used as feature classifiers in the last two improved algorithms. The performance of these four improved recognition systems is analyzed comprehensively in the aspects of the three invariances, recognition rate, and execution time. The final experiment results show that the improvements for these four algorithms reach the desired effect, the three invariances of feature descriptors are not directly related to the final recognition performance of recognition systems, and these four improved recognition systems have different performances under different conditions.

  16. A comparison of algorithms for inference and learning in probabilistic graphical models.

    PubMed

    Frey, Brendan J; Jojic, Nebojsa

    2005-09-01

    Research into methods for reasoning under uncertainty is currently one of the most exciting areas of artificial intelligence, largely because it has recently become possible to record, store, and process large amounts of data. While impressive achievements have been made in pattern classification problems such as handwritten character recognition, face detection, speaker identification, and prediction of gene function, it is even more exciting that researchers are on the verge of introducing systems that can perform large-scale combinatorial analyses of data, decomposing the data into interacting components. For example, computational methods for automatic scene analysis are now emerging in the computer vision community. These methods decompose an input image into its constituent objects, lighting conditions, motion patterns, etc. Two of the main challenges are finding effective representations and models in specific applications and finding efficient algorithms for inference and learning in these models. In this paper, we advocate the use of graph-based probability models and their associated inference and learning algorithms. We review exact techniques and various approximate, computationally efficient techniques, including iterated conditional modes, the expectation maximization (EM) algorithm, Gibbs sampling, the mean field method, variational techniques, structured variational techniques and the sum-product algorithm ("loopy" belief propagation). We describe how each technique can be applied in a vision model of multiple, occluding objects and contrast the behaviors and performances of the techniques using a unifying cost function, free energy.

  17. Optimized design of embedded DSP system hardware supporting complex algorithms

    NASA Astrophysics Data System (ADS)

    Li, Yanhua; Wang, Xiangjun; Zhou, Xinling

    2003-09-01

    The paper presents an optimized design method for a flexible and economical embedded DSP system that can implement complex processing algorithms as biometric recognition, real-time image processing, etc. It consists of a floating-point DSP, 512 Kbytes data RAM, 1 Mbytes FLASH program memory, a CPLD for achieving flexible logic control of input channel and a RS-485 transceiver for local network communication. Because of employing a high performance-price ratio DSP TMS320C6712 and a large FLASH in the design, this system permits loading and performing complex algorithms with little algorithm optimization and code reduction. The CPLD provides flexible logic control for the whole DSP board, especially in input channel, and allows convenient interface between different sensors and DSP system. The transceiver circuit can transfer data between DSP and host computer. In the paper, some key technologies are also introduced which make the whole system work efficiently. Because of the characters referred above, the hardware is a perfect flat for multi-channel data collection, image processing, and other signal processing with high performance and adaptability. The application section of this paper presents how this hardware is adapted for the biometric identification system with high identification precision. The result reveals that this hardware is easy to interface with a CMOS imager and is capable of carrying out complex biometric identification algorithms, which require real-time process.

  18. reCAPTCHA: human-based character recognition via Web security measures.

    PubMed

    von Ahn, Luis; Maurer, Benjamin; McMillen, Colin; Abraham, David; Blum, Manuel

    2008-09-12

    CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart) are widespread security measures on the World Wide Web that prevent automated programs from abusing online services. They do so by asking humans to perform a task that computers cannot yet perform, such as deciphering distorted characters. Our research explored whether such human effort can be channeled into a useful purpose: helping to digitize old printed material by asking users to decipher scanned words from books that computerized optical character recognition failed to recognize. We showed that this method can transcribe text with a word accuracy exceeding 99%, matching the guarantee of professional human transcribers. Our apparatus is deployed in more than 40,000 Web sites and has transcribed over 440 million words.

  19. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  20. The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2018-01-29

    The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less

  1. Binarization algorithm for document image with complex background

    NASA Astrophysics Data System (ADS)

    Miao, Shaojun; Lu, Tongwei; Min, Feng

    2015-12-01

    The most important step in image preprocessing for Optical Character Recognition (OCR) is binarization. Due to the complex background or varying light in the text image, binarization is a very difficult problem. This paper presents the improved binarization algorithm. The algorithm can be divided into several steps. First, the background approximation can be obtained by the polynomial fitting, and the text is sharpened by using bilateral filter. Second, the image contrast compensation is done to reduce the impact of light and improve contrast of the original image. Third, the first derivative of the pixels in the compensated image are calculated to get the average value of the threshold, then the edge detection is obtained. Fourth, the stroke width of the text is estimated through a measuring of distance between edge pixels. The final stroke width is determined by choosing the most frequent distance in the histogram. Fifth, according to the value of the final stroke width, the window size is calculated, then a local threshold estimation approach can begin to binaries the image. Finally, the small noise is removed based on the morphological operators. The experimental result shows that the proposed method can effectively remove the noise caused by complex background and varying light.

  2. Cost-Effective CNC Part Program Verification Development for Laboratory Instruction.

    ERIC Educational Resources Information Center

    Chen, Joseph C.; Chang, Ted C.

    2000-01-01

    Describes a computer numerical control program verification system that checks a part program before its execution. The system includes character recognition, word recognition, a fuzzy-nets system, and a tool path viewer. (SK)

  3. Score-Level Fusion of Phase-Based and Feature-Based Fingerprint Matching Algorithms

    NASA Astrophysics Data System (ADS)

    Ito, Koichi; Morita, Ayumi; Aoki, Takafumi; Nakajima, Hiroshi; Kobayashi, Koji; Higuchi, Tatsuo

    This paper proposes an efficient fingerprint recognition algorithm combining phase-based image matching and feature-based matching. In our previous work, we have already proposed an efficient fingerprint recognition algorithm using Phase-Only Correlation (POC), and developed commercial fingerprint verification units for access control applications. The use of Fourier phase information of fingerprint images makes it possible to achieve robust recognition for weakly impressed, low-quality fingerprint images. This paper presents an idea of improving the performance of POC-based fingerprint matching by combining it with feature-based matching, where feature-based matching is introduced in order to improve recognition efficiency for images with nonlinear distortion. Experimental evaluation using two different types of fingerprint image databases demonstrates efficient recognition performance of the combination of the POC-based algorithm and the feature-based algorithm.

  4. File text security using Hybrid Cryptosystem with Playfair Cipher Algorithm and Knapsack Naccache-Stern Algorithm

    NASA Astrophysics Data System (ADS)

    Amalia; Budiman, M. A.; Sitepu, R.

    2018-03-01

    Cryptography is one of the best methods to keep the information safe from security attack by unauthorized people. At present, Many studies had been done by previous researchers to generate a more robust cryptographic algorithm to provide high security for data communication. To strengthen data security, one of the methods is hybrid cryptosystem method that combined symmetric and asymmetric algorithm. In this study, we observed a hybrid cryptosystem method contain Modification Playfair Cipher 16x16 algorithm as a symmetric algorithm and Knapsack Naccache-Stern as an asymmetric algorithm. We observe a running time of this hybrid algorithm with some of the various experiments. We tried different amount of characters to be tested which are 10, 100, 1000, 10000 and 100000 characters and we also examined the algorithm with various key’s length which are 10, 20, 30, 40 of key length. The result of our study shows that the processing time for encryption and decryption process each algorithm is linearly proportional, it means the longer messages character then, the more significant times needed to encrypt and decrypt the messages. The encryption running time of Knapsack Naccache-Stern algorithm takes a longer time than its decryption, while the encryption running time of modification Playfair Cipher 16x16 algorithm takes less time than its decryption.

  5. Giro form reading machine

    NASA Astrophysics Data System (ADS)

    Minh Ha, Thien; Niggeler, Dieter; Bunke, Horst; Clarinval, Jose

    1995-08-01

    Although giro forms are used by many people in daily life for money remittance in Switzerland, the processing of these forms at banks and post offices is only partly automated. We describe an ongoing project for building an automatic system that is able to recognize various items printed or written on a giro form. The system comprises three main components, namely, an automatic form feeder, a camera system, and a computer. These components are connected in such a way that the system is able to process a bunch of forms without any human interactions. We present two real applications of our system in the field of payment services, which require the reading of both machine printed and handwritten information that may appear on a giro form. One particular feature of giro forms is their flexible layout, i.e., information items are located differently from one form to another, thus requiring an additional analysis step to localize them before recognition. A commercial optical character recognition software package is used for recognition of machine-printed information, whereas handwritten information is read by our own algorithms, the details of which are presented. The system is implemented by using a client/server architecture providing a high degree of flexibility to change. Preliminary results are reported supporting our claim that the system is usable in practice.

  6. Sublexical Processing in Visual Recognition of Chinese Characters: Evidence from Repetition Blindness for Subcharacter Components

    ERIC Educational Resources Information Center

    Yeh, Su-Ling; Li, Jing-Ling

    2004-01-01

    Repetition blindness (RB) refers to the failure to detect the second occurrence of a repeated item in rapid serial visual presentation (RSVP). In two experiments using RSVP, the ability to report two critical characters was found to be impaired when these two characters were identical (Experiment 1) or similar by sharing one repeated component…

  7. Model and algorithmic framework for detection and correction of cognitive errors.

    PubMed

    Feki, Mohamed Ali; Biswas, Jit; Tolstikov, Andrei

    2009-01-01

    This paper outlines an approach that we are taking for elder-care applications in the smart home, involving cognitive errors and their compensation. Our approach involves high level modeling of daily activities of the elderly by breaking down these activities into smaller units, which can then be automatically recognized at a low level by collections of sensors placed in the homes of the elderly. This separation allows us to employ plan recognition algorithms and systems at a high level, while developing stand-alone activity recognition algorithms and systems at a low level. It also allows the mixing and matching of multi-modality sensors of various kinds that go to support the same high level requirement. Currently our plan recognition algorithms are still at a conceptual stage, whereas a number of low level activity recognition algorithms and systems have been developed. Herein we present our model for plan recognition, providing a brief survey of the background literature. We also present some concrete results that we have achieved for activity recognition, emphasizing how these results are incorporated into the overall plan recognition system.

  8. Physical environment virtualization for human activities recognition

    NASA Astrophysics Data System (ADS)

    Poshtkar, Azin; Elangovan, Vinayak; Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen

    2015-05-01

    Human activity recognition research relies heavily on extensive datasets to verify and validate performance of activity recognition algorithms. However, obtaining real datasets are expensive and highly time consuming. A physics-based virtual simulation can accelerate the development of context based human activity recognition algorithms and techniques by generating relevant training and testing videos simulating diverse operational scenarios. In this paper, we discuss in detail the requisite capabilities of a virtual environment to aid as a test bed for evaluating and enhancing activity recognition algorithms. To demonstrate the numerous advantages of virtual environment development, a newly developed virtual environment simulation modeling (VESM) environment is presented here to generate calibrated multisource imagery datasets suitable for development and testing of recognition algorithms for context-based human activities. The VESM environment serves as a versatile test bed to generate a vast amount of realistic data for training and testing of sensor processing algorithms. To demonstrate the effectiveness of VESM environment, we present various simulated scenarios and processed results to infer proper semantic annotations from the high fidelity imagery data for human-vehicle activity recognition under different operational contexts.

  9. Cognitive Processing Hardware Elements

    DTIC Science & Technology

    2005-01-31

    characters. Results will be presented below. 1 4. Recognition of human faces. There are many other possible applications such as facial recognition and...For the experiments in facial recognition , we have used a 3-layer autoassociative neural network having the following specifications: "* The input...using the facial recognition system described in the section above as an example. This system uses an autoassociative neural network containing over 10

  10. Recognition is Used as One Cue Among Others in Judgment and Decision Making

    ERIC Educational Resources Information Center

    Richter, Tobias; Spath, Pamela

    2006-01-01

    Three experiments with paired comparisons were conducted to test the noncompensatory character of the recognition heuristic (D. G. Goldstein & G. Gigerenzer, 2002) in judgment and decision making. Recognition and knowledge about the recognized alternative were manipulated. In Experiment 1, participants were presented pairs of animal names where…

  11. Vehicle logo recognition using multi-level fusion model

    NASA Astrophysics Data System (ADS)

    Ming, Wei; Xiao, Jianli

    2018-04-01

    Vehicle logo recognition plays an important role in manufacturer identification and vehicle recognition. This paper proposes a new vehicle logo recognition algorithm. It has a hierarchical framework, which consists of two fusion levels. At the first level, a feature fusion model is employed to map the original features to a higher dimension feature space. In this space, the vehicle logos become more recognizable. At the second level, a weighted voting strategy is proposed to promote the accuracy and the robustness of the recognition results. To evaluate the performance of the proposed algorithm, extensive experiments are performed, which demonstrate that the proposed algorithm can achieve high recognition accuracy and work robustly.

  12. Font group identification using reconstructed fonts

    NASA Astrophysics Data System (ADS)

    Cutter, Michael P.; van Beusekom, Joost; Shafait, Faisal; Breuel, Thomas M.

    2011-01-01

    Ideally, digital versions of scanned documents should be represented in a format that is searchable, compressed, highly readable, and faithful to the original. These goals can theoretically be achieved through OCR and font recognition, re-typesetting the document text with original fonts. However, OCR and font recognition remain hard problems, and many historical documents use fonts that are not available in digital forms. It is desirable to be able to reconstruct fonts with vector glyphs that approximate the shapes of the letters that form a font. In this work, we address the grouping of tokens in a token-compressed document into candidate fonts. This permits us to incorporate font information into token-compressed images even when the original fonts are unknown or unavailable in digital format. This paper extends previous work in font reconstruction by proposing and evaluating an algorithm to assign a font to every character within a document. This is a necessary step to represent a scanned document image with a reconstructed font. Through our evaluation method, we have measured a 98.4% accuracy for the assignment of letters to candidate fonts in multi-font documents.

  13. Towards Contactless Silent Speech Recognition Based on Detection of Active and Visible Articulators Using IR-UWB Radar

    PubMed Central

    Shin, Young Hoon; Seo, Jiwon

    2016-01-01

    People with hearing or speaking disabilities are deprived of the benefits of conventional speech recognition technology because it is based on acoustic signals. Recent research has focused on silent speech recognition systems that are based on the motions of a speaker’s vocal tract and articulators. Because most silent speech recognition systems use contact sensors that are very inconvenient to users or optical systems that are susceptible to environmental interference, a contactless and robust solution is hence required. Toward this objective, this paper presents a series of signal processing algorithms for a contactless silent speech recognition system using an impulse radio ultra-wide band (IR-UWB) radar. The IR-UWB radar is used to remotely and wirelessly detect motions of the lips and jaw. In order to extract the necessary features of lip and jaw motions from the received radar signals, we propose a feature extraction algorithm. The proposed algorithm noticeably improved speech recognition performance compared to the existing algorithm during our word recognition test with five speakers. We also propose a speech activity detection algorithm to automatically select speech segments from continuous input signals. Thus, speech recognition processing is performed only when speech segments are detected. Our testbed consists of commercial off-the-shelf radar products, and the proposed algorithms are readily applicable without designing specialized radar hardware for silent speech processing. PMID:27801867

  14. Towards Contactless Silent Speech Recognition Based on Detection of Active and Visible Articulators Using IR-UWB Radar.

    PubMed

    Shin, Young Hoon; Seo, Jiwon

    2016-10-29

    People with hearing or speaking disabilities are deprived of the benefits of conventional speech recognition technology because it is based on acoustic signals. Recent research has focused on silent speech recognition systems that are based on the motions of a speaker's vocal tract and articulators. Because most silent speech recognition systems use contact sensors that are very inconvenient to users or optical systems that are susceptible to environmental interference, a contactless and robust solution is hence required. Toward this objective, this paper presents a series of signal processing algorithms for a contactless silent speech recognition system using an impulse radio ultra-wide band (IR-UWB) radar. The IR-UWB radar is used to remotely and wirelessly detect motions of the lips and jaw. In order to extract the necessary features of lip and jaw motions from the received radar signals, we propose a feature extraction algorithm. The proposed algorithm noticeably improved speech recognition performance compared to the existing algorithm during our word recognition test with five speakers. We also propose a speech activity detection algorithm to automatically select speech segments from continuous input signals. Thus, speech recognition processing is performed only when speech segments are detected. Our testbed consists of commercial off-the-shelf radar products, and the proposed algorithms are readily applicable without designing specialized radar hardware for silent speech processing.

  15. Recognition of degraded handwritten digits using dynamic Bayesian networks

    NASA Astrophysics Data System (ADS)

    Likforman-Sulem, Laurence; Sigelle, Marc

    2007-01-01

    We investigate in this paper the application of dynamic Bayesian networks (DBNs) to the recognition of handwritten digits. The main idea is to couple two separate HMMs into various architectures. First, a vertical HMM and a horizontal HMM are built observing the evolving streams of image columns and image rows respectively. Then, two coupled architectures are proposed to model interactions between these two streams and to capture the 2D nature of character images. Experiments performed on the MNIST handwritten digit database show that coupled architectures yield better recognition performances than non-coupled ones. Additional experiments conducted on artificially degraded (broken) characters demonstrate that coupled architectures better cope with such degradation than non coupled ones and than discriminative methods such as SVMs.

  16. Remembering the orientation of newly learned characters depends on the associated writing knowledge: a comparison between handwriting and typing.

    PubMed

    Longcamp, Marieke; Boucard, Céline; Gilhodes, Jean-Claude; Velay, Jean-Luc

    2006-10-01

    Recent data support the idea that movements play a crucial role in letter representation and suggest that handwriting knowledge contributes to visual recognition of letters. If so, using different motor activities while subjects are learning to write should affect their subsequent recognition performances. In order to test this hypothesis, we trained adult participants to write new characters either by copying them or by typing them on a keyboard. After three weeks of training we ran a series of tests requiring visual processing of the characters' orientation. Tests were ran immediately, one week after, and three weeks after the end of the training period. Results showed that when the characters had been learned by typing, they were more frequently confused with their mirror images than when they had been written by hand. This handwriting advantage did not appear immediately, but mostly three weeks after the end of the training. Our results therefore suggest that the stability of the characters' representation in memory depends on the nature of the motor activity produced during learning.

  17. Address entry while driving: speech recognition versus a touch-screen keyboard.

    PubMed

    Tsimhoni, Omer; Smith, Daniel; Green, Paul

    2004-01-01

    A driving simulator experiment was conducted to determine the effects of entering addresses into a navigation system during driving. Participants drove on roads of varying visual demand while entering addresses. Three address entry methods were explored: word-based speech recognition, character-based speech recognition, and typing on a touch-screen keyboard. For each method, vehicle control and task measures, glance timing, and subjective ratings were examined. During driving, word-based speech recognition yielded the shortest total task time (15.3 s), followed by character-based speech recognition (41.0 s) and touch-screen keyboard (86.0 s). The standard deviation of lateral position when performing keyboard entry (0.21 m) was 60% higher than that for all other address entry methods (0.13 m). Degradation of vehicle control associated with address entry using a touch screen suggests that the use of speech recognition is favorable. Speech recognition systems with visual feedback, however, even with excellent accuracy, are not without performance consequences. Applications of this research include the design of in-vehicle navigation systems as well as other systems requiring significant driver input, such as E-mail, the Internet, and text messaging.

  18. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system.

    PubMed

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  19. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system

    NASA Astrophysics Data System (ADS)

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.

  20. The implementation of aerial object recognition algorithm based on contour descriptor in FPGA-based on-board vision system

    NASA Astrophysics Data System (ADS)

    Babayan, Pavel; Smirnov, Sergey; Strotov, Valery

    2017-10-01

    This paper describes the aerial object recognition algorithm for on-board and stationary vision system. Suggested algorithm is intended to recognize the objects of a specific kind using the set of the reference objects defined by 3D models. The proposed algorithm based on the outer contour descriptor building. The algorithm consists of two stages: learning and recognition. Learning stage is devoted to the exploring of reference objects. Using 3D models we can build the database containing training images by rendering the 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. Gathered training image set is used for calculating descriptors, which will be used in the recognition stage of the algorithm. The recognition stage is focusing on estimating the similarity of the captured object and the reference objects by matching an observed image descriptor and the reference object descriptors. The experimental research was performed using a set of the models of the aircraft of the different types (airplanes, helicopters, UAVs). The proposed orientation estimation algorithm showed good accuracy in all case studies. The real-time performance of the algorithm in FPGA-based vision system was demonstrated.

  1. Analysis of Documentation Speed Using Web-Based Medical Speech Recognition Technology: Randomized Controlled Trial.

    PubMed

    Vogel, Markus; Kaisers, Wolfgang; Wassmuth, Ralf; Mayatepek, Ertan

    2015-11-03

    Clinical documentation has undergone a change due to the usage of electronic health records. The core element is to capture clinical findings and document therapy electronically. Health care personnel spend a significant portion of their time on the computer. Alternatives to self-typing, such as speech recognition, are currently believed to increase documentation efficiency and quality, as well as satisfaction of health professionals while accomplishing clinical documentation, but few studies in this area have been published to date. This study describes the effects of using a Web-based medical speech recognition system for clinical documentation in a university hospital on (1) documentation speed, (2) document length, and (3) physician satisfaction. Reports of 28 physicians were randomized to be created with (intervention) or without (control) the assistance of a Web-based system of medical automatic speech recognition (ASR) in the German language. The documentation was entered into a browser's text area and the time to complete the documentation including all necessary corrections, correction effort, number of characters, and mood of participant were stored in a database. The underlying time comprised text entering, text correction, and finalization of the documentation event. Participants self-assessed their moods on a scale of 1-3 (1=good, 2=moderate, 3=bad). Statistical analysis was done using permutation tests. The number of clinical reports eligible for further analysis stood at 1455. Out of 1455 reports, 718 (49.35%) were assisted by ASR and 737 (50.65%) were not assisted by ASR. Average documentation speed without ASR was 173 (SD 101) characters per minute, while it was 217 (SD 120) characters per minute using ASR. The overall increase in documentation speed through Web-based ASR assistance was 26% (P=.04). Participants documented an average of 356 (SD 388) characters per report when not assisted by ASR and 649 (SD 561) characters per report when assisted by ASR. Participants' average mood rating was 1.3 (SD 0.6) using ASR assistance compared to 1.6 (SD 0.7) without ASR assistance (P<.001). We conclude that medical documentation with the assistance of Web-based speech recognition leads to an increase in documentation speed, document length, and participant mood when compared to self-typing. Speech recognition is a meaningful and effective tool for the clinical documentation process.

  2. Comparing the minimum spatial-frequency content for recognizing Chinese and alphabet characters

    PubMed Central

    Wang, Hui; Legge, Gordon E.

    2018-01-01

    Visual blur is a common problem that causes difficulty in pattern recognition for normally sighted people under degraded viewing conditions (e.g., near the acuity limit, when defocused, or in fog) and also for people with impaired vision. For reliable identification, the spatial frequency content of an object needs to extend up to or exceed a minimum value in units of cycles per object, referred to as the critical spatial frequency. In this study, we investigated the critical spatial frequency for alphabet and Chinese characters, and examined the effect of pattern complexity. The stimuli were divided into seven categories based on their perimetric complexity, including the lowercase and uppercase alphabet letters, and five groups of Chinese characters. We found that the critical spatial frequency significantly increased with complexity, from 1.01 cycles per character for the simplest group to 2.00 cycles per character for the most complex group of Chinese characters. A second goal of the study was to test a space-bandwidth invariance hypothesis that would represent a tradeoff between the critical spatial frequency and the number of adjacent patterns that can be recognized at one time. We tested this hypothesis by comparing the critical spatial frequencies in cycles per character from the current study and visual-span sizes in number of characters (measured by Wang, He, & Legge, 2014) for sets of characters with different complexities. For the character size (1.2°) we used in the study, we found an invariant product of approximately 10 cycles, which may represent a capacity limitation on visual pattern recognition. PMID:29297056

  3. Chinese License Plates Recognition Method Based on A Robust and Efficient Feature Extraction and BPNN Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Xie, Fei; Zhao, Jing; Sun, Rui; Zhang, Lei; Zhang, Yue

    2018-04-01

    The prosperity of license plate recognition technology has made great contribution to the development of Intelligent Transport System (ITS). In this paper, a robust and efficient license plate recognition method is proposed which is based on a combined feature extraction model and BPNN (Back Propagation Neural Network) algorithm. Firstly, the candidate region of the license plate detection and segmentation method is developed. Secondly, a new feature extraction model is designed considering three sets of features combination. Thirdly, the license plates classification and recognition method using the combined feature model and BPNN algorithm is presented. Finally, the experimental results indicate that the license plate segmentation and recognition both can be achieved effectively by the proposed algorithm. Compared with three traditional methods, the recognition accuracy of the proposed method has increased to 95.7% and the consuming time has decreased to 51.4ms.

  4. Fingerprint recognition of alien invasive weeds based on the texture character and machine learning

    NASA Astrophysics Data System (ADS)

    Yu, Jia-Jia; Li, Xiao-Li; He, Yong; Xu, Zheng-Hao

    2008-11-01

    Multi-spectral imaging technique based on texture analysis and machine learning was proposed to discriminate alien invasive weeds with similar outline but different categories. The objectives of this study were to investigate the feasibility of using Multi-spectral imaging, especially the near-infrared (NIR) channel (800 nm+/-10 nm) to find the weeds' fingerprints, and validate the performance with specific eigenvalues by co-occurrence matrix. Veronica polita Pries, Veronica persica Poir, longtube ground ivy, Laminum amplexicaule Linn. were selected in this study, which perform different effect in field, and are alien invasive species in China. 307 weed leaves' images were randomly selected for the calibration set, while the remaining 207 samples for the prediction set. All images were pretreated by Wallis filter to adjust the noise by uneven lighting. Gray level co-occurrence matrix was applied to extract the texture character, which shows density, randomness correlation, contrast and homogeneity of texture with different algorithms. Three channels (green channel by 550 nm+/-10 nm, red channel by 650 nm+/-10 nm and NIR channel by 800 nm+/-10 nm) were respectively calculated to get the eigenvalues.Least-squares support vector machines (LS-SVM) was applied to discriminate the categories of weeds by the eigenvalues from co-occurrence matrix. Finally, recognition ratio of 83.35% by NIR channel was obtained, better than the results by green channel (76.67%) and red channel (69.46%). The prediction results of 81.35% indicated that the selected eigenvalues reflected the main characteristics of weeds' fingerprint based on multi-spectral (especially by NIR channel) and LS-SVM model.

  5. Tensor Rank Preserving Discriminant Analysis for Facial Recognition.

    PubMed

    Tao, Dapeng; Guo, Yanan; Li, Yaotang; Gao, Xinbo

    2017-10-12

    Facial recognition, one of the basic topics in computer vision and pattern recognition, has received substantial attention in recent years. However, for those traditional facial recognition algorithms, the facial images are reshaped to a long vector, thereby losing part of the original spatial constraints of each pixel. In this paper, a new tensor-based feature extraction algorithm termed tensor rank preserving discriminant analysis (TRPDA) for facial image recognition is proposed; the proposed method involves two stages: in the first stage, the low-dimensional tensor subspace of the original input tensor samples was obtained; in the second stage, discriminative locality alignment was utilized to obtain the ultimate vector feature representation for subsequent facial recognition. On the one hand, the proposed TRPDA algorithm fully utilizes the natural structure of the input samples, and it applies an optimization criterion that can directly handle the tensor spectral analysis problem, thereby decreasing the computation cost compared those traditional tensor-based feature selection algorithms. On the other hand, the proposed TRPDA algorithm extracts feature by finding a tensor subspace that preserves most of the rank order information of the intra-class input samples. Experiments on the three facial databases are performed here to determine the effectiveness of the proposed TRPDA algorithm.

  6. Motion Planning and Synthesis of Human-Like Characters in Constrained Environments

    NASA Astrophysics Data System (ADS)

    Zhang, Liangjun; Pan, Jia; Manocha, Dinesh

    We give an overview of our recent work on generating naturally-looking human motion in constrained environments with multiple obstacles. This includes a whole-body motion planning algorithm for high DOF human-like characters. The planning problem is decomposed into a sequence of low dimensional sub-problems. We use a constrained coordination scheme to solve the sub-problems in an incremental manner and a local path refinement algorithm to compute collision-free paths in tight spaces and satisfy the statically stable constraint on CoM. We also present a hybrid algorithm to generate plausible motion by combing the motion computed by our planner with mocap data. We demonstrate the performance of our algorithm on a 40 DOF human-like character and generate efficient motion strategies for object placement, bending, walking, and lifting in complex environments.

  7. Multifeature-based high-resolution palmprint recognition.

    PubMed

    Dai, Jifeng; Zhou, Jie

    2011-05-01

    Palmprint is a promising biometric feature for use in access control and forensic applications. Previous research on palmprint recognition mainly concentrates on low-resolution (about 100 ppi) palmprints. But for high-security applications (e.g., forensic usage), high-resolution palmprints (500 ppi or higher) are required from which more useful information can be extracted. In this paper, we propose a novel recognition algorithm for high-resolution palmprint. The main contributions of the proposed algorithm include the following: 1) use of multiple features, namely, minutiae, density, orientation, and principal lines, for palmprint recognition to significantly improve the matching performance of the conventional algorithm. 2) Design of a quality-based and adaptive orientation field estimation algorithm which performs better than the existing algorithm in case of regions with a large number of creases. 3) Use of a novel fusion scheme for an identification application which performs better than conventional fusion methods, e.g., weighted sum rule, SVMs, or Neyman-Pearson rule. Besides, we analyze the discriminative power of different feature combinations and find that density is very useful for palmprint recognition. Experimental results on the database containing 14,576 full palmprints show that the proposed algorithm has achieved a good performance. In the case of verification, the recognition system's False Rejection Rate (FRR) is 16 percent, which is 17 percent lower than the best existing algorithm at a False Acceptance Rate (FAR) of 10(-5), while in the identification experiment, the rank-1 live-scan partial palmprint recognition rate is improved from 82.0 to 91.7 percent.

  8. Neural Network--OCR/ICR Recognology: Theory and Applications.

    ERIC Educational Resources Information Center

    Schantz, Herbert F.

    1993-01-01

    Explains the value of neurocomputing as a unique and effective new technological concept for information processing and optical character recognition. Comparisons are made to digital computing and examples of applications such as recognizing handprinted characters are addressed. Products available from various companies are described. (Contains…

  9. Effect of word familiarity on visually evoked magnetic fields.

    PubMed

    Harada, N; Iwaki, S; Nakagawa, S; Yamaguchi, M; Tonoike, M

    2004-11-30

    This study investigated the effect of word familiarity of visual stimuli on the word recognizing function of the human brain. Word familiarity is an index of the relative ease of word perception, and is characterized by facilitation and accuracy on word recognition. We studied the effect of word familiarity, using "Hiragana" (phonetic characters in Japanese orthography) characters as visual stimuli, on the elicitation of visually evoked magnetic fields with a word-naming task. The words were selected from a database of lexical properties of Japanese. The four "Hiragana" characters used were grouped and presented in 4 classes of degree of familiarity. The three components were observed in averaged waveforms of the root mean square (RMS) value on latencies at about 100 ms, 150 ms and 220 ms. The RMS value of the 220 ms component showed a significant positive correlation (F=(3/36); 5.501; p=0.035) with the value of familiarity. ECDs of the 220 ms component were observed in the intraparietal sulcus (IPS). Increments in the RMS value of the 220 ms component, which might reflect ideographical word recognition, retrieving "as a whole" were enhanced with increments of the value of familiarity. The interaction of characters, which increased with the value of familiarity, might function "as a large symbol"; and enhance a "pop-out" function with an escaping character inhibiting other characters and enhancing the segmentation of the character (as a figure) from the ground.

  10. Design method of ARM based embedded iris recognition system

    NASA Astrophysics Data System (ADS)

    Wang, Yuanbo; He, Yuqing; Hou, Yushi; Liu, Ting

    2008-03-01

    With the advantages of non-invasiveness, uniqueness, stability and low false recognition rate, iris recognition has been successfully applied in many fields. Up to now, most of the iris recognition systems are based on PC. However, a PC is not portable and it needs more power. In this paper, we proposed an embedded iris recognition system based on ARM. Considering the requirements of iris image acquisition and recognition algorithm, we analyzed the design method of the iris image acquisition module, designed the ARM processing module and its peripherals, studied the Linux platform and the recognition algorithm based on this platform, finally actualized the design method of ARM-based iris imaging and recognition system. Experimental results show that the ARM platform we used is fast enough to run the iris recognition algorithm, and the data stream can flow smoothly between the camera and the ARM chip based on the embedded Linux system. It's an effective method of using ARM to actualize portable embedded iris recognition system.

  11. Hybrid simulated annealing and its application to optimization of hidden Markov models for visual speech recognition.

    PubMed

    Lee, Jong-Seok; Park, Cheol Hoon

    2010-08-01

    We propose a novel stochastic optimization algorithm, hybrid simulated annealing (SA), to train hidden Markov models (HMMs) for visual speech recognition. In our algorithm, SA is combined with a local optimization operator that substitutes a better solution for the current one to improve the convergence speed and the quality of solutions. We mathematically prove that the sequence of the objective values converges in probability to the global optimum in the algorithm. The algorithm is applied to train HMMs that are used as visual speech recognizers. While the popular training method of HMMs, the expectation-maximization algorithm, achieves only local optima in the parameter space, the proposed method can perform global optimization of the parameters of HMMs and thereby obtain solutions yielding improved recognition performance. The superiority of the proposed algorithm to the conventional ones is demonstrated via isolated word recognition experiments.

  12. A modern optical character recognition system in a real world clinical setting: some accuracy and feasibility observations.

    PubMed

    Biondich, Paul G; Overhage, J Marc; Dexter, Paul R; Downs, Stephen M; Lemmon, Larry; McDonald, Clement J

    2002-01-01

    Advances in optical character recognition (OCR) software and computer hardware have stimulated a reevaluation of the technology and its ability to capture structured clinical data from preexisting paper forms. In our pilot evaluation, we measured the accuracy and feasibility of capturing vitals data from a pediatric encounter form that has been in use for over twenty years. We found that the software had a digit recognition rate of 92.4% (95% confidence interval: 91.6 to 93.2) overall. More importantly, this system was approximately three times as fast as our existing method of data entry. These preliminary results suggest that with further refinements in the approach and additional development, we may be able to incorporate OCR as another method for capturing structured clinical data.

  13. Transfer of the left-side bias effect in perceptual expertise: The case of simplified and traditional Chinese character recognition

    PubMed Central

    Liu, Tianyin; Yeh, Su-Ling

    2018-01-01

    The left-side bias (LSB) effect observed in face and expert Chinese character perception is suggested to be an expertise marker for visual object recognition. However, in character perception this effect is limited to characters printed in a familiar font (font-sensitive LSB effect). Here we investigated whether the LSB and font-sensitive LSB effects depend on participants’ familiarity with global structure or local component information of the stimuli through examining their transfer effects across simplified and traditional Chinese scripts: the two Chinese scripts share similar overall structures but differ in the visual complexity of local components in general. We found that LSB in expert Chinese character processing could be transferred to the Chinese script that the readers are unfamiliar with. In contrast, the font-sensitive LSB effect did not transfer, and was limited to characters with the visual complexity the readers were most familiar with. These effects suggest that the LSB effect may be generalized to another visual category with similar overall structures; in contrast, effects of within-category variations such as fonts may depend on familiarity with local component information of the stimuli, and thus may be limited to the exemplars of the category that experts are typically exposed to. PMID:29608570

  14. Research on autonomous identification of airport targets based on Gabor filtering and Radon transform

    NASA Astrophysics Data System (ADS)

    Yi, Juan; Du, Qingyu; Zhang, Hong jiang; Zhang, Yao lei

    2017-11-01

    Target recognition is a leading key technology in intelligent image processing and application development at present, with the enhancement of computer processing ability, autonomous target recognition algorithm, gradually improve intelligence, and showed good adaptability. Taking the airport target as the research object, analysis the airport layout characteristics, construction of knowledge model, Gabor filter and Radon transform based on the target recognition algorithm of independent design, image processing and feature extraction of the airport, the algorithm was verified, and achieved better recognition results.

  15. Classification of remotely sensed data using OCR-inspired neural network techniques. [Optical Character Recognition

    NASA Technical Reports Server (NTRS)

    Kiang, Richard K.

    1992-01-01

    Neural networks have been applied to classifications of remotely sensed data with some success. To improve the performance of this approach, an examination was made of how neural networks are applied to the optical character recognition (OCR) of handwritten digits and letters. A three-layer, feedforward network, along with techniques adopted from OCR, was used to classify Landsat-4 Thematic Mapper data. Good results were obtained. To overcome the difficulties that are characteristic of remote sensing applications and to attain significant improvements in classification accuracy, a special network architecture may be required.

  16. Kanji Recognition by Second Language Learners: Exploring Effects of First Language Writing Systems and Second Language Exposure

    ERIC Educational Resources Information Center

    Matsumoto, Kazumi

    2013-01-01

    This study investigated whether learners of Japanese with different first language (L1) writing systems use different recognition strategies and whether second language (L2) exposure affects L2 kanji recognition. The study used a computerized lexical judgment task with 3 types of kanji characters to investigate these questions: (a)…

  17. Reading Machines for Blind People.

    ERIC Educational Resources Information Center

    Fender, Derek H.

    1983-01-01

    Ten stages of developing reading machines for blind people are analyzed: handling of text material; optics; electro-optics; pattern recognition; character recognition; storage; speech synthesizers; browsing and place finding; computer indexing; and other sources of input. Cost considerations of the final product are emphasized. (CL)

  18. Computational electromagnetics: the physics of smooth versus oscillatory fields.

    PubMed

    Chew, W C

    2004-03-15

    This paper starts by discussing the difference in the physics between solutions to Laplace's equation (static) and Maxwell's equations for dynamic problems (Helmholtz equation). Their differing physical characters are illustrated by how the two fields convey information away from their source point. The paper elucidates the fact that their differing physical characters affect the use of Laplacian field and Helmholtz field in imaging. They also affect the design of fast computational algorithms for electromagnetic scattering problems. Specifically, a comparison is made between fast algorithms developed using wavelets, the simple fast multipole method, and the multi-level fast multipole algorithm for electrodynamics. The impact of the physical characters of the dynamic field on the parallelization of the multi-level fast multipole algorithm is also discussed. The relationship of diagonalization of translators to group theory is presented. Finally, future areas of research for computational electromagnetics are described.

  19. Effects on Learning Logographic Character Formation in Computer-Assisted Handwriting Instruction

    ERIC Educational Resources Information Center

    Tsai, Chen-hui; Kuo, Chin-Hwa; Horng, Wen-Bing; Chen, Chun-Wen

    2012-01-01

    This paper reports on a study that investigates how different learning methods might affect the learning process of character handwriting among beginning college learners of Chinese, as measured by tests of recognition, approximate production, precise production, and awareness of conventional stroke sequence. Two methodologies were examined during…

  20. The Inversion Effect for Chinese Characters Is Modulated by Radical Organization

    ERIC Educational Resources Information Center

    Luo, Canhuang; Chen, Wei; Zhang, Ye

    2017-01-01

    In studies of visual object recognition, strong inversion effects accompany the acquisition of expertise and imply the involvement of configural processing. Chinese literacy results in sensitivity to the orthography of Chinese characters. While there is some evidence that this orthographic sensitivity results in an inversion effect, and thus…

  1. Automated Recognition of 3D Features in GPIR Images

    NASA Technical Reports Server (NTRS)

    Park, Han; Stough, Timothy; Fijany, Amir

    2007-01-01

    A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a directed-graph data structure. Relative to past approaches, this multiaxis approach offers the advantages of more reliable detections, better discrimination of objects, and provision of redundant information, which can be helpful in filling gaps in feature recognition by one of the component algorithms. The image-processing class also includes postprocessing algorithms that enhance identified features to prepare them for further scrutiny by human analysts (see figure). Enhancement of images as a postprocessing step is a significant departure from traditional practice, in which enhancement of images is a preprocessing step.

  2. Tracking and recognition face in videos with incremental local sparse representation model

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Wang, Yunhong; Zhang, Zhaoxiang

    2013-10-01

    This paper addresses the problem of tracking and recognizing faces via incremental local sparse representation. First a robust face tracking algorithm is proposed via employing local sparse appearance and covariance pooling method. In the following face recognition stage, with the employment of a novel template update strategy, which combines incremental subspace learning, our recognition algorithm adapts the template to appearance changes and reduces the influence of occlusion and illumination variation. This leads to a robust video-based face tracking and recognition with desirable performance. In the experiments, we test the quality of face recognition in real-world noisy videos on YouTube database, which includes 47 celebrities. Our proposed method produces a high face recognition rate at 95% of all videos. The proposed face tracking and recognition algorithms are also tested on a set of noisy videos under heavy occlusion and illumination variation. The tracking results on challenging benchmark videos demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods. In the case of the challenging dataset in which faces undergo occlusion and illumination variation, and tracking and recognition experiments under significant pose variation on the University of California, San Diego (Honda/UCSD) database, our proposed method also consistently demonstrates a high recognition rate.

  3. Assistive Technology and Adults with Learning Disabilities: A Blueprint for Exploration and Advancement.

    ERIC Educational Resources Information Center

    Raskind, Marshall

    1993-01-01

    This article describes assistive technologies for persons with learning disabilities, including word processing, spell checking, proofreading programs, outlining/"brainstorming" programs, abbreviation expanders, speech recognition, speech synthesis/screen review, optical character recognition systems, personal data managers, free-form databases,…

  4. Face sketch recognition based on edge enhancement via deep learning

    NASA Astrophysics Data System (ADS)

    Xie, Zhenzhu; Yang, Fumeng; Zhang, Yuming; Wu, Congzhong

    2017-11-01

    In this paper,we address the face sketch recognition problem. Firstly, we utilize the eigenface algorithm to convert a sketch image into a synthesized sketch face image. Subsequently, considering the low-level vision problem in synthesized face sketch image .Super resolution reconstruction algorithm based on CNN(convolutional neural network) is employed to improve the visual effect. To be specific, we uses a lightweight super-resolution structure to learn a residual mapping instead of directly mapping the feature maps from the low-level space to high-level patch representations, which making the networks are easier to optimize and have lower computational complexity. Finally, we adopt LDA(Linear Discriminant Analysis) algorithm to realize face sketch recognition on synthesized face image before super resolution and after respectively. Extensive experiments on the face sketch database(CUFS) from CUHK demonstrate that the recognition rate of SVM(Support Vector Machine) algorithm improves from 65% to 69% and the recognition rate of LDA(Linear Discriminant Analysis) algorithm improves from 69% to 75%.What'more,the synthesized face image after super resolution can not only better describer image details such as hair ,nose and mouth etc, but also improve the recognition accuracy effectively.

  5. Cognitive object recognition system (CORS)

    NASA Astrophysics Data System (ADS)

    Raju, Chaitanya; Varadarajan, Karthik Mahesh; Krishnamurthi, Niyant; Xu, Shuli; Biederman, Irving; Kelley, Troy

    2010-04-01

    We have developed a framework, Cognitive Object Recognition System (CORS), inspired by current neurocomputational models and psychophysical research in which multiple recognition algorithms (shape based geometric primitives, 'geons,' and non-geometric feature-based algorithms) are integrated to provide a comprehensive solution to object recognition and landmarking. Objects are defined as a combination of geons, corresponding to their simple parts, and the relations among the parts. However, those objects that are not easily decomposable into geons, such as bushes and trees, are recognized by CORS using "feature-based" algorithms. The unique interaction between these algorithms is a novel approach that combines the effectiveness of both algorithms and takes us closer to a generalized approach to object recognition. CORS allows recognition of objects through a larger range of poses using geometric primitives and performs well under heavy occlusion - about 35% of object surface is sufficient. Furthermore, geon composition of an object allows image understanding and reasoning even with novel objects. With reliable landmarking capability, the system improves vision-based robot navigation in GPS-denied environments. Feasibility of the CORS system was demonstrated with real stereo images captured from a Pioneer robot. The system can currently identify doors, door handles, staircases, trashcans and other relevant landmarks in the indoor environment.

  6. Face recognition algorithm using extended vector quantization histogram features.

    PubMed

    Yan, Yan; Lee, Feifei; Wu, Xueqian; Chen, Qiu

    2018-01-01

    In this paper, we propose a face recognition algorithm based on a combination of vector quantization (VQ) and Markov stationary features (MSF). The VQ algorithm has been shown to be an effective method for generating features; it extracts a codevector histogram as a facial feature representation for face recognition. Still, the VQ histogram features are unable to convey spatial structural information, which to some extent limits their usefulness in discrimination. To alleviate this limitation of VQ histograms, we utilize Markov stationary features (MSF) to extend the VQ histogram-based features so as to add spatial structural information. We demonstrate the effectiveness of our proposed algorithm by achieving recognition results superior to those of several state-of-the-art methods on publicly available face databases.

  7. A Random Forest-based ensemble method for activity recognition.

    PubMed

    Feng, Zengtao; Mo, Lingfei; Li, Meng

    2015-01-01

    This paper presents a multi-sensor ensemble approach to human physical activity (PA) recognition, using random forest. We designed an ensemble learning algorithm, which integrates several independent Random Forest classifiers based on different sensor feature sets to build a more stable, more accurate and faster classifier for human activity recognition. To evaluate the algorithm, PA data collected from the PAMAP (Physical Activity Monitoring for Aging People), which is a standard, publicly available database, was utilized to train and test. The experimental results show that the algorithm is able to correctly recognize 19 PA types with an accuracy of 93.44%, while the training is faster than others. The ensemble classifier system based on the RF (Random Forest) algorithm can achieve high recognition accuracy and fast calculation.

  8. The fast iris image clarity evaluation based on Tenengrad and ROI selection

    NASA Astrophysics Data System (ADS)

    Gao, Shuqin; Han, Min; Cheng, Xu

    2018-04-01

    In iris recognition system, the clarity of iris image is an important factor that influences recognition effect. In the process of recognition, the blurred image may possibly be rejected by the automatic iris recognition system, which will lead to the failure of identification. Therefore it is necessary to evaluate the iris image definition before recognition. Considered the existing evaluation methods on iris image definition, we proposed a fast algorithm to evaluate the definition of iris image in this paper. In our algorithm, firstly ROI (Region of Interest) is extracted based on the reference point which is determined by using the feature of the light spots within the pupil, then Tenengrad operator is used to evaluate the iris image's definition. Experiment results show that, the iris image definition algorithm proposed in this paper could accurately distinguish the iris images of different clarity, and the algorithm has the merit of low computational complexity and more effectiveness.

  9. Optimal pattern synthesis for speech recognition based on principal component analysis

    NASA Astrophysics Data System (ADS)

    Korsun, O. N.; Poliyev, A. V.

    2018-02-01

    The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.

  10. A modern optical character recognition system in a real world clinical setting: some accuracy and feasibility observations.

    PubMed Central

    Biondich, Paul G.; Overhage, J. Marc; Dexter, Paul R.; Downs, Stephen M.; Lemmon, Larry; McDonald, Clement J.

    2002-01-01

    Advances in optical character recognition (OCR) software and computer hardware have stimulated a reevaluation of the technology and its ability to capture structured clinical data from preexisting paper forms. In our pilot evaluation, we measured the accuracy and feasibility of capturing vitals data from a pediatric encounter form that has been in use for over twenty years. We found that the software had a digit recognition rate of 92.4% (95% confidence interval: 91.6 to 93.2) overall. More importantly, this system was approximately three times as fast as our existing method of data entry. These preliminary results suggest that with further refinements in the approach and additional development, we may be able to incorporate OCR as another method for capturing structured clinical data. PMID:12463786

  11. BanglaLekha-Isolated: A multi-purpose comprehensive dataset of Handwritten Bangla Isolated characters.

    PubMed

    Biswas, Mithun; Islam, Rafiqul; Shom, Gautam Kumar; Shopon, Md; Mohammed, Nabeel; Momen, Sifat; Abedin, Anowarul

    2017-06-01

    BanglaLekha-Isolated, a Bangla handwritten isolated character dataset is presented in this article. This dataset contains 84 different characters comprising of 50 Bangla basic characters, 10 Bangla numerals and 24 selected compound characters. 2000 handwriting samples for each of the 84 characters were collected, digitized and pre-processed. After discarding mistakes and scribbles, 1,66,105 handwritten character images were included in the final dataset. The dataset also includes labels indicating the age and the gender of the subjects from whom the samples were collected. This dataset could be used not only for optical handwriting recognition research but also to explore the influence of gender and age on handwriting. The dataset is publicly available at https://data.mendeley.com/datasets/hf6sf8zrkc/2.

  12. Integrative Lifecourse and Genetic Analysis of Military Working Dogs

    DTIC Science & Technology

    2012-10-01

    Intelligent Character Recognition) and HWR ( Handwriting Recognition). A number of various software packages were evaluated and we have settled on a...third-party software is able to recognize check-boxes and columns and do a reasonable job with handwriting – which is does. This workflow will

  13. 76 FR 39757 - Filing Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... an optical character recognition process, such a document may contain recognition errors. CAUTION... network speed e-filing of these documents may be difficult. Pursuant to section II(C) above, the Secretary... optical scan format or a typed ``electronic signature,'' e.g., ``/s/Jane Doe.'' (3) In the case of a...

  14. Computer vision cracks the leaf code

    PubMed Central

    Wilf, Peter; Zhang, Shengping; Chikkerur, Sharat; Little, Stefan A.; Wing, Scott L.; Serre, Thomas

    2016-01-01

    Understanding the extremely variable, complex shape and venation characters of angiosperm leaves is one of the most challenging problems in botany. Machine learning offers opportunities to analyze large numbers of specimens, to discover novel leaf features of angiosperm clades that may have phylogenetic significance, and to use those characters to classify unknowns. Previous computer vision approaches have primarily focused on leaf identification at the species level. It remains an open question whether learning and classification are possible among major evolutionary groups such as families and orders, which usually contain hundreds to thousands of species each and exhibit many times the foliar variation of individual species. Here, we tested whether a computer vision algorithm could use a database of 7,597 leaf images from 2,001 genera to learn features of botanical families and orders, then classify novel images. The images are of cleared leaves, specimens that are chemically bleached, then stained to reveal venation. Machine learning was used to learn a codebook of visual elements representing leaf shape and venation patterns. The resulting automated system learned to classify images into families and orders with a success rate many times greater than chance. Of direct botanical interest, the responses of diagnostic features can be visualized on leaf images as heat maps, which are likely to prompt recognition and evolutionary interpretation of a wealth of novel morphological characters. With assistance from computer vision, leaves are poised to make numerous new contributions to systematic and paleobotanical studies. PMID:26951664

  15. [A new peak detection algorithm of Raman spectra].

    PubMed

    Jiang, Cheng-Zhi; Sun, Qiang; Liu, Ying; Liang, Jing-Qiu; An, Yan; Liu, Bing

    2014-01-01

    The authors proposed a new Raman peak recognition method named bi-scale correlation algorithm. The algorithm uses the combination of the correlation coefficient and the local signal-to-noise ratio under two scales to achieve Raman peak identification. We compared the performance of the proposed algorithm with that of the traditional continuous wavelet transform method through MATLAB, and then tested the algorithm with real Raman spectra. The results show that the average time for identifying a Raman spectrum is 0.51 s with the algorithm, while it is 0.71 s with the continuous wavelet transform. When the signal-to-noise ratio of Raman peak is greater than or equal to 6 (modern Raman spectrometers feature an excellent signal-to-noise ratio), the recognition accuracy with the algorithm is higher than 99%, while it is less than 84% with the continuous wavelet transform method. The mean and the standard deviations of the peak position identification error of the algorithm are both less than that of the continuous wavelet transform method. Simulation analysis and experimental verification prove that the new algorithm possesses the following advantages: no needs of human intervention, no needs of de-noising and background removal operation, higher recognition speed and higher recognition accuracy. The proposed algorithm is operable in Raman peak identification.

  16. The pandemonium system of reflective agents.

    PubMed

    Smieja, F

    1996-01-01

    The Pandemonium system of reflective MINOS agents solves problems by automatic dynamic modularization of the input space. The agents contain feedforward neural networks which adapt using the backpropagation algorithm. We demonstrate the performance of Pandemonium on various categories of problems. These include learning continuous functions with discontinuities, separating two spirals, learning the parity function, and optical character recognition. It is shown how strongly the advantages gained from using a modularization technique depend on the nature of the problem. The superiority of the Pandemonium method over a single net on the first two test categories is contrasted with its limited advantages for the second two categories. In the first case the system converges quicker with modularization and is seen to lead to simpler solutions. For the second case the problem is not significantly simplified through flat decomposition of the input space, although convergence is still quicker.

  17. An improved finger-vein recognition algorithm based on template matching

    NASA Astrophysics Data System (ADS)

    Liu, Yueyue; Di, Si; Jin, Jian; Huang, Daoping

    2016-10-01

    Finger-vein recognition has became the most popular biometric identify methods. The investigation on the recognition algorithms always is the key point in this field. So far, there are many applicable algorithms have been developed. However, there are still some problems in practice, such as the variance of the finger position which may lead to the image distortion and shifting; during the identification process, some matching parameters determined according to experience may also reduce the adaptability of algorithm. Focus on above mentioned problems, this paper proposes an improved finger-vein recognition algorithm based on template matching. In order to enhance the robustness of the algorithm for the image distortion, the least squares error method is adopted to correct the oblique finger. During the feature extraction, local adaptive threshold method is adopted. As regard as the matching scores, we optimized the translation preferences as well as matching distance between the input images and register images on the basis of Naoto Miura algorithm. Experimental results indicate that the proposed method can improve the robustness effectively under the finger shifting and rotation conditions.

  18. Why Learning to Write Chinese Is a Waste of Time: A Modest Proposal

    ERIC Educational Resources Information Center

    Allen, Joseph R.

    2008-01-01

    This article argues that for students of Chinese and Japanese, learning to write Chinese characters ("hanzi/kanji") by hand from memory is an inefficient use of resources. Rather, beginning students should focus on character/word recognition (reading) and electronic writing. Although electronic technologies have diminished the usefulness of…

  19. The Role of Orthographic Neighborhood Size Effects in Chinese Word Recognition

    ERIC Educational Resources Information Center

    Li, Meng-Feng; Lin, Wei-Chun; Chou, Tai-Li; Yang, Fu-Ling; Wu, Jei-Tun

    2015-01-01

    Previous studies about the orthographic neighborhood size (NS) in Chinese have overlooked the morphological processing, and the co-variation between the character frequency and the the NS. The present study manipulated the word frequency and the NS simultaneously, with the leading character frequency controlled, to explore their influences on word…

  20. Chinese Characters Elicit Face-Like N170 Inversion Effects

    ERIC Educational Resources Information Center

    Wang, Man-Ying; Kuo, Bo-Cheng; Cheng, Shih-Kuen

    2011-01-01

    Recognition of both faces and Chinese characters is commonly believed to rely on configural information. While faces typically exhibit behavioral and N170 inversion effects that differ from non-face stimuli (Rossion, Joyce, Cottrell, & Tarr, 2003), the current study examined whether a similar reliance on configural processing may result in similar…

  1. Optical Mapping of Brain Activation and Connectivity in Occipitotemporal Cortex During Chinese Character Recognition.

    PubMed

    Hu, Zhishan; Zhang, Juan; Couto, Tania Alexandra; Xu, Shiyang; Luan, Ping; Yuan, Zhen

    2018-06-22

    In this study, functional near-infrared spectroscopy (fNIRS) was used to examine the brain activation and connectivity in occipitotemporal cortex during Chinese character recognition (CCR). Eighteen healthy participants were recruited to perform a well-designed task with three categories of stimuli (real characters, pseudo characters, and checkerboards). By inspecting the brain activation difference and its relationship with behavioral data, the left laterality during CCR was clearly identified in the Brodmann area (BA) 18 and 19. In addition, our novel findings also demonstrated that the bilateral superior temporal gyrus (STG), bilateral BA 19, and left fusiform gyrus were also involved in high-level lexical information processing such as semantic and phonological ones. Meanwhile, by examining functional brain networks, we discovered that the right BA 19 exhibited enhanced brain connectivity. In particular, the connectivity in the right fusiform gyrus, right BA 19, and left STG showed significant correlation with the performance of CCR. Consequently, the combination of fNIRS technique with functional network analysis paves a new avenue for improved understanding of the cognitive mechanism underlying CCR.

  2. Identification of cloud fields by the nonparametric algorithm of pattern recognition from normalized video data recorded with the AVHRR instrument

    NASA Astrophysics Data System (ADS)

    Protasov, Konstantin T.; Pushkareva, Tatyana Y.; Artamonov, Evgeny S.

    2002-02-01

    The problem of cloud field recognition from the NOAA satellite data is urgent for solving not only meteorological problems but also for resource-ecological monitoring of the Earth's underlying surface associated with the detection of thunderstorm clouds, estimation of the liquid water content of clouds and the moisture of the soil, the degree of fire hazard, etc. To solve these problems, we used the AVHRR/NOAA video data that regularly displayed the situation in the territory. The complexity and extremely nonstationary character of problems to be solved call for the use of information of all spectral channels, mathematical apparatus of testing statistical hypotheses, and methods of pattern recognition and identification of the informative parameters. For a class of detection and pattern recognition problems, the average risk functional is a natural criterion for the quality and the information content of the synthesized decision rules. In this case, to solve efficiently the problem of identifying cloud field types, the informative parameters must be determined by minimization of this functional. Since the conditional probability density functions, representing mathematical models of stochastic patterns, are unknown, the problem of nonparametric reconstruction of distributions from the leaning samples arises. To this end, we used nonparametric estimates of distributions with the modified Epanechnikov kernel. The unknown parameters of these distributions were determined by minimization of the risk functional, which for the learning sample was substituted by the empirical risk. After the conditional probability density functions had been reconstructed for the examined hypotheses, a cloudiness type was identified using the Bayes decision rule.

  3. Writing Strengthens Orthography and Alphabetic-Coding Strengthens Phonology in Learning to Read Chinese

    ERIC Educational Resources Information Center

    Guan, Connie Qun; Liu, Ying; Chan, Derek Ho Leung; Ye, Feifei; Perfetti, Charles A.

    2011-01-01

    Learning to write words may strengthen orthographic representations and thus support word-specific recognition processes. This hypothesis applies especially to Chinese because its writing system encourages character-specific recognition that depends on accurate representation of orthographic form. We report 2 studies that test this hypothesis in…

  4. The Effects of Noisy Data on Text Retrieval.

    ERIC Educational Resources Information Center

    Taghva, Kazem; And Others

    1994-01-01

    Discusses the use of optical character recognition (OCR) for inputting documents in an information retrieval system and describes a study that used an OCR-generated database and its corresponding corrected version to examine query evaluation in the presence of noisy data. Scanning technology, recognition technology, and retrieval technology are…

  5. A DDC Bibliography on Optical or Graphic Information Processing (Information Sciences Series). Volume I.

    ERIC Educational Resources Information Center

    Defense Documentation Center, Alexandria, VA.

    This unclassified-unlimited bibliography contains 183 references, with abstracts, dealing specifically with optical or graphic information processing. Citations are grouped under three headings: display devices and theory, character recognition, and pattern recognition. Within each group, they are arranged in accession number (AD-number) sequence.…

  6. Automatic Online Educational Game Content Creation by Identifying Similar Chinese Characters with Radical Extraction and Graph Matching Algorithms

    ERIC Educational Resources Information Center

    Lai, Jason Kwong-Hung; Leung, Howard; Hu, Zhi-Hui; Tang, Jeff K. T.; Xu, Yun

    2010-01-01

    One of the difficulties in learning Chinese characters is distinguishing similar characters. This can cause misunderstanding and miscommunication in daily life. Thus, it is important for students learning the Chinese language to be able to distinguish similar characters and understand their proper usage. In this paper, the authors propose a game…

  7. Automated Field-of-View, Illumination, and Recognition Algorithm Design of a Vision System for Pick-and-Place Considering Colour Information in Illumination and Images

    PubMed Central

    Chen, Yibing; Ogata, Taiki; Ueyama, Tsuyoshi; Takada, Toshiyuki; Ota, Jun

    2018-01-01

    Machine vision is playing an increasingly important role in industrial applications, and the automated design of image recognition systems has been a subject of intense research. This study has proposed a system for automatically designing the field-of-view (FOV) of a camera, the illumination strength and the parameters in a recognition algorithm. We formulated the design problem as an optimisation problem and used an experiment based on a hierarchical algorithm to solve it. The evaluation experiments using translucent plastics objects showed that the use of the proposed system resulted in an effective solution with a wide FOV, recognition of all objects and 0.32 mm and 0.4° maximal positional and angular errors when all the RGB (red, green and blue) for illumination and R channel image for recognition were used. Though all the RGB illumination and grey scale images also provided recognition of all the objects, only a narrow FOV was selected. Moreover, full recognition was not achieved by using only G illumination and a grey-scale image. The results showed that the proposed method can automatically design the FOV, illumination and parameters in the recognition algorithm and that tuning all the RGB illumination is desirable even when single-channel or grey-scale images are used for recognition. PMID:29786665

  8. Automated Field-of-View, Illumination, and Recognition Algorithm Design of a Vision System for Pick-and-Place Considering Colour Information in Illumination and Images.

    PubMed

    Chen, Yibing; Ogata, Taiki; Ueyama, Tsuyoshi; Takada, Toshiyuki; Ota, Jun

    2018-05-22

    Machine vision is playing an increasingly important role in industrial applications, and the automated design of image recognition systems has been a subject of intense research. This study has proposed a system for automatically designing the field-of-view (FOV) of a camera, the illumination strength and the parameters in a recognition algorithm. We formulated the design problem as an optimisation problem and used an experiment based on a hierarchical algorithm to solve it. The evaluation experiments using translucent plastics objects showed that the use of the proposed system resulted in an effective solution with a wide FOV, recognition of all objects and 0.32 mm and 0.4° maximal positional and angular errors when all the RGB (red, green and blue) for illumination and R channel image for recognition were used. Though all the RGB illumination and grey scale images also provided recognition of all the objects, only a narrow FOV was selected. Moreover, full recognition was not achieved by using only G illumination and a grey-scale image. The results showed that the proposed method can automatically design the FOV, illumination and parameters in the recognition algorithm and that tuning all the RGB illumination is desirable even when single-channel or grey-scale images are used for recognition.

  9. Does the cost function matter in Bayes decision rule?

    PubMed

    Schlü ter, Ralf; Nussbaum-Thom, Markus; Ney, Hermann

    2012-02-01

    In many tasks in pattern recognition, such as automatic speech recognition (ASR), optical character recognition (OCR), part-of-speech (POS) tagging, and other string recognition tasks, we are faced with a well-known inconsistency: The Bayes decision rule is usually used to minimize string (symbol sequence) error, whereas, in practice, we want to minimize symbol (word, character, tag, etc.) error. When comparing different recognition systems, we do indeed use symbol error rate as an evaluation measure. The topic of this work is to analyze the relation between string (i.e., 0-1) and symbol error (i.e., metric, integer valued) cost functions in the Bayes decision rule, for which fundamental analytic results are derived. Simple conditions are derived for which the Bayes decision rule with integer-valued metric cost function and with 0-1 cost gives the same decisions or leads to classes with limited cost. The corresponding conditions can be tested with complexity linear in the number of classes. The results obtained do not make any assumption w.r.t. the structure of the underlying distributions or the classification problem. Nevertheless, the general analytic results are analyzed via simulations of string recognition problems with Levenshtein (edit) distance cost function. The results support earlier findings that considerable improvements are to be expected when initial error rates are high.

  10. Locality constrained joint dynamic sparse representation for local matching based face recognition.

    PubMed

    Wang, Jianzhong; Yi, Yugen; Zhou, Wei; Shi, Yanjiao; Qi, Miao; Zhang, Ming; Zhang, Baoxue; Kong, Jun

    2014-01-01

    Recently, Sparse Representation-based Classification (SRC) has attracted a lot of attention for its applications to various tasks, especially in biometric techniques such as face recognition. However, factors such as lighting, expression, pose and disguise variations in face images will decrease the performances of SRC and most other face recognition techniques. In order to overcome these limitations, we propose a robust face recognition method named Locality Constrained Joint Dynamic Sparse Representation-based Classification (LCJDSRC) in this paper. In our method, a face image is first partitioned into several smaller sub-images. Then, these sub-images are sparsely represented using the proposed locality constrained joint dynamic sparse representation algorithm. Finally, the representation results for all sub-images are aggregated to obtain the final recognition result. Compared with other algorithms which process each sub-image of a face image independently, the proposed algorithm regards the local matching-based face recognition as a multi-task learning problem. Thus, the latent relationships among the sub-images from the same face image are taken into account. Meanwhile, the locality information of the data is also considered in our algorithm. We evaluate our algorithm by comparing it with other state-of-the-art approaches. Extensive experiments on four benchmark face databases (ORL, Extended YaleB, AR and LFW) demonstrate the effectiveness of LCJDSRC.

  11. Learning representation hierarchies by sharing visual features: a computational investigation of Persian character recognition with unsupervised deep learning.

    PubMed

    Sadeghi, Zahra; Testolin, Alberto

    2017-08-01

    In humans, efficient recognition of written symbols is thought to rely on a hierarchical processing system, where simple features are progressively combined into more abstract, high-level representations. Here, we present a computational model of Persian character recognition based on deep belief networks, where increasingly more complex visual features emerge in a completely unsupervised manner by fitting a hierarchical generative model to the sensory data. Crucially, high-level internal representations emerging from unsupervised deep learning can be easily read out by a linear classifier, achieving state-of-the-art recognition accuracy. Furthermore, we tested the hypothesis that handwritten digits and letters share many common visual features: A generative model that captures the statistical structure of the letters distribution should therefore also support the recognition of written digits. To this aim, deep networks trained on Persian letters were used to build high-level representations of Persian digits, which were indeed read out with high accuracy. Our simulations show that complex visual features, such as those mediating the identification of Persian symbols, can emerge from unsupervised learning in multilayered neural networks and can support knowledge transfer across related domains.

  12. BACS: The Brussels Artificial Character Sets for studies in cognitive psychology and neuroscience.

    PubMed

    Vidal, Camille; Content, Alain; Chetail, Fabienne

    2017-12-01

    Written symbols such as letters have been used extensively in cognitive psychology, whether to understand their contributions to written word recognition or to examine the processes involved in other mental functions. Sometimes, however, researchers want to manipulate letters while removing their associated characteristics. A powerful solution to do so is to use new characters, devised to be highly similar to letters, but without the associated sound or name. Given the growing use of artificial characters in experimental paradigms, the aim of the present study was to make available the Brussels Artificial Character Sets (BACS): two full, strictly controlled, and portable sets of artificial characters for a broad range of experimental situations.

  13. Text extraction via an edge-bounded averaging and a parametric character model

    NASA Astrophysics Data System (ADS)

    Fan, Jian

    2003-01-01

    We present a deterministic text extraction algorithm that relies on three basic assumptions: color/luminance uniformity of the interior region, closed boundaries of sharp edges and the consistency of local contrast. The algorithm is basically independent of the character alphabet, text layout, font size and orientation. The heart of this algorithm is an edge-bounded averaging for the classification of smooth regions that enhances robustness against noise without sacrificing boundary accuracy. We have also developed a verification process to clean up the residue of incoherent segmentation. Our framework provides a symmetric treatment for both regular and inverse text. We have proposed three heuristics for identifying the type of text from a cluster consisting of two types of pixel aggregates. Finally, we have demonstrated the advantages of the proposed algorithm over adaptive thresholding and block-based clustering methods in terms of boundary accuracy, segmentation coherency, and capability to identify inverse text and separate characters from background patches.

  14. Adversity, emotion recognition, and empathic concern in high-risk youth.

    PubMed

    Quas, Jodi A; Dickerson, Kelli L; Matthew, Richard; Harron, Connor; Quas, Catherine M

    2017-01-01

    Little is known about how emotion recognition and empathy jointly operate in youth growing up in contexts defined by persistent adversity. We investigated whether adversity exposure in two groups of youth was associated with reduced empathy and whether deficits in emotion recognition mediated this association. Foster, rural poor, and comparison youth from Swaziland, Africa identified emotional expressions and rated their empathic concern for characters depicted in images showing positive, ambiguous, and negative scenes. Rural and foster youth perceived greater anger and happiness in the main characters in ambiguous and negative images than did comparison youth. Rural children also perceived less sadness. Youth's perceptions of sadness in the negative and ambiguous expressions mediated the relation between adversity and empathic concern, but only for the rural youth, who perceived less sadness, which then predicted less empathy. Findings provide new insight into processes that underlie empathic tendencies in adversity-exposed youth and highlight potential directions for interventions to increase empathy.

  15. Optical character recognition: an illustrated guide to the frontier

    NASA Astrophysics Data System (ADS)

    Nagy, George; Nartker, Thomas A.; Rice, Stephen V.

    1999-12-01

    We offer a perspective on the performance of current OCR systems by illustrating and explaining actual OCR errors made by three commercial devices. After discussing briefly the character recognition abilities of humans and computers, we present illustrated examples of recognition errors. The top level of our taxonomy of the causes of errors consists of Imaging Defects, Similar Symbols, Punctuation, and Typography. The analysis of a series of 'snippets' from this perspective provides insight into the strengths and weaknesses of current systems, and perhaps a road map to future progress. The examples were drawn from the large-scale tests conducted by the authors at the Information Science Research Institute of the University of Nevada, Las Vegas. By way of conclusion, we point to possible approaches for improving the accuracy of today's systems. The talk is based on our eponymous monograph, recently published in The Kluwer International Series in Engineering and Computer Science, Kluwer Academic Publishers, 1999.

  16. Fast cat-eye effect target recognition based on saliency extraction

    NASA Astrophysics Data System (ADS)

    Li, Li; Ren, Jianlin; Wang, Xingbin

    2015-09-01

    Background complexity is a main reason that results in false detection in cat-eye target recognition. Human vision has selective attention property which can help search the salient target from complex unknown scenes quickly and precisely. In the paper, we propose a novel cat-eye effect target recognition method named Multi-channel Saliency Processing before Fusion (MSPF). This method combines traditional cat-eye target recognition with the selective characters of visual attention. Furthermore, parallel processing enables it to achieve fast recognition. Experimental results show that the proposed method performs better in accuracy, robustness and speed compared to other methods.

  17. [The present state and progress of researches on gait recognition].

    PubMed

    Xue, Zhaojun; Jin, Jingna; Ming, Dong; Wan, Baikun

    2008-10-01

    Recognition by gait is a new field for the biometric recognition technology. Its aim is to recognize people and detect physiological, pathological and mental characters by their walk style. The use of gait as a biometric for human identification is promising. The technique of gait recognition, as an attractive research area of biomedical information detection, attracts more and more attention. In this paper is introduced a survey of the basic theory, existing gait recognition methods and potential prospects. The latest progress and key factors of research difficulties are analyzed, and future researches are envisaged.

  18. A Human Activity Recognition System Using Skeleton Data from RGBD Sensors.

    PubMed

    Cippitelli, Enea; Gasparrini, Samuele; Gambi, Ennio; Spinsante, Susanna

    2016-01-01

    The aim of Active and Assisted Living is to develop tools to promote the ageing in place of elderly people, and human activity recognition algorithms can help to monitor aged people in home environments. Different types of sensors can be used to address this task and the RGBD sensors, especially the ones used for gaming, are cost-effective and provide much information about the environment. This work aims to propose an activity recognition algorithm exploiting skeleton data extracted by RGBD sensors. The system is based on the extraction of key poses to compose a feature vector, and a multiclass Support Vector Machine to perform classification. Computation and association of key poses are carried out using a clustering algorithm, without the need of a learning algorithm. The proposed approach is evaluated on five publicly available datasets for activity recognition, showing promising results especially when applied for the recognition of AAL related actions. Finally, the current applicability of this solution in AAL scenarios and the future improvements needed are discussed.

  19. Gaussian mixture models-based ship target recognition algorithm in remote sensing infrared images

    NASA Astrophysics Data System (ADS)

    Yao, Shoukui; Qin, Xiaojuan

    2018-02-01

    Since the resolution of remote sensing infrared images is low, the features of ship targets become unstable. The issue of how to recognize ships with fuzzy features is an open problem. In this paper, we propose a novel ship target recognition algorithm based on Gaussian mixture models (GMMs). In the proposed algorithm, there are mainly two steps. At the first step, the Hu moments of these ship target images are calculated, and the GMMs are trained on the moment features of ships. At the second step, the moment feature of each ship image is assigned to the trained GMMs for recognition. Because of the scale, rotation, translation invariance property of Hu moments and the power feature-space description ability of GMMs, the GMMs-based ship target recognition algorithm can recognize ship reliably. Experimental results of a large simulating image set show that our approach is effective in distinguishing different ship types, and obtains a satisfactory ship recognition performance.

  20. Vision-based posture recognition using an ensemble classifier and a vote filter

    NASA Astrophysics Data System (ADS)

    Ji, Peng; Wu, Changcheng; Xu, Xiaonong; Song, Aiguo; Li, Huijun

    2016-10-01

    Posture recognition is a very important Human-Robot Interaction (HRI) way. To segment effective posture from an image, we propose an improved region grow algorithm which combining with the Single Gauss Color Model. The experiment shows that the improved region grow algorithm can get the complete and accurate posture than traditional Single Gauss Model and region grow algorithm, and it can eliminate the similar region from the background at the same time. In the posture recognition part, and in order to improve the recognition rate, we propose a CNN ensemble classifier, and in order to reduce the misjudgments during a continuous gesture control, a vote filter is proposed and applied to the sequence of recognition results. Comparing with CNN classifier, the CNN ensemble classifier we proposed can yield a 96.27% recognition rate, which is better than that of CNN classifier, and the proposed vote filter can improve the recognition result and reduce the misjudgments during the consecutive gesture switch.

  1. Do Dyslexic Individuals Present a Reduced Visual Attention Span? Evidence from Visual Recognition Tasks of Non-Verbal Multi-Character Arrays

    ERIC Educational Resources Information Center

    Yeari, Menahem; Isser, Michal; Schiff, Rachel

    2017-01-01

    A controversy has recently developed regarding the hypothesis that developmental dyslexia may be caused, in some cases, by a reduced visual attention span (VAS). To examine this hypothesis, independent of phonological abilities, researchers tested the ability of dyslexic participants to recognize arrays of unfamiliar visual characters. Employing…

  2. Recognition of explosives fingerprints on objects for courier services using machine learning methods and laser-induced breakdown spectroscopy.

    PubMed

    Moros, J; Serrano, J; Gallego, F J; Macías, J; Laserna, J J

    2013-06-15

    During recent years laser-induced breakdown spectroscopy (LIBS) has been considered one of the techniques with larger ability for trace detection of explosives. However, despite of the high sensitivity exhibited for this application, LIBS suffers from a limited selectivity due to difficulties in assigning the molecular origin of the spectral emissions observed. This circumstance makes the recognition of fingerprints a latent challenging problem. In the present manuscript the sorting of six explosives (chloratite, ammonal, DNT, TNT, RDX and PETN) against a broad list of potential harmless interferents (butter, fuel oil, hand cream, olive oil, …), all of them in the form of fingerprints deposited on the surfaces of objects for courier services, has been carried out. When LIBS information is processed through a multi-stage architecture algorithm built from a suitable combination of 3 learning classifiers, an unknown fingerprint may be labeled into a particular class. Neural network classifiers trained by the Levenberg-Marquardt rule were decided within 3D scatter plots projected onto the subspace of the most useful features extracted from the LIBS spectra. Experimental results demonstrate that the presented algorithm sorts fingerprints according to their hazardous character, although its spectral information is virtually identical in appearance, with rates of false negatives and false positives not beyond of 10%. These reported achievements mean a step forward in the technology readiness level of LIBS for this complex application related to defense, homeland security and force protection. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. An Indoor Pedestrian Positioning Method Using HMM with a Fuzzy Pattern Recognition Algorithm in a WLAN Fingerprint System

    PubMed Central

    Ni, Yepeng; Liu, Jianbo; Liu, Shan; Bai, Yaxin

    2016-01-01

    With the rapid development of smartphones and wireless networks, indoor location-based services have become more and more prevalent. Due to the sophisticated propagation of radio signals, the Received Signal Strength Indicator (RSSI) shows a significant variation during pedestrian walking, which introduces critical errors in deterministic indoor positioning. To solve this problem, we present a novel method to improve the indoor pedestrian positioning accuracy by embedding a fuzzy pattern recognition algorithm into a Hidden Markov Model. The fuzzy pattern recognition algorithm follows the rule that the RSSI fading has a positive correlation to the distance between the measuring point and the AP location even during a dynamic positioning measurement. Through this algorithm, we use the RSSI variation trend to replace the specific RSSI value to achieve a fuzzy positioning. The transition probability of the Hidden Markov Model is trained by the fuzzy pattern recognition algorithm with pedestrian trajectories. Using the Viterbi algorithm with the trained model, we can obtain a set of hidden location states. In our experiments, we demonstrate that, compared with the deterministic pattern matching algorithm, our method can greatly improve the positioning accuracy and shows robust environmental adaptability. PMID:27618053

  4. Neural substrates of Hanja (Logogram) and Hangul (Phonogram) character readings by functional magnetic resonance imaging.

    PubMed

    Cho, Zang-Hee; Kim, Nambeom; Bae, Sungbong; Chi, Je-Geun; Park, Chan-Woong; Ogawa, Seiji; Kim, Young-Bo

    2014-10-01

    The two basic scripts of the Korean writing system, Hanja (the logography of the traditional Korean character) and Hangul (the more newer Korean alphabet), have been used together since the 14th century. While Hanja character has its own morphemic base, Hangul being purely phonemic without morphemic base. These two, therefore, have substantially different outcomes as a language as well as different neural responses. Based on these linguistic differences between Hanja and Hangul, we have launched two studies; first was to find differences in cortical activation when it is stimulated by Hanja and Hangul reading to support the much discussed dual-route hypothesis of logographic and phonological routes in the brain by fMRI (Experiment 1). The second objective was to evaluate how Hanja and Hangul affect comprehension, therefore, recognition memory, specifically the effects of semantic transparency and morphemic clarity on memory consolidation and then related cortical activations, using functional magnetic resonance imaging (fMRI) (Experiment 2). The first fMRI experiment indicated relatively large areas of the brain are activated by Hanja reading compared to Hangul reading. The second experiment, the recognition memory study, revealed two findings, that is there is only a small difference in recognition memory for semantic transparency, while for the morphemic clarity was much larger between Hanja and Hangul. That is the morphemic clarity has significantly more effect than semantic transparency on recognition memory when studies by fMRI in correlation with behavioral study.

  5. Comparing the Frequency Effect Between the Lexical Decision and Naming Tasks in Chinese

    PubMed Central

    Wu, Jei-Tun

    2016-01-01

    In psycholinguistic research, the frequency effect can be one of the indicators for eligible experimental tasks that examine the nature of lexical access. Usually, only one of those tasks is chosen to examine lexical access in a study. Using two exemplar experiments, this paper introduces an approach to include both the lexical decision task and the naming task in a study. In the first experiment, the stimuli were Chinese characters with frequency and regularity manipulated. In the second experiment, the stimuli were switched to Chinese two-character words, in which the word frequency and the regularity of the leading character were manipulated. The logic of these two exemplar experiments was to explore some important issues such as the role of phonology on recognition by comparing the frequency effect between both the tasks. The results revealed different patterns of lexical access from those reported in the alphabetic systems. The results of Experiment 1 manifested a larger frequency effect in the naming task as compared to the LDT, when the stimuli were Chinese characters. And it is noteworthy that, in Experiment 1, when the stimuli were regular Chinese characters, the frequency effect observed in the naming task was roughly equivalent to that in the LDT. However, a smaller frequency effect was shown in the naming task as compared to the LDT, when the stimuli were switched to Chinese two-character words in Experiment 2. Taking advantage of the respective demands and characteristics in both tasks, researchers can obtain a more complete and precise picture of character/word recognition. PMID:27077703

  6. Speech Recognition Technology for Disabilities Education

    ERIC Educational Resources Information Center

    Tang, K. Wendy; Kamoua, Ridha; Sutan, Victor; Farooq, Omer; Eng, Gilbert; Chu, Wei Chern; Hou, Guofeng

    2005-01-01

    Speech recognition is an alternative to traditional methods of interacting with a computer, such as textual input through a keyboard. An effective system can replace or reduce the reliability on standard keyboard and mouse input. This can especially assist dyslexic students who have problems with character or word use and manipulation in a textual…

  7. Neighborhood Frequency Effect in Chinese Word Recognition: Evidence from Naming and Lexical Decision

    ERIC Educational Resources Information Center

    Li, Meng-Feng; Gao, Xin-Yu; Chou, Tai-Li; Wu, Jei-Tun

    2017-01-01

    Neighborhood frequency is a crucial variable to know the nature of word recognition. Different from alphabetic scripts, neighborhood frequency in Chinese is usually confounded by component character frequency and neighborhood size. Three experiments were designed to explore the role of the neighborhood frequency effect in Chinese and the stimuli…

  8. An Investigation of the Compensatory Effectiveness of Assistive Technology on Postsecondary Students with Learning Disabilities. Final Report.

    ERIC Educational Resources Information Center

    Murphy, Harry; Higgins, Eleanor

    This final report describes the activities and accomplishments of a 3-year study on the compensatory effectiveness of three assistive technologies, optical character recognition, speech synthesis, and speech recognition, on postsecondary students (N=140) with learning disabilities. These technologies were investigated relative to: (1) immediate…

  9. Is Syntactic-Category Processing Obligatory in Visual Word Recognition? Evidence from Chinese

    ERIC Educational Resources Information Center

    Wong, Andus Wing-Kuen; Chen, Hsuan-Chih

    2012-01-01

    Three experiments were conducted to investigate how syntactic-category and semantic information is processed in visual word recognition. The stimuli were two-character Chinese words in which semantic and syntactic-category ambiguities were factorially manipulated. A lexical decision task was employed in Experiment 1, whereas a semantic relatedness…

  10. 76 FR 64175 - Loans in Areas Having Special Flood Hazards; Interagency Questions and Answers Regarding Flood...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... such as logos and special characters. Identifying information that you provide, such as phone numbers... are further made in recognition of the position, set out in the revisions to proposed question and...-day notice period. However, in recognition of standard provisions in many contracts entered into...

  11. Offline handwritten word recognition using MQDF-HMMs

    NASA Astrophysics Data System (ADS)

    Ramachandrula, Sitaram; Hambarde, Mangesh; Patial, Ajay; Sahoo, Dushyant; Kochar, Shaivi

    2015-01-01

    We propose an improved HMM formulation for offline handwriting recognition (HWR). The main contribution of this work is using modified quadratic discriminant function (MQDF) [1] within HMM framework. In an MQDF-HMM the state observation likelihood is calculated by a weighted combination of MQDF likelihoods of individual Gaussians of GMM (Gaussian Mixture Model). The quadratic discriminant function (QDF) of a multivariate Gaussian can be rewritten by avoiding the inverse of covariance matrix by using the Eigen values and Eigen vectors of it. The MQDF is derived from QDF by substituting few of badly estimated lower-most Eigen values by an appropriate constant. The estimation errors of non-dominant Eigen vectors and Eigen values of covariance matrix for which the training data is insufficient can be controlled by this approach. MQDF has been successfully shown to improve the character recognition performance [1]. The usage of MQDF in HMM improves the computation, storage and modeling power of HMM when there is limited training data. We have got encouraging results on offline handwritten character (NIST database) and word recognition in English using MQDF HMMs.

  12. Computerized literature reference system: use of an optical scanner and optical character recognition software.

    PubMed

    Lossef, S V; Schwartz, L H

    1990-09-01

    A computerized reference system for radiology journal articles was developed by using an IBM-compatible personal computer with a hand-held optical scanner and optical character recognition software. This allows direct entry of scanned text from printed material into word processing or data-base files. Additionally, line diagrams and photographs of radiographs can be incorporated into these files. A text search and retrieval software program enables rapid searching for keywords in scanned documents. The hand scanner and software programs are commercially available, relatively inexpensive, and easily used. This permits construction of a personalized radiology literature file of readily accessible text and images requiring minimal typing or keystroke entry.

  13. Hyperspectral face recognition with spatiospectral information fusion and PLS regression.

    PubMed

    Uzair, Muhammad; Mahmood, Arif; Mian, Ajmal

    2015-03-01

    Hyperspectral imaging offers new opportunities for face recognition via improved discrimination along the spectral dimension. However, it poses new challenges, including low signal-to-noise ratio, interband misalignment, and high data dimensionality. Due to these challenges, the literature on hyperspectral face recognition is not only sparse but is limited to ad hoc dimensionality reduction techniques and lacks comprehensive evaluation. We propose a hyperspectral face recognition algorithm using a spatiospectral covariance for band fusion and partial least square regression for classification. Moreover, we extend 13 existing face recognition techniques, for the first time, to perform hyperspectral face recognition.We formulate hyperspectral face recognition as an image-set classification problem and evaluate the performance of seven state-of-the-art image-set classification techniques. We also test six state-of-the-art grayscale and RGB (color) face recognition algorithms after applying fusion techniques on hyperspectral images. Comparison with the 13 extended and five existing hyperspectral face recognition techniques on three standard data sets show that the proposed algorithm outperforms all by a significant margin. Finally, we perform band selection experiments to find the most discriminative bands in the visible and near infrared response spectrum.

  14. Collegial Activity Learning between Heterogeneous Sensors.

    PubMed

    Feuz, Kyle D; Cook, Diane J

    2017-11-01

    Activity recognition algorithms have matured and become more ubiquitous in recent years. However, these algorithms are typically customized for a particular sensor platform. In this paper we introduce PECO, a Personalized activity ECOsystem, that transfers learned activity information seamlessly between sensor platforms in real time so that any available sensor can continue to track activities without requiring its own extensive labeled training data. We introduce a multi-view transfer learning algorithm that facilitates this information handoff between sensor platforms and provide theoretical performance bounds for the algorithm. In addition, we empirically evaluate PECO using datasets that utilize heterogeneous sensor platforms to perform activity recognition. These results indicate that not only can activity recognition algorithms transfer important information to new sensor platforms, but any number of platforms can work together as colleagues to boost performance.

  15. Document image retrieval through word shape coding.

    PubMed

    Lu, Shijian; Li, Linlin; Tan, Chew Lim

    2008-11-01

    This paper presents a document retrieval technique that is capable of searching document images without OCR (optical character recognition). The proposed technique retrieves document images by a new word shape coding scheme, which captures the document content through annotating each word image by a word shape code. In particular, we annotate word images by using a set of topological shape features including character ascenders/descenders, character holes, and character water reservoirs. With the annotated word shape codes, document images can be retrieved by either query keywords or a query document image. Experimental results show that the proposed document image retrieval technique is fast, efficient, and tolerant to various types of document degradation.

  16. Pulmonary Nodule Recognition Based on Multiple Kernel Learning Support Vector Machine-PSO

    PubMed Central

    Zhu, Zhichuan; Zhao, Qingdong; Liu, Liwei; Zhang, Lijuan

    2018-01-01

    Pulmonary nodule recognition is the core module of lung CAD. The Support Vector Machine (SVM) algorithm has been widely used in pulmonary nodule recognition, and the algorithm of Multiple Kernel Learning Support Vector Machine (MKL-SVM) has achieved good results therein. Based on grid search, however, the MKL-SVM algorithm needs long optimization time in course of parameter optimization; also its identification accuracy depends on the fineness of grid. In the paper, swarm intelligence is introduced and the Particle Swarm Optimization (PSO) is combined with MKL-SVM algorithm to be MKL-SVM-PSO algorithm so as to realize global optimization of parameters rapidly. In order to obtain the global optimal solution, different inertia weights such as constant inertia weight, linear inertia weight, and nonlinear inertia weight are applied to pulmonary nodules recognition. The experimental results show that the model training time of the proposed MKL-SVM-PSO algorithm is only 1/7 of the training time of the MKL-SVM grid search algorithm, achieving better recognition effect. Moreover, Euclidean norm of normalized error vector is proposed to measure the proximity between the average fitness curve and the optimal fitness curve after convergence. Through statistical analysis of the average of 20 times operation results with different inertial weights, it can be seen that the dynamic inertial weight is superior to the constant inertia weight in the MKL-SVM-PSO algorithm. In the dynamic inertial weight algorithm, the parameter optimization time of nonlinear inertia weight is shorter; the average fitness value after convergence is much closer to the optimal fitness value, which is better than the linear inertial weight. Besides, a better nonlinear inertial weight is verified. PMID:29853983

  17. Pulmonary Nodule Recognition Based on Multiple Kernel Learning Support Vector Machine-PSO.

    PubMed

    Li, Yang; Zhu, Zhichuan; Hou, Alin; Zhao, Qingdong; Liu, Liwei; Zhang, Lijuan

    2018-01-01

    Pulmonary nodule recognition is the core module of lung CAD. The Support Vector Machine (SVM) algorithm has been widely used in pulmonary nodule recognition, and the algorithm of Multiple Kernel Learning Support Vector Machine (MKL-SVM) has achieved good results therein. Based on grid search, however, the MKL-SVM algorithm needs long optimization time in course of parameter optimization; also its identification accuracy depends on the fineness of grid. In the paper, swarm intelligence is introduced and the Particle Swarm Optimization (PSO) is combined with MKL-SVM algorithm to be MKL-SVM-PSO algorithm so as to realize global optimization of parameters rapidly. In order to obtain the global optimal solution, different inertia weights such as constant inertia weight, linear inertia weight, and nonlinear inertia weight are applied to pulmonary nodules recognition. The experimental results show that the model training time of the proposed MKL-SVM-PSO algorithm is only 1/7 of the training time of the MKL-SVM grid search algorithm, achieving better recognition effect. Moreover, Euclidean norm of normalized error vector is proposed to measure the proximity between the average fitness curve and the optimal fitness curve after convergence. Through statistical analysis of the average of 20 times operation results with different inertial weights, it can be seen that the dynamic inertial weight is superior to the constant inertia weight in the MKL-SVM-PSO algorithm. In the dynamic inertial weight algorithm, the parameter optimization time of nonlinear inertia weight is shorter; the average fitness value after convergence is much closer to the optimal fitness value, which is better than the linear inertial weight. Besides, a better nonlinear inertial weight is verified.

  18. Acoustic diagnosis of pulmonary hypertension: automated speech- recognition-inspired classification algorithm outperforms physicians

    NASA Astrophysics Data System (ADS)

    Kaddoura, Tarek; Vadlamudi, Karunakar; Kumar, Shine; Bobhate, Prashant; Guo, Long; Jain, Shreepal; Elgendi, Mohamed; Coe, James Y.; Kim, Daniel; Taylor, Dylan; Tymchak, Wayne; Schuurmans, Dale; Zemp, Roger J.; Adatia, Ian

    2016-09-01

    We hypothesized that an automated speech- recognition-inspired classification algorithm could differentiate between the heart sounds in subjects with and without pulmonary hypertension (PH) and outperform physicians. Heart sounds, electrocardiograms, and mean pulmonary artery pressures (mPAp) were recorded simultaneously. Heart sound recordings were digitized to train and test speech-recognition-inspired classification algorithms. We used mel-frequency cepstral coefficients to extract features from the heart sounds. Gaussian-mixture models classified the features as PH (mPAp ≥ 25 mmHg) or normal (mPAp < 25 mmHg). Physicians blinded to patient data listened to the same heart sound recordings and attempted a diagnosis. We studied 164 subjects: 86 with mPAp ≥ 25 mmHg (mPAp 41 ± 12 mmHg) and 78 with mPAp < 25 mmHg (mPAp 17 ± 5 mmHg) (p  < 0.005). The correct diagnostic rate of the automated speech-recognition-inspired algorithm was 74% compared to 56% by physicians (p = 0.005). The false positive rate for the algorithm was 34% versus 50% (p = 0.04) for clinicians. The false negative rate for the algorithm was 23% and 68% (p = 0.0002) for physicians. We developed an automated speech-recognition-inspired classification algorithm for the acoustic diagnosis of PH that outperforms physicians that could be used to screen for PH and encourage earlier specialist referral.

  19. Text Line Detection from Rectangle Traffic Panels of Natural Scene

    NASA Astrophysics Data System (ADS)

    Wang, Shiyuan; Huang, Linlin; Hu, Jian

    2018-01-01

    Traffic sign detection and recognition is very important for Intelligent Transportation. Among traffic signs, traffic panel contains rich information. However, due to low resolution and blur in the rectangular traffic panel, it is difficult to extract the character and symbols. In this paper, we propose a coarse-to-fine method to detect the Chinese character on traffic panels from natural scenes. Given a traffic panel Color Quantization is applied to extract candidate regions of Chinese characters. Second, a multi-stage filter based on learning is applied to discard the non-character regions. Third, we aggregate the characters for text lines by Distance Metric Learning method. Experimental results on real traffic images from Baidu Street View demonstrate the effectiveness of the proposed method.

  20. Scalable ranked retrieval using document images

    NASA Astrophysics Data System (ADS)

    Jain, Rajiv; Oard, Douglas W.; Doermann, David

    2013-12-01

    Despite the explosion of text on the Internet, hard copy documents that have been scanned as images still play a significant role for some tasks. The best method to perform ranked retrieval on a large corpus of document images, however, remains an open research question. The most common approach has been to perform text retrieval using terms generated by optical character recognition. This paper, by contrast, examines whether a scalable segmentation-free image retrieval algorithm, which matches sub-images containing text or graphical objects, can provide additional benefit in satisfying a user's information needs on a large, real world dataset. Results on 7 million scanned pages from the CDIP v1.0 test collection show that content based image retrieval finds a substantial number of documents that text retrieval misses, and that when used as a basis for relevance feedback can yield improvements in retrieval effectiveness.

  1. Building Structured Personal Health Records from Photographs of Printed Medical Records.

    PubMed

    Li, Xiang; Hu, Gang; Teng, Xiaofei; Xie, Guotong

    2015-01-01

    Personal health records (PHRs) provide patient-centric healthcare by making health records accessible to patients. In China, it is very difficult for individuals to access electronic health records. Instead, individuals can easily obtain the printed copies of their own medical records, such as prescriptions and lab test reports, from hospitals. In this paper, we propose a practical approach to extract structured data from printed medical records photographed by mobile phones. An optical character recognition (OCR) pipeline is performed to recognize text in a document photo, which addresses the problems of low image quality and content complexity by image pre-processing and multiple OCR engine synthesis. A series of annotation algorithms that support flexible layouts are then used to identify the document type, entities of interest, and entity correlations, from which a structured PHR document is built. The proposed approach was applied to real world medical records to demonstrate the effectiveness and applicability.

  2. Building Structured Personal Health Records from Photographs of Printed Medical Records

    PubMed Central

    Li, Xiang; Hu, Gang; Teng, Xiaofei; Xie, Guotong

    2015-01-01

    Personal health records (PHRs) provide patient-centric healthcare by making health records accessible to patients. In China, it is very difficult for individuals to access electronic health records. Instead, individuals can easily obtain the printed copies of their own medical records, such as prescriptions and lab test reports, from hospitals. In this paper, we propose a practical approach to extract structured data from printed medical records photographed by mobile phones. An optical character recognition (OCR) pipeline is performed to recognize text in a document photo, which addresses the problems of low image quality and content complexity by image pre-processing and multiple OCR engine synthesis. A series of annotation algorithms that support flexible layouts are then used to identify the document type, entities of interest, and entity correlations, from which a structured PHR document is built. The proposed approach was applied to real world medical records to demonstrate the effectiveness and applicability. PMID:26958219

  3. Differentiation of perceptual and semantic subsequent memory effects using an orthographic paradigm.

    PubMed

    Kuo, Michael C C; Liu, Karen P Y; Ting, Kin Hung; Chan, Chetwyn C H

    2012-11-27

    This study aimed to differentiate perceptual and semantic encoding processes using subsequent memory effects (SMEs) elicited by the recognition of orthographs of single Chinese characters. Participants studied a series of Chinese characters perceptually (by inspecting orthographic components) or semantically (by determining the object making sounds), and then made studied or unstudied judgments during the recognition phase. Recognition performance in terms of d-prime measure in the semantic condition was higher, though not significant, than that of the perceptual condition. The between perceptual-semantic condition differences in SMEs at P550 and late positive component latencies (700-1000ms) were not significant in the frontal area. An additional analysis identified larger SME in the semantic condition during 600-1000ms in the frontal pole regions. These results indicate that coordination and incorporation of orthographic information into mental representation is essential to both task conditions. The differentiation was also revealed in earlier SMEs (perceptual>semantic) at N3 (240-360ms) latency, which is a novel finding. The left-distributed N3 was interpreted as more efficient processing of meaning with semantically learned characters. Frontal pole SMEs indicated strategic processing by executive functions, which would further enhance memory. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Feature-extracted joint transform correlation.

    PubMed

    Alam, M S

    1995-12-10

    A new technique for real-time optical character recognition that uses a joint transform correlator is proposed. This technique employs feature-extracted patterns for the reference image to detect a wide range of characters in one step. The proposed technique significantly enhances the processing speed when compared with the presently available joint transform correlator architectures and shows feasibility for multichannel joint transform correlation.

  5. Loose, Falling Characters and Sentences: The Persistence of the OCR Problem in Digital Repository E-Books

    ERIC Educational Resources Information Center

    Kichuk, Diana

    2015-01-01

    The electronic conversion of scanned image files to readable text using optical character recognition (OCR) software and the subsequent migration of raw OCR text to e-book text file formats are key remediation or media conversion technologies used in digital repository e-book production. Despite real progress, the OCR problem of reliability and…

  6. Younger and Older Users’ Recognition of Virtual Agent Facial Expressions

    PubMed Central

    Beer, Jenay M.; Smarr, Cory-Ann; Fisk, Arthur D.; Rogers, Wendy A.

    2015-01-01

    As technology advances, robots and virtual agents will be introduced into the home and healthcare settings to assist individuals, both young and old, with everyday living tasks. Understanding how users recognize an agent’s social cues is therefore imperative, especially in social interactions. Facial expression, in particular, is one of the most common non-verbal cues used to display and communicate emotion in on-screen agents (Cassell, Sullivan, Prevost, & Churchill, 2000). Age is important to consider because age-related differences in emotion recognition of human facial expression have been supported (Ruffman et al., 2008), with older adults showing a deficit for recognition of negative facial expressions. Previous work has shown that younger adults can effectively recognize facial emotions displayed by agents (Bartneck & Reichenbach, 2005; Courgeon et al. 2009; 2011; Breazeal, 2003); however, little research has compared in-depth younger and older adults’ ability to label a virtual agent’s facial emotions, an import consideration because social agents will be required to interact with users of varying ages. If such age-related differences exist for recognition of virtual agent facial expressions, we aim to understand if those age-related differences are influenced by the intensity of the emotion, dynamic formation of emotion (i.e., a neutral expression developing into an expression of emotion through motion), or the type of virtual character differing by human-likeness. Study 1 investigated the relationship between age-related differences, the implication of dynamic formation of emotion, and the role of emotion intensity in emotion recognition of the facial expressions of a virtual agent (iCat). Study 2 examined age-related differences in recognition expressed by three types of virtual characters differing by human-likeness (non-humanoid iCat, synthetic human, and human). Study 2 also investigated the role of configural and featural processing as a possible explanation for age-related differences in emotion recognition. First, our findings show age-related differences in the recognition of emotions expressed by a virtual agent, with older adults showing lower recognition for the emotions of anger, disgust, fear, happiness, sadness, and neutral. These age-related difference might be explained by older adults having difficulty discriminating similarity in configural arrangement of facial features for certain emotions; for example, older adults often mislabeled the similar emotions of fear as surprise. Second, our results did not provide evidence for the dynamic formation improving emotion recognition; but, in general, the intensity of the emotion improved recognition. Lastly, we learned that emotion recognition, for older and younger adults, differed by character type, from best to worst: human, synthetic human, and then iCat. Our findings provide guidance for design, as well as the development of a framework of age-related differences in emotion recognition. PMID:25705105

  7. A novel speech processing algorithm based on harmonicity cues in cochlear implant

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Chen, Yousheng; Zhang, Zongping; Chen, Yan; Zhang, Weifeng

    2017-08-01

    This paper proposed a novel speech processing algorithm in cochlear implant, which used harmonicity cues to enhance tonal information in Mandarin Chinese speech recognition. The input speech was filtered by a 4-channel band-pass filter bank. The frequency ranges for the four bands were: 300-621, 621-1285, 1285-2657, and 2657-5499 Hz. In each pass band, temporal envelope and periodicity cues (TEPCs) below 400 Hz were extracted by full wave rectification and low-pass filtering. The TEPCs were modulated by a sinusoidal carrier, the frequency of which was fundamental frequency (F0) and its harmonics most close to the center frequency of each band. Signals from each band were combined together to obtain an output speech. Mandarin tone, word, and sentence recognition in quiet listening conditions were tested for the extensively used continuous interleaved sampling (CIS) strategy and the novel F0-harmonic algorithm. Results found that the F0-harmonic algorithm performed consistently better than CIS strategy in Mandarin tone, word, and sentence recognition. In addition, sentence recognition rate was higher than word recognition rate, as a result of contextual information in the sentence. Moreover, tone 3 and 4 performed better than tone 1 and tone 2, due to the easily identified features of the former. In conclusion, the F0-harmonic algorithm could enhance tonal information in cochlear implant speech processing due to the use of harmonicity cues, thereby improving Mandarin tone, word, and sentence recognition. Further study will focus on the test of the F0-harmonic algorithm in noisy listening conditions.

  8. A neural network based artificial vision system for licence plate recognition.

    PubMed

    Draghici, S

    1997-02-01

    This paper presents a neural network based artificial vision system able to analyze the image of a car given by a camera, locate the registration plate and recognize the registration number of the car. The paper describes in detail various practical problems encountered in implementing this particular application and the solutions used to solve them. The main features of the system presented are: controlled stability-plasticity behavior, controlled reliability threshold, both off-line and on-line learning, self assessment of the output reliability and high reliability based on high level multiple feedback. The system has been designed using a modular approach. Sub-modules can be upgraded and/or substituted independently, thus making the system potentially suitable in a large variety of vision applications. The OCR engine was designed as an interchangeable plug-in module. This allows the user to choose an OCR engine which is suited to the particular application and to upgrade it easily in the future. At present, there are several versions of this OCR engine. One of them is based on a fully connected feedforward artificial neural network with sigmoidal activation functions. This network can be trained with various training algorithms such as error backpropagation. An alternative OCR engine is based on the constraint based decomposition (CBD) training architecture. The system has showed the following performances (on average) on real-world data: successful plate location and segmentation about 99%, successful character recognition about 98% and successful recognition of complete registration plates about 80%.

  9. Character-level neural network for biomedical named entity recognition.

    PubMed

    Gridach, Mourad

    2017-06-01

    Biomedical named entity recognition (BNER), which extracts important named entities such as genes and proteins, is a challenging task in automated systems that mine knowledge in biomedical texts. The previous state-of-the-art systems required large amounts of task-specific knowledge in the form of feature engineering, lexicons and data pre-processing to achieve high performance. In this paper, we introduce a novel neural network architecture that benefits from both word- and character-level representations automatically, by using a combination of bidirectional long short-term memory (LSTM) and conditional random field (CRF) eliminating the need for most feature engineering tasks. We evaluate our system on two datasets: JNLPBA corpus and the BioCreAtIvE II Gene Mention (GM) corpus. We obtained state-of-the-art performance by outperforming the previous systems. To the best of our knowledge, we are the first to investigate the combination of deep neural networks, CRF, word embeddings and character-level representation in recognizing biomedical named entities. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Feature extraction for face recognition via Active Shape Model (ASM) and Active Appearance Model (AAM)

    NASA Astrophysics Data System (ADS)

    Iqtait, M.; Mohamad, F. S.; Mamat, M.

    2018-03-01

    Biometric is a pattern recognition system which is used for automatic recognition of persons based on characteristics and features of an individual. Face recognition with high recognition rate is still a challenging task and usually accomplished in three phases consisting of face detection, feature extraction, and expression classification. Precise and strong location of trait point is a complicated and difficult issue in face recognition. Cootes proposed a Multi Resolution Active Shape Models (ASM) algorithm, which could extract specified shape accurately and efficiently. Furthermore, as the improvement of ASM, Active Appearance Models algorithm (AAM) is proposed to extracts both shape and texture of specified object simultaneously. In this paper we give more details about the two algorithms and give the results of experiments, testing their performance on one dataset of faces. We found that the ASM is faster and gains more accurate trait point location than the AAM, but the AAM gains a better match to the texture.

  11. Infrared vehicle recognition using unsupervised feature learning based on K-feature

    NASA Astrophysics Data System (ADS)

    Lin, Jin; Tan, Yihua; Xia, Haijiao; Tian, Jinwen

    2018-02-01

    Subject to the complex battlefield environment, it is difficult to establish a complete knowledge base in practical application of vehicle recognition algorithms. The infrared vehicle recognition is always difficult and challenging, which plays an important role in remote sensing. In this paper we propose a new unsupervised feature learning method based on K-feature to recognize vehicle in infrared images. First, we use the target detection algorithm which is based on the saliency to detect the initial image. Then, the unsupervised feature learning based on K-feature, which is generated by Kmeans clustering algorithm that extracted features by learning a visual dictionary from a large number of samples without label, is calculated to suppress the false alarm and improve the accuracy. Finally, the vehicle target recognition image is finished by some post-processing. Large numbers of experiments demonstrate that the proposed method has satisfy recognition effectiveness and robustness for vehicle recognition in infrared images under complex backgrounds, and it also improve the reliability of it.

  12. Wide-threat detection: recognition of adversarial missions and activity patterns in Empire Challenge 2009

    NASA Astrophysics Data System (ADS)

    Levchuk, Georgiy; Shabarekh, Charlotte; Furjanic, Caitlin

    2011-06-01

    In this paper, we present results of adversarial activity recognition using data collected in the Empire Challenge (EC 09) exercise. The EC09 experiment provided an opportunity to evaluate our probabilistic spatiotemporal mission recognition algorithms using the data from live air-born and ground sensors. Using ambiguous and noisy data about locations of entities and motion events on the ground, the algorithms inferred the types and locations of OPFOR activities, including reconnaissance, cache runs, IED emplacements, logistics, and planning meetings. In this paper, we present detailed summary of the validation study and recognition accuracy results. Our algorithms were able to detect locations and types of over 75% of hostile activities in EC09 while producing 25% false alarms.

  13. An adaptive deep Q-learning strategy for handwritten digit recognition.

    PubMed

    Qiao, Junfei; Wang, Gongming; Li, Wenjing; Chen, Min

    2018-02-22

    Handwritten digits recognition is a challenging problem in recent years. Although many deep learning-based classification algorithms are studied for handwritten digits recognition, the recognition accuracy and running time still need to be further improved. In this paper, an adaptive deep Q-learning strategy is proposed to improve accuracy and shorten running time for handwritten digit recognition. The adaptive deep Q-learning strategy combines the feature-extracting capability of deep learning and the decision-making of reinforcement learning to form an adaptive Q-learning deep belief network (Q-ADBN). First, Q-ADBN extracts the features of original images using an adaptive deep auto-encoder (ADAE), and the extracted features are considered as the current states of Q-learning algorithm. Second, Q-ADBN receives Q-function (reward signal) during recognition of the current states, and the final handwritten digits recognition is implemented by maximizing the Q-function using Q-learning algorithm. Finally, experimental results from the well-known MNIST dataset show that the proposed Q-ADBN has a superiority to other similar methods in terms of accuracy and running time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Appearance-based face recognition and light-fields.

    PubMed

    Gross, Ralph; Matthews, Iain; Baker, Simon

    2004-04-01

    Arguably the most important decision to be made when developing an object recognition algorithm is selecting the scene measurements or features on which to base the algorithm. In appearance-based object recognition, the features are chosen to be the pixel intensity values in an image of the object. These pixel intensities correspond directly to the radiance of light emitted from the object along certain rays in space. The set of all such radiance values over all possible rays is known as the plenoptic function or light-field. In this paper, we develop a theory of appearance-based object recognition from light-fields. This theory leads directly to an algorithm for face recognition across pose that uses as many images of the face as are available, from one upwards. All of the pixels, whichever image they come from, are treated equally and used to estimate the (eigen) light-field of the object. The eigen light-field is then used as the set of features on which to base recognition, analogously to how the pixel intensities are used in appearance-based face and object recognition.

  15. A Fault Recognition System for Gearboxes of Wind Turbines

    NASA Astrophysics Data System (ADS)

    Yang, Zhiling; Huang, Haiyue; Yin, Zidong

    2017-12-01

    Costs of maintenance and loss of power generation caused by the faults of wind turbines gearboxes are the main components of operation costs for a wind farm. Therefore, the technology of condition monitoring and fault recognition for wind turbines gearboxes is becoming a hot topic. A condition monitoring and fault recognition system (CMFRS) is presented for CBM of wind turbines gearboxes in this paper. The vibration signals from acceleration sensors at different locations of gearbox and the data from supervisory control and data acquisition (SCADA) system are collected to CMFRS. Then the feature extraction and optimization algorithm is applied to these operational data. Furthermore, to recognize the fault of gearboxes, the GSO-LSSVR algorithm is proposed, combining the least squares support vector regression machine (LSSVR) with the Glowworm Swarm Optimization (GSO) algorithm. Finally, the results show that the fault recognition system used in this paper has a high rate for identifying three states of wind turbines’ gears; besides, the combination of date features can affect the identifying rate and the selection optimization algorithm presented in this paper can get a pretty good date feature subset for the fault recognition.

  16. Analog design of a new neural network for optical character recognition.

    PubMed

    Morns, I P; Dlay, S S

    1999-01-01

    An electronic circuit is presented for a new type of neural network, which gives a recognition rate of over 100 kHz. The network is used to classify handwritten numerals, presented as Fourier and wavelet descriptors, and has been shown to train far quicker than the popular backpropagation network while maintaining classification accuracy.

  17. Detailed Phonetic Labeling of Multi-language Database for Spoken Language Processing Applications

    DTIC Science & Technology

    2015-03-01

    which contains about 60 interfering speakers as well as background music in a bar. The top panel is again clean training /noisy testing settings, and...recognition system for Mandarin was developed and tested. Character recognition rates as high as 88% were obtained, using an approximately 40 training ...Tool_ComputeFeat.m) .............................................................................................................. 50 6.3. Training

  18. 26 CFR 1.367(a)-6T - Transfer of foreign branch with previously deducted losses (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the recognition of the gain realized on the transfer. Paragraph (c) of this section sets forth rules concerning the character of, and limitations on, the gain required to be recognized. Paragraph (d) of this... section. Finally, paragraph (g) of this section defines the term foreign branch. (b) Recognition of gain...

  19. Classifying performance impairment in response to sleep loss using pattern recognition algorithms on single session testing

    PubMed Central

    St. Hilaire, Melissa A.; Sullivan, Jason P.; Anderson, Clare; Cohen, Daniel A.; Barger, Laura K.; Lockley, Steven W.; Klerman, Elizabeth B.

    2012-01-01

    There is currently no “gold standard” marker of cognitive performance impairment resulting from sleep loss. We utilized pattern recognition algorithms to determine which features of data collected under controlled laboratory conditions could most reliably identify cognitive performance impairment in response to sleep loss using data from only one testing session, such as would occur in the “real world” or field conditions. A training set for testing the pattern recognition algorithms was developed using objective Psychomotor Vigilance Task (PVT) and subjective Karolinska Sleepiness Scale (KSS) data collected from laboratory studies during which subjects were sleep deprived for 26 – 52 hours. The algorithm was then tested in data from both laboratory and field experiments. The pattern recognition algorithm was able to identify performance impairment with a single testing session in individuals studied under laboratory conditions using PVT, KSS, length of time awake and time of day information with sensitivity and specificity as high as 82%. When this algorithm was tested on data collected under real-world conditions from individuals whose data were not in the training set, accuracy of predictions for individuals categorized with low performance impairment were as high as 98%. Predictions for medium and severe performance impairment were less accurate. We conclude that pattern recognition algorithms may be a promising method for identifying performance impairment in individuals using only current information about the individual’s behavior. Single testing features (e.g., number of PVT lapses) with high correlation with performance impairment in the laboratory setting may not be the best indicators of performance impairment under real-world conditions. Pattern recognition algorithms should be further tested for their ability to be used in conjunction with other assessments of sleepiness in real-world conditions to quantify performance impairment in response to sleep loss. PMID:22959616

  20. Synthesis of Common Arabic Handwritings to Aid Optical Character Recognition Research.

    PubMed

    Dinges, Laslo; Al-Hamadi, Ayoub; Elzobi, Moftah; El-Etriby, Sherif

    2016-03-11

    Document analysis tasks such as pattern recognition, word spotting or segmentation, require comprehensive databases for training and validation. Not only variations in writing style but also the used list of words is of importance in the case that training samples should reflect the input of a specific area of application. However, generation of training samples is expensive in the sense of manpower and time, particularly if complete text pages including complex ground truth are required. This is why there is a lack of such databases, especially for Arabic, the second most popular language. However, Arabic handwriting recognition involves different preprocessing, segmentation and recognition methods. Each requires particular ground truth or samples to enable optimal training and validation, which are often not covered by the currently available databases. To overcome this issue, we propose a system that synthesizes Arabic handwritten words and text pages and generates corresponding detailed ground truth. We use these syntheses to validate a new, segmentation based system that recognizes handwritten Arabic words. We found that a modification of an Active Shape Model based character classifiers-that we proposed earlier-improves the word recognition accuracy. Further improvements are achieved, by using a vocabulary of the 50,000 most common Arabic words for error correction.

  1. Synthesis of Common Arabic Handwritings to Aid Optical Character Recognition Research

    PubMed Central

    Dinges, Laslo; Al-Hamadi, Ayoub; Elzobi, Moftah; El-etriby, Sherif

    2016-01-01

    Document analysis tasks such as pattern recognition, word spotting or segmentation, require comprehensive databases for training and validation. Not only variations in writing style but also the used list of words is of importance in the case that training samples should reflect the input of a specific area of application. However, generation of training samples is expensive in the sense of manpower and time, particularly if complete text pages including complex ground truth are required. This is why there is a lack of such databases, especially for Arabic, the second most popular language. However, Arabic handwriting recognition involves different preprocessing, segmentation and recognition methods. Each requires particular ground truth or samples to enable optimal training and validation, which are often not covered by the currently available databases. To overcome this issue, we propose a system that synthesizes Arabic handwritten words and text pages and generates corresponding detailed ground truth. We use these syntheses to validate a new, segmentation based system that recognizes handwritten Arabic words. We found that a modification of an Active Shape Model based character classifiers—that we proposed earlier—improves the word recognition accuracy. Further improvements are achieved, by using a vocabulary of the 50,000 most common Arabic words for error correction. PMID:26978368

  2. Online Feature Transformation Learning for Cross-Domain Object Category Recognition.

    PubMed

    Zhang, Xuesong; Zhuang, Yan; Wang, Wei; Pedrycz, Witold

    2017-06-09

    In this paper, we introduce a new research problem termed online feature transformation learning in the context of multiclass object category recognition. The learning of a feature transformation is viewed as learning a global similarity metric function in an online manner. We first consider the problem of online learning a feature transformation matrix expressed in the original feature space and propose an online passive aggressive feature transformation algorithm. Then these original features are mapped to kernel space and an online single kernel feature transformation (OSKFT) algorithm is developed to learn a nonlinear feature transformation. Based on the OSKFT and the existing Hedge algorithm, a novel online multiple kernel feature transformation algorithm is also proposed, which can further improve the performance of online feature transformation learning in large-scale application. The classifier is trained with k nearest neighbor algorithm together with the learned similarity metric function. Finally, we experimentally examined the effect of setting different parameter values in the proposed algorithms and evaluate the model performance on several multiclass object recognition data sets. The experimental results demonstrate the validity and good performance of our methods on cross-domain and multiclass object recognition application.

  3. Fast and accurate face recognition based on image compression

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Blasch, Erik

    2017-05-01

    Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.

  4. A Palmprint Recognition Algorithm Using Phase-Only Correlation

    NASA Astrophysics Data System (ADS)

    Ito, Koichi; Aoki, Takafumi; Nakajima, Hiroshi; Kobayashi, Koji; Higuchi, Tatsuo

    This paper presents a palmprint recognition algorithm using Phase-Only Correlation (POC). The use of phase components in 2D (two-dimensional) discrete Fourier transforms of palmprint images makes it possible to achieve highly robust image registration and matching. In the proposed algorithm, POC is used to align scaling, rotation and translation between two palmprint images, and evaluate similarity between them. Experimental evaluation using a palmprint image database clearly demonstrates efficient matching performance of the proposed algorithm.

  5. Simulation and performance of an artificial retina for 40 MHz track reconstruction

    DOE PAGES

    Abba, A.; Bedeschi, F.; Citterio, M.; ...

    2015-03-05

    We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of 40 MHz. Performances of the artificial retina algorithm are assessed using the official Monte Carlo samples of the LHCb experiment. We found performances for the retina pattern-recognition algorithm comparable with the full LHCb reconstruction algorithm.

  6. Neural network and letter recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hue Yeon.

    Neural net architectures and learning algorithms that recognize hand written 36 alphanumeric characters are studied. The thin line input patterns written in 32 x 32 binary array are used. The system is comprised of two major components, viz. a preprocessing unit and a Recognition unit. The preprocessing unit in turn consists of three layers of neurons; the U-layer, the V-layer, and the C-layer. The functions of the U-layer is to extract local features by template matching. The correlation between the detected local features are considered. Through correlating neurons in a plane with their neighboring neurons, the V-layer would thicken themore » on-cells or lines that are groups of on-cells of the previous layer. These two correlations would yield some deformation tolerance and some of the rotational tolerance of the system. The C-layer then compresses data through the Gabor transform. Pattern dependent choice of center and wavelengths of Gabor filters is the cause of shift and scale tolerance of the system. Three different learning schemes had been investigated in the recognition unit, namely; the error back propagation learning with hidden units, a simple perceptron learning, and a competitive learning. Their performances were analyzed and compared. Since sometimes the network fails to distinguish between two letters that are inherently similar, additional ambiguity resolving neural nets are introduced on top of the above main neural net. The two dimensional Fourier transform is used as the preprocessing and the perceptron is used as the recognition unit of the ambiguity resolver. One hundred different person's handwriting sets are collected. Some of these are used as the training sets and the remainders are used as the test sets.« less

  7. Recognition of Time Stamps on Full-Disk Hα Images Using Machine Learning Methods

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Huang, N.; Jing, J.; Liu, C.; Wang, H.; Fu, G.

    2016-12-01

    Observation and understanding of the physics of the 11-year solar activity cycle and 22-year magnetic cycle are among the most important research topics in solar physics. The solar cycle is responsible for magnetic field and particle fluctuation in the near-earth environment that have been found increasingly important in affecting the living of human beings in the modern era. A systematic study of large-scale solar activities, as made possible by our rich data archive, will further help us to understand the global-scale magnetic fields that are closely related to solar cycles. The long-time-span data archive includes both full-disk and high-resolution Hα images. Prior to the widely use of CCD cameras in 1990s, 35-mm films were the major media to store images. The research group at NJIT recently finished the digitization of film data obtained by the National Solar Observatory (NSO) and Big Bear Solar Observatory (BBSO) covering the period of 1953 to 2000. The total volume of data exceeds 60 TB. To make this huge database scientific valuable, some processing and calibration are required. One of the most important steps is to read the time stamps on all of the 14 million images, which is almost impossible to be done manually. We implemented three different methods to recognize the time stamps automatically, including Optical Character Recognition (OCR), Classification Tree and TensorFlow. The latter two are known as machine learning algorithms which are very popular now a day in pattern recognition area. We will present some sample images and the results of clock recognition from all three methods.

  8. Hybrid Cryptosystem Using Tiny Encryption Algorithm and LUC Algorithm

    NASA Astrophysics Data System (ADS)

    Rachmawati, Dian; Sharif, Amer; Jaysilen; Andri Budiman, Mohammad

    2018-01-01

    Security becomes a very important issue in data transmission and there are so many methods to make files more secure. One of that method is cryptography. Cryptography is a method to secure file by writing the hidden code to cover the original file. Therefore, if the people do not involve in cryptography, they cannot decrypt the hidden code to read the original file. There are many methods are used in cryptography, one of that method is hybrid cryptosystem. A hybrid cryptosystem is a method that uses a symmetric algorithm to secure the file and use an asymmetric algorithm to secure the symmetric algorithm key. In this research, TEA algorithm is used as symmetric algorithm and LUC algorithm is used as an asymmetric algorithm. The system is tested by encrypting and decrypting the file by using TEA algorithm and using LUC algorithm to encrypt and decrypt the TEA key. The result of this research is by using TEA Algorithm to encrypt the file, the cipher text form is the character from ASCII (American Standard for Information Interchange) table in the form of hexadecimal numbers and the cipher text size increase by sixteen bytes as the plaintext length is increased by eight characters.

  9. Enhancement and character recognition of the erased colophon of a 15th-century Hebrew prayer book

    NASA Astrophysics Data System (ADS)

    Walvoord, Derek J.; Easton, Roger L., Jr.; Knox, Keith T.; Heimbueger, Matthew

    2005-01-01

    A handwritten codex often included an inscription that listed facts about its publication, such as the names of the scribe and patron, date of publication, the city where the book was copied, etc. These facts obviously provide essential information to a historian studying the provenance of the codex. Unfortunately, this page was sometimes erased after the sale of the book to a new owner, often by scraping off the original ink. The importance of recovering this information would be difficult to overstate. This paper reports on the methods of imaging, image enhancement, and character recognition that were applied to this page in a Hebrew prayer book copied in Florence in the 15th century.

  10. Enhancement and character recognition of the erased colophon of a 15th-century Hebrew prayer book

    NASA Astrophysics Data System (ADS)

    Walvoord, Derek J.; Easton, Roger L., Jr.; Knox, Keith T.; Heimbueger, Matthew

    2004-12-01

    A handwritten codex often included an inscription that listed facts about its publication, such as the names of the scribe and patron, date of publication, the city where the book was copied, etc. These facts obviously provide essential information to a historian studying the provenance of the codex. Unfortunately, this page was sometimes erased after the sale of the book to a new owner, often by scraping off the original ink. The importance of recovering this information would be difficult to overstate. This paper reports on the methods of imaging, image enhancement, and character recognition that were applied to this page in a Hebrew prayer book copied in Florence in the 15th century.

  11. DCL System Research Using Advanced Approaches for Land-based or Ship-based Real-Time Recognition and Localization of Marine Mammals

    DTIC Science & Technology

    2012-09-30

    recognition. Algorithm design and statistical analysis and feature analysis. Post -Doctoral Associate, Cornell University, Bioacoustics Research...short. The HPC-ADA was designed based on fielded systems [1-4, 6] that offer a variety of desirable attributes, specifically dynamic resource...The software package was designed to utilize parallel and distributed processing for running recognition and other advanced algorithms. DeLMA

  12. Using an Improved SIFT Algorithm and Fuzzy Closed-Loop Control Strategy for Object Recognition in Cluttered Scenes

    PubMed Central

    Nie, Haitao; Long, Kehui; Ma, Jun; Yue, Dan; Liu, Jinguo

    2015-01-01

    Partial occlusions, large pose variations, and extreme ambient illumination conditions generally cause the performance degradation of object recognition systems. Therefore, this paper presents a novel approach for fast and robust object recognition in cluttered scenes based on an improved scale invariant feature transform (SIFT) algorithm and a fuzzy closed-loop control method. First, a fast SIFT algorithm is proposed by classifying SIFT features into several clusters based on several attributes computed from the sub-orientation histogram (SOH), in the feature matching phase only features that share nearly the same corresponding attributes are compared. Second, a feature matching step is performed following a prioritized order based on the scale factor, which is calculated between the object image and the target object image, guaranteeing robust feature matching. Finally, a fuzzy closed-loop control strategy is applied to increase the accuracy of the object recognition and is essential for autonomous object manipulation process. Compared to the original SIFT algorithm for object recognition, the result of the proposed method shows that the number of SIFT features extracted from an object has a significant increase, and the computing speed of the object recognition processes increases by more than 40%. The experimental results confirmed that the proposed method performs effectively and accurately in cluttered scenes. PMID:25714094

  13. Text String Detection from Natural Scenes by Structure-based Partition and Grouping

    PubMed Central

    Yi, Chucai; Tian, YingLi

    2012-01-01

    Text information in natural scene images serves as important clues for many image-based applications such as scene understanding, content-based image retrieval, assistive navigation, and automatic geocoding. However, locating text from complex background with multiple colors is a challenging task. In this paper, we explore a new framework to detect text strings with arbitrary orientations in complex natural scene images. Our proposed framework of text string detection consists of two steps: 1) Image partition to find text character candidates based on local gradient features and color uniformity of character components. 2) Character candidate grouping to detect text strings based on joint structural features of text characters in each text string such as character size differences, distances between neighboring characters, and character alignment. By assuming that a text string has at least three characters, we propose two algorithms of text string detection: 1) adjacent character grouping method, and 2) text line grouping method. The adjacent character grouping method calculates the sibling groups of each character candidate as string segments and then merges the intersecting sibling groups into text string. The text line grouping method performs Hough transform to fit text line among the centroids of text candidates. Each fitted text line describes the orientation of a potential text string. The detected text string is presented by a rectangle region covering all characters whose centroids are cascaded in its text line. To improve efficiency and accuracy, our algorithms are carried out in multi-scales. The proposed methods outperform the state-of-the-art results on the public Robust Reading Dataset which contains text only in horizontal orientation. Furthermore, the effectiveness of our methods to detect text strings with arbitrary orientations is evaluated on the Oriented Scene Text Dataset collected by ourselves containing text strings in non-horizontal orientations. PMID:21411405

  14. Text string detection from natural scenes by structure-based partition and grouping.

    PubMed

    Yi, Chucai; Tian, YingLi

    2011-09-01

    Text information in natural scene images serves as important clues for many image-based applications such as scene understanding, content-based image retrieval, assistive navigation, and automatic geocoding. However, locating text from a complex background with multiple colors is a challenging task. In this paper, we explore a new framework to detect text strings with arbitrary orientations in complex natural scene images. Our proposed framework of text string detection consists of two steps: 1) image partition to find text character candidates based on local gradient features and color uniformity of character components and 2) character candidate grouping to detect text strings based on joint structural features of text characters in each text string such as character size differences, distances between neighboring characters, and character alignment. By assuming that a text string has at least three characters, we propose two algorithms of text string detection: 1) adjacent character grouping method and 2) text line grouping method. The adjacent character grouping method calculates the sibling groups of each character candidate as string segments and then merges the intersecting sibling groups into text string. The text line grouping method performs Hough transform to fit text line among the centroids of text candidates. Each fitted text line describes the orientation of a potential text string. The detected text string is presented by a rectangle region covering all characters whose centroids are cascaded in its text line. To improve efficiency and accuracy, our algorithms are carried out in multi-scales. The proposed methods outperform the state-of-the-art results on the public Robust Reading Dataset, which contains text only in horizontal orientation. Furthermore, the effectiveness of our methods to detect text strings with arbitrary orientations is evaluated on the Oriented Scene Text Dataset collected by ourselves containing text strings in nonhorizontal orientations.

  15. False match elimination for face recognition based on SIFT algorithm

    NASA Astrophysics Data System (ADS)

    Gu, Xuyuan; Shi, Ping; Shao, Meide

    2011-06-01

    The SIFT (Scale Invariant Feature Transform) is a well known algorithm used to detect and describe local features in images. It is invariant to image scale, rotation and robust to the noise and illumination. In this paper, a novel method used for face recognition based on SIFT is proposed, which combines the optimization of SIFT, mutual matching and Progressive Sample Consensus (PROSAC) together and can eliminate the false matches of face recognition effectively. Experiments on ORL face database show that many false matches can be eliminated and better recognition rate is achieved.

  16. Adversity, emotion recognition, and empathic concern in high-risk youth

    PubMed Central

    Quas, Jodi A.; Matthew, Richard; Harron, Connor; Quas, Catherine M.

    2017-01-01

    Little is known about how emotion recognition and empathy jointly operate in youth growing up in contexts defined by persistent adversity. We investigated whether adversity exposure in two groups of youth was associated with reduced empathy and whether deficits in emotion recognition mediated this association. Foster, rural poor, and comparison youth from Swaziland, Africa identified emotional expressions and rated their empathic concern for characters depicted in images showing positive, ambiguous, and negative scenes. Rural and foster youth perceived greater anger and happiness in the main characters in ambiguous and negative images than did comparison youth. Rural children also perceived less sadness. Youth’s perceptions of sadness in the negative and ambiguous expressions mediated the relation between adversity and empathic concern, but only for the rural youth, who perceived less sadness, which then predicted less empathy. Findings provide new insight into processes that underlie empathic tendencies in adversity-exposed youth and highlight potential directions for interventions to increase empathy. PMID:28738074

  17. Implementation and preliminary evaluation of 'C-tone': A novel algorithm to improve lexical tone recognition in Mandarin-speaking cochlear implant users.

    PubMed

    Ping, Lichuan; Wang, Ningyuan; Tang, Guofang; Lu, Thomas; Yin, Li; Tu, Wenhe; Fu, Qian-Jie

    2017-09-01

    Because of limited spectral resolution, Mandarin-speaking cochlear implant (CI) users have difficulty perceiving fundamental frequency (F0) cues that are important to lexical tone recognition. To improve Mandarin tone recognition in CI users, we implemented and evaluated a novel real-time algorithm (C-tone) to enhance the amplitude contour, which is strongly correlated with the F0 contour. The C-tone algorithm was implemented in clinical processors and evaluated in eight users of the Nurotron NSP-60 CI system. Subjects were given 2 weeks of experience with C-tone. Recognition of Chinese tones, monosyllables, and disyllables in quiet was measured with and without the C-tone algorithm. Subjective quality ratings were also obtained for C-tone. After 2 weeks of experience with C-tone, there were small but significant improvements in recognition of lexical tones, monosyllables, and disyllables (P < 0.05 in all cases). Among lexical tones, the largest improvements were observed for Tone 3 (falling-rising) and the smallest for Tone 4 (falling). Improvements with C-tone were greater for disyllables than for monosyllables. Subjective quality ratings showed no strong preference for or against C-tone, except for perception of own voice, where C-tone was preferred. The real-time C-tone algorithm provided small but significant improvements for speech performance in quiet with no change in sound quality. Pre-processing algorithms to reduce noise and better real-time F0 extraction would improve the benefits of C-tone in complex listening environments. Chinese CI users' speech recognition in quiet can be significantly improved by modifying the amplitude contour to better resemble the F0 contour.

  18. Neural system for heartbeats recognition using genetically integrated ensemble of classifiers.

    PubMed

    Osowski, Stanislaw; Siwek, Krzysztof; Siroic, Robert

    2011-03-01

    This paper presents the application of genetic algorithm for the integration of neural classifiers combined in the ensemble for the accurate recognition of heartbeat types on the basis of ECG registration. The idea presented in this paper is that using many classifiers arranged in the form of ensemble leads to the increased accuracy of the recognition. In such ensemble the important problem is the integration of all classifiers into one effective classification system. This paper proposes the use of genetic algorithm. It was shown that application of the genetic algorithm is very efficient and allows to reduce significantly the total error of heartbeat recognition. This was confirmed by the numerical experiments performed on the MIT BIH Arrhythmia Database. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. A Dynamic Bayesian Network Based Structural Learning towards Automated Handwritten Digit Recognition

    NASA Astrophysics Data System (ADS)

    Pauplin, Olivier; Jiang, Jianmin

    Pattern recognition using Dynamic Bayesian Networks (DBNs) is currently a growing area of study. In this paper, we present DBN models trained for classification of handwritten digit characters. The structure of these models is partly inferred from the training data of each class of digit before performing parameter learning. Classification results are presented for the four described models.

  20. Real-time polarization imaging algorithm for camera-based polarization navigation sensors.

    PubMed

    Lu, Hao; Zhao, Kaichun; You, Zheng; Huang, Kaoli

    2017-04-10

    Biologically inspired polarization navigation is a promising approach due to its autonomous nature, high precision, and robustness. Many researchers have built point source-based and camera-based polarization navigation prototypes in recent years. Camera-based prototypes can benefit from their high spatial resolution but incur a heavy computation load. The pattern recognition algorithm in most polarization imaging algorithms involves several nonlinear calculations that impose a significant computation burden. In this paper, the polarization imaging and pattern recognition algorithms are optimized through reduction to several linear calculations by exploiting the orthogonality of the Stokes parameters without affecting precision according to the features of the solar meridian and the patterns of the polarized skylight. The algorithm contains a pattern recognition algorithm with a Hough transform as well as orientation measurement algorithms. The algorithm was loaded and run on a digital signal processing system to test its computational complexity. The test showed that the running time decreased to several tens of milliseconds from several thousand milliseconds. Through simulations and experiments, it was found that the algorithm can measure orientation without reducing precision. It can hence satisfy the practical demands of low computational load and high precision for use in embedded systems.

  1. Neural basis of hierarchical visual form processing of Japanese Kanji characters.

    PubMed

    Higuchi, Hiroki; Moriguchi, Yoshiya; Murakami, Hiroki; Katsunuma, Ruri; Mishima, Kazuo; Uno, Akira

    2015-12-01

    We investigated the neural processing of reading Japanese Kanji characters, which involves unique hierarchical visual processing, including the recognition of visual components specific to Kanji, such as "radicals." We performed functional MRI to measure brain activity in response to hierarchical visual stimuli containing (1) real Kanji characters (complete structure with semantic information), (2) pseudo Kanji characters (subcomponents without complete character structure), (3) artificial characters (character fragments), and (4) checkerboard (simple photic stimuli). As we expected, the peaks of the activation in response to different stimulus types were aligned within the left occipitotemporal visual region along the posterior-anterior axis in order of the structural complexity of the stimuli, from fragments (3) to complete characters (1). Moreover, only the real Kanji characters produced functional connectivity between the left inferotemporal area and the language area (left inferior frontal triangularis), while pseudo Kanji characters induced connectivity between the left inferotemporal area and the bilateral cerebellum and left putamen. Visual processing of Japanese Kanji takes place in the left occipitotemporal cortex, with a clear hierarchy within the region such that the neural activation differentiates the elements in Kanji characters' fragments, subcomponents, and semantics, with different patterns of connectivity to remote regions among the elements.

  2. Image-algebraic design of multispectral target recognition algorithms

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.; Ritter, Gerhard X.

    1994-06-01

    In this paper, we discuss methods for multispectral ATR (Automated Target Recognition) of small targets that are sensed under suboptimal conditions, such as haze, smoke, and low light levels. In particular, we discuss our ongoing development of algorithms and software that effect intelligent object recognition by selecting ATR filter parameters according to ambient conditions. Our algorithms are expressed in terms of IA (image algebra), a concise, rigorous notation that unifies linear and nonlinear mathematics in the image processing domain. IA has been implemented on a variety of parallel computers, with preprocessors available for the Ada and FORTRAN languages. An image algebra C++ class library has recently been made available. Thus, our algorithms are both feasible implementationally and portable to numerous machines. Analyses emphasize the aspects of image algebra that aid the design of multispectral vision algorithms, such as parameterized templates that facilitate the flexible specification of ATR filters.

  3. Approximated mutual information training for speech recognition using myoelectric signals.

    PubMed

    Guo, Hua J; Chan, A D C

    2006-01-01

    A new training algorithm called the approximated maximum mutual information (AMMI) is proposed to improve the accuracy of myoelectric speech recognition using hidden Markov models (HMMs). Previous studies have demonstrated that automatic speech recognition can be performed using myoelectric signals from articulatory muscles of the face. Classification of facial myoelectric signals can be performed using HMMs that are trained using the maximum likelihood (ML) algorithm; however, this algorithm maximizes the likelihood of the observations in the training sequence, which is not directly associated with optimal classification accuracy. The AMMI training algorithm attempts to maximize the mutual information, thereby training the HMMs to optimize their parameters for discrimination. Our results show that AMMI training consistently reduces the error rates compared to these by the ML training, increasing the accuracy by approximately 3% on average.

  4. a Review on State-Of Face Recognition Approaches

    NASA Astrophysics Data System (ADS)

    Mahmood, Zahid; Muhammad, Nazeer; Bibi, Nargis; Ali, Tauseef

    Automatic Face Recognition (FR) presents a challenging task in the field of pattern recognition and despite the huge research in the past several decades; it still remains an open research problem. This is primarily due to the variability in the facial images, such as non-uniform illuminations, low resolution, occlusion, and/or variation in poses. Due to its non-intrusive nature, the FR is an attractive biometric modality and has gained a lot of attention in the biometric research community. Driven by the enormous number of potential application domains, many algorithms have been proposed for the FR. This paper presents an overview of the state-of-the-art FR algorithms, focusing their performances on publicly available databases. We highlight the conditions of the image databases with regard to the recognition rate of each approach. This is useful as a quick research overview and for practitioners as well to choose an algorithm for their specified FR application. To provide a comprehensive survey, the paper divides the FR algorithms into three categories: (1) intensity-based, (2) video-based, and (3) 3D based FR algorithms. In each category, the most commonly used algorithms and their performance is reported on standard face databases and a brief critical discussion is carried out.

  5. Toward open set recognition.

    PubMed

    Scheirer, Walter J; de Rezende Rocha, Anderson; Sapkota, Archana; Boult, Terrance E

    2013-07-01

    To date, almost all experimental evaluations of machine learning-based recognition algorithms in computer vision have taken the form of "closed set" recognition, whereby all testing classes are known at training time. A more realistic scenario for vision applications is "open set" recognition, where incomplete knowledge of the world is present at training time, and unknown classes can be submitted to an algorithm during testing. This paper explores the nature of open set recognition and formalizes its definition as a constrained minimization problem. The open set recognition problem is not well addressed by existing algorithms because it requires strong generalization. As a step toward a solution, we introduce a novel "1-vs-set machine," which sculpts a decision space from the marginal distances of a 1-class or binary SVM with a linear kernel. This methodology applies to several different applications in computer vision where open set recognition is a challenging problem, including object recognition and face verification. We consider both in this work, with large scale cross-dataset experiments performed over the Caltech 256 and ImageNet sets, as well as face matching experiments performed over the Labeled Faces in the Wild set. The experiments highlight the effectiveness of machines adapted for open set evaluation compared to existing 1-class and binary SVMs for the same tasks.

  6. When is the right hemisphere holistic and when is it not? The case of Chinese character recognition.

    PubMed

    Chung, Harry K S; Leung, Jacklyn C Y; Wong, Vienne M Y; Hsiao, Janet H

    2018-05-15

    Holistic processing (HP) has long been considered a characteristic of right hemisphere (RH) processing. Indeed, holistic face processing is typically associated with left visual field (LVF)/RH processing advantages. Nevertheless, expert Chinese character recognition involves reduced HP and increased RH lateralization, presenting a counterexample. Recent modeling research suggests that RH processing may be associated with an increase or decrease in HP, depending on whether spacing or component information was used respectively. Since expert Chinese character recognition involves increasing sensitivity to components while deemphasizing spacing information, RH processing in experts may be associated with weaker HP than novices. Consistent with this hypothesis, in a divided visual field paradigm, novices exhibited HP only in the LVF/RH, whereas experts showed no HP in either visual field. This result suggests that the RH may flexibly switch between part-based and holistic representations, consistent with recent fMRI findings. The RH's advantage in global/low spatial frequency processing is suggested to be relative to the task relevant frequency range. Thus, its use of holistic and part-based representations may depend on how attention is allocated for task relevant information. This study provides the first behavioral evidence showing how type of information used for processing modulates perceptual representations in the RH. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. A Bayesian computational model for online character recognition and disability assessment during cursive eye writing.

    PubMed

    Diard, Julien; Rynik, Vincent; Lorenceau, Jean

    2013-01-01

    This research involves a novel apparatus, in which the user is presented with an illusion inducing visual stimulus. The user perceives illusory movement that can be followed by the eye, so that smooth pursuit eye movements can be sustained in arbitrary directions. Thus, free-flow trajectories of any shape can be traced. In other words, coupled with an eye-tracking device, this apparatus enables "eye writing," which appears to be an original object of study. We adapt a previous model of reading and writing to this context. We describe a probabilistic model called the Bayesian Action-Perception for Eye On-Line model (BAP-EOL). It encodes probabilistic knowledge about isolated letter trajectories, their size, high-frequency components of the produced trajectory, and pupil diameter. We show how Bayesian inference, in this single model, can be used to solve several tasks, like letter recognition and novelty detection (i.e., recognizing when a presented character is not part of the learned database). We are interested in the potential use of the eye writing apparatus by motor impaired patients: the final task we solve by Bayesian inference is disability assessment (i.e., measuring and tracking the evolution of motor characteristics of produced trajectories). Preliminary experimental results are presented, which illustrate the method, showing the feasibility of character recognition in the context of eye writing. We then show experimentally how a model of the unknown character can be used to detect trajectories that are likely to be new symbols, and how disability assessment can be performed by opportunistically observing characteristics of fine motor control, as letter are being traced. Experimental analyses also help identify specificities of eye writing, as compared to handwriting, and the resulting technical challenges.

  8. A Bayesian computational model for online character recognition and disability assessment during cursive eye writing

    PubMed Central

    Diard, Julien; Rynik, Vincent; Lorenceau, Jean

    2013-01-01

    This research involves a novel apparatus, in which the user is presented with an illusion inducing visual stimulus. The user perceives illusory movement that can be followed by the eye, so that smooth pursuit eye movements can be sustained in arbitrary directions. Thus, free-flow trajectories of any shape can be traced. In other words, coupled with an eye-tracking device, this apparatus enables “eye writing,” which appears to be an original object of study. We adapt a previous model of reading and writing to this context. We describe a probabilistic model called the Bayesian Action-Perception for Eye On-Line model (BAP-EOL). It encodes probabilistic knowledge about isolated letter trajectories, their size, high-frequency components of the produced trajectory, and pupil diameter. We show how Bayesian inference, in this single model, can be used to solve several tasks, like letter recognition and novelty detection (i.e., recognizing when a presented character is not part of the learned database). We are interested in the potential use of the eye writing apparatus by motor impaired patients: the final task we solve by Bayesian inference is disability assessment (i.e., measuring and tracking the evolution of motor characteristics of produced trajectories). Preliminary experimental results are presented, which illustrate the method, showing the feasibility of character recognition in the context of eye writing. We then show experimentally how a model of the unknown character can be used to detect trajectories that are likely to be new symbols, and how disability assessment can be performed by opportunistically observing characteristics of fine motor control, as letter are being traced. Experimental analyses also help identify specificities of eye writing, as compared to handwriting, and the resulting technical challenges. PMID:24273525

  9. Beyond Word Processing.

    ERIC Educational Resources Information Center

    Haight, Larry

    1989-01-01

    Types of specialty software that can help in computer editing are discussed, including programs for file transformation, optical character recognition, facsimile transmission, spell-checking, style assistance, editing, indexing, and headline-writing. (MSE)

  10. Invariant approach to the character classification

    NASA Astrophysics Data System (ADS)

    Šariri, Kristina; Demoli, Nazif

    2008-04-01

    Image moments analysis is a very useful tool which allows image description invariant to translation and rotation, scale change and some types of image distortions. The aim of this work was development of simple method for fast and reliable classification of characters by using Hu's and affine moment invariants. Measure of Eucleidean distance was used as a discrimination feature with statistical parameters estimated. The method was tested in classification of Times New Roman font letters as well as sets of the handwritten characters. It is shown that using all Hu's and three affine invariants as discrimination set improves recognition rate by 30%.

  11. Object Recognition and Localization: The Role of Tactile Sensors

    PubMed Central

    Aggarwal, Achint; Kirchner, Frank

    2014-01-01

    Tactile sensors, because of their intrinsic insensitivity to lighting conditions and water turbidity, provide promising opportunities for augmenting the capabilities of vision sensors in applications involving object recognition and localization. This paper presents two approaches for haptic object recognition and localization for ground and underwater environments. The first approach called Batch Ransac and Iterative Closest Point augmented Particle Filter (BRICPPF) is based on an innovative combination of particle filters, Iterative-Closest-Point algorithm, and a feature-based Random Sampling and Consensus (RANSAC) algorithm for database matching. It can handle a large database of 3D-objects of complex shapes and performs a complete six-degree-of-freedom localization of static objects. The algorithms are validated by experimentation in ground and underwater environments using real hardware. To our knowledge this is the first instance of haptic object recognition and localization in underwater environments. The second approach is biologically inspired, and provides a close integration between exploration and recognition. An edge following exploration strategy is developed that receives feedback from the current state of recognition. A recognition by parts approach is developed which uses the BRICPPF for object sub-part recognition. Object exploration is either directed to explore a part until it is successfully recognized, or is directed towards new parts to endorse the current recognition belief. This approach is validated by simulation experiments. PMID:24553087

  12. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors

    PubMed Central

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-01-01

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms. PMID:26198233

  13. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors.

    PubMed

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-07-07

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.

  14. An effective approach for iris recognition using phase-based image matching.

    PubMed

    Miyazawa, Kazuyuki; Ito, Koichi; Aoki, Takafumi; Kobayashi, Koji; Nakajima, Hiroshi

    2008-10-01

    This paper presents an efficient algorithm for iris recognition using phase-based image matching--an image matching technique using phase components in 2D Discrete Fourier Transforms (DFTs) of given images. Experimental evaluation using CASIA iris image databases (versions 1.0 and 2.0) and Iris Challenge Evaluation (ICE) 2005 database clearly demonstrates that the use of phase components of iris images makes possible to achieve highly accurate iris recognition with a simple matching algorithm. This paper also discusses major implementation issues of our algorithm. In order to reduce the size of iris data and to prevent the visibility of iris images, we introduce the idea of 2D Fourier Phase Code (FPC) for representing iris information. The 2D FPC is particularly useful for implementing compact iris recognition devices using state-of-the-art Digital Signal Processing (DSP) technology.

  15. Theoretical Aspects of the Patterns Recognition Statistical Theory Used for Developing the Diagnosis Algorithms for Complicated Technical Systems

    NASA Astrophysics Data System (ADS)

    Obozov, A. A.; Serpik, I. N.; Mihalchenko, G. S.; Fedyaeva, G. A.

    2017-01-01

    In the article, the problem of application of the pattern recognition (a relatively young area of engineering cybernetics) for analysis of complicated technical systems is examined. It is shown that the application of a statistical approach for hard distinguishable situations could be the most effective. The different recognition algorithms are based on Bayes approach, which estimates posteriori probabilities of a certain event and an assumed error. Application of the statistical approach to pattern recognition is possible for solving the problem of technical diagnosis complicated systems and particularly big powered marine diesel engines.

  16. Iris recognition based on key image feature extraction.

    PubMed

    Ren, X; Tian, Q; Zhang, J; Wu, S; Zeng, Y

    2008-01-01

    In iris recognition, feature extraction can be influenced by factors such as illumination and contrast, and thus the features extracted may be unreliable, which can cause a high rate of false results in iris pattern recognition. In order to obtain stable features, an algorithm was proposed in this paper to extract key features of a pattern from multiple images. The proposed algorithm built an iris feature template by extracting key features and performed iris identity enrolment. Simulation results showed that the selected key features have high recognition accuracy on the CASIA Iris Set, where both contrast and illumination variance exist.

  17. Automatic speech recognition research at NASA-Ames Research Center

    NASA Technical Reports Server (NTRS)

    Coler, Clayton R.; Plummer, Robert P.; Huff, Edward M.; Hitchcock, Myron H.

    1977-01-01

    A trainable acoustic pattern recognizer manufactured by Scope Electronics is presented. The voice command system VCS encodes speech by sampling 16 bandpass filters with center frequencies in the range from 200 to 5000 Hz. Variations in speaking rate are compensated for by a compression algorithm that subdivides each utterance into eight subintervals in such a way that the amount of spectral change within each subinterval is the same. The recorded filter values within each subinterval are then reduced to a 15-bit representation, giving a 120-bit encoding for each utterance. The VCS incorporates a simple recognition algorithm that utilizes five training samples of each word in a vocabulary of up to 24 words. The recognition rate of approximately 85 percent correct for untrained speakers and 94 percent correct for trained speakers was not considered adequate for flight systems use. Therefore, the built-in recognition algorithm was disabled, and the VCS was modified to transmit 120-bit encodings to an external computer for recognition.

  18. A Development of a System Enables Character Input and PC Operation via Voice for a Physically Disabled Person with a Speech Impediment

    NASA Astrophysics Data System (ADS)

    Tanioka, Toshimasa; Egashira, Hiroyuki; Takata, Mayumi; Okazaki, Yasuhisa; Watanabe, Kenzi; Kondo, Hiroki

    We have designed and implemented a PC operation support system for a physically disabled person with a speech impediment via voice. Voice operation is an effective method for a physically disabled person with involuntary movement of the limbs and the head. We have applied a commercial speech recognition engine to develop our system for practical purposes. Adoption of a commercial engine reduces development cost and will contribute to make our system useful to another speech impediment people. We have customized commercial speech recognition engine so that it can recognize the utterance of a person with a speech impediment. We have restricted the words that the recognition engine recognizes and separated a target words from similar words in pronunciation to avoid misrecognition. Huge number of words registered in commercial speech recognition engines cause frequent misrecognition for speech impediments' utterance, because their utterance is not clear and unstable. We have solved this problem by narrowing the choice of input down in a small number and also by registering their ambiguous pronunciations in addition to the original ones. To realize all character inputs and all PC operation with a small number of words, we have designed multiple input modes with categorized dictionaries and have introduced two-step input in each mode except numeral input to enable correct operation with small number of words. The system we have developed is in practical level. The first author of this paper is physically disabled with a speech impediment. He has been able not only character input into PC but also to operate Windows system smoothly by using this system. He uses this system in his daily life. This paper is written by him with this system. At present, the speech recognition is customized to him. It is, however, possible to customize for other users by changing words and registering new pronunciation according to each user's utterance.

  19. Mandarin Chinese Tone Identification in Cochlear Implants: Predictions from Acoustic Models

    PubMed Central

    Morton, Kenneth D.; Torrione, Peter A.; Throckmorton, Chandra S.; Collins, Leslie M.

    2015-01-01

    It has been established that current cochlear implants do not supply adequate spectral information for perception of tonal languages. Comprehension of a tonal language, such as Mandarin Chinese, requires recognition of lexical tones. New strategies of cochlear stimulation such as variable stimulation rate and current steering may provide the means of delivering more spectral information and thus may provide the auditory fine structure required for tone recognition. Several cochlear implant signal processing strategies are examined in this study, the continuous interleaved sampling (CIS) algorithm, the frequency amplitude modulation encoding (FAME) algorithm, and the multiple carrier frequency algorithm (MCFA). These strategies provide different types and amounts of spectral information. Pattern recognition techniques can be applied to data from Mandarin Chinese tone recognition tasks using acoustic models as a means of testing the abilities of these algorithms to transmit the changes in fundamental frequency indicative of the four lexical tones. The ability of processed Mandarin Chinese tones to be correctly classified may predict trends in the effectiveness of different signal processing algorithms in cochlear implants. The proposed techniques can predict trends in performance of the signal processing techniques in quiet conditions but fail to do so in noise. PMID:18706497

  20. Urdu Nasta'liq text recognition using implicit segmentation based on multi-dimensional long short term memory neural networks.

    PubMed

    Naz, Saeeda; Umar, Arif Iqbal; Ahmed, Riaz; Razzak, Muhammad Imran; Rashid, Sheikh Faisal; Shafait, Faisal

    2016-01-01

    The recognition of Arabic script and its derivatives such as Urdu, Persian, Pashto etc. is a difficult task due to complexity of this script. Particularly, Urdu text recognition is more difficult due to its Nasta'liq writing style. Nasta'liq writing style inherits complex calligraphic nature, which presents major issues to recognition of Urdu text owing to diagonality in writing, high cursiveness, context sensitivity and overlapping of characters. Therefore, the work done for recognition of Arabic script cannot be directly applied to Urdu recognition. We present Multi-dimensional Long Short Term Memory (MDLSTM) Recurrent Neural Networks with an output layer designed for sequence labeling for recognition of printed Urdu text-lines written in the Nasta'liq writing style. Experiments show that MDLSTM attained a recognition accuracy of 98% for the unconstrained Urdu Nasta'liq printed text, which significantly outperforms the state-of-the-art techniques.

  1. HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation

    NASA Astrophysics Data System (ADS)

    Guo, Shuhang; Wang, Jian; Wang, Tong

    2017-09-01

    Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.

  2. Online graphic symbol recognition using neural network and ARG matching

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Li, Changhua; Xie, Weixing

    2001-09-01

    This paper proposes a novel method for on-line recognition of line-based graphic symbol. The input strokes are usually warped into a cursive form due to the sundry drawing style, and classifying them is very difficult. To deal with this, an ART-2 neural network is used to classify the input strokes. It has the advantages of high recognition rate, less recognition time and forming classes in a self-organized manner. The symbol recognition is achieved by an Attribute Relational Graph (ARG) matching algorithm. The ARG is very efficient for representing complex objects, but computation cost is very high. To over come this, we suggest a fast graph matching algorithm using symbol structure information. The experimental results show that the proposed method is effective for recognition of symbols with hierarchical structure.

  3. A New Method of Facial Expression Recognition Based on SPE Plus SVM

    NASA Astrophysics Data System (ADS)

    Ying, Zilu; Huang, Mingwei; Wang, Zhen; Wang, Zhewei

    A novel method of facial expression recognition (FER) is presented, which uses stochastic proximity embedding (SPE) for data dimension reduction, and support vector machine (SVM) for expression classification. The proposed algorithm is applied to Japanese Female Facial Expression (JAFFE) database for FER, better performance is obtained compared with some traditional algorithms, such as PCA and LDA etc.. The result have further proved the effectiveness of the proposed algorithm.

  4. Automated extraction of radiation dose information from CT dose report images.

    PubMed

    Li, Xinhua; Zhang, Da; Liu, Bob

    2011-06-01

    The purpose of this article is to describe the development of an automated tool for retrieving texts from CT dose report images. Optical character recognition was adopted to perform text recognitions of CT dose report images. The developed tool is able to automate the process of analyzing multiple CT examinations, including text recognition, parsing, error correction, and exporting data to spreadsheets. The results were precise for total dose-length product (DLP) and were about 95% accurate for CT dose index and DLP of scanned series.

  5. A new task scheduling algorithm based on value and time for cloud platform

    NASA Astrophysics Data System (ADS)

    Kuang, Ling; Zhang, Lichen

    2017-08-01

    Tasks scheduling, a key part of increasing resource utilization and enhancing system performance, is a never outdated problem especially in cloud platforms. Based on the value density algorithm of the real-time task scheduling system and the character of the distributed system, the paper present a new task scheduling algorithm by further studying the cloud technology and the real-time system: Least Level Value Density First (LLVDF). The algorithm not only introduces some attributes of time and value for tasks, it also can describe weighting relationships between these properties mathematically. As this feature of the algorithm, it can gain some advantages to distinguish between different tasks more dynamically and more reasonably. When the scheme was used in the priority calculation of the dynamic task scheduling on cloud platform, relying on its advantage, it can schedule and distinguish tasks with large amounts and many kinds more efficiently. The paper designs some experiments, some distributed server simulation models based on M/M/C model of queuing theory and negative arrivals, to compare the algorithm against traditional algorithm to observe and show its characters and advantages.

  6. Membership-degree preserving discriminant analysis with applications to face recognition.

    PubMed

    Yang, Zhangjing; Liu, Chuancai; Huang, Pu; Qian, Jianjun

    2013-01-01

    In pattern recognition, feature extraction techniques have been widely employed to reduce the dimensionality of high-dimensional data. In this paper, we propose a novel feature extraction algorithm called membership-degree preserving discriminant analysis (MPDA) based on the fisher criterion and fuzzy set theory for face recognition. In the proposed algorithm, the membership degree of each sample to particular classes is firstly calculated by the fuzzy k-nearest neighbor (FKNN) algorithm to characterize the similarity between each sample and class centers, and then the membership degree is incorporated into the definition of the between-class scatter and the within-class scatter. The feature extraction criterion via maximizing the ratio of the between-class scatter to the within-class scatter is applied. Experimental results on the ORL, Yale, and FERET face databases demonstrate the effectiveness of the proposed algorithm.

  7. The program complex for vocal recognition

    NASA Astrophysics Data System (ADS)

    Konev, Anton; Kostyuchenko, Evgeny; Yakimuk, Alexey

    2017-01-01

    This article discusses the possibility of applying the algorithm of determining the pitch frequency for the note recognition problems. Preliminary study of programs-analogues were carried out for programs with function “recognition of the music”. The software package based on the algorithm for pitch frequency calculation was implemented and tested. It was shown that the algorithm allows recognizing the notes in the vocal performance of the user. A single musical instrument, a set of musical instruments, and a human voice humming a tune can be the sound source. The input file is initially presented in the .wav format or is recorded in this format from a microphone. Processing is performed by sequentially determining the pitch frequency and conversion of its values to the note. According to test results, modification of algorithms used in the complex was planned.

  8. Neural networks and applications tutorial

    NASA Astrophysics Data System (ADS)

    Guyon, I.

    1991-09-01

    The importance of neural networks has grown dramatically during this decade. While only a few years ago they were primarily of academic interest, now dozens of companies and many universities are investigating the potential use of these systems and products are beginning to appear. The idea of building a machine whose architecture is inspired by that of the brain has roots which go far back in history. Nowadays, technological advances of computers and the availability of custom integrated circuits, permit simulations of hundreds or even thousands of neurons. In conjunction, the growing interest in learning machines, non-linear dynamics and parallel computation spurred renewed attention in artificial neural networks. Many tentative applications have been proposed, including decision systems (associative memories, classifiers, data compressors and optimizers), or parametric models for signal processing purposes (system identification, automatic control, noise canceling, etc.). While they do not always outperform standard methods, neural network approaches are already used in some real world applications for pattern recognition and signal processing tasks. The tutorial is divided into six lectures, that where presented at the Third Graduate Summer Course on Computational Physics (September 3-7, 1990) on Parallel Architectures and Applications, organized by the European Physical Society: (1) Introduction: machine learning and biological computation. (2) Adaptive artificial neurons (perceptron, ADALINE, sigmoid units, etc.): learning rules and implementations. (3) Neural network systems: architectures, learning algorithms. (4) Applications: pattern recognition, signal processing, etc. (5) Elements of learning theory: how to build networks which generalize. (6) A case study: a neural network for on-line recognition of handwritten alphanumeric characters.

  9. Art critic: Multisignal vision and speech interaction system in a gaming context.

    PubMed

    Reale, Michael J; Liu, Peng; Yin, Lijun; Canavan, Shaun

    2013-12-01

    True immersion of a player within a game can only occur when the world simulated looks and behaves as close to reality as possible. This implies that the game must correctly read and understand, among other things, the player's focus, attitude toward the objects/persons in focus, gestures, and speech. In this paper, we proposed a novel system that integrates eye gaze estimation, head pose estimation, facial expression recognition, speech recognition, and text-to-speech components for use in real-time games. Both the eye gaze and head pose components utilize underlying 3-D models, and our novel head pose estimation algorithm uniquely combines scene flow with a generic head model. The facial expression recognition module uses the local binary patterns with three orthogonal planes approach on the 2-D shape index domain rather than the pixel domain, resulting in improved classification. Our system has also been extended to use a pan-tilt-zoom camera driven by the Kinect, allowing us to track a moving player. A test game, Art Critic, is also presented, which not only demonstrates the utility of our system but also provides a template for player/non-player character (NPC) interaction in a gaming context. The player alters his/her view of the 3-D world using head pose, looks at paintings/NPCs using eye gaze, and makes an evaluation based on the player's expression and speech. The NPC artist will respond with facial expression and synthetic speech based on its personality. Both qualitative and quantitative evaluations of the system are performed to illustrate the system's effectiveness.

  10. Offline Arabic handwriting recognition: a survey.

    PubMed

    Lorigo, Liana M; Govindaraju, Venu

    2006-05-01

    The automatic recognition of text on scanned images has enabled many applications such as searching for words in large volumes of documents, automatic sorting of postal mail, and convenient editing of previously printed documents. The domain of handwriting in the Arabic script presents unique technical challenges and has been addressed more recently than other domains. Many different methods have been proposed and applied to various types of images. This paper provides a comprehensive review of these methods. It is the first survey to focus on Arabic handwriting recognition and the first Arabic character recognition survey to provide recognition rates and descriptions of test data for the approaches discussed. It includes background on the field, discussion of the methods, and future research directions.

  11. Research on gait-based human identification

    NASA Astrophysics Data System (ADS)

    Li, Youguo

    Gait recognition refers to automatic identification of individual based on his/her style of walking. This paper proposes a gait recognition method based on Continuous Hidden Markov Model with Mixture of Gaussians(G-CHMM). First, we initialize a Gaussian mix model for training image sequence with K-means algorithm, then train the HMM parameters using a Baum-Welch algorithm. These gait feature sequences can be trained and obtain a Continuous HMM for every person, therefore, the 7 key frames and the obtained HMM can represent each person's gait sequence. Finally, the recognition is achieved by Front algorithm. The experiments made on CASIA gait databases obtain comparatively high correction identification ratio and comparatively strong robustness for variety of bodily angle.

  12. Artificial intelligence tools for pattern recognition

    NASA Astrophysics Data System (ADS)

    Acevedo, Elena; Acevedo, Antonio; Felipe, Federico; Avilés, Pedro

    2017-06-01

    In this work, we present a system for pattern recognition that combines the power of genetic algorithms for solving problems and the efficiency of the morphological associative memories. We use a set of 48 tire prints divided into 8 brands of tires. The images have dimensions of 200 x 200 pixels. We applied Hough transform to obtain lines as main features. The number of lines obtained is 449. The genetic algorithm reduces the number of features to ten suitable lines that give thus the 100% of recognition. Morphological associative memories were used as evaluation function. The selection algorithms were Tournament and Roulette wheel. For reproduction, we applied one-point, two-point and uniform crossover.

  13. Exercise recognition for Kinect-based telerehabilitation.

    PubMed

    Antón, D; Goñi, A; Illarramendi, A

    2015-01-01

    An aging population and people's higher survival to diseases and traumas that leave physical consequences are challenging aspects in the context of an efficient health management. This is why telerehabilitation systems are being developed, to allow monitoring and support of physiotherapy sessions at home, which could reduce healthcare costs while also improving the quality of life of the users. Our goal is the development of a Kinect-based algorithm that provides a very accurate real-time monitoring of physical rehabilitation exercises and that also provides a friendly interface oriented both to users and physiotherapists. The two main constituents of our algorithm are the posture classification method and the exercises recognition method. The exercises consist of series of movements. Each movement is composed of an initial posture, a final posture and the angular trajectories of the limbs involved in the movement. The algorithm was designed and tested with datasets of real movements performed by volunteers. We also explain in the paper how we obtained the optimal values for the trade-off values for posture and trajectory recognition. Two relevant aspects of the algorithm were evaluated in our tests, classification accuracy and real-time data processing. We achieved 91.9% accuracy in posture classification and 93.75% accuracy in trajectory recognition. We also checked whether the algorithm was able to process the data in real-time. We found that our algorithm could process more than 20,000 postures per second and all the required trajectory data-series in real-time, which in practice guarantees no perceptible delays. Later on, we carried out two clinical trials with real patients that suffered shoulder disorders. We obtained an exercise monitoring accuracy of 95.16%. We present an exercise recognition algorithm that handles the data provided by Kinect efficiently. The algorithm has been validated in a real scenario where we have verified its suitability. Moreover, we have received a positive feedback from both users and the physiotherapists who took part in the tests.

  14. SU-F-T-20: Novel Catheter Lumen Recognition Algorithm for Rapid Digitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dise, J; McDonald, D; Ashenafi, M

    Purpose: Manual catheter recognition remains a time-consuming aspect of high-dose-rate brachytherapy (HDR) treatment planning. In this work, a novel catheter lumen recognition algorithm was created for accurate and rapid digitization. Methods: MatLab v8.5 was used to create the catheter recognition algorithm. Initially, the algorithm searches the patient CT dataset using an intensity based k-means filter designed to locate catheters. Once the catheters have been located, seed points are manually selected to initialize digitization of each catheter. From each seed point, the algorithm searches locally in order to automatically digitize the remaining catheter. This digitization is accomplished by finding pixels withmore » similar image curvature and divergence parameters compared to the seed pixel. Newly digitized pixels are treated as new seed positions, and hessian image analysis is used to direct the algorithm toward neighboring catheter pixels, and to make the algorithm insensitive to adjacent catheters that are unresolvable on CT, air pockets, and high Z artifacts. The algorithm was tested using 11 HDR treatment plans, including the Syed template, tandem and ovoid applicator, and multi-catheter lung brachytherapy. Digitization error was calculated by comparing manually determined catheter positions to those determined by the algorithm. Results: he digitization error was 0.23 mm ± 0.14 mm axially and 0.62 mm ± 0.13 mm longitudinally at the tip. The time of digitization, following initial seed placement was less than 1 second per catheter. The maximum total time required to digitize all tested applicators was 4 minutes (Syed template with 15 needles). Conclusion: This algorithm successfully digitizes HDR catheters for a variety of applicators with or without CT markers. The minimal axial error demonstrates the accuracy of the algorithm, and its insensitivity to image artifacts and challenging catheter positioning. Future work to automatically place initial seed positions would improve the algorithm speed.« less

  15. Big Data Quality Case Study Preliminary Findings, U.S. Army MEDCOM MODS

    DTIC Science & Technology

    2013-09-01

    captured in electronic form is relatively small, on the order of hundreds of thousands of health profiles at say around 500K per profile, or in the...in electronic form, then different language identification, handwriting recognition, and Natural Language Processing (NLP) techniques could be used...and patterns” [15]. Volume - The free text fields vary in length from say ten characters to several hundred characters. Other materials can be much

  16. Notes on Experiments.

    ERIC Educational Resources Information Center

    Physics Education, 1986

    1986-01-01

    Describes (1) computer graphics for the coefficient of restitution; (2) an experiment on the optical processing of images; and (3) a simple, coherent optical system for character recognition using Polaroid (Type 665) negative film. (JN)

  17. Facial Emotions Recognition using Gabor Transform and Facial Animation Parameters with Neural Networks

    NASA Astrophysics Data System (ADS)

    Harit, Aditya; Joshi, J. C., Col; Gupta, K. K.

    2018-03-01

    The paper proposed an automatic facial emotion recognition algorithm which comprises of two main components: feature extraction and expression recognition. The algorithm uses a Gabor filter bank on fiducial points to find the facial expression features. The resulting magnitudes of Gabor transforms, along with 14 chosen FAPs (Facial Animation Parameters), compose the feature space. There are two stages: the training phase and the recognition phase. Firstly, for the present 6 different emotions, the system classifies all training expressions in 6 different classes (one for each emotion) in the training stage. In the recognition phase, it recognizes the emotion by applying the Gabor bank to a face image, then finds the fiducial points, and then feeds it to the trained neural architecture.

  18. Face recognition algorithm based on Gabor wavelet and locality preserving projections

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojie; Shen, Lin; Fan, Honghui

    2017-07-01

    In order to solve the effects of illumination changes and differences of personal features on the face recognition rate, this paper presents a new face recognition algorithm based on Gabor wavelet and Locality Preserving Projections (LPP). The problem of the Gabor filter banks with high dimensions was solved effectively, and also the shortcoming of the LPP on the light illumination changes was overcome. Firstly, the features of global image information were achieved, which used the good spatial locality and orientation selectivity of Gabor wavelet filters. Then the dimensions were reduced by utilizing the LPP, which well-preserved the local information of the image. The experimental results shown that this algorithm can effectively extract the features relating to facial expressions, attitude and other information. Besides, it can reduce influence of the illumination changes and the differences in personal features effectively, which improves the face recognition rate to 99.2%.

  19. Analysis of objects in binary images. M.S. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Leonard, Desiree M.

    1991-01-01

    Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented.

  20. A star recognition method based on the Adaptive Ant Colony algorithm for star sensors.

    PubMed

    Quan, Wei; Fang, Jiancheng

    2010-01-01

    A new star recognition method based on the Adaptive Ant Colony (AAC) algorithm has been developed to increase the star recognition speed and success rate for star sensors. This method draws circles, with the center of each one being a bright star point and the radius being a special angular distance, and uses the parallel processing ability of the AAC algorithm to calculate the angular distance of any pair of star points in the circle. The angular distance of two star points in the circle is solved as the path of the AAC algorithm, and the path optimization feature of the AAC is employed to search for the optimal (shortest) path in the circle. This optimal path is used to recognize the stellar map and enhance the recognition success rate and speed. The experimental results show that when the position error is about 50″, the identification success rate of this method is 98% while the Delaunay identification method is only 94%. The identification time of this method is up to 50 ms.

  1. Automatic voice recognition using traditional and artificial neural network approaches

    NASA Technical Reports Server (NTRS)

    Botros, Nazeih M.

    1989-01-01

    The main objective of this research is to develop an algorithm for isolated-word recognition. This research is focused on digital signal analysis rather than linguistic analysis of speech. Features extraction is carried out by applying a Linear Predictive Coding (LPC) algorithm with order of 10. Continuous-word and speaker independent recognition will be considered in future study after accomplishing this isolated word research. To examine the similarity between the reference and the training sets, two approaches are explored. The first is implementing traditional pattern recognition techniques where a dynamic time warping algorithm is applied to align the two sets and calculate the probability of matching by measuring the Euclidean distance between the two sets. The second is implementing a backpropagation artificial neural net model with three layers as the pattern classifier. The adaptation rule implemented in this network is the generalized least mean square (LMS) rule. The first approach has been accomplished. A vocabulary of 50 words was selected and tested. The accuracy of the algorithm was found to be around 85 percent. The second approach is in progress at the present time.

  2. Machine Learning Method for Pattern Recognition in Volcano Seismic Spectra

    NASA Astrophysics Data System (ADS)

    Radic, V.; Unglert, K.; Jellinek, M.

    2016-12-01

    Variations in the spectral content of volcano seismicity related to changes in volcanic activity are commonly identified manually in spectrograms. However, long time series of monitoring data at volcano observatories require tools to facilitate automated and rapid processing. Techniques such as Self-Organizing Maps (SOM), Principal Component Analysis (PCA) and clustering methods can help to quickly and automatically identify important patterns related to impending eruptions. In this study we develop and evaluate an algorithm applied on a set of synthetic volcano seismic spectra as well as observed spectra from Kılauea Volcano, Hawai`i. Our goal is to retrieve a set of known spectral patterns that are associated with dominant phases of volcanic tremor before, during, and after periods of volcanic unrest. The algorithm is based on training a SOM on the spectra and then identifying local maxima and minima on the SOM 'topography'. The topography is derived from the first two PCA modes so that the maxima represent the SOM patterns that carry most of the variance in the spectra. Patterns identified in this way reproduce the known set of spectra. Our results show that, regardless of the level of white noise in the spectra, the algorithm can accurately reproduce the characteristic spectral patterns and their occurrence in time. The ability to rapidly classify spectra of volcano seismic data without prior knowledge of the character of the seismicity at a given volcanic system holds great potential for real time or near-real time applications, and thus ultimately for eruption forecasting.

  3. Who was that masked man? Conjoint representations of intrinsic motions with actor appearance.

    PubMed

    Kersten, Alan W; Earles, Julie L; Negri, Leehe

    2018-09-01

    Motion plays an important role in recognising animate creatures. This research supports a distinction between intrinsic and extrinsic motions in their relationship to identifying information about the characters performing the motions. Participants viewed events involving costumed human characters. Intrinsic motions involved relative movements of a character's body parts, whereas extrinsic motions involved movements with respect to external landmarks. Participants were later tested for recognition of the motions and who had performed them. The critical test items involved familiar characters performing motions that had previously been performed by other characters. Participants falsely recognised extrinsic conjunction items, in which characters followed the paths of other characters, more often than intrinsic conjunction items, in which characters moved in the manner of other characters. In contrast, participants falsely recognised new extrinsic motions less often than new intrinsic motions, suggesting that they remembered extrinsic motions but had difficulty remembering who had performed them. Modelling of receiver operating characteristics indicated that participants discriminated old items from intrinsic conjunction items via familiarity, consistent with conjoint representations of intrinsic motion and identity information. In contrast, participants used recollection to distinguish old items from extrinsic conjunction items, consistent with separate but associated representations of extrinsic motion and identity information.

  4. The time-course of lexical activation in Japanese morphographic word recognition: evidence for a character-driven processing model.

    PubMed

    Miwa, Koji; Libben, Gary; Dijkstra, Ton; Baayen, Harald

    2014-01-01

    This lexical decision study with eye tracking of Japanese two-kanji-character words investigated the order in which a whole two-character word and its morphographic constituents are activated in the course of lexical access, the relative contributions of the left and the right characters in lexical decision, the depth to which semantic radicals are processed, and how nonlinguistic factors affect lexical processes. Mixed-effects regression analyses of response times and subgaze durations (i.e., first-pass fixation time spent on each of the two characters) revealed joint contributions of morphographic units at all levels of the linguistic structure with the magnitude and the direction of the lexical effects modulated by readers' locus of attention in a left-to-right preferred processing path. During the early time frame, character effects were larger in magnitude and more robust than radical and whole-word effects, regardless of the font size and the type of nonwords. Extending previous radical-based and character-based models, we propose a task/decision-sensitive character-driven processing model with a level-skipping assumption: Connections from the feature level bypass the lower radical level and link up directly to the higher character level.

  5. A fingerprint classification algorithm based on combination of local and global information

    NASA Astrophysics Data System (ADS)

    Liu, Chongjin; Fu, Xiang; Bian, Junjie; Feng, Jufu

    2011-12-01

    Fingerprint recognition is one of the most important technologies in biometric identification and has been wildly applied in commercial and forensic areas. Fingerprint classification, as the fundamental procedure in fingerprint recognition, can sharply decrease the quantity for fingerprint matching and improve the efficiency of fingerprint recognition. Most fingerprint classification algorithms are based on the number and position of singular points. Because the singular points detecting method only considers the local information commonly, the classification algorithms are sensitive to noise. In this paper, we propose a novel fingerprint classification algorithm combining the local and global information of fingerprint. Firstly we use local information to detect singular points and measure their quality considering orientation structure and image texture in adjacent areas. Furthermore the global orientation model is adopted to measure the reliability of singular points group. Finally the local quality and global reliability is weighted to classify fingerprint. Experiments demonstrate the accuracy and effectivity of our algorithm especially for the poor quality fingerprint images.

  6. Face recognition using total margin-based adaptive fuzzy support vector machines.

    PubMed

    Liu, Yi-Hung; Chen, Yen-Ting

    2007-01-01

    This paper presents a new classifier called total margin-based adaptive fuzzy support vector machines (TAF-SVM) that deals with several problems that may occur in support vector machines (SVMs) when applied to the face recognition. The proposed TAF-SVM not only solves the overfitting problem resulted from the outlier with the approach of fuzzification of the penalty, but also corrects the skew of the optimal separating hyperplane due to the very imbalanced data sets by using different cost algorithm. In addition, by introducing the total margin algorithm to replace the conventional soft margin algorithm, a lower generalization error bound can be obtained. Those three functions are embodied into the traditional SVM so that the TAF-SVM is proposed and reformulated in both linear and nonlinear cases. By using two databases, the Chung Yuan Christian University (CYCU) multiview and the facial recognition technology (FERET) face databases, and using the kernel Fisher's discriminant analysis (KFDA) algorithm to extract discriminating face features, experimental results show that the proposed TAF-SVM is superior to SVM in terms of the face-recognition accuracy. The results also indicate that the proposed TAF-SVM can achieve smaller error variances than SVM over a number of tests such that better recognition stability can be obtained.

  7. Pattern recognition for passive polarimetric data using nonparametric classifiers

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Saini, Jatinder; Voelz, David G.; Creusere, Charles D.

    2005-08-01

    Passive polarization based imaging is a useful tool in computer vision and pattern recognition. A passive polarization imaging system forms a polarimetric image from the reflection of ambient light that contains useful information for computer vision tasks such as object detection (classification) and recognition. Applications of polarization based pattern recognition include material classification and automatic shape recognition. In this paper, we present two target detection algorithms for images captured by a passive polarimetric imaging system. The proposed detection algorithms are based on Bayesian decision theory. In these approaches, an object can belong to one of any given number classes and classification involves making decisions that minimize the average probability of making incorrect decisions. This minimum is achieved by assigning an object to the class that maximizes the a posteriori probability. Computing a posteriori probabilities requires estimates of class conditional probability density functions (likelihoods) and prior probabilities. A Probabilistic neural network (PNN), which is a nonparametric method that can compute Bayes optimal boundaries, and a -nearest neighbor (KNN) classifier, is used for density estimation and classification. The proposed algorithms are applied to polarimetric image data gathered in the laboratory with a liquid crystal-based system. The experimental results validate the effectiveness of the above algorithms for target detection from polarimetric data.

  8. Multispectral iris recognition based on group selection and game theory

    NASA Astrophysics Data System (ADS)

    Ahmad, Foysal; Roy, Kaushik

    2017-05-01

    A commercially available iris recognition system uses only a narrow band of the near infrared spectrum (700-900 nm) while iris images captured in the wide range of 405 nm to 1550 nm offer potential benefits to enhance recognition performance of an iris biometric system. The novelty of this research is that a group selection algorithm based on coalition game theory is explored to select the best patch subsets. In this algorithm, patches are divided into several groups based on their maximum contribution in different groups. Shapley values are used to evaluate the contribution of patches in different groups. Results show that this group selection based iris recognition

  9. Wavelet decomposition based principal component analysis for face recognition using MATLAB

    NASA Astrophysics Data System (ADS)

    Sharma, Mahesh Kumar; Sharma, Shashikant; Leeprechanon, Nopbhorn; Ranjan, Aashish

    2016-03-01

    For the realization of face recognition systems in the static as well as in the real time frame, algorithms such as principal component analysis, independent component analysis, linear discriminate analysis, neural networks and genetic algorithms are used for decades. This paper discusses an approach which is a wavelet decomposition based principal component analysis for face recognition. Principal component analysis is chosen over other algorithms due to its relative simplicity, efficiency, and robustness features. The term face recognition stands for identifying a person from his facial gestures and having resemblance with factor analysis in some sense, i.e. extraction of the principal component of an image. Principal component analysis is subjected to some drawbacks, mainly the poor discriminatory power and the large computational load in finding eigenvectors, in particular. These drawbacks can be greatly reduced by combining both wavelet transform decomposition for feature extraction and principal component analysis for pattern representation and classification together, by analyzing the facial gestures into space and time domain, where, frequency and time are used interchangeably. From the experimental results, it is envisaged that this face recognition method has made a significant percentage improvement in recognition rate as well as having a better computational efficiency.

  10. Bag-of-visual-phrases and hierarchical deep models for traffic sign detection and recognition in mobile laser scanning data

    NASA Astrophysics Data System (ADS)

    Yu, Yongtao; Li, Jonathan; Wen, Chenglu; Guan, Haiyan; Luo, Huan; Wang, Cheng

    2016-03-01

    This paper presents a novel algorithm for detection and recognition of traffic signs in mobile laser scanning (MLS) data for intelligent transportation-related applications. The traffic sign detection task is accomplished based on 3-D point clouds by using bag-of-visual-phrases representations; whereas the recognition task is achieved based on 2-D images by using a Gaussian-Bernoulli deep Boltzmann machine-based hierarchical classifier. To exploit high-order feature encodings of feature regions, a deep Boltzmann machine-based feature encoder is constructed. For detecting traffic signs in 3-D point clouds, the proposed algorithm achieves an average recall, precision, quality, and F-score of 0.956, 0.946, 0.907, and 0.951, respectively, on the four selected MLS datasets. For on-image traffic sign recognition, a recognition accuracy of 97.54% is achieved by using the proposed hierarchical classifier. Comparative studies with the existing traffic sign detection and recognition methods demonstrate that our algorithm obtains promising, reliable, and high performance in both detecting traffic signs in 3-D point clouds and recognizing traffic signs on 2-D images.

  11. Indonesian Sign Language Number Recognition using SIFT Algorithm

    NASA Astrophysics Data System (ADS)

    Mahfudi, Isa; Sarosa, Moechammad; Andrie Asmara, Rosa; Azrino Gustalika, M.

    2018-04-01

    Indonesian sign language (ISL) is generally used for deaf individuals and poor people communication in communicating. They use sign language as their primary language which consists of 2 types of action: sign and finger spelling. However, not all people understand their sign language so that this becomes a problem for them to communicate with normal people. this problem also becomes a factor they are isolated feel from the social life. It needs a solution that can help them to be able to interacting with normal people. Many research that offers a variety of methods in solving the problem of sign language recognition based on image processing. SIFT (Scale Invariant Feature Transform) algorithm is one of the methods that can be used to identify an object. SIFT is claimed very resistant to scaling, rotation, illumination and noise. Using SIFT algorithm for Indonesian sign language recognition number result rate recognition to 82% with the use of a total of 100 samples image dataset consisting 50 sample for training data and 50 sample images for testing data. Change threshold value get affect the result of the recognition. The best value threshold is 0.45 with rate recognition of 94%.

  12. Line Segmentation in Handwritten Assamese and Meetei Mayek Script Using Seam Carving Based Algorithm

    NASA Astrophysics Data System (ADS)

    Kumar, Chandan Jyoti; Kalita, Sanjib Kr.

    Line segmentation is a key stage in an Optical Character Recognition system. This paper primarily concerns the problem of text line extraction on color and grayscale manuscript pages of two major North-east Indian regional Scripts, Assamese and Meetei Mayek. Line segmentation of handwritten text in Assamese and Meetei Mayek scripts is an uphill task primarily because of the structural features of both the scripts and varied writing styles. Line segmentation of a document image is been achieved by using the Seam carving technique, in this paper. Researchers from various regions used this approach for content aware resizing of an image. However currently many researchers are implementing Seam Carving for line segmentation phase of OCR. Although it is a language independent technique, mostly experiments are done over Arabic, Greek, German and Chinese scripts. Two types of seams are generated, medial seams approximate the orientation of each text line, and separating seams separated one line of text from another. Experiments are performed extensively over various types of documents and detailed analysis of the evaluations reflects that the algorithm performs well for even documents with multiple scripts. In this paper, we present a comparative study of accuracy of this method over different types of data.

  13. Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing.

    PubMed

    Vatsa, Mayank; Singh, Richa; Noore, Afzel

    2008-08-01

    This paper proposes algorithms for iris segmentation, quality enhancement, match score fusion, and indexing to improve both the accuracy and the speed of iris recognition. A curve evolution approach is proposed to effectively segment a nonideal iris image using the modified Mumford-Shah functional. Different enhancement algorithms are concurrently applied on the segmented iris image to produce multiple enhanced versions of the iris image. A support-vector-machine-based learning algorithm selects locally enhanced regions from each globally enhanced image and combines these good-quality regions to create a single high-quality iris image. Two distinct features are extracted from the high-quality iris image. The global textural feature is extracted using the 1-D log polar Gabor transform, and the local topological feature is extracted using Euler numbers. An intelligent fusion algorithm combines the textural and topological matching scores to further improve the iris recognition performance and reduce the false rejection rate, whereas an indexing algorithm enables fast and accurate iris identification. The verification and identification performance of the proposed algorithms is validated and compared with other algorithms using the CASIA Version 3, ICE 2005, and UBIRIS iris databases.

  14. Learning and Inductive Inference

    DTIC Science & Technology

    1982-07-01

    a set of graph grammars to describe visual scenes . Other researchers have applied graph grammars to the pattern recognition of handwritten characters...345 1. Issues / 345 2. Mostows’ operationalizer / 350 0. Learning from ezamples / 360 1. Issues / 3t60 2. Learning in control and pattern recognition ...art.icleis on rote learntinig and ailvice- tAik g. K(ennieth Clarkson contributed Ltte article on grmvit atical inference, anid Geoff’ lroiney wrote

  15. Semi-automated contour recognition using DICOMautomaton

    NASA Astrophysics Data System (ADS)

    Clark, H.; Wu, J.; Moiseenko, V.; Lee, R.; Gill, B.; Duzenli, C.; Thomas, S.

    2014-03-01

    Purpose: A system has been developed which recognizes and classifies Digital Imaging and Communication in Medicine contour data with minimal human intervention. It allows researchers to overcome obstacles which tax analysis and mining systems, including inconsistent naming conventions and differences in data age or resolution. Methods: Lexicographic and geometric analysis is used for recognition. Well-known lexicographic methods implemented include Levenshtein-Damerau, bag-of-characters, Double Metaphone, Soundex, and (word and character)-N-grams. Geometrical implementations include 3D Fourier Descriptors, probability spheres, boolean overlap, simple feature comparison (e.g. eccentricity, volume) and rule-based techniques. Both analyses implement custom, domain-specific modules (e.g. emphasis differentiating left/right organ variants). Contour labels from 60 head and neck patients are used for cross-validation. Results: Mixed-lexicographical methods show an effective improvement in more than 10% of recognition attempts compared with a pure Levenshtein-Damerau approach when withholding 70% of the lexicon. Domain-specific and geometrical techniques further boost performance. Conclusions: DICOMautomaton allows users to recognize contours semi-automatically. As usage increases and the lexicon is filled with additional structures, performance improves, increasing the overall utility of the system.

  16. Performance-Driven Hybrid Full-Body Character Control for Navigation and Interaction in Virtual Environments

    NASA Astrophysics Data System (ADS)

    Mousas, Christos; Anagnostopoulos, Christos-Nikolaos

    2017-06-01

    This paper presents a hybrid character control interface that provides the ability to synthesize in real-time a variety of actions based on the user's performance capture. The proposed methodology enables three different performance interaction modules: the performance animation control that enables the direct mapping of the user's pose to the character, the motion controller that synthesizes the desired motion of the character based on an activity recognition methodology, and the hybrid control that lies within the performance animation and the motion controller. With the methodology presented, the user will have the freedom to interact within the virtual environment, as well as the ability to manipulate the character and to synthesize a variety of actions that cannot be performed directly by him/her, but which the system synthesizes. Therefore, the user is able to interact with the virtual environment in a more sophisticated fashion. This paper presents examples of different scenarios based on the three different full-body character control methodologies.

  17. ERPs reveal sub-lexical processing in Chinese character recognition.

    PubMed

    Wu, Yan; Mo, Deyuan; Tsang, Yiu-Kei; Chen, Hsuan-Chih

    2012-04-18

    The present study used ERPs and a lexical decision task to explore the roles of position-general and position-specific radicals and their relative time courses in processing Chinese characters. Two types of radical frequency were manipulated: the number of characters containing a specific radical irrespective of position (i.e., radical frequency or RF) and the number of characters containing a specific radical at a particular position (i.e., position-specific radical frequency or PRF). The PRF effect was found to be associated with P150, P200, and N400, whereas the RF effect was associated with P200. These results suggest that both position-general and position-specific radicals could influence character processing, but the effect of position-specific radicals appeared earlier and lasted longer than that of position-general radicals. These findings are interpreted in terms of the specific orthographic properties of the sub-lexical components of Chinese characters. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Probabilistic Open Set Recognition

    NASA Astrophysics Data System (ADS)

    Jain, Lalit Prithviraj

    Real-world tasks in computer vision, pattern recognition and machine learning often touch upon the open set recognition problem: multi-class recognition with incomplete knowledge of the world and many unknown inputs. An obvious way to approach such problems is to develop a recognition system that thresholds probabilities to reject unknown classes. Traditional rejection techniques are not about the unknown; they are about the uncertain boundary and rejection around that boundary. Thus traditional techniques only represent the "known unknowns". However, a proper open set recognition algorithm is needed to reduce the risk from the "unknown unknowns". This dissertation examines this concept and finds existing probabilistic multi-class recognition approaches are ineffective for true open set recognition. We hypothesize the cause is due to weak adhoc assumptions combined with closed-world assumptions made by existing calibration techniques. Intuitively, if we could accurately model just the positive data for any known class without overfitting, we could reject the large set of unknown classes even under this assumption of incomplete class knowledge. For this, we formulate the problem as one of modeling positive training data by invoking statistical extreme value theory (EVT) near the decision boundary of positive data with respect to negative data. We provide a new algorithm called the PI-SVM for estimating the unnormalized posterior probability of class inclusion. This dissertation also introduces a new open set recognition model called Compact Abating Probability (CAP), where the probability of class membership decreases in value (abates) as points move from known data toward open space. We show that CAP models improve open set recognition for multiple algorithms. Leveraging the CAP formulation, we go on to describe the novel Weibull-calibrated SVM (W-SVM) algorithm, which combines the useful properties of statistical EVT for score calibration with one-class and binary support vector machines. Building from the success of statistical EVT based recognition methods such as PI-SVM and W-SVM on the open set problem, we present a new general supervised learning algorithm for multi-class classification and multi-class open set recognition called the Extreme Value Local Basis (EVLB). The design of this algorithm is motivated by the observation that extrema from known negative class distributions are the closest negative points to any positive sample during training, and thus should be used to define the parameters of a probabilistic decision model. In the EVLB, the kernel distribution for each positive training sample is estimated via an EVT distribution fit over the distances to the separating hyperplane between positive training sample and closest negative samples, with a subset of the overall positive training data retained to form a probabilistic decision boundary. Using this subset as a frame of reference, the probability of a sample at test time decreases as it moves away from the positive class. Possessing this property, the EVLB is well-suited to open set recognition problems where samples from unknown or novel classes are encountered at test. Our experimental evaluation shows that the EVLB provides a substantial improvement in scalability compared to standard radial basis function kernel machines, as well as P I-SVM and W-SVM, with improved accuracy in many cases. We evaluate our algorithm on open set variations of the standard visual learning benchmarks, as well as with an open subset of classes from Caltech 256 and ImageNet. Our experiments show that PI-SVM, WSVM and EVLB provide significant advances over the previous state-of-the-art solutions for the same tasks.

  19. Automated target recognition and tracking using an optical pattern recognition neural network

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    1991-01-01

    The on-going development of an automatic target recognition and tracking system at the Jet Propulsion Laboratory is presented. This system is an optical pattern recognition neural network (OPRNN) that is an integration of an innovative optical parallel processor and a feature extraction based neural net training algorithm. The parallel optical processor provides high speed and vast parallelism as well as full shift invariance. The neural network algorithm enables simultaneous discrimination of multiple noisy targets in spite of their scales, rotations, perspectives, and various deformations. This fully developed OPRNN system can be effectively utilized for the automated spacecraft recognition and tracking that will lead to success in the Automated Rendezvous and Capture (AR&C) of the unmanned Cargo Transfer Vehicle (CTV). One of the most powerful optical parallel processors for automatic target recognition is the multichannel correlator. With the inherent advantages of parallel processing capability and shift invariance, multiple objects can be simultaneously recognized and tracked using this multichannel correlator. This target tracking capability can be greatly enhanced by utilizing a powerful feature extraction based neural network training algorithm such as the neocognitron. The OPRNN, currently under investigation at JPL, is constructed with an optical multichannel correlator where holographic filters have been prepared using the neocognitron training algorithm. The computation speed of the neocognitron-type OPRNN is up to 10(exp 14) analog connections/sec that enabling the OPRNN to outperform its state-of-the-art electronics counterpart by at least two orders of magnitude.

  20. Recognizing Age-Separated Face Images: Humans and Machines

    PubMed Central

    Yadav, Daksha; Singh, Richa; Vatsa, Mayank; Noore, Afzel

    2014-01-01

    Humans utilize facial appearance, gender, expression, aging pattern, and other ancillary information to recognize individuals. It is interesting to observe how humans perceive facial age. Analyzing these properties can help in understanding the phenomenon of facial aging and incorporating the findings can help in designing effective algorithms. Such a study has two components - facial age estimation and age-separated face recognition. Age estimation involves predicting the age of an individual given his/her facial image. On the other hand, age-separated face recognition consists of recognizing an individual given his/her age-separated images. In this research, we investigate which facial cues are utilized by humans for estimating the age of people belonging to various age groups along with analyzing the effect of one's gender, age, and ethnicity on age estimation skills. We also analyze how various facial regions such as binocular and mouth regions influence age estimation and recognition capabilities. Finally, we propose an age-invariant face recognition algorithm that incorporates the knowledge learned from these observations. Key observations of our research are: (1) the age group of newborns and toddlers is easiest to estimate, (2) gender and ethnicity do not affect the judgment of age group estimation, (3) face as a global feature, is essential to achieve good performance in age-separated face recognition, and (4) the proposed algorithm yields improved recognition performance compared to existing algorithms and also outperforms a commercial system in the young image as probe scenario. PMID:25474200

  1. Recognizing age-separated face images: humans and machines.

    PubMed

    Yadav, Daksha; Singh, Richa; Vatsa, Mayank; Noore, Afzel

    2014-01-01

    Humans utilize facial appearance, gender, expression, aging pattern, and other ancillary information to recognize individuals. It is interesting to observe how humans perceive facial age. Analyzing these properties can help in understanding the phenomenon of facial aging and incorporating the findings can help in designing effective algorithms. Such a study has two components--facial age estimation and age-separated face recognition. Age estimation involves predicting the age of an individual given his/her facial image. On the other hand, age-separated face recognition consists of recognizing an individual given his/her age-separated images. In this research, we investigate which facial cues are utilized by humans for estimating the age of people belonging to various age groups along with analyzing the effect of one's gender, age, and ethnicity on age estimation skills. We also analyze how various facial regions such as binocular and mouth regions influence age estimation and recognition capabilities. Finally, we propose an age-invariant face recognition algorithm that incorporates the knowledge learned from these observations. Key observations of our research are: (1) the age group of newborns and toddlers is easiest to estimate, (2) gender and ethnicity do not affect the judgment of age group estimation, (3) face as a global feature, is essential to achieve good performance in age-separated face recognition, and (4) the proposed algorithm yields improved recognition performance compared to existing algorithms and also outperforms a commercial system in the young image as probe scenario.

  2. Key features for ATA / ATR database design in missile systems

    NASA Astrophysics Data System (ADS)

    Özertem, Kemal Arda

    2017-05-01

    Automatic target acquisition (ATA) and automatic target recognition (ATR) are two vital tasks for missile systems, and having a robust detection and recognition algorithm is crucial for overall system performance. In order to have a robust target detection and recognition algorithm, an extensive image database is required. Automatic target recognition algorithms use the database of images in training and testing steps of algorithm. This directly affects the recognition performance, since the training accuracy is driven by the quality of the image database. In addition, the performance of an automatic target detection algorithm can be measured effectively by using an image database. There are two main ways for designing an ATA / ATR database. The first and easy way is by using a scene generator. A scene generator can model the objects by considering its material information, the atmospheric conditions, detector type and the territory. Designing image database by using a scene generator is inexpensive and it allows creating many different scenarios quickly and easily. However the major drawback of using a scene generator is its low fidelity, since the images are created virtually. The second and difficult way is designing it using real-world images. Designing image database with real-world images is a lot more costly and time consuming; however it offers high fidelity, which is critical for missile algorithms. In this paper, critical concepts in ATA / ATR database design with real-world images are discussed. Each concept is discussed in the perspective of ATA and ATR separately. For the implementation stage, some possible solutions and trade-offs for creating the database are proposed, and all proposed approaches are compared to each other with regards to their pros and cons.

  3. A 2D range Hausdorff approach to 3D facial recognition.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Mark William; Russ, Trina Denise; Little, Charles Quentin

    2004-11-01

    This paper presents a 3D facial recognition algorithm based on the Hausdorff distance metric. The standard 3D formulation of the Hausdorff matching algorithm has been modified to operate on a 2D range image, enabling a reduction in computation from O(N2) to O(N) without large storage requirements. The Hausdorff distance is known for its robustness to data outliers and inconsistent data between two data sets, making it a suitable choice for dealing with the inherent problems in many 3D datasets due to sensor noise and object self-occlusion. For optimal performance, the algorithm assumes a good initial alignment between probe and templatemore » datasets. However, to minimize the error between two faces, the alignment can be iteratively refined. Results from the algorithm are presented using 3D face images from the Face Recognition Grand Challenge database version 1.0.« less

  4. Autoregressive statistical pattern recognition algorithms for damage detection in civil structures

    NASA Astrophysics Data System (ADS)

    Yao, Ruigen; Pakzad, Shamim N.

    2012-08-01

    Statistical pattern recognition has recently emerged as a promising set of complementary methods to system identification for automatic structural damage assessment. Its essence is to use well-known concepts in statistics for boundary definition of different pattern classes, such as those for damaged and undamaged structures. In this paper, several statistical pattern recognition algorithms using autoregressive models, including statistical control charts and hypothesis testing, are reviewed as potentially competitive damage detection techniques. To enhance the performance of statistical methods, new feature extraction techniques using model spectra and residual autocorrelation, together with resampling-based threshold construction methods, are proposed. Subsequently, simulated acceleration data from a multi degree-of-freedom system is generated to test and compare the efficiency of the existing and proposed algorithms. Data from laboratory experiments conducted on a truss and a large-scale bridge slab model are then used to further validate the damage detection methods and demonstrate the superior performance of proposed algorithms.

  5. Wheezing recognition algorithm using recordings of respiratory sounds at the mouth in a pediatric population.

    PubMed

    Bokov, Plamen; Mahut, Bruno; Flaud, Patrice; Delclaux, Christophe

    2016-03-01

    Respiratory diseases in children are a common reason for physician visits. A diagnostic difficulty arises when parents hear wheezing that is no longer present during the medical consultation. Thus, an outpatient objective tool for recognition of wheezing is of clinical value. We developed a wheezing recognition algorithm from recorded respiratory sounds with a Smartphone placed near the mouth. A total of 186 recordings were obtained in a pediatric emergency department, mostly in toddlers (mean age 20 months). After exclusion of recordings with artefacts and those with a single clinical operator auscultation, 95 recordings with the agreement of two operators on auscultation diagnosis (27 with wheezing and 68 without) were subjected to a two phase algorithm (signal analysis and pattern classifier using machine learning algorithms) to classify records. The best performance (71.4% sensitivity and 88.9% specificity) was observed with a Support Vector Machine-based algorithm. We further tested the algorithm over a set of 39 recordings having a single operator and found a fair agreement (kappa=0.28, CI95% [0.12, 0.45]) between the algorithm and the operator. The main advantage of such an algorithm is its use in contact-free sound recording, thus valuable in the pediatric population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Character Recognition Using Novel Optoelectronic Neural Network

    DTIC Science & Technology

    1993-04-01

    interest will include machine learning and perception. Permanent Address: William M. Robinson c/o Dave and Judy Bartine 117 Westcliff Drive Harriman, TN 37748 This thesis was typed by William M. Robinson. 190 END

  7. Keyboarding: An Important Skill for the Office of the Future.

    ERIC Educational Resources Information Center

    Burford, Anna M.

    1980-01-01

    Defines the components of the office of the future: data processing, micrographics, optical character recognition, telecommunications, and word processing. Also discusses teacher responsibility, student preparation, future challenges, and teacher awareness. (CT)

  8. Enter Words and Pictures the Easy Way--Scan Them.

    ERIC Educational Resources Information Center

    Olivas, Jerry

    1989-01-01

    Discusses image scanning and optical character recognition. Describes how computer scanners work. Summarizes scan quality, scanning speed requirements, and hardware requirements for scanners. Surveys the range of scanners currently available. (MVL)

  9. Spatially Invariant Vector Quantization: A pattern matching algorithm for multiple classes of image subject matter including pathology.

    PubMed

    Hipp, Jason D; Cheng, Jerome Y; Toner, Mehmet; Tompkins, Ronald G; Balis, Ulysses J

    2011-02-26

    HISTORICALLY, EFFECTIVE CLINICAL UTILIZATION OF IMAGE ANALYSIS AND PATTERN RECOGNITION ALGORITHMS IN PATHOLOGY HAS BEEN HAMPERED BY TWO CRITICAL LIMITATIONS: 1) the availability of digital whole slide imagery data sets and 2) a relative domain knowledge deficit in terms of application of such algorithms, on the part of practicing pathologists. With the advent of the recent and rapid adoption of whole slide imaging solutions, the former limitation has been largely resolved. However, with the expectation that it is unlikely for the general cohort of contemporary pathologists to gain advanced image analysis skills in the short term, the latter problem remains, thus underscoring the need for a class of algorithm that has the concurrent properties of image domain (or organ system) independence and extreme ease of use, without the need for specialized training or expertise. In this report, we present a novel, general case pattern recognition algorithm, Spatially Invariant Vector Quantization (SIVQ), that overcomes the aforementioned knowledge deficit. Fundamentally based on conventional Vector Quantization (VQ) pattern recognition approaches, SIVQ gains its superior performance and essentially zero-training workflow model from its use of ring vectors, which exhibit continuous symmetry, as opposed to square or rectangular vectors, which do not. By use of the stochastic matching properties inherent in continuous symmetry, a single ring vector can exhibit as much as a millionfold improvement in matching possibilities, as opposed to conventional VQ vectors. SIVQ was utilized to demonstrate rapid and highly precise pattern recognition capability in a broad range of gross and microscopic use-case settings. With the performance of SIVQ observed thus far, we find evidence that indeed there exist classes of image analysis/pattern recognition algorithms suitable for deployment in settings where pathologists alone can effectively incorporate their use into clinical workflow, as a turnkey solution. We anticipate that SIVQ, and other related class-independent pattern recognition algorithms, will become part of the overall armamentarium of digital image analysis approaches that are immediately available to practicing pathologists, without the need for the immediate availability of an image analysis expert.

  10. Reading as Active Sensing: A Computational Model of Gaze Planning in Word Recognition

    PubMed Central

    Ferro, Marcello; Ognibene, Dimitri; Pezzulo, Giovanni; Pirrelli, Vito

    2010-01-01

    We offer a computational model of gaze planning during reading that consists of two main components: a lexical representation network, acquiring lexical representations from input texts (a subset of the Italian CHILDES database), and a gaze planner, designed to recognize written words by mapping strings of characters onto lexical representations. The model implements an active sensing strategy that selects which characters of the input string are to be fixated, depending on the predictions dynamically made by the lexical representation network. We analyze the developmental trajectory of the system in performing the word recognition task as a function of both increasing lexical competence, and correspondingly increasing lexical prediction ability. We conclude by discussing how our approach can be scaled up in the context of an active sensing strategy applied to a robotic setting. PMID:20577589

  11. Reading as active sensing: a computational model of gaze planning in word recognition.

    PubMed

    Ferro, Marcello; Ognibene, Dimitri; Pezzulo, Giovanni; Pirrelli, Vito

    2010-01-01

    WE OFFER A COMPUTATIONAL MODEL OF GAZE PLANNING DURING READING THAT CONSISTS OF TWO MAIN COMPONENTS: a lexical representation network, acquiring lexical representations from input texts (a subset of the Italian CHILDES database), and a gaze planner, designed to recognize written words by mapping strings of characters onto lexical representations. The model implements an active sensing strategy that selects which characters of the input string are to be fixated, depending on the predictions dynamically made by the lexical representation network. We analyze the developmental trajectory of the system in performing the word recognition task as a function of both increasing lexical competence, and correspondingly increasing lexical prediction ability. We conclude by discussing how our approach can be scaled up in the context of an active sensing strategy applied to a robotic setting.

  12. Distorted Character Recognition Via An Associative Neural Network

    NASA Astrophysics Data System (ADS)

    Messner, Richard A.; Szu, Harold H.

    1987-03-01

    The purpose of this paper is two-fold. First, it is intended to provide some preliminary results of a character recognition scheme which has foundations in on-going neural network architecture modeling, and secondly, to apply some of the neural network results in a real application area where thirty years of effort has had little effect on providing the machine an ability to recognize distorted objects within the same object class. It is the author's belief that the time is ripe to start applying in ernest the results of over twenty years of effort in neural modeling to some of the more difficult problems which seem so hard to solve by conventional means. The character recognition scheme proposed utilizes a preprocessing stage which performs a 2-dimensional Walsh transform of an input cartesian image field, then sequency filters this spectrum into three feature bands. Various features are then extracted and organized into three sets of feature vectors. These vector patterns that are stored and recalled associatively. Two possible associative neural memory models are proposed for further investigation. The first being an outer-product linear matrix associative memory with a threshold function controlling the strength of the output pattern (similar to Kohonen's crosscorrelation approach [1]). The second approach is based upon a modified version of Grossberg's neural architecture [2] which provides better self-organizing properties due to its adaptive nature. Preliminary results of the sequency filtering and feature extraction preprocessing stage and discussion about the use of the proposed neural architectures is included.

  13. Toward a Graded Psycholexical Space Mapping Model: Sublexical and Lexical Representations in Chinese Character Reading Development.

    PubMed

    Tong, Xiuli; McBride, Catherine

    2017-07-01

    Following a review of contemporary models of word-level processing for reading and their limitations, we propose a new hypothetical model of Chinese character reading, namely, the graded lexical space mapping model that characterizes how sublexical radicals and lexical information are involved in Chinese character reading development. The underlying assumption of this model is that Chinese character recognition is a process of competitive mappings of phonology, semantics, and orthography in both lexical and sublexical systems, operating as functions of statistical properties of print input based on the individual's specific level of reading. This model leads to several testable predictions concerning how the quasiregularity and continuity of Chinese-specific radicals are organized in memory for both child and adult readers at different developmental stages of reading.

  14. Aided target recognition processing of MUDSS sonar data

    NASA Astrophysics Data System (ADS)

    Lau, Brian; Chao, Tien-Hsin

    1998-09-01

    The Mobile Underwater Debris Survey System (MUDSS) is a collaborative effort by the Navy and the Jet Propulsion Lab to demonstrate multi-sensor, real-time, survey of underwater sites for ordnance and explosive waste (OEW). We describe the sonar processing algorithm, a novel target recognition algorithm incorporating wavelets, morphological image processing, expansion by Hermite polynomials, and neural networks. This algorithm has found all planted targets in MUDSS tests and has achieved spectacular success upon another Coastal Systems Station (CSS) sonar image database.

  15. Lexical processing of Chinese sub-character components: Semantic activation of phonetic radicals as revealed by the Stroop effect.

    PubMed

    Yeh, Su-Ling; Chou, Wei-Lun; Ho, Pokuan

    2017-11-17

    Most Chinese characters are compounds consisting of a semantic radical indicating semantic category and a phonetic radical cuing the pronunciation of the character. Controversy surrounds whether radicals also go through the same lexical processing as characters and, critically, whether phonetic radicals involve semantic activation since they can also be characters when standing alone. Here we examined these issues using the Stroop task whereby participants responded to the ink color of the character. The key finding was that Stroop effects were found when the character itself had a meaning unrelated to color, but contained a color name phonetic radical (e.g., "guess", with the phonetic radical "cyan", on the right) or had a meaning associated with color (e.g., "pity", with the phonetic radical "blood" on the right which has a meaning related to "red"). Such Stroop effects from the phonetic radical within a character unrelated to color support that Chinese character recognition involves decomposition of characters into their constituent radicals; with each of their meanings including phonetic radicals activated independently, even though it would inevitably interfere with that of the whole character. Compared with the morphological decomposition in English whereby the semantics of the morphemes are not necessarily activated, the unavoidable semantic activation of phonetic radicals represents a unique feature in Chinese character processing.

  16. Classifier dependent feature preprocessing methods

    NASA Astrophysics Data System (ADS)

    Rodriguez, Benjamin M., II; Peterson, Gilbert L.

    2008-04-01

    In mobile applications, computational complexity is an issue that limits sophisticated algorithms from being implemented on these devices. This paper provides an initial solution to applying pattern recognition systems on mobile devices by combining existing preprocessing algorithms for recognition. In pattern recognition systems, it is essential to properly apply feature preprocessing tools prior to training classification models in an attempt to reduce computational complexity and improve the overall classification accuracy. The feature preprocessing tools extended for the mobile environment are feature ranking, feature extraction, data preparation and outlier removal. Most desktop systems today are capable of processing a majority of the available classification algorithms without concern of processing while the same is not true on mobile platforms. As an application of pattern recognition for mobile devices, the recognition system targets the problem of steganalysis, determining if an image contains hidden information. The measure of performance shows that feature preprocessing increases the overall steganalysis classification accuracy by an average of 22%. The methods in this paper are tested on a workstation and a Nokia 6620 (Symbian operating system) camera phone with similar results.

  17. Recognition of plant parts with problem-specific algorithms

    NASA Astrophysics Data System (ADS)

    Schwanke, Joerg; Brendel, Thorsten; Jensch, Peter F.; Megnet, Roland

    1994-06-01

    Automatic micropropagation is necessary to produce cost-effective high amounts of biomass. Juvenile plants are dissected in clean- room environment on particular points on the stem or the leaves. A vision-system detects possible cutting points and controls a specialized robot. This contribution is directed to the pattern- recognition algorithms to detect structural parts of the plant.

  18. Correcting geometric and photometric distortion of document images on a smartphone

    NASA Astrophysics Data System (ADS)

    Simon, Christian; Williem; Park, In Kyu

    2015-01-01

    A set of document image processing algorithms for improving the optical character recognition (OCR) capability of smartphone applications is presented. The scope of the problem covers the geometric and photometric distortion correction of document images. The proposed framework was developed to satisfy industrial requirements. It is implemented on an off-the-shelf smartphone with limited resources in terms of speed and memory. Geometric distortions, i.e., skew and perspective distortion, are corrected by sending horizontal and vertical vanishing points toward infinity in a downsampled image. Photometric distortion includes image degradation from moiré pattern noise and specular highlights. Moiré pattern noise is removed using low-pass filters with different sizes independently applied to the background and text region. The contrast of the text in a specular highlighted area is enhanced by locally enlarging the intensity difference between the background and text while the noise is suppressed. Intensive experiments indicate that the proposed methods show a consistent and robust performance on a smartphone with a runtime of less than 1 s.

  19. Enhanced facial texture illumination normalization for face recognition.

    PubMed

    Luo, Yong; Guan, Ye-Peng

    2015-08-01

    An uncontrolled lighting condition is one of the most critical challenges for practical face recognition applications. An enhanced facial texture illumination normalization method is put forward to resolve this challenge. An adaptive relighting algorithm is developed to improve the brightness uniformity of face images. Facial texture is extracted by using an illumination estimation difference algorithm. An anisotropic histogram-stretching algorithm is proposed to minimize the intraclass distance of facial skin and maximize the dynamic range of facial texture distribution. Compared with the existing methods, the proposed method can more effectively eliminate the redundant information of facial skin and illumination. Extensive experiments show that the proposed method has superior performance in normalizing illumination variation and enhancing facial texture features for illumination-insensitive face recognition.

  20. Computer Recognition of Facial Profiles

    DTIC Science & Technology

    1974-08-01

    facial recognition 20. ABSTRACT (Continue on reverse side It necessary and Identify by block number) A system for the recognition of human faces from...21 2.6 Classification Algorithms ........... ... 32 III FACIAL RECOGNITION AND AUTOMATIC TRAINING . . . 37 3.1 Facial Profile Recognition...provide a fair test of the classification system. The work of Goldstein, Harmon, and Lesk [81 indicates, however, that for facial recognition , a ten class

  1. What Is in the Naming? A 5-Year Longitudinal Study of Early Rapid Naming and Phonological Sensitivity in Relation to Subsequent Reading Skills in Both Native Chinese and English as a Second Language

    ERIC Educational Resources Information Center

    Pan, Jinger; McBride-Chang, Catherine; Shu, Hua; Liu, Hongyun; Zhang, Yuping; Li, Hong

    2011-01-01

    Among 262 Chinese children, syllable awareness and rapid automatized naming (RAN) at age 5 years and invented spelling of Pinyin at age 6 years independently predicted subsequent Chinese character recognition and English word reading at ages 8 years and 10 years, even with initial Chinese character reading ability statistically controlled. In…

  2. Research on Palmprint Identification Method Based on Quantum Algorithms

    PubMed Central

    Zhang, Zhanzhan

    2014-01-01

    Quantum image recognition is a technology by using quantum algorithm to process the image information. It can obtain better effect than classical algorithm. In this paper, four different quantum algorithms are used in the three stages of palmprint recognition. First, quantum adaptive median filtering algorithm is presented in palmprint filtering processing. Quantum filtering algorithm can get a better filtering result than classical algorithm through the comparison. Next, quantum Fourier transform (QFT) is used to extract pattern features by only one operation due to quantum parallelism. The proposed algorithm exhibits an exponential speed-up compared with discrete Fourier transform in the feature extraction. Finally, quantum set operations and Grover algorithm are used in palmprint matching. According to the experimental results, quantum algorithm only needs to apply square of N operations to find out the target palmprint, but the traditional method needs N times of calculation. At the same time, the matching accuracy of quantum algorithm is almost 100%. PMID:25105165

  3. Fast and simple character classes and bounded gaps pattern matching, with applications to protein searching.

    PubMed

    Navarro, Gonzalo; Raffinot, Mathieu

    2003-01-01

    The problem of fast exact and approximate searching for a pattern that contains classes of characters and bounded size gaps (CBG) in a text has a wide range of applications, among which a very important one is protein pattern matching (for instance, one PROSITE protein site is associated with the CBG [RK] - x(2,3) - [DE] - x(2,3) - Y, where the brackets match any of the letters inside, and x(2,3) a gap of length between 2 and 3). Currently, the only way to search for a CBG in a text is to convert it into a full regular expression (RE). However, a RE is more sophisticated than a CBG, and searching for it with a RE pattern matching algorithm complicates the search and makes it slow. This is the reason why we design in this article two new practical CBG matching algorithms that are much simpler and faster than all the RE search techniques. The first one looks exactly once at each text character. The second one does not need to consider all the text characters, and hence it is usually faster than the first one, but in bad cases may have to read the same text character more than once. We then propose a criterion based on the form of the CBG to choose a priori the fastest between both. We also show how to search permitting a few mistakes in the occurrences. We performed many practical experiments using the PROSITE database, and all of them show that our algorithms are the fastest in virtually all cases.

  4. Face Recognition Using Local Quantized Patterns and Gabor Filters

    NASA Astrophysics Data System (ADS)

    Khryashchev, V.; Priorov, A.; Stepanova, O.; Nikitin, A.

    2015-05-01

    The problem of face recognition in a natural or artificial environment has received a great deal of researchers' attention over the last few years. A lot of methods for accurate face recognition have been proposed. Nevertheless, these methods often fail to accurately recognize the person in difficult scenarios, e.g. low resolution, low contrast, pose variations, etc. We therefore propose an approach for accurate and robust face recognition by using local quantized patterns and Gabor filters. The estimation of the eye centers is used as a preprocessing stage. The evaluation of our algorithm on different samples from a standardized FERET database shows that our method is invariant to the general variations of lighting, expression, occlusion and aging. The proposed approach allows about 20% correct recognition accuracy increase compared with the known face recognition algorithms from the OpenCV library. The additional use of Gabor filters can significantly improve the robustness to changes in lighting conditions.

  5. A Lightweight Hierarchical Activity Recognition Framework Using Smartphone Sensors

    PubMed Central

    Han, Manhyung; Bang, Jae Hun; Nugent, Chris; McClean, Sally; Lee, Sungyoung

    2014-01-01

    Activity recognition for the purposes of recognizing a user's intentions using multimodal sensors is becoming a widely researched topic largely based on the prevalence of the smartphone. Previous studies have reported the difficulty in recognizing life-logs by only using a smartphone due to the challenges with activity modeling and real-time recognition. In addition, recognizing life-logs is difficult due to the absence of an established framework which enables the use of different sources of sensor data. In this paper, we propose a smartphone-based Hierarchical Activity Recognition Framework which extends the Naïve Bayes approach for the processing of activity modeling and real-time activity recognition. The proposed algorithm demonstrates higher accuracy than the Naïve Bayes approach and also enables the recognition of a user's activities within a mobile environment. The proposed algorithm has the ability to classify fifteen activities with an average classification accuracy of 92.96%. PMID:25184486

  6. Algorithm of the automated choice of points of the acupuncture for EHF-therapy

    NASA Astrophysics Data System (ADS)

    Lyapina, E. P.; Chesnokov, I. A.; Anisimov, Ya. E.; Bushuev, N. A.; Murashov, E. P.; Eliseev, Yu. Yu.; Syuzanna, H.

    2007-05-01

    Offered algorithm of the automated choice of points of the acupuncture for EHF-therapy. The recipe formed by algorithm of an automated choice of points for acupunctural actions has a recommendational character. Clinical investigations showed that application of the developed algorithm in EHF-therapy allows to normalize energetic state of the meridians and to effectively solve many problems of an organism functioning.

  7. Approach to recognition of flexible form for credit card expiration date recognition as example

    NASA Astrophysics Data System (ADS)

    Sheshkus, Alexander; Nikolaev, Dmitry P.; Ingacheva, Anastasia; Skoryukina, Natalya

    2015-12-01

    In this paper we consider a task of finding information fields within document with flexible form for credit card expiration date field as example. We discuss main difficulties and suggest possible solutions. In our case this task is to be solved on mobile devices therefore computational complexity has to be as low as possible. In this paper we provide results of the analysis of suggested algorithm. Error distribution of the recognition system shows that suggested algorithm solves the task with required accuracy.

  8. Methods for Presenting Braille Characters on a Mobile Device with a Touchscreen and Tactile Feedback.

    PubMed

    Rantala, J; Raisamo, R; Lylykangas, J; Surakka, V; Raisamo, J; Salminen, K; Pakkanen, T; Hippula, A

    2009-01-01

    Three novel interaction methods were designed for reading six-dot Braille characters from the touchscreen of a mobile device. A prototype device with a piezoelectric actuator embedded under the touchscreen was used to create tactile feedback. The three interaction methods, scan, sweep, and rhythm, enabled users to read Braille characters one at a time either by exploring the characters dot by dot or by sensing a rhythmic pattern presented on the screen. The methods were tested with five blind Braille readers as a proof of concept. The results of the first experiment showed that all three methods can be used to convey information as the participants could accurately (91-97 percent) recognize individual characters. In the second experiment the presentation rate of the most efficient and preferred method, the rhythm, was varied. A mean recognition accuracy of 70 percent was found when the speed of presenting a single character was nearly doubled from the first experiment. The results showed that temporal tactile feedback and Braille coding can be used to transmit single-character information while further studies are still needed to evaluate the presentation of serial information, i.e., multiple Braille characters.

  9. Fusion of Visible and Thermal Descriptors Using Genetic Algorithms for Face Recognition Systems.

    PubMed

    Hermosilla, Gabriel; Gallardo, Francisco; Farias, Gonzalo; San Martin, Cesar

    2015-07-23

    The aim of this article is to present a new face recognition system based on the fusion of visible and thermal features obtained from the most current local matching descriptors by maximizing face recognition rates through the use of genetic algorithms. The article considers a comparison of the performance of the proposed fusion methodology against five current face recognition methods and classic fusion techniques used commonly in the literature. These were selected by considering their performance in face recognition. The five local matching methods and the proposed fusion methodology are evaluated using the standard visible/thermal database, the Equinox database, along with a new database, the PUCV-VTF, designed for visible-thermal studies in face recognition and described for the first time in this work. The latter is created considering visible and thermal image sensors with different real-world conditions, such as variations in illumination, facial expression, pose, occlusion, etc. The main conclusions of this article are that two variants of the proposed fusion methodology surpass current face recognition methods and the classic fusion techniques reported in the literature, attaining recognition rates of over 97% and 99% for the Equinox and PUCV-VTF databases, respectively. The fusion methodology is very robust to illumination and expression changes, as it combines thermal and visible information efficiently by using genetic algorithms, thus allowing it to choose optimal face areas where one spectrum is more representative than the other.

  10. Study on recognition algorithm for paper currency numbers based on neural network

    NASA Astrophysics Data System (ADS)

    Li, Xiuyan; Liu, Tiegen; Li, Yuanyao; Zhang, Zhongchuan; Deng, Shichao

    2008-12-01

    Based on the unique characteristic, the paper currency numbers can be put into record and the automatic identification equipment for paper currency numbers is supplied to currency circulation market in order to provide convenience for financial sectors to trace the fiduciary circulation socially and provide effective supervision on paper currency. Simultaneously it is favorable for identifying forged notes, blacklisting the forged notes numbers and solving the major social problems, such as armor cash carrier robbery, money laundering. For the purpose of recognizing the paper currency numbers, a recognition algorithm based on neural network is presented in the paper. Number lines in original paper currency images can be draw out through image processing, such as image de-noising, skew correction, segmentation, and image normalization. According to the different characteristics between digits and letters in serial number, two kinds of classifiers are designed. With the characteristics of associative memory, optimization-compute and rapid convergence, the Discrete Hopfield Neural Network (DHNN) is utilized to recognize the letters; with the characteristics of simple structure, quick learning and global optimum, the Radial-Basis Function Neural Network (RBFNN) is adopted to identify the digits. Then the final recognition results are obtained by combining the two kinds of recognition results in regular sequence. Through the simulation tests, it is confirmed by simulation results that the recognition algorithm of combination of two kinds of recognition methods has such advantages as high recognition rate and faster recognition simultaneously, which is worthy of broad application prospect.

  11. Fusion of Visible and Thermal Descriptors Using Genetic Algorithms for Face Recognition Systems

    PubMed Central

    Hermosilla, Gabriel; Gallardo, Francisco; Farias, Gonzalo; San Martin, Cesar

    2015-01-01

    The aim of this article is to present a new face recognition system based on the fusion of visible and thermal features obtained from the most current local matching descriptors by maximizing face recognition rates through the use of genetic algorithms. The article considers a comparison of the performance of the proposed fusion methodology against five current face recognition methods and classic fusion techniques used commonly in the literature. These were selected by considering their performance in face recognition. The five local matching methods and the proposed fusion methodology are evaluated using the standard visible/thermal database, the Equinox database, along with a new database, the PUCV-VTF, designed for visible-thermal studies in face recognition and described for the first time in this work. The latter is created considering visible and thermal image sensors with different real-world conditions, such as variations in illumination, facial expression, pose, occlusion, etc. The main conclusions of this article are that two variants of the proposed fusion methodology surpass current face recognition methods and the classic fusion techniques reported in the literature, attaining recognition rates of over 97% and 99% for the Equinox and PUCV-VTF databases, respectively. The fusion methodology is very robust to illumination and expression changes, as it combines thermal and visible information efficiently by using genetic algorithms, thus allowing it to choose optimal face areas where one spectrum is more representative than the other. PMID:26213932

  12. Basics of identification measurement technology

    NASA Astrophysics Data System (ADS)

    Klikushin, Yu N.; Kobenko, V. Yu; Stepanov, P. P.

    2018-01-01

    All available algorithms and suitable for pattern recognition do not give 100% guarantee, therefore there is a field of scientific night activity in this direction, studies are relevant. It is proposed to develop existing technologies for pattern recognition in the form of application of identification measurements. The purpose of the study is to identify the possibility of recognizing images using identification measurement technologies. In solving problems of pattern recognition, neural networks and hidden Markov models are mainly used. A fundamentally new approach to the solution of problems of pattern recognition based on the technology of identification signal measurements (IIS) is proposed. The essence of IIS technology is the quantitative evaluation of the shape of images using special tools and algorithms.

  13. A study of speech emotion recognition based on hybrid algorithm

    NASA Astrophysics Data System (ADS)

    Zhu, Ju-xia; Zhang, Chao; Lv, Zhao; Rao, Yao-quan; Wu, Xiao-pei

    2011-10-01

    To effectively improve the recognition accuracy of the speech emotion recognition system, a hybrid algorithm which combines Continuous Hidden Markov Model (CHMM), All-Class-in-One Neural Network (ACON) and Support Vector Machine (SVM) is proposed. In SVM and ACON methods, some global statistics are used as emotional features, while in CHMM method, instantaneous features are employed. The recognition rate by the proposed method is 92.25%, with the rejection rate to be 0.78%. Furthermore, it obtains the relative increasing of 8.53%, 4.69% and 0.78% compared with ACON, CHMM and SVM methods respectively. The experiment result confirms the efficiency of distinguishing anger, happiness, neutral and sadness emotional states.

  14. Analysis and Recognition of Curve Type as The Basis of Object Recognition in Image

    NASA Astrophysics Data System (ADS)

    Nugraha, Nurma; Madenda, Sarifuddin; Indarti, Dina; Dewi Agushinta, R.; Ernastuti

    2016-06-01

    An object in an image when analyzed further will show the characteristics that distinguish one object with another object in an image. Characteristics that are used in object recognition in an image can be a color, shape, pattern, texture and spatial information that can be used to represent objects in the digital image. The method has recently been developed for image feature extraction on objects that share characteristics curve analysis (simple curve) and use the search feature of chain code object. This study will develop an algorithm analysis and the recognition of the type of curve as the basis for object recognition in images, with proposing addition of complex curve characteristics with maximum four branches that will be used for the process of object recognition in images. Definition of complex curve is the curve that has a point of intersection. By using some of the image of the edge detection, the algorithm was able to do the analysis and recognition of complex curve shape well.

  15. Automatic detection and recognition of traffic signs in stereo images based on features and probabilistic neural networks

    NASA Astrophysics Data System (ADS)

    Sheng, Yehua; Zhang, Ka; Ye, Chun; Liang, Cheng; Li, Jian

    2008-04-01

    Considering the problem of automatic traffic sign detection and recognition in stereo images captured under motion conditions, a new algorithm for traffic sign detection and recognition based on features and probabilistic neural networks (PNN) is proposed in this paper. Firstly, global statistical color features of left image are computed based on statistics theory. Then for red, yellow and blue traffic signs, left image is segmented to three binary images by self-adaptive color segmentation method. Secondly, gray-value projection and shape analysis are used to confirm traffic sign regions in left image. Then stereo image matching is used to locate the homonymy traffic signs in right image. Thirdly, self-adaptive image segmentation is used to extract binary inner core shapes of detected traffic signs. One-dimensional feature vectors of inner core shapes are computed by central projection transformation. Fourthly, these vectors are input to the trained probabilistic neural networks for traffic sign recognition. Lastly, recognition results in left image are compared with recognition results in right image. If results in stereo images are identical, these results are confirmed as final recognition results. The new algorithm is applied to 220 real images of natural scenes taken by the vehicle-borne mobile photogrammetry system in Nanjing at different time. Experimental results show a detection and recognition rate of over 92%. So the algorithm is not only simple, but also reliable and high-speed on real traffic sign detection and recognition. Furthermore, it can obtain geometrical information of traffic signs at the same time of recognizing their types.

  16. Identification of Alfalfa Leaf Diseases Using Image Recognition Technology

    PubMed Central

    Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang

    2016-01-01

    Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease. PMID:27977767

  17. Identification of Alfalfa Leaf Diseases Using Image Recognition Technology.

    PubMed

    Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang

    2016-01-01

    Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease.

  18. HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.

    PubMed

    Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye

    2017-02-09

    In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.

  19. Improving a HMM-based off-line handwriting recognition system using MME-PSO optimization

    NASA Astrophysics Data System (ADS)

    Hamdani, Mahdi; El Abed, Haikal; Hamdani, Tarek M.; Märgner, Volker; Alimi, Adel M.

    2011-01-01

    One of the trivial steps in the development of a classifier is the design of its architecture. This paper presents a new algorithm, Multi Models Evolvement (MME) using Particle Swarm Optimization (PSO). This algorithm is a modified version of the basic PSO, which is used to the unsupervised design of Hidden Markov Model (HMM) based architectures. For instance, the proposed algorithm is applied to an Arabic handwriting recognizer based on discrete probability HMMs. After the optimization of their architectures, HMMs are trained with the Baum- Welch algorithm. The validation of the system is based on the IfN/ENIT database. The performance of the developed approach is compared to the participating systems at the 2005 competition organized on Arabic handwriting recognition on the International Conference on Document Analysis and Recognition (ICDAR). The final system is a combination between an optimized HMM with 6 other HMMs obtained by a simple variation of the number of states. An absolute improvement of 6% of word recognition rate with about 81% is presented. This improvement is achieved comparing to the basic system (ARAB-IfN). The proposed recognizer outperforms also most of the known state-of-the-art systems.

  20. A fast 3-D object recognition algorithm for the vision system of a special-purpose dexterous manipulator

    NASA Technical Reports Server (NTRS)

    Hung, Stephen H. Y.

    1989-01-01

    A fast 3-D object recognition algorithm that can be used as a quick-look subsystem to the vision system for the Special-Purpose Dexterous Manipulator (SPDM) is described. Global features that can be easily computed from range data are used to characterize the images of a viewer-centered model of an object. This algorithm will speed up the processing by eliminating the low level processing whenever possible. It may identify the object, reject a set of bad data in the early stage, or create a better environment for a more powerful algorithm to carry the work further.

  1. What does voice-processing technology support today?

    PubMed Central

    Nakatsu, R; Suzuki, Y

    1995-01-01

    This paper describes the state of the art in applications of voice-processing technologies. In the first part, technologies concerning the implementation of speech recognition and synthesis algorithms are described. Hardware technologies such as microprocessors and DSPs (digital signal processors) are discussed. Software development environment, which is a key technology in developing applications software, ranging from DSP software to support software also is described. In the second part, the state of the art of algorithms from the standpoint of applications is discussed. Several issues concerning evaluation of speech recognition/synthesis algorithms are covered, as well as issues concerning the robustness of algorithms in adverse conditions. Images Fig. 3 PMID:7479720

  2. Review of chart recognition in document images

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Lu, Xiaoqing; Qin, Yeyang; Tang, Zhi; Xu, Jianbo

    2013-01-01

    As an effective information transmitting way, chart is widely used to represent scientific statistics datum in books, research papers, newspapers etc. Though textual information is still the major source of data, there has been an increasing trend of introducing graphs, pictures, and figures into the information pool. Text recognition techniques for documents have been accomplished using optical character recognition (OCR) software. Chart recognition techniques as a necessary supplement of OCR for document images are still an unsolved problem due to the great subjectiveness and variety of charts styles. This paper reviews the development process of chart recognition techniques in the past decades and presents the focuses of current researches. The whole process of chart recognition is presented systematically, which mainly includes three parts: chart segmentation, chart classification, and chart Interpretation. In each part, the latest research work is introduced. In the last, the paper concludes with a summary and promising future research direction.

  3. Neural network application for thermal image recognition of low-resolution objects

    NASA Astrophysics Data System (ADS)

    Fang, Yi-Chin; Wu, Bo-Wen

    2007-02-01

    In the ever-changing situation on a battle field, accurate recognition of a distant object is critical to a commander's decision-making and the general public's safety. Efficiently distinguishing between an enemy's armoured vehicles and ordinary civilian houses under all weather conditions has become an important research topic. This study presents a system for recognizing an armoured vehicle by distinguishing marks and contours. The characteristics of 12 different shapes and 12 characters are used to explore thermal image recognition under the circumstance of long distance and low resolution. Although the recognition capability of human eyes is superior to that of artificial intelligence under normal conditions, it tends to deteriorate substantially under long-distance and low-resolution scenarios. This study presents an effective method for choosing features and processing images. The artificial neural network technique is applied to further improve the probability of accurate recognition well beyond the limit of the recognition capability of human eyes.

  4. A multifaceted independent performance analysis of facial subspace recognition algorithms.

    PubMed

    Bajwa, Usama Ijaz; Taj, Imtiaz Ahmad; Anwar, Muhammad Waqas; Wang, Xuan

    2013-01-01

    Face recognition has emerged as the fastest growing biometric technology and has expanded a lot in the last few years. Many new algorithms and commercial systems have been proposed and developed. Most of them use Principal Component Analysis (PCA) as a base for their techniques. Different and even conflicting results have been reported by researchers comparing these algorithms. The purpose of this study is to have an independent comparative analysis considering both performance and computational complexity of six appearance based face recognition algorithms namely PCA, 2DPCA, A2DPCA, (2D)(2)PCA, LPP and 2DLPP under equal working conditions. This study was motivated due to the lack of unbiased comprehensive comparative analysis of some recent subspace methods with diverse distance metric combinations. For comparison with other studies, FERET, ORL and YALE databases have been used with evaluation criteria as of FERET evaluations which closely simulate real life scenarios. A comparison of results with previous studies is performed and anomalies are reported. An important contribution of this study is that it presents the suitable performance conditions for each of the algorithms under consideration.

  5. Object Occlusion Detection Using Automatic Camera Calibration for a Wide-Area Video Surveillance System

    PubMed Central

    Jung, Jaehoon; Yoon, Inhye; Paik, Joonki

    2016-01-01

    This paper presents an object occlusion detection algorithm using object depth information that is estimated by automatic camera calibration. The object occlusion problem is a major factor to degrade the performance of object tracking and recognition. To detect an object occlusion, the proposed algorithm consists of three steps: (i) automatic camera calibration using both moving objects and a background structure; (ii) object depth estimation; and (iii) detection of occluded regions. The proposed algorithm estimates the depth of the object without extra sensors but with a generic red, green and blue (RGB) camera. As a result, the proposed algorithm can be applied to improve the performance of object tracking and object recognition algorithms for video surveillance systems. PMID:27347978

  6. A novel rotational invariants target recognition method for rotating motion blurred images

    NASA Astrophysics Data System (ADS)

    Lan, Jinhui; Gong, Meiling; Dong, Mingwei; Zeng, Yiliang; Zhang, Yuzhen

    2017-11-01

    The imaging of the image sensor is blurred due to the rotational motion of the carrier and reducing the target recognition rate greatly. Although the traditional mode that restores the image first and then identifies the target can improve the recognition rate, it takes a long time to recognize. In order to solve this problem, a rotating fuzzy invariants extracted model was constructed that recognizes target directly. The model includes three metric layers. The object description capability of metric algorithms that contain gray value statistical algorithm, improved round projection transformation algorithm and rotation-convolution moment invariants in the three metric layers ranges from low to high, and the metric layer with the lowest description ability among them is as the input which can eliminate non pixel points of target region from degenerate image gradually. Experimental results show that the proposed model can improve the correct target recognition rate of blurred image and optimum allocation between the computational complexity and function of region.

  7. An evolution based biosensor receptor DNA sequence generation algorithm.

    PubMed

    Kim, Eungyeong; Lee, Malrey; Gatton, Thomas M; Lee, Jaewan; Zang, Yupeng

    2010-01-01

    A biosensor is composed of a bioreceptor, an associated recognition molecule, and a signal transducer that can selectively detect target substances for analysis. DNA based biosensors utilize receptor molecules that allow hybridization with the target analyte. However, most DNA biosensor research uses oligonucleotides as the target analytes and does not address the potential problems of real samples. The identification of recognition molecules suitable for real target analyte samples is an important step towards further development of DNA biosensors. This study examines the characteristics of DNA used as bioreceptors and proposes a hybrid evolution-based DNA sequence generating algorithm, based on DNA computing, to identify suitable DNA bioreceptor recognition molecules for stable hybridization with real target substances. The Traveling Salesman Problem (TSP) approach is applied in the proposed algorithm to evaluate the safety and fitness of the generated DNA sequences. This approach improves efficiency and stability for enhanced and variable-length DNA sequence generation and allows extension to generation of variable-length DNA sequences with diverse receptor recognition requirements.

  8. Gabor filter based fingerprint image enhancement

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Xiang

    2013-03-01

    Fingerprint recognition technology has become the most reliable biometric technology due to its uniqueness and invariance, which has been most convenient and most reliable technique for personal authentication. The development of Automated Fingerprint Identification System is an urgent need for modern information security. Meanwhile, fingerprint preprocessing algorithm of fingerprint recognition technology has played an important part in Automatic Fingerprint Identification System. This article introduces the general steps in the fingerprint recognition technology, namely the image input, preprocessing, feature recognition, and fingerprint image enhancement. As the key to fingerprint identification technology, fingerprint image enhancement affects the accuracy of the system. It focuses on the characteristics of the fingerprint image, Gabor filters algorithm for fingerprint image enhancement, the theoretical basis of Gabor filters, and demonstration of the filter. The enhancement algorithm for fingerprint image is in the windows XP platform with matlab.65 as a development tool for the demonstration. The result shows that the Gabor filter is effective in fingerprint image enhancement technology.

  9. Three list scheduling temporal partitioning algorithm of time space characteristic analysis and compare for dynamic reconfigurable computing

    NASA Astrophysics Data System (ADS)

    Chen, Naijin

    2013-03-01

    Level Based Partitioning (LBP) algorithm, Cluster Based Partitioning (CBP) algorithm and Enhance Static List (ESL) temporal partitioning algorithm based on adjacent matrix and adjacent table are designed and implemented in this paper. Also partitioning time and memory occupation based on three algorithms are compared. Experiment results show LBP partitioning algorithm possesses the least partitioning time and better parallel character, as far as memory occupation and partitioning time are concerned, algorithms based on adjacent table have less partitioning time and less space memory occupation.

  10. An Energy-Efficient and Scalable Deep Learning/Inference Processor With Tetra-Parallel MIMD Architecture for Big Data Applications.

    PubMed

    Park, Seong-Wook; Park, Junyoung; Bong, Kyeongryeol; Shin, Dongjoo; Lee, Jinmook; Choi, Sungpill; Yoo, Hoi-Jun

    2015-12-01

    Deep Learning algorithm is widely used for various pattern recognition applications such as text recognition, object recognition and action recognition because of its best-in-class recognition accuracy compared to hand-crafted algorithm and shallow learning based algorithms. Long learning time caused by its complex structure, however, limits its usage only in high-cost servers or many-core GPU platforms so far. On the other hand, the demand on customized pattern recognition within personal devices will grow gradually as more deep learning applications will be developed. This paper presents a SoC implementation to enable deep learning applications to run with low cost platforms such as mobile or portable devices. Different from conventional works which have adopted massively-parallel architecture, this work adopts task-flexible architecture and exploits multiple parallelism to cover complex functions of convolutional deep belief network which is one of popular deep learning/inference algorithms. In this paper, we implement the most energy-efficient deep learning and inference processor for wearable system. The implemented 2.5 mm × 4.0 mm deep learning/inference processor is fabricated using 65 nm 8-metal CMOS technology for a battery-powered platform with real-time deep inference and deep learning operation. It consumes 185 mW average power, and 213.1 mW peak power at 200 MHz operating frequency and 1.2 V supply voltage. It achieves 411.3 GOPS peak performance and 1.93 TOPS/W energy efficiency, which is 2.07× higher than the state-of-the-art.

  11. Products recognition on shop-racks from local scale-invariant features

    NASA Astrophysics Data System (ADS)

    Zawistowski, Jacek; Kurzejamski, Grzegorz; Garbat, Piotr; Naruniec, Jacek

    2016-04-01

    This paper presents a system designed for the multi-object detection purposes and adjusted for the application of product search on the market shelves. System uses well known binary keypoint detection algorithms for finding characteristic points in the image. One of the main idea is object recognition based on Implicit Shape Model method. Authors of the article proposed many improvements of the algorithm. Originally fiducial points are matched with a very simple function. This leads to the limitations in the number of objects parts being success- fully separated, while various methods of classification may be validated in order to achieve higher performance. Such an extension implies research on training procedure able to deal with many objects categories. Proposed solution opens a new possibilities for many algorithms demanding fast and robust multi-object recognition.

  12. Quest Hierarchy for Hyperspectral Face Recognition

    DTIC Science & Technology

    2011-03-01

    numerous face recognition algorithms available, several very good literature surveys are available that include Abate [29], Samal [110], Kong [18], Zou...Perception, Japan (January 1994). [110] Samal , Ashok and P. Iyengar, Automatic Recognition and Analysis of Human Faces and Facial Expressions: A Survey

  13. Computers for the Disabled.

    ERIC Educational Resources Information Center

    Lazzaro, Joseph J.

    1993-01-01

    Describes adaptive technology for personal computers that accommodate disabled users and may require special equipment including hardware, memory, expansion slots, and ports. Highlights include vision aids, including speech synthesizers, magnification, braille, and optical character recognition (OCR); hearing adaptations; motor-impaired…

  14. Usage of the back-propagation method for alphabet recognition

    NASA Astrophysics Data System (ADS)

    Shaila Sree, R. N.; Eswaran, Kumar; Sundararajan, N.

    1999-03-01

    Artificial Neural Networks play a pivotal role in the branch of Artificial Intelligence. They can be trained efficiently for a variety of tasks using different methods, of which the Back Propagation method is one among them. The paper studies the choosing of various design parameters of a neural network for the Back Propagation method. The study shows that when these parameters are properly assigned, the training task of the net is greatly simplified. The character recognition problem has been chosen as a test case for this study. A sample space of different handwritten characters of the English alphabet was gathered. A Neural net is finally designed taking many the design aspects into consideration and trained for different styles of writing. Experimental results are reported and discussed. It has been found that an appropriate choice of the design parameters of the neural net for the Back Propagation method reduces the training time and improves the performance of the net.

  15. Post processing of optically recognized text via second order hidden Markov model

    NASA Astrophysics Data System (ADS)

    Poudel, Srijana

    In this thesis, we describe a postprocessing system on Optical Character Recognition(OCR) generated text. Second Order Hidden Markov Model (HMM) approach is used to detect and correct the OCR related errors. The reason for choosing the 2nd order HMM is to keep track of the bigrams so that the model can represent the system more accurately. Based on experiments with training data of 159,733 characters and testing of 5,688 characters, the model was able to correct 43.38 % of the errors with a precision of 75.34 %. However, the precision value indicates that the model introduced some new errors, decreasing the correction percentage to 26.4%.

  16. Comparison of photo-matching algorithms commonly used for photographic capture-recapture studies.

    PubMed

    Matthé, Maximilian; Sannolo, Marco; Winiarski, Kristopher; Spitzen-van der Sluijs, Annemarieke; Goedbloed, Daniel; Steinfartz, Sebastian; Stachow, Ulrich

    2017-08-01

    Photographic capture-recapture is a valuable tool for obtaining demographic information on wildlife populations due to its noninvasive nature and cost-effectiveness. Recently, several computer-aided photo-matching algorithms have been developed to more efficiently match images of unique individuals in databases with thousands of images. However, the identification accuracy of these algorithms can severely bias estimates of vital rates and population size. Therefore, it is important to understand the performance and limitations of state-of-the-art photo-matching algorithms prior to implementation in capture-recapture studies involving possibly thousands of images. Here, we compared the performance of four photo-matching algorithms; Wild-ID, I3S Pattern+, APHIS, and AmphIdent using multiple amphibian databases of varying image quality. We measured the performance of each algorithm and evaluated the performance in relation to database size and the number of matching images in the database. We found that algorithm performance differed greatly by algorithm and image database, with recognition rates ranging from 100% to 22.6% when limiting the review to the 10 highest ranking images. We found that recognition rate degraded marginally with increased database size and could be improved considerably with a higher number of matching images in the database. In our study, the pixel-based algorithm of AmphIdent exhibited superior recognition rates compared to the other approaches. We recommend carefully evaluating algorithm performance prior to using it to match a complete database. By choosing a suitable matching algorithm, databases of sizes that are unfeasible to match "by eye" can be easily translated to accurate individual capture histories necessary for robust demographic estimates.

  17. A Genetic Algorithm That Exchanges Neighboring Centers for Fuzzy c-Means Clustering

    ERIC Educational Resources Information Center

    Chahine, Firas Safwan

    2012-01-01

    Clustering algorithms are widely used in pattern recognition and data mining applications. Due to their computational efficiency, partitional clustering algorithms are better suited for applications with large datasets than hierarchical clustering algorithms. K-means is among the most popular partitional clustering algorithm, but has a major…

  18. Facial Emotion Recognition: A Survey and Real-World User Experiences in Mixed Reality

    PubMed Central

    Mehta, Dhwani; Siddiqui, Mohammad Faridul Haque

    2018-01-01

    Extensive possibilities of applications have made emotion recognition ineluctable and challenging in the field of computer science. The use of non-verbal cues such as gestures, body movement, and facial expressions convey the feeling and the feedback to the user. This discipline of Human–Computer Interaction places reliance on the algorithmic robustness and the sensitivity of the sensor to ameliorate the recognition. Sensors play a significant role in accurate detection by providing a very high-quality input, hence increasing the efficiency and the reliability of the system. Automatic recognition of human emotions would help in teaching social intelligence in the machines. This paper presents a brief study of the various approaches and the techniques of emotion recognition. The survey covers a succinct review of the databases that are considered as data sets for algorithms detecting the emotions by facial expressions. Later, mixed reality device Microsoft HoloLens (MHL) is introduced for observing emotion recognition in Augmented Reality (AR). A brief introduction of its sensors, their application in emotion recognition and some preliminary results of emotion recognition using MHL are presented. The paper then concludes by comparing results of emotion recognition by the MHL and a regular webcam. PMID:29389845

  19. Facial Emotion Recognition: A Survey and Real-World User Experiences in Mixed Reality.

    PubMed

    Mehta, Dhwani; Siddiqui, Mohammad Faridul Haque; Javaid, Ahmad Y

    2018-02-01

    Extensive possibilities of applications have made emotion recognition ineluctable and challenging in the field of computer science. The use of non-verbal cues such as gestures, body movement, and facial expressions convey the feeling and the feedback to the user. This discipline of Human-Computer Interaction places reliance on the algorithmic robustness and the sensitivity of the sensor to ameliorate the recognition. Sensors play a significant role in accurate detection by providing a very high-quality input, hence increasing the efficiency and the reliability of the system. Automatic recognition of human emotions would help in teaching social intelligence in the machines. This paper presents a brief study of the various approaches and the techniques of emotion recognition. The survey covers a succinct review of the databases that are considered as data sets for algorithms detecting the emotions by facial expressions. Later, mixed reality device Microsoft HoloLens (MHL) is introduced for observing emotion recognition in Augmented Reality (AR). A brief introduction of its sensors, their application in emotion recognition and some preliminary results of emotion recognition using MHL are presented. The paper then concludes by comparing results of emotion recognition by the MHL and a regular webcam.

  20. Phylogenetic Trees and Networks Reduce to Phylogenies on Binary States: Does It Furnish an Explanation to the Robustness of Phylogenetic Trees against Lateral Transfers.

    PubMed

    Thuillard, Marc; Fraix-Burnet, Didier

    2015-01-01

    This article presents an innovative approach to phylogenies based on the reduction of multistate characters to binary-state characters. We show that the reduction to binary characters' approach can be applied to both character- and distance-based phylogenies and provides a unifying framework to explain simply and intuitively the similarities and differences between distance- and character-based phylogenies. Building on these results, this article gives a possible explanation on why phylogenetic trees obtained from a distance matrix or a set of characters are often quite reasonable despite lateral transfers of genetic material between taxa. In the presence of lateral transfers, outer planar networks furnish a better description of evolution than phylogenetic trees. We present a polynomial-time reconstruction algorithm for perfect outer planar networks with a fixed number of states, characters, and lateral transfers.

Top