Science.gov

Sample records for characteristic crystal orientation

  1. Control of liquid crystal molecular orientation using ultrasound vibration

    SciTech Connect

    Taniguchi, Satoki; Koyama, Daisuke; Matsukawa, Mami; Shimizu, Yuki; Emoto, Akira; Nakamura, Kentaro

    2016-03-07

    We propose a technique to control the orientation of nematic liquid crystals using ultrasound and investigate the optical characteristics of the oriented samples. An ultrasonic liquid crystal cell with a thickness of 5–25 μm and two ultrasonic lead zirconate titanate transducers was fabricated. By exciting the ultrasonic transducers, the flexural vibration modes were generated on the cell. An acoustic radiation force to the liquid crystal layer was generated, changing the molecular orientation and thus the light transmission. By modulating the ultrasonic driving frequency and voltage, the spatial distribution of the molecular orientation of the liquid crystals could be controlled. The distribution of the transmitted light intensity depends on the thickness of the liquid crystal layer because the acoustic field in the liquid crystal layer is changed by the orientational film.

  2. Crystal orientation regulation in ostrich eggshells

    NASA Astrophysics Data System (ADS)

    Feng, Q. L.; Zhu, X.; Li, H. D.; Kim, T. N.

    2001-12-01

    The structure and crystallographic orientation of different layers (the cone layer, palisade layer and the crystal layer) in ostrich eggshells were studied by scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscope (TEM) with selected area electron diffraction (SAED). It is found that the degree of 0 0 1 preferred orientation enhanced from inner to outer ostrich eggshells. A crystallographic orientation regulation was observed for the first time. The adjacent 1-5 calcite crystals with the same three-dimensional orientation are proposed to form a crystalline cluster with the size of several microns. The a-axes in the neighboring clusters orient from several degrees to tens of degrees.

  3. Role of crystal orientation on chemical mechanical polishing of single crystal copper

    NASA Astrophysics Data System (ADS)

    Zhu, Aibin; He, Dayong; Luo, Wencheng; Liu, Yangyang

    2016-11-01

    The material removal mechanism of single crystal copper in chemical mechanical polishing (CMP) has not been intensively investigated. And the role of crystal orientation in CMP of single crystal cooper is not quite clear yet. Quasi-continuum method was adopted in this paper to simulate the process of nano-particles grinding on single crystal copper in CMP process. Three different crystal orientations, i.e. x[100]y[001], x[001]y[110] and x[-211]y[111], were chosen for analysis. The atom displacement diagrams, stress distribution diagrams and load-displacement curves were obtained. After analyzing the deformation mechanism, residual stress of the work piece material and cutting force, results showed that, the crystal orientation of work piece has great influence on the deformation characteristics and surface quality of work piece during polishing. In the A(001)[100] orientation, the residual stress distribution after polishing is deeper, and the stress is larger than that in the B(110)[001] and C(111)[-211] orientations. And the average tangential cutting force in the A(001)[100] orientation is much larger than those in the other two crystal orientation. This research is helpful to revealing the material removal mechanism of CMP process.

  4. Laser alexandrite crystals grown by horizontal oriented crystallization technique

    NASA Astrophysics Data System (ADS)

    Gurov, V. V.; Tsvetkov, E. G.; Yurkin, A. M.

    2008-05-01

    Comparative studies were performed for alexandrite crystals, Al 2BeO 4:Cr 3+, employed in solid state lasers and grown by the horizontal oriented crystallization (HOC) technique and alexandrite crystals grown by the Czochralski (Cz) method. It was shown that the structural quality and possibilities of generation of stimulated emission HOC-crystals are similar to Cz-crystals, whereas their damage threshold is about three times higher. The obtained results and considerably lower cost price of HOC-alexandrite crystals prove their advantageous application in powerful laser systems, which require large laser rods with a higher resistance to laser beam. It is emphasized that application of HOC technique is promising for growth of laser crystals of other high-temperature oxide compounds.

  5. Orientational transitions in antiferromagnetic liquid crystals

    NASA Astrophysics Data System (ADS)

    Zakhlevnykh, A. N.; Petrov, D. A.

    2016-09-01

    The orientational phases in an antiferromagnetic liquid crystal (ferronematic) based on the nematic liquid crystal with the negative anisotropy of diamagnetic susceptibility are studied in the framework of the continuum theory. The ferronematic was assumed to be compensated; i.e., in zero field, impurity ferroparticles with the magnetic moments directed parallel and antiparallel to the director are equiprobably distributed in it. It is established that under the action of a magnetic field the ferronematic undergoes orientational transitions compensated (antiferromagnetic) phase-non-uniform phase-saturation (ferrimagnetic) phase. The analytical expressions for threshold fields of the transitions as functions of material parameters are obtained. It is shown that with increasing magnetic impurity segregation parameter, the threshold fields of the transitions significantly decrease. The bifurcation diagram of the ferronematic orientational phases is built in terms of the energy of anchoring of magnetic particles with the liquid-crystal matrix and magnetic field. It is established that the Freedericksz transition is the second-order phase transition, while the transition to the saturation state can be second- or first-order. In the latter case, the suspension exhibits orientational bistability. The orientational and magnetooptical properties of the ferronematic in different applied magnetic fields are studied.

  6. Controlling laser emission by selecting crystal orientation

    NASA Astrophysics Data System (ADS)

    Chen, Lijuan; Han, Shujuan; Wang, Zhengping; Wang, Jiyang; Zhang, Huanjin; Yu, Haohai; Han, Shuo; Xu, Xinguang

    2013-01-01

    Based on the anisotropy of laser crystal, we demonstrate a method of adjusting laser emission by selecting crystal orientation. When the light propagating direction varies from a to c axis of Nd:LiGd(MoO4)2 crystal, emission wavelength exhibits a sensitive change of 1061 nm → 1061/1062 + 1068 nm → 1068 nm. The experimental discipline is well explained by a theoretical study of simulating on the spatial distribution of stimulated emission cross-section. This letter manifests that the laser property along non-principal-axis direction is also valuable for research and application, which breaks through the traditional custom of using laser materials processed along principal-axis.

  7. Orthogonal Liquid Crystal Alignment Layer: Templating Speed-Dependent Orientation of Chromonic Liquid Crystals.

    PubMed

    Cha, Yun Jeong; Gim, Min-Jun; Ahn, Hyungju; Shin, Tae Joo; Jeong, Joonwoo; Yoon, Dong Ki

    2017-05-31

    Lyotropic chromonic liquid crystals (LCLCs) have been extensively studied because of the interesting structural characteristics of the linear aggregation of their plank-shaped molecules in aqueous solvents. We report a simple method to control the orientation of LCLCs such as Sunset Yellow (SSY), disodium cromoglycate (DSCG), and DNA by varying pulling speed of the top substrate and temperatures during shear flow induced experiment. Crystallized columns of LCLCs are aligned parallel and perpendicular to the shear direction, at fast and slow pulling speeds of the top substrate, respectively. On the basis of this result, we fabricated an orthogonally patterned film that can be used as an alignment layer for guiding rodlike liquid crystals (LCs) to generate both twisted and planar alignments simultaneously. Our resulting platform can provide a facile method to form multidirectional orientation of soft materials and biomaterials in a process of simple shearing and evaporation, which gives rise to potential patterning applications using LCLCs due to their unique structural characteristics.

  8. Characteristics Orientation, Needs and Expectations. Symposium.

    ERIC Educational Resources Information Center

    2002

    This document contains three papers from a symposium on characteristics orientation, needs, and expectations. "Characteristics Orientation of Emerging Professions: Implications for Research, Policy, and Practice of Continuing Professional Education" (William H. Young, Margot B. Weinstein) reports on a qualitative study that examined…

  9. Orientational relaxation in a discotic liquid crystal.

    PubMed

    Chakrabarti, Dwaipayan; Jana, Biman; Bagchi, Biman

    2007-06-01

    We investigate orientational relaxation of a model discotic liquid crystal, consisting of disclike molecules, by molecular dynamics simulations along two isobars starting from the high temperature isotropic phase. The two isobars have been so chosen that (a) the phase sequence isotropic- (I-) nematic- (N-) columnar (C) appears upon cooling along one of them and (b) the sequence isotropic- (I-) columnar- (C) along the other. While the orientational relaxation in the isotropic phase near the I-N phase transition in system (a) shows a power law decay at short to intermediate times, such power law relaxation is not observed in the isotropic phase near the I-C phase boundary in system (b). In order to understand this difference (the existence or the absence of the power law decay), we calculated the growth of the orientational pair distribution functions (OPDFs) near the I-N phase boundary and also near the I-C phase boundary. We find that the OPDF shows a marked growth in long range correlation as the I-N phase boundary is approached in the I-N-C system (a), but such a growth is absent in the I-C system, which appears to be consistent with the result that I-N phase transition in the former is weakly first order while the I-C phase transition in the latter is not weak. As the system settles into the nematic phase, the decay of the single-particle second-rank orientational time correlation function follows a pattern that is similar to what is observed with calamitic liquid crystals and supercooled molecular liquids.

  10. Orientation and conformation of lipids in crystals of transmembrane proteins.

    PubMed

    Marsh, Derek; Páli, Tibor

    2013-03-01

    Orientational order parameters and individual dihedral torsion angles are evaluated for phospholipid and glycolipid molecules that are resolved in X-ray structures of integral transmembrane proteins in crystals. The order parameters of the lipid chains and glycerol backbones in protein crystals are characterised by a much wider distribution of orientational order than is found in fluid lipid bilayers and reconstituted lipid-protein membranes. This indicates that the lipids that are resolved in crystals of membrane proteins are mostly not representative of the entire lipid-protein interface. Much of the chain configurational disorder of the membrane-bound lipids in crystals arises from C-C bonds in energetically disallowed skew conformations. This suggests configurational heterogeneity of the lipids at a single binding site: eclipsed conformations occur also in the glycerol backbone torsion angles and the C-C torsion angles of the lipid head groups. Conformations of the lipid glycerol backbone in protein crystals are not restricted to the gauche C1-C2 rotamers found invariably in phospholipid bilayer crystals. Lipid head-group conformations in the protein crystals also do not conform solely to the bent-down conformation, with gauche-gauche configuration of the phosphodiester, that is characteristic of phospholipid bilayer membranes. Stereochemical violations in the protein-bound lipids are evidenced by ester carboxyl groups in non-planar configurations, and even in the cis configuration. Some lipids have the incorrect enantiomeric configuration of the glycerol backbone, and many of the branched methyl groups in the phytanyl chains associated with bacteriorhodopsin have the incorrect S configuration.

  11. Magnetic Control of MOF Crystal Orientation and Alignment.

    PubMed

    Cheng, Fei; Marshall, Ellis S; Young, Adam J; Robinson, Peter J; Bouillard, Jean-Sebastien G; Adawi, Ali M; Vermeulen, Nicolaas A; Farha, Omar K; Reithofer, Michael R; Chin, Jia Min

    2017-09-14

    Most MOFs possess anisotropic properties, the full exploitation of which necessitates a general strategy for the controllable orientation of such MOF crystals. Current methods largely rely upon layer-by-layer MOF epitaxy or tuning of MOF crystal growth on appropriate substrates, yielding MOFs with fixed crystal orientations. Here, the dynamic magnetic alignment of different MOF crystals (NH2-MIL-53(Al) and NU-1000) is shown. The MOFs were magnetized by electrostatic adsorption of iron oxide nanoparticles, dispersed in curable polymer resins (Formlabs 1+ clear resin / Sylgard® 184), magnetically oriented and fixed by resin curing. The importance of crystal orientation on MOF functionality was demonstrated whereby magnetically aligned NU-1000/Sylgard® 184 composite was excited with linearly polarized 405 nm light, affording an anisotropic fluorescence response dependent on the polarization angle of the excitation beam relative to NU-1000 crystal orientation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Germanium Detector Crystal Axis Orientation for the MAJORANA Demonstrator

    NASA Astrophysics Data System (ADS)

    Letourneau, Hannah

    2013-10-01

    The MAJORANA Demonstrator, currently being constructed at Sanford Underground Research Facility in Lead, South Dakota, is an array of germanium detectors which will be used to search for neutrinoless double beta decay, which would demonstrate that neutrinos have a Majorana mass term and lepton number is not conserved. An important characteristic of semiconductor detectors is the crystal axis orientation, because the propagation of electromagnetic signals is attenuated by the location of the interaction relative to the axis of the crystal. Conventionally, a goniometer is used to position a collimated low energy gamma source in many small increments around the detector to measure the rise time at each position. However, due to physical constraints from the casing of the Demonstrator, a different method must be developed. At the University of Washington this summer, I worked with a 76 Ge point-contact detector. I found the crystal axis orientation first with Americium 241, a lower energy gamma source. Then, I used a higher energy source, Thorium 232, in conjunction with the only a few angular reference points to also calculate rise time. Also, I wrote code to process the data. The success of this method will be evaluated and discussed. NSF

  13. Thermo-optical characteristics of DKDP crystal

    NASA Astrophysics Data System (ADS)

    Mironov, E. A.; Vyatkin, A. G.; Starobor, A. V.; Palashov, O. V.

    2017-03-01

    This letter presents a theoretical and experimental investigation of thermally induced polarization distortions occurring in an optical element made of c-cut tetragonal crystals. Two material characteristics were defined for this class of crystals: the optical anisotropy parameter ξ and the thermo-optical constant Q. These were generalized with analogous characteristics of elastically isotropic cubic crystals. The experimental investigation of these characteristics for popular tetragonal deuterated potassium dihydrogen phosphate (DKDP) crystal was carried out.

  14. Orientation-dependent impurity partitioning of colloidal crystals

    NASA Astrophysics Data System (ADS)

    Nozawa, Jun; Uda, Satoshi; Hu, Sumeng; Fujiwara, Kozo; Koizumi, Haruhiko

    2016-04-01

    Impurity partitioning during colloidal crystallization was investigated for grains with different orientations. Particles of various sizes were doped as impurities during the growth of colloidal polycrystals. The effective partition coefficient, keff, which is the impurity concentration in the solid (CS) divided by that in initial solution (CL), was measured for grains oriented in the [111] and [100] directions normal to the growth direction. The [111]-oriented grains were found to have a larger keff than [100]-oriented grains. This was analyzed by using the Thurmond and Struthers model. Though both [111]- and [100]-oriented grains were face centered cubic (fcc) structures, within several layers of crystals, the volume fraction of [111]-oriented grains was larger than that of [100]-oriented grains, yielding a larger driving force for nucleation, ΔGTr, and thus a larger equilibrium partition coefficient, k0, for [111]-oriented grains.

  15. Oriented attachment by enantioselective facet recognition in millimeter-sized gypsum crystals.

    PubMed

    Viedma, Cristóbal; Cuccia, Louis A; McTaggart, Alicia; Kahr, Bart; Martin, Alexander T; McBride, J Michael; Cintas, Pedro

    2016-09-22

    Crystal growth by oriented attachment involves the spontaneous self-assembly of adjoining crystals with common crystallographic orientations. Herein, we report the oriented attachment of gypsum crystals on agitation to form stereoselective mesoscale aggregates.

  16. Distinctive characteristics of sexual orientation bias crimes.

    PubMed

    Stacey, Michele

    2011-10-01

    Despite increased attention in the area of hate crime research in the past 20 years, sexual orientation bias crimes have rarely been singled out for study. When these types of crimes are looked at, the studies are typically descriptive in nature. This article seeks to increase our knowledge of sexual orientation bias by answering the question: What are the differences between sexual orientation motivated bias crimes and racial bias crimes? This question is examined using data from the National Incident Based Reporting System (NIBRS) and multiple regression techniques. This analysis draws on the strengths of NIBRS to look at the incident characteristics of hate crimes and distinguishing characteristics of sexual orientation crimes. Specifically this analysis looks at the types and seriousness of offenses motivated by sexual orientation bias as opposed to race bias as well as victim and offender characteristics. The findings suggest that there are differences between these two types of bias crimes, suggesting a need for further separation of the bias types in policy and research.

  17. Shear induced orientation of edible fat and chocolate crystals

    NASA Astrophysics Data System (ADS)

    Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.

    2003-03-01

    Shear-induced orientation of fat crystallites was observed during crystallization of cocoa butter, milk fat, stripped milk fat and palm oil. This universal effect was observed in systems crystallized under high shear. The minor polar components naturally present in milk fat were found to decrease the shear-induced orientation effect in this system. The competition between Brownian and shear forces, described by the Peclet number, determines the crystallite orientation. The critical radius size, from the Gibbs-Thomson equation, provides a tool to understand the effect of shear at the onset stages of crystallization.

  18. Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales.

    PubMed

    Yoshioka, S; Fujita, H; Kinoshita, S; Matsuhana, B

    2014-03-06

    It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at different frequencies depending on the direction of light propagation, it seems mysterious that the scale is observed to be uniformly green under an optical microscope despite the multi-domain structure. In this study, we have carefully investigated the structure of the wing scale and discovered that the crystal orientations of different domains are not perfectly random, but there is a preferred crystal orientation that is aligned along the surface normal of the scale. This finding suggests that there is an additional factor during the developmental process of the microstructure that regulates the crystal orientation.

  19. Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales

    PubMed Central

    Yoshioka, S.; Fujita, H.; Kinoshita, S.; Matsuhana, B.

    2014-01-01

    It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at different frequencies depending on the direction of light propagation, it seems mysterious that the scale is observed to be uniformly green under an optical microscope despite the multi-domain structure. In this study, we have carefully investigated the structure of the wing scale and discovered that the crystal orientations of different domains are not perfectly random, but there is a preferred crystal orientation that is aligned along the surface normal of the scale. This finding suggests that there is an additional factor during the developmental process of the microstructure that regulates the crystal orientation. PMID:24352678

  20. Dynamic theory of morphological characteristics of crystals of ɛ and γ phases, including Headley-Brooks orientation relationships upon the α-ɛ and α-ɛ-γ martensitic transformations

    NASA Astrophysics Data System (ADS)

    Kashchenko, M. P.; Chashchina, V. G.

    2015-10-01

    Different variants of the formation of martensite crystals upon the α-γ transformation caused by the tension-compression deformation of {110}α planes have been considered according to the dynamic theory of martensitic transformations. In contrast to previous works, here we take into account the deviation (angle θ) of the principal directions of deformation from the symmetry axes < {1bar 10} rangle _α and <001>α. It has been shown that the requirement of the symmetry of the arrangement of atoms in the basal plane {0001}ɛ is satisfied in the range of angular deviations-arctan √ {2/3} ≤slant θ ≤slant arctan √ {2/3}. The algorithm for calculating the morphological characteristics is illustrated based on the example of an elastically isotropic medium, which does not require assigning concrete values of elastic moduli. The estimations performed make it possible, in particular, to explain the physical nature of the Headley-Brooks orientation relationships as a result of the inheritance of one of the variants of permissible material orientation relationships for the α-ɛ transformation in the course of the ɛ-γ transformation at θ 35°. The changes in the other morphological signs are also discussed.

  1. Microwave modulation characteristics of twisted liquid crystals with chiral dopant

    NASA Astrophysics Data System (ADS)

    Yuan, Rui; Xing, Hongyu; Ye, Wenjiang

    2017-01-01

    Adding a chiral dopant in twisted nematic (TN) liquid crystal cell can stabilize the orientation of liquid crystal molecules, particularly in high TN (HTN) or super TN (STN) liquid crystal cells. The difference in pitches in liquid crystal is induced by the chiral dopant, and these different pitches affect the orientation of liquid crystal director under an external applied voltage and influence the characteristics of microwave modulation. To illustrate this point, the microwave phase shift per unit length (MPSL) versus voltage is calculated on the basis of the elastic theory of liquid crystal and the finite-difference iterative method. Enhancing the pitch induced by the chiral dopant in liquid crystal increases the MPSLs, but the stability of the twisted structures is decreased. Thus, appropriate pitches of 100d, 4d, and 2d can be applied in TN, HTN, and STN cells with cell gap d to enhance the characteristics of microwave modulation and stabilize the structures in twisted cell. This method can improve the characteristics of liquid crystal microwave modulators such that the operating voltage and the size of such phase shifters can be decreased.

  2. Elastic response of zone axis (001)-oriented PWA 1480 single crystal: The influence of secondary orientation

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Abdul-Aziz, Ali; Mcgaw, Michael A.

    1991-01-01

    The influence of secondary orientation on the elastic response of a zone axis (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical loading conditions by applying finite element techniques. Elastic stress analyses were performed with a commercially available finite element code. Secondary orientation of the single-crystal superalloy was offset with respect to the global coordinate system in increments from 0 to 90 deg and stresses developed within the single crystal were determined for each loading condition. The results indicated that the stresses were strongly influenced by the angular offset between the secondary crystal orientation and the global coordinate system. The degree of influence was found to vary with the type of loading condition (mechanical, thermal, or combined) imposed on the single-crystal superalloy.

  3. Orientation of PVDF α and γ crystals in nanolayered films.

    PubMed

    Jurczuk, Kinga; Galeski, Andrzej; Mackey, Matthew; Hiltner, Anne; Baer, Eric

    Wide-angle X-ray scattering in conjunction with pole figure technique was used to study the texture of poly(vinylidene fluoride) (PVDF) α and γ phase crystals in nanolayered polysulfone/poly(vinylidene fluoride) films (PSF/PVDF) produced by layer-multiplying coextrusion. In all as-extruded PSF/PVDF films, the PVDF nanolayers crystallized into the α phase crystals. A large fraction of those crystals was oriented with macromolecular chains perpendicular to the PSF/PVDF interface as evidenced from the (021) pole figures. Further refinement of the texture occurs during isothermal recrystallization at 170 °C in conjunction with transformation of α to γ crystals. The γ crystals orientation was probed with the (004) pole figures showing the c-axis of PVDF γ crystals perpendicular to the PSF/PVDF interface. The thinner the PVDF layers the stronger the orientation of γ crystals. It was proven that the X-ray reflections from the (021) planes of α crystals and from the (004) planes of γ crystals are not overlapped with other reflections and can be effectively used for the texture determination of PVDF nanolayers in multilayered PSF/PVDF films.

  4. Anchoring energy and orientational elasticity of a ferroelectric liquid crystal

    SciTech Connect

    Kaznacheev, A. V.; Pozhidaev, E. P.

    2012-06-15

    The dielectric susceptibility of a helix-free ferroelectric liquid crystal layer has been experimentally and theoretically studied as a function of the layer thickness. The investigation has been performed on the inner branch of the polarization hysteresis loop, in the region of a linear dependence of the polarization on the electric field. The experimental results are explained using the notion of effective layer thickness, which involves the characteristic distance {xi} over which the orienting effect of interfaces is operative. Comparison of the experimental data and theoretical results made it possible to estimate this distance as {xi} = 41 {mu}m and evaluate the anchoring energy (W = 2.8 Multiplication-Sign 10{sup -3}-1.1 Multiplication-Sign 10{sup -2} J/m{sup 2}) and the intralayer elastic constant (K Double-Prime Almost-Equal-To 1 Multiplication-Sign 10{sup -8}-3 Multiplication-Sign 10{sup -7} N).

  5. Growth Of Oriented Crystals At Polymerized Membranes

    DOEpatents

    Charych, Deborah H. , Berman, Amir

    2000-01-25

    The present invention relates to methods and compositions for the growth and alignment of crystals at biopolymeric films. The methods and compositions of the present invention provide means to generate a variety of dense crystalline ceramic films, with totally aligned crystals, at low temperatures and pressures, suitable for use with polymer and plastic substrates.

  6. Orientation of optic axis in wedged photorefractive crystals

    NASA Astrophysics Data System (ADS)

    Kos, Konstantine; Siahmakoun, Azad Z.

    1996-02-01

    A holographic method for finding the orientation of the optic axis of uniaxial photorefractive crystals is proposed. A theoretical procedure for determining the wedge angle of such crystals has also been developed. Two BaTiO 3 crystals grown by the same vender are examined and the resulting measurements lead to the values of wedge angle with an accuracy of about ±0.1°.

  7. Optical-diffraction method for determining crystal orientation

    DOEpatents

    Sopori, B.L.

    1982-05-07

    Disclosed is an optical diffraction technique for characterizing the three-dimensional orientation of a crystal sample. An arbitrary surface of the crystal sample is texture etched so as to generate a pseudo-periodic diffraction grating on the surface. A laser light beam is then directed onto the etched surface, and the reflected light forms a farfield diffraction pattern in reflection. Parameters of the diffraction pattern, such as the geometry and angular dispersion of the diffracted beam are then related to grating shape of the etched surface which is in turn related to crystal orientation. This technique may be used for examining polycrystalline silicon for use in solar cells.

  8. Internal orientations in externally deformed nematic polymer liquid crystals

    NASA Astrophysics Data System (ADS)

    Walasek, Janusz

    2007-07-01

    The system of linear polymer liquid crystal (PLC) macromolecules, each modeled by semiflexible chain of alternate connected flexible and stiff rodlike sequences, is externally deformed. As a result, two orientation phases for hard rods are generated. One of them is nematic N+ with orientation parameter s >0; this has the place in monomer liquid crystal (MLC) systems and in PLCs. The nematic N- phase with s >0 appears in deformed PLCs only. This causes the fact that orientation of PLC chains, as a whole, is generated also by the system deformation. A discussion of that effect is the main goal of this article. The change of orientation is also discussed dependent on changes of the system temperature and parameters of the chain structure, such as the liquid crystal component concentration, contour lengths of stiff and flexible parts, and internal interactions parameters. Average shape of PLC chain and the shape anisotropy are calculated and discussed.

  9. Oriented Two-Dimensional Porous Organic Cage Crystals.

    PubMed

    Jiang, Shan; Song, Qilei; Massey, Alan; Chong, Samantha Y; Chen, Linjiang; Sun, Shijing; Hasell, Tom; Raval, Rasmita; Sivaniah, Easan; Cheetham, Anthony K; Cooper, Andrew I

    2017-08-01

    The formation of two-dimensional (2D) oriented porous organic cage crystals (consisting of imine-based tetrahedral molecules) on various substrates (such as silicon wafers and glass) by solution-processing is reported. Insight into the crystallinity, preferred orientation, and cage crystal growth was obtained by experimental and computational techniques. For the first time, structural defects in porous molecular materials were observed directly and the defect concentration could be correlated with crystal growth rate. These oriented crystals suggest potential for future applications, such as solution-processable molecular crystalline 2D membranes for molecular separations. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Orientation dependence of relativistic-positron annihilation in single crystals

    SciTech Connect

    Kalashnikov, N. P.; Mazur, E. A. Olchak, A. S.

    2016-05-15

    An effect of the orientation dependence of the cross section for the single-photon annihilation of relativistic positrons with atomic electrons in a crystal is predicted. It is shown that the probability for the single-photon annihilation of a channeled positron in a crystal may be either suppressed in a crystal in relation to a homogeneous medium or, on the contrary, enhanced. The reason is that, depending on their incidence angle, the positrons may be either in the vicinity of ion planes of the crystal, where the electron density is higher, or far away from them, where the electron density is lower.

  11. Solar glint from oriented crystals in cirrus clouds.

    PubMed

    Lavigne, Claire; Roblin, Antoine; Chervet, Patrick

    2008-11-20

    Solar scattering on oriented cirrus crystals near the specular reflection direction is modeled using a mix method combining geometric optics and diffraction effects at three wavelengths in the visible and infrared domains. Different potential sources of phase function broadening around the specular direction, such as multiple scattering, solar disk, or tilt effects, are studied by means of a Monte Carlo method. The radiance detected by an airborne sensor located a few kilometers above the cirrus cloud and pointing in the specular scattering direction is calculated at four solar zenith angles showing a dramatic increase of the signal in relation to the usual assumption of random crystal orientation.

  12. Backscatter by azimuthally oriented ice crystals of cirrus clouds.

    PubMed

    Konoshonkin, Alexander; Wang, Zhenzhu; Borovoi, Anatoli; Kustova, Natalia; Liu, Dong; Xie, Chenbo

    2016-09-05

    The backscattering Mueller matrix has been calculated for the first time for the hexagonal ice columns and plates with both zenith and azimuth preferential orientations. The possibility of a vertically pointing polarization lidar measuring the full Mueller matrix for retrieving the orientation distributions of the crystals is considered. It is shown that the element m44 or, equivalently, the circular depolarization ratio distinguishes between the low and high zenith tilts of the crystals. Then, at their low or high zenith tilts, either the element m22 or m34, respectively, should be measured to retrieve the azimuth tilts.

  13. The Crystallization Clinic-A TA Orientation Exercise

    NASA Astrophysics Data System (ADS)

    Kandel, Marjorie

    1999-01-01

    Our orientation exercise for TAs in the organic laboratories is a Crystallization Clinic, and the main feature is a contest. Each TA has a different unknown solid to recrystallize. The products are judged by the students in the organic lab courses. Beauty of the crystals is the single criterion. The contest serves to refresh the TAs' technique and to give them empathy with the beginning students.

  14. Stability of orientationally disordered crystal structures of colloidal hard dumbbells.

    PubMed

    Marechal, Matthieu; Dijkstra, Marjolein

    2008-06-01

    We study the stability of orientationally disordered crystal phases in a suspension of colloidal hard dumbbells using Monte Carlo simulations. For dumbbell bond length L/sigma<0.4 with L the separation of the two spheres of the dumbbell and sigma the diameter of the spheres, we determine the difference in Helmholtz free energy of a plastic crystal with a hexagonal-close-packed (hcp) and a face-centered-cubic (fcc) structure using thermodynamic integration and the lattice-switch Monte Carlo method. We find that the plastic crystal with the hcp structure is more stable than the one with the fcc structure for a large part of the stable plastic crystal regime. In addition, we study the stability of an orientationally disordered aperiodic crystal structure in which the spheres of the dumbbells are on a random-hexagonal-close-packed lattice, and the dumbbells are formed by taking random pairs of neighboring spheres. Using free-energy calculations, we determine the fluid-aperiodic crystal and periodic-aperiodic crystal coexistence regions for L/sigma>0.88 .

  15. Molecular tectonics: tubular crystals with controllable channel size and orientation.

    PubMed

    Lin, Mei-Jin; Jouaiti, Abdelaziz; Pocic, David; Kyritsakas, Nathalie; Planeix, Jean-Marc; Hosseini, Mir Wais

    2010-01-07

    The combination of flexible neutral organic tectons based on two pyridines interconnected by a thioether or thioester type spacer with an inorganic ZnSiF(6) pillar leads to the formation of 2-D coordination networks and the packing of the latter generates crystals offering controllable tubular channels with imposed orientation along the pillar axis.

  16. Automated crystal orientation and phase mapping in TEM

    SciTech Connect

    Rauch, E.F. Véron, M.

    2014-12-15

    The paper describes an automated crystal orientation and phase mapping technique that allows nanoscale characterization of crystalline materials with a transmission electron microscope. The template matching strategy used to identify the diffraction patterns is detailed and the resulting outputs of the technique are illustrated. Some examples of applications are used to demonstrate the capability of the tool and potential developments are discussed.

  17. Uncertainty in Ice Crystal Orientation Distributions in Ice Sheets

    NASA Astrophysics Data System (ADS)

    Hay, Michael; Waddington, Edwin

    2016-04-01

    Crystal-orientation fabrics in polar ice sheets have a strong influence on ice flow due to the plastic anisotropy of ice. Crystal orientations evolve primarily in response to applied strain, but are also affected by temperature, impurities, interactions with neighbors, and other factors. While the evolution of each ice crystal is physically deterministic, in limited samples, such as those from ice-core thin sections, measured samples are stochastic due to sampling error. Even in continuum representations from models, crystal orientation distribution functions (ODFs) can be treated as stochastic due to uncertainties in how they developed. Here, we present results on the statistics of crystal orientation fabrics. We show a first-order estimate of the sampling distribution of fabric eigenvalues and fabric eigenvectors from ice-core thin sections. We also analyze uncertainty in electron backscatter diffraction measurements. In addition to sampling error, the strain histories of fabrics are generally poorly constrained, and may have varied in unknown ways through time. Nearby layers in ice sheets can also experience different strain histories due to inherent variabilities such as transient flow, or differences in impurities. This means that the continuum ODF itself can be treated as stochastic, because it depends on an effectively-stochastic unknown strain-history. To explore this, we analyze the effects of strain and vorticity variability on the evolution of the continuum ice-crystal ODF. We recast Jeffery's equation for the evolution of the ODF as a stochastic differential equation, with vorticity and strain perturbed by Gaussian processes. From this, we run a Monte-Carlo ensemble to determine likely bounds of true continuum ODF variability in response to random perturbations of strain and vorticity.

  18. Measurable characteristics of lysozyme crystal growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2005-01-01

    The behavior of protein crystal growth is estimated from measurements performed at both the microscopic and molecular levels. In the absence of solutal flow, it was determined that a model that balances the macromolecular flux toward the crystal surface with the flux of the crystal surface well characterizes crystal growth observed using microscopic methods. Namely, it was determined that the model provides accurate estimates for the crystal-growth velocities upon evaluation of crystal-growth measurements obtained in time. Growth velocities thus determined as a function of solution supersaturation were further interpreted using established deterministic models. From analyses of crystal-growth velocities, it was found that the mode of crystal growth varies with respect to increasing solution supersaturation, possibly owing to kinetic roughening. To verify further the hypothesis of kinetic roughening, crystal growth at the molecular level was examined using atomic force microscopy (AFM). From the AFM measurements, it was found that the magnitude of surface-height fluctuations, h(x), increases with increasing solution supersaturation. In contrast, the estimated characteristic length, xi, decreases rapidly upon increasing solution supersaturation. It was conjectured that the magnitude of both h(x) and xi could possibly determine the mode of crystal growth. Although the data precede any exact theory, the non-critical divergence of h(x) and xi with respect to increasing solution supersaturation was nevertheless preliminarily established. Moreover, approximate models to account for behavior of both h(x) and xi are also presented.

  19. Measurable characteristics of lysozyme crystal growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2005-01-01

    The behavior of protein crystal growth is estimated from measurements performed at both the microscopic and molecular levels. In the absence of solutal flow, it was determined that a model that balances the macromolecular flux toward the crystal surface with the flux of the crystal surface well characterizes crystal growth observed using microscopic methods. Namely, it was determined that the model provides accurate estimates for the crystal-growth velocities upon evaluation of crystal-growth measurements obtained in time. Growth velocities thus determined as a function of solution supersaturation were further interpreted using established deterministic models. From analyses of crystal-growth velocities, it was found that the mode of crystal growth varies with respect to increasing solution supersaturation, possibly owing to kinetic roughening. To verify further the hypothesis of kinetic roughening, crystal growth at the molecular level was examined using atomic force microscopy (AFM). From the AFM measurements, it was found that the magnitude of surface-height fluctuations, h(x), increases with increasing solution supersaturation. In contrast, the estimated characteristic length, xi, decreases rapidly upon increasing solution supersaturation. It was conjectured that the magnitude of both h(x) and xi could possibly determine the mode of crystal growth. Although the data precede any exact theory, the non-critical divergence of h(x) and xi with respect to increasing solution supersaturation was nevertheless preliminarily established. Moreover, approximate models to account for behavior of both h(x) and xi are also presented.

  20. Determination of Crystal Orientation by Ω-Scan Method in Nickel-Based Single-Crystal Turbine Blades

    NASA Astrophysics Data System (ADS)

    Gancarczyk, Kamil; Albrecht, Robert; Berger, Hans; Szeliga, Dariusz; Gradzik, Andrzej; Sieniawski, Jan

    2017-08-01

    The article presents an assessment of the crystal perfection of single-crystal turbine blades based on the crystal orientation and lattice parameter distribution on their surface. Crystal orientation analysis was conducted by the X-ray diffraction method Ω-scan and the X-ray diffractometer provided by the EFG Company. The Ω-scan method was successfully used for evaluation of the crystal orientation and lattice parameters in semiconductors. A description of the Ω-scan method and an example of measurement of crystal orientation compared to the Laue and EBSD methods are presented.

  1. Crystal orientations in nacreous layers of organic-inorganic biocomposites

    SciTech Connect

    Lee, Seung Woo

    2009-09-15

    Abalone shell comprises a bio-composite material, combining the properties of inorganic calcite intergrown with organic nacre. This paper reports about the microstructure of this composite. By examining the Kikuchi patterns obtained for nacre (Haliotis discus hannai) using transmission electron microscopy, we have shown that the tiles within nacre have specific orientations. The stereographic projection spheres for the tiles of nacre can be divided into two main types, namely a right oriented region and a left oriented region with respect to the c axis as a reference plane (001). The cluster character of nacre can be explained in terms of the growth mechanism of the 'Christmas tree' pattern. The orientation of the c-axis in the nacreous layer is elucidated for the first time. We demonstrate the use of the soluble protein obtained from the tiles of nacre in in vitro calcium carbonate crystallization.

  2. Statistical Variability of Ice Crystal Orientations in Ice Sheets

    NASA Astrophysics Data System (ADS)

    Hay, M.; Waddington, E. D.

    2015-12-01

    Crystal-orientation fabrics in polar ice sheets have a strong influence on ice flow due to the plastic anisotropy of ice. Crystal orientations evolve primarily in response to applied strain, but are also affected by temperature, impurities, interactions with neighbors, and other factors. While the evolution of each ice crystal is physically deterministic, in limited samples, such as those from ice-core thin sections, measured samples are stochastic due to sampling error. Even in continuum representations from models, crystal ODFs can be treated as stochastic due to uncertainties in how they developed. Here, we present results on the statistics of crystal orientation fabrics. We show a first-order estimate of the sampling distribution of fabric eigenvalues and fabric eigenvectors from ice-core thin sections. In addition, the strain histories of fabrics are generally poorly constrained, and may have varied in unknown ways through time. Nearby layers in ice sheets can also experience different strain histories due to inherent variabilities such as transient flow, or differences in impurities. This means that the continuum ODF itself can be treated as stochastic, because it depends on an effectively-stochastic unknown strain-history. To explore this, we analyze the effects of strain and vorticity variability on the evolution of the continuum ice-crystal ODF. We recast Jeffery's equation for the evolution of the ODF as a stochastic differential equation, with vorticity and strain perturbed by Gaussian processes. From this, we run a Monte-Carlo ensemble to determine likely bounds of true continuum ODF variability in response to random perturbations of strain and vorticity.

  3. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, N. K.; Swanson, G.

    2002-01-01

    High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297

  4. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, N. K.; Swanson, G.

    2002-01-01

    High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297

  5. Laser-induced damage of KDP crystals by 1omega nanosecond pulses: influence of crystal orientation.

    PubMed

    Reyné, Stéphane; Duchateau, Guillaume; Natoli, Jean-Yves; Lamaignère, Laurent

    2009-11-23

    We investigate the influence of THG-cut KDP crystal orientation on laser damage at 1064 nm under nanosecond pulses. Since laser damage is now assumed to initiate on precursor defects, this study makes a connection between these nanodefects (throughout a mesoscopic description) and the influence of their orientation on laser damage. Some investigations have already been carried out in various crystals and particularly for KDP, indicating propagation direction and polarization dependences. We performed experiments for two orthogonal positions of the crystal and results clearly indicate that KDP crystal laser damage depends on its orientation. We carried out further investigations on the effect of the polarization orientation, by rotating the crystal around the propagation axis. We then obtained the evolution of the damage probability as a function of the rotation angle. To account for these experimental res ts, we propose a laser damage model based on ellipsoid-shaped defects. This modeling is a refined implementation of the DMT model (Drude Mie Thermal) [Dyan et al., J. Opt. Soc. Am. B 25, 1087-1095 (2008)], by introducing absorption efficiency calculations for an ellipsoidal geometry. Modeling simulations are in good agreement with experimental results.

  6. Distinctive Characteristics of Sexual Orientation Bias Crimes

    ERIC Educational Resources Information Center

    Stacey, Michele

    2011-01-01

    Despite increased attention in the area of hate crime research in the past 20 years, sexual orientation bias crimes have rarely been singled out for study. When these types of crimes are looked at, the studies are typically descriptive in nature. This article seeks to increase our knowledge of sexual orientation bias by answering the question:…

  7. Distinctive Characteristics of Sexual Orientation Bias Crimes

    ERIC Educational Resources Information Center

    Stacey, Michele

    2011-01-01

    Despite increased attention in the area of hate crime research in the past 20 years, sexual orientation bias crimes have rarely been singled out for study. When these types of crimes are looked at, the studies are typically descriptive in nature. This article seeks to increase our knowledge of sexual orientation bias by answering the question:…

  8. Plastic Deformation of O+ Oriented Quartz Single Crystals

    NASA Astrophysics Data System (ADS)

    Poston, E. J.; Holyoke, C. W., III; Kronenberg, A. K.

    2015-12-01

    The strength of wet quartz deforming by dislocation creep significantly influences the strength of mid to lower crust. Dislocation creep of quartz in Earth's crust is dominated by slip on the basal slip system. However, very little is known about the temperature, strain rate, or water fugacity dependence of this slip system. In order to better understand the rheology of the basal slip system, we deformed single crystals of synthetic quartz, with the basal slip system oriented at 45° to the compression direction (O+ orientation). Each core was annealed at 900°C and 1 atm for 24 hours to convert the gel-type water defects found in synthetic quartz into fluid inclusions, like those observed in milky quartz. FTIR analysis indicate that water contents (200-450 H/106Si) were not affected by the annealing process. The annealed single crystals were then deformed in a Griggs piston-cylinder rock deformation apparatus using a solid salt assembly, at temperatures from 800 to 900°C, strain rates from 10-6 to 10-4/s, and a confining pressure of 1.5 GPa. The strength of the quartz crystals increases with faster strain rates and decreases with increasing temperature. During some of the faster strain rate steps at 800°C, the crystals did not deform plastically before the differential stress reached the confining pressure, whereas they deformed at low stresses at 800°C and 10-6/s. The microstructures visible in the deformed samples are consistent with dislocation creep. The samples exhibit undulatory extinction, and show no deformation lamellae or subgrain formation. The strength of synthetic quartz crystals with low water contents deformed in this study is greater than milky quartz single crystals with high water contents deformed at the same conditions in other studies. These results indicate that the strength of basal slip system in quartz is affected by both water content and water fugacity.

  9. Refraction characteristics of phononic crystals

    NASA Astrophysics Data System (ADS)

    Nemat-Nasser, Sia

    2015-08-01

    Some of the most interesting refraction properties of phononic crystals are revealed by examining the anti-plane shear waves in doubly periodic elastic composites with unit cells containing rectangular and/or elliptical multi-inclusions. The corresponding band structure, group velocity, and energy-flux vector are calculated using a powerful mixed variational method that accurately and efficiently yields all the field quantities over multiple frequency pass-bands. The background matrix and the inclusions can be anisotropic, each having distinct elastic moduli and mass densities. Equifrequency contours and energy-flux vectors are readily calculated as functions of the wave-vector components. By superimposing the energy-flux vectors on equifrequency contours in the plane of the wave-vector components, and supplementing this with a three-dimensional graph of the corresponding frequency surface, a wealth of information is extracted essentially at a glance. This way it is shown that a composite with even a simple square unit cell containing a central circular inclusion can display negative or positive energy and phase velocity refractions, or simply performs a harmonic vibration (standing wave), depending on the frequency and the wave-vector. Moreover, that the same composite when interfaced with a suitable homogeneous solid can display: (1) negative refraction with negative phase velocity refraction; (2) negative refraction with positive phase velocity refraction; (3) positive refraction with negative phase velocity refraction; (4) positive refraction with positive phase velocity refraction; or even (5) complete reflection with no energy transmission, depending on the frequency, and direction and the wavelength of the plane-wave that is incident from the homogeneous solid to the interface. For elliptical and rectangular inclusion geometries, analytical expressions are given for the key calculation quantities. Expressions for displacement, velocity, linear momentum

  10. Determining the Orientations of Ice Crystals Using Electron Backscatter Patterns

    NASA Astrophysics Data System (ADS)

    Iliescu, D.; Baker, I.; Chang, H.

    2004-05-01

    The presentation will show how electron backscatter diffraction can be employed to determine crystal orientations in ice. The technique involves obtaining and indexing electron back-scatter patterns (EBSPs) from uncoated ice using a scanning electron microscope equipped with a custom-built cold-stage and an Orientation Imaging System. Unlike any of the currently-used methods, the EBSP-based technique has considerably higher angular and spatial resolution and is significantly faster. We also present an orientation image map of a muti-grain region in laboratory-grown ice constructed by automatically indexing the EBSPs using an HKL, Inc Channel 5 Orientation Imaging System and discuss possible applications of the technique to the study of natural ice. Primarily, the focus will be on the characterization of the microstructure of dynamically recrystallized glacier ice whose texture is intrinsically related the flow process. Other applications include obtaining orientation images from frozen water-containing materials, such as clathrate hydrates. This research was supported by Army Research Office grant DAAD 19-03-1-0110 and National Science Foundation grants OPP-9981379 and OPP-0221120.

  11. Effect of Crystal Orientation on Analysis of Single-Crystal, Nickel-Based Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Swanson, G. R.; Arakere, N. K.

    2000-01-01

    High-cycle fatigue-induced failures in turbine and turbopump blades is a pervasive problem. Single-crystal nickel turbine blades are used because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities. Single-crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant and complicating factor. A fatigue failure criterion based on the maximum shear stress amplitude on the 24 octahedral and 6 cube slip systems is presented for single-crystal nickel superalloys (FCC crystal). This criterion greatly reduces the scatter in uniaxial fatigue data for PWA 1493 at 1,200 F in air. Additionally, single-crystal turbine blades used in the Space Shuttle main engine high pressure fuel turbopump/alternate turbopump are modeled using a three-dimensional finite element (FE) model. This model accounts for material orthotrophy and crystal orientation. Fatigue life of the blade tip is computed using FE stress results and the failure criterion that was developed. Stress analysis results in the blade attachment region are also presented. Results demonstrate that control of crystallographic orientation has the potential to significantly increase a component's resistance to fatigue crack growth without adding additional weight or cost.

  12. Crystallographic orientation inhomogeneity and crystal splitting in biogenic calcite

    PubMed Central

    Checa, Antonio G.; Bonarski, Jan T.; Willinger, Marc G.; Faryna, Marek; Berent, Katarzyna; Kania, Bogusz; González-Segura, Alicia; Pina, Carlos M.; Pospiech, Jan; Morawiec, Adam

    2013-01-01

    The calcitic prismatic units forming the outer shell of the bivalve Pinctada margaritifera have been analysed using scanning electron microscopy–electron back-scatter diffraction, transmission electron microscopy and atomic force microscopy. In the initial stages of growth, the individual prismatic units are single crystals. Their crystalline orientation is not consistent but rather changes gradually during growth. The gradients in crystallographic orientation occur mainly in a direction parallel to the long axis of the prism, i.e. perpendicular to the shell surface and do not show preferential tilting along any of the calcite lattice axes. At a certain growth stage, gradients begin to spread and diverge, implying that the prismatic units split into several crystalline domains. In this way, a branched crystal, in which the ends of the branches are independent crystalline domains, is formed. At the nanometre scale, the material is composed of slightly misoriented domains, which are separated by planes approximately perpendicular to the c-axis. Orientational gradients and splitting processes are described in biocrystals for the first time and are undoubtedly related to the high content of intracrystalline organic molecules, although the way in which these act to induce the observed crystalline patterns is a matter of future research. PMID:23804442

  13. Large area single crystal (0001) oriented MoS2

    NASA Astrophysics Data System (ADS)

    Laskar, Masihhur R.; Ma, Lu; Kannappan, Santhakumar; Sung Park, Pil; Krishnamoorthy, Sriram; Nath, Digbijoy N.; Lu, Wu; Wu, Yiying; Rajan, Siddharth

    2013-06-01

    Layered metal dichalcogenide materials are a family of semiconductors with a wide range of energy band gaps and properties, the potential for exciting physics and technology applications. However, obtaining high crystal quality thin films over a large area remains a challenge. Here we show that chemical vapor deposition (CVD) can be used to achieve large area single crystal Molybdenum Disulfide (MoS2) thin films. Growth temperature and choice of substrate were found to critically impact the quality of film grown, and high temperature growth on (0001) oriented sapphire yielded highly oriented single crystal MoS2 films. Films grown under optimal conditions were found to be of high structural quality from high-resolution X-ray diffraction, transmission electron microscopy, and Raman measurements, approaching the quality of reference geological MoS2. Photoluminescence and electrical measurements confirmed the growth of optically active MoS2 with a low background carrier concentration, and high mobility. The CVD method reported here for the growth of high quality MoS2 thin films paves the way towards growth of a variety of layered 2D chalcogenide semiconductors and their heterostructures.

  14. Orientational order parameter measurements of discotic liquid crystal

    SciTech Connect

    Kaur, Supreet; Raina, K. K.; Kumar, S.; Pratibha, R.

    2014-04-24

    The IR dichroism technique is a convenient method which can be used to measure the molecular order parameter corresponding to the IR bands exclusively present in the disc –like molecules in discotic liquid crystal (DLC). To measure orientational order parameter, homeotropic alignment of discotic liquid crystal was attained by slow cooling of sample from isotropic phase on untreated flat CaF{sub 2} substrate. The homeotropic alignment thus achieved was found to be thermodynamically stable in the discotic mesophase. IR spectra were recorded at different temperatures for the DLC. The order parameter was calculated by comparing the spectra of discotic phase with that of the isotropic phase. Order parameter has been presented as function of temperature for different significant IR bands present in the DLC.

  15. Process and apparatus for making oriented crystal layers

    DOEpatents

    Springer, Robert W.

    2002-01-01

    Thin films of single crystal-like materials are made by using flow-through ion beam deposition during specific substrate rotation around an axis in a clocking action. The substrate is quickly rotated to a selected deposition position, paused in the deposition position for ionized material to be deposited, then quickly rotated to the next selected deposition position. The clocking motion can be achieved by use of a lobed cam on the spindle with which the substrate is rotated or by stopping and starting a stepper motor at long and short intervals. Other symmetries can be programmed into the process, allowing virtually any oriented inorganic crystal to be grown on the substrate surface.

  16. Effect of Crystal Orientation on Nanoindentation Behavior in Magnesium

    NASA Astrophysics Data System (ADS)

    Somekawa, Hidetoshi; Schuh, Christopher A.

    2016-06-01

    The effect of crystal orientation on nanoindentation behavior at both quasi-static and high strain rates was investigated using single-crystalline magnesium oriented in basal and prismatic configurations. Both the basal and prismatic planes had similar activation volumes, 55 and 73 b 3 for deformation at room temperature, as well as a small temperature dependence up to 423 K (150 °C). Microstructural observations beneath the indentations revealed that { 10bar{1}2 } type deformation twins were formed in both orientations irrespective of testing temperature. With twins forming beneath the indenter and multiple orientations of loading, it is believed that cross-slip and/or multiple slip are likely rate-controlling for global deformation, which also aligns with observations on nanoindentation of polycrystalline coarse-grained magnesium. The locations of the twins were consistent with expectations based on indentation mechanics as assessed by finite element simulations. The finite element simulations also predicted that an indenter tip with a shaper tip radius would tend to promote { 10bar{1}2 } twins.

  17. The Effect of Crystal Orientation on Growth on Polycrystalline TNT,

    DTIC Science & Technology

    1980-05-01

    satisfactory mechanism to account for its occurrence [1,2]. Investigations carried out at Materials Research Laboratories have confirmed that growth of creamed...AD0A096 591 MATERIALS RESEARCH LABS ASCOT VALE (AUSTRALIA) F/G 20/ 2 THE EFFECT OF CRYSTAL ORIENTATION ON GROWTH ON POLYCRYSTALLINE -ETC(L MAT 80 W S...WILSON UNCLASSIFIED MRL-R775 N N R.-R-775 A/ R-002-156 DEPARTMENT OF DEFENCE DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION MATERIALS RESEARCH

  18. Some Personality Characteristics of Elite Orienteers.

    ERIC Educational Resources Information Center

    Zsheliaskova-Koynova, Zshivka

    1991-01-01

    Administered questionnaires to 80 Bulgarian orienteers (cross-country racers who navigate a course) measuring extroversion, neuroticism, psychoticism, social desirability, trait anxiety, need for achievement, and locus of control. Examined the effects of sex, age, sport experience, level of sport qualification, and kind of sport specialization on…

  19. Effects of crystal quality and preferred orientation on the irreversible growth of compact TATB cylindrical explosives

    NASA Astrophysics Data System (ADS)

    Zhang, Haobin; Xu, Jingjiang; Liu, Yu; Huang, Hui; Sun, Jie

    2013-09-01

    Three kinds of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) cylinders compacted with TATB raw materials, recrystallized near-spherical and platy TATB crystals are compared to investigate the effects of crystal quality and preferred orientation on their irreversible growth. The results show that the higher the crystal quality, the lower the irreversible volume growth. The compacted cylinders of raw material TATB, with the poorest crystal quality, possess more irreversible growth than those with recrystallized high quality TATB crystals. Irreversible growth of TATB cylinders are also affected by crystal preferred orientation. With the same crystal quality, crystal preferred orientation leads to anisotropic irreversible dimension growth, but has no effect on the volume expansion of TATB cylinders. By changing the crystal quality and preferred orientation, the deformation problem of TATB-based PBX explosives may be restricted.

  20. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory R.

    2000-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.

  1. Anisotropic thermal transport in phosphorene: effects of crystal orientation

    NASA Astrophysics Data System (ADS)

    Liu, Te-Huan; Chang, Chien-Cheng

    2015-06-01

    As an intrinsic thermally anisotropic material, the thermal properties of phosphorene must vary with respect to the crystal chirality. Nevertheless, previous studies of heat transfer in phosphorene have been limited to the 0.0° (zigzag, ZZ) and 90.0° (armchair, AC) chiralities. In this study, we investigate the orientation-dependent thermal transport in phosphorene sheets with a complete set of crystal chirality ranging from 0.0° to 90.0° using the Boltzmann transport equation (BTE) associated with the first-principles calculations. It was found that in the phosphorene sheets, the intrinsic thermal conductivity is a smooth monotonic decreasing function of the crystal chirality, which exhibits sinusoidal behavior bounded by the two terminated values 48.9 (0.0°) and 27.8 (90.0°) W m-1 K-1. The optical modes have unusually large contributions to heat transfer, which account for almost 30% of the total thermal conductivity of phosphorene sheets. This is because the optical phonons have comparable group velocities and relaxation times to the acoustic phonons.

  2. Anisotropic thermal transport in phosphorene: effects of crystal orientation.

    PubMed

    Liu, Te-Huan; Chang, Chien-Cheng

    2015-06-28

    As an intrinsic thermally anisotropic material, the thermal properties of phosphorene must vary with respect to the crystal chirality. Nevertheless, previous studies of heat transfer in phosphorene have been limited to the 0.0° (zigzag, ZZ) and 90.0° (armchair, AC) chiralities. In this study, we investigate the orientation-dependent thermal transport in phosphorene sheets with a complete set of crystal chirality ranging from 0.0° to 90.0° using the Boltzmann transport equation (BTE) associated with the first-principles calculations. It was found that in the phosphorene sheets, the intrinsic thermal conductivity is a smooth monotonic decreasing function of the crystal chirality, which exhibits sinusoidal behavior bounded by the two terminated values 48.9 (0.0°) and 27.8 (90.0°) W m(-1) K(-1). The optical modes have unusually large contributions to heat transfer, which account for almost 30% of the total thermal conductivity of phosphorene sheets. This is because the optical phonons have comparable group velocities and relaxation times to the acoustic phonons.

  3. Role of crystal orientation on electrical tuning of dynamic permeability in strain-mediated multiferroic structures

    NASA Astrophysics Data System (ADS)

    Phuoc, Nguyen N.; Ong, C. K.

    2017-06-01

    Multiferroic structures of FeCo/NiFe/[Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32 (PMN-PT) with three different crystal orientations of PMN-PT(0 1 1), PMN-PT(0 0 1) and PMN-PT(1 1 1) were fabricated by a sputtering deposition system. Their dynamic magnetic properties were characterized under various applied electrical fields. The sample with PMN-PT(0 1 1) orientation shows a large tuning of the permeability spectra while the ones with PMN-PT(0 0 1) and PMN-PT(1 1 1) orientations exhibit a moderate and little change in the permeability spectra, respectively. The result can be explained via the magnetoelectric effect by considering the role of the piezoelectric coefficients being highly dependent on the crystal orientation along which the PMN-PT is poled. This explanation is consistent with the static magnetic characteristics of the samples before and after poling.

  4. Driving voltage properties sensitive to microscale liquid crystal orientation pattern in twisted nematic liquid crystal cells

    NASA Astrophysics Data System (ADS)

    Honma, Michinori; Takahashi, Koki; Yamaguchi, Rumiko; Nose, Toshiaki

    2016-04-01

    We investigated the micropattern-sensitive driving voltage properties of twisted nematic liquid crystal (LC) cells and found that the threshold voltage for inducing the Fréedericksz transition strongly depends on the micropatterned LC molecular orientation state. We discuss the effects of various cell parameters such as the period of the micropattern Λ, the LC layer thickness d, and the twist angle Φ on the threshold voltage. By a computer simulation of the LC molecular orientation, we found that the threshold voltage V th varies in response to the deformation factor Δ (= d 2/Λ2 + Φ2/π2) of the spatially distributed LC molecular orientation. We confirm that V\\text{th}2 is proportional to 1 - Δ from both theoretical and experimental standpoints.

  5. Impurity effects on orientation of lysozyme crystals nucleated on fatty acid thin films

    NASA Astrophysics Data System (ADS)

    Kubo, T.; Hondoh, H.; Nakada, T.

    2008-04-01

    Commercially available lysozyme samples that have different lot numbers (E02Z04 and E05802) were crystallized on fatty acid thin films. The orientation of lysozyme crystals nucleated on the films was investigated by atomic force microscopy and optical microscopy. The numbers of lysozyme crystals with specific planes parallel to the films are different. In other words, the impurities contained in commercial lysozyme significantly affect the orientation of lysozyme crystals. Detailed analysis of the orientation distribution of the lysozyme crystals nucleated from the purified sample showed that acetic acid is one of the substances promote the epitaxy.

  6. Demonstration of novel polarization lidar technique for identifying horizontally oriented ice crystals

    NASA Astrophysics Data System (ADS)

    Hayman, M. M.; Thayer, J. P.; Neely, R. R.; O'Neill, M.; Stillwell, R.

    2011-12-01

    Ice crystals are known to horizontally orient in the atmosphere when drag forces overcome the randomizing effects of Brownian motion. Such ice crystals have been shown to have an impact on radiative transfer, reflecting a greater portion of incident sunlight than their randomly oriented counter parts. However, regular identification of oriented ice crystals in the atmosphere has proven challenging. Existing lidar techniques rely on detection of strong specular backscatter from oriented platelets. These measurements are not common to most lidar systems, and are in fact, frequently avoided because such strong specular signals generally overwhelm lidar detector systems designed for typical cloud and aerosol studies. When lidars are tilted to avoid these specular returns, the low polarization ratio observed in some clouds consisting of oriented ice crystals will cause researchers to incorrectly conclude they are composed of liquid water, thereby skewing cloud phase statistics and providing an incorrect estimate of the cloud's impact on radiative transfer. To address these problems, we apply a novel lidar configuration, which provides a unique polarization capability that detects oriented ice crystals. By tilting the lidar off zenith and performing three polarization measurements, diattenuation, a polarization attribute only exhibited by oriented ice crystals, can be measured. This allows us to disambiguate clouds consisting of oriented ice crystals and water. We present here some of the first measurements of diattenuation for detection of oriented ice crystals as performed by the CAPABL lidar system in Summit Camp, Greenland. This polarization technique avoids detecting the strong specular reflections commonly used to identify oriented ice crystals, allowing return signals from oriented crystals to remain in the same dynamic range as other clouds and aerosols. This feature makes it possible for CAPABL to perform accurate, high performance measurements of all clouds and

  7. Phase diagrams of orientational transitions in absorbing nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Zolot'ko, A. S.; Ochkin, V. N.; Smayev, M. P.; Shvetsov, S. A.

    2015-05-01

    A theory of orientational transitions in nematic liquid crystals (NLCs), which employs the expansion of optical torques acting on the NLC director with respect to the rotation angle, has been developed for NLCs with additives of conformationally active compounds under the action of optical and low-frequency electric and magnetic fields. Phase diagrams of NLCs are constructed as a function of the intensity and polarization of the light field, the strength of low-frequency electric field, and a parameter that characterizes the feedback between the rotation of the NLC director and optical torque. Conditions for the occurrence of first- and second-order transitions are determined. The proposed theory agrees with available experimental data.

  8. Phase diagrams of orientational transitions in absorbing nematic liquid crystals

    SciTech Connect

    Zolot’ko, A. S. Ochkin, V. N.; Smayev, M. P.; Shvetsov, S. A.

    2015-05-15

    A theory of orientational transitions in nematic liquid crystals (NLCs), which employs the expansion of optical torques acting on the NLC director with respect to the rotation angle, has been developed for NLCs with additives of conformationally active compounds under the action of optical and low-frequency electric and magnetic fields. Phase diagrams of NLCs are constructed as a function of the intensity and polarization of the light field, the strength of low-frequency electric field, and a parameter that characterizes the feedback between the rotation of the NLC director and optical torque. Conditions for the occurrence of first- and second-order transitions are determined. The proposed theory agrees with available experimental data.

  9. Orthogonal orientation of chromonic liquid crystals by rubbed polyamide films.

    PubMed

    Mcguire, Aya; Yi, Youngwoo; Clark, Noel A

    2014-05-19

    Chromonic liquid crystals (CLCs) have drawn attention for applications to organic electronics and optical films as well as biological materials. Understanding the alignment mechanism of CLCs is important for those applications. Using a polarized transmission optical microscope, we observe the optical texture, dichroism, and birefringence of CLC films of sunset yellow (SSY) confined by polyamide (nylon) films that are rubbed with a brush. The films align with the stacks of SSY molecules oriented, surprisingly, perpendicular to the rubbing direction. We propose that this alignment is stabilized by molecular interaction between the stretched nylon chains and molecular grooves of the SSY stacks rather than elastic energy of the CLCs due to surface topography induced by the rubbing.

  10. On the colour of wing scales in butterflies: iridescence and preferred orientation of single gyroid photonic crystals

    PubMed Central

    2017-01-01

    Lycaenid butterflies from the genera Callophrys, Cyanophrys and Thecla have evolved remarkable biophotonic gyroid nanostructures within their wing scales that have only recently been replicated by nanoscale additive manufacturing. These nanostructures selectively reflect parts of the visible spectrum to give their characteristic non-iridescent, matte-green appearance, despite a distinct blue–green–yellow iridescence predicted for individual crystals from theory. It has been hypothesized that the organism must achieve its uniform appearance by growing crystals with some restrictions on the possible distribution of orientations, yet preferential orientation observed in Callophrys rubi confirms that this distribution need not be uniform. By analysing scanning electron microscope and optical images of 912 crystals in three wing scales, we find no preference for their rotational alignment in the plane of the scales. However, crystal orientation normal to the scale was highly correlated to their colour at low (conical) angles of view and illumination. This correlation enabled the use of optical images, each containing up to 104–105 crystals, for concluding the preferential alignment seen along the at the level of single scales, appears ubiquitous. By contrast, orientations were found to occur at no greater rate than that expected by chance. Above a critical cone angle, all crystals reflected bright green light indicating the dominant light scattering is due to the predicted band gap along the direction, independent of the domain orientation. Together with the natural variation in scale and wing shapes, we can readily understand the detailed mechanism of uniform colour production and iridescence suppression in these butterflies. It appears that the combination of preferential alignment normal to the wing scale, and uniform distribution within the plane is a near optimal solution for homogenizing the angular distribution of the band gap relative to the wings. Finally

  11. Incorporation of organic crystals into the interspace of oriented nanocrystals: morphologies and properties.

    PubMed

    Munekawa, Yurika; Oaki, Yuya; Sato, Kosuke; Imai, Hiroaki

    2015-02-28

    Oriented nanocrystals, as seen in biominerals, have both the macroscopic hierarchical morphologies and the nanoscale interspace among the unit crystals. Here we studied the incorporation effects of the specific interspace in the oriented nanocrystals on the morphologies, properties, and applications of organic crystals. Organic crystals, such as 9-vinylcarbazole (VCz), azobenzene (AB), and pyrene (PY), were introduced into the specific interspace of oriented nanocrystals from the melts. The morphologies and properties of the incorporated organic crystals were systematically studied in these model cases. The incorporation of the organic crystals provided the composites with the original oriented nanocrystals. The incorporated organic crystals formed the single-crystalline structures even in the nanoscale interspace. The melts of the organic compounds were crystallized and grown in the interspace of the original materials. The incorporated organic crystals showed the specific phase transition behavior. The freezing points of the organic crystals were raised by the incorporation into the nanospace while the melting points were not changed. The hierarchical morphologies of the organic crystals were obtained after the dissolution of the original materials. The hierarchical morphologies of the original materials were replicated to the organic crystals. The incorporated organic crystal was polymerized without deformation of the hierarchical morphologies. The hierarchical polymer can be applied to the donor material for the generation of a larger amount of the charge-transfer complex with the acceptor molecule than the commercial polymer microparticles. The present work shows the potential use of the nanoscale interspace generated in the oriented nanocrystals.

  12. A generalized crystal-cutting method for modeling arbitrarily oriented crystals in 3D periodic simulation cells with applications to crystal-crystal interfaces

    NASA Astrophysics Data System (ADS)

    Kroonblawd, Matthew P.; Mathew, Nithin; Jiang, Shan; Sewell, Thomas D.

    2016-10-01

    A Generalized Crystal-Cutting Method (GCCM) is developed that automates construction of three-dimensionally periodic simulation cells containing arbitrarily oriented single crystals and thin films, two-dimensionally (2D) infinite crystal-crystal homophase and heterophase interfaces, and nanostructures with intrinsic N-fold interfaces. The GCCM is based on a simple mathematical formalism that facilitates easy definition of constraints on cut crystal geometries. The method preserves the translational symmetry of all Bravais lattices and thus can be applied to any crystal described by such a lattice including complicated, low-symmetry molecular crystals. Implementations are presented with carefully articulated combinations of loop searches and constraints that drastically reduce computational complexity compared to simple loop searches. Orthorhombic representations of monoclinic and triclinic crystals found using the GCCM overcome some limitations in standard distributions of popular molecular dynamics software packages. Stability of grain boundaries in β-HMX was investigated using molecular dynamics and molecular statics simulations with 2D infinite crystal-crystal homophase interfaces created using the GCCM. The order of stabilities for the four grain boundaries studied is predicted to correlate with the relative prominence of particular crystal faces in lab-grown β-HMX crystals. We demonstrate how nanostructures can be constructed through simple constraints applied in the GCCM framework. Example GCCM constructions are shown that are relevant to some current problems in materials science, including shock sensitivity of explosives, layered electronic devices, and pharmaceuticals.

  13. Substrate-induced orientational order in the isotropic phase of liquid crystals

    NASA Technical Reports Server (NTRS)

    Mauger, A.; Zribi, G.; Mills, D. L.; Toner, J.

    1984-01-01

    Nematic order induced near a solid boundary in an otherwise isotropic liquid crystal is studied theoretically, at temperatures just above the bulk nematic-isotropic phase transition. Three distinct regimes are found, depending on the strength of orientational torques at the boundary: (1) strong orientational order, (2) strong orientational order followed by a first-order transition to a state of weak orientational order as temperature is raised, and (3) a state of weak orientational order.

  14. Fullerite crystal thermodynamic characteristics and the law of corresponding states.

    PubMed

    Torrens, Francisco; Castellano, Gloria

    2010-02-01

    The existence of single-wall carbon nanotubes in organic solvents in the form of clusters is discussed. A theory is developed based on a bundlet model, which enables describing the cluster-size distribution function. Comparison of calculated solubilities with experiments would permit obtaining energetic parameters, characterizing the interaction of a nanotube with its surrounding. Fullerenes and nanotubes are objects whose behaviour in many physical situations is characterized by peculiarities, which show up in that these systems represent the only soluble forms of carbon, what is related to their molecular structures. The fullerene molecule is a virtually uniform closed spherical-spheroidal surface and a nanotube is a smooth cylindrical unit. Both structures give rise to weak interactions between the neighbouring units in a crystal and promote their interaction with solvent molecules. The phenomena have a unified explanation in the bundlet model, in which the free energy of a nanotube in a cluster is combined from two components: a volume one proportional to the number of molecules n in a cluster and a surface one proportional to n1/2. Growth mechanisms of fractal clusters in fullerene solutions are analyzed along with similarity laws, determining the thermodynamic characteristics of fullerite crystals. In accordance with the similarity laws, the dimensionless Debye temperatures theta0 for all crystals belonging to the considered class should be close. Temperatures theta0 are determined by a similarity relation from experimental and estimated data. Fullerite theta0 is twice that for inert-gas crystals because, near the Debye point, the fullerite crystal is orientationally ordered so that its structure is dissimilar to face-centred cubic. A fullerene molecule whose thermal rotation is frozen cannot be considered as a spherically symmetric particle. The fulfilment of the similarity laws, which are valuable for particles with spherically symmetric interaction

  15. Orientation relations in aluminide coatings on single crystals of nickel superalloys

    NASA Astrophysics Data System (ADS)

    Khayutin, S. G.

    2008-03-01

    The crystallographic orientation of NiAl refractory coatings on the surface of single crystals of high-temperature nickel alloy ZhS32 is studied. The orientation relation between single-crystal substrates based on an fcc γ-phase and coatings based on a bcc β-phase is studied.

  16. On the nature of the orientational effect of ultrasound on nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Kapustina, O. A.; Negazina, E. K.

    2016-07-01

    Experimental substantiation of the validity of the model of orientational distortion in a homeotropic layer of nematic liquid crystal under an ultrasonic beam with a sharp boundary is presented for the first time. The model is constructed within the concepts of nonequilibrium thermodynamics and statistical hydrodynamics, taking into account the processes of structural relaxation of the mesophase. It establishes the relationship between the characteristics specifying the homeotropic structure deformation (layer thickness, ultrasound frequency, parameters of the molecular micromodel of liquid crystal, and its material constants) and the layer transparency for a linearly polarized light beam. The calculation results are compared with the experimental data in the frequency range of 0.1-3 MHz.

  17. Snow Crystal Orientation Effects on the Scattering of Passive Microwave Radiation

    NASA Technical Reports Server (NTRS)

    Foster, J. L.; Barton, J. S.; Chang, A. T. C.; Hall, D. K.

    1999-01-01

    For this study, consideration is given to the role crystal orientation plays in scattering and absorbing microwave radiation. A discrete dipole scattering model is used to measure the passive microwave radiation, at two polarizations (horizontal and vertical), scattered by snow crystals oriented in random and non random positions, having various sizes (ranging between 1 micrometers to 10,000 micrometers in radius), and shapes (including spheroids, cylinders, hexagons). The model results demonstrate that for the crystal sizes typically found in a snowpack, crystal orientation is insignificant compared to crystal size in terms of scattering microwave energy in the 8,100 gm (37 GHz) region of the spectrum. Therefore, the assumption used in radiative transfer approaches, where snow crystals are modeled as randomly oriented spheres, is adequate to account for the transfer of microwave energy emanating from the ground and passing through a snowpack.

  18. Discotic ionic liquid crystals of triphenylene as dispersants for orienting single-walled carbon nanotubes.

    PubMed

    Lee, Jeongho Jay; Yamaguchi, Akihisa; Alam, Md Akhtarul; Yamamoto, Yohei; Fukushima, Takanori; Kato, Kenichi; Takata, Masaki; Fujita, Norifumi; Aida, Takuzo

    2012-08-20

    Orient and conduct: Triphenylene-based discotic ionic liquid crystals (ILCs) with six imidazolium ion pendants can disperse pristine single-walled carbon nanotubes (SWNTs). When the ILC is columnarly assembled, doping with SWNTs results in macroscopic homeotropic columnar orientation. Combination of shear and annealing treatments gives rise to three different orientation states, which determine the anisotropy of electrical conduction.

  19. Room-Temperature Tensile Behavior of Oriented Tungsten Single Crystals with Rhenium in Dilute Solid Solution

    DTIC Science & Technology

    1966-01-01

    SINGLE CRYSTALS WITH RHENIUM IN DILUTE SOLID SOLUTION Sby M. Garfinkle Lewis Research Center Cleveland, Ohio 20060516196 NATIONAL AERONAUTICS AND...WITH RHENIUM IN DILUTE SOLID SOLUTION By M. Garfinkle Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by...ORIENTED TUNGSTEN SINGLE CRYSTALS WITH RHENIUM IN DILUTE SOLID SOLUTION * by M. Garfinkle Lewis Research Center SUMMARY Tungsten single crystals

  20. Modeling Gameplay Enjoyment, Goal Orientations, and Individual Characteristics

    ERIC Educational Resources Information Center

    Quick, John M.; Atkinson, Robert K.

    2014-01-01

    The purpose of this study was to investigate the relationships between gameplay enjoyment, gaming goal orientations, and individual characteristics. A total of 301 participants were surveyed and the data were analyzed using structural equation modeling. This led to an expanded Gameplay Enjoyment Model (GEM) with 41 game design features that…

  1. Modeling Gameplay Enjoyment, Goal Orientations, and Individual Characteristics

    ERIC Educational Resources Information Center

    Quick, John M.; Atkinson, Robert K.

    2014-01-01

    The purpose of this study was to investigate the relationships between gameplay enjoyment, gaming goal orientations, and individual characteristics. A total of 301 participants were surveyed and the data were analyzed using structural equation modeling. This led to an expanded Gameplay Enjoyment Model (GEM) with 41 game design features that…

  2. Mesoporous carbons with self-assembled surfaces of defined crystal orientation.

    PubMed

    Jian, Kengqing; Truong, Trung C; Hoffman, Wesley P; Hurt, Robert H

    2008-02-01

    The design of carbon sorbents traditionally focuses on the control of pore structure and the number and type of surface functional groups. The present paper explores the potential of also controlling the carbon crystal structure, or graphene layer orientation, in the immediate vicinity of the internal surfaces. We hypothesize that this crystal structure influences the properties of the carbon surfaces and affects the number and type of active sites for functionalization. Here a series of mesoporous carbons are fabricated by capillary infiltration of mesophase pitch (naphthalene homopolymer) into a series of controlled pore glass templates of different characteristic pore size followed by carbonization and template etching. The liquid crystalline mesogens are known to adopt perpendicular alignment (anchoring) at liquid/silica interfaces, which after carbonization lead to a high concentration of graphene edge sites at the inner surfaces. These surfaces are shown to have elevated chemical reactivity, and the pore structures are shown to be consistent with predictions of a quantitative model based on the negative replica concept. Overall, the use of mesophase pitch for templated mesoporous carbons allows systematic and simultaneous control of both pore structure and interfacial crystal structure through the well-defined rules of liquid crystal surface anchoring.

  3. Mesoporous carbons with self-assembled surfaces of defined crystal orientation

    PubMed Central

    Jian, Kengqing; Truong, Trung C.; Hoffman, Wesley P.; Hurt, Robert H.

    2008-01-01

    The design of carbon sorbents traditionally focuses on the control of pore structure and the number and type of surface functional groups. The present paper explores the potential of also controlling the carbon crystal structure, or graphene layer orientation, in the immediate vicinity of the internal surfaces. We hypothesize that this crystal structure influences the properties of the carbon surfaces and affects the number and type of active sites for functionalization. Here a series of mesoporous carbons are fabricated by capillary infiltration of mesophase pitch (naphthalene homopolymer) into a series of controlled pore glass templates of different characteristic pore size followed by carbonization and template etching. The liquid crystalline mesogens are known to adopt perpendicular alignment (anchoring) at liquid/silica interfaces, which after carbonization lead to a high concentration of graphene edge sites at the inner surfaces. These surfaces are shown to have elevated chemical reactivity, and the pore structures are shown to be consistent with predictions of a quantitative model based on the negative replica concept. Overall, the use of mesophase pitch for templated mesoporous carbons allows systematic and simultaneous control of both pore structure and interfacial crystal structure through the well-defined rules of liquid crystal surface anchoring. PMID:19190761

  4. Zinc oxide nanolevel surface transformation for liquid crystal orientation by ion bombardment

    SciTech Connect

    Oh, Byeong-Yun; Lee, Won-Kyu; Kim, Young-Hwan; Seo, Dae-Shik

    2009-03-01

    This paper introduces the characteristics of the zinc oxide (ZnO) inorganic film deposited by radio-frequency magnetron sputtering as an alternative alignment layer for liquid crystal display (LCD) applications. The crystalline structure related to the texture formation of ZnO (1013) was observed with a tilt angle of approximately 28.1 deg. to the ZnO (0001) plane, leading to a smooth surface and high-density structure. Ion beam (IB) bombardment at various incident angles was used to induce liquid crystal (LC) alignment and cause the measured pretilt angle on ZnO films to assume a triangular contour. The orientation order of liquid crystal molecules was due to the van der Waals force for the vertical alignment of LCs with selective breaking of O-Zn bonds by IB bombardment. The contact angle contour as a function of the IB incident angle resembled the behavior of the pretilt angle. The pretilt angle is controllable by adjusting the surface features on ZnO films with IB bombardment. The electro-optic characteristics of vertically aligned (VA)-LCD based on ZnO film were comparable to those of VA-LCD based on polyimide, showing good potential of ZnO film as a LC alignment layer.

  5. Effect of crystal orientation and nanofiller alignment on dielectric breakdown of polyethylene/montmorillonite nanocomposites

    NASA Astrophysics Data System (ADS)

    Li, Bo; Xidas, Panagiotis I.; Triantafyllidis, Kostas S.; Manias, Evangelos

    2017-08-01

    Extrusion blown polyethylene and polyethylene/montmorillonite nanocomposite films were cold stretched to various ratios to quantify the influence of the crystal orientation and the nanofiller alignment on their dielectric breakdown performance. It was found that the crystal orientation could increase the breakdown strength (EBD) in the stretched blown films. The aligned pseudo-2D inorganic nanoclays provided additional strong improvements in EBD that can be superimposed to any EBD enhancement due to the polymer crystal orientation. At high filler loadings and high stretching ratios, the onset of percolation was observed through a substantial improvement in the dielectric breakdown strength.

  6. Two-stage magnetic orientation of uric acid crystals as gout initiators

    NASA Astrophysics Data System (ADS)

    Takeuchi, Y.; Miyashita, Y.; Mizukawa, Y.; Iwasaka, M.

    2014-01-01

    The present study focuses on the magnetic behavior of uric acid crystals, which are responsible for gout. Under a sub-Tesla (T)-level magnetic field, rotational motion of the crystals, which were caused by diamagnetic torque, was observed. We used horizontal magnetic fields with a maximum magnitude of 500 mT generated by an electromagnet to observe the magnetic orientation of the uric acid microcrystals by a microscope. The uric acid crystals showed a perpendicular magnetic field orientation with a minimum threshold of 130 mT. We speculate that the distinct diamagnetic anisotropy in the uric acid crystals resulted in their rotational responses.

  7. Side-polished fiber sensing for determination of azimuthal orientation of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Han, Yuqi; Chen, Zhe; Yu, Jianhui; Li, Haozhi; He, Xiaoli

    2013-09-01

    The orientation of nematic liquid crystal (NLC) can be used in biosensor. The sensing characteristics of side-polished fiber (SPF) for determination of azimuthal orientation of NLC have been investigated. The relationship between the azimuthal angle of NLC director and the optical transmission power in SPF was derived by empirical approach. Experimental results showed that the azimuthal transition of liquid crystal affected the optical transmission power in SPF. While the azimuthal angle increased from 0° to 90°, the optical transmission power increased by 28.10dB, which is similar to the variation tendency of the empirical analysis. When it changes from 0° to 30°, the azimuthal angle is linear to the change of optical transmission power. The respondence of azimuthal angle for optical sensing is averagely 0.359dB/°. Experiments indicate that SPF can be used in determination of the azimuzal transition of NLC. It would be used for a new fiber optical biosensor based on the SPF and NLC.

  8. Effect of crystal orientation on conductivity and electron mobility in single-crystal alumina

    NASA Technical Reports Server (NTRS)

    Will, Fritz G.; Delorenzi, Horst G.; Janora, Kevin H.

    1992-01-01

    The electrical conductivity of high-purity, single-crystal alumina is determined parallel to and perpendicular to the c-axis. The mean conductivity of four samples of each orientation is a factor 3.3 higher parallel to the c-axis than perpendicular to it. The conductivity as a function of temperature is attributed to extrinsic electron conduction at temperatures from 400 to 900 C, and intrinsic semiconduction at temperatures from 900 to 1300 C. In the high-temperature regime, the slope on all eight specimens is 4.7 +/- 0.1 eV. Hence, the thermal bandgap at O K is 9.4 +/- 0.2 eV.

  9. Modeling of Crystal Orientations in Laser Powder Deposition of Single Crystal Material

    NASA Astrophysics Data System (ADS)

    Qi, Huan; Liu, Zhaoyang

    This paper presents a numerical model which simulates the dynamic molten pool formation and the crystal orientations of solidified SX alloy in a multi-layer laser powder deposition process. Based on the mathematical model of coaxial laser direct deposition, the effect of parameters (laser power, scanning speed, powder feed rate) on the tendency to form [001] direction expitaxial grains during solidification was evaluated. In the transient three- dimensional model, physical phenomena including heat transfer, melting, grain formation during solidification, mass addition, and fluid flow in the melt pool, were modeled in a self-consistent manner. The temperature fields, fluid flow velocity, clad geometry (width, height and melt pool depth) and grain formation in melting pool of single layer are predicted.

  10. Coupled crystal orientation-size effects on the strength of nano crystals

    PubMed Central

    Yuan, Rui; Beyerlein, Irene J.; Zhou, Caizhi

    2016-01-01

    We study the combined effects of grain size and texture on the strength of nanocrystalline copper (Cu) and nickel (Ni) using a crystal-plasticity based mechanics model. Within the model, slip occurs in discrete slip events exclusively by individual dislocations emitted statistically from the grain boundaries. We show that a Hall-Petch relationship emerges in both initially texture and non-textured materials and our values are in agreement with experimental measurements from numerous studies. We find that the Hall-Petch slope increases with texture strength, indicating that preferred orientations intensify the enhancements in strength that accompany grain size reductions. These findings reveal that texture is too influential to be neglected when analyzing and engineering grain size effects for increasing nanomaterial strength. PMID:27185364

  11. Incorporation of organic crystals into the interspace of oriented nanocrystals: morphologies and properties

    NASA Astrophysics Data System (ADS)

    Munekawa, Yurika; Oaki, Yuya; Sato, Kosuke; Imai, Hiroaki

    2015-02-01

    Oriented nanocrystals, as seen in biominerals, have both the macroscopic hierarchical morphologies and the nanoscale interspace among the unit crystals. Here we studied the incorporation effects of the specific interspace in the oriented nanocrystals on the morphologies, properties, and applications of organic crystals. Organic crystals, such as 9-vinylcarbazole (VCz), azobenzene (AB), and pyrene (PY), were introduced into the specific interspace of oriented nanocrystals from the melts. The morphologies and properties of the incorporated organic crystals were systematically studied in these model cases. The incorporation of the organic crystals provided the composites with the original oriented nanocrystals. The incorporated organic crystals formed the single-crystalline structures even in the nanoscale interspace. The melts of the organic compounds were crystallized and grown in the interspace of the original materials. The incorporated organic crystals showed the specific phase transition behavior. The freezing points of the organic crystals were raised by the incorporation into the nanospace while the melting points were not changed. The hierarchical morphologies of the organic crystals were obtained after the dissolution of the original materials. The hierarchical morphologies of the original materials were replicated to the organic crystals. The incorporated organic crystal was polymerized without deformation of the hierarchical morphologies. The hierarchical polymer can be applied to the donor material for the generation of a larger amount of the charge-transfer complex with the acceptor molecule than the commercial polymer microparticles. The present work shows the potential use of the nanoscale interspace generated in the oriented nanocrystals.Oriented nanocrystals, as seen in biominerals, have both the macroscopic hierarchical morphologies and the nanoscale interspace among the unit crystals. Here we studied the incorporation effects of the specific

  12. Imposed Orientation of Dye Molecules by Liquid Crystals and an Electric Field.

    ERIC Educational Resources Information Center

    Sadlej-Sosnowska, Nina

    1980-01-01

    Describes experiments using dye solutions in liquid crystals in which polar molecules are oriented in an electrical field and devices are constructed to change their color in response to an electric signal. (CS)

  13. Imposed Orientation of Dye Molecules by Liquid Crystals and an Electric Field.

    ERIC Educational Resources Information Center

    Sadlej-Sosnowska, Nina

    1980-01-01

    Describes experiments using dye solutions in liquid crystals in which polar molecules are oriented in an electrical field and devices are constructed to change their color in response to an electric signal. (CS)

  14. Laser-Experiments on Oriented Olivine Crystals: Evidence of Space Weathering

    NASA Astrophysics Data System (ADS)

    Fazio, A.; Harries, D.; Nolte, S.; Matthäus, G.; Mutschke, H.; Langenhorst, F.

    2016-08-01

    In this work, the spectral (NUV-vis-NIR range), SEM, and preliminary TEM results of space weathering simulations through new high-energy, short-pulse laser-experiments on oriented single olivine crystals are presented.

  15. Inducing uniform single-crystal like orientation in natural rubber with constrained uniaxial stretch.

    PubMed

    Zhou, Weiming; Meng, Lingpu; Lu, Jie; Wang, Zhen; Zhang, Wenhua; Huang, Ningdong; Chen, Liang; Li, Liangbin

    2015-07-07

    The effect of flow on crystallization is commonly attributed to entropic reduction, which is caused by stretch and orientation of polymer chains but overlooks the role of flow on final-state free energy. With the aid of in situ synchrotron radiation wide-angle X-ray diffraction (WAXD) and a homemade constrained uniaxial tensile testing machine, polycrystals possessing single-crystal-like orientation rather than uniaxial orientation are found during the constrained stretch of natural rubber, whereas the c-axis and a-axis align in the stretch direction (SD) and constrained direction (CD), respectively. Molecular dynamics simulation shows that aligning the a-axis of crystal nuclei in CD leads to the lowest free energy increase and favors crystal nucleation. This indicates that the nomenclature of strain-induced crystallization may not fully account for the nature of flow-induced crystallization (FIC) as strain mainly emphasizes the entropic reduction of initial melt, whereas stress rather than strain plays the dominant role in crystal deformation. The current work not only contributes to a comprehensive understanding of the mechanism of flow-induced crystallization but also demonstrates the potential application of constrained uniaxial tensile stretch for the creation of functional materials containing polycrystals that possess single-crystal-like orientation.

  16. The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Maier, R. D.

    1982-01-01

    Constant load creep rupture tests were performed on MAR-M247 single crystals at 724 MPa and 774 C where the effect of anisotropy is prominent. The initial orientations of the specimens as well as the final orientations of selected crystals after stress rupture testing were determined by the Laue back-reflection X-ray technique. The stress rupture lives of the MAR-M247 single crystals were found to be largely determined by the lattice rotations required to produce intersecting slip, because second-stage creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited the shortest stress rupture lives, whereas crystals requiring little or no rotations exhibited the lowest minimum creep rates, and consequently, the longest stress rupture lives.

  17. The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Maier, R. D.

    1982-01-01

    Constant load creep rupture tests were performed on MAR-M247 single crystals at 724 MPa and 774 C where the effect of anisotropy is prominent. The initial orientations of the specimens as well as the final orientations of selected crystals after stress rupture testing were determined by the Laue back-reflection X-ray technique. The stress rupture lives of the MAR-M247 single crystals were found to be largely determined by the lattice rotations required to produce intersecting slip, because second-stage creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited the shortest stress rupture lives, whereas crystals requiring little or no rotations exhibited the lowest minimum creep rates, and consequently, the longest stress rupture lives.

  18. Orientation dependence of electromechanical properties of relaxor based ferroelectric single crystals.

    PubMed

    Xiang, Yang; Zhang, Rui; Cao, Wenwu

    2011-01-01

    The orientation dependence of electromechanical properties of relaxor based ferroelectric single crystals Pb(Zn1/3Nb2/3)O3-(6-7)%PbTiO3 and Pb(Mg1/3Nb2/3)O3-33%PbTiO3 has been calculated by coordinate transformation. Different from previous studies, the optimum cutting orientations have been predicted in terms of their piezoelectric responses in the corresponding crystal planes. The calculation results indicated that the anisotropic piezoelectric effects of [001] c and [011] c poled multi-domain crystals mainly come from the intrinsic contribution. However, the strong dielectric anisotropy of [001] c poled multi-domain crystals mainly comes from extrinsic domain and domain wall contributions. For [011] c poled multi-domain crystals, the intrinsic orientation effect enhances the dielectric anisotropy.

  19. Crystal orientation mapping via ion channeling: An alternative to EBSD.

    PubMed

    Langlois, C; Douillard, T; Yuan, H; Blanchard, N P; Descamps-Mandine, A; Van de Moortèle, B; Rigotti, C; Epicier, T

    2015-10-01

    A new method, which we name ion CHanneling ORientation Determination (iCHORD), is proposed to obtain orientation maps on polycrystals via ion channeling. The iChord method exploits the dependence between grain orientation and ion beam induced secondary electron image contrast. At each position of the region of interest, intensity profiles are obtained from a series of images acquired with different orientations with respect to the ion beam. The profiles are then compared to a database of theoretical profiles of known orientation. The Euler triplet associated to the most similar theoretical profile gives the orientation at that position. The proof-of-concept is obtained on a titanium nitride sample. The potentialities of iCHORD as an alternative to EBSD are then discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effects of Crystal Orientation on Stress Rupture Behavior of a Ni3Al-BASE Single Crystal Superalloy IC6SX

    NASA Astrophysics Data System (ADS)

    Jiang, Liwu; Li, Shusuo; Wu, Meiling; Han, Yafang

    The effect of the crystal orientation on the stress rupture behavior of the Ni3Al-base Single Crystal alloy IC6SX under the test condition of 1100°C/120Mpa has been studied. The results showed that the stress rupture lives of the specimens with [001], [011] and [111] crystal orientations were 205.45h, 268.6h and 485h, respectively, i.e., the specimen with [111] crystal orientation had the longest stress rupture life. The results of the tests also showed the significant different of high temperature stress rupture elongation and area reduction for different crystal orientation specimens, i.e., the ruptured elongations for the specimens with [001], [011] and [111] crystal orientations were 61.9%, 22.9% and 28.8%, and the values of area reduction for the specimens with [001], [011]and [111] crystal orientations were 11.7%, 12.2%and 7.3% respectively.

  1. Orientation dependence of the stress rupture properties of Nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.

    1981-01-01

    The influence of orientation of the stress rupture behavior of Mar-M247 single crystals was studied. Stress rupture tests were performed at 724 MPa and 774 C where the effect of anisotropy is prominent. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factors for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The stress rupture lives were found to be greatly influenced by the lattice rotations required to produce intersecting slip, because steady-state creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited a large primary creep strain, a large effective stress level at the onset of steady-state creep, and consequently a short stress rupture life. A unified analysis was attained for the stress rupture behavior of the Mar-M247 single crystals tested in this study at 774 C and that of the Mar-M200 single crystals tested in a prior study at 760 C. In this analysis, the standard 001-011-111 stereographic triangle was divided into several regions of crystallographic orientation which were rank ordered according to stress rupture life for this temperature regime. This plot indicates that those crystals having orientations within about 25 deg of the 001 exhibited significantly longer lives when their orientations were closer to the 001-011 boundary of the stereographic triangle than to the 001-111 boundary.

  2. Orientation dependence of the stress rupture properties of Nickel-base superalloy single crystals

    NASA Astrophysics Data System (ADS)

    Mackay, R. A.

    1981-05-01

    The influence of orientation of the stress rupture behavior of Mar-M247 single crystals was studied. Stress rupture tests were performed at 724 MPa and 774 C where the effect of anisotropy is prominent. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factors for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The stress rupture lives were found to be greatly influenced by the lattice rotations required to produce intersecting slip, because steady-state creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited a large primary creep strain, a large effective stress level at the onset of steady-state creep, and consequently a short stress rupture life. A unified analysis was attained for the stress rupture behavior of the Mar-M247 single crystals tested in this study at 774 C and that of the Mar-M200 single crystals tested in a prior study at 760 C. In this analysis, the standard 001-011-111 stereographic triangle was divided into several regions of crystallographic orientation which were rank ordered according to stress rupture life for this temperature regime. This plot indicates that those crystals having orientations within about 25 deg of the 001 exhibited significantly longer lives when their orientations were closer to the 001-011 boundary of the stereographic triangle than to the 001-111 boundary.

  3. Orientational transitions in ferromagnetic liquid crystals with bistable coupling between colloidal particles and the matrix

    SciTech Connect

    Zakhlevnykh, A. N. Petrov, D. A.

    2016-10-15

    We study the orientational response of a ferromagnetic liquid crystal that is induced by magnetic and electric fields. A modified form of the energy of the orientational interaction between magnetic impurity particles and the liquid crystal matrix that leads to bistable coupling is considered. It is shown that apart from magnetic impurity segregation, first-order orientational transitions can be due to the bistability of the potential of the orientational coupling between the director and the magnetization. The ranges of material parameters that lead to optical bistability are determined. The possibility of first-order orientational transitions is analyzed for the optical phase difference between the ordinary and extraordinary light rays transmitted through a ferronematic cell. It is shown that an electric field applied in the given geometry considerably enhances the magneto-orientational response of the ferronematic.

  4. Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals.

    PubMed

    Li, Xufan; Basile, Leonardo; Yoon, Mina; Ma, Cheng; Puretzky, Alexander A; Lee, Jaekwang; Idrobo, Juan C; Chi, Miaofang; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2015-02-23

    Characterizing and controlling the interlayer orientations and stacking orders of two-dimensional (2D) bilayer crystals and van der Waals (vdW) heterostructures is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) crystals that result from different layer stackings provide an ideal platform to study the stacking configurations in 2D bilayer crystals. Through a controllable vapor-phase deposition method, bilayer GaSe crystals were selectively grown and their two preferred 0° or 60° interlayer rotations were investigated. The commensurate stacking configurations (AA' and AB stacking) in as-grown bilayer GaSe crystals are clearly observed at the atomic scale, and the Ga-terminated edge structure was identified using scanning transmission electron microscopy. Theoretical analysis reveals that the energies of the interlayer coupling are responsible for the preferred orientations among the bilayer GaSe crystals.

  5. Electric-field-assisted position and orientation control of organic single crystals.

    PubMed

    Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro

    2014-12-02

    We have investigated the motion of growing pentacene single crystals in solution under various electric fields. The pentacene single crystals in 1,2,4-trichlorobenzene responded to the electric field as if they were positively charged. By optimizing the strength and frequency of an alternating electric field, the pentacene crystals automatically bridged the electrodes on SiO2. The pentacene crystal with a large aspect ratio tended to direct the [1̅10] orientation parallel to the conduction direction, which will be suitable from a viewpoint of anisotropy in mobility. The present result shows a possibility of controlling the position and orientation of organic single crystals by the use of an electric field, which leads to high throughput and low cost industrial manufacturing of the single crystal array from solution.

  6. Orientations of axially coordinated imidazoles and pyridines in crystal structures of model systems of cytochromes.

    PubMed

    Rakić, Aleksandra A; Medaković, Vesna B; Zarić, Snezana D

    2006-01-01

    Many properties of cytochromes and model systems depend on orientations of axial ligands. In this work, we elucidated the role of porphyrin substituents on orientation of axial ligands in model systems of cytochromes. The orientations of axially coordinated imidazoles and pyridines in crystal structures of model systems of cytochromes were analyzed and data were compared with previous quantum-chemical calculations. The results show that eight ethyl groups on porphyrin ring strongly favor parallel orientation, hence, in all these complexes axial ligands, pyridines or imidazoles, are mutually parallel. Four phenyl or mesityl groups at meso-carbons also favor parallel orientation but less strongly. Hence, in most of the bis-imidazole complexes the orientation is parallel, while in bis-pyridine complexes the orientation of pyridines depends on oxidation state of Fe. In bis-pyridine Fe(II) complexes orientation is parallel, in Fe(III) it is orthogonal. This analysis is in agreement with previous quantum-chemical calculations.

  7. Mass Loading Characteristics of Crystal Clock Oscillators

    NASA Technical Reports Server (NTRS)

    Cobb, Janel; Morris, V. R.; Thorpe, A. N.

    1997-01-01

    The 10-MHz piezoelectric quartz-crystal microbalance (QCM) has been used extensively for stratospheric aerosol sampling. We have undertaken laboratory studies of the QCM response to mass loading by trace gases. However, this device requires dual oscillator circuitry and the mass sensitivity can often be affected by the electronics. The coatings on the quartz crystals are sometimes difficult to remove after they have reacted with a particular gas and a disposable crystal system would be desirable. The cost of the dual oscillator-based QCM makes this a prohibitive option. Since our goal is to develop a cost-effective microbalance system with stable electronics we have begun testing of crystal clock oscillators, which are assembled with their own circuitry. We have been using chemically specific coatings for ozone to determine if the sensitivity and mass-frequency ratios are comparable to that of the 10-MHz QCM.

  8. Backscatter ratios for arbitrary oriented hexagonal ice crystals of cirrus clouds.

    PubMed

    Borovoi, Anatoli; Konoshonkin, Alexander; Kustova, Natalia

    2014-10-01

    Three dimensionless ratios widely used for interpretation of lidar signals, i.e., the color ratio, lidar ratio, and depolarization ratio, have been calculated for hexagonal ice crystals of cirrus clouds as functions of their spatial orientation. The physical-optics algorithm developed earlier by the authors is applied. It is shown that these ratios are minimal at the horizontal crystal orientation. Then these quantities increase with the effective tilt angle approaching the asymptotic values of the random particle orientation. The values obtained are consistent with the available experimental data.

  9. Control of Crystal Orientation and Diameter of Silicon Nanowire Using Anodic Aluminum Oxide Template

    NASA Astrophysics Data System (ADS)

    Shimizu, Tomohiro; Inoue, Fumihiro; Wang, Chonge; Otsuka, Shintaro; Tada, Yoshihiro; Koto, Makoto; Shingubara, Shoso

    2013-06-01

    The control of the crystal orientation and diameter of vertically grown epitaxial Si nanowires was demonstrated using a combination of a vapor-liquid-solid (VLS) growth technique and the use of an anodic aluminum oxide (AAO) template on a single-crystal Si substrate. The [100], [110], and [111] nanowires were selectively obtained by choosing the Si substrate with appropriate crystal orientation. The diameter of a Si nanowire in the AAO template could be controlled by the modification of the pore size of the AAO template with anodic voltage during anodization.

  10. On the colour of wing scales in butterflies: iridescence and preferred orientation of single gyroid photonic crystals.

    PubMed

    Corkery, Robert W; Tyrode, Eric C

    2017-08-06

    Lycaenid butterflies from the genera Callophrys, Cyanophrys and Thecla have evolved remarkable biophotonic gyroid nanostructures within their wing scales that have only recently been replicated by nanoscale additive manufacturing. These nanostructures selectively reflect parts of the visible spectrum to give their characteristic non-iridescent, matte-green appearance, despite a distinct blue-green-yellow iridescence predicted for individual crystals from theory. It has been hypothesized that the organism must achieve its uniform appearance by growing crystals with some restrictions on the possible distribution of orientations, yet preferential orientation observed in Callophrys rubi confirms that this distribution need not be uniform. By analysing scanning electron microscope and optical images of 912 crystals in three wing scales, we find no preference for their rotational alignment in the plane of the scales. However, crystal orientation normal to the scale was highly correlated to their colour at low (conical) angles of view and illumination. This correlation enabled the use of optical images, each containing up to 10(4)-10(5) crystals, for concluding the preferential alignment seen along the [Formula: see text] at the level of single scales, appears ubiquitous. By contrast, [Formula: see text] orientations were found to occur at no greater rate than that expected by chance. Above a critical cone angle, all crystals reflected bright green light indicating the dominant light scattering is due to the predicted band gap along the [Formula: see text] direction, independent of the domain orientation. Together with the natural variation in scale and wing shapes, we can readily understand the detailed mechanism of uniform colour production and iridescence suppression in these butterflies. It appears that the combination of preferential alignment normal to the wing scale, and uniform distribution within the plane is a near optimal solution for homogenizing the angular

  11. The use of photolithography on molecular orientation of the liquid crystals

    NASA Astrophysics Data System (ADS)

    Yilmaz, Suleyman

    2017-02-01

    The photolithography was used on molecular orientation of liquid crystals as an alternative to other conventional methods. Either planar or homeotropic orientation were provided with surface anchoring energy for the molecular alignment. The photolithography were applied to provide micro-grooving on the film surface, which is including polyimide coatings, UV exposure, chemical etching and thermal curing process, respectively. Three type liquid crystal cells were made by provided rubbing and photolithography for planar alignment and also homeotropic alignment. Electro-optical properties of the liquid crystals were examined under the electric field at phase transition region for three type liquid crystal cells. It was observed that the photolithographic method was the more effective and acceptable results than the other conventional methods on the molecular orientations.

  12. Orientation Dependence of Electromechanical Characteristics of Defect-free InAs Nanowires.

    PubMed

    Zheng, Kun; Zhang, Zhi; Hu, Yibin; Chen, Pingping; Lu, Wei; Drennan, John; Han, Xiaodong; Zou, Jin

    2016-03-09

    Understanding the electrical properties of defect-free nanowires with different structures and their responses under deformation are essential for design and applications of nanodevices and strain engineering. In this study, defect-free zinc-blende- and wurtzite-structured InAs nanowires were grown using molecular beam epitaxy, and individual nanowires with different structures and orientations were carefully selected and their electrical properties and electromechanical responses were investigated using an electrical probing system inside a transmission electron microscope. Through our careful experimental design and detailed analyses, we uncovered several extraordinary physical phenomena, such as the electromechanical characteristics are dominated by the nanowire orientation, rather than its crystal structure. Our results provide critical insights into different responses induced by deformation of InAs with different structures, which is important for nanowire-based devices.

  13. Effects of preferred orientation and crystal size on thermoelectric properties of sodium cobalt oxide

    NASA Astrophysics Data System (ADS)

    Wu, Yin; Wang, Jun; Yaer, Xinba; Miao, Lei; Zhang, Boyu; Guo, Feng; Zhang, Shuai

    2016-11-01

    To examine the effect of crystal size and orientation effect on ZT, polycrystalline NaxCo2O4 materials were prepared by pressing layered crystals obtained in sol-gel (SG) synthesis, molten salt synthesis (MSS) with and without additional ball milling (BM) treatment and 1:1 molar ratio mixture (Mixture) of BM powder and MSS powders. We found that the orientation effect and crystal size for four samples follow Mixture < SG < BM < MSS and BM < Mixture < SG < MSS, respectively. Electrical conductivity was obviously enhanced in the highly orientated BM and MSS samples when compared with SG and Mixture. It appears that the crystal size plays a dominant role in thermal conductivity rather than Seebeck coefficient by controlling the phonon scattering at grain boundaries. Thermal conductivity for BM was significantly decreased in comparison to MSS, although both BM and MSS show comparable orientation effect. The maximum ZT value is developed to near 0.51 at 814K upon increasing the electrical resistivity and decreasing the thermal conductivity, which are mainly governed by the condition of crystal size and orientation effect.

  14. Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films

    PubMed Central

    Cho, Namchul; Li, Feng; Turedi, Bekir; Sinatra, Lutfan; Sarmah, Smritakshi P.; Parida, Manas R.; Saidaminov, Makhsud I.; Murali, Banavoth; Burlakov, Victor M.; Goriely, Alain; Mohammed, Omar F.; Wu, Tom; Bakr, Osman M.

    2016-01-01

    Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid perovskite film can be fabricated using a thermal-gradient-assisted directional crystallization method that relies on the sharp liquid-to-solid transition of MAPbI3 from ionic liquid solution. We find that the OPC films spontaneously form periodic microarrays that are distinguishable from general polycrystalline perovskite materials in terms of their crystal orientation, film morphology and electronic properties. X-ray diffraction patterns reveal that the film is strongly oriented in the (112) and (200) planes parallel to the substrate. This film is structurally confined by directional crystal growth, inducing intense anisotropy in charge transport. In addition, the low trap-state density (7.9 × 1013 cm−3) leads to strong amplified stimulated emission. This ability to control crystal orientation and morphology could be widely adopted in optoelectronic devices. PMID:27830694

  15. Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films

    NASA Astrophysics Data System (ADS)

    Cho, Namchul; Li, Feng; Turedi, Bekir; Sinatra, Lutfan; Sarmah, Smritakshi P.; Parida, Manas R.; Saidaminov, Makhsud I.; Murali, Banavoth; Burlakov, Victor M.; Goriely, Alain; Mohammed, Omar F.; Wu, Tom; Bakr, Osman M.

    2016-11-01

    Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid perovskite film can be fabricated using a thermal-gradient-assisted directional crystallization method that relies on the sharp liquid-to-solid transition of MAPbI3 from ionic liquid solution. We find that the OPC films spontaneously form periodic microarrays that are distinguishable from general polycrystalline perovskite materials in terms of their crystal orientation, film morphology and electronic properties. X-ray diffraction patterns reveal that the film is strongly oriented in the (112) and (200) planes parallel to the substrate. This film is structurally confined by directional crystal growth, inducing intense anisotropy in charge transport. In addition, the low trap-state density (7.9 × 1013 cm-3) leads to strong amplified stimulated emission. This ability to control crystal orientation and morphology could be widely adopted in optoelectronic devices.

  16. Effect of crystal orientation on hardness of He+ ion irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Huang, Shilin; Ran, Guang; Lei, Penghui; Chen, Nanjun; Wu, Shenghua; Li, Ning; Shen, Qiang

    2017-09-01

    The effect of crystal orientation on hardness in the as-received, irradiated and post-irradiation annealed tungsten samples was investigated using a nanoindenter. An effective irradiation method of He+ ions with a series of energy degraded from 200 keV to 20 keV was used to continuously irradiate polycrystalline tungsten at room temperature in order to obtain a relatively homogenous displacement damage and helium concentration from sample surface to a desired depth at a NEC 400 kV ion implanter. Some irradiated samples were then annealed at 900 °C. He+ ion irradiation induced hardness increase, oppositely for the post-irradiation annealing effect. Meanwhile, the hardness of the irradiated samples was decreased sharply in the initial stage of annealing from 0 to 1 h, and then slowed down in the latter stage from 1 h to 3 h. Crystal orientation had an obvious effect on the nanoindentation hardness. The (0 0 1)-oriented grains had highest hardness at the as-received and irradiated samples. During the annealing process, the hardness in the irradiated grains with (1 1 1) crystal orientation decreased more quickly than that in the (0 0 1)-oriented grains. The mechanism of the effect of crystal orientation on hardness was analyzed and discussed.

  17. Investigating the orientational order in smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Wang, Shun

    This thesis is composed of two projects. The first one is the investigation of a reversed phase sequence, which subsequently leads to the discovery of a novel Smectic-C liquid crystal phase. The 10OHFBBB1M7 (10OHF) compound shows a reversed phase sequence with the SmC*d4 phase occurring at a higher temperature than the SmC* phase. This phase sequence is stabilized by moderate doping of 9OTBBB1M7 (C9) or 11OTBBB1M7 (C11). To further study this unique phase sequence, the mixtures of 10OHFBBB1M7 and its homologs have been characterized by optical techniques. In order to perform the resonant X-ray diffraction experiment, we have added C9 and C11 compounds to the binary mixtures and pure 10OHF. In two of the studied mixtures, a new smectic-C* liquid crystal phase with six-layer periodicity has been discovered. Upon cooling, the new phase appears between the SmC*a phase having a helical structure and the SmC*d4 phase with four-layer periodicity. The SmC*d6 phase shows a distorted clock structure. Three theoretical models have predicted the existence of a six-layer phase. However, our experimental findings are not consistent with the theories. The second project involves the mixtures of liquid crystals with different shapes. The role of different interactions in stabilizing the antiferroelectric smectic liquid crystal phases have been a long-standing questions in the community. By mixing the antiferroelectric smectic liquid crystal with achiral liquid crystal molecules with rod and hockey-stick shapes, distinct different behaviors are obtained. In the case of the mixtures of chiral smectic liquid crystals with rod-like molecules, all the smectic-C* variant phases vanish with a small amount of doping. However, the hockey-stick molecule is much less destructive compared to the rod-like molecule. This suggests that the antiferroelectric smectic liquid crystal molecules may have a shape closer to a hockey-stick rather than a rod.

  18. The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals

    NASA Astrophysics Data System (ADS)

    Mackay, Rebecca A.; Maier, Ralph D.

    1982-10-01

    The influence of orientation on the stress rapture properties of MAR-M247 single crystals was studied. Stress rupture tests were performed at 724 MPa and 774 °C where the effect of anisotropy is prominent. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factors for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The stress rupture lives at 774 °C were found to be greatly influenced by the lattice rotations required to produce intersecting slip, because second-stage creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited a large primary creep strain, a large effective stress level at the onset of steady-state creep, and consequently, a short stress rupture life. Those crystals having orientations within about 25° of the [001] exhibited significantly longer lives when their orientations were closer to the [001]-[011] boundary of the stereographic triangle than to the [001]-[1l 1] boundary, because they required smaller rotations to produce intersecting slip and the onset of second-stage creep. Thus, the direction off the [001], as well as the number of degrees off the [001], has a major influence on the stress rapture lives of single crystals in this temperature regime.

  19. Electromechanical characterization of [Formula: see text] crystals as a function of crystallographic orientation and temperature.

    PubMed

    Zhang, Shujun; Luo, Jun; Hackenberger, Wesley; Sherlock, Nevin P; Meyer, Richard J; Shrout, Thomas R

    2009-05-15

    Relaxor based [Formula: see text] ternary single crystals (PIN-PMN-PT) were reported to have broader temperature usage range [Formula: see text] and comparable piezoelectric properties to [Formula: see text] (PMNT) crystals. In this work, the orientation dependent dielectric, piezoelectric and electromechanical properties for PIN-PMN-PT crystals were investigated along [Formula: see text] and [Formula: see text] directions. The electromechanical couplings [Formula: see text] and [Formula: see text] for [Formula: see text] poled crystals were found to be 0.91 and 0.91, respectively, with piezoelectric coefficients [Formula: see text] and [Formula: see text] on the order of 925 and -1420 pC/N. Of particular significance was the mechanical quality factor [Formula: see text] for [Formula: see text] oriented crystals, which was found to be [Formula: see text], much higher than the [Formula: see text] values of [Formula: see text] oriented relaxor-PT crystals [Formula: see text]. The temperature dependence of the piezoelectric properties exhibited good temperature stability up to their ferroelectric phase transition [Formula: see text], indicating [Formula: see text] and [Formula: see text] oriented PIN-PMN-PT are promising materials for transducer applications, with the latter for high power resonant devices where low loss (high [Formula: see text]) was required.

  20. Crystal Phase- and Orientation-Dependent Electrical Transport Properties of InAs Nanowires.

    PubMed

    Fu, Mengqi; Tang, Zhiqiang; Li, Xing; Ning, Zhiyuan; Pan, Dong; Zhao, Jianhua; Wei, Xianlong; Chen, Qing

    2016-04-13

    We report a systematic study on the correlation of the electrical transport properties with the crystal phase and orientation of single-crystal InAs nanowires (NWs) grown by molecular-beam epitaxy. A new method is developed to allow the same InAs NW to be used for both the electrical measurements and transmission electron microscopy characterization. We find both the crystal phase, wurtzite (WZ) or zinc-blende (ZB), and the orientation of the InAs NWs remarkably affect the electronic properties of the field-effect transistors based on these NWs, such as the threshold voltage (VT), ON-OFF ratio, subthreshold swing (SS) and effective barrier height at the off-state (ΦOFF). The SS increases while VT, ON-OFF ratio, and ΦOFF decrease one by one in the sequence of WZ ⟨0001⟩, ZB ⟨131⟩, ZB ⟨332⟩, ZB ⟨121⟩, and ZB ⟨011⟩. The WZ InAs NWs have obvious smaller field-effect mobility, conductivities, and electron concentration at VBG = 0 V than the ZB InAs NWs, while these parameters are not sensitive to the orientation of the ZB InAs NWs. We also find the diameter ranging from 12 to 33 nm shows much less effect than the crystal phase and orientation on the electrical transport properties of the InAs NWs. The good ohmic contact between InAs NWs and metal remains regardless of the variation of the crystal phase and orientation through temperature-dependent measurements. Our work deepens the understanding of the structure-dependent electrical transport properties of InAs NWs and provides a potential way to tailor the device properties by controlling the crystal phase and orientation of the NWs.

  1. Orientational defects near colloidal particles in a nematic liquid crystal.

    PubMed

    Feng, James J; Zhou, Chixing

    2004-01-01

    We study the interaction between a surface-anchoring colloidal particle and a liquid-crystalline host, and in particular the formation of orientational defects near the particle. A mean-field theory based on the nonlocal Marrucci-Greco nematic potential is used to represent molecular interactions in an inhomogeneous orientational field. An evolution equation for the molecular configuration tensor is solved numerically whose steady state minimizes the total free energy of the system. With strong homeotropic anchoring on the particle surface, three types of solutions may appear depending on initial conditions and particle size: Saturn rings, satellite point defects, and polar rings. The Saturn ring remains stable on micrometer-sized particles, contrary to previous calculations but consistent with experiments. A phase diagram is constructed for the three regimes. Based on the free energy, the most stable state is the Saturn ring for smaller particles and the satellite defect for larger ones.

  2. Paleomagnetism carried by crystal inclusions: The effect of preferred crystallographic orientation

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham J.

    1994-08-01

    Randomly oriented phlogopite crystals from a pegmatite contain submicroscopic inclusions of magnetite. The inclusions have oblate magnetic fabrics, subparallel to the ab crystal plane. Alternating field demagnetization of individual crystals shows that the remanence is influenced by the crystal symmetry of the phlogopite host. The magnetizations isolated by alternating field demagnetization either cluster close to the a-axis or scatter in the ab plane. Coarse-grained igneous and metamorphic rocks can only record a paleofield direction accurately if there is a suitable orientation distribution of the rock-forming minerals that host the ferromagnets. An isotropic distribution of rock-forming minerals is preferable but it is not obligatory. Rock-forming minerals that have L-fabrics or S-fabrics with a strong L-component are also suitable if they contain oblate inclusion fabrics of ferromagnets.

  3. Elasticity of smectic liquid crystals with in-plane orientational order and dispiration asymmetry

    NASA Astrophysics Data System (ADS)

    Alageshan, Jaya Kumar; Chakrabarti, Buddhapriya; Hatwalne, Yashodhan

    2017-02-01

    The Nelson-Peliti formulation of the elasticity theory of isolated fluid membranes with orientational order emphasizes the interplay between geometry, topology, and thermal fluctuations. Fluid layers of lamellar liquid crystals such as smectic-C , hexatic smectics, and smectic-C* are endowed with in-plane orientational order. We extend the Nelson-Peliti formulation so as to bring these smectics within its ambit. Using the elasticity theory of smectics-C*, we show that positive and negative dispirations (topological defects in Smectic-C* liquid crystals) with strengths of equal magnitude have disparate energies—a result that is amenable to experimental tests.

  4. Development of chemically vapor deposited rhenium emitters of (0001) preferred crystal orientation

    NASA Technical Reports Server (NTRS)

    Yang, L.; Hudson, R. G.

    1973-01-01

    Rhenium thermionic emitters were prepared by the pyrolysis of rhenium chlorides formed by the chlorination of rhenium pellets. The impurity contents, microstructures, degrees of (0001) preferred crystal orientation, and vacuum electron work functions of these emitters were determined as a function of deposition parameters, such as substrate temperature, rhenium pellet temperature and chlorine flow rate. A correlation between vacuum electron work function and degree of (0001) preferred crystal orientation was established. Conditions for depositing porosity-free rhenium emitters of high vacuum electron work functions were defined. Finally, three cylindrical rhenium emitters were prepared under the optimum deposition conditions.

  5. Cirrus properties deduced from CO2 lidar observations of zenith-enhanced backscatter from oriented crystals

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.

    1993-01-01

    Many lidar researchers have occasionally observed zenith-enhanced backscatter (ZEB) from middle and high clouds. The ZEB signature consists of strong backscatter when the lidar is pointed directly at zenith and a dramatic decline in backscatter as the zenith angle dips slightly off zenith. Mirror-like reflection from horizontal facets of oriented crystals (especially plates) is generally accepted as the cause. It was found during a 3-year observation program that approximately 50 percent of ice clouds had ZEB, regardless of cloud height. The orientation of crystals and the ZEB they cause are important to study and understand for several reasons. First, radiative transfer in clouds with oriented crystals is different than if the same particles were randomly oriented. Second, crystal growth depends partly on the orientation of the particles. Third, ZEB measurements may provide useful information about cirrus microphysical and radiative properties. Finally, the remarkable effect of ZEB on lidar signals should be understood in order to properly interpret lidar data.

  6. Translation-rotation coupling, phase transitions, and elastic phenomena in orientationally disordered crystals

    NASA Astrophysics Data System (ADS)

    Lynden-Bell, R. M.; Michel, K. H.

    1994-07-01

    Many of the properties of orientationally disordered crystals are profoundly affected by the coupling (known as translation-rotation coupling) between translation displacements and molecular orientation. The consequences of translation-rotation coupling depend on molecular and crystal symmetry, and vary throughout the Brillouin zone. One result is an indirect coupling between the orientations of different molecules, which plays an important role in the order/disorder phase transition, especially in ionic orientationally disordered crystals. Translation-rotation coupling also leads to softening of elastic constants and affects phonon spectra. This article describes the theory of the coupling from the point of view of the microscopic Hamiltonian and the resulting Landau free energy. Considerable emphasis is placed on the restrictions due to symmetry as these are universal and can be used to help one's qualitative understanding of experimental observations. The application of the theory to phase transitions is described. The softening of elastic constants is discussed and shown to be universal. However, anomalies associated with the order/disorder phase transition are shown to be restricted to cases in which the symmetry of the order parameter satisfies certain conditions. Dynamic effects on phonon spectra are described and finally the recently observed dielectric behavior of ammonium compounds is discussed. Throughout the article examples from published experiments are used to illustrate the application of the theory including well known examples such as the alkali metal cyanides and more recently discovered orientationally disordered crystals such as the fullerite, C60.

  7. Simplification for Fraunhofer diffracting pattern of various randomly oriented ice crystals in cirrus.

    PubMed

    Pujol, Olivier; Brogniez, Gérard; Labonnote, Laurent

    2012-09-01

    This paper deals with Fraunhofer diffraction by an ensemble of independent randomly oriented ice crystals of assorted shapes, like those of cirrus clouds. There is no restriction on the shape of each crystal. It is shown that light flux density in the Fourier plane is azimuth-invariant and varies as 1/sin(4)θ, θ being the angle of diffraction. The analytical formula proposed is exact. The key point of this study is conservation of electromagnetic energy.

  8. Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals

    SciTech Connect

    Li, Xufan; Basile Carrasco, Leonardo A.; Yoon, Mina; Ma, Cheng; Puretzky, Alexander A.; Lee, Jaekwang; Idrobo Tapia, Juan Carlos; Chi, Miaofang; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai

    2015-01-21

    Characterizing and controlling the interlayer orientations and stacking order of bilayer two-dimensional (2D) crystals and van der Waals (vdW) heterostructure is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) that result from different layer stacking provide an ideal platform to study the stacking configurations in bilayer 2D crystals. Here, through a controllable vapor-phase deposition method we selectively grow bilayer GaSe crystals and investigate their two preferred 0° or 60° interlayer rotations. The commensurate stacking configurations (AA' and AB-stacking) in as-grown 2D bilayer GaSe crystals are clearly observed at the atomic scale and the Ga-terminated edge structure are identified for the first time by using atomic-resolution scanning transmission electron microscopy (STEM). Theoretical analysis of the interlayer coupling energetics vs. interlayer rotation angle reveals that the experimentally-observed orientations are energetically preferred among the bilayer GaSe crystal polytypes. Here, the combined experimental and theoretical characterization of the GaSe bilayers afforded by these growth studies provide a pathway to reveal the atomistic relationships in interlayer orientations responsible for the electronic and optical properties of bilayer 2D crystals and vdW heterostructures.

  9. Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals

    DOE PAGES

    Li, Xufan; Basile Carrasco, Leonardo A.; Yoon, Mina; ...

    2015-01-21

    Characterizing and controlling the interlayer orientations and stacking order of bilayer two-dimensional (2D) crystals and van der Waals (vdW) heterostructure is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) that result from different layer stacking provide an ideal platform to study the stacking configurations in bilayer 2D crystals. Here, through a controllable vapor-phase deposition method we selectively grow bilayer GaSe crystals and investigate their two preferred 0° or 60° interlayer rotations. The commensurate stacking configurations (AA' and AB-stacking) in as-grown 2D bilayer GaSe crystals are clearly observed at the atomic scale andmore » the Ga-terminated edge structure are identified for the first time by using atomic-resolution scanning transmission electron microscopy (STEM). Theoretical analysis of the interlayer coupling energetics vs. interlayer rotation angle reveals that the experimentally-observed orientations are energetically preferred among the bilayer GaSe crystal polytypes. Here, the combined experimental and theoretical characterization of the GaSe bilayers afforded by these growth studies provide a pathway to reveal the atomistic relationships in interlayer orientations responsible for the electronic and optical properties of bilayer 2D crystals and vdW heterostructures.« less

  10. Faraday rotator based on TSAG crystal with <001> orientation.

    PubMed

    Yasuhara, Ryo; Snetkov, Ilya; Starobor, Aleksey; Mironov, Evgeniy; Palashov, Oleg

    2016-07-11

    A Faraday isolator (FI) for high-power lasers with kilowatt-level average power and 1-µm wavelength was demonstrated using a terbium scandium aluminum garnet (TSAG) with its crystal axis aligned in the <001> direction. Furthermore, no compensation scheme for thermally induced depolarization in a magnetic field was used. An isolation ratio of 35.4 dB (depolarization ratio γ of 2.9 × 10-4) was experimentally observed at a maximum laser power of 1470 W. This result for room-temperature FIs is the best reported, and provides a simple, practical solution for achieving optical isolation in high-power laser systems.

  11. Control of Orientation and Morphology of Crystals Grown Under Organic Templates

    NASA Astrophysics Data System (ADS)

    Stripe, Benjamin

    Living creatures demonstrate an extraordinary ability to both grow and control the growth of inorganic crystals. These biominerals are found almost everywhere in nature from simple plants and plankton to our own teeth and bones. A great deal of research has been focused on how living creatures are able to achieve such control over the shape, size, orientation, and arrangement of these biominerals. Many studies have been done demonstrating the effects the presence of organic molecules can have on the morphology of nucleating inorganic crystals. These studies have led to the use of ordered arrays of biological molecules as templates to select the orientation of the crystals. Such experiments have had amazing success cataloging monolayers, orientations and morphologies of crystals grown beneath them. However, despite several decades of work, the exact mechanisms by which the orientation and morphology of crystals is selected by organic templates are still not known. The present study attempts to explain the complex interactions that take place at the template surface and decide the orientations and morphologies of the crystals that nucleate there. To do this, scanning electron microscopy (SEM), grazing incidence x-ray diffraction (GID), and x-ray reflectivity have been used to probe the templates and nucleating crystals in situ. The experiments described here seek to move beyond the well-studied two-component systems. In many of these two-component systems a single template and a single type of crystal are grown, and often many claims and comparisons are made about monolayer charge, crystal surface energies, stereochemical recognition, and lattice matches. However, almost all of the claims and comparisons are between systems that are different enough that assumptions about relative charge, strain, recognition, and lattice dynamics are either unfounded or poorly supported. To bridge this gap in the comparison of these different two-component systems the studies

  12. Point-group sensitive orientation mapping of non-centrosymmetric crystals

    SciTech Connect

    Winkelmann, Aimo; Nolze, Gert

    2015-02-16

    We demonstrate polarity-sensitive orientation mapping of non-centrosymmetric phases by Electron Backscatter Diffraction (EBSD). The method overcomes the restrictions of kinematic orientation determination by EBSD, which is limited to the centro-symmetric Laue-groups according to Friedel's rule. Using polycrystalline GaP as an example, we apply a quantitative pattern matching approach based on simulations using the dynamical theory of electron diffraction. This procedure results in a distinct assignment of the local orientation according to the non-centrosymmetric point group of the crystal structure under investigation.

  13. Tutorial: Crystal orientations and EBSD — Or which way is up?

    SciTech Connect

    Britton, T.B.; Jiang, J.; Guo, Y.; Vilalta-Clemente, A.; Wallis, D.; Hansen, L.N.; Winkelmann, A.; Wilkinson, A.J.

    2016-07-15

    Electron backscatter diffraction (EBSD) is an automated technique that can measure the orientation of crystals in a sample very rapidly. There are many sophisticated software packages that present measured data. Unfortunately, due to crystal symmetry and differences in the set-up of microscope and EBSD software, there may be accuracy issues when linking the crystal orientation to a particular microstructural feature. In this paper we outline a series of conventions used to describe crystal orientations and coordinate systems. These conventions have been used to successfully demonstrate that a consistent frame of reference is used in the sample, unit cell, pole figure and diffraction pattern frames of reference. We establish a coordinate system rooted in measurement of the diffraction pattern and subsequently link this to all other coordinate systems. A fundamental outcome of this analysis is to note that the beamshift coordinate system needs to be precisely defined for consistent 3D microstructure analysis. This is supported through a series of case studies examining particular features of the microscope settings and/or unambiguous crystallographic features. These case studies can be generated easily in most laboratories and represent an opportunity to demonstrate confidence in use of recorded orientation data. Finally, we include a simple software tool, written in both MATLAB® and Python, which the reader can use to compare consistency with their own microscope set-up and which may act as a springboard for further offline analysis. - Highlights: • Presentation of conventions used to describe crystal orientations • Three case studies that outline how conventions are consistent • Demonstrates a pathway for calibration and validation of EBSD based orientation measurements • EBSD computer code supplied for validation by the reader.

  14. Preferred crystal orientation of sol-gel-derived Bi4-xLaxTi3O12 thin films on silicon substrates.

    PubMed

    Tajiri, Takayuki; Sumitani, Kazushi; Haruki, Rie; Kohno, Atsushi

    2007-12-01

    Polycrystalline thin films of La-substituted bismuth titanate (BLT) were formed directly on p-type Si(100) substrates by using sol-gel and spin coat methods. The BLT film and interfacial layer between BLT and Si were quantitatively investigated by the X-ray reflectivity method. Also, crystal orientations of sub-100-nm-thick BLT thin films were confirmed by X-ray diffraction using a synchrotron radiation source. The preferred c-axis orientation normal to the surface depended on the crystallization temperature. The difference in the preferred c-axis orientations of the BLT films caused the difference in the hysteresis voltage width in the capacitance-voltage characteristics of Au/BLT/p-Si structures. Furthermore, the c-axis of the Bilayered structure was preferentially oriented and aligned in the in-plane direction.

  15. Scattering properties of horizontally oriented ice crystal columns in cirrus clouds. Part 1.

    PubMed

    Rockwitz, K D

    1989-10-01

    A ray tracing technique is presented based on the fundamental laws of ray and wave optics; it has been used to calculate the scattering properties of hexagonal ice crystals. These crystals were assumed to be oriented preferably horizontal, and, therefore, the resulting phase functions have been plotted vs direction in 3-D space contrary to earlier calculations of other authors. The anisotropy of the scattered radiation is clearly shown; on the average the phase function varies over ~2 orders of magnitude. From these single scattering results the multiple scattering between various ice crystals has also been calculated.

  16. Cathodoluminescence Study of Orientation-Patterned GaAs Crystals for Nonlinear Optics

    NASA Astrophysics Data System (ADS)

    Martínez, O.; Avella, M.; Hortelano, V.; Jiménez, J.; Lynch, C.; Bliss, D.

    2010-06-01

    Orientation-patterned (OP) GaAs crystals are very promising for their use in nonlinear optical applications. In particular, mid-infrared and terahertz lasers can be generated by frequency conversion from shorter-wavelength sources. However, the quality of the crystals is crucial for high conversion efficiency, as the presence of defects with electrooptical signatures can contribute to optical losses. The study of these defects is a step toward the improvement of OP-GaAs crystals. We present here a spectroscopic cathodoluminescence study of the distribution of the main defects. Tentative relations between defects and the optical propagation losses are discussed.

  17. Crystal Orientation Controlled Photovoltaic Properties of Multilayer GaAs Nanowire Arrays.

    PubMed

    Han, Ning; Yang, Zai-Xing; Wang, Fengyun; Yip, SenPo; Li, Dapan; Hung, Tak Fu; Chen, Yunfa; Ho, Johnny C

    2016-06-28

    In recent years, despite significant progress in the synthesis, characterization, and integration of various nanowire (NW) material systems, crystal orientation controlled NW growth as well as real-time assessment of their growth-structure-property relationships still presents one of the major challenges in deploying NWs for practical large-scale applications. In this study, we propose, design, and develop a multilayer NW printing scheme for the determination of crystal orientation controlled photovoltaic properties of parallel GaAs NW arrays. By tuning the catalyst thickness and nucleation and growth temperatures in the two-step chemical vapor deposition, crystalline GaAs NWs with uniform, pure ⟨110⟩ and ⟨111⟩ orientations and other mixture ratios can be successfully prepared. Employing lift-off resists, three-layer NW parallel arrays can be easily attained for X-ray diffraction in order to evaluate their growth orientation along with the fabrication of NW parallel array based Schottky photovoltaic devices for the subsequent performance assessment. Notably, the open-circuit voltage of purely ⟨111⟩-oriented NW arrayed cells is far higher than that of ⟨110⟩-oriented NW arrayed counterparts, which can be interpreted by the different surface Fermi level pinning that exists on various NW crystal surface planes due to the different As dangling bond densities. All this indicates the profound effect of NW crystal orientation on physical and chemical properties of GaAs NWs, suggesting the careful NW design considerations for achieving optimal photovoltaic performances. The approach presented here could also serve as a versatile and powerful platform for in situ characterization of other NW materials.

  18. Ameloblastin-rich enamel matrix favors short and randomly oriented apatite crystals.

    PubMed

    Lu, Xuanyu; Ito, Yoshihiro; Kulkarni, Ashok; Gibson, Carolyn; Luan, Xianghong; Diekwisch, Thomas G H

    2011-12-01

    Molecular evolution studies suggest that amelogenin (AMELX), the principal component of the mammalian enamel matrix, emerged considerably later than ameloblastin (AMBN), and enamelin. Here, we created a transgenic mouse model to ask the question how a conceivable basal enamel lacking AMELX and enriched in the more basal AMBN might compare with recent mouse enamel. To answer this question we overexpressed AMBN using a keratin 14 (K14) promoter and removed AMELX from the genetic background by crossbreeding with amelx(-/-) mice. Enamel coverings of amelx(-/-) mice and of the squamate Iguana iguana were used for comparison. Scanning electron microscopic analysis documented that AMBN transgenic (TG) × amelx(-/-) mouse molars were covered by a 5 μm thin 'enameloid' layer resembling the thin enamel of the Iguana squamate. Transmission electron microscopy revealed that the enamel of developing AMBN TG × amelx(-/-) mouse molars contained short (approximately 70 nm) and randomly oriented crystals, while WT controls, AMBN overexpressors, and AMELX(-/-) mice all featured elongated and parallel oriented crystals measuring between 300 and 600 nm in average length. Together, these studies illustrate that AMBN promotes the growth of a crystalline enamel layer with short and randomly oriented crystals, but lacks the ability to facilitate the formation of long and parallel oriented apatite crystals.

  19. Relaxation and Crystallization of Oriented Polymer Melts with Anisotropic Filler Networks.

    PubMed

    Nie, Yijing; Hao, Tongfan; Gu, Zhouzhou; Wang, Yue; Liu, Yong; Zhang, Ding; Wei, Ya; Li, Songjun; Zhou, Zhiping

    2017-02-16

    The coexistence of nanofillers and shear flow can influence crystallization of polymer melts. However, the microscopic mechanism of the effect is not completely revealed yet. Thus, dynamic Monte Carlo simulations were used to study the effect of the filler networks formed by one-dimensional nanofillers on relaxation and crystallization of oriented polymer melts. The filler networks restrict the relaxation of oriented polymers and impose confinement effect on the chains inside the filler networks, resulting in higher orientation and lower conformational entropy of the inside chains compared to those of the outside chains. Thus, the confined inside chains have stronger crystallizability. During crystallization, the confined chains are nucleated on the filler surface and then form nanohybrid shish-kebab structures. Furthermore, the effect of fillers and chain orientation closely depends on some factors, such as polymer-filler interaction, filler content, and filler spacing. Our simulation results are consistent with some experimental findings. Thus, these results can provide new insights into the mechanism of crystallization of filled polymers and also guide researchers to develop new polymer nanocomposites with high performance.

  20. Ameloblastin-rich Enamel Matrix Favors Short and Randomly Oriented Apatite Crystals

    PubMed Central

    Lu, Xuanyu; Ito, Yoshihiro; Kulkarni, Ashok; Gibson, Carolyn; Luan, Xianghong; Diekwisch, Thomas G.H.

    2012-01-01

    Molecular evolution studies suggest that amelogenins (AMEL), the principal components of the mammalian enamel matrix, emerged considerably later than ameloblastin (AMBN), and enamelin. Here we have created a transgenic mouse model to ask the question how a conceivable basal enamel lacking AMEL and enriched in the more basal AMBN might compare to recent mouse enamel. To address this question we have overexpressed AMBN using a K14 promoter and removed AMEL from the genetic background by crossbreeding with AMEL−/− mice. Enamel coverings of AMEL−/− mice and of the squamate Iguana iguana were used for comparison. Scanning electron microscopic analysis documented that AMBN TG × amel−/− mouse molars were covered by a 5μm thin “enameloid” layer resembling the thin enamel of the Iguana squamate. Transmission electron microscopy revealed that the enamel of developing AMBN TG × amel−/−mouse molars contained approximately 70nm short and randomly oriented crystals, while WT controls, AMBN overexpressors, and AMEL−/− mice all featured elongated and parallel oriented crystals measuring between 300nm and 600nm in average length. Together, these studies illustrate that AMBN promotes the growth of a crystalline enamel layer with short and randomly oriented crystals, but lacks the ability to facilitate the formation of long and parallel oriented apatite crystals. PMID:22243254

  1. Adaptation of BAp crystal orientation to stress distribution in rat mandible during bone growth

    NASA Astrophysics Data System (ADS)

    Nakano, T.; Fujitani, W.; Ishimoto, T.; Umakoshi, Y.

    2009-05-01

    Biological apatite (BAp) c-axis orientation strongly depends on stress distribution in vivo and tends to align along the principal stress direction in bones. Dentulous mandible is subjected to a complicated stress condition in vivo during chewing but few studies have been carried out on the BAp c-axis orientation; so the adaptation of BAp crystal orientation to stress distribution was examined in rat dentulous mandible during bone growth and mastication. Female SD rats 4 to 14 weeks old were prepared, and the bone mineral density (BMD) and BAp crystal orientation were analyzed in a cross-section of mandible across the first molar focusing on two positions: separated from and just under the tooth root on the same cross-section perpendicular to the mesiodistal axis. The degree of BAp orientation was analyzed by a microbeam X-ray diffractometer using Cu-Kα radiation equipped with a detector of curved one-dimensional PSPC and two-dimensional PSPC in the reflection and transmission optics, respectively. BMD quickly increased during bone growth up to 14 weeks, although it was independent of the position from the tooth root. In contrast, BAp crystal orientation strongly depended on the age and the position from the tooth root, even in the same cross-section and direction, especially along the mesiodistal and the biting axes. With increased biting stress during bone growth, the degree of BAp orientation increased along the mesiodistal axis in a position separated from the tooth root more than that near the tooth root. In contrast, BAp preferential alignment clearly appeared along the biting axis near the tooth root. We conclude that BAp orientation rather than BMD sensitively adapts to local stress distribution, especially from the chewing stress in vivo in the mandible.

  2. Crystal Orientation Change and Its Origin in One-Dimensional Nanoconfinement Constructed by Polystyrene-block-poly(ethylene oxide) Single Crystal Mats

    SciTech Connect

    Hsiao, M.; Zheng, J; Leng, S; Van Horn, R; Quirk, R; Thomas, E; Chen, H; Hsiao, B; Rong, L; et. al.

    2008-01-01

    Utilizing crystalline-amorphous block copolymers, such as in the case of polystyrene-block-poly(ethylene oxide) (PS-b-PEO), under a large amplitude shear process provides an opportunity for investigating crystal growth and orientation within nanoconfinements at different supercoolings. However, the internal stress generated during the shearing process and the structural defects embedded in the phase-separated morphology inevitably play roles in affecting the confinement effect on the crystallization of the crystalline blocks. In this study, we designed a one-dimensional (1D), defect-free confinement constructed by PS-b-PEO single crystal mats collected in dilute solution. Each single crystal possessed a square-shaped, 'sandwiched' lamellar structure, and it consisted of a PEO single crystal layer between two PS nanolayers formed by the tethered PS blocks on the PEO single crystal top and bottom fold surfaces. Furthermore, in these single crystal mats the glass transition temperature of the PS blocks is higher than the melting temperature of the PEO single crystals. We melted the PEO crystals between the two vitrified PS nanolayers, and the PEO blocks were recrystallized isothermally by quenching the mats to preset recrystallization temperatures (T{sub rx}). The results showed that this change of the PEO crystal orientation takes place within a few degrees Celsius. Microscopically, the crystal orientation might be determined from the status of critical nuclei formation due to the size and shape of this 1D confinement. This likely included a competition between the high tethering density (the junctions) of the PEO blocks at the PS interfaces leading to the homeotropic orientation with an anisotropic conformational orientation of the PEO blocks in the melt and the anisotropic density fluctuations within the 1D confined layer which could lead to an anisotropic ability for the PEO blocks to overcome the nucleation barrier to form the homogeneous orientation. The

  3. Orientational order and dynamics of hydration water in a single crystal of bovine pancreatic trypsin inhibitor.

    PubMed Central

    Venu, K; Svensson, L A; Halle, B

    1999-01-01

    The orientational order and dynamics of the water molecules in form II crystals of bovine pancreatic trypsin inhibitor (BPTI) are studied by (2)H NMR in the temperature range 6-50 degrees C. From the orientation dependence of the single crystal quadrupole splitting and linewidth, the principal components of the motionally averaged quadrupole interaction tensor and the irreducible linewidth components for the orthorhombic crystal are determined. With the aid of water orientations derived from neutron and x-ray diffraction, it is shown that the NMR data can be accounted for by a small number of highly ordered crystal waters, some of which have residence times in the microsecond range. Most of these specific hydration sites must be located at intermolecular contacts. The surface hydration layer that is also present in dilute solution is likely to be only weakly ordered and would then not contribute significantly to the splitting and linewidth from the protein crystal. To probe water dynamics on shorter time scales, the (2)H longitudinal relaxation dispersion is measured for a polycrystalline BPTI sample. The observed dispersion is dominated by rapidly exchanging deuterons in protein side chains, undergoing restricted rotational motions on a time scale of 10 ns. PMID:10423451

  4. The Social and Lifestyle Characteristics of Australian Orienteers.

    ERIC Educational Resources Information Center

    Hogg, David

    1996-01-01

    A survey of 1,296 members of the Orienteering Federation of Australia indicates that Australian orienteers are well educated, have well-paid professional jobs, possess a strong commitment to a healthy lifestyle, and are generally interested in outdoor activities. Most were introduced to orienteering through personal contact with family members and…

  5. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    SciTech Connect

    Ahn, Kwangseok; Kim, Jong Beom; Lee, Dong Ryeol; Kim, Hyo Jung; Lee, Hyun Hwi

    2015-01-21

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 −2) by a CuI buffer layer with a very low surface density, so low that a large proportion of the substrate surface is bare.

  6. Influence of the orientation of methylammonium lead iodide perovskite crystals on solar cell performance

    NASA Astrophysics Data System (ADS)

    Docampo, Pablo; Hanusch, Fabian C.; Giesbrecht, Nadja; Angloher, Philipp; Ivanova, Alesja; Bein, Thomas

    2014-08-01

    Perovskite solar cells are emerging as serious candidates for thin film photovoltaics with power conversion efficiencies already exceeding 16%. Devices based on a planar heterojunction architecture, where the MAPbI3 perovskite film is simply sandwiched between two charge selective extraction contacts, can be processed at low temperatures (<150 °C), making them particularly attractive for tandem and flexible applications. However, in this configuration, the perovskite crystals formed are more or less randomly oriented on the surface. Our results show that by increasing the conversion step temperature from room temperature to 60 °C, the perovskite crystal orientation on the substrate can be controlled. We find that films with a preferential orientation of the long axis of the tetragonal unit cell parallel to the substrate achieve the highest short circuit currents and correspondingly the highest photovoltaic performance.

  7. The manipulation of self-collimated beam in phononic crystals composed of orientated rectangular inclusions

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Nien; Chen, Lien-Wen

    2016-07-01

    Self-collimation is wave propagation in straight path without diffraction. The performance is evaluated by bandwidth, angular collimating range and straightness of equi-frequency contours. The present study aims to manipulate the self-collimated beam in square-array phononic crystals by means of orientated rectangular inclusions. Finite element simulations are performed to investigate the effects of the aspect ratio and orientation angle of rectangular inclusions on the self-collimated beam. The simulation results show that the proposed design successfully achieves all-angle self-collimation phenomenon. In addition, it also shows that the propagation direction of a self-collimated beam can be effectively manipulated by varying the orientation angle of inclusions. Numerical simulation result of the S-shaped bend demonstrates that acoustic collimated beam can be steered with negligible diffraction. Overall, the proposed design has significant potential for the realization of applications such as collimators, acoustic waveguides and other phononic crystals-based systems.

  8. Orientation- and size-dependent room-temperature plasticity in ZrC crystals

    NASA Astrophysics Data System (ADS)

    Kiani, S.; Ratsch, C.; Minor, A. M.; Kodambaka, S.; Yang, J.-M.

    2015-03-01

    Using in situ electron microscopy-based nanomechanical testing, we show that sub-micron-scale ZrC(100) and ZrC(111) single crystals exhibit size- and orientation-dependent room-temperature plasticity under compression. We identify ?? and {0 0 1}? as the active slip systems operating in ZrC(100) and ZrC(111) crystals, respectively. For both the orientations, yield strengths increase with decreasing crystal size. ZrC(111) is found to be up to 10× softer than ZrC(100). Using density functional theory calculations, we attribute the observed anisotropy to surprisingly facile shear along {0 0 1}? compared to ??. Based upon our results, which provide important insights into plastic deformation modes operating in ZrC, we expect that slip systems other than ?? can be softer and operate at low temperatures in NaCl-structured refractory transition-metal carbides and nitrides.

  9. Effect of the elliptic rods orientations on the asymmetric light transmission in photonic crystals

    NASA Astrophysics Data System (ADS)

    Soltani, A.; Ouerghi, F.; AbdelMalek, F.; Haxha, S.; Ademgil, H.; Akowuah, E. K.

    2017-06-01

    In this work, we report a novel design of a photonic crystal utilizing elliptic rods. The two-dimensional (2D) photonic crystal consists of an asymmetric distribution of unit cells to ensure the one-way transmission of light. Analysis performed indicated that the orientation of the ellipse along the major and minor axis has an influence on the shift of the transmission. In particular, this results in shift of the transmission towards high frequencies and subsequent oscillation of its magnitude. The peak of the transmission band was also found to be strongly influenced by the orientation angle, θ. It has been demonstrated that the strong asymmetric propagation properties of the proposed photonic crystal structure enables the switching of incident light from one direction to another. The proposed structure may be applied as a building block to integrated photonics applications.

  10. Choice of scalar measure for crystal curvature to image dislocation substructure in terms of discrete orientation data

    NASA Astrophysics Data System (ADS)

    Zisman, Alexander

    2016-04-01

    Starting from Nye's tensor, alternative characteristics of crystal curvature indicative of dislocation content are considered subject to very low thickness of investigated matter under the free surface and discreteness of orientation sampling. Analysis within the framework of continuum mechanics, undertaken to allow for such conditions peculiar to the electron backscatter diffraction (EBSD) technique, has shown the variable part of orientations expressed in a vector form to be most sensitive to lattice defects when projected to the free surface plane. Hence, as verified with EBSD data on a grain junction in a low deformed IF steel, magnitude of the projected field allows one to map plastic strains inhomogeneous within grains whereas divergence of this field distinctly images and quantifies low-angle dislocation boundaries formed at low strains.

  11. Optical Characteristics of Liquid Crystal Displays and Modulators

    NASA Astrophysics Data System (ADS)

    Lu, Kanghua

    The viewing-angle characteristics of liquid crystal displays (LCD) and the performance of liquid crystal spatial light modulators (SLM) are studied. The main contributions can be summarized as follows: (1) We have developed a new theory for LCD optics based on a generalized 2 x 2 Jones calculus. This new theory permits us to compute the transmittance of polarized light of arbitrary incident angles and wavelengths through the LCD at much higher speeds than has been possible with previous approaches. (2) We have developed a CAD software based on this theory. We used it to study the viewing-angle problem and to examine the effect of using birefringent compensation films of various types. We found that improvements can be indeed achieved. In the process we introduced a new method for display of color and viewing -angle characteristics. (3) We invented a new experimental single-step method of observing the viewing-angle characteristics based on Fourier optics. Previous methods were typically based on the use of cumbersome scanning techniques. Using our new apparatus we have verified the consistency between the experimental viewing-angle patterns and our theoretical predictions. (4) We also developed a simplified analytical model for the liquid crystal SLM, and used it to successfully interpret and improve the operation of liquid crystal light valves and liquid crystal televisions, especially when they are used as optical phase-only modulators.

  12. The Vocational Needs and Background Characteristics of Homemaker-Oriented Women and Career-Oriented Women.

    ERIC Educational Resources Information Center

    Yuen, Rhoda K.; And Others

    1980-01-01

    Studies adequacy of the theory of work adjustment for explaining homemaker and career orientation in women. Situational factors such as age, marital status, and education are important determinants. Career-oriented women had stronger needs for autonomy and good work conditions. Homemaker-oriented women had stronger needs for altruism. (JAC)

  13. Spectral characteristics and nonlinear studies of crystal violet dye

    NASA Astrophysics Data System (ADS)

    Sukumaran, V. Sindhu; Ramalingam, A.

    2006-03-01

    Solid-state dye-doped polymer is an attractive alternative to the conventional liquid dye solution. In this paper, the spectral characteristics and the nonlinear optical properties of the dye crystal violet are studied. The spectral characteristics of crystal violet dye doped poly(methylmethacrylate) modified with additive n-butyl acetate (nBA) are studied by recording its absorption and fluorescence spectra and the results are compared with the corresponding liquid mixture. The nonlinear refractive index of the dye in nBA and dye doped polymer film were measured using z-scan technique, by exciting with He-Ne laser. The results obtained are intercompared. Both the samples of dye crystal violet show a negative nonlinear refractive index. The origin of optical nonlinearity in the dye may be attributed due to laser-heating induced nonlinear effect.

  14. Superlocalization and Formation of Grain Structure in Ni3ge Single Crystals with Different Orientations of Deformation Axes

    NASA Astrophysics Data System (ADS)

    Solov'eva, Yu. V.; Lipatnikova, Ya. D.; Starenchenko, S. V.; Solov'ev, A. N.; Starenchenko, V. A.

    2017-09-01

    The paper describes the influence of orientation of Ni3Ge single crystal deformation axes on the high-temperature superlocalization of plastic deformation. Mechanical properties of single crystals with different orientations are studied in this paper as well as the slip traces and the evolution of the dislocation structure. Based on these investigations, the observing conditions are described for the superlocalization bands and the formation of the grain structure in local areas of the original single crystal.

  15. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    SciTech Connect

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-08-08

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.

  16. Preresonance Raman single-crystal measurements of electronic transition moment orientations in N-acetylglycinamide

    SciTech Connect

    Pajcini, V.; Asher, S.A.

    1999-12-01

    The authors have examined electronic coupling between the two amide electronic transitions in a dipeptide and have found strong excitonic interactions in a case where the amide planes are almost perpendicular. The absorption and resonance Raman spectra of N-methylacetamide (NMA) and acetamide (AM) are compared to that of the dipeptide N-acetylglycinamide (NAGA), which is composed of linked primary and secondary amides. The authors measured the transition moment magnitudes of each of these species and also determined the orientation of the preresonance Raman tensor of NAGA in a single crystal. From these single-crystal tensor values, the NAGA diagonal Raman tensor orientations were calculated and compared to those expected for unperturbed primary and secondary amides oriented as in the NAGA crystal. Because the primary and secondary amide III vibrations are vibrationally uncoupled and nonoverlapping, their intensities can be used to determine the contributions to their resonance enhancement from the coupled NAGA electronic transitions. The Raman tensor major axes of the primary and secondary amide III and amide I vibrations do not lie in their corresponding amide planes, indicating excitonically coupled states which mix the primary and secondary amide transitions. These results are relevant to the understanding of amide coupling in peptides and proteins; the NAGA crystal conformation is similar to that of a type I {beta}-turn in peptides and proteins, with the amide planes nearly perpendicular to each other (dihedral angle 85{degree}).

  17. Analysis of compression behavior of a [011] Ta single crystal with orientation imaging microscopy and crystal plasticity

    SciTech Connect

    Adams, B L; Campbell, G H; King, W E; Lassila, D H; Stolken, J S; Sun, S; Swartz, A J

    1999-02-03

    High-purity tantalum single crystal cylinders oriented with [011] parallel to the cylinder axis were deformed 10, 20, and 30 percent in compression. The engineering stress-strain curve exhibited an up-turn at strains greater than {approximately}20% while the samples took on an ellipsoidal shape during testing, elongated along the [100] direction with almost no dimensional change along [0{bar 1}1]. Two orthogonal planes were selected for characterization using Orientation Imaging Microscopy (OIM): one plane containing [100] and [011] (longitudinal) and the other in the plane containing [0{bar 1}1] and [011] (transverse). OIM revealed patterns of alternating crystal rotations that develop as a function of strain and exhibit evolving length scales. The spacing and magnitude of these alternating misorientations increases in number density and decreases in spacing with increasing strain. Classical crystal plasticity calculations were performed to simulate the effects of compression deformation with and without the presence of friction. The calculated stress-strain response, local lattice reorientations, and specimen shape are compared with experiment.

  18. Effect of Crystal Orientation on Self-Assembly Nanocones Formed on Tungsten Surface Induced by Helium Ion Irradiation and Annealing

    PubMed Central

    Huang, Shilin; Ran, Guang; Lei, Penghui; Wu, Shenghua; Chen, Nanjun; Li, Ning

    2016-01-01

    The self-assembly nanocone structures on the surface of polycrystalline tungsten were created by He+ ion irradiation and then annealing, and the resulting topography and morphology were characterized using atomic force microscopy and scanning electron microscopy. The cross-sectional samples of the self-assembly nanocones were prepared using an in situ–focused ion beam and then observed using transmission electron microscopy. The self-assembly nanocones were induced by the combined effect of He+ ion irradiation, the annealing process and the chromium impurity. The distribution characteristics, density and morphology of the nanocones exhibited a distinct difference relating to the crystal orientations. The highest density of the nanocones was observed on the grain surface with a (1 1 1) orientation, with the opposite for that with a (0 0 1) orientation and a medium value on the (1 0 1)-oriented grain. The size of the self-assembly nanocones increased with increasing the annealing time which met a power-law relationship. Irradiation-induced defects acted as the nucleation locations of the protrusions which attracted the migration of the tiny amount of chromium atoms. Under the action of temperature, the protrusions finally evolved into the nanocones. PMID:28335337

  19. Singular orientations and faceted motion of dislocations in body-centered cubic crystals.

    PubMed

    Kang, Keonwook; Bulatov, Vasily V; Cai, Wei

    2012-09-18

    Dislocation mobility is a fundamental material property that controls strength and ductility of crystals. An important measure of dislocation mobility is its Peierls stress, i.e., the minimal stress required to move a dislocation at zero temperature. Here we report that, in the body-centered cubic metal tantalum, the Peierls stress as a function of dislocation orientation exhibits fine structure with several singular orientations of high Peierls stress-stress spikes-surrounded by vicinal plateau regions. While the classical Peierls-Nabarro model captures the high Peierls stress of singular orientations, an extension that allows dislocations to bend is necessary to account for the plateau regions. Our results clarify the notion of dislocation kinks as meaningful only for orientations within the plateau regions vicinal to the Peierls stress spikes. These observations lead us to propose a Read-Shockley type classification of dislocation orientations into three distinct classes-special, vicinal, and general-with respect to their Peierls stress and motion mechanisms. We predict that dislocation loops expanding under stress at sufficiently low temperatures, should develop well defined facets corresponding to two special orientations of highest Peierls stress, the screw and the M111 orientations, both moving by kink mechanism. We propose that both the screw and the M111 dislocations are jointly responsible for the yield behavior of BCC metals at low temperatures.

  20. Singular orientations and faceted motion of dislocations in body-centered cubic crystals

    PubMed Central

    Kang, Keonwook; Bulatov, Vasily V.; Cai, Wei

    2012-01-01

    Dislocation mobility is a fundamental material property that controls strength and ductility of crystals. An important measure of dislocation mobility is its Peierls stress, i.e., the minimal stress required to move a dislocation at zero temperature. Here we report that, in the body-centered cubic metal tantalum, the Peierls stress as a function of dislocation orientation exhibits fine structure with several singular orientations of high Peierls stress—stress spikes—surrounded by vicinal plateau regions. While the classical Peierls-Nabarro model captures the high Peierls stress of singular orientations, an extension that allows dislocations to bend is necessary to account for the plateau regions. Our results clarify the notion of dislocation kinks as meaningful only for orientations within the plateau regions vicinal to the Peierls stress spikes. These observations lead us to propose a Read-Shockley type classification of dislocation orientations into three distinct classes—special, vicinal, and general—with respect to their Peierls stress and motion mechanisms. We predict that dislocation loops expanding under stress at sufficiently low temperatures, should develop well defined facets corresponding to two special orientations of highest Peierls stress, the screw and the M111 orientations, both moving by kink mechanism. We propose that both the screw and the M111 dislocations are jointly responsible for the yield behavior of BCC metals at low temperatures. PMID:22949701

  1. Orientation dependence of the plastic slip near notches in ductile FCC single crystals

    NASA Astrophysics Data System (ADS)

    Crone, W. C.; Shield, T. W.; Creuziger, A.; Henneman, B.

    2004-01-01

    Results from experiments conducted on copper FCC single crystals are reported. Two symmetric crystallographic orientations and four nonsymmetric crystallographic orientations were tested. The slip line fields that form near a pre-existing notch in these specimens were observed. The changes in these patterns as the orientation of the notch in the crystal is rotated in an {101} plane are discussed. Sectors of similar slip line patterns are identified and the type of boundaries between these sectors are discussed. A type of sector boundary called mixed kink is identified. Specimen orientations that differ by 90° are found to have different slip line patterns, contrary to the predictions of perfectly plastic slip line theory. The locations of the first slip lines to form are compared to the predictions obtained using anisotropic linear elastic stress field solutions and the initial plane-strain yield surfaces. It is found that comparison of these surface slip line fields to plane strain crack tip solutions in the annular region between 350 and 750 μm is justified. The differences in anisotropic elastic solutions for orientations that are 90° apart explain the lack of agreement with perfectly plastic slip line theory.

  2. Orientational order parameter studies in two symmetric dimeric liquid crystals - an optical study

    NASA Astrophysics Data System (ADS)

    Pardhasaradhi, P.; Datta Prasad, P. V.; Madhavi Latha, D.; Pisipati, V. G. K. M.; Padmaja Rani, G.

    2012-12-01

    The optical technique developed by [W. Kuczynski, B. Zywucki, and J. Malecki, Determination of orientational order parameter in various liquid-crystalline phases, Mol. Cryst. Liq. Cryst. 381 (2002), pp. 1-19; B.J. Zywucki and W. Kuczynski, IEEE transactions on optical phenomena - The orientational order in nematic liquid crystals from birefringence measurements, Dielectr. Electr. Insul. 8 (2001), pp. 512-515] is fabricated and used to determine the orientational order parameter in two dimeric liquid crystalline compounds nematic and SmA phases of α,ω-bis(4-alkylanilinebenzylidene-4‧-oxy)alkane (m.OnO.m) homologous series. The compounds studied are 5.O8O.5 and 5.O10O.5 which exhibit nematic and SmA, and nematic phases, respectively. The orientational order parameter in both the phases of nematic and SmA phases of the compound one and the nematic phase of the compound two are obtained using the principle of Newton's rings which gives directly the birefringence, δn of the liquid crystal dimer. The merits of the technique used are presented over the conventional techniques for the determination of orientational order parameter. The results for the two compounds are compared with those values estimated from n e, n o and density using the two internal field models due to Vuks and Neugebauer applicable to nematic phase.

  3. Error analysis of the crystal orientations obtained by the dictionary approach to EBSD indexing.

    PubMed

    Ram, Farangis; Wright, Stuart; Singh, Saransh; De Graef, Marc

    2017-10-01

    The efficacy of the dictionary approach to Electron Back-Scatter Diffraction (EBSD) indexing was evaluated through the analysis of the error in the retrieved crystal orientations. EBSPs simulated by the Callahan-De Graef forward model were used for this purpose. Patterns were noised, distorted, and binned prior to dictionary indexing. Patterns with a high level of noise, with optical distortions, and with a 25 × 25 pixel size, when the error in projection center was 0.7% of the pattern width and the error in specimen tilt was 0.8°, were indexed with a 0.8° mean error in orientation. The same patterns, but 60 × 60 pixel in size, were indexed by the standard 2D Hough transform based approach with almost the same orientation accuracy. Optimal detection parameters in the Hough space were obtained by minimizing the orientation error. It was shown that if the error in detector geometry can be reduced to 0.1% in projection center and 0.1° in specimen tilt, the dictionary approach can retrieve a crystal orientation with a 0.2° accuracy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Relaxation dynamics of orientationally disordered plastic crystals: effect of dopants.

    PubMed

    Singh, L P; Murthy, S S N; Bräuniger, T; Zimmermann, H

    2008-02-14

    We have examined the relaxation that occurs in the supercooled plastic crystalline phases of pentachloronitrobenzene (PCNB), dichlorotetramethylbenzene (DCTMB), trichlorotrimethylbenzene (TCTMB) along with some of their deuterated samples, and 1-cyanoadamantane (CNADM) in the presence of intentionally added dopants. The experimental techniques used in the present study are dielectric spectroscopy and differential scanning calorimetry (DSC). Only one relaxation process similar to that of the primary (or alpha-) relaxation characteristic of glass-forming materials is found, but there is no indication of any observable secondary relaxation within the resolution of our experimental setup. The alpha-process can reasonably be described by a Havriliak-Negami (HN) shape function throughout the frequency range. However, in the case of PCNB the dielectric strength (Delta epsilon) of the above said alpha-process does not change appreciably with temperature, though interestingly, a small addition of a dopant such as pentachlorobenzene (PCB), trichlorobenzene (TCB), and chloroadamantane (CLADM) to the molten state of PCNB drastically lowers the dielectric strength by a factor of 4 to 8. Powder X-ray diffraction measurements at room temperature and DSC data do not indicate any appreciable change in the crystalline structure. It is noticed that the effect of PCB as a dopant on the magnitude of alpha-process of CNADM is moderate, whereas both PCB and TCB as dopants show a much reduced effect on the relaxation in DCTMB and TCTMB. It is suggested that the drastic changes in the dielectric strength of the alpha-process is due to the rotational hindrance caused by the presence of a small number of dopant molecules in the host crystalline lattice. In the above context, the possibility of a certain degree of antiparallel ordering of dipoles is also discussed.

  5. Determination of crystal grain orientations by optical microscopy at textured surfaces

    NASA Astrophysics Data System (ADS)

    Lausch, D.; Gläser, M.; Hagendorf, C.

    2013-11-01

    In this contribution, a new method to determine the crystal orientation with the example of chemical treated silicon wafers by means of optical microscopy has been demonstrated. The introduced procedure represents an easy method to obtain all relevant parameters to describe the crystal structure of the investigated material, i.e., the crystal grain orientation and the grain boundary character. The chemical treatment is a standard mono-texture for solar cells, well known in the solar industry. In general, this concept can also be applied to other crystalline materials, i.e., GaAs, SiC, etc., the only thing that needs to be adjusted is the texturing method to reveal specific crystal planes and the calculation model. In conclusion, an application of this method is shown with the example of the defect classification of recombination active defects in mc-Si solar cell. The introduced method demonstrates a simple and quick opportunity to improve the crystallization process and the quality of electronic devices by means of an optical microscope and a chemical treatment of the material.

  6. Determination of crystal grain orientations by optical microscopy at textured surfaces

    SciTech Connect

    Lausch, D.; Gläser, M.; Hagendorf, C.

    2013-11-21

    In this contribution, a new method to determine the crystal orientation with the example of chemical treated silicon wafers by means of optical microscopy has been demonstrated. The introduced procedure represents an easy method to obtain all relevant parameters to describe the crystal structure of the investigated material, i.e., the crystal grain orientation and the grain boundary character. The chemical treatment is a standard mono-texture for solar cells, well known in the solar industry. In general, this concept can also be applied to other crystalline materials, i.e., GaAs, SiC, etc., the only thing that needs to be adjusted is the texturing method to reveal specific crystal planes and the calculation model. In conclusion, an application of this method is shown with the example of the defect classification of recombination active defects in mc-Si solar cell. The introduced method demonstrates a simple and quick opportunity to improve the crystallization process and the quality of electronic devices by means of an optical microscope and a chemical treatment of the material.

  7. Effect of process parameters and crystal orientation on 3D anisotropic stress during CZ and FZ growth of silicon

    NASA Astrophysics Data System (ADS)

    Drikis, Ivars; Plate, Matiss; Sennikovs, Juris; Virbulis, Janis

    2017-09-01

    Simulations of 3D anisotropic stress are carried out in <100> and <111> oriented Si crystals grown by FZ and CZ processes for different diameters, growth rates and process stages. Temperature dependent elastic constants and thermal expansion coefficients are used in the FE simulations. The von Mises stress at the triple point line is 5-11% higher in <111> crystals compared to <100> crystals. The process parameters have a larger effect on the von Mises stress than the crystal orientation. Generally, the <111> crystal has a higher azimuthal variation of stress along the triple point line ( 8%) than the <100> crystal ( 2%). The presence of a crystal ridge increases the stress beside the ridge and decreases it on the ridge compared with the round crystal.

  8. [Polarization-sensitive characteristics of the transmission spectra in photonic crystal with nematic liquid crystal defects].

    PubMed

    Dai, Qin; Wu, Ri-na; Yan, Bin; Zhang, Rui-liang; Wang, Peng-chong; Quan, Wei; Xu, Song-ning

    2012-05-01

    The polarization-sensitive characteristics in the transmission spectra of TiO2/SiO2 optical multilayer films of one-dimensional photonic crystal (1D PC) with nematic liquid crystal defects were investigated in the present paper. The transmission spectra measurements and simulated results show that the polarization-sensitive feature was obvious when natural light was normal incident onto the parallelly aligned nematic liquid crystal. There were peaks of the extraordinary light (TE mode) with center wavelengths 1831 and 1800 nm and the ordinary light (TM mode) with center wavelengths 1452 and 1418 nm in the photonic forbidden band, respectively. With applied voltage increasing, the peaks of the extraordinary light was blue-shifted, and coincided with the peaks of O light gradually. Their tunable ranges were about 31 and 34 nm, respectively. For the random nematic liquid crystal, polarization sensitivity was not observed. Meanwhile, an individual extraordinary light peak with center wavelength 1801 nm and an individual ordinary light peak with center wavelength 1391 nm were obtained in the photonic forbidden band, respectively. The peaks were also found blue-shifted with applied voltage increasing, and their tunable ranges were about 64 and 15 nm, respectively. The polarization insensitive photonic crystal with nematic liquid crystal defects can be achieved by random liquid crystal molecules, which make the effective refractive index of the extraordinary light equal to that of the ordinary light.

  9. Homeotropic orientation of a nematic liquid crystal by bent-core molecules adsorbed on its surface

    NASA Astrophysics Data System (ADS)

    Hwang, Jiyong; Yang, Seungbin; Lee, Hyojin; Kim, Jongyoon; Lee, Ji-Hoon; Kang, Shin-Woong; Choi, E.-Joon

    2015-06-01

    We reported the promotion of a homeotropic alignment of a nematic liquid crystal (NLC) by bent-core liquid-crystal (BLC) Molecules adsorbed its surface. The BLC was mixed at various concentrations with the NLC, and the mixtures were injected into an empty cell with a cell gap of 13 μm. Although the pure NLC showed a heterogeneous orientation, the BLC-NLC mixture was gradually transformed to a homeotropic alignment with increasing concentration of the BLC. We investigated the surface topography of the samples by using an atomic force microscopy (AFM) and found that the BLC molecules were segregated into a polyimide (PI) surface and formed protrusion domains with diameters of 50-100 nm. The BLC protrusions might promote the homeotropic orientation of the NLC molecules.

  10. Smart dust: Self-assembling, self-orienting photonic crystals of porous Si

    PubMed Central

    Link, Jamie R.; Sailor, Michael J.

    2003-01-01

    Micrometer-sized one-dimensional photonic crystals of porous Si that spontaneously assemble, orient, and sense their local environment are prepared. The photonic crystals are generated by electrochemically etching two discrete porous multilayered dielectric mirrors into Si, one on top of the other. The first mirror is chemically modified by hydrosilylation with dodecene before the etching of the second mirror, which is prepared with an optical reflectivity spectrum that is distinct from the first. The entire film is removed from the substrate, and the second mirror is then selectively modified by mild thermal oxidation. The films are subsequently fractured into small particles by sonication. The chemically asymmetric particles spontaneously align at an organic liquid–water interface, with the hydrophobic side oriented toward the organic phase and the hydrophilic side toward the water. Sensing is accomplished when liquid at the interface infuses into the porous mirrors, inducing predictable shifts in the optical spectra of both mirrors. PMID:12947036

  11. Smart dust: self-assembling, self-orienting photonic crystals of porous Si.

    PubMed

    Link, Jamie R; Sailor, Michael J

    2003-09-16

    Micrometer-sized one-dimensional photonic crystals of porous Si that spontaneously assemble, orient, and sense their local environment are prepared. The photonic crystals are generated by electrochemically etching two discrete porous multilayered dielectric mirrors into Si, one on top of the other. The first mirror is chemically modified by hydrosilylation with dodecene before the etching of the second mirror, which is prepared with an optical reflectivity spectrum that is distinct from the first. The entire film is removed from the substrate, and the second mirror is then selectively modified by mild thermal oxidation. The films are subsequently fractured into small particles by sonication. The chemically asymmetric particles spontaneously align at an organic liquid-water interface, with the hydrophobic side oriented toward the organic phase and the hydrophilic side toward the water. Sensing is accomplished when liquid at the interface infuses into the porous mirrors, inducing predictable shifts in the optical spectra of both mirrors.

  12. Orientated Crystallization in Discontinuous Aramid Fiber/isotactic Polypropylene Composites under Shear Flow Conditions

    SciTech Connect

    Larin,B.; Marom, G.; Avila-Orta, C.; Somani, R.Hsiao, B.

    2005-01-01

    Melt blends of short aramid fibers (AF) and isotactic polypropylene (iPP) are subjected to shear at 145 C and the structural evolution and final morphology are examined by in situ synchrotron X-ray scattering/diffraction and high-resolution scanning electron microscopy, respectively. The results indicate that the presence of short AFs significantly enhances the crystallization of iPP. It is argued that shear flow in this system exerts a twofold orientating action, namely, on the bulk iPP molecules and on the short AFs. The resultant crystalline morphology reflects the combined effects of crystallization on orientated iPP molecules to facilitate a shish kebab morphology and at the interface of the aligned fibers, to form transcrystallinity.

  13. Studying the orientation of bio-objects by nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Zubtsova, Yu. A.; Kamanin, A. A.; Kamanina, N. V.

    2017-05-01

    We have studied the ability of a liquid-crystal (LC) matrix to visualize and orient DNA molecules. It is established that the relief of the interface between the LC mesophase and conducting contact can be improved without using an additional high-ohmic polymer layer. Spectroscopic and ellipsometric techniques revealed changes in the refractive properties and structure of composites. The obtained results can be used in creating devices for rapid DNA testing with retained form of biostructures.

  14. Direct observation of coupling between orientation and flow fluctuations in a nematic liquid crystal at equilibrium.

    PubMed

    Orihara, Hiroshi; Sakurai, Nobutaka; Sasaki, Yuji; Nagaya, Tomoyuki

    2017-04-01

    To demonstrate coupling between orientation and flow fluctuations in a nematic liquid crystal at equilibrium, we simultaneously observe the intensity change due to director fluctuations under a polarizing microscope and the Brownian motion of a fluorescent particle trapped weakly by optical tweezers. The calculated cross-correlation function of the particle position and the spatial gradient of the intensity is nonzero, clearly indicating the existence of coupling.

  15. Direct observation of coupling between orientation and flow fluctuations in a nematic liquid crystal at equilibrium

    NASA Astrophysics Data System (ADS)

    Orihara, Hiroshi; Sakurai, Nobutaka; Sasaki, Yuji; Nagaya, Tomoyuki

    2017-04-01

    To demonstrate coupling between orientation and flow fluctuations in a nematic liquid crystal at equilibrium, we simultaneously observe the intensity change due to director fluctuations under a polarizing microscope and the Brownian motion of a fluorescent particle trapped weakly by optical tweezers. The calculated cross-correlation function of the particle position and the spatial gradient of the intensity is nonzero, clearly indicating the existence of coupling.

  16. Phosphorus removal characteristics in hydroxyapatite crystallization using converter slag.

    PubMed

    Kim, Eung-Ho; Hwang, Hwan-Kook; Yim, Soo-Bin

    2006-01-01

    This study was performed to investigate the phosphorus removal characteristics in hydroxyapatite (HAP) crystallization using converter slag as a seed crystal and the usefulness of a slag column reactor system. The effects of alkalinity, and the isomorphic-substitutable presence of ionic magnesium, fluoride, and iron on HAP crystallization seeded with converter slag, were examined using a batch reactor system. The phosphorus removal efficiencies of the batch reactor system were found to increase with increases in the iron and fluoride ion concentrations, and to decrease with increases in the alkalinity and magnesium ion concentration. A column reactor system for HAP crystallization using converter slag was found to achieve high, stable levels of phosphorus elimination: the average PO4-P removal efficiency over 414 days of operation was 90.4%, in which the effluent phosphorus concentration was maintained at less than 0.5 mg/L under the appropriate phosphorus crystallization conditions. The X-ray diffraction (XRD) patterns and Fourier transform infrared (FTIR) spectra of the crystalline material deposited on the seed particles exhibited peaks consistent with HAP. Scanning electron micrograph (SEM) images showed that finely distributed crystalline material was formed on the surfaces of the seed particles. Energy dispersive X-ray spectroscopy (EDS) mapping analysis revealed that the molar Ca/P composition ratio of the crystalline material was 1.72.

  17. Strain history of ice shells of the Galilean satellites from radar detection of crystal orientation fabric

    NASA Astrophysics Data System (ADS)

    Barr, Amy C.; Stillman, David E.

    2011-03-01

    Orbital radar sounding has been suggested as a means of determining the subsurface thermal and physical structure of the outer ice I shells of the Galilean satellites. At radar frequencies, the dielectric permittivity of single- and polycrystalline water ice I is anisotropic. Crystal orientation fabric (COF), which is indicative of strain history, can be unambiguously detected by comparing the received power of dual co-polarization (linear polarization parallel and perpendicular to the orbit) radar data. Regions with crystal orientations dictated by the local strain field (“fabric”) form in terrestrial ice masses where accumulated strain and temperature are high, similar to conditions expected in a convecting outer ice I shell on Europa, Ganymede, or Callisto. We use simulations of solid-state ice shell convection to show that crystal orientation fabric can form in the warm convecting sublayer of the ice shells for plausible grain sizes. Changes in received power from parallel and perpendicular polarizations in the ice shells due to fabric could be detected if multi-polarization data is collected. With proper instrument design, radar sounding could be used to shed light on the strain history of the satellites' ice shells in addition to their present day internal structures.

  18. A simple method for systematically controlling ZnO crystal size and growth orientation

    SciTech Connect

    Zhang Rong; Kerr, Lei L.

    2007-03-15

    We present a simple, easy and reproducible method to systematically control the dimension and shape evolution of zinc oxide (ZnO) as thin film on glass substrate by chemical bath deposition (CBD). The only varying factor to control crystal transformation is the molar ratio of Cd{sup 2+}/Zn{sup 2+}, R{sub m}, in the initial chemical solution. With the increase of R{sub m}, ZnO crystals transformed from long-and-slim hexagonal rods to fat-and-short hexagonal pyramids, and then to twinning hexagonal dots as observed by scanning electron microscopy (SEM). Film crystallinity was characterized by X-ray diffraction (XRD). Chemical component analysis by energy dispersive spectroscopy (EDS) showed that most cadmium was present in the residual solution instead of the developed film and the precipitate at the bottom of beaker. The mechanism of the cadmium effect, with different initial concentrations, on ZnO crystal transformation was tentatively addressed. We believe that cadmium influences the chelate ligands adsorption onto (0001-bar) plane of ZnO crystals, alters the crystal growth orientation, and thus directs the transformation of the size and shape of ZnO crystals.

  19. Crystal orientation dependence of ion-irradiation hardening in pure tungsten

    NASA Astrophysics Data System (ADS)

    Hasenhuetl, Eva; Zhang, Zhexian; Yabuuchi, Kiyohiro; Song, Peng; Kimura, Akihiko

    2017-04-01

    Pure tungsten (W) single crystals of {0 0 1} and {0 1 1} surface orientations were irradiated with 6.4 MeV Fe3+ ions up to 1 dpa at 573 K. The TEM examination revealed that there was a very small orientation dependence in the radiation damaged microstructure, showing that both W{0 0 1} and W{0 1 1} exhibited a double black band structure with high number density of dislocation loop rafts in the black bands. However, the depth profile of ion-irradiation hardening evaluated by nanoindentation (NI) technique turned out to show a clear orientation dependence, namely, W{0 0 1} showed a deeper NI hardness profile than W{0 1 1}.

  20. Orientation imaging microscopy investigation of the compression deformation of a [011] ta single crystal

    SciTech Connect

    Adams, B L; Campbell, G H; King, W E; Lassila, D H; Stolken, J S; Sun, S; Swartz, A J.

    1999-01-08

    High-purity tantalum single crystal cylinders oriented with [110] parallel to the cylinder axis were deformed 10, 20, and 30 percent in compression. The samples were subsequently sectioned for characterization using Orientation Imaging Microscopy (O I) along two orthogonal sectioning planes: one in the plane containing [001] and [110] (longitudinal) and the other in the plane containing [1[anti 1]0] and[110] (transverse). To examine local lattice rotations, the Euler angles relative to a reference angle at the section center were decomposed to their in-plane and out-of-plane components. The in-plane and out-of-plane misorientation maps for all compression tests reveal inhomogeneous deformation everywhere and particularly large lattice rotations in the comers of the longitudinal section. Of particular interest are the observed alternating orientation changes. This suggests the existence of networks of dislocations with net alternating sign that are required to accommodate the observed rotations. Rotation maps from the transverse section are distinctly different in appearance from those in the longitudinal plane. However, the rotation maps confirm that the rotations observed above were about the [1[anti 1]0] axis. Alternating orientation changes are also observed on this section. Results will be directly compared with crystal rotations predicted using finite element methods and reviewed in light of the LLNL Multiscale Materials Modeling Program.

  1. Orientation imaging microscopy investigation of the compression deformation of a [011] ta single crystal

    SciTech Connect

    Adams, B L; Campbell, G H; King, W E; Lassila, D H; Stolken, J S; Sun, S; Swartz, A J

    1999-01-08

    High-purity tantalum single crystal cylinders oriented with [110] parallel to the cylinder axis were deformed 10, 20, and 30 percent in compression. The samples were subsequently sectioned for characterization using Orientation Imaging Microscopy (O&I) along two orthogonal sectioning planes: one in the plane containing [001] and [110] (longitudinal) and the other in the plane containing [1{anti 1}0] and[110] (transverse). To examine local lattice rotations, the Euler angles relative to a reference angle at the section center were decomposed to their in-plane and out-of-plane components. The in-plane and out-of-plane misorientation maps for all compression tests reveal inhomogeneous deformation everywhere and particularly large lattice rotations in the comers of the longitudinal section. Of particular interest are the observed alternating orientation changes. This suggests the existence of networks of dislocations with net alternating sign that are required to accommodate the observed rotations. Rotation maps from the transverse section are distinctly different in appearance from those in the longitudinal plane. However, the rotation maps confirm that the rotations observed above were about the [1{anti 1}0] axis. Alternating orientation changes are also observed on this section. Results will be directly compared with crystal rotations predicted using finite element methods and reviewed in light of the LLNL Multiscale Materials Modeling Program.

  2. Ultraweak azimuthal anchoring of a nematic liquid crystal on a planar orienting photopolymer

    SciTech Connect

    Nespoulous, Mathieu; Blanc, Christophe; Nobili, Maurizio

    2007-10-01

    The search of weak anchoring is an important issue for a whole class of liquid crystal displays. In this paper we present an orienting layer showing unreached weak planar azimuthal anchoring for 4-n-pentyl-4{sup '}-cyanobiphenyl nematic liquid crystal (5CB). Azimuthal extrapolation lengths as large as 80 {mu}m are easily obtained. Our layers are made with the commercial photocurable polymer Norland optical adhesive 60. The anisotropy of the film is induced by the adsorption of oriented liquid crystal molecules under a 2 T magnetic field applied parallel to the surfaces. We use the width of surface {pi}-walls and a high-field electro-optical method to measure, respectively, the azimuthal and the zenithal anchorings. The azimuthal anchoring is extremely sensitive to the ultraviolet (UV) dose and it also depends on the magnetic field application duration. On the opposite, the zenithal anchoring is only slightly sensitive to the preparation parameters. All these results are discussed in terms of the adsorption/desorption mechanisms of the liquid crystal molecules on the polymer layer and of the flexibility of the polymer network.

  3. Dual nature of the orientational effect of ultrasound on liquid crystals

    NASA Astrophysics Data System (ADS)

    Kapustina, O. A.

    2017-09-01

    The new model of thresholdless distortion of the orientational structure in a homeotropic layer of nematic liquid crystal with free ends in ultrasonic field has been experimentally substantiated for the first time. The model is constructed within the concepts of nonequilibrium thermodynamics and statistical hydrodynamics of liquid crystals for the frequency range in which the elastic and viscous wavelengths are, respectively, longer and shorter than the layer thickness. The main regularities of the phenomenon, which relate the conditional effect threshold to the ultrasonic frequency and layer thickness, have been established based on the experimental data for (20-150)-μm-thick layers in the frequency range of 0.1-9 MHz. These data are compared with the results of numerical calculations, performed taking into account two mechanisms of liquid crystal structure distortion (convective and nonlinear relaxation ones).

  4. Nanoindentation measurements of a highly oriented wurtzite-type boron nitride bulk crystal

    NASA Astrophysics Data System (ADS)

    Deura, Momoko; Kutsukake, Kentaro; Ohno, Yutaka; Yonenaga, Ichiro; Taniguchi, Takashi

    2017-03-01

    We succeeded in synthesizing a bulk crystal of wurtzite-type boron nitride (w-BN) by the direct conversion method. The synthesized crystal was approximately 2 mm wide and 350 µm thick, and highly oriented to the c-axis. We performed nanoindentation measurements on the c-plane of the w-BN crystal at room temperature to evaluate the mechanical properties of w-BN. The hardness and Young’s modulus of w-BN from the obtained curves were simultaneously determined to be 54 ± 2 and 860 ± 40 GPa, respectively. The underlying physical mechanism that dominates the mechanical properties of group-III nitride semiconductors is also examined.

  5. Polarimetric scattering characteristics of planar and spatial ice crystals at millimeter wave frequencies

    NASA Astrophysics Data System (ADS)

    Walsh, Thomas Martin

    Polarimetric scattering characteristics of one planar (4 branches) and three spatial (4, 6, and 8 branches) bullet rosette models for sizes from 0.03 to 2 mm were evaluated. The electromagnetic scattering calculations were performed at 35, 94, and 220 GHz frequencies using the T-matrix method for small sizes and the finite- difference time-domain method (FDTD) for large sizes. Three previously analyzed crystal models (column, plate, and stellar crystal) were also included in the evaluations. At 220 GHz, spatial rosettes could be distinguished from spheres using either the linear depolarization ratio (LDR), or the copolarized cross-correlation coefficient (rhv). At 35 and for 94 GHz up to 1 mm, the spatial rosettes did not display measurable polarimetric signatures. Using LDR (or rhv ), columns could be distinguished from oriented spatial and planar crystals at vertical incidence, and from randomly oriented spatial rosettes by scanning the radar elevation angle. An equal volume study comparing columns with capped columns, and plates with double plates, found differences in the magnitudes of the polarization parameters, but not in the trends. Simulations of radar parameters were developed using gamma model size distributions. Relationships were established between the backscattering cross sections and the particle maximum dimension, the effective reflectivity factor (Zh) and difference reflectivity (ZDP), and ice water content (IWC) and Zh. A technique was developed to estimate the fraction of Zh due to aggregates in a mixture with columnar or planar ice crystals using the measured (Zh) and ZDP. Six cases of aircraft penetrations into cold clouds were evaluated from a 1997 University of Wyoming field campaign in Laramie, Wyoming. An onboard 95 GHz polarimetric radar made measurements at side and vertical incidence, while onboard optical array probe measurements were used to infer particle type. Comparisons of the side incidence radar data with the simulated Z h- ZDP

  6. Protein crystal structure from non-oriented, single-axis sparse X-ray data

    DOE PAGES

    Wierman, Jennifer L.; Lan, Ti-Yen; Tate, Mark W.; ...

    2016-01-01

    X-ray free-electron lasers (XFELs) have inspired the development of serial femtosecond crystallography (SFX) as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse. The success of SFX at XFELs has catalyzed interest in analogous experiments at synchrotron-radiation (SR) sources, where data are collected from many small crystals and the ultrashort pulses are replaced by exposure times that aremore » kept short enough to avoid significant crystal damage. The diffraction signal from each short exposure is so `sparse' in recorded photons that the process of recording the crystal intensity is itself a reconstruction problem. Using theEMCalgorithm, a successful reconstruction is demonstrated here in a sparsity regime where there are no Bragg peaks that conventionally would serve to determine the orientation of the crystal in each exposure. In this proof-of-principle experiment, a hen egg-white lysozyme (HEWL) crystal rotating about a single axis was illuminated by an X-ray beam from an X-ray generator to simulate the diffraction patterns of microcrystals from synchrotron radiation. Millions of these sparse frames, typically containing only ~200 photons per frame, were recorded using a fast-framing detector. It is shown that reconstruction of three-dimensional diffraction intensity is possible using theEMCalgorithm, even with these extremely sparse frames and without knowledge of the rotation angle. Further, the reconstructed intensity can be phased and refined to solve the protein structure using traditional crystallographic software. In conclusion, this suggests that synchrotron-based serial crystallography of micrometre-sized crystals can be practical with the aid of theEMCalgorithm even in cases

  7. Protein crystal structure from non-oriented, single-axis sparse X-ray data.

    PubMed

    Wierman, Jennifer L; Lan, Ti-Yen; Tate, Mark W; Philipp, Hugh T; Elser, Veit; Gruner, Sol M

    2016-01-01

    X-ray free-electron lasers (XFELs) have inspired the development of serial femtosecond crystallography (SFX) as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse. The success of SFX at XFELs has catalyzed interest in analogous experiments at synchrotron-radiation (SR) sources, where data are collected from many small crystals and the ultrashort pulses are replaced by exposure times that are kept short enough to avoid significant crystal damage. The diffraction signal from each short exposure is so 'sparse' in recorded photons that the process of recording the crystal intensity is itself a reconstruction problem. Using the EMC algorithm, a successful reconstruction is demonstrated here in a sparsity regime where there are no Bragg peaks that conventionally would serve to determine the orientation of the crystal in each exposure. In this proof-of-principle experiment, a hen egg-white lysozyme (HEWL) crystal rotating about a single axis was illuminated by an X-ray beam from an X-ray generator to simulate the diffraction patterns of microcrystals from synchrotron radiation. Millions of these sparse frames, typically containing only ∼200 photons per frame, were recorded using a fast-framing detector. It is shown that reconstruction of three-dimensional diffraction intensity is possible using the EMC algorithm, even with these extremely sparse frames and without knowledge of the rotation angle. Further, the reconstructed intensity can be phased and refined to solve the protein structure using traditional crystallographic software. This suggests that synchrotron-based serial crystallography of micrometre-sized crystals can be practical with the aid of the EMC algorithm even in cases where the data are

  8. Temperature and orientation dependent plasticity features of Cu and Al single crystals under axial compression. 1: Lattice rotation effects and true hardening stages

    SciTech Connect

    Mecif, A.; Bacroix, B.; Franciosi, P.

    1997-01-01

    Compressive axial loadings are performed on differently oriented aluminium and copper single crystals between room temperature and 0.9 times the melting temperature. In this first part of the work, attention is paid to the influence on the hardening evolution of the type of active strain mechanisms and the associated lattice rotations. The lattice rotation amplitudes for unstable orientations decrease when the temperature increases and almost vanish above 0.7 T{sub m}. Octahedral straight slip traces evolve into weavy and distant ones, and occurrence of non-octahedral slip is observed. The stress-strain curves are resolved on the dominant octahedral slip system. The comparison for different orientations of this reference hardening modulus allows to separate lattice rotation effects and true hardening stages. This representation allows to estimate to what extent hardening characteristics can be considered as orientation independent. Part II, devoted to quantitative analyses on these hardening parameters, will follow.

  9. Substrate orientation and specificity in xanthine oxidase: crystal structures of the enzyme in complex with indole-3-acetaldehyde and guanine.

    PubMed

    Cao, Hongnan; Hall, James; Hille, Russ

    2014-01-28

    Xanthine oxidase is a molybdenum-containing hydroxylase that catalyzes the hydroxylation of sp(2)-hybridized carbon centers in a variety of aromatic heterocycles as well as aldehydes. Crystal structures of the oxidase form of the bovine enzyme in complex with a poor substrate indole-3-acetaldehyde and the nonsubstrate guanine have been determined, both at a resolution of 1.6 Å. In each structure, a specific and unambiguous orientation of the substrate in the active site is observed in which the hydroxylatable site is oriented away from the active site molybdenum center. The orientation seen with indole-3-acetaldehyde has the substrate positioned with the indole ring rather than the exocyclic aldehyde nearest the molybdenum center, indicating that the substrate must rotate some 30° in the enzyme active site to permit hydroxylation of the aldehyde group (as observed experimentally), accounting for the reduced reactivity of the enzyme toward this substrate. The principal product of hydroxylation of indole-3-acetaldehyde by the bovine enzyme is confirmed to be indole-3-carboxylic acid based on its characteristic UV-vis spectrum, and the kinetics of enzyme reduction are reported. With guanine, the dominant orientation seen crystallographically has the C-8 position that might be hydroxylated pointed away from the active site molybdenum center, in a configuration resembling that seen previously with hypoxanthine (a substrate that is effectively hydroxylated at position 2). The ∼180° reorientation required to permit reaction is sterically prohibited, indicating that substrate (mis)orientation in the active site is a major factor precluding formation of the highly mutagenic 8-hydroxyguanine.

  10. Ice Lead Orientation Characteristics in the Winter Beaufort Sea

    NASA Technical Reports Server (NTRS)

    Cunningham, G.; Kwok, R.; Banfield, J.

    1994-01-01

    The directional orientations of leads in the winter ice pack of the Beaufort Sea are studied both spatially and temporally. Data from the European Earth Resources Satellite-1 (ERS-1) Synthetic Aperture Radar (SAR) was used. The SAR data was produced in image form at the Alaska SAR Facility (ASF) with 100 x 100 m pixel resolution. The lead ice pixels, which included all non-multiyear ice, were defined using a simple thresholding of the radar backscatter values. The orientations of the leads covering the Beaufort Sea during the period of January through March of 1992 were derived using a lead skeletonization technique. Results show a strong temporal persistence in the distribution and orientation of the leads during this period.

  11. Epitaxy versus oriented heterogeneous nucleation of organic crystals on ionic substrates

    NASA Astrophysics Data System (ADS)

    Sarma, K. R.; Shlichta, P. J.; Wilcox, W. R.; Lefever, R. A.

    1997-04-01

    It is plausible to assume that epitaxy is a special case of heterogeneous nucleation in which a restrictive crystallographic relationship exists between substrate and deposit orientations. This would mean that epitaxial substrates should always induce a perceptible reduction in the critical supercooling for nucleation of the deposit. To test this hypothesis, the critical supercoolings of six organic compounds were measured on glass and 11 single-crystal cleaved substrates including (0001) graphite, (001) mica, (111) BaF 2, SrF 2, and CaF 2, and (100) KCl, KBr, KI, NaCl, NaF, and LiF. Reductions in supercooling (with reference to glass substrates) were checked many times for repeatability and reproducibility and shown in almost all cases to have a standard deviation of 1 C or less. Acetanilide, benzoic acid, and p-bromochlorobenzene showed a wide range of supercooling reductions and were oriented on all crystalline substrates. Naphthalene and p-dibromobenzene showed only slight supercooling reductions but were oriented on all substrates, including glass. Benzil showed strong supercooling reductions only for mica and KI but was oriented not only in these cases but also with KI, BaF 2, CaF 2, and graphite. There was little correlation between degree of lattice match and either supercooling reduction or degree of preferred orientation. These results suggest that, for the systems and geometry studied, forces such as molecular dipole binding and growth anisotropy had a stronger effect than lattice match.

  12. Molecular relaxations, molecular orientation, and the friction characteristics of polyimide films. [wear characteristics of polymeric lubricant

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1975-01-01

    The friction characteristics of polyimide films bonded to metallic substrates were studied from 25 to 500 C. These results were interpreted in terms of molecular orientation and thermomechanical data obtained by torsional braid analysis (TBA). A large friction transition was found to occur at 40 + or - 10 C in a dry argon atmosphere (10 ppm H2O). It was postulated that the mechanical stresses of sliding transform or reorder the molecules on the surface into a configuration conducive to easy shear, such as an extended chain. The molecular relaxation which occurs in this temperature region appears to give the molecules the necessary freedom for this reordering process to occur. The effects of velocity, reversibility, and thermal prehistory on the friction properties of polyimide were also studied.

  13. Relaxation and dynamical characteristics of nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Nevskaya, G. E.; Shadrin, V. S.

    1988-04-01

    We study the volt-ampere, volt-farad, and magnetofarad characteristics of homeo-tropically oriented MBBA samples of different thicknesses. The characteristics are obtained for different rates of change of the displacement voltage. It is shown that the volt-farad and magnetofarad curves have an obvious threshold. Increase in the scan rate leads to a shift of the threshold in the volt-farad curves to the higher voltage region. The dynamical volt-ampere curves have regions where the variation of the current is nonmonotonic at small scan rates and have a sharp maximum for large rates. Comparison of the volt-ampere and volt-farad characteristics shows that the physical processes causing the threshold in the volt-farad curves and the features of the volt-ampere curves are related to one another. A discussion of the results is given.

  14. The dependence of the single-scattering properties of small ice crystals on orientation average, particle shape, and wavelength

    NASA Astrophysics Data System (ADS)

    Um, J.; McFarquhar, G. M.

    2012-12-01

    Current methods of representing the bulk scattering properties of cirrus for numerical models and satellite retrieval algorithms require weighting the single-scattering properties of specific shapes and sizes of ice crystals by their observed concentrations. Thus, to determine the influence of cirrus on solar and infrared radiation, as required for climate studies, knowledge of the single-scattering properties of ice crystals is required. Except for a few large ice crystals, most ice crystals do not have preferred orientations. Thus, the corresponding single-scattering properties of ice crystals used for numerical models and remote sensing retrievals are typically calculated assuming random orientations. The Euler's angle, selected using a random number generator, has been exclusively used to determine crystals' orientation for such calculations. When more orientations are used to determine the mean scattering properties, the scattering properties are determined with higher accuracy. However, computational resources limit the number of orientations that can be used in these calculations. Past studies used several efficient orientation-averaging schemes (e.g., quasi-Monte-Carlo and optimal cubature on the sphere) for calculating light scattering properties. These studies mainly focused on small sizes and considered relatively simple shapes, such as spheres and sphere aggregates. Atmospheric ice crystals are non-spherical and their sizes are much larger than those studied previously. In this study, the minimum numbers of orientations needed to determine the single-scattering properties of four different realistically shaped atmospheric ice crystals (i.e., column, droxtal, Gaussian random sphere, and budding Bucky ball) with predefined accuracy levels are determined using the Amsterdam discrete dipole approximation (ADDA) ver. 1.0. The results of the calculations are also used to quantify how the scattering and absorption efficiency, the single-scattering albedo

  15. Thermophysical characteristics of EuF2.136 crystal

    NASA Astrophysics Data System (ADS)

    Popov, P. A.; Moiseev, N. V.; Karimov, D. N.; Sorokin, N. I.; Sulyanova, E. A.; Sobolev, B. P.

    2015-09-01

    Single crystals of EuF2.136 solid solution with a f luorite-type structure (sp. gr. , a = 5.82171(5) Å) have been grown by the Bridgeman method from a melt. Their thermal conductivity k( T) in the temperature range of 50-300 K and heat capacity С Р ( T) at 63-300 K have been studied experimentally for the first time. At T = 300 K the thermophysical characteristics are as follows: thermal conductivity k = 2.13 W/(m K), heat capacity С Р = 73 J/(mol K), and phonon mean free path l ≈ 11 Å. The temperature dependences of entropy S( T), enthalpy H( T), and phonon mean free path l( T) in EuF2.136 crystal are determined.

  16. Characteristics, benefits and applications of PST TiAl crystal

    SciTech Connect

    Kishida, K.; Johnson, D.R.; Shimada, Y.; Inui, H.; Shirai, Y.; Yamaguchi, M.

    1995-12-31

    The lamellar microstructures in gamma titanium aluminide alloys are of special interest since they are so common and persistent, not only under as-cast conditions but also after heat treatment. The authors have introduced a new approach for studying the lamellar structures by producing PST crystals of gamma titanium aluminide alloys and have been working to understand the material behavior at a fundamental level. Such work has considerably deepened their understanding of the microstructural characteristics and mechanical properties of the lamellar structures. It has also generated considerable interest in the DS(directional solidification)-processing of gamma titanium aluminide alloys. In this paper, first their work on PST crystals are summarized and then the prospects of the DS-processing of gamma titanium aluminide alloys are discussed based on the results of their recent studies.

  17. Improved crystal orientation and physical properties from single-shot XFEL stills

    SciTech Connect

    Sauter, Nicholas K. Hattne, Johan; Brewster, Aaron S.; Echols, Nathaniel; Zwart, Petrus H.; Adams, Paul D.

    2014-12-01

    X-ray free-electron laser crystallography relies on the collection of still-shot diffraction patterns. New methods are developed for optimal modeling of the crystals’ orientations and mosaic block properties. X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factors from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model the diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Bragg’s law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise.

  18. Mechanisms for Species-Selective Oriented Crystal Growth at Organic Templates

    SciTech Connect

    Kewalramani,S.; Kim, K.; Evmenenko, G.; Zschack, P.; Karapetrova, E.; Bai, J.; Dutta, P.

    2007-01-01

    Langmuir monolayers floating on supersaturated aqueous subphases can act as templates for the growth of oriented inorganic films--a 'bioinspired' nucleation process. We have performed in situ grazing incidence x-ray diffraction studies of the selective nucleation of BaClF and BaF2 under fatty acid monolayers. The arrangement of the fatty acid headgroups, the monolayer charge, and ion-specific effects all play important roles in selecting the inorganic species. When the monolayer is in a neutral state, both BaClF and BaF2 nucleate at the interface and are well aligned, but when the monolayer headgroup is deprotonated, only oriented BaF2 grows at the interface. We also observe an enhanced alignment of BaF2 crystals during growth from highly supersaturated solutions, presumably due to reorganization of preformed crystals at the organic template. These results show that a delicate interplay between multiple factors governs the oriented growth of inorganic films at organic templates.

  19. Localization and orientation of heavy-atom cluster compounds in protein crystals using molecular replacement.

    PubMed

    Dahms, Sven O; Kuester, Miriam; Streb, Carsten; Roth, Christian; Sträter, Norbert; Than, Manuel E

    2013-02-01

    Heavy-atom clusters (HA clusters) containing a large number of specifically arranged electron-dense scatterers are especially useful for experimental phase determination of large complex structures, weakly diffracting crystals or structures with large unit cells. Often, the determination of the exact orientation of the HA cluster and hence of the individual heavy-atom positions proves to be the critical step in successful phasing and subsequent structure solution. Here, it is demonstrated that molecular replacement (MR) with either anomalous or isomorphous differences is a useful strategy for the correct placement of HA cluster compounds. The polyoxometallate cluster hexasodium α-metatungstate (HMT) was applied in phasing the structure of death receptor 6. Even though the HA cluster is bound in alternate partially occupied orientations and is located at a special position, its correct localization and orientation could be determined at resolutions as low as 4.9 Å. The broad applicability of this approach was demonstrated for five different derivative crystals that included the compounds tantalum tetradecabromide and trisodium phosphotungstate in addition to HMT. The correct placement of the HA cluster depends on the length of the intramolecular vectors chosen for MR, such that both a larger cluster size and the optimal choice of the wavelength used for anomalous data collection strongly affect the outcome.

  20. Polarization orientation dependence of the far infrared spectra of oriented single crystals of 1,3,5,-trinitro-s-triazine (RDX) using terahertz-time-domain spectroscopy

    SciTech Connect

    Whitley, Von H; Hooks, Dan E; Ramos, Kyle J; O' Hara, John F; Azad, A K; Taylor, A J; Barber, J; Averitt, R D

    2008-01-01

    The far infrared spectra of (100), (010), and (001)-oriented RDX single crystals were measured as the crystal was rotated about the axis perpendicular to the polarization plane of the incident radiation. Absorption measurements were taken at temperatures of both 20 K and 295 K for all rotations using terahertz time-domain spectroscopy. A number of discrete absorptions were found ranging from 10-100 cm(-1) (0.3-3 THz). The absorptions are highly dependent on the orientation of the terahertz polarization with respect to crystallographic axes.

  1. Estimation of diffusion anisotropy in microporous crystalline materials and optimization of crystal orientation in membranes.

    PubMed

    Gounaris, Chrysanthos E; First, Eric L; Floudas, Christodoulos A

    2013-09-28

    The complex nature of the porous networks in microporous materials is primarily responsible for a high degree of intracrystalline diffusion anisotropy. Although this is a well-understood phenomenon, little attention has been paid in the literature with regards to classifying such anisotropy and elucidating its effect on the performance of membrane-based separation systems. In this paper, we develop a novel methodology to estimate full diffusion tensors based on the detailed description of the porous network geometry through our recent advances for the characterization of such networks. The proposed approach explicitly accounts for the tortuosity and complex connectivity of the porous framework, as well as for the variety of diffusion regimes that may be experienced by a guest molecule while it travels through the different localities of the crystal. Results on the diffusion of light gases in silicalite demonstrate good agreement with results from experiments and other computational techniques that have been reported in the literature. A comprehensive computational study involving 183 zeolite frameworks classifies these structures in terms of a number of anisotropy metrics. Finally, we utilize the computed diffusion tensors in a membrane optimization model that determines optimal crystal orientations. Application of the model in the context of separating carbon dioxide from nitrogen demonstrates that optimizing crystal orientation can offer significant benefit to membrane-based separation processes.

  2. The influence of primary and secondary orientations on the elastic response of a nickel-base single-crystal superalloy

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Kalluri, Sreeramesh; Mcgaw, Michael A.

    1993-01-01

    The influence of primary orientation on the elastic response of a (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical, thermal, and combined thermal and mechanical loading conditions using finite element techniques. Elastic stress analyses were performed using the MARC finite element code on a square plate of PWA 1480 material. Primary orientation of the single crystal superalloy was varied in increments of 2 deg, from 0 to 10 deg, from the (001) direction. Two secondary orientations (0 and 45 deg) were considered, with respect to the global coordinate system, as the primary orientation angle was varied. The stresses developed within the single crystal plate were determined for each loading condition. In this paper, the influence of the angular offset between the primary crystal orientation and the loading direction on the elastic stress response of the PWA 1480 plate is presented for different loading conditions. The influence of primary orientation angle, when constrained between the bounds considered, was not found to be as significant as the influence of the secondary orientation angle, which is not typically controlled.

  3. Viewing Angle Characteristics of Transflective Display in a Homogeneously Aligned Liquid Crystal Cell Driven by Fringe-Field

    NASA Astrophysics Data System (ADS)

    Jung, Tae Bong; Song, Je Hoon; Seo, Dae-Shik; Lee, Seung Hee

    2004-09-01

    We have studied the optimal cell configuration for a fringe-field driven transflective liquid crystal display that exhibits high image quality. The cell is composed of two half-plate compensation films, liquid crystal, and two parallel polarizers in the transmissive region. Viewing angle characteristics of the device mainly depends on the orientation of the polarizer axis. The measured contrast ratio in an optimized configuration is greater than 5 in polar angles of over 50° in all directions and in those over 80° in certain azimuthal cross-sectional planes.

  4. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt

    PubMed Central

    Soares, Alexei S.; Mullen, Jeffrey D.; Parekh, Ruchi M.; McCarthy, Grace S.; Roessler, Christian G.; Jackimowicz, Rick; Skinner, John M.; Orville, Allen M.; Allaire, Marc; Sweet, Robert M.

    2014-01-01

    X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies. PMID:25343789

  5. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt.

    PubMed

    Soares, Alexei S; Mullen, Jeffrey D; Parekh, Ruchi M; McCarthy, Grace S; Roessler, Christian G; Jackimowicz, Rick; Skinner, John M; Orville, Allen M; Allaire, Marc; Sweet, Robert M

    2014-11-01

    X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltd in situ micro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ∼100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. High-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.

  6. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt

    DOE PAGES

    Soares, Alexei S.; Mullen, Jeffrey D.; Parekh, Ruchi M.; ...

    2014-10-09

    X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltdin situmicro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ~100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face thatmore » preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. Lastly, high-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.« less

  7. Dynamic characteristics of photonic crystal quantum dot lasers.

    PubMed

    Banihashemi, Mehdi; Ahmadi, Vahid

    2014-04-20

    In this paper, we analyze the dynamic characteristics of quantum dot (QD) photonic crystal lasers by solving Maxwell equations coupled to rate equations through linear susceptibility of QDs. Here, we study the effects of the quality factor of the microcavity and temperature on the delay, relaxation oscillation frequency, and output intensity of the lasers. Moreover, we investigate the dependence of the Purcell factor on temperature. We show that when the quality factor of the microcavity is so high that we can consider its linewidth as a delta function in comparison with QDs, the Purcell factor significantly drops with increasing temperature.

  8. Observation of an Organic-Inorganic Lattice Match during Biomimetic Growth of (001)-Oriented Calcite Crystals under Floating Sulfate Monolayers

    SciTech Connect

    Kewalramani, S.; Kim, K; Stripe, B; Evmenenko, G; Dommett, G; Dutta, P

    2008-01-01

    Macromolecular layers rich in amino acids and with some sulfated polysaccharides appear to control oriented calcite growth in living organisms. Calcite crystals nucleating under floating acid monolayers have been found to be unoriented on average. We have now observed directly, using in situ grazing incidence X-ray diffraction, that there is a 1:1 match between the monolayer unit cell and the unit cell of the (001) plane of calcite. Thus, sulfate head groups appear to act as templates for the growth of (001)-oriented calcite crystals, which is the orientation commonly found in biominerals.

  9. Influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures and lattice defects accumulation

    SciTech Connect

    Sedao, Xxx; Garrelie, Florence Colombier, Jean-Philippe; Reynaud, Stéphanie; Pigeon, Florent; Maurice, Claire; Quey, Romain

    2014-04-28

    The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.

  10. Graphite edge controlled registration of monolayer MoS{sub 2} crystal orientation

    SciTech Connect

    Lu, Chun-I; Butler, Christopher John; Yang, Hung-Hsiang; Chu, Yu-Hsun; Luo, Chi-Hung; Sun, Yung-Che; Hsu, Shih-Hao; Yang, Kui-Hong Ou; Huang, Jing-Kai; Hsing, Cheng-Rong; Wei, Ching-Ming Li, Lain-Jong; Lin, Minn-Tsong

    2015-05-04

    Transition metal dichalcogenides such as the semiconductor MoS{sub 2} are a class of two-dimensional crystals. The surface morphology and quality of MoS{sub 2} grown by chemical vapor deposition are examined using atomic force and scanning tunneling microscopy techniques. By analyzing the moiré patterns from several triangular MoS{sub 2} islands, we find that there exist at least five different superstructures and that the relative rotational angles between the MoS{sub 2} adlayer and graphite substrate lattices are typically less than 3°. We conclude that since MoS{sub 2} grows at graphite step-edges, it is the edge structure which controls the orientation of the islands, with those growing from zig-zag (or armchair) edges tending to orient with one lattice vector parallel (perpendicular) to the step-edge.

  11. The effect of crystal orientation on the cryogenic strength of hydroxide catalysis bonded sapphire

    NASA Astrophysics Data System (ADS)

    Haughian, K.; Douglas, R.; van Veggel, A. A.; Hough, J.; Khalaidovski, A.; Rowan, S.; Suzuki, T.; Yamamoto, K.

    2015-04-01

    Hydroxide catalysis bonding has been used in gravitational wave detectors to precisely and securely join components of quasi-monolithic silica suspensions. Plans to operate future detectors at cryogenic temperatures has created the need for a change in the test mass and suspension material. Mono-crystalline sapphire is one candidate material for use at cryogenic temperatures and is being investigated for use in the KAGRA detector. The crystalline structure of sapphire may influence the properties of the hydroxide catalysis bond formed. Here, results are presented of studies of the potential influence of the crystal orientation of sapphire on the shear strength of the hydroxide catalysis bonds formed between sapphire samples. The strength was tested at approximately 8 K; this is the first measurement of the strength of such bonds between sapphire at such reduced temperatures. Our results suggest that all orientation combinations investigated produce bonds of sufficient strength for use in typical mirror suspension designs, with average strengths >23 MPa.

  12. Mapping molecular conformation and orientation of polyimide surfaces for homeotropicliquid crystal alignment by nonlinear optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Oh-E, Masahito; Yokoyama, Hiroshi; Kim, Doseok

    2004-05-01

    Surface-specific sum-frequency vibrational spectroscopy and second-harmonic generation were used to study the structures of polyimide (PI) surfaces for homeotropic liquid crystal (LC) alignment and the molecular orientation of LC adsobates on these surfaces. The imide ring was perpendicular to the surface with one of CO bonds protruding out of the surface and the other pointing into the bulk rather than flat on the surface. The ester CO bond in the side chain was sticking out of the surface with a tilt angle of about 45° 55° from the surface normal, indicating that the rigid side chain core was, more or less, along the surface normal. The part of alkyl chain on the top of the side chain followed the orientation of the side chain core and protruded out of the surface with some gauche defects. The cyano biphenyl LC molecules were adsorbed on the PI preferentially with the terminal cyano group facing the PI surface.

  13. Homeotropic orientation behavior of nematic liquid crystals induced by copper ions.

    PubMed

    Li, Guang; Gao, Bin; Yang, Meng; Chen, Long-Cong; Xiong, Xing-Liang

    2015-06-01

    A homeotropic ordering film of nematic liquid crystal (LC) induced by copper ions (Cu(2+)) had been developed. The Cu(ClO4)2 was directly spin-coated on the glass substrate without any other chemical modification. A homeotropic orientation of LC thin-film was generated by the interfacial chemical interaction between nitrile-containing LC and copper ions on the surface. Results showed that an appropriate density of Cu(2+) could shorten the response time of orientation, but a shelf-time was prolonged. The LC film fabrication not only offered a simple process, but also presented a great repeatability to detect organophosphonates (DMMP). This study provided guidance for the design of LC films responding to organic molecules as a biosensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. 1300 K Creep Behavior of [001] Oriented Ni-49Al-1Hf (at.%) Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Locci, I. E.; Darolia, Ram; Bowman, R.

    1999-01-01

    A study of the 1300 K compressive and tensile creep properties of [001]-oriented NiAl-1Hf (D209) single crystals has been undertaken. Neither post homogenization cooling treatment, minor chemical variations within an ingot or from ingot-to-ingot, nor testing procedure had a significant effect on mechanical behavior; however a heat treatment which dissolved the initial G-phase precipitates and promoted formation of Heusler particles led to a strength reduction. Little primary creep was found utilizing direct measurement of strain, and a misorientation of 18 deg from the [001] did not reduce the creep strength. The effects of heat treatments on properties and a comparison of the flow stress-strain rate data to those predicted by the Jaswon-Cottrell solid solution hardening model indicate that the 1300 K strength in NiAl-1Hf single crystals is mainly due to precipitation hardening mechanisms.

  15. Stimulated orientational and thermal scatterings and self-starting optical phase conjugation with nematic liquid crystals

    PubMed

    Khoo; Liang

    2000-11-01

    A quantitative theory and experimental results on self-starting optical phase conjugation, using stimulated orientational and thermal scattering in nematic liquid crystal films, are presented. The coupled wave-material equations for the laser-induced refractive index changes, grating formation, and coherent wave mixing effects are developed. Analytical solutions are obtained for the case of negligible pump depletion, and numerical solutions for various input and generated signals, taking losses into account, are obtained. Experimentally, we demonstrate the feasibility of realizing these stimulated scattering and phase conjugation processes in thin (200 &mgr;m) nematic liquid crystal with a milliwatt-power cw laser. Theoretical estimates for various gain constants and threshold intensities, and their dependence on various physical parameters, are found to be in good agreement with experimental observations.

  16. Simulation of orientational effects in crystals with structural defects through DYNECHARM++

    NASA Astrophysics Data System (ADS)

    Bagli, Enrico; Guidi, Vincenzo

    2015-07-01

    The presence of defects in a crystal modifies the displacement of the atoms and, thereby, the physical processes inside it, e.g., the orientational effects of ultra-relativistic particles. For channeled particles, the probability to undergo dechanneling, i.e., to leave the channeling state, may rise up because of the presence of linear dislocations, while the deflection efficiency for volume reflection is very much the same as for a perfect bent crystal. On the contrary, point defects do not affect the channeling efficiency unless very high volumetric concentration of defects is present. In order to simulate the influence of the defects on channeling and volume reflection, a routine has been specifically developed for the DYNECHARM++ toolkit.

  17. Domain wall orientation and domain shape in KTiOPO4 crystals

    NASA Astrophysics Data System (ADS)

    Shur, V. Ya.; Vaskina, E. M.; Pelegova, E. V.; Chuvakova, M. A.; Akhmatkhanov, A. R.; Kizko, O. V.; Ivanov, M.; Kholkin, A. L.

    2016-09-01

    Domain shape evolution and domain wall motion have been studied in KTiOPO4 (KTP) ferroelectric single crystals using complementary experimental methods. The in situ visualization of domain kinetics has allowed revealing: (1) qualitative change of the domain shape, (2) dependence of the domain wall velocity on its orientation, (3) jump-like domain wall motion caused by domain merging, (4) effect of domain shape stability. The model of domain wall motion driven by generation of elementary steps (kink-pair nucleation) and subsequent kink motion is presented. The decrease in the relative velocity of the approaching parallel domain walls is attributed to electrostatic interaction. The effect of polarization reversal induced by chemical etching is observed. The obtained results are important for the development of domain engineering in the crystals of KTP family.

  18. Rapid, all-optical crystal orientation imaging of two-dimensional transition metal dichalcogenide monolayers

    SciTech Connect

    David, Sabrina N.; Zhai, Yao; Zande, Arend M. van der; O'Brien, Kevin; Huang, Pinshane Y.; Chenet, Daniel A.; Hone, James C.; Zhang, Xiang; Yin, Xiaobo

    2015-09-14

    Two-dimensional (2D) atomic materials such as graphene and transition metal dichalcogenides (TMDCs) have attracted significant research and industrial interest for their electronic, optical, mechanical, and thermal properties. While large-area crystal growth techniques such as chemical vapor deposition have been demonstrated, the presence of grain boundaries and orientation of grains arising in such growths substantially affect the physical properties of the materials. There is currently no scalable characterization method for determining these boundaries and orientations over a large sample area. We here present a second-harmonic generation based microscopy technique for rapidly mapping grain orientations and boundaries of 2D TMDCs. We experimentally demonstrate the capability to map large samples to an angular resolution of ±1° with minimal sample preparation and without involved analysis. A direct comparison of the all-optical grain orientation maps against results obtained by diffraction-filtered dark-field transmission electron microscopy plus selected-area electron diffraction on identical TMDC samples is provided. This rapid and accurate tool should enable large-area characterization of TMDC samples for expedited studies of grain boundary effects and the efficient characterization of industrial-scale production techniques.

  19. Influence of Simple Electrolytes on the Orientational Ordering of Thermotropic Liquid Crystals at Aqueous Interfaces

    PubMed Central

    Carlton, Rebecca J.; Gupta, Jugal K.; Swift, Candice L.; Abbott, Nicholas L.

    2011-01-01

    We report orientational anchoring transitions at aqueous interfaces of a water-immiscible, thermotropic liquid crystal (LC; nematic phase of 4′-pentyl-4-cyanobiphenyl) that are induced by changes in pH of the aqueous solution and the addition of simple electrolytes (NaCl) to the aqueous phase. Whereas measurements of the zeta potential on the aqueous side of the interface of LC-in-water emulsions prepared with 5CB confirm pH-dependent formation of an electrical double layer extending into the aqueous phase, quantification of the orientational ordering of the LC leads to the proposition that an electrical double layer is also formed on the LC-side of the interface with an internal electric field that drives the LC anchoring transition. Further support for this conclusion is obtained from measurements of the dependence of LC ordering on pH and ionic strength, as well as a simple model based on the Poisson-Boltzmann equation from which we calculate the contribution of an electrical double layer to the orientational anchoring energy of the LC. Overall, the results presented herein provide new fundamental insights into ionic phenomena at LC-aqueous interfaces, and expand the range of solutes known to cause orientational anchoring transitions at LC-aqueous interfaces beyond previously examined amphiphilic adsorbates. PMID:22106820

  20. Theoretical characterization of a model of aragonite crystal orientation in red abalone nacre

    NASA Astrophysics Data System (ADS)

    Coppersmith, S N; Gilbert, P U P A; Metzler, R A

    2009-03-01

    Nacre, commonly known as mother-of-pearl, is a remarkable biomineral that in red abalone consists of layers of 400 nm thick aragonite crystalline tablets confined by organic matrix sheets, with the [0 0 1] crystal axes of the aragonite tablets oriented to within ±12° from the normal to the layer planes. Recent experiments demonstrate that greater orientational order develops over a distance of tens of layers from the prismatic boundary at which nacre formation begins. Our previous simulations of a model in which the order develops because of differential tablet growth rates (oriented tablets growing faster than misoriented ones) yield patterns of tablets that agree qualitatively and quantitatively with the experimental measurements. This paper presents an analytical treatment of this model, focusing on how the dynamical development and eventual degree of order depend on model parameters. Dynamical equations for the probability distributions governing tablet orientations are introduced whose form can be determined from symmetry considerations and for which substantial analytic progress can be made. Numerical simulations are performed to relate the parameters used in the analytic theory to those in the microscopic growth model. The analytic theory demonstrates that the dynamical mechanism is able to achieve a much higher degree of order than naive estimates would indicate.

  1. Thermal Reaction of Cinnamate Oligomers and Their Effect on the Orientational Stability of Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Hah, Hyundae; Sung, Shi‑Joon; Park, Jung‑Ki

    2006-08-01

    Cinnamate groups are well-known for a dimerization reaction upon exposure to ultraviolet irradiation and a thermal reaction after being heated. In this study, to verify the thermal reaction of the cinnamate group in detail, we investigated the thermal crosslinking of cinnamate oligomers. The thermal reaction of cinnamate oligomers of low molecular weight is induced more readily by thermal energy compared with that of cinnamate polymers. This reaction is attributed to a radical reaction involving the carbon-carbon double bond in the cinnamate group. The orientation of the liquid crystal depended on the length of the spacers in the cinnamate oligomers.

  2. Phase synchronization of the hydrodynamic and orientational modes during electroconvection in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Batyrshin, E. S.; Krekhov, A. P.; Skaldin, O. A.; Delev, V. A.

    2014-12-01

    The spatiotemporal dynamics of oscillating electroconvective structures appearing in a nematic liquid crystal (NLC) under the combined action of applied alternating (ac) and direct (dc) electric voltages has been experimentally studied. It is established that an increase in the dc component of the applied voltage leads to synchronization of the hydrodynamic mode with the orientational twist mode of the NLC director. The synchronization parameter and the phase shift of the modes are determined as function of the applied dc voltage. The results confirm the flexoelectric mechanism of synchronization.

  3. cm-scale variations of crystal orientation fabric in cold Alpine ice core from Colle Gnifetti

    NASA Astrophysics Data System (ADS)

    Kerch, Johanna; Weikusat, Ilka; Eisen, Olaf; Wagenbach, Dietmar; Erhardt, Tobias

    2015-04-01

    Analysis of the microstructural parameters of ice has been an important part of ice core analyses so far mainly in polar cores in order to obtain information about physical processes (e.g. deformation, recrystallisation) on the micro- and macro-scale within an ice body. More recently the influence of impurities and climatic conditions during snow accumulation on these processes has come into focus. A deeper understanding of how palaeoclimate proxies interact with physical properties of the ice matrix bears relevance for palaeoclimatic interpretations, improved geophysical measurement techniques and the furthering of ice dynamical modeling. Variations in microstructural parameters e.g. crystal orientation fabric or grain size can be observed on a scale of hundreds and tens of metres but also on a centimetre scale. The underlying processes are not necessarily the same on all scales. Especially for the short-scale variations many questions remain unanswered. We present results from a study that aims to investigate following hypotheses: 1. Variations in grain size and fabric, i.e. strong changes of the orientation of ice crystals with respect to the vertical, occur on a centimetre scale and can be observed in all depths of an ice core. 2. Palaeoclimate proxies like dust and impurities have an impact on the microstructural processes and thus are inducing the observed short-scale variations in grain size and fabric. 3. The interaction of proxies with the ice matrix leads to depth intervals that show correlating behaviour as well as ranges with anticorrelation between microstructural parameters and palaeoclimatic proxies. The respective processes need to be identified. Fabric Analyser measurements were conducted on more than 80 samples (total of 8 m) from different depth ranges of a cold Alpine ice core (72 m length) drilled in 2013 at Colle Gnifetti, Switzerland/Italy. Results were obtained by automatic image processing, providing estimates for grain size distributions

  4. Communication: Orientational structure manipulation in nematic liquid crystal droplets induced by light excitation of azodendrimer dopant

    PubMed Central

    Emelyanenko, Alexander V.; Boiko, Natalia I.; Liu, Jui-Hsiang; Khokhlov, Alexei R.

    2017-01-01

    Reversible orientational transitions in the droplets of a nematic liquid crystal (NLC) caused by the change of boundary conditions under the low intensity diode illumination are investigated. Photosensitivity of NLC is achieved by the addition of the dendrimer compound with azobenzene terminal groups. Two types of NLC droplets in glycerol are considered: the spherical droplets in the bulk of glycerol and the droplets laid-down onto the solid substrate. In the second case, the first order phase transition is revealed. The effects described can be useful for the development of highly sensitive chemical detectors and microsized photo-tunable optical devices. PMID:28595414

  5. Communication: Orientational structure manipulation in nematic liquid crystal droplets induced by light excitation of azodendrimer dopant

    NASA Astrophysics Data System (ADS)

    Shvetsov, Sergey A.; Emelyanenko, Alexander V.; Boiko, Natalia I.; Liu, Jui-Hsiang; Khokhlov, Alexei R.

    2017-06-01

    Reversible orientational transitions in the droplets of a nematic liquid crystal (NLC) caused by the change of boundary conditions under the low intensity diode illumination are investigated. Photosensitivity of NLC is achieved by the addition of the dendrimer compound with azobenzene terminal groups. Two types of NLC droplets in glycerol are considered: the spherical droplets in the bulk of glycerol and the droplets laid-down onto the solid substrate. In the second case, the first order phase transition is revealed. The effects described can be useful for the development of highly sensitive chemical detectors and microsized photo-tunable optical devices.

  6. Unoccupied electronic structure and molecular orientation of rubrene; from evaporated films to single crystals

    NASA Astrophysics Data System (ADS)

    Ueba, T.; Park, J.; Terawaki, R.; Watanabe, Y.; Yamada, T.; Munakata, T.

    2016-07-01

    Two-photon photoemission (2PPE) spectroscopy and ultraviolet photoemission spectroscopy (UPS) have been performed for rubrene single crystals and evaporated thin films on highly oriented pyrolytic graphite (HOPG). The changes in the 2PPE intensity from the single crystals by the polarization of the light and by the angle of the light incident plane against the crystalline axes indicate that the molecular arrangement on the surface is similar to that in the bulk crystal. On the other hand, in the case of evaporated films, the polarization dependence of 2PPE indicates that the tetracene backbone becomes standing upright as the thickness increases. In spite of the alignment of molecules, the broadened 2PPE spectral features for thick films suggest that the films are amorphous and molecules are in largely different environments. The film structures are confirmed by scanning tunneling microscopy (STM). The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) derived levels of the single crystal are shifted by + 0.18 and - 0.20 eV, respectively, from those of the 0.8 ML film. The shifts are attributed to the packing density of molecules. It is shown that the unoccupied electronic structure is more sensitively affected by the film structure than the occupied electronic structure.

  7. Crystal-oriented tungsten-bronze type ceramics prepared by a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Doshida, Y.; Shimizu, H.; Furushima, R.; Uematsu, K.

    2011-03-01

    Forming and sintering of c-axis-oriented Sr2NaNb5O15 (SNN) ceramics were examined. Particle-oriented SNN was fabricated by using a rotating high magnetic field and subsequent sintering without magnetic field. SNN ceramics are tungsten-bronze-type ferroelectric materials with a tetragonal crystal system. The diamagnetic susceptibilities of the c-axis are smaller than that of the a- and b-axis (χc < χa,b < 0). SNN powder was prepared by conventional solid-state reaction. The synthesized powder was mixed with distilled water and a dispersant by using ball milling to give a slurry with solid loading of 30 vol%. The slurry was poured into a plastic mold and this was placed in a 10Tesla magnetic field in a superconducting magnet. The mold was rotated at 30 rpm while the slurry dried at room temperature. The resulting powder compact with a columnar shape was heated at 5 K/min to 1473 K, held for 6 h, and then heated at 1525 K for 2 h to prevent exaggerated grain growth. XRD patterns showed that c-axis-oriented SNN polycrystalline ceramics were produced in the presence of the rotating magnetic field. In XRD patterns viewed from the top surface of the sintered specimens, peaks from the c-planes of the crystal, such as 001 and 002, were very strong. Diffraction peaks which were very strong in the ceramics, such as 320 and 410, were absent in the specimen. Oriented microstructure was developed well by sintering. Grain-growth along to c-axis was observed in the SNN ceramics heated at 1525 K.

  8. Orientation of growing crystals of Co- or Gd-containing L-threonine dehydrogenase by magnetic fields

    NASA Astrophysics Data System (ADS)

    Maki, Syou; Ishikawa, Kazuhiko; Ataka, Mitsuo

    2009-12-01

    L-Threonine dehydrogenase from Pyrococcus horikoshii (TDH) is a water-soluble metalloenzyme, the molecular structure of which has been unknown until recently. The Zn 2+ ion in the native TDH, prepared as a recombinant protein, is replaced artificially with Co 2+, Ni 2+ or Gd 3+. These samples are crystallized in homogeneous magnetic fields of 2-10 T. Half of the Co- or Gd-substituted crystals show magnetic orientation in a field of 2 T at 278 K whereas the crystals of the native TDH require a 4 T magnetic field for half orientation. The sensitivity to magnetic orientation can thus be increased by metal substitution. On the other hand, we cannot assign clear changes in the size, number, and quality of the native and metal-substituted crystals with and without the presence of the magnetic field.

  9. Self-orientation effect of liquid crystals on holographic polymer-dispersed liquid crystal and distributed feedback lasers

    NASA Astrophysics Data System (ADS)

    Liu, Minghuan; Liu, Yonggang; Peng, Zenghui; Zhao, Haifeng; Cao, Zhaoliang; Xuan, Li

    2017-07-01

    The average orientation of a liquid crystal (LC) director to the grating formation, morphology, and switching properties of a holographic polymer-dispersed liquid crystal (HPDLC) grating was systematically investigated in this study. The grating possessed high diffraction efficiency and low scattering with the LC director being parallel to the grating vector. The scanning electron microscope confirmed the well-defined morphology with the LC director being parallel to the grating vector. The grating was easily switched when the LC director was perpendicular to the grating vector. Moreover, polarization excitation was performed to investigate the polarization dependence behavior of the HPDLC-distributed feedback (DFB) laser. The results confirmed that the HPDLC grating is suitable as a laser oscillation when the LC director is parallel to the grating vector. Finally, the tuning range was obtained for the HPDLC DFB laser by applying an external electric field. The tunability, ease of fabrication, and mass production make the HPDLC DFB lasers suitable as smart laser sources for spectroscopy and communication.

  10. Optical properties of the cirrus cloud ice crystals with preferred azimuthal orientation for polarization lidars with azimuthal scanning

    NASA Astrophysics Data System (ADS)

    Konoshonkin, Alexander V.; Kustova, Natalia V.; Nasonov, Sergey V.; Bryukhanov, Ilia D.; Shishko, Viktor A.; Timofeev, Dmitriy N.; Borovoi, Anatoly G.

    2016-10-01

    Optical properties of the cirrus cloud ice crystals with preferred azimuthal orientation are required for current numerical models of the Earth's radiation balance. Retrieving the orientation distributions function of the crystals from a vertically pointing polarization lidar measuring the full Mueller matrix is a very complicated problem because of lake of information. Lidars with zenith scanning can be used only to retrieve the properties of horizontally oriented particles. The paper shows that if the particles have preferred azimuthal orientation, the polarization lidars with azimuthal scanning should be used. It is also shown that all the elements of the Mueller matrix give no extra information compare to the depolarization ratio. Optical properties of preferred azimuthal oriented hexagonal ice columns with size from 10 to 1000 μm for wavelengths of 0.355, 0.532 and 1.064 μm were collected as a data bank.

  11. Protein crystal structure from non-oriented, single-axis sparse X-ray data

    SciTech Connect

    Wierman, Jennifer L.; Lan, Ti-Yen; Tate, Mark W.; Philipp, Hugh T.; Elser, Veit; Gruner, Sol M.

    2016-01-01

    X-ray free-electron lasers (XFELs) have inspired the development of serial femtosecond crystallography (SFX) as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse. The success of SFX at XFELs has catalyzed interest in analogous experiments at synchrotron-radiation (SR) sources, where data are collected from many small crystals and the ultrashort pulses are replaced by exposure times that are kept short enough to avoid significant crystal damage. The diffraction signal from each short exposure is so `sparse' in recorded photons that the process of recording the crystal intensity is itself a reconstruction problem. Using theEMCalgorithm, a successful reconstruction is demonstrated here in a sparsity regime where there are no Bragg peaks that conventionally would serve to determine the orientation of the crystal in each exposure. In this proof-of-principle experiment, a hen egg-white lysozyme (HEWL) crystal rotating about a single axis was illuminated by an X-ray beam from an X-ray generator to simulate the diffraction patterns of microcrystals from synchrotron radiation. Millions of these sparse frames, typically containing only ~200 photons per frame, were recorded using a fast-framing detector. It is shown that reconstruction of three-dimensional diffraction intensity is possible using theEMCalgorithm, even with these extremely sparse frames and without knowledge of the rotation angle. Further, the reconstructed intensity can be phased and refined to solve the protein structure using traditional crystallographic software. In conclusion, this suggests that synchrotron-based serial crystallography of micrometre-sized crystals can be practical with the aid of the

  12. Chaotic and regular shear-induced orientational dynamics of nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Rienäcker, G.; Kröger, M.; Hess, S.

    2002-12-01

    Based on a relaxation equation for the alignment tensor characterizing the molecular orientation in liquid crystals under flow we present results for the full orientational dynamics of homogeneous liquid crystals in a shear flow. We extend the analysis of the symmetry-adapted states by Rienäcker and Hess (Physica A 267 (1999) 294), which invoke only 3 of the 5 components of the tensor to full alignment. The steady and transient states of reduced model are preserved in this more general description, except for log-rolling, which turns out to be unstable in the range of parameters considered. However, the states reported earlier are only stable within a certain range of the parameters and there is a variety of new, symmetry-breaking transient states with the director out of the shear plane, which partially coexist with the in-plane states. The new, out-of-plane states can be divided in two classes: simple periodic and complex orbits. The first class consists of a kayaking-tumbling and a kayaking-wagging state, where the projection of the director onto the shear plane describes a tumbling or wagging motion, respectively. The second class of states, which can be found only in a small parameter range, consists of a variety of either complicated periodic or irregular, chaotic orbits. Both an intermittency route and a period-doubling route to chaos are found. A link to the corresponding rheological properties is made.

  13. Improved crystal orientation and physical properties from single-shot XFEL stills

    SciTech Connect

    Sauter, Nicholas K.; Hattne, Johan; Brewster, Aaron S.; Echols, Nathaniel; Zwart, Petrus H.; Adams, Paul D.

    2014-11-28

    X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factors from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model the diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Bragg's law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise.

  14. Improved crystal orientation and physical properties from single-shot XFEL stills

    DOE PAGES

    Sauter, Nicholas K.; Hattne, Johan; Brewster, Aaron S.; ...

    2014-11-28

    X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factors from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model themore » diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Bragg's law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise.« less

  15. Texture and Crystal Orientation in Ti-6Al-4V Builds Fabricated by Shaped Metal Deposition

    NASA Astrophysics Data System (ADS)

    Baufeld, Bernd; van der Biest, Omer; Dillien, Steven

    2010-08-01

    The texture and crystal orientation of Ti-6Al-4V components, manufactured by shaped metal deposition (SMD), is investigated. SMD is a novel rapid prototyping tungsten inert gas (TIG) welding technique leading to near-net-shape components. This involves sequential layer by layer deposition with repeated partial melting and heat treatment, which results in epitaxial growth of large elongated prior β grains. This leads to a directionally solidified texture, where the prior β grains exhibit only a small misorientation with each other. The β grains grow in left< { 100} rightrangle direction with a second left< { 100} rightrangle direction perpendicular to the wall surface. During cooling, the α phase transformation follows the Burgers orientation relationship leading to a Widmanstätten structure, with orientation relations between most of the α lamellae and also of the residual β phase. The directionally solidification and the transformation into the α phase following the Burgers relationship results in a texture, where the hcp pole figures look similar to bcc pole figures.

  16. Orientations of Chromonic Liquid Crystals by Imprinted or Rubbed Polymer Films

    NASA Astrophysics Data System (ADS)

    Yi, Youngwoo; McGuire, Aya; Clark, Noel

    2014-03-01

    A variety of novel alignment effects of chromonic liquid crystal phases of sunset yellow (SSY)/water, disodium cromoglycate (DSCG)/water, and their mixtures by thiol-ene polymer films topographically imprinted with linear channels are observed using polarizing optical microscopy. Nematic DSCG and SSY at low concentration and their nematic mixtures orient with the long axes of stacked chromonic aggregates on average parallel to the channels, that is, with the molecular planes normal to the channel axis. On the contrary, nematic SSY in contact with the rubbed polyimide films orients with the long axes on average in-plane perpendicular to the rubbing direction, arguably, due to a tongue-groove interaction between SSY and the stretched PI chains. Furthermore, multi-stable alignments are observed in SSY solutions of sufficiently high concentration, including preferential in-plane orientation of the long axes of the aggregates parallel to, perpendicular to, and 45° rotated from the channels. This work was supported by NSF grant DMR 1207606, NSF MRSEC grant DMR 0820579, and NSF Research Experience for Undergraduate programs.

  17. Influence of 4-cyano-4'-biphenylcarboxylic acid on the orientational ordering of cyanobiphenyl liquid crystals at chemically functionalized surfaces.

    PubMed

    Park, Joon-Seo; Jang, Chang-Hyun; Tingey, Matthew L; Lowe, Aaron M; Abbott, Nicholas L

    2006-12-15

    We report two methods that involve tailoring of the chemical composition of the nematic liquid crystal 4-cyano-4'-pentylbiphenyl to achieve control over the orientational ordering of the liquid crystal on chemically functionalized surfaces. The first method involves the direct addition of 4-cyano-4'-biphenylcarboxylic acid to 4-cyano-4'-pentylbiphenyl. The second method involves exposure of 4-cyano-4'-pentylbiphenyl to ultraviolet light and photochemical generation of a range of products, including 4-cyano-4'-biphenylcarboxylic acid. The addition of the acid or exposure to ultraviolet light accelerated the rate at which the liquid crystal exhibited an orientational transition from planar to perpendicular (homeotropic) alignment on surfaces presenting ammonium groups. The appearance of the homeotropic orientation of the UV-treated 4-cyano-4'-pentylbiphenyl on ammonium-terminated surfaces was dependent on the thickness of the film of liquid crystal (13-50 mum), consistent with a dipolar coupling between the liquid crystal and the electric field associated with an electrical double layer generated at the ammonium surface. Although the addition of 4-cyano-4'-biphenylcarboxylic acid or UV treatment of the liquid crystal also promoted homeotropic orientations on surfaces presenting hydroxyl groups, the orientations of the UV-treated liquid crystal on the hydroxyl-terminated surface did not change with thickness of the film of liquid crystal in the manner observed on the ammonium-terminated surfaces. The latter result indicates that the mechanism leading to homeotropic anchoring on hydroxyl-terminated surfaces is distinct from that on ammonium-terminated surfaces. Measurements performed using polarization modulation infrared reflection-absorption spectroscopy suggest that hydrogen bonding between the 4-cyano-4'-biphenylcarboxylic acid and the hydroxyl-terminated surface is responsible for the homeotropic anchoring on the surface. Finally, the orientation of the liquid

  18. Substitutional and orientational disorder in organic crystals: a symmetry-adapted ensemble model.

    PubMed

    Habgood, Matthew; Grau-Crespo, Ricardo; Price, Sarah L

    2011-05-28

    Modelling of disorder in organic crystals is highly desirable since it would allow thermodynamic stabilities and other disorder-sensitive properties to be estimated for such systems. Two disordered organic molecular systems are modeled using a symmetry-adapted ensemble approach, in which the disordered system is treated as an ensemble of the configurations of a supercell with respect to substitution of one disorder component for another. Computation time is kept manageable by performing calculations only on the symmetrically inequivalent configurations. Calculations are presented on a substitutionally disordered system, the dichloro/dibromobenzene solid solution, and on an orientationally disordered system, eniluracil, and the resultant free energies, disorder patterns, and system properties are discussed. The results are found to be in agreement with experiment, when some physically implausible configurations are removed from the ensemble average for eniluracil, highlighting the dangers of a completely automated approach to organic crystal thermodynamics which ignores the barriers to equilibration once the crystal has been formed. This journal is © the Owner Societies 2011

  19. Characterization of tin crystal orientation evolution during thermal cycling in lead-free solder joints

    NASA Astrophysics Data System (ADS)

    Zhou, Bite

    To address the long term reliability of lead-free solder joints in electronic devices during thermal cycling, the fundamental understanding of deformation mechanisms was studied using polarized light optical microscopy (PLM), electron backscatter diffraction (EBSD) in scanning electron microscopy (SEM), and synchrotron X-ray diffraction (XRD). Near-eutectic Sn-3.0(wt %) Ag-0.5(wt %) Cu (SAC305) lead-free solder joints were assessed in three different package designs: low-strain plastic ball grid array (PBGA), medium-strain fine-pitch ball grid array (BGA), and high-strain wafer-level-chip-scale package (WLCSP). The effect of microstructure evolution on solder failure is correlated with dislocation slip activities. The major failure mode in lead-free solder joints during thermal cycling that causes the electrical failure of the device is cracking in the bulk Sn near the Si chip/solder interface. Microstructure and Sn grain orientation evolution usually precedes crack development. A combined approach of both statistical analysis of a large number of solder joints, and detailed studies of individual solder balls was used to investigate the causes of fracture. Sn crystal orientation evolution and its effect on deformation was characterized in solder joints with different thermal histories, and compared with those from other package designs with different effective strain levels. The relationship between the initial dominant and localized recrystallized Sn grain orientations on crack development was investigated. It is found that in the low-strain package design, cracking is strongly correlated with Sn grain orientations with the [001] direction (c-axis) nearly aligned with the chip/solder interface. But no cracks were observed in solder balls with dominant orientations that have the c-axis normal to the interface plane. In higher-strain packages, however, cracking occurred in a variety of Sn grain orientations, and even solder balls with dominant orientations that are

  20. The Influence of Job Characteristics and Self-Directed Learning Orientation on Workplace Learning

    ERIC Educational Resources Information Center

    Raemdonck, Isabel; Gijbels, David; van Groen, Willemijn

    2014-01-01

    Given the increasing importance of learning at work, we set out to examine the factors which influence workplace learning behaviour. The study investigated the influence of the job characteristics from Karasek's Job Demand Control Support model and the personal characteristic self-directed learning orientation on workplace learning. A total…

  1. The Influence of Job Characteristics and Self-Directed Learning Orientation on Workplace Learning

    ERIC Educational Resources Information Center

    Raemdonck, Isabel; Gijbels, David; van Groen, Willemijn

    2014-01-01

    Given the increasing importance of learning at work, we set out to examine the factors which influence workplace learning behaviour. The study investigated the influence of the job characteristics from Karasek's Job Demand Control Support model and the personal characteristic self-directed learning orientation on workplace learning. A total…

  2. Influence of osteon area fraction and degree of orientation of HAp crystals on mechanical properties in bovine femur.

    PubMed

    Yamada, Satoshi; Tadano, Shigeru; Fujisaki, Kazuhiro; Kodaki, Yuka

    2013-01-04

    Cortical bone has a hierarchical structure, spanning from the macrostructure at several millimeters or whole bone level, the microstructure at several hundred micrometers level, to the nanostructure at hydroxyapatite (HAp) crystals and collagen fibrils levels. The aim of the study is to understand the relationship between the HAp crystal orientation and the elastic modulus and the relationship between the osteon area fraction and the deformation behavior of HAp crystals in cortical bone. In the experiments, five strip specimens (40×2×1mm(3)) aligned with the bone axis were taken from the cortical bone of a bovine femur. The degree of c-axis orientation of HAp crystals in the specimens was measured with the X-ray diffraction technique with the imaging plate. To measure the deformation behavior of HAp crystals in the specimens, tensile tests under X-ray irradiation were conducted. The specimens were cut at the X-ray measurement positions and osteon area fraction and porosity at the transverse cross-sections were observed. Further, the volume fraction of HAp of the specimens was measured. Results showed the degree of c-axis orientation of HAp crystals was positively correlated with the elastic modulus of the specimens (r=0.94). The volume fraction of HAp and the porosity showed no statistical correlation with the elastic modulus and the tensile strength. The HAp crystal strain ε(H) increased linearly with the bone tissue strain ε. The average value of ε(H)/ε was 0.69±0.13 and there was no correlation between the osteon area fraction and ε(H)/ε (r=-0.27, p=0.33). The results suggest that the degree of c-axis orientation of HAp crystals affects the elastic modulus and the magnitude of HAp crystal strain does not depend on the osteon area fraction.

  3. Dependence of Initial Grain Orientation on the Evolution of Anisotropy in FCC and BCC Metals Using Crystal Plasticity and Texture Analysis

    NASA Astrophysics Data System (ADS)

    Raja, Daniel Selvakumar

    Abundant experimental analyses and theoretical computational analyses that had been performed on metals to understand anisotropy and its evolution and its dependence on initial orientation of grains have failed to provide theories that can be used in macro-scale plasticity. Ductile metals fracture after going through a large amount of plastic deformation, during which the anisotropy of the material changes significantly. Processed metal sheets or slabs possess anisotropy due to textures produced by metal forming processes (such as drawing, bending and press braking). Metals that were initially isotropic possess anisotropy after undergoing forming processes, i.e., through texture formation due to large amount of plastic deformation before fracture. It is therefore essential to consider the effect of anisotropy to predict the characteristics of fracture and plastic flow performances in the simulation of ductile fracture and plastic flow of materials. Crystal plasticity simulations carried out on grains at the meso-scale level with different initial orientations (ensembles) help to derive the evolution of anisotropy at the macro-scale level and its dependence on initial orientation of grains. This paper investigates the evolution of anisotropy in BCC and FCC metals and its dependence on grain orientation using crystal plasticity simulations and texture analysis to reveal the mechanics behind the evolution of anisotropy. A comparison of anisotropy evolution between BCC and FCC metals is made through the simulation, which can be used to propose the theory of anisotropy evolution in macro-scale plasticity. Keywords: ensembles; grains; initial orientation; anisotropy; evolution of anisotropy; crystal plasticity; textures; homogeneity; isotropy; inelastic; equivalent strain.

  4. Cyclic Degradation Behavior of < 001 \\rangle -Oriented Fe-Mn-Al-Ni Single Crystals in Tension

    NASA Astrophysics Data System (ADS)

    Vollmer, M.; Kriegel, M. J.; Krooß, P.; Martin, S.; Klemm, V.; Weidner, A.; Chumlyakov, Y.; Biermann, H.; Rafaja, D.; Niendorf, T.

    2017-08-01

    In the present study, functional fatigue behavior of a near 〈001〉-oriented Fe-Mn-Al-Ni single crystal was investigated under tensile load. An incremental strain test up to 3.5% strain and cyclic tests up to 25 cycles revealed rapid pseudoelastic degradation. Progressive microstructural degradation was studied by in situ scanning electron microscopy. The results show a partially inhibited reactivation of previously formed martensite and proceeding activation of untransformed areas in subsequent cycles. The preferentially formed martensite variants were identified by means of Schmid factor calculation and the Kurdjumov-Sachs relationship. Post mortem transmission electron microscopy investigations shed light on the prevailing degradation mechanisms. Different types of dislocations were found promoting the progressive degradation during cyclic loading.

  5. Crystal preferred orientation of an amphibole experimentally deformed by simple shear

    PubMed Central

    Ko, Byeongkwan; Jung, Haemyeong

    2015-01-01

    Seismic anisotropy has been widely observed in crust and mantle materials and plays a key role in the understanding of structure and flow patterns. Although seismic anisotropy can be explained by the crystal preferred orientation (CPO) of highly anisotropic minerals in the crust, that is, amphibole, experimental studies on the CPO of amphibole are limited. Here we present the results of novel experiments on simple shear deformation of amphibolite at high pressure and temperatures (1 GPa, 480–700 °C). Depending on the temperature and stress, the deformed amphibole produced three types of CPOs and resulted in a strong seismic anisotropy. Our data provide a new understanding of the observed seismic anisotropy. The seismic data obtained from the amphibole CPOs revealed that anomalous seismic anisotropy observed in the deep crust, subducting slab and mantle wedge can be attributed to the CPO of amphibole. PMID:25858349

  6. Ultrafast infrared observation of exciton equilibration from oriented single crystals of photosystem II

    NASA Astrophysics Data System (ADS)

    Kaucikas, Marius; Maghlaoui, Karim; Barber, Jim; Renger, Thomas; van Thor, Jasper J.

    2016-12-01

    In oxygenic photosynthesis, two photosystems work in series. Each of them contains a reaction centre that is surrounded by light-harvesting antennae, which absorb the light and transfer the excitation energy to the reaction centre where electron transfer reactions are driven. Here we report a critical test for two contrasting models of light harvesting by photosystem II cores, known as the trap-limited and the transfer-to-the trap-limited model. Oriented single crystals of photosystem II core complexes of Synechococcus elongatus are excited by polarized visible light and the transient absorption is probed with polarized light in the infrared. The dichroic amplitudes resulting from photoselection are maintained on the 60 ps timescale that corresponds to the dominant energy transfer process providing compelling evidence for the transfer-to-the-trap limitation of the overall light-harvesting process. This finding has functional implications for the quenching of excited states allowing plants to survive under high light intensities.

  7. Terrestrial glint seen from deep space: Oriented ice crystals detected from the Lagrangian point

    NASA Astrophysics Data System (ADS)

    Marshak, Alexander; Várnai, Tamás.; Kostinski, Alexander

    2017-05-01

    The Deep Space Climate Observatory (DSCOVR) spacecraft resides at the first Lagrangian point about one million miles from Earth. A polychromatic imaging camera onboard delivers nearly hourly observations of the entire sunlit face of the Earth. Many images contain unexpected bright flashes of light over both ocean and land. We construct a yearlong time series of flash latitudes, scattering angles, and oxygen absorption to demonstrate conclusively that the flashes over land are specular reflections off tiny ice platelets floating in the air nearly horizontally. Such deep space detection of tropospheric ice can be used to constrain the likelihood of oriented crystals and their contribution to Earth albedo. These glint observations also support proposals for detecting starlight glints off faint companions in our search for habitable exoplanets.

  8. Control of Spin Helix Symmetry in Semiconductor Quantum Wells by Crystal Orientation

    NASA Astrophysics Data System (ADS)

    Kammermeier, Michael; Wenk, Paul; Schliemann, John

    2016-12-01

    We investigate the possibility of spin-preserving symmetries due to the interplay of Rashba and Dresselhaus spin-orbit coupling in n -doped zinc-blende semiconductor quantum wells of general crystal orientation. It is shown that a conserved spin operator can be realized if and only if at least two growth direction Miller indices agree in modulus. The according spin-orbit field has in general both in-plane and out-of-plane components and is always perpendicular to the shift vector of the corresponding persistent spin helix. We also analyze higher-order effects arising from the Dresselhaus term, and the impact of our results on weak (anti)localization corrections.

  9. Tight control of light beams in photonic crystals with spatially-variant lattice orientation.

    PubMed

    Digaum, Jennefir L; Pazos, Javier J; Chiles, Jeffrey; D'Archangel, Jeffrey; Padilla, Gabriel; Tatulian, Adrian; Rumpf, Raymond C; Fathpour, Sasan; Boreman, Glenn D; Kuebler, Stephen M

    2014-10-20

    Spatially-variant photonic crystals (SVPCs), in which the orientation of the unit cell changes as a function of position, are shown to be capable of abruptly controlling light beams using just low index materials and can be made to have high polarization selectivity. Multi-photon direct laser writing in the photo-polymer SU-8 was used to fabricate three-dimensional SVPCs that direct the flow of light around a 90 degree bend. The lattice spacing and fill factor were maintained nearly constant throughout the structure. The SVPCs were characterized at a wavelength of 2.94 μm by scanning the faces with optical fibers and the results were compared to electromagnetic simulations. The lattices were shown to direct infrared light of one polarization through sharp bends while the other polarization propagated straight through the SVPC. This work introduces a new scheme for controlling light that should be useful for integrated photonics.

  10. Interface charge behaviors of BaTiO3 film heterostructures with various crystal orientations

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ouyang, Jun; Cheng, Hongbo; Yang, Qian; Kang, Limin; Zhang, Hua; Hu, Fangren

    2017-02-01

    Heteroepitaxial BaTiO3 ferroelectric films with (001), (110), and (111) orientations were grown on SrRuO3-buffered SrTiO3 substrates by magnetron sputtering. The leakage current and interface charge behaviors were systematically investigated. Without a discernible orientation-dependence behavior, the leakage current behaviors were all well described by a modified Schottky-contact model. On the basis of this theory, the interface charge state parameters, including dynamic dielectric constant, potential barriers, depletion layer width, effective space-charge density and hole concentration, and their evolution behaviors were analyzed in detail. They all exhibited anisotropic characteristics and were proved to be essentially attributed to the macrophysical properties of BaTiO3 film heterostructures.

  11. Creep property and microstructure evolution of a nickel-base single crystal superalloy in [011] orientation

    SciTech Connect

    Han, G.M. Yu, J.J.; Hu, Z.Q.; Sun, X.F.

    2013-12-15

    The creep property and microstructure evolution of a single crystal superalloy with [011] orientation were investigated at the temperatures of 700 °C, 900 °C and 1040 °C. It is shown that there exist stages of primary, steady-state, and tertiary creep under the lower temperature 700 °C. As the temperature increases to high temperatures of 900 °C and 1040 °C, steady-state creep stage is reduced or disappears and the shape of creep curves is dominated by an extensive tertiary stage. The minimum creep strain rate exhibits power law dependence on the applied stress; the stress exponents at 700 °C, 900 °C and 1040 °C are 28, 13 and 6.5, respectively. Microstructure observation shows that the morphologies of γ′ phase almost keep original shape at the lower temperature 700 °C and high applied stress. With the increasing creep temperature, γ′ precipitates tend to link together and form lamellar structure at an angle of 45° inclined to the applied stress. Transmission electron microscopy (TEM) investigations reveal that multiple < 110 > (111) slip systems gliding in the matrix channels and shearing γ′ precipitates by stacking faults or bending dislocation pairs are the main deformation mechanism at the lower temperature of 700 °C. At the high temperatures of 900 °C and 1040 °C, dislocation networks are formed at γ/γ′ interfaces and the γ′ rafts are sheared by dislocation pairs. - Highlights: • Creep properties of < 011 >-oriented single crystal superalloys were investigated. • γ′ phases become rafting at an angle of 45° inclined to the applied stress. • Creep deformation mechanisms depend on temperature and stress.

  12. Morphological characteristics of monosodium urate: a transmission electron microscopic study of intact natural and synthetic crystals.

    PubMed Central

    Paul, H; Reginato, A J; Schumacher, H R

    1983-01-01

    Transmission electron microscopic studies of synthetic and natural monosodium urate crystals dried on formvar coated grids showed identical internal structures in all crystals. At higher magnification the crystals' surface showed angular or wavy irregularities, and more rarely some crystals appeared to have other tiny crystals on the surface. Protein-like surface coating was not observed except in crystals from one asymptomatic patient in whom synovial fluid was loaded with monosodium urate crystals, but no inflammatory cells were present. Heated synthetic monosodium urate crystals retained the ultrastructural characteristics in their interior but they lost their needle or rod-like shape. Transmission electron microscopic study of monosodium urate crystals dried on formvar coated grids provides a quick method of investigating crystal ultrastructure. Images PMID:6830327

  13. Morphological characteristics of monosodium urate: a transmission electron microscopic study of intact natural and synthetic crystals.

    PubMed

    Paul, H; Reginato, A J; Schumacher, H R

    1983-02-01

    Transmission electron microscopic studies of synthetic and natural monosodium urate crystals dried on formvar coated grids showed identical internal structures in all crystals. At higher magnification the crystals' surface showed angular or wavy irregularities, and more rarely some crystals appeared to have other tiny crystals on the surface. Protein-like surface coating was not observed except in crystals from one asymptomatic patient in whom synovial fluid was loaded with monosodium urate crystals, but no inflammatory cells were present. Heated synthetic monosodium urate crystals retained the ultrastructural characteristics in their interior but they lost their needle or rod-like shape. Transmission electron microscopic study of monosodium urate crystals dried on formvar coated grids provides a quick method of investigating crystal ultrastructure.

  14. Influence of Specific Anions on the Orientational Ordering of Thermotropic Liquid Crystals at Aqueous Interfaces

    PubMed Central

    Carlton, Rebecca J.; Ma, C. Derek; Gupta, Jugal K.; Abbott, Nicholas L.

    2012-01-01

    We report that specific anions (of sodium salts) added to aqueous phases at molar concentrations can trigger rapid, orientational ordering transitions in water-immiscible, thermotropic liquid crystals (LCs; e.g., nematic phase of 4′-pentyl-4-cyanobiphenyl, 5CB) contacting the aqueous phases. Anions classified as chaotropic, specifically iodide, perchlorate and thiocyanate, cause 5CB to undergo continuous, concentration-dependent transitions from planar to homeotropic (perpendicular) orientations at LC-aqueous interfaces within 20 s of addition of the anions. In contrast, anions classified as relatively more kosmotropic in nature (fluoride, sulfate, phosphate, acetate, chloride, nitrate, bromide, and chlorate) do not perturb the LC orientation from that observed without added salts (i.e., planar orientation). Surface pressure-area isotherms of Langmuir films of 5CB supported on aqueous salt solutions reveal ion-specific effects ranking in a manner similar to the LC ordering transitions. Specifically, chaotropic salts stabilized monolayers of 5CB to higher surface pressures and areal densities (12.6 mN/m at 27 Å2/molec. for NaClO4) and thus smaller molecular tilt angles (30° from the surface normal for NaClO4) than kosmotropic salts (5.0 mN/m at 38 Å2/molec. with a corresponding tilt angle of 53° for NaCl). These results and others reported herein suggest that anion-specific interactions with 5CB monolayers lead to bulk LC ordering transitions. Support for the proposition that these ion-specific interactions involve the nitrile group was obtained by using a second LC with nitrile groups (E7; ion-specific effects similar to 5CB were observed) and a third LC with fluorine-substituted aromatic groups (TL205; weak dipole and no ion-specific effects were measured). Finally, we also establish that anion-induced orientational transitions in micrometer-thick LC films involve a change in the easy axis of the LC. Overall, these results provide new insights into ionic

  15. Anchoring Orientation of Nematic and Smectic A Liquid Crystals on PTFE Treated Plates

    NASA Astrophysics Data System (ADS)

    Hubert, Pascal; Dreyfus, Hanna; Guillon, Daniel; Galerne, Yves

    1995-09-01

    The anchoring orientation of different liquid crystals in contact with poly(tetrafluoroethylene) (PTFE) treated surfaces is determined by means of optical interferometry. The anchoring is found to be planar for all the compounds tested, MBBA, 2OO6, 5CB and 7BPI, consisting of polar and non-polar molecules, in the nematic or smectic A phase. This result is consistent with the non-polar nature of PTFE, which is only sensitive to London-like interactions. L'orientation de l'ancrage de différents cristaux liquides sur des surfaces de poly(tétrafluoroéthylène) (téflon) est mesurée par interférométrie optique. Un ancrage planaire est trouvé pour tous les composés essayés MBBA, 2OO6, 5CB et 7BPI, que les molécules soient polaires ou non polaires, en phase nématique ou smectique A. Ce résultat est cohérent avec la nature non-polaire du téflon qui n'est sensible qu'à l'interaction de London.

  16. Orientational order controls crystalline and amorphous thermal transport in superatomic crystals.

    PubMed

    Ong, Wee-Liat; O'Brien, Evan S; Dougherty, Patrick S M; Paley, Daniel W; Fred Higgs Iii, C; McGaughey, Alan J H; Malen, Jonathan A; Roy, Xavier

    2017-01-01

    In the search for rationally assembled functional materials, superatomic crystals (SACs) have recently emerged as a unique class of compounds that combine programmable nanoscale building blocks and atomic precision. As such, they bridge traditional semiconductors, molecular solids, and nanocrystal arrays by combining their most attractive features. Here, we report the first study of thermal transport in SACs, a critical step towards their deployment as electronic, thermoelectric, and phononic materials. Using frequency domain thermoreflectance (FDTR), we measure thermal conductivity in two series of SACs: the unary compounds Co6E8(PEt3)6 (E = S, Se, Te) and the binary compounds [Co6E8(PEt3)6][C60]2. We find that phonons that emerge from the periodicity of the superstructures contribute to thermal transport. We also demonstrate a transformation from amorphous to crystalline thermal transport behaviour through manipulation of the vibrational landscape and orientational order of the superatoms. The structural control of orientational order enabled by the atomic precision of SACs expands the conceptual design space for thermal science.

  17. Orientational order controls crystalline and amorphous thermal transport in superatomic crystals

    NASA Astrophysics Data System (ADS)

    Ong, Wee-Liat; O'Brien, Evan S.; Dougherty, Patrick S. M.; Paley, Daniel W.; Fred Higgs, C., III; McGaughey, Alan J. H.; Malen, Jonathan A.; Roy, Xavier

    2017-01-01

    In the search for rationally assembled functional materials, superatomic crystals (SACs) have recently emerged as a unique class of compounds that combine programmable nanoscale building blocks and atomic precision. As such, they bridge traditional semiconductors, molecular solids, and nanocrystal arrays by combining their most attractive features. Here, we report the first study of thermal transport in SACs, a critical step towards their deployment as electronic, thermoelectric, and phononic materials. Using frequency domain thermoreflectance (FDTR), we measure thermal conductivity in two series of SACs: the unary compounds Co6E8(PEt3)6 (E = S, Se, Te) and the binary compounds [Co6E8(PEt3)6][C60]2. We find that phonons that emerge from the periodicity of the superstructures contribute to thermal transport. We also demonstrate a transformation from amorphous to crystalline thermal transport behaviour through manipulation of the vibrational landscape and orientational order of the superatoms. The structural control of orientational order enabled by the atomic precision of SACs expands the conceptual design space for thermal science.

  18. Robustness of the periodic and chaotic orientational behavior of tumbling nematic liquid crystals.

    PubMed

    Heidenreich, Sebastian; Ilg, Patrick; Hess, Siegfried

    2006-06-01

    The dynamical behavior of molecular alignment strongly affects physical properties of nematic liquid crystals. A theoretical description can be made by a nonlinear relaxation equation of the order parameter and leads to the prediction that rather complex even chaotic orientational behavior occur. Here the influence of fluctuating shear rates on the orientational dynamics especially on chaotic solutions is discussed. With the help of phase portraits and time evolution diagrams, we investigated the influence of different fluctuation strengths on the flow aligned, isotropic, and periodic solutions. To explore the effect of fluctuations on the chaotic behavior, we calculated the largest Lyapunov exponent for different fluctuation strengths. We found in all cases that small fluctuations of the shear rate do not affect the basic features of the dynamics of tumbling nematics. Furthermore, we present an amended potential modeling the isotropic to nematic transition and discuss the equivalence and difference to the commonly used Landau-de Gennes potential. In contrast to the Landau-de Gennes potential, our potential has the advantage to restrict the order parameter to physically admissible values. In the case of extensional flow, we show that the amended potential leads for increasing extensional rate to a better agreement with experimental results.

  19. Effect of crystal orientation on grain boundary migration and radiation-induced segregation

    NASA Astrophysics Data System (ADS)

    Hashimoto, N.; Eda, Y.; Takahashi, H.

    1996-12-01

    FeCrNi, NiAI and NiSi alloys were electron-irradiated using a high voltage electron microscope (1 MeV), and in situ observations of the structural evolution and micro-chemical analysis were carried out. During the irradiation, the grain boundaries in the irradiated region migrated, while no grain boundary migration occurred in the unirradiated area. The occurrence of boundary migration depended on the orientation relationship of the boundary interfaces. Grain boundary migration took place in FeCrNi and NiSi alloys with large crystal orientation difference between the two grains across a grain boundary. In Ni-AI, however, the grain boundary migration did not occur. The solute segregation was caused at grain boundary under irradiation and this segregation behavior was closely related to solute size, namely the concentrations of undersized Ni and oversized Cr elements in FeCrNi alloy increased and reduced at grain boundary, respectively. The same dependence of segregation on the solute size was derived in NiSi and NiAl alloys, in which Si and A1 solutes are undersized and oversized elements, respectively. Therefore, Si solute enriched and Al solute depleted at grain boundary. From the present segregation behavior, it is suggested that the flow of point defects into the boundary is the cause of grain boundary migration.

  20. Effect of crystal plane orientation on tribochemical removal of monocrystalline silicon

    NASA Astrophysics Data System (ADS)

    Xiao, Chen; Guo, Jian; Zhang, Peng; Chen, Cheng; Chen, Lei; Qian, Linmao

    2017-01-01

    The effect of crystal plane orientation on tribochemical removal of monocrystalline silicon was investigated using an atomic force microscope. Experimental results indicated that the tribochemical removal of silicon by SiO2 microsphere presented strong crystallography-induced anisotropy. Further analysis suggested that such anisotropic tribochemical removal of silicon was not dependent on the crystallography-dependent surface mechanical properties (i.e., hardness and elastic modulus), but was mainly attributed to various atomic planar density and interplanar spacing in different crystal planes. Phenomenological results speculated that higher density of silicon atom could promote the formation of Si-O-Si bonds between the SiO2 microsphere and silicon substrate, resulting in more severe tribochemical material removal. Larger interplanar spacing with smaller energy barrier facilitated the rupture of the Si-Si network with the help of mechanical shearing stress, which caused more serious wear of the silicon surface. The results may help understand the material removal mechanism of silicon and provide useful knowledge for chemical mechanical polishing.

  1. Prediction of Fretting Crack Location and Orientation in a Single Crystal Nickel Alloy

    NASA Technical Reports Server (NTRS)

    Matlik, J. F.; Farris, T. N.; Haynes, J.; Swanson, G. R.; Ham-Battista, G.

    2005-01-01

    Fretting is a structural damage mechanism arising between two nominally clamped surfaces subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high- temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact that could potentially foster crack growth leading to component failure. These contact stresses drive crack nucleation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). Recently, a high-frequency, high-temperature load frame has been designed for experimentally investigating fretting damage of single crystal nickel materials employed in aircraft and spacecraft turbomachinery. A modeling method for characterizing the fretting stresses of the spherical fretting contact stress behavior in this experiment is developed and described. The calculated fretting stresses for a series of experiments are then correlated to the observed fretting damage. Results show that knowledge of the normal stresses and resolved shear stresses on each crystal plane can aid in predicting crack locations and orientations.

  2. Anisotropic demineralization and oriented assembly of hydroxyapatite crystals in enamel: smart structures of biominerals.

    PubMed

    Pan, Haihua; Tao, Jinhui; Yu, Xinwei; Fu, Lei; Zhang, Jiali; Zeng, Xiangxuan; Xu, Guohua; Tang, Ruikang

    2008-06-19

    It is interesting to note that the demineralization of natural enamel does not happen as readily as that of the synthesized hydroxyapatite (HAP), although they share a similar chemical composition. We suggest that the hierarchical structure of enamel is an important factor in the preservation of the natural material against dissolution. The anisotropic demineralization of HAP is revealed experimentally, and this phenomenon is understood by the different interfacial structures of HAP-water at the atomic level. It is found that HAP {001} facets can be more resistant against dissolution than {100} under acidic conditions. Although {100} is the largest surface of the typical HAP crystal, it is {001}, the smallest habit face, that is chosen by the living organisms to build the outer surface of enamel by an oriented assembly of the rodlike crystals. We reveal that such a biological construction can confer on enamel protections against erosion, since {001} is relatively dissolution-insensitive. Thus, the spontaneous dissolution of enamel surface can be retarded in biological milieu by such a smart construction. The current study demonstrates the importance of hierarchical structures in the functional biomaterials.

  3. Effect of crystal plane orientation on tribochemical removal of monocrystalline silicon

    PubMed Central

    Xiao, Chen; Guo, Jian; Zhang, Peng; Chen, Cheng; Chen, Lei; Qian, Linmao

    2017-01-01

    The effect of crystal plane orientation on tribochemical removal of monocrystalline silicon was investigated using an atomic force microscope. Experimental results indicated that the tribochemical removal of silicon by SiO2 microsphere presented strong crystallography-induced anisotropy. Further analysis suggested that such anisotropic tribochemical removal of silicon was not dependent on the crystallography-dependent surface mechanical properties (i.e., hardness and elastic modulus), but was mainly attributed to various atomic planar density and interplanar spacing in different crystal planes. Phenomenological results speculated that higher density of silicon atom could promote the formation of Si-O-Si bonds between the SiO2 microsphere and silicon substrate, resulting in more severe tribochemical material removal. Larger interplanar spacing with smaller energy barrier facilitated the rupture of the Si-Si network with the help of mechanical shearing stress, which caused more serious wear of the silicon surface. The results may help understand the material removal mechanism of silicon and provide useful knowledge for chemical mechanical polishing. PMID:28084433

  4. Characteristics and crystal structure of bacterial inosine-5'-monophosphate dehydrogenase.

    SciTech Connect

    Zhang, R.; Evans, G.; Rotella, F. J.; Westbrook, E. M.; Beno, D.; Huberman, E.; Joachimiak, A.; Collart, F. R.

    1999-01-01

    IMP dehydrogenase (IMPDH) is an essential enzyme that catalyzes the first step unique to GTP synthesis. To provide a basis for the evaluation of IMPDH inhibitors as antimicrobial agents, we have expressed and characterized IMPDH from the pathogenic bacterium Streptococcus pyogenes. Our results show that the biochemical and kinetic characteristics of S. pyogenes IMPDH are similar to other bacterial IMPDH enzymes. However, the lack of sensitivity to mycophenolic acid and the K{sub m} for NAD (1180 {mu}M) exemplify some of the differences between the bacterial and mammalian IMPDH enzymes, making it an attractive target for antimicrobial agents. To evaluate the basis for these differences, we determined the crystal structure of the bacterial enzyme at 1.9 {angstrom} with substrate bound in the catalytic site. The structure was determined using selenomethionine-substituted protein and multiwavelength anomalous (MAD) analysis of data obtained with synchrotron radiation from the undulator beamline (19ID) of the Structural Biology Center at Argonne's Advanced Photon Source. S. pyogenes IMPDH is a tetramer with its four subunits related by a crystallographic 4-fold axis. The protein is composed of two domains: a TIM barrel domain that embodies the catalytic framework and a cystathione {beta}-synthase (CBS) dimer domain of so far unknown function. Using information provided by sequence alignments and the crystal structure, we prepared several site-specific mutants to examine the role of various active site regions in catalysis. These variants implicate the active site flap as an essential catalytic element and indicate there are significant differences in the catalytic environment of bacterial and mammalian IMPDH enzymes. Comparison of the structure of bacterial IMPDH with the known partial structures from eukaryotic organisms will provide an explanation of their distinct properties and contribute to the design of specific bacterial IMPDH inhibitors.

  5. Characterization of the crystal orientation in mono-oriented films of HDPE/LLDPE blends by IR dichroism

    SciTech Connect

    Canevarolo, Sebastião V. Ravazzi, Camila; Silva, Jorge; Elias, Marcelo

    2016-03-09

    Polyethylene films are a common packaging material. The level and type of chain orientation in these films are a very important property which is of great care and concern of the converter personnel during the conformation process. Usually bi-orientation is the conventional procedure but when easy tear in one direction is needed mono-orientation is sought. This paper deal with the characterization of the crystalline orientation in films of polyethylene blends (HDPE/LLDPE) which have being oriented in two steps: initially the polymer was bi-oriented via extrusion-blown, cooled, and then in a second process hot stretched along the machine direction in order to produce mono-oriented films. In order to evaluate the orientation of the film, the polarization of the FT-IR beam was rotated 360° in steps of 5° by rotating the polarizer. In each step the absorbance spectrum was recorded and the corresponding dichroic ratio (DR) calculated after subtracting the baseline. With differential scanning calorimetry (DSC) was possible to infer about the changes in the morphology caused by the stretching.

  6. Characterization of the crystal orientation in mono-oriented films of HDPE/LLDPE blends by IR dichroism

    NASA Astrophysics Data System (ADS)

    Canevarolo, Sebastião V.; Elias, Marcelo; Ravazzi, Camila; Silva, Jorge

    2016-03-01

    Polyethylene films are a common packaging material. The level and type of chain orientation in these films are a very important property which is of great care and concern of the converter personnel during the conformation process. Usually bi-orientation is the conventional procedure but when easy tear in one direction is needed mono-orientation is sought. This paper deal with the characterization of the crystalline orientation in films of polyethylene blends (HDPE/LLDPE) which have being oriented in two steps: initially the polymer was bi-oriented via extrusion-blown, cooled, and then in a second process hot stretched along the machine direction in order to produce mono-oriented films. In order to evaluate the orientation of the film, the polarization of the FT-IR beam was rotated 360° in steps of 5° by rotating the polarizer. In each step the absorbance spectrum was recorded and the corresponding dichroic ratio (DR) calculated after subtracting the baseline. With differential scanning calorimetry (DSC) was possible to infer about the changes in the morphology caused by the stretching.

  7. Homoepitaxial meso- and microscale crystal co-orientation and organic matrix network structure in Mytilus edulis nacre and calcite.

    PubMed

    Griesshaber, Erika; Schmahl, Wolfgang W; Ubhi, Harbinder Singh; Huber, Julia; Nindiyasari, Fitriana; Maier, Bernd; Ziegler, Andreas

    2013-12-01

    New developments in high-resolution, low accelaration voltage electron backscatter diffraction (EBSD) enable us to resolve and quantify the co-orientation of nanocrystals constituting biological carbonate crystals with a scan step resolution of 125 nm. This allows the investigation of internal structures in carbonate tablets and tower biocrystals in the nacre of mollusc shells, and it provides details on the calcite-aragonite polymorph interface in bivalves. Within the aragonite tablets of Mytilus edulis nacre we find a mesoscale crystallographic mosaic structure with a misorientation distribution of 2° full width at half maximum. Selective etching techniques with critical point drying reveal an organic matrix network inside the nacre tablets. The size scales of the visible aragonite tablet subunits and nanoparticles correspond to those of the open pore system in the organic matrix network. We further observe by EBSD that crystal co-orientation spans over tablet boundaries and forms composite crystal units of up to 20 stacked co-oriented tablets (tower crystals). Statistical evaluation of the misorientation data gives a probability distribution of grain boundary misorientations with two maxima: a dominant peak for very-small-angle grain boundaries and a small maximum near 64°, the latter corresponding to {110} twinning orientations. However, the related twin boundaries are typically the membrane-lined {001} flat faces of the tablets and not {110} twin walls within tablets. We attribute this specific pattern of misorientation distribution to growth by particle accretion and subsequent semicoherent homoepitaxial crystallization. The semicoherent crystallization percolates between the tablets through mineral bridges and across matrix membranes surrounding the tablets. In the "prismatic" calcite layer crystallographic co-orientation of the prisms reaches over more than 50 micrometers.

  8. Accurate determination of chemical shift tensor orientations of single-crystals by solid-state magic angle spinning NMR.

    PubMed

    Avadhut, Yamini S; Weber, Johannes; Schmedt Auf der Günne, Jörn

    2017-09-01

    An improved implementation of single-crystal magic-angle-spinning (MAS) NMR is presented which gives access to chemical shift tensors both in orientation (relative to the crystal axis system) and principal axis values. For mounting arbitrary crystals inside ordinary MAS rotors, a mounting tool is described which allows to relate the crystal orientation determined by diffraction techniques to the rotor coordinate system. The crystal is finally mounted into a MAS rotor equipped with a special insert which allows a defined reorientation of the single-crystal by 90°. The approach is based on the idea that the dispersive spectra, which are obtained when applying read-pulses at specific rotor-phases, not only yield the size of the eigenvalues but also encode the orientation of the different chemical shift (rank-2) tensors. For this purpose two 2D-data sets with orthogonal crystal orientation are fitted simultaneously. The presented analysis for chemical shift tensors is supported by an analytical formula which allows fast calculation of phase and amplitude of individual spinning side-bands and by a protocol which solves the problem of finding the correct reference phase of the spectrum. Different rotor-synchronized pulse-sequences are introduced for the same reason. Experiments are performed on L-alanine and O-phosphorylethanolamine and the observed errors are analyzed in detail. The experimental data are opposed to DFT-computed chemical shift tensors which have been obtained by the extended embedded ion method. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Crystal preferred orientation of amphibole and implications for seismic anisotropy in the crust

    NASA Astrophysics Data System (ADS)

    Jung, Haemyeong

    2016-04-01

    Strong seismic anisotropy is often observed in the middle to lower crust and it has been considered to be originated from the crystal preferred orientation (CPO) of anisotropic minerals such as amphibole. Amphibolite is one of the dominant rocks in the middle to lower crust. In this study, crystal preferred orientations of hornblende in amphibolites at Yeoncheon and Chuncheon areas in South Korea were determined by using the electron backscattered diffraction (EBSD)/SEM with HKL Channel 5 software. In Yeoncheon area, hornblende showed two types of CPOs. Type-I CPO is characterized as (100) poles of hornblende aligned subnormal to foliation and [001] axes aligned subparallel to lineation. Type-II CPO is characterized as (100) poles of hornblende aligned subnormal to foliation and (010) poles aligned subparallel to lineation (refer to Ko and Jung, 2015, Nature Communications). In Chuncheon area, three types of CPOs of hornblende were observed. In addition to the type-I and -II CPOs described above, type-III CPO of hornblende was observed in Chuncheon area and it is characterized as (100) poles of hornblende aligned subnormal to foliation and both [001] axes and (010) poles aligned as a girdle subparallel to foliation. Using the observed CPO and the single crystal elastic constant of hornblende, seismic anisotropy of hornblende was calculated. Seismic anisotropy of P-wave was strong in the range of 10.2 - 13.5 %. Seismic anisotropy of S-wave was also strong in the range of 6.9 - 11.2 %. These results show that hornblende deformed in nature can produce a strong CPO, resulting in a strong seismic anisotropy in the middle to lower crust. Taking into account of the CPO of plagioclase in the rock, seismic anisotropies of whole rock turned out to be maximum P-wave anisotropy (Vp) of 9.8% and maximum S-wave anisotropy (Vs) of 8.2%. Therefore, strong seismic anisotropy found in the middle to lower crust in nature can be attributed to the CPO of hornblende in amphibolite.

  10. Peculiar orientational disorder in 4-bromo-4'-nitrobiphenyl (BNBP) and 4-bromo-4'-cyanobiphenyl (BCNBP) leading to bipolar crystals.

    PubMed

    Burgener, Matthias; Aboulfadl, Hanane; Labat, Gaël Charles; Bonin, Michel; Sommer, Martin; Sankolli, Ravish; Wübbenhorst, Michael; Hulliger, Jürg

    2016-05-01

    180° orientational disorder of molecular building blocks can lead to a peculiar spatial distribution of polar properties in molecular crystals. Here we present two examples [4-bromo-4'-nitrobiphenyl (BNBP) and 4-bromo-4'-cyanobiphenyl (BCNBP)] which develop into a bipolar final growth state. This means orientational disorder taking place at the crystal/nutrient interface produces domains of opposite average polarity for as-grown crystals. The spatial inhomogeneous distribution of polarity was investigated by scanning pyroelectric microscopy (SPEM), phase-sensitive second harmonic microscopy (PS-SHM) and selected volume X-ray diffraction (SVXD). As a result, the acceptor groups (NO2 or CN) are predominantly present at crystal surfaces. However, the stochastic process of polarity formation can be influenced by adding a symmetrical biphenyl to a growing system. For this case, Monte Carlo simulations predict an inverted net polarity compared with the growth of pure BNBP and BCNBP. SPEM results clearly demonstrate that 4,4'-dibromobiphenyl (DBBP) can invert the polarity for both crystals. Phenomena reported in this paper belong to the most striking processes seen for molecular crystals, demonstrated by a stochastic process giving rise to symmetry breaking. We encounter here further examples supporting the general thesis that monodomain polar molecular crystals for fundamental reasons cannot exist.

  11. Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass.

    PubMed

    Dai, Ye; Ma, Hongliang; Lu, Bo; Yu, Bingkun; Zhu, Bin; Qiu, Jianrong

    2008-03-17

    Ba(2)TiGe(2)O(8) crystals were selectively precipitated on femtosecond laser irradiated BaO-TiO(2)-GeO(2) glass surface. Furthermore, the crystal could grow from the surface of glass to the interior towards the laser movement direction when the laser focus was continuously moved. The laser-induced crystal was confirmed to be Ba(2)TiGe(2)O(8) phase by x-ray diffraction analysis and micro-Raman spectra. We also observed blue light due to double-frequency conversion of the 800nm incident laser in the crystallized regions. We propose the observed phenomena resulted from the femtosecond laser-assisted orientation of precipitation of crystal.

  12. Precise Characterisation of Molecular Orientation in a Single Crystal Field-Effect Transistor Using Polarised Raman Spectroscopy

    PubMed Central

    Wood, Sebastian; Rigas, Grigorios-Panagiotis; Zoladek-Lemanczyk, Alina; Blakesley, James C.; Georgakopoulos, Stamatis; Mas-Torrent, Marta; Shkunov, Maxim; Castro, Fernando A.

    2016-01-01

    Charge transport in organic semiconductors is strongly dependent on the molecular orientation and packing, such that manipulation of this molecular packing is a proven technique for enhancing the charge mobility in organic transistors. However, quantitative measurements of molecular orientation in micrometre-scale structures are experimentally challenging. Several research groups have suggested polarised Raman spectroscopy as a suitable technique for these measurements and have been able to partially characterise molecular orientations using one or two orientation parameters. Here we demonstrate a new approach that allows quantitative measurements of molecular orientations in terms of three parameters, offering the complete characterisation of a three-dimensional orientation. We apply this new method to organic semiconductor molecules in a single crystal field-effect transistor in order to correlate the measured orientation with charge carrier mobility measurements. This approach offers the opportunity for micrometre resolution (diffraction limited) spatial mapping of molecular orientation using bench-top apparatus, enabling a rational approach towards controlling this orientation to achieve optimum device performance. PMID:27619423

  13. Characteristics of AFB interfaces of dissimilar crystal composites as components for solid state lasers

    NASA Astrophysics Data System (ADS)

    Lee, H. C.; Meissner, O. R.; Meissner, H. E.

    2005-06-01

    Adhesive-free bonded (AFB®) composite crystals have proven to be useful components in diode-pumped solid-state lasers (DPSSL). The combination of a lasing medium of higher index of refraction with laser-inactive cladding layers of lower index results in light- or wave-guided slab architectures. The cladding layers also serve to provide mechanical support, thermal uniformity and a heat sink during laser operation. Therefore, the optical and mechanical properties of these components are of interest for the design of DPSSL, especially at high laser fluencies and output power. We report on process parameters and material attributes that result in stress-free AFB® composites that are resistant to thermally induced failure. Formation of stress-free and durable bonds between two dissimilar materials requires heat-treatment of composites to a temperature high enough to ensure durable bonds and low enough to prevent forming of permanent chemical bonds. The onset temperature for forming permanent bonds at the interface sets the upper limit for heat treatment. This limiting temperature is dependent on the chemical composition, crystallographic orientation, and surface characteristics. We have determined the upper temperature limits for forming stress-free bonds between YAG and sapphire, YAG and GGG, YAG and spinel, spinel and sapphire, spinel and GGG, and sapphire and GGG composites. We also deduce the relative magnitude of thermal expansion coefficients amongst the respective single crystals as αGGG > αsapp_c > αspinel > αYAG > αsapp_a from interferometric analysis.

  14. Effect of Crystal Orientation on Femtosecond Laser-Induced Thermomechanical Responses and Spallation Behaviors of Copper Films.

    PubMed

    Xiong, Qi-Lin; Li, Zhenhuan; Kitamura, Takayuki

    2017-08-23

    Ultrafast thermomechanical responses and spallation behaviours of monocrystal copper films irradiated by femtosecond laser pulse are investigated using molecular dynamics simulation (MDS). Films with 〈100〉, 〈110〉 and 〈111〉 crystal orientations along the thickness direction were studied. The results show that the crystal orientation has a significant effect on femtosecond laser-induced thermomechanical responses and spallation behaviors of monocrystal copper films. The discrepancy between normal stresses in copper films with different crystal orientation leads to distinct differences in lattice temperature. Moreover, the copper films with different crystal orientations present distinct spallation behaviors, including structural melting (atomic splashing) and fracture. The melting depth of 〈100〉 copper film is lower than that of 〈110〉 and 〈111〉 copper films for the same laser intensity. The dislocations and slip bands are formed and propagate from the solid-liquid interface of 〈110〉 and 〈111〉 copper films, while these phenomena do not appear in 〈100〉 copper film. Additionally, numerous slip bands are generated in the non-irradiated surface region of copper films due to reflection of mechanical stress. These slip bands can finally evolve into cracks (nanovoids) with time, which further result in the fracture of the entire films.

  15. Roles of Oxygen and Hydrogen in Crystal Orientation Transition of Copper Foils for High-Quality Graphene Growth

    PubMed Central

    Hu, Junxiong; Xu, Jianbao; Zhao, Yanfei; Shi, Lin; Li, Qi; Liu, Fengkui; Ullah, Zaka; Li, Weiwei; Guo, Yufen; Liu, Liwei

    2017-01-01

    The high-quality graphene film can be grown on single-crystal Cu substrate by seamlessly stitching the aligned graphene domains. The roles of O2 and H2 have been intensively studied in the graphene growth kinetics, including lowering the nucleation sites and tailoring the domain structures. However, how the O2 and H2 influence Cu orientations during recrystallization prior to growing graphene, still remains unclear. Here we report that the oxidation of Cu surface tends to stabilize the Cu(001) orientation while impedes the evolution of Cu(111) single domain during annealing process. The crystal orientation-controlled synthesis of aligned graphene seeds is further realized on the long-range ordered Cu(111) substrate. With decreasing the thickness of oxide layer on Cu surface by introducing H2, the Cu(001) orientation changes into Cu(111) orientation. Meanwhile, the average domain size of Cu foils is increased from 50 μm to larger than 1000 μm. The density functional theory calculations reveal that the oxygen increases the energy barrier for Cu(111) surface and makes O/Cu(001) more stable than O/Cu(111) structure. Our work can be helpful for revealing the roles of O2 and H2 in controlling the formation of Cu single-crystal substrate as well as in growing high-quality graphene films. PMID:28367988

  16. Roles of Oxygen and Hydrogen in Crystal Orientation Transition of Copper Foils for High-Quality Graphene Growth.

    PubMed

    Hu, Junxiong; Xu, Jianbao; Zhao, Yanfei; Shi, Lin; Li, Qi; Liu, Fengkui; Ullah, Zaka; Li, Weiwei; Guo, Yufen; Liu, Liwei

    2017-04-03

    The high-quality graphene film can be grown on single-crystal Cu substrate by seamlessly stitching the aligned graphene domains. The roles of O2 and H2 have been intensively studied in the graphene growth kinetics, including lowering the nucleation sites and tailoring the domain structures. However, how the O2 and H2 influence Cu orientations during recrystallization prior to growing graphene, still remains unclear. Here we report that the oxidation of Cu surface tends to stabilize the Cu(001) orientation while impedes the evolution of Cu(111) single domain during annealing process. The crystal orientation-controlled synthesis of aligned graphene seeds is further realized on the long-range ordered Cu(111) substrate. With decreasing the thickness of oxide layer on Cu surface by introducing H2, the Cu(001) orientation changes into Cu(111) orientation. Meanwhile, the average domain size of Cu foils is increased from 50 μm to larger than 1000 μm. The density functional theory calculations reveal that the oxygen increases the energy barrier for Cu(111) surface and makes O/Cu(001) more stable than O/Cu(111) structure. Our work can be helpful for revealing the roles of O2 and H2 in controlling the formation of Cu single-crystal substrate as well as in growing high-quality graphene films.

  17. The relationship between local density and bond-orientational order during crystallization of the Gaussian core model.

    PubMed

    Li, Yan-Wei; Sun, Zhao-Yan

    2016-02-21

    Whether nucleation is triggered by density or by bond-orientational order is one of the most hotly debated issues in recent investigations of the crystallization process. Here, we present a numerical study of the relationship between them for soft particles within the isothermal-isobaric ensemble. We compress the system and thus obtain the fluid-solid transition. By investigating locally dense-packed particles and particles with a relatively high bond-orientational order in the compressing process, we find a sharp increase of the spatial correlations for both densely packed particles and highly bond-orientational ordered particles at the phase transition point, which provide new characterization methods for the liquid-crystal transition. We also find that it is the bond-orientational order rather than density that triggers the nucleation process. The relationship between the local density and the bond-orientational order parameter is strongly affected by the characterization methods used. The local bond order parameter (q6) shows clear correlation with the local density (ρ) in the fluid stage, while the coarse-grained form (q[combining macron]6) does not correlate with ρ at all, owing to the comparable spatial scales of q6 and ρ. Nevertheless, q[combining macron]6 shows an obvious advantage in distinguishing between solid and liquid particles in our work. These results may elevate our understanding of the mechanism of the crystallization process.

  18. Dependence of the structure of ion-modified NiTi single crystal layers on the orientation of irradiated surface

    NASA Astrophysics Data System (ADS)

    Poletika, T. M.; Meisner, L. L.; Girsova, S. L.; Tverdokhlebova, A. V.; Meisner, S. N.

    2017-07-01

    The composition and structure of Si layers implanted into titanium nickelide single crystals with different orientations relative to the ion beam propagation direction have been studied using Auger electron spectroscopy and transmission electron microscopy. The role of the "soft" [111]B2 and "hard" [001]B2 NiTi orientations in the formation of the structure of ion-modified surface layer, as well as the defect structure of the surface layers of the single crystals, has been revealed. Orientation effects of selective sputtering and channeling of ions, which control the composition and thickness of the oxide and amorphous layers being formed, ion and impurity penetration depth, as well as the concentration profile of the Ni distribution over the surface, have been detected.

  19. Influence of crystal orientation and ion bombardment on the nitrogen diffusivity in single-crystalline austenitic stainless steel

    SciTech Connect

    Martinavicius, A.; Abrasonis, G.; Moeller, W.

    2011-10-01

    The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm{sup -2}), ion energy (0.5-1.2 keV), and temperature (370-430 deg. C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasing ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.

  20. Preferred growth orientation and microsegregation behaviors of eutectic in a nickel-based single-crystal superalloy.

    PubMed

    Wang, Fu; Ma, Dexin; Bührig-Polaczek, Andreas

    2015-04-01

    A nickel-based single-crystal superalloy was employed to investigate the preferred growth orientation behavior of the (γ + γ') eutectic and the effect of these orientations on the segregation behavior. A novel solidification model for the eutectic island was proposed. At the beginning of the eutectic island's crystallization, the core directly formed from the liquid by the eutectic reaction, and then preferably grew along [100] direction. The crystallization of the eutectic along [110] always lagged behind that in [100] direction. The eutectic growth in [100] direction terminated on impinging the edge of the dendrites or another eutectic island. The end of the eutectic island's solidification terminates due to the encroachment of the eutectic liquid/solid interface at the dendrites or another eutectic island in [110] direction. The distribution of the alloying elements depended on the crystalline axis. The degree of the alloying elements' segregation was lower along [100] than [110] direction with increasing distance from the eutectic island's center.

  1. Preferential growth orientation of laser-patterned LiNbO{sub 3} crystals in lithium niobium silicate glass

    SciTech Connect

    Komatsu, T.; Koshiba, K.; Honma, T.

    2011-02-15

    Dots and lines consisting of LiNbO{sub 3} crystals are patterned on the surface of 1CuO-40Li{sub 2}O-32Nb{sub 2}O{sub 5}-28SiO{sub 2} (mole ratio) glass by irradiations of continuous-wave Nd:YAG laser (wavelength: {lambda}=1064 nm), diode laser ({lambda}=795 nm), and Yb:YVO{sub 4} fiber laser ({lambda}=1080 nm), and the feature of laser-patterned LiNbO{sub 3} crystal growth is examined from linearly polarized micro-Raman scattering spectrum measurements. LiNbO{sub 3} crystals with the c-axis orientation are formed at the edge parts of the surface and cross-section of dots. The growth direction of an LiNbO{sub 3} along the laser scanning direction is the c-axis. It is proposed that the profile of the temperature distribution in the laser-irradiated region and its change along laser scanning would be one of the most important conditions for the patterning of crystals with a preferential growth orientation. Laser irradiation giving a narrow width is also proposed to be one of the important factors for the patterning of LiNbO{sub 3} crystal lines with homogeneous surface morphologies. -- Graphical abstract: Polarized optical microscope observations for the surface and cross-section of the dot obtained by LD laser ({lambda}=795 nm) irradiations of P=1.4 W and t=20 s in Cu-LNS glass. Schematic model for the orientation of LiNbO{sub 3} crystals at the edge parts of the surface and cross-section of the dot is also shown. Display Omitted Research highlights: > Dots and lines with LiNbO{sub 3} crystals are patterned on the glass surface by laser irradiations. > LiNbO{sub 3} crystals with the c-axis orientation are formed at the edge parts of the surface and cross-section of dots. > The profile of the temperature distribution in the laser-irradiated region is one of the most important conditions for the patterning of highly oriented crystals.

  2. Hydrogen induced fracture characteristics of single crystal nickel-based superalloys

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Wilcox, Roy C.

    1990-01-01

    A stereoscopic method for use with x ray energy dispersive spectroscopy of rough surfaces was adapted and applied to the fracture surfaces single crystals of PWA 1480E to permit rapid orientation determinations of small cleavage planes. The method uses a mathematical treatment of stereo pair photomicrographs to measure the angle between the electron beam and the surface normal. One reference crystal orientation corresponding to the electron beam direction (crystal growth direction) is required to perform this trace analysis. The microstructure of PWA 1480E was characterized before fracture analysis was performed. The fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was studied. The hydrogen-induced fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was also studied. In order to understand the temperature dependence of hydrogen-induced embrittlement, notched single crystals with three different crystal growth orientations near zone axes (100), (110), and (111) were tensile tested at 871 C (1600 F) in both helium and hydrogen atmospheres at 34 MPa. Results and conclusions are given.

  3. The Mechanism of Orientation Dependence of Cyclic Stability of Superelesticity in NiFeGaCo Single Crystals Under Compression

    NASA Astrophysics Data System (ADS)

    Timofeeva, E. E.; Panchenko, E. Yu.; Vetoshkina, N. G.; Chumlyakov, Yu. I.; Tagiltsev, A. I.; Eftifeeva, A. S.; Maier, H.

    2016-12-01

    Using single crystals of the Ni49Fe18Ga27Co6 (at.%) alloy, oriented along [001]- and [123]-directions, cyclic stability of superelasticity is investigated in isothermal loading/unloading cycles at T = Af +(12-15) K (100 cycles) under compressive stress as a function of given strain per cycle, presence of disperse γ-phase particles measuring 5-10 μm, austenitic (B2 or L21) and stress-induced martensitic crystal structure (14M or L10). It is shown that single-phase L21-crystals demonstrate high cyclic stability during L21-14M-transitions with narrow hysteresises Δσ < 50 MPa in the absence of detwinning of the martensite. During the development of L21-14M stress-induced transformation, the reversible energy ΔGrev for these crystals exceeds the dissipated energy ΔGirr, and ΔGrev/ΔGirr = 1.7-1.8. A significant degradation of superelasticity is observed in [123]-oriented crystals during the development of L21-14M-L10-transformations followed by detwinning of the L10-martensite crystals and heterophase (B2+γ) single crystals, irrespective of their orientation during the B2-L10-transition. In the latter case, martensitic transformations are characterized by a wide stress hysteresis Δσ ≥ 80 MPa and the dissipated energy exceeds the reversible energy ΔGrev/ΔGirr = 0.5. The empirical criterion, relying on the analysis of the reversible-to-irreversible energy ratio, ΔGrev/ΔGirr, during stressinduced martensitic transformations, can be used to predict the cyclic stability of superelasticity in NiFeGaCo alloys subjected to different types of heat treatment.

  4. Molecular dynamics simulations of shock waves in oriented nitromethane single crystals.

    PubMed

    He, Lan; Sewell, Thomas D; Thompson, Donald L

    2011-03-28

    The structural relaxation of crystalline nitromethane initially at T = 200 K subjected to moderate (~15 GPa) supported shocks on the (100), (010), and (001) crystal planes has been studied using microcanonical molecular dynamics with the nonreactive Sorescu-Rice-Thompson force field [D. C. Sorescu, B. M. Rice, and D. L. Thompson, J. Phys. Chem. B 104, 8406 (2000)]. The responses to the shocks were determined by monitoring the mass density, the intermolecular, intramolecular, and total temperatures (average kinetic energies), the partitioning of total kinetic energy among Cartesian directions, the radial distribution functions for directions perpendicular to those of shock propagation, the mean-square displacements in directions perpendicular to those of shock propagation, and the time dependence of molecular rotational relaxation as a function of time. The results show that the mechanical response of crystalline nitromethane strongly depends on the orientation of the shock wave. Shocks propagating along [100] and [001] result in translational disordering in some crystal planes but not in others, a phenomenon that we refer to as plane-specific disordering; whereas for [010] the shock-induced stresses are relieved by a complicated structural rearrangement that leads to a paracrystalline structure. The plane-specific translational disordering is more complete by the end of the simulations (~6 ps) for shock propagation along [001] than along [100]. Transient excitation of the intermolecular degrees of freedom occurs in the immediate vicinity of the shock front for all three orientations; the effect is most pronounced for the [010] shock. In all three cases excitation of molecular vibrations occurs more slowly than the intermolecular excitation. The intermolecular and intramolecular temperatures are nearly equal by the end of the simulations, with 400-500 K of net shock heating. Results for two-dimensional mean-square molecular center-of-mass displacements, calculated

  5. Molecular dynamics simulations of shock waves in oriented nitromethane single crystals

    NASA Astrophysics Data System (ADS)

    He, Lan; Sewell, Thomas D.; Thompson, Donald L.

    2011-03-01

    The structural relaxation of crystalline nitromethane initially at T = 200 K subjected to moderate (˜15 GPa) supported shocks on the (100), (010), and (001) crystal planes has been studied using microcanonical molecular dynamics with the nonreactive Sorescu-Rice-Thompson force field [D. C. Sorescu, B. M. Rice, and D. L. Thompson, J. Phys. Chem. B 104, 8406 (2000)]. The responses to the shocks were determined by monitoring the mass density, the intermolecular, intramolecular, and total temperatures (average kinetic energies), the partitioning of total kinetic energy among Cartesian directions, the radial distribution functions for directions perpendicular to those of shock propagation, the mean-square displacements in directions perpendicular to those of shock propagation, and the time dependence of molecular rotational relaxation as a function of time. The results show that the mechanical response of crystalline nitromethane strongly depends on the orientation of the shock wave. Shocks propagating along [100] and [001] result in translational disordering in some crystal planes but not in others, a phenomenon that we refer to as plane-specific disordering; whereas for [010] the shock-induced stresses are relieved by a complicated structural rearrangement that leads to a paracrystalline structure. The plane-specific translational disordering is more complete by the end of the simulations (˜6 ps) for shock propagation along [001] than along [100]. Transient excitation of the intermolecular degrees of freedom occurs in the immediate vicinity of the shock front for all three orientations; the effect is most pronounced for the [010] shock. In all three cases excitation of molecular vibrations occurs more slowly than the intermolecular excitation. The intermolecular and intramolecular temperatures are nearly equal by the end of the simulations, with 400-500 K of net shock heating. Results for two-dimensional mean-square molecular center-of-mass displacements, calculated

  6. Processing of X-ray snapshots from crystals in random orientations

    SciTech Connect

    Kabsch, Wolfgang

    2014-08-01

    A new method for the treatment of partial reflections from X-ray snapshots is implemented in the program package nXDS, which yields intensity data of almost the same quality as those obtained by the classical rotation method. A functional expression is introduced that relates scattered X-ray intensities from a still or a rotation snapshot to the corresponding structure-factor amplitudes. The new approach was implemented in the program nXDS for processing monochromatic diffraction images recorded by a multi-segment detector where each exposure could come from a different crystal. For images containing indexable spots, the intensities of the expected reflections and their variances are obtained by profile fitting after mapping the contributing pixel contents to the Ewald sphere. The varying intensity decline owing to the angular distance of the reflection from the surface of the Ewald sphere is estimated using a Gaussian rocking curve. This decline is dubbed ‘Ewald offset correction’, which is well defined even for still images. Together with an image-scaling factor and other corrections, an explicit expression is defined that predicts each recorded intensity from its corresponding structure-factor amplitude. All diffraction parameters, scaling and correction factors are improved by post-refinement. The ambiguous case of a lower point group than the lattice symmetry is resolved by a method reminiscent of the technique of ‘selective breeding’. It selects the indexing alternative for each image that yields, on average, the highest correlation with intensities from all other images. Processing a test set of rotation images by XDS and treating the same images by nXDS as snapshots of crystals in random orientations yields data of comparable quality, clearly indicating an anomalous signal from Se atoms.

  7. Compositional variations in optical characteristics of Mn doped spinel crystals

    NASA Astrophysics Data System (ADS)

    Katsumata, Toru; Mitomi, Hiromasa; Nagayama, Hijiri; Orihara, Yuka; Aoki, Mina; Yoshida, Ayaka; Shiratake, Kasumi; Minowa, Shunsuke; Sakuma, Takashi; Aizawa, Hiroaki; Komuro, Shuji

    2017-06-01

    Mn doped spinel (MgAl2O4) crystals have been grown by floating zone (FZ) techniques with various conditions of O2 concentrations in the growth atmosphere from 0 to 75 vol%, with a starting composition of molar ratio x=MgO/(MgO+Al2O3) from 0.3 to 1.0 and/or Mn concentrations from 1.0 to 6.0 at%. Optical absorption spectra and photoluminescence spectra were evaluated using crystals grown under various growth conditions. The color of the crystals is found to vary with their composition and the O2 concentration in the atmosphere. Crystals grown under a 100 vol% Ar atmosphere, were a pale green color and emitted a strong green luminescence at λ=520 nm. Colors of stoichiometric crystals, x=1.0, and Mg-poor crystals grown under an oxidizing atmosphere are yellow and red, respectively. Both optical absorption spectra and photoluminescence spectra of Mg-poor, x<1.0 crystals grown under an oxidizing (O2-Ar) atmosphere are found to vary greatly from those of the stoichiometric crystals.

  8. Crystal Orientation and Temperature Effects on the Double Hysteresis Loop Behavior of a PVDF- g-PS Graft Copolymer

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Yang, Lianyun; Guan, Fangxiao

    2013-03-01

    In a recent report, double hysteresis loop behavior is observed in a nanoconfined poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-polystyrene [P(VDF-TrFE-CTFE)- g-PS] copolymer. It is considered that the PS grafts are capable of reducing the compensation polarization and thus the polarization electric field during the reverse poling process, resulting in the double hysteresis loop behavior. In this study, we further investigated crystal orientation and temperature effects on this novel ferroelectric behavior. It is observed that with increasing the orientation factor, the electric displacement-electric field (D-E) loop changes from linear for non-oriented film to double loop for the well-oriented film. With increasing the temperature, the double hysteresis loop is gradually replaced by the single and open loop, which is attributed to the impurity ion migrational loss in the sample. This work is supported by NSF (DMR-0907580).

  9. Er:YAG crystal temperature influence on laser output characteristics

    NASA Astrophysics Data System (ADS)

    Němec, Michal; Å ulc, Jan; Hubka, Zbyněk.; Hlinomaz, Kryštof; Jelínková, Helena

    2017-02-01

    The main goal of this work was to investigate the influence of the temperature of the Er:YAG active medium on laser properties in eye-safe spectral region for three various pump wavelengths. The tested Er:YAG sample doped by 0.5% of Er3+ ions had a cylindrical shape with 25mm in length and 5mm in diameter. The absorption spectrum of the Er:YAG active medium in the range from 1400nm up to 1700nm for temperatures 80K and 300K was measured. The crystal was placed inside the vacuum chamber of a liquid nitrogen cooled cryostat. The temperature was controlled within the 80 - 340K temperature range. Three pump sources generating at 1535, 1452, and 1467nm were applied. The first one was flash lamp pumped Er:glass laser (repetition rate 0.5 Hz, pulse duration 1 ms, pulse energy 148 mJ). The further two sources were fiber coupled laser diodes (repetition rate 10 Hz, pulse duration 10 ms, maximum pulse energies 106mJ and 195 mJ). The semi-hemispherical laser resonator consisted of a pump curved mirror and output plan coupler with a reflectivity of 90% @ 1645 nm. The laser output characteristics were investigated in dependence on temperature of active medium for three laser pumping systems. The output energy has an optimum in dependence on active medium temperature and pump wavelengths. The maximal generated laser energies were 16.2mJ (90 K), 28.7mJ (120 K), and 33.2mJ (220 K), for pump wavelengths 1452 nm, 1467 nm, and 1535 nm, respectively.

  10. Combined Effect of Shear and Fibrous Fillers on Orientation-Induced Crystallization in Discontinuous Aramid Fiber-Isotactic Polypropylene Composites

    SciTech Connect

    Larin,B.; Avila-Orta, C.; Somani, R.; Hsiao, B.; Marom, G.

    2008-01-01

    The shear-induced crystallization behavior in isotactic polypropylene (iPP) composite melt containing short aramid fibers was investigated by means of WAXD (wide-angle X-ray diffraction) and SAXS (small-angle X-ray scattering) techniques using synchrotron radiation. The study was carried out in a post-shear isothermal crystallization mode at temperatures of 140-160 C. Parameters pertaining to the crystallization morphology and kinetics were analyzed, including total crystallinity, orientated crystalline and amorphous fractions, dimensions of the formed shish-kebab structure, as well as induction time and rate of crystallization. The individual contributions of shear and fibers were evaluated and the combined effect was compared. The results clearly indicated that the effect is synergistic rather than additive.

  11. An Exploratory Study of Student Service Members/Veterans' Mental Health Characteristics by Sexual Orientation.

    PubMed

    Pelts, Michael D; Albright, David L

    2015-01-01

    Explore the mental health differences of student veterans by sexual orientation. Student service members/veterans (N = 702) from the Fall 2011 National College Health Assessment. Descriptive statistics and 2-sample proportion and mean tests were used to compare mental health characteristics. Student veterans who identify as lesbian, gay, bisexual, or unsure had higher levels of mental health symptoms and treatment. Results suggest a need for continued examination of student service members/veterans as related to disparities in mental health by sexual orientation.

  12. Orientation epitaxy of Ge1–xSnx films grown on single crystal CaF2 substrates

    DOE PAGES

    A. J. Littlejohn; Zhang, L. H.; Lu, T. -M.; ...

    2016-03-15

    Ge1–xSnx films were grown via physical vapor deposition below the crystallization temperature of Ge on single crystal (111) and (100) CaF2 substrates to assess the role of Sn alloying in Ge crystallization. By studying samples grown at several growth temperatures ranging from 250 °C to 400 °C we report temperature-dependent trends in several of the films' properties. X-ray diffraction theta vs. two-theta (θ/2θ) scans indicate single orientation Ge1–xSnx(111) films are grown on CaF2(111) substrates at each temperature, while a temperature-dependent superposition of (111) and (100) orientations are exhibited in films grown on CaF2(100) above 250 °C. This is the firstmore » report of (111) oriented Ge1–xSnx grown on a (100) oriented CaF2 substrate, which is successfully predicted by a superlattice area matching model. These results are confirmed by X-ray diffraction pole figure analysis. θ/2θ results indicate substitutional Sn alloying in each film of about 5%, corroborated by energy dispersive spectroscopy. In addition, morphological and electrical properties are measured by scanning electron microscopy, atomic force microscopy and Hall mobility measurements and are also shown to be dependent upon growth temperature.« less

  13. Effect of loading orientations on the microstructure and property of Al−Cu single crystal during stress aging

    SciTech Connect

    Chen, Jiqiang; Chen, Zhiguo; Deng, Yunlai; Guo, Xiaobin; Ren, Jieke

    2016-07-15

    The precipitation behavior and property of Al−Cu alloy during stress aging under various loading orientations were investigated using single crystals. The resulting microstructures and the strength property were examined by transmission electron microscope (TEM) and compression test, respectively, and the effect of the distribution of θ′-plates on strength property were discussed. The results show that the precipitation distribution of θ′ was significantly affected by the loading orientation during stress aging of Al−Cu single crystals. Loading along close to 〈011〉{sub Al} directions provided more uniform precipitation distribution of θ′ as compared to loading along close to 〈001〉{sub Al} directions, and therefore provided higher strengthening stress of the θ′-plates for the stress aging sample. The results suggested that regulating the distribution of θ′ and therefore improving strength property are possible via controlling the loading orientation during stress aging. - Highlights: • We studied the effect of loading directions on stress aging of Al−Cu single crystal. • Precipitation distribution of θ′ was noticeably affected by the loading direction. • Loading along close to 〈011〉{sub Al} directions reduced the stress-orienting effect. • The strength property is closely related to the precipitation distribution of θ′. • It is possible to regulate the distribution of θ′ and improve strength property.

  14. Praseodymium Cuprate Thin Film Cathodes for Intermediate Temperature Solid Oxide Fuel Cells: Roles of Doping, Orientation, and Crystal Structure.

    PubMed

    Mukherjee, Kunal; Hayamizu, Yoshiaki; Kim, Chang Sub; Kolchina, Liudmila M; Mazo, Galina N; Istomin, Sergey Ya; Bishop, Sean R; Tuller, Harry L

    2016-12-21

    Highly textured thin films of undoped, Ce-doped, and Sr-doped Pr2CuO4 were synthesized on single crystal YSZ substrates using pulsed laser deposition to investigate their area-specific resistance (ASR) as cathodes in solid-oxide fuel cells (SOFCs). The effects of T' and T* crystal structures, donor and acceptor doping, and a-axis and c-axis orientation on ASR were systematically studied using electrochemical impedance spectroscopy on half cells. The addition of both Ce and Sr dopants resulted in improvements in ASR in c-axis oriented films, as did the T* crystal structure with the a-axis orientation. Pr1.6Sr0.4CuO4 is identified as a potential cathode material with nearly an order of magnitude faster oxygen reduction reaction kinetics at 600 °C compared to thin films of the commonly studied cathode material La0.6Sr0.4Co0.8Fe0.2O3-δ. Orientation control of the cuprate films on YSZ was achieved using seed layers, and the anisotropy in the ASR was found to be less than an order of magnitude. The rare-earth doped cuprate was found to be a versatile system for study of relationships between bulk properties and the oxygen reduction reaction, critical for improving SOFC performance.

  15. Ultrafast infrared observation of exciton equilibration from oriented single crystals of photosystem II

    PubMed Central

    Kaucikas, Marius; Maghlaoui, Karim; Barber, Jim; Renger, Thomas; van Thor, Jasper J.

    2016-01-01

    In oxygenic photosynthesis, two photosystems work in series. Each of them contains a reaction centre that is surrounded by light-harvesting antennae, which absorb the light and transfer the excitation energy to the reaction centre where electron transfer reactions are driven. Here we report a critical test for two contrasting models of light harvesting by photosystem II cores, known as the trap-limited and the transfer-to-the trap-limited model. Oriented single crystals of photosystem II core complexes of Synechococcus elongatus are excited by polarized visible light and the transient absorption is probed with polarized light in the infrared. The dichroic amplitudes resulting from photoselection are maintained on the 60 ps timescale that corresponds to the dominant energy transfer process providing compelling evidence for the transfer-to-the-trap limitation of the overall light-harvesting process. This finding has functional implications for the quenching of excited states allowing plants to survive under high light intensities. PMID:28008915

  16. Characterizations of nonlinear optical properties on GaN crystals in polar, nonpolar, and semipolar orientations

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Huang, Xuanqi; Fu, Houqiang; Lu, Zhijian; Zhang, Xiaodong; Montes, Jossue A.; Zhao, Yuji

    2017-05-01

    We report the basic nonlinear optical properties, namely, two-photon absorption coefficient ( β ), three-photon absorption coefficient ( γ ), and Kerr nonlinear refractive index ( n kerr), of GaN crystals in polar c-plane, nonpolar m-plane, and semipolar ( 20 21 ¯ ) plane orientations. A typical Z-scan technique was used for the measurement with a femtosecond Ti:S laser from wavelengths of 724 nm to 840 nm. For the two-photon absorption coefficient ( β ), similar values were obtained for polar, nonpolar, and semipolar samples, which are characterized to be ˜0.90 cm/GW at 724 nm and ˜0.65 cm/GW at 730 nm for all the three samples. For the Kerr nonlinear refractive index ( n kerr), self-focusing features were observed in this work, which is different from previous reports where self-defocusing features were observed on GaN in the visible and near-UV spectral regions. At 724 nm, n kerr was measured to be ˜2.5 0 × 10 - 14 cm 2 / W for all three samples. Three-photon absorption coefficients ( γ ) were also determined, which were found to be consistent with previous reports. This study provides valuable information on the basic nonlinear optical properties of III-nitride semiconductors, which are vital for a wide range of applications such as integrated photonics and quantum photonics.

  17. Utilization of oriented crystal growth for screening of aromatic carboxylic acids cocrystallization with urea

    NASA Astrophysics Data System (ADS)

    Przybyłek, Maciej; Ziółkowska, Dorota; Kobierski, Mirosław; Mroczyńska, Karina; Cysewski, Piotr

    2016-01-01

    The possibility of molecular complex formation in the solid state of urea with benzoic acid analogues was measured directly on the crystallite films deposited on the glass surface using powder X-ray diffractometry (PXRD). Obtained solid mixtures were also analyzed using Fourier transform infrared spectroscopy (FTIR). The simple droplet evaporation method was found to be efficient, robust, fast and cost-preserving approach for first stage cocrystal screening. Additionally, the application of orientation effect to cocrystal screening simplifies the analysis due to damping of majority of diffraction signals coming from coformers. During validation phase the proposed approach successfully reproduced both positive cases of cocrystallization (urea:salicylic acid and urea:4-hydroxy benzoic acid) as well as pairs of co-formers immiscible in the solid state (urea:benzoic acid and urea:acetylsalicylic acids). Based on validated approach new cocrystals of urea were identified in complexes with 3-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid and 3,5-dihydroxybenzoic acid. In all cases formation of multicomponent crystal phase was confirmed by the appearance of new reflexes on the diffraction patterns and FTIR absorption band shifts of O-H and N-H groups.

  18. Crystal orientation mechanism of ZnTe epilayers formed on different orientations of sapphire substrates by molecular beam epitaxy

    SciTech Connect

    Nakasu, T. Yamashita, S.; Aiba, T.; Hattori, S.; Sun, W.; Taguri, K.; Kazami, F.; Kobayashi, M.

    2014-10-28

    The electrooptic effect in ZnTe has recently attracted research attention, and various device structures using ZnTe have been explored. For application to practical terahertz wave detector devices based on ZnTe thin films, sapphire substrates are preferred because they enable the optical path alignment to be simplified. ZnTe/sapphire heterostructures were focused upon, and ZnTe epilayers were prepared on highly mismatched sapphire substrates by molecular beam epitaxy. Epitaxial relationships between the ZnTe thin films and the sapphire substrates with their various orientations were investigated using an X-ray diffraction pole figure method. (0001) c-plane, (1-102) r-plane, (1-100) m-plane, and (11-20) a-plane oriented sapphire substrates were used in this study. The epitaxial relationship between ZnTe and c-plane sapphire was found to be (111) ZnTe//(0001) sapphire with an in-plane orientation relationship of [−211] ZnTe//[1-100] sapphire. It was found that the (211)-plane ZnTe layer was grown on the m-plane of the sapphire substrates, and the (100)-plane ZnTe layer was grown on the r-plane sapphire. When the sapphire substrates were inclined from the c-plane towards the m-axis direction, the orientation of the ZnTe thin films was then tilted from the (111)-plane to the (211)-plane. The c-plane of the sapphire substrates governs the formation of the (111) ZnTe domain and the ZnTe epilayer orientation. These crystallographic features were also related to the atom arrangements of ZnTe and sapphire.

  19. Fabrication of highly oriented large-scale TIPS pentacene crystals and transistors by the Marangoni effect-controlled growth method.

    PubMed

    Zhao, Haoyan; Wang, Zhao; Dong, Guifang; Duan, Lian

    2015-03-07

    We demonstrate a solution method of Marangoni effect-controlled oriented growth (MOG) to fabricate highly oriented crystals of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) on the Si/SiO2 substrate. Based on the Marangoni effect induced by mixed solvent systems, large area aligned ribbon crystals can be achieved, covering over 60% on 4 cm × 1 cm Si/SiO2 substrates. We investigated the growth mechanism of the MOG method and found that the correct choice of solvents and appropriate solvent ratios are in favor of aligned crystal growth. With the ribbon crystals of TIPS pentacene, top-contact organic field-effect transistors are fabricated. The optimal device exhibits a field-effect mobility of 0.70 ± 0.22 cm(2) V(-1) s(-1) and an on/off ratio of 10(5). The MOG method, which has potential to be used in batch production and features easy control of crystal growth using non-contact forces, will benefit the development of low-cost, high-performance, organic semiconductor devices.

  20. Nematic order-disorder state transition in a liquid crystal analogue formed by oriented and migrating amoeboid cells

    NASA Astrophysics Data System (ADS)

    Kemkemer, R.; Teichgräber, V.; Schrank-Kaufmann, S.; Kaufmann, D.; Gruler, H.

    2000-10-01

    In cell culture, liquid crystal analogues are formed by elongated, migrating, and interacting amoeboid cells. An apolar nematic liquid crystal analogue is formed by different cell types like human melanocytes (=pigment cells of the skin), human fibroblasts (=connective tissue cells), human osteoblasts (=bone cells), human adipocytes (=fat cells), etc. The nematic analogue is quite well described by i) a stochastic machine equation responsible for cell orientation and ii) a self-organized extracellular guiding signal, E_2, which is proportional to the orientational order parameter as well as to the cell density. The investigations were mainly made with melanocytes. The transition to an isotropic state analogue can be accomplished either by changing the strength of interaction (e.g. variation of the cell density) or by influencing the cellular machinery by an externally applied signal: i) An isotropic gaseous state analogue is observed at low cell density (ρ < 110melanocytes/mm^2) and a nematic liquid crystal state analogue at higher cell density. ii) The nematic state analogue disappears if the bipolar shaped melanocytes are forced to become a star-like shape (induced by colchicine or staurosporine). The analogy between nematic liquid crystal state analogue formed by elongated, migrating and interacting cells and the nematic liquid crystal phase formed by interacting elongated molecules is discussed.

  1. Modeling the effects of stress state and crystal orientation on the stress-induced transformation of NiTi single crystals

    SciTech Connect

    Buchheit, T.E.; Wert, J.A. . Dept. of Materials Science and Engineering)

    1994-11-01

    A model that combines the phenomenological theory of martensite with a generalized Schmid's law has been used to predict the principal stress combinations required to induce the martensitic transformation in unconstrained NiTi shape memory alloy (SMA) single crystals. The transformation surfaces prescribed by the model are anisotropic and asymmetric, reflecting the unidirectional character of shear on individual martensite habit planes. Model predictions of the transformation strain as a function of stress axis orientation for uniaxial applied stress further demonstrate the anisotropy of the stress-induced transformation in NiTi single crystals. Model results for the uniaxial stress case compare favorably with previously published experimental observations for aged NiTi single crystals.

  2. The polarization trajectory of terahertz magnetic dipole radiation in (110)-oriented PrFeO{sub 3} single crystal

    SciTech Connect

    Song, Gaibei; Jin, Zuanming; Lin, Xian; Jiang, Junjie; Wang, Xinyan; Wu, Hailong; Ma, Guohong E-mail: sxcao@shu.edu.cn; Cao, Shixun E-mail: sxcao@shu.edu.cn

    2014-04-28

    By using the polarized terahertz (THz) time-domain spectroscopy, the macro-magnetization motion in (110)-oriented PrFeO{sub 3} single crystal was constructed. We emphasize that the trajectory of the emitted THz waveforms relies on not only the motion of macroscopic magnetization vector, but also the spin configuration in the ground state and the propagation of THz pulse. The azimuthal angle (the incident THz pulse polarization with respect to the crystal axes) enables us to control the polarization trajectories of the quasiferromagnetic and quasiantiferromagnetic mode radiations that can lead to further applications on multiple information storing and quantum processing.

  3. Cognitive characteristics of learning Java, an object-oriented programming language

    NASA Astrophysics Data System (ADS)

    White, Garry Lynn

    Industry and Academia are moving from procedural programming languages (e.g., COBOL) to object-oriented programming languages, such as Java for the Internet. Past studies in the cognitive aspects of programming have focused primarily on procedural programming languages. Some of the languages used have been Pascal, C, Basic, FORTAN, and COBOL. Object-oriented programming (OOP) represents a new paradigm for computing. Industry is finding that programmers are having difficulty shifting to this new programming paradigm. This instruction in OOP is currently starting in colleges and universities across the country. What are the cognitive aspects for this new OOP language Java? When is a student developmentally ready to handle the cognitive characteristics of the OOP language Java? Which cognitive teaching style is best for this OOP language Java? Questions such as the aforementioned are the focus of this research Such research is needed to improve understanding of the learning process and identify students' difficulties with OOP methods. This can enhance academic teaching and industry training (Scholtz, 1993; Sheetz, 1997; Rosson, 1990). Cognitive development as measured by the Propositional Logic Test, cognitive style as measured by the Hemispheric Mode Indicator, and physical hemispheric dominance as measured by a self-report survey were obtained from thirty-six university students studying Java programming. Findings reveal that physical hemispheric dominance is unrelated to cognitive and programming language variables. However, both procedural and object oriented programming require Piaget's formal operation cognitive level as indicated by the Propositional Logic Test. This is consistent with prior research A new finding is that object oriented programming also requires formal operation cognitive level. Another new finding is that object oriented programming appears to be unrelated to hemispheric cognitive style as indicated by the Hemispheric Mode Indicator (HMI

  4. Vacuum pyrolysis characteristics and kinetic analysis of liquid crystal from scrap liquid crystal display panels.

    PubMed

    Chen, Ya; Zhang, Lingen; Xu, Zhenming

    2017-04-05

    Recycling of waste liquid crystal display (LCD) panels is an urgent task with the rapid expanding LCD market. However, as important composition of LCD panels, the treatment of liquid crystal is seldom concerned for its low concentration. In present study, a stripping product enriched liquid crystal and indium is gained by mechanical stripping process, in which liquid crystal is enriched from 0.3wt.% to 53wt.% and indium is enriched from 0.02wt.% to 7.95wt.%. For the stripping product, liquid crystal should be removed before indium recovery because (a) liquid crystal will hinder indium recycling; (b) liquid crystal is hazardous waste. Hence, an effective and green approach by vacuum pyrolysis is proposed to treat liquid crystal in the stripping product. The results are summarized as: (i) From the perspective of apparent activation energy, the advantages of vacuum pyrolysis is expounded according to kinetic analysis. (ii) 89.10wt.% of liquid crystal is converted and the content of indium in residue reaches 14.18wt.% under 773K, 15min and system pressure of 20Pa. This study provides reliable information for further industrial application and an essential pretreatment for the next step of indium recycling.

  5. Smectic C liquid crystal growth through surface orientation by ZnxCd1-xSe thin films

    NASA Astrophysics Data System (ADS)

    Katranchev, B.; Petrov, M.; Bineva, I.; Levi, Z.; Mineva, M.

    2012-12-01

    A smectic C liquid crystal (LC) texture, consisting of distinct local single crystals (DLSCs) was grown using predefined orientation of ternary nanocrystalline thin films of ZnxCd1-xSe. The surface morphology and orientation features of the ZnxCd1-xSe films were investigated by AFM measurements and micro-texture polarization analysis. The ZnxCd1-xSe surface causes a substantial enlargement of the smectic C DLSCs and induction of a surface bistable state. The specific character of the morphology of this coating leads to the decrease of the corresponding anchoring energy. Two new chiral states, not typical for this LC were indicated. The physical mechanism providing these new effects is presented.

  6. Effect of crystal and domain orientation on the visible-light photochemical reduction of Ag on BiFeO₃.

    PubMed

    Schultz, Andrew M; Zhang, Yiling; Salvador, Paul A; Rohrer, Gregory S

    2011-05-01

    The reduction of silver from an aqueous solution on BiFeO₃ surfaces, activated by visible light, was investigated as a function of crystal and ferroelectric domain orientation. When excited by light with energy between 2.53 and 2.70 eV, BiFeO₃ photochemically reduces silver cations from solution in patterns corresponding to the underlying ferroelectric domain structure. Silver is preferentially reduced on domains with a positive polarization directed toward the surface. The amount of reduced silver depends on whether the component of the domain polarization normal to the surface is positive or negative, but is relatively insensitive to the crystal orientation. It is concluded that the ferroelectric polarization decreases electron drift to the surface in domains with a negative polarization, causing spatially selective photochemical behavior, and that the direction of the polarization is more important than the amplitude.

  7. Development of olivine Crystal Preferred Orientation in Oshima peridotite body as a remnant of oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Tasaka, M.; Toriumi, M.; Wataru, N.

    2008-12-01

    To know the mantle flow kinematics, investigation of the seismic anisotropy is common method in upper mantle. Anisotropy is linked to crystal preferred orientations (CPOs) of olivine which is most abundant and weakest mineral in upper mantle. However the quantitative investigation analyses of natural CPO data have not succeeded yet. So, we must understand how olivine CPOs develops with strain in deformation settings. The Oshima peridotite body is the lower part of the Yakuno ophiolite in SW Japan (Ishiwatari, 1985a, b). This body consists dominantly of dunite and harzburgite deformed in upper mantle. This peridotites display various microstructures such as coarse grained granoblastic texture (0.7-1.0mm), elongated porphyroclastic texture (1.0mm-) and fine grained equigranular texture (0.1mm-). We analyzed CPOs of olivine using EBSD method. The results show that CPOs of olivine was formed by (0kl)[100] or (010)[100] slip system. In order to characterize the CPOs, we first determined the fabric strength and orientation distribution density of the principal crystallographic axes (J-index and M-index; Tommasi et al., 2000 and Skemer et al., 2005). According to those studies with increasing monotonously strain, the value of J- and M-index also increases. The Oshima peridotite body shows the various fabric strength from J=2.95 to 16.26 (M=0.040 to 0.384). On this presentation, we propose a new inversion method of mantle deformation by matching the model CPO patterns with natural CPOs in the Alpine type peridotites. Furthermore, we investigated two kind of angles of olivine together with CPOs at the same time to analyze CPOs development during mantle deformation. There are; (1) Angles between slip plane of each olivine grain and sample lineation. (2) Misorientation angles between adjacent olivine grains. The different angles between the slip plane of olivine grains and the rock lineation (1) are controlled by lattice rotation due to dislocation glide (Sevillano et al

  8. Layers of quasi-horizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar.

    PubMed

    Borovoi, Anatoli; Balin, Yurii; Kokhanenko, Grigorii; Penner, Iogannes; Konoshonkin, Alexander; Kustova, Natalia

    2014-10-06

    Layers of quasi-horizontally oriented ice crystals in cirrus clouds are observed by a two-wavelength polarization lidar. These layers of thickness of several hundred meters are identified by three attributes: the backscatter reveals a sharp ridge while the depolarization ratio and color ratio become deep minima. These attributes have been justified by theoretical calculations of these quantities within the framework of the physical-optics approximation.

  9. Bond orientational ordering in a metastable supercooled liquid: a shadow of crystallization and liquid-liquid transition

    NASA Astrophysics Data System (ADS)

    Tanaka, Hajime

    2010-12-01

    It is widely believed that a liquid state can be characterized by a single order parameter, density, and that a transition from a liquid to solid can be described by density ordering (translational ordering). For example, this type of theory has had great success in describing the phase behaviour of hard spheres. However, there are some features that cannot be captured by such theories. For example, hard spheres crystallize into either hcp or fcc structures, without a tendency of bcc ordering which is expected by the Alexander-McTague theory based on the Landau-type free energy of the density order parameter. We also found hcp-like bond orientational ordering in a metastable supercooled liquid, which promotes nucleation of hcp crystals. Furthermore, theories based on the single order parameter cannot explain water-like thermodynamic and kinetic anomalies of a liquid and liquid-liquid transition in a single-component liquid. Based on these facts, we argue that we need an additional order parameter to describe a liquid state. It is bond orientational order, which is induced by dense packing in hard spheres or by directional bonding in molecular and atomic liquids. Bond orientational order is intrinsically of local nature, unlike translational order which is of global nature. This feature plays a unique role in crystallization and quasicrystal formation. We also reveal that bond orientational ordering is a cause of dynamic heterogeneity near a glass transition and is linked to slow dynamics. In relation to this, we note that, for describing the structuring of a highly disordered liquid, we need a structural signature of low configurational entropy, which is more general than bond orientational order. Finally, the water-like anomaly and liquid-liquid transition can be explained by bond orientational ordering due to hydrogen or covalent bonding and its cooperativity, respectively. So we argue that bond orientational ordering is a key to the physical understanding of

  10. Ferroelectric, Thermal, and Magnetic Characteristics of Praseodymium Malonate Hexahydrate Crystals

    NASA Astrophysics Data System (ADS)

    Ahmad, Nazir; Ahmad, M. M.; Kotru, P. N.

    2016-04-01

    Gel-grown single crystals of [Pr2(C3H2O4)3(H2O)6] exhibit remarkably flat habit faces, the most predominant being {110}. High-resolution x-ray diffraction analysis showed that the crystals are free from structural grain boundaries, which is the key requirement for single crystals for use in the microelectronics industry to serve as low-dielectric-constant ferroelectric material. The dielectric behavior recorded on {110} planes of single crystals shows that the crystal is ferroelectric with transition temperature T c = 135°C, which differs from the Curie-Weiss temperature T 0 by 2°C (T 0 < T c). Material in pellet form is shown to exhibit slightly different dielectric behavior. Polarization versus electric field confirms the ferroelectric behavior of the material. The dielectric behavior is also supported by the results of thermal studies, viz. thermogravimetric analysis (TGA), differential thermal analysis (DTA), and differential scanning calorimetry (DSC). The magnetic susceptibility and magnetic moment are calculated to be 30.045 × 10-6 emu and 3.092 BM, respectively.

  11. Some new results on irradiation characteristics of synthetic quartz crystals and their application to radiation hardening

    NASA Technical Reports Server (NTRS)

    Bahadur, H.; Parshad, R.

    1983-01-01

    The paper reports some new results on irradiation characteristics of synthetic quartz crystals and their application to radiation hardening. The present results show how the frequency shift in quartz crystals can be influenced by heat processing prior to irradiation and how this procedure can lead to radiation hardening for obtaining precise frequencies and time intervals from quartz oscillators in space.

  12. Fundamental piezo-Hall coefficients of single crystal p-type 3C-SiC for arbitrary crystallographic orientation

    NASA Astrophysics Data System (ADS)

    Qamar, Afzaal; Dao, Dzung Viet; Phan, Hoang-Phuong; Dinh, Toan; Dimitrijev, Sima

    2016-08-01

    Piezo-Hall effect in a single crystal p-type 3C-SiC, grown by LPCVD process, has been characterized for various crystallographic orientations. The quantified values of the piezo-Hall effect in heavily doped p-type 3C-SiC(100) and 3C-SiC(111) for different crystallographic orientations were used to obtain the fundamental piezo-Hall coefficients, P 12 = ( 5.3 ± 0.4 ) × 10 - 11 Pa - 1 , P 11 = ( - 2.6 ± 0.6 ) × 10 - 11 Pa - 1 , and P 44 = ( 11.42 ± 0.6 ) × 10 - 11 Pa - 1 . Unlike the piezoresistive effect, the piezo-Hall effect for (100) and (111) planes is found to be independent of the angle of rotation of the device within the crystal plane. The values of fundamental piezo-Hall coefficients obtained in this study can be used to predict the piezo-Hall coefficients in any crystal orientation which is very important for designing of 3C-SiC Hall sensors to minimize the piezo-Hall effect for stable magnetic field sensitivity.

  13. Transmission characteristics of a twisted nematic liquid-crystal layer

    NASA Technical Reports Server (NTRS)

    Grinberg, J.; Jacobson, A. D.

    1976-01-01

    An approximate analytical expression is calculated for the transmission of thin twisted nematic layers situated between a polarizer/analyzer pair. The approximation assumes that the twist angle of the nematic liquid crystal is smaller than the maximum retardation of the cell. The direction of the incident light is assumed to be parallel to the normal of the electrode. This configuration is analyzed for a general arrangement of polarizer and analyzer; the general result is evaluated for the case of the polarizer parallel and analyzer perpendicular to the liquid-crystal optical axis on the input and output electrodes, respectively. The results show that in the case of a thin twisted nematic layer the transmission depends on the thickness of the layer, on the birefringence of the liquid crystal, and on the wavelength of the light. This is a departure from the well-known independence of the transmission on these parameters for a thick twisted nematic layer.

  14. Hydration Mechanisms, Crystal Preferred Orientation, and Anisotropy in the Upper Mantle and Transition Zone

    NASA Astrophysics Data System (ADS)

    Smyth, J. R.; Ye, Y.; Jacobsen, S. D.

    2011-12-01

    Nominally anhydrous silicate minerals of the upper mantle and transition zone incorporate H2O into their structures at mantle temperatures and pressures as ordered hydroxyl defects. These defects can commonly be identified by single-crystal X-ray diffraction and polarized infrared spectroscopy. Regional or large-scale mantle hydration can account for two to ten times the mass of water in Earth's oceans affecting anisotropic elastic properties of the mantle's constituent minerals such that hydration causes distinct patterns of seismic anisotropy. Recent crystallographic studies indicate that the principal hydration mechanism of the nominally anhydrous minerals is by protonation of octahedral (Mg,Fe) cation vacancies. Here we show that in the most abundant minerals of the upper 660km, olivine (alpha), wadsleyite (beta), and ringwoodite (gamma) polymorphs of Mg2SiO4, hydrated point defects order to form planes of weakness that can control lattice preferred orientation and velocity anisotropy in various regions of the upper mantle and transition zone. In olivine, ordering of protonated (Mg,Fe) vacancies in the M1 octahedral site predicts that hydration will enhance c-axis alignment parallel to the direction of shear in the (010) plane, as in type-B LPO with SH > SV by up to 10% under horizontal shear. In wadsleyite, vacancies and protons order into the M3 octahedral sites which form double edge-sharing chains of octahedra parallel to a. This vacancy ordering predicts a slip vector of [100] on {011} planes and, unlike olivine, would produce SH < SV by up to 2-6% under horizontal or vertical shear. In ringwoodite, velocity anisotropy is weak, but shear velocity differences of one or two percent are possible. Velocity and electrical conductivity anisotropy may thus be useful indicators of hydration in planetary interiors.

  15. Orientation and optical properties of methylene blue crystal for better understanding of interactions with clay mineral surface

    NASA Astrophysics Data System (ADS)

    Milošević, Maja; Logar, Mihovil

    2013-04-01

    The properties of cationic dye Methylene blue (MB) adsorbed on diferent surfaces have been investigated intensively over the years and various models for the orientation of its cations have been proposed (Hang and Brindley, 1970; Bujdak et al., 2003; Li and Zare, 2004; Marr III et al., 1973; Bujdak, 2006).The main objective of this work is to investigate and determine orientation and optical properties of metylene blue crystal upon its crystallization on a glass slate and to use those findings in better understanding of interactions with clay minerals. Cationic dyes have very high affinity for clay surfaces and those interactions are easily detected, therefore these dyes are used to determine several properties of clay surfaces (morphology, layer charge, CEC). For this study, we have selected a group of MB crystal and carried out XRD analysis, polarized absorption spectra measurement (400 - 900 nm) and determination of optical properties (pleochroism, determination of twining and extinction angle) using polarizing microscope. Methylene blue crystals are exhibiting mostly needle like habitus with huge difference in width - length ratio. According to X-ray diffraction it is quite obvious that the y (b) axis is perpendicular to the crystal surface. The x (a) and z (c) axis lie in the crystal plane (010). Crystals exhibit prominent dichroism: from blue (E || elong.) to colorless. In accordance with current interpretation of MB spectra peaks at 647 and 570 nm can be assigned as dimer aggregation and peaks at 475 and 406 nm as higher level of aggregation. All of them exhibit pronounced polarization dependence. The group of peaks at lower energy (700 to 900 nm) do not show significant polarization dependence and they correspond to the J - aggregates. Peak at around 800 nm have been noticed as fluorescence active. In dependence with thickness of the crystals and vibration direction we have observed presence of polysynthetic twinning which can be compared with polysynthetic

  16. Effects of crystal orientation and ferroelastic domain structure on the photochemical reactivity of BiVO4 and related compounds

    NASA Astrophysics Data System (ADS)

    Munprom, Ratiporn

    Bismuth vanadate, BiVO4, has been recognized for its high efficiency as a photoanode for water splitting. However, its performance is limited by photogenerated electron--hole recombination. Thus, researchers have attempted to modify BiVO4 to improve its performance. One strategy to improve charge separation is to utilize an internal field arising from surface termination differences. Previous studies concentrated on polygonal single crystals of BiVO4, providing limited information about the orientation-reactivity relationship. The current research focuses on polycrystalline BiVO4, which makes it possible to study the photochemical reactivity of all possible orientations and determine the complete orientation dependence of the photochemical reactivity of BiVO4. (Abstract shortened by UMI.).

  17. Substrate Orientation and Catalysis at the Molybdenum Site in Xanthine Oxidase CRYSTAL STRUCTURES IN COMPLEX WITH XANTHINE AND LUMAZINE

    SciTech Connect

    Pauff, James M.; Cao, Hongnan; Hille, Russ

    2010-01-12

    Xanthine oxidoreductase is a ubiquitous cytoplasmic protein that catalyzes the final two steps in purine catabolism. We have previously investigated the catalytic mechanism of the enzyme by rapid reaction kinetics and x-ray crystallography using the poor substrate 2-hydroxy-6-methylpurine, focusing our attention on the orientation of substrate in the active site and the role of Arg-880 in catalysis. Here we report additional crystal structures of as-isolated, functional xanthine oxidase in the course of reaction with the pterin substrate lumazine at 2.2 {angstrom} resolution and of the nonfunctional desulfo form of the enzyme in complex with xanthine at 2.6 {angstrom} resolution. In both cases the orientation of substrate is such that the pyrimidine subnucleus is oriented opposite to that seen with the slow substrate 2-hydroxy-6-methylpurine. The mechanistic implications as to how the ensemble of active site functional groups in the active site work to accelerate reaction rate are discussed.

  18. Nanoconfinement induced crystal orientation and large piezoelectric coefficient in vertically aligned P(VDF-TrFE) nanotube array

    PubMed Central

    Liew, Weng Heng; Mirshekarloo, Meysam Sharifzadeh; Chen, Shuting; Yao, Kui; Tay, Francis Eng Hock

    2015-01-01

    Vertically aligned piezoelectric P(VDF-TrFE) nanotube array comprising nanotubes embedded in anodized alumina membrane matrix without entanglement has been fabricated. It is found that the crystallographic polar axes of the P(VDF-TrFE) nanotubes are oriented along the nanotubes long axes. Such a desired crystal orientation is due to the kinetic selection mechanism for lamellae growth confined in the nanopores. The preferred crystal orientation in nanotubes leads to huge piezoelectric coefficients of the P(VDF-TrFE). The piezoelectric strain and voltage coefficients of P(VDF-TrFE) nanotube array are observed to be 1.97 and 3.40 times of those for conventional spin coated film. Such a significant performance enhancement is attributed to the well-controlled polarization orientation, the elimination of the substrate constraint, and the low dielectric constant of the nanotube array. The P(VDF-TrFE) nanotube array exhibiting the unique structure and outstanding piezoelectric performance is promising for wide applications, including various electrical devices and electromechanical sensors and transducers. PMID:25966301

  19. Shear-Induced Precursor Relaxation-Dependent Growth Dynamics and Lamellar Orientation of β-Crystals in β-Nucleated Isotactic Polypropylene.

    PubMed

    Chen, Yan-Hui; Fang, Du-Fei; Lei, Jun; Li, Liang-Bin; Hsiao, Benjamin S; Li, Zhong-Ming

    2015-04-30

    Although a shear flow field and β-nucleating agents (β-NAs) can separately induce the formation of β-crystals in isotactic polypropylene (iPP) in an efficient manner, we previously encountered difficulty in obtaining abundant β-crystals when these two factors were applied due to the competitive growth of α- and β-crystals. In the current study, to induce the formation of a high fraction of β-crystals, a strategy that introduces a relaxation process after applying a shear flow field but before cooling to crystallize β-nucleated iPP was proposed. Depending on the relaxation state of the shear-induced oriented precursors, abundant β-crystals with a refined orientation morphology were indeed formed. The key to producing these crystals lay in the partially dissolved shear-induced oriented precursors as a result of the relaxation process's ability to generate β-crystals by inducing the formation of needlelike β-NAs. Therefore, the content of β-crystals gradually increased with relaxation time, whereas the overall crystallization kinetics progressively decreased. Moreover, more time was required for the content of the β-phase to increase to the (maximum) value observed in quiescent crystallization than for the effect of flow on crystallization kinetics to be completely eliminated. The c-axis of the oriented β-lamellae was observed to be perpendicular, rather than parallel, to the fiber axis of the needlelike β-NAs, as first evidenced by the unique small-angle X-ray scattering patterns obtained. The significance of the relaxation process was manifested in regulating the content and morphology of oriented β-crystals in sheared, β-nucleated iPP and thus in the structure and property manipulation of iPP.

  20. A Precipitate-Strengthening Model Based on Crystallographic Anisotropy, Stress-Induced Orientation, and Dislocation of Stress-Aged Al-Cu-Mg Single Crystals

    NASA Astrophysics Data System (ADS)

    Guo, Xiaobin; Zhang, Yong; Zhang, Jin; Deng, Yunlai; Zhang, Xinming

    2017-10-01

    We investigate the relationship between inhomogeneously distributed S precipitates and hardness of stress-aged single-crystal Al-Cu-Mg. First, the effect of crystallographic anisotropy is considered and modeled from the results of free-stress aged single-crystal Al-1.2Cu-0.5Mg with ( 1\\bar{1}8 ), ( \\bar{1}\\bar{2}5 ), (356), and (319) plane orientations. Effect of crystallographic anisotropy depends on the angle between the plane orientation of the single crystal and {012} habit planes of the S precipitates. Second, the effects of the magnitude of the applied stress and direction on the S-laths' size and distribution are considered. As the applied stress-induced S-laths inhomogeneously distribute during aging, the effect of the single-crystal's orientation on the distribution of S-laths is modeled. The results show that a single crystal near (111) plane orientation has the lowest stress-orienting effect. Finally, at higher applied stresses, such as 50 MPa, the S precipitates disperse more homogeneously due to the influence of the dislocations. Inhibiting the effect of dislocation depends on the angle between the plane orientation of the single crystal and the {111} dislocation slide planes. A precipitate-strengthening model of the stress-aged Al-Cu-Mg alloys is established based on crystallographic anisotropy, stress-orienting precipitates, and inhibiting the effect of dislocations.

  1. The anisotropy of the basic characteristics of Lamb waves in a (001)-Bi12SiO20 piezoelectric crystal

    NASA Astrophysics Data System (ADS)

    Anisimkin, V. I.

    2016-03-01

    The orientation dependences of the phase velocity, the effective electromechanical coupling coefficient, and the angle between the wave normal and the energy flux vector are numerically calculated for zeroand first-order Lamb waves propagating in the (001) basal plane of a Bi12SiO20 cubic piezoelectric crystal. It is shown that the anisotropies of these modes are different and depend on the plate thickness h and the wavelength λ. For h/λ < 1, the mode anisotropy can exceed the anisotropy of the corresponding characteristics of surface acoustic waves propagating in the same plane; for h/λ > 1, it approximately coincides with the SAW anisotropy for all the characteristics.

  2. Study of spectroscopic and thermal characteristics of nonlinear optical molecular crystals based on 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Pavlovetc, I. M.; Fokina, M. I.

    2016-08-01

    The paper presents the results of study of spectroscopic and thermal characteristics of molecular co-crystals: 2-aminopyridine-4-nitrophenol-4-mtrophenolate (2AP4N) and 2,6- diaminopyridine-4-nitrophenol-4nitrophenolate (26DAP4N). Crystals were successfully grown by slow evaporation technique. Optical transparency in the region of 190-1100 was found to be suitable for applications with cut off wavelengths 420 and 430 nm respectively. Thermogravimetric and differential thermal analysis show good quality and thermal stability for studied crystals. Kurtz and Perry powder technique proves that the crystals are acentric and have significant nonlinear optical response.

  3. Thermo-optical and magneto-optical characteristics of CeF3 crystal

    NASA Astrophysics Data System (ADS)

    Mironov, Evgeniy A.; Starobor, Aleksey V.; Snetkov, Ilya L.; Palashov, Oleg V.; Furuse, Hiroaki; Tokita, Shigeki; Yasuhara, Ryo

    2017-07-01

    Thermo-optical and magneto-optical characteristics of a uniaxial CeF3 crystal have been investigated. Its optical anisotropy parameter, magneto-optical figure of merit, and the ratio of the thermo-optical constants P and Q have been measured. The found characteristics have been compared with the corresponding values for the TGG crystal. Based on the obtained results it has been concluded that, despite its anisotropy, the CeF3 crystal is promising material for the development of Faraday isolators for high-power lasers.

  4. Phase alignment and crystal orientation of Al 3Ni in Al-Ni alloy by imposition of a uniform high magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Chunjiang; Wang, Qiang; Wang, Zhongying; Li, Hutian; Nakajima, Keiji; He, Jicheng

    2008-03-01

    Solidification experiments of aluminum-nickel binary alloys under uniform high magnetic fields have been conducted. The effects of high magnetic fields on the crystal orientation of Al 3Ni were investigated by XRD and the alignment of primary phases Al 3Ni were also analyzed. Experimental results showed that the easy magnetization axis of Al 3Ni crystal oriented parallel to the imposed magnetic fields and the primary phase Al 3Ni aligned perpendicular to the magnetic fields. Magnetic orientation of crystal was determined by magnetic anisotropy energy. Whereas the phase alignment should be contributed to the combined effects of magnetic orientation, crystal growth and the effects of magnetic fields on mass transport during solidification.

  5. Optical properties of magnetic photonic crystals with an arbitrary magnetization orientation

    NASA Astrophysics Data System (ADS)

    Gevorgyan, A. H.; Golik, S. S.

    2017-07-01

    We have studied the peculiarities of diffraction of light in magnetic photonic crystals at large values of magnetooptical activity parameter and modulation depth. We have considered the case of an arbitrary angle between the directions of the external static magnetic field and the normal to the layer. The problem has been solved by the modified Ambartsumyan layer summation method. It has been shown that the given system is nonreciprocal with respect to not only circular, but linear polarizations also. In this case, a new type of nonreciprocity is observed (namely, the relation R(α) ≠ R(-α) holds, where R is the reflection coefficient and α is the angle of incidence). It has been demonstrated that in the case of oblique incidence, there appears a new photonic forbidden band that is not selective relative to the polarization of incident light. We have detected strong dependences of reflectance, absorbance, transmittance nonreciprocity, and other characteristics on the angle between the direction of the external static magnetic field and the normal to the layer boundary. Such a system can be used as a controllable polarization filter and a mirror, as well as a source of circular (elliptic) polarization, a controllable optical diode, and so on.

  6. Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization: Bond orientational order in liquids.

    PubMed

    Tanaka, Hajime

    2012-10-01

    There are at least three fundamental states of matter, depending upon temperature and pressure: gas, liquid, and solid (crystal). These states are separated by first-order phase transitions between them. In both gas and liquid phases a complete translational and rotational symmetry exist, whereas in a solid phase both symmetries are broken. In intermediate phases between liquid and solid, which include liquid crystal and plastic crystal phases, only one of the two symmetries is preserved. Among the fundamental states of matter, the liquid state is the most poorly understood. We argue that it is crucial for a better understanding of liquids to recognize that a liquid generally has the tendency to have a local structural order and its presence is intrinsic and universal to any liquid. Such structural ordering is a consequence of many-body correlations, more specifically, bond angle correlations, which we believe are crucial for the description of the liquid state. We show that this physical picture may naturally explain difficult unsolved problems associated with the liquid state, such as anomalies of water-type liquids (water, Si, Ge, ...), liquid-liquid transition, liquid-glass transition, crystallization and quasicrystal formation, in a unified manner. In other words, we need a new order parameter representing a low local free-energy configuration, which is a bond orientational order parameter in many cases, in addition to a density order parameter for the physical description of these phenomena. Here we review our two-order-parameter model of liquid and consider how transient local structural ordering is linked to all of the above-mentioned phenomena. The relationship between these phenomena is also discussed.

  7. Optical characteristics of LGP depending on the scattering pattern orientation for flat-type LED lighting

    NASA Astrophysics Data System (ADS)

    Park, Sohee; Shin, Yongjin; Oh, Kwanghwan; Bang, Taehwan

    2016-04-01

    In flat-type light-emitting-diode (LED) lighting systems, a planar light is formed using a luminance source positioned on the side of the system and light guide panel (LGP) or reflecting plates. Thus, such systems are favorable for their thinness, which allows a relatively small number of LEDs to be used. However, the application of a high-power LED light to a large-area lighting system yields Lambertian luminaires; therefore, a point or a discomfort glare is produced, which generally causes degradation of the luminance efficiency and uniformity. In this study, we solved the problems of luminance non-uniformity and inefficiency by adjusting the orientation of an applied LGP scattered pattern and removing the remaining glare. Through computer simulation, optical characteristics that increase the efficiency even in the case of low-output LEDs were found. Specifically, a scattered pattern vertically oriented relative to the direction of the incident light improves the luminance uniformity at the side of the system, while a scattered pattern oriented parallel to the direction of the incident light plays the role of a waveguide. We implemented a flat-type LED lighting system by fabricating a large-area LGP based on the computer-simulation results and using an extremely sensitive laser. The optical characteristics observed using the laser-processed LGP were identical to those obtained in the computer simulation. Therefore, for large-area flat-type LED lighting systems, we confirmed that adjusting the orientation of the LGP scattered pattern can increase the luminance efficiency and uniformity.

  8. Polarized Raman spectra of the oriented NaY(WO 4) 2 and KY(WO 4) 2 single crystals

    NASA Astrophysics Data System (ADS)

    Macalik, L.; Hanuza, J.; Kaminskii, A. A.

    2000-11-01

    Polarized Raman scattering spectra of the NaY(WO 4) 2 (NYW) single crystal have been measured. Its structure is described in the tetragonal space group isomorphic to CaWO 4 scheelite. The A g, B g and E g spectra were made and discussed in terms of factor group analysis. These spectra are compared to those of monoclinic KY(WO 4) 2 (KYW) single crystals whose structure differs from the other crystal. The NYW unit cell comprises of the isolated WO 4 tetrahedra whereas the KYW structure is built from the WO 6 octahedra joined by WO 2W double bonds and WOW single bridges. The vibrational characteristics of the bridge bond systems are proposed. On this basis, the role of the vibronic transitions for the KYW crystal doped with Eu 3+ ions is discussed.

  9. The Extent to Which the Characteristics of a Metacognitive Oriented Learning Environment Predict the Characteristics of a Thinking-Friendly Classroom

    ERIC Educational Resources Information Center

    Alkin-Sahin, Senar

    2015-01-01

    Problem Statement: Based on information presented in previous literature, that the characteristics of learning environments foster metacognition and thinking, it is believed that metacognitive oriented classrooms can contribute to the formation of environments needed to teach thinking, and when metacognitive oriented learning environment…

  10. A database of crystal preferred orientation of olivine in upper mantle rocks

    NASA Astrophysics Data System (ADS)

    Mainprice, D.

    2012-12-01

    Olivine is the most volumetrically abundant mineral in the Earth's upper mantle, as such it dominates the mechanical and physical properties and has a controlling influence of the geodynamics of plate tectonics. Since the pioneering work of Hess and others we know that seismic anisotropy of the shallow mantle is related to olivine and it's crystal preferred orientation (CPO). With advent of plate tectonics the understanding of the key role of peridotite rocks became a major scientific objective and the measurement CPO of olivine in upper mantle samples became an important tool for studying the kinematics of these rocks. Our group originally lead by Adolphe Nicolas introduced the systematic use of CPO measured by U-stage for field studies all over the world for over 30 years, this tradition was extended in last 15 years by the use of electron back-scattered diffraction (EBSD) to study of CPO and the associated digital microstructure. It is an appropriate time to analysis this significant database of olivine CPO, which represents the work of our group, both present and former members, as well as collaborating colleagues. It is also interesting to compare the natural record as illustrated by our database in the light of recent experimental results stimulated by the extended ranges in temperature, pressure and finite strain, as well as intrinsic olivine variables such as hydrogen content. To analysis the database, which is heterogeneous because it is constructed from the individual work of many people over a 45 year period containing U-stage data and EBSD measurements (manual indexing point per grain, automatic indexing one point per grain, automatic indexing gridded mapping data) of various formats, we need a flexible software tool that can handle large volumes of data in consistent way. We have used the state-of-art open source MTEX toolbox for quantitative texture analysis. MTEX is a scriptable MATLAB toolbox, which permits all aspects of quantitative texture

  11. Rheologic effects of crystal preferred orientation in upper mantle flow near plate boundaries

    NASA Astrophysics Data System (ADS)

    Blackman, Donna; Castelnau, Olivier; Dawson, Paul; Boyce, Donald

    2016-04-01

    Observations of anisotropy provide insight into upper mantle processes. Flow-induced mineral alignment provides a link between mantle deformation patterns and seismic anisotropy. Our study focuses on the rheologic effects of crystal preferred orientation (CPO), which develops during mantle flow, in order to assess whether corresponding anisotropic viscosity could significantly impact the pattern of flow. We employ a coupled nonlinear numerical method to link CPO and the flow model via a local viscosity tensor field that quantifies the stress/strain-rate response of a textured mineral aggregate. For a given flow field, the CPO is computed along streamlines using a self-consistent texture model and is then used to update the viscosity tensor field. The new viscosity tensor field defines the local properties for the next flow computation. This iteration produces a coupled nonlinear model for which seismic signatures can be predicted. Results thus far confirm that CPO can impact flow pattern by altering rheology in directionally-dependent ways, particularly in regions of high flow gradient. Multiple iterations run for an initial, linear stress/strain-rate case (power law exponent n=1) converge to a flow field and CPO distribution that are modestly different from the reference, scalar viscosity case. Upwelling rates directly below the spreading axis are slightly reduced and flow is focused somewhat toward the axis. Predicted seismic anisotropy differences are modest. P-wave anisotropy is a few percent greater in the flow 'corner', near the spreading axis, below the lithosphere and extending 40-100 km off axis. Predicted S-wave splitting differences would be below seafloor measurement limits. Calculations with non-linear stress/strain-rate relation, which is more realistic for olivine, indicate that effects are stronger than for the linear case. For n=2-3, the distribution and strength of CPO for the first iteration are greater than for n=1, although the fast seismic

  12. Electrochemically modified crystal orientation, surface morphology and optical properties using CTAB on Cu2O thin films

    NASA Astrophysics Data System (ADS)

    Ganesan, Karupanan Periyanan; Anandhan, Narayanasamy; Dharuman, Venkatraman; Sami, Ponnusamy; Pannerselvam, Ramaswamy; Marimuthu, Thandapani

    Cuprous oxide (Cu2O) thin films with different crystal orientations were electrochemically deposited in the presence of various molar concentrations of cetyl trimethyl ammonium bromide (CTAB) on fluorine doped tin oxide (FTO) glass substrate using standard three electrodes system. X-ray diffraction (XRD) studies reveal cubic structure of Cu2O with (1 1 1) plane orientation, after addition of CTAB in deposition solution, the orientation of crystal changes from (1 1 1) into (2 0 0) plane. Scanning electron microscope (SEM) images explored significant variation on morphology of Cu2O thin films deposited with addition of CTAB compared to without addition of CTAB. Photoluminescence (PL) spectra illustrate that the emission peak around at 650 nm is attributed to near band edge emission, and the film prepared at the 3 mM of CTAB exhibits much higher intensity than that of the all other films. UV-Visible spectra show optical absorption in the range of 480-610 nm and the highest transparency of Cu2O film prepared at the concentration of 3 mM CTAB. The optical band gap is increased in the range between 2.16 and 2.45 eV with increasing the CTAB concentrations.

  13. On the binary nature of the mechanism of orientational instability in cholesteric liquid crystals in wave fields

    NASA Astrophysics Data System (ADS)

    Kapustina, O. A.

    2014-07-01

    The prediction of a theory developed with allowance for the processes of orientational order parameter relaxation in liquid crystals about two independent acoustic mechanisms of orientational instability in the planar layer of a cholesteric liquid crystal (CLC) in a wave field, manifesting itself in the occurrence of a system of 2D domains, is experimentally substantiated for the first time. The distortions of the layer macrostructure for the mesophase of this type was observed in the field of longitudinal waves in a wide frequency range, including frequencies above the relaxation frequency of the orientational order parameter in CLC. The values of the spatial domain period at the effect threshold and the threshold compression amplitudes are determined for CLC layers 10-100 μm thick with a helix pitch of 2-30 μm in the frequency range of 0.3-45 MHz. It is shown that a complete theoretical description of the phenomenon, consistent with the experimental data, can be obtained only with allowance for the action of the convection and the nonlinear relaxation mechanisms of the mesophase layer structure destabilization, which have different natures.

  14. Preferred growth orientation and microsegregation behaviors of eutectic in a nickel-based single-crystal superalloy

    PubMed Central

    Ma, Dexin; Bührig-Polaczek, Andreas

    2015-01-01

    A nickel-based single-crystal superalloy was employed to investigate the preferred growth orientation behavior of the (γ + γ′) eutectic and the effect of these orientations on the segregation behavior. A novel solidification model for the eutectic island was proposed. At the beginning of the eutectic island’s crystallization, the core directly formed from the liquid by the eutectic reaction, and then preferably grew along [100] direction. The crystallization of the eutectic along [110] always lagged behind that in [100] direction. The eutectic growth in [100] direction terminated on impinging the edge of the dendrites or another eutectic island. The end of the eutectic island’s solidification terminates due to the encroachment of the eutectic liquid/solid interface at the dendrites or another eutectic island in [110] direction. The distribution of the alloying elements depended on the crystalline axis. The degree of the alloying elements’ segregation was lower along [100] than [110] direction with increasing distance from the eutectic island’s center. PMID:27877773

  15. Ax-Pet a Demonstrator for PET Imaging Using Long Axially Oriented Scintillating Crystals

    NASA Astrophysics Data System (ADS)

    Beltrame, Paolo; Braem, André; Fanti, Viviana; Joram, Christian; Schneider, Thomas; Séguinot, Jacques; Casella, Chiara; Dissertori, Günther; Djambazov, Lubomir; Lustermann, Werner; Nessi-Tedaldi, Francesca; Pauss, Felicitas; Schinzel, Dietrich; Solevi, Paola; Oliver, Josep F.; Rafecas, Magdalena; de Leo, Raffaele; Nappi, Eugenio; Chesi, Enrico; Cochran, Eric; Honscheid, Klaus; Kagan, Harris; Rudge, Alan; Smith, Shane; Weilhammer, Peter; Johnson, Ian; Renker, Dieter; Clinthorne, Neal; Huh, Sam; Bolle, Erlend; Stapnes, Steinar; Meddi, Franco

    2010-04-01

    Two PET scanner modules have been built in order to demonstrate the AX-PET concept in a phantom test. Each module comprises 6 layers of 8 LYSO crystals (3 × 3 × 100) mm3 orthogonally interleaved with layers of 26 wave length shifting strips (WLS) with dimensions (0.9 × 3 × 40) mm3. The spatial resolution is defined by the dimensions of the crystals and WLS strips, while the sensitivity depends on the number of crystal layers. According to MC simulations, the sensitivity will be increased further by reconstructing Compton interactions. Crystals and WLS strips are read out by MPPCs. First module tests yield an energy resolution of the LYSO crystals of 12.33 % and 12.46 % FWHM and a spatial resolution of the WLS strips of (1.68 ± 0.25) mm FWHM. Special simulation and reconstruction software were developed for the AX-PET demonstrator.

  16. Instructional characteristics in mathematics classrooms: relationships to achievement goal orientation and student engagement

    NASA Astrophysics Data System (ADS)

    Lazarides, Rebecca; Rubach, Charlott

    2017-02-01

    This longitudinal study examined relationships between student-perceived teaching for meaning, support for autonomy, and competence in mathematic classrooms (Time 1), and students' achievement goal orientations and engagement in mathematics 6 months later (Time 2). We tested whether student-perceived instructional characteristics at Time 1 indirectly related to student engagement at Time 2, via their achievement goal orientations (Time 2), and, whether student gender moderated these relationships. Participants were ninth and tenth graders (55.2% girls) from 46 classrooms in ten secondary schools in Berlin, Germany. Only data from students who participated at both timepoints were included (N = 746 out of total at Time 1 1118; dropout 33.27%). Longitudinal structural equation modeling showed that student-perceived teaching for meaning and support for competence indirectly predicted intrinsic motivation and effort, via students' mastery goal orientation. These paths were equivalent for girls and boys. The findings are significant for mathematics education, in identifying motivational processes that partly explain the relationships between student-perceived teaching for meaning and competence support and intrinsic motivation and effort in mathematics.

  17. Birefringence imaging and orientation of laser patterned β-BaB{sub 2}O{sub 4} crystals with bending and curved shapes in glass

    SciTech Connect

    Ogawa, Kazuki; Honma, Tsuyoshi; Komatsu, Takayuki

    2013-11-15

    Nonlinear optical β-BaB{sub 2}O{sub 4} crystals (β-BBO) with bending and curved shapes were patterned at the surface of 8Sm{sub 2}O{sub 3}–42BaO–50B{sub 2}O{sub 3} glass by laser irradiations (Yb:YVO{sub 4} laser with a wavelength of 1080 nm, power of 0.8 W, and scanning speed of 4 μm/s), and the orientation state of β-BBO crystals was examined from the birefringence imaging obtained by polarization optical microscope (POM) observations. The formation (crystallization) of β-BBO crystals follows along laser scanning direction even if the laser scanning direction changes at a certain point within the bending angle of 60°. The birefringence images indicate that the formation of highly c-axis oriented β-BBO crystals follows along laser scanning direction even if the laser scanning direction changes, and in particular the direction of the c-axis of β-BBO crystals changes gradually at the bending point. The model for the orientation of the c-axis of β-BBO near the bending point is proposed. The present study proposes that the laser-induced crystallization opens a new door for the science and technology in crystal growth engineering. - Graphical abstract: This figure shows the birefringence images obtained by the Abrio IM imaging system (λ=546 nm) for the laser-patterned β-BaB{sub 2}O{sub 4} crystal line with the bending angle of 45° in the glass. The relation between the direction of slow axis and color is also shown. It is demonstrated that the formation (crystallization) of highly c-axis oriented β-BaB{sub 2}O{sub 4} crystals follows along laser scanning direction even if the laser scanning direction changes. Display Omitted - Highlights: • β-BaB{sub 2}O{sub 4} crystals with bending and curved shapes were patterned by laser irradiations. • The orientation was examined from the birefringence imaging. • Highly c-axis oriented crystals follows along laser scanning direction. • The c-axis direction changes gradually at the bending point. • The

  18. Adsorption and hydrogenation of simple alkenes at Pt-group metal electrodes studied by DEMS: influence of the crystal orientation

    NASA Astrophysics Data System (ADS)

    Müller, Ulrich; Schmiemann, Udo; Dülberg, Andreas; Baltruschat, Helmut

    1995-07-01

    The adsorption of ethene and cyclohexene on mono-and polycrystalline Pt and on polycrystalline Pd electrodes was studied using differential electrochemical mass spectrometry (DEMS). Both molecules are partially hydrated to an oxygen containing species upon adsorption on Pt. In the case of ethene, this species dissociated to methane and adsorbed CO at negative potentials. Another part of the adsorbed ethene can be cathodically desorbed as ethane and butane. The ratio of the various species formed strongly depends on crystal orientation and adsorption potential. Contrary to heterogenous gas phase hydrogenation (and also contrary to some earlier reports on electrochemical hydrogenation), the rate of the Faradaic hydrogenation reaction is also strongly dependent on the crystallographic orientation, being faster on Pt(110) or roughened surfaces. During hydrogenation, H/D exchange occurs to an appreciable degree, suggesting the participation of adsorbed intermediates.

  19. Orientation dependent far-infrared terahertz absorptions in single crystal pentaerythritol tetranitrate (PETN) using terahertz time-domain spectroscopy.

    PubMed

    Whitley, Von H; Hooks, Daniel E; Ramos, Kyle J; Pierce, Timothy H; O'Hara, John F; Azad, Abul K; Taylor, Antoinette J; Barber, Jeffrey; Averitt, Richard D

    2011-02-03

    Terahertz time-domain spectroscopy (THZ-TDS) has been used to measure the absorption spectra in the range 7-100 cm(-1) (0.2-3 THz) of single crystal pentaerythritol tetranitrate (PETN). Absorption was measured in transmission mode as a function of incident polarization with the incident and transmitted wave vectors oriented along the crystallographic directions [100], <10(a/c)(2)>, and <110>. Samples were rotated with respect to the incident polarization while absorption was measured at both 300 and 20 K. Comparatively minor differences were observed among the three orientations. Two broad absorptions at 72 and >90 cm(-1), and several weaker absorptions at 36, 55, 80, and 82 cm(-1), have been observed at cryogenic temperatures.

  20. Neutron and X-ray single-crystal diffraction from protein microcrystals via magnetically oriented microcrystal arrays in gels.

    PubMed

    Tsukui, Shu; Kimura, Fumiko; Kusaka, Katsuhiro; Baba, Seiki; Mizuno, Nobuhiro; Kimura, Tsunehisa

    2016-07-01

    Protein microcrystals magnetically aligned in D2O hydrogels were subjected to neutron diffraction measurements, and reflections were observed for the first time to a resolution of 3.4 Å from lysozyme microcrystals (∼10 × 10 × 50 µm). This result demonstrated the possibility that magnetically oriented microcrystals consolidated in D2O gels may provide a promising means to obtain single-crystal neutron diffraction from proteins that do not crystallize at the sizes required for neutron diffraction structure determination. In addition, lysozyme microcrystals aligned in H2O hydrogels allowed structure determination at a resolution of 1.76 Å at room temperature by X-ray diffraction. The use of gels has advantages since the microcrystals are measured under hydrated conditions.

  1. Thermotropic orientational order of discotic liquid crystals in nanochannels: an optical polarimetry study and a Landau-de Gennes analysis

    NASA Astrophysics Data System (ADS)

    Kityk, Andriy V.; Busch, Mark; Rau, Daniel; Calus, Sylwia; Cerclier, Carole V.; Lefort, Ronan; Morineau, Denis; Grelet, Eric; Krause, Christina; Schönhals, Andreas; Frick, Bernhard; Huber, Patrick

    Optical polarimetry measurements of the orientational order of a discotic liquid crystal based on a pyrene derivative and confined in parallel-aligned nanochannels of monolithic mesoporous alumina, silica, and silicon as a function of temperature, channel radius (3 - 22 nm) and surface chemistry reveal a competition of radial and axial columnar order. The evolution of the orientational order parameter of the confined systems is continuous, in contrast to the discontinuous transition in the bulk. For channel radii larger than 10 nm we suggest several, alternative defect structures, which are compatible both with the optical experiments on the collective molecular orientation presented here and with a translational, radial columnar order reported in previous diffraction studies. For smaller channel radii our observations can semi-quantitatively be described by a Landau-de Gennes model with a nematic shell of radially ordered columns (affected by elastic splay deformations) that coexists with an orientationally disordered, isotropic core. For these structures, the cylindrical phase boundaries are predicted to move from the channel walls to the channel centres upon cooling, and vice-versa upon heating, in accord with the pronounced cooling/heating hystereses observed and the scaling behavior of the transition temperatures with channel diameter. The absence of experimental hints of a paranematic state is consistent with a biquadratic coupling of the splay deformations to the order parameter.

  2. Thermotropic orientational order of discotic liquid crystals in nanochannels: an optical polarimetry study and a Landau-de Gennes analysis.

    PubMed

    Kityk, Andriy V; Busch, Mark; Rau, Daniel; Calus, Sylwia; Cerclier, Carole V; Lefort, Ronan; Morineau, Denis; Grelet, Eric; Krause, Christina; Schönhals, Andreas; Frick, Bernhard; Huber, Patrick

    2014-07-07

    Optical polarimetry measurements of the orientational order of a discotic liquid crystal based on a pyrene derivative confined in parallelly aligned nanochannels of monolithic, mesoporous alumina, silica, and silicon as a function of temperature, channel radius (3-22 nm) and surface chemistry reveal a competition of radial and axial columnar orders. The evolution of the orientational order parameter of the confined systems is continuous, in contrast to the discontinuous transition in the bulk. For channel radii larger than 10 nm we suggest several, alternative defect structures, which are compatible both with the optical experiments on the collective molecular orientation presented here and with a translational, radial columnar order reported in previous diffraction studies. For smaller channel radii our observations can semi-quantitatively be described by a Landau-de Gennes model with a nematic shell of radially ordered columns (affected by elastic splay deformations) that coexists with an orientationally disordered, isotropic core. For these structures, the cylindrical phase boundaries are predicted to move from the channel walls to the channel centres upon cooling, and vice-versa upon heating, in accord with the pronounced cooling/heating hystereses observed and the scaling behavior of the transition temperatures with the channel diameter. The absence of experimental hints of a paranematic state is consistent with a biquadratic coupling of the splay deformations to the order parameter.

  3. Boosting Photon Harvesting in Organic Solar Cells with Highly Oriented Molecular Crystals via Graphene-Organic Heterointerface.

    PubMed

    Jo, Sae Byeok; Kim, Hyun Ho; Lee, Hansol; Kang, Boseok; Lee, Seongkyu; Sim, Myungsun; Kim, Min; Lee, Wi Hyoung; Cho, Kilwon

    2015-08-25

    Photon harvesting in organic solar cells is highly dependent on the anisotropic nature of the optoelectronic properties of photoactive materials. Here, we demonstrate an efficient approach to dramatically enhance photon harvesting in planar heterojunction solar cells by using a graphene-organic heterointerface. A large area, residue-free monolayer graphene is inserted at anode interface to serve as an atomically thin epitaxial template for growing highly orientated pentacene crystals with lying-down orientation. This anisotropic orientation enhances the overall optoelectronic properties, including light absorption, charge carrier lifetime, interfacial energetics, and especially the exciton diffusion length. Spectroscopic and crystallographic analysis reveal that the lying-down orientation persists until a thickness of 110 nm, which, along with increased exciton diffusion length up to nearly 100 nm, allows the device optimum thickness to be doubled to yield significantly enhanced light absorption within the photoactive layers. The resultant photovoltaic performance shows simultaneous increment in Voc, Jsc, and FF, and consequently a 5 times increment in the maximum power conversion efficiency than the equivalent devices without a graphene layer. The present findings indicate that controlling organic-graphene heterointerface could provide a design strategy of organic solar cell architecture for boosting photon harvesting.

  4. Aerobic and anaerobic work capacities and leg muscle characteristics in elite orienteers.

    PubMed

    Rolf, C; Andersson, G; Westblad, P; Saltin, B

    1997-02-01

    Aerobic and anaerobic work capacities, leg muscle structure and metabolic characteristics of m. vastus lateralis (NT), m. rectus femoris (RG) and mm. gastrocnemii (NT and RG) were analysed in five male and seven female elite orienteers from the Swedish National team (NT) and a reference group (RG) of eight male and 10 female upcoming orienteers, all in optimal shape at the end of a competitive season. Maximal oxygen uptake was 78.4 ml/kg/min for NT men (range 75-81) and 67.8 ml/kg/min for NT women (range 62-71), for both groups significantly higher (P < 0.001) than for RG. Maximal serum lactate was 13.3 mmol/l for NT men (range 10-17) and 11.7 mmol/l for NT women (range 8.4-14), which did not differ from RG. No significant correlation was found between maximal oxygen uptake and maximal serum lactate. For NT females only maximal oxygen uptake was significantly related to running economy (P < 0.01). Muscle biopsies showed a high content of type I fibres in m. vastus lateralis as well as in m. gastrocnemius mediale. M. vastus lateralis (NT) had a higher proportion of type I fibres, capillaries per fibre as well as CS, HAD and LDH 1-2 enzymes compared with m. rectus femoris (RG) (P < 0.001-< 0.001), the latter muscle showing a more anaerobic profile. NT males and females had a higher metabolic potential in m. gastrocnemius mediale than RG (P < 0.001). Our results reflect an obligate high and narrow range of aerobic and anaerobic work capacities for successful performance in international elite orienteering. It remains to be shown how these laboratory data are related to individual performance in authentic orienteering competitions.

  5. Effect of temperature of HPT deformation and the initial orientation on the structural evolution in single-crystal niobium

    NASA Astrophysics Data System (ADS)

    Gapontseva, T. M.; Degtyarev, M. V.; Pilyugin, V. P.; Chashchukhina, T. I.; Voronova, L. M.; Patselov, A. M.

    2016-04-01

    The structural evolution and hardness of sing-crystal niobium with various initial orientations are investigated after its deformation in Bridgman anvils at room (290 K) and cryogenic (80 K) temperatures. It is shown that no twinning occurs upon cryogenic deformation; thin prolonged bands dividing the matrix into weakly misoriented regions are formed. The uniform-in-size structure of a nanoscale level ( d av = 40 nm) is formed during cryogenic deformation after the maximum achieved true strain. The average microcrystallite size observed after room-temperature deformation is 120 nm.

  6. Optimization of Automated Crystal Orientation Mapping in a TEM for Ni4Ti3 Precipitation in All-Round SMA

    NASA Astrophysics Data System (ADS)

    Yao, Xiayang; Amin-Ahmadi, Behnam; Li, Yuanyuan; Cao, Shanshan; Ma, Xiao; Zhang, Xin-Ping; Schryvers, Dominique

    2016-12-01

    Automated crystal orientation and phase mapping in TEM are applied to the quantification of Ni4Ti3 precipitates in Ni-Ti shape memory alloys which will be used for the implantation of artificial sphincters operating using the all-round shape memory effect. This paper focuses on the optimization process of the technique to obtain best values for all major parameters in the acquisition of electron diffraction patterns as well as template generation. With the obtained settings, vast statistical data on nano- and microstructures essential to the operation of these shape memory devices become available.

  7. Hydrogen Bonding Characteristics of Crystalline Water in Inorganic Crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Fangfang; Li, Keyan; Xue, Dongfeng

    From the chemical bond viewpoint, the microscopic characterstatics of hydrogen bonds in Mi—OH2⋯O (M is the metal cation coordinated to water molecule and i is the number of M) systems were comprehensively studied. It is shown that the original O—OH and H⋯O bond lengths of each hydrogen bonding system are evidently influenced by the crystalline environment and strongly dependent on the corresponding average bond lengths of each system, bar d{O - {H}} and bar d{H ... {O}}. Furthermore, the hydrogen bonding capability of water molecules coordinated to various metal cations was properly estimated and found to be related to the ionic electronegativities of these metal cations. The current work provides a useful route to calculating hydrogen bond valences within reasonable accuracy and sheds light on the rational utilization of hydrogen bonds in crystal design.

  8. Strain characteristics of selectively infiltrated photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Yu, WenBing; Wang, Ying; Tian, Jie

    2015-07-01

    To obtain the strain sensing for the high sensitivity PCF (Photonic Crystal Fibers), the high refractive index mixture is infiltrated into the air hole of the PCF. In this paper, we propose to adjust the infiltrated length of the air hole in order to make the loss maximum. The goal is to realize the PCF sensor with high sensitive strain. The experimental results show that the strain sensitivity is about 4.36 pm / μ ɛ when the infiltrated length is 30mm and the refractive index of the liquid is 1.5. The experimental results are consistent with the simulation ones. This kind of device can apply to the ultrasensitive strain sensing.

  9. Orientational order of some liquid crystal/dye mixtures obtained from optical birefringence

    NASA Astrophysics Data System (ADS)

    Bielejewska, Natalia

    2016-04-01

    This study presents optical birefringence measurements as a function of temperature for the liquid crystal/dye mixtures. The optical birefringence of the liquid crystals used in liquid crystal displays technology is related to the order parameter , which is crucial from the development point of view. The properties of the dyes (4-dimethylamino-4‧-nitrostilbene and N,N‧-bis(2,5-di-tert-buthylphenyl)-3,4,9,10-perylenedicarboximide) as a guest molecule are tested over the whole region of nematic phase occurrence by three different methods: measurement with use of the plano-convex lens, Berek's compensator and photoelastic modulator.

  10. X-ray and magnetic-field-enhanced change in physical characteristics of silicon crystals

    NASA Astrophysics Data System (ADS)

    Makara, V. A.; Steblenko, L. P.; Krit, A. N.; Kalinichenko, D. V.; Kurylyuk, A. N.; Naumenko, S. N.

    2012-07-01

    The effect of low-energy ( W = 8 keV) low-dose ((0.3-7.3) × 102 Gy) radiation and a dc magnetic field ( B = 0.17 T) on structural, micromechanical, and microplastic characteristics of silicon crystals has been studied. The features in the dynamic behavior of dislocations in silicon crystals, which manifest themselves upon only X-ray exposure and combined (X-ray and magnetic) exposure, have been revealed.

  11. Photoanodes with Fully Controllable Texture: The Enhanced Water Splitting Efficiency of Thin Hematite Films Exhibiting Solely (110) Crystal Orientation.

    PubMed

    Kment, Stepan; Schmuki, Patrik; Hubicka, Zdenek; Machala, Libor; Kirchgeorg, Robin; Liu, Ning; Wang, Lei; Lee, Kiyoung; Olejnicek, Jiri; Cada, Martin; Gregora, Ivan; Zboril, Radek

    2015-07-28

    Hematite, α-Fe2O3, is considered as one of the most promising materials for sustainable hydrogen production via photoelectrochemical water splitting with a theoretical solar-to-hydrogen efficiency of 17%. However, the poor electrical conductivity of hematite is a substantial limitation reducing its efficiency in real experimental conditions. Despite of computing models suggesting that the electrical conductivity is extremely anisotropic, revealing up to 4 orders of magnitude higher electron transport with conduction along the (110) hematite crystal plane, synthetic approaches allowing the sole growth in that direction have not been reported yet. Here, we present a strategy for controlling the crystal orientation of very thin hematite films by adjusting energy of ion flux during advanced pulsed reactive magnetron sputtering technique. The texture and effect of the deposition mode on the film properties were monitored by XRD, conversion electron Mössbauer spectroscopy, XPS, SEM, AFM, PEC water splitting, IPCE, transient photocurrent measurements, and Mott-Schottky analysis. The precise control of the synthetic conditions allowed to fabricate hematite photoanodes exhibiting fully textured structures along (110) and (104) crystal planes with huge differences in photocurrents of 0.65 and 0.02 mA cm(-2) (both at 1.55 V versus RHE), respectively. The photocurrent registered for fully textured (110) film is among record values reported for thin planar films. Moreover, the developed fine-tuning of crystal orientation having a huge impact on the photoefficiency would induce further improvement of thin hematite films mainly if cation doping will be combined with the controllable texture.

  12. ELEMENTS OF LASER SETUPS: Characteristics of Cornu depolarisers made from quartz and paratellurite optically active crystals

    NASA Astrophysics Data System (ADS)

    Bagan, V. A.; Davydov, B. L.; Samartsev, I. E.

    2009-01-01

    Cornu depolarisers made from quartz and paratellurite crystals have been studied. Numerical calculations and experimental data demonstrate that such depolarisers make it possible to significantly alleviate the major drawback to birefringent wedge depolarisers: the strong dependence of the polarisation of the output beam on the input polarisation orientation. We have examined the polarisation extinction ratio in the depolarisers as a function of the rotatory power of the crystals, depolariser length, beam diameter, and power distribution across the beam, and have determined the angle between the circularly polarised output beams in the far field. Data on the optical rotatory power of quartz and paratellurite crystals have been systematized, and the results have been used to derive dispersion formulas for these materials in the visible and near-IR spectral regions.

  13. Study of the growth atmosphere effect on optical and scintillation characteristics of large CsI(TI) crystals

    NASA Astrophysics Data System (ADS)

    Panova, A. N.; Goriletsky, V. I.; Grinyova, T. B.; Shakhova, K. V.; Vinograd, E. L.

    1999-03-01

    In contrast to the traditional growth method of large scintillation alkali halide crystals - in an inert atmosphere, CsI(TI) crystals have been grown in CO 2 atmosphere favoring changes of their impurity composition. Absorption and scintillation characteristics of crystals obtained have been studied in comparison to those grown in the inert gas medium. Effect of different radiation doses on variations in optical and scintillation characteristics has been studied for CsI(TI) crystals grown by various techniques. CsI(TI) crystals grown in CO 2 atmosphere are found to exhibit a higher radiation resistance and a faster restoration of their basic characteristics.

  14. Effect of additives on isothermal crystallization kinetics and physical characteristics of coconut oil.

    PubMed

    Chaleepa, Kesarin; Szepes, Anikó; Ulrich, Joachim

    2010-05-01

    The effect of lauric acid and low-HLB sucrose esters (L-195, S170) on the isothermal crystallization of coconut oil was investigated by differential scanning calorimetry. The fundamental crystallization parameters, such as induction time of nucleation and crystallization rate, were obtained by using the Gompertz equation. The Gibb's free energy of nucleation was calculated via the Fisher-Turnbull equation based on the equilibrium melting temperature. All additives, investigated in this work, proved to have an inhibition effect on nucleation and crystallization kinetics of coconut oil. Our results revealed that the inhibition effect is related to the dissimilarity of the molecular characteristics between coconut oil and the additives. The equilibrium melting temperature (T(m) degrees ) of the coconut oil-additive mixtures estimated by the Hoffman-Weeks method was decreased with the addition of lauric acid and increased by using sucrose esters as additives. Micrographs showing simultaneous crystallization of coconut oil and lauric acid indicated that strong molecular interaction led to the increase in lamellar thickness resulting in the T(m) degrees depression of coconut oil. The addition of L-195 modified the crystal morphology of coconut oil into large, dense, non-porous crystals without altering the polymorphic occurrence of coconut oil. The enhancement in lamellar thickness and crystal perfection supported the T(m) degrees elevation of coconut oil.

  15. Stress-induced martensitic transformation in high-strength [236]-oriented Ni51Ti36.5Hf12.5 single crystals

    NASA Astrophysics Data System (ADS)

    Surikov, N. Y.; Eftifeeva, A. S.; Panchenko, E. Yu; Chumlyakov, Yu I.

    2015-10-01

    The effects of heat treatment on the stress-induced B2-B19' martensitic transformations in the Ni51.0Ti36.5Hf12.5 single crystals oriented along [236] direction are studied. It is shown that in the annealed at 1323K for 4 h crystals, the temperature range of superelasticity increase almost twofold from 75K up to 135K as compared to the as-grown single crystal contained disperse particles of H-phase. The [236]-oriented Ni51.0Ti36.5Hf12.5 single crystals are characterized with high levels of applied compressive stress up to 1700 MPa in the as-grown state and 1900 MPa in annealed crystals for the completely reversible stress- induced B2-B19' martensitic transformation with reversible strain up to |εSE| =1.4%.

  16. The Temperature Effect on the Working Characteristics of Solar Cells Based on Organometal Halide Perovskite Crystals

    NASA Astrophysics Data System (ADS)

    Dewinggih, Tanti; Shobih; Muliani, Lia; Herman; Hidayat, Rahmat

    2017-07-01

    Organometal halide perovskites have been much studied as an active material in a new generation of solar cell with high power conversion efficiency. The chemical reactions involved in their crystallization process are simple but the crystallization process and the formed crystal are very sensitive to temperature and humidity. In general, if the electronic structure of this active material is easily affected by temperature, the working performance of its solar cell will be also easily affected by temperature. In this work, we investigated the temperature effect on the working performance, namely the J-V characteristics, of CH3NH3PbI3 perovskite based solar cell. The measurement result show that the J-V characteristic significantly changed with temperature. The J-V curve shows a diode characteristic at room temperature but it changes to an Ohmic characteristic at high temperature. This characteristics change may be due to the degradation of the perovskite crystals, which may be caused by separation and recrystallization PbI2 inside the perovskite layer.

  17. The orientation dependence of critical shear stresses in Al0.3CoCrFeNi high-entropy alloy single crystals

    NASA Astrophysics Data System (ADS)

    Kireeva, I. V.; Chumlyakov, Yu. I.; Pobedennaya, Z. V.; Vyrodova, A. V.; Kuksgauzen, I. V.; Poklonov, V. V.; Kuksgauzen, D. A.

    2017-07-01

    It is established that the critical shear stresses under tensile strain of Al0.3CoCrFeNi high-entropy alloy single crystals are independent of crystal orientation. It is shown that the development of the planar dislocation structure in Al0.3CoCrFeNi single crystals at T = 296 K leads to a decrease in the ratio between the strain-hardening coefficient and shear modulus relative to that the value for Cu single crystals, where the cellular dislocation structure is developed at the similar staking fault energy.

  18. Multiple short time power laws in the orientational relaxation of nematic liquid crystals.

    PubMed

    Jose, Prasanth P; Bagchi, Biman

    2006-11-14

    Relaxation in the nematic liquid crystalline phase is known to be sensitive to its proximity to both isotropic and smectic phases. Recent transient optical Kerr effect (OKE) studies have revealed, rather surprisingly, two temporal power laws at short to intermediate times and also an apparent absence of the expected exponential decay at longer times. In order to understand this unusual dynamics, we have carried out extensive molecular dynamics simulations of transient OKE and related orientational time correlation functions in a system of prolate ellipsoids (with aspect ratio equal to 3). The simulations find two distinct power laws, with a crossover region, in the decay of the orientational time correlation function at short to intermediate times (in the range of a few picoseconds to a few nanoseconds). In addition, the simulation results fail to recover any long time exponential decay component. The system size dependence of the exponents suggests that the first power law may originate from the local orientational density fluctuations (like in a glassy liquid). The origin of the second power law is less clear and may be related to the long range fluctuations (such as smecticlike density fluctuations)--these fluctuations are expected to involve small free energy barriers. In support of the latter, the evidence of pronounced coupling between orientational and spatial densities at intermediate wave numbers is presented. This coupling is usually small in normal isotropic liquids, but it is large in the present case. In addition to slow collective orientational relaxation, the single particle orientational relaxation is also found to exhibit slow dynamics in the nematic phase in the long time.

  19. Revised Measurements and Interpretation of Magnetic Properties of Oriented CeF3 Single Crystals

    NASA Astrophysics Data System (ADS)

    Savinkov, A. V.; Korableva, S. L.; Tagirov, M. S.; Suzuki, H.; Matsumoto, K.; Abe, S.

    2016-12-01

    We report the magnetic susceptibility and magnetization of the single-crystal CeF3 precisely measured in external magnetic field-directed B\\vert \\vert c and Bbot c in wide ranges of temperatures from 1.8 to 300 K and magnetic field strength of 0-40 kG. Magnetic susceptibility, magnetization, and Ce^{3+} Stark energies of CeF3 have been calculated in the framework of the crystal field theory; good agreement with the experimental data has been achieved in the whole range of temperatures and magnetic fields without taking into account the mixed-valent Ce^{3+}-Ce^{4+} behavior or super-exchange interaction of cerium ions that have been proposed before. Anomalous behavior of the magnetic susceptibility near T ˜ 50 K is naturally explained in the crystal field model.

  20. Grain growth of cast-multicrystalline silicon grown from small randomly oriented seed crystal

    NASA Astrophysics Data System (ADS)

    Prakash, Ronit R.; Sekiguchi, Takashi; Jiptner, Karolin; Miyamura, Yoshiji; Chen, Jun; Harada, Hirofumi; Kakimoto, Koichi

    2014-09-01

    Multicrystalline silicon was grown from seeds with small grains of random orientation and the growth mechanism was studied with respect to grain size, shape, boundary character and orientation. The average grain size perpendicular to growth direction increased steadily initially, became constant and then increased steadily again. Grain size parallel to growth direction increased rapidly with growth due to grain elongation in the growth direction. Grain shape with respect to growth direction changed from spherical to columnar with growth. Initially non-CSL grain boundary fraction was very high but decreased with growth as the Σ3 grain boundary fraction increased. A simple model was proposed to explain the results.

  1. Effect of applied stress, crystal orientation, and phases on type-II hot corrosion of CMSX-4

    NASA Astrophysics Data System (ADS)

    Lortrakul, Pongpat

    Gas turbine blades encounter corrosion problems, especially at the bare metal connection between the blades and the rotor. Elevated temperatures, a corrosive environment, and high stress are factors that can reduce blade lifespan. Thus, understanding the relation between corrosion behavior and stress is key to improving the design of turbine blades and their operation. Type-II hot corrosion mechanisms (700 °C in flowing 1000 ppm-SO2 with Na2SO4 on the specimen surface) are representative of this problem, and Meier and Luthra have expertly established the mechanisms of Ni-alloy and Co-alloy systems. However, little research has focused on CMSX-4, which is a Ni-based superalloy single crystal. Moreover, research on the effects of phases (eutectic and gamma' size), crystal orientations, and applied stress is lacking. In this research, tests of the early stages of hot corrosion---from 3 minutes to 50 hours of exposure---are performed to develop an understanding of type-II hot corrosion mechanism in CMSX-4.The discovery is that a single Cobalt oxide rich layer is initially formed above NiO in the outward oxidation and turns into spheroids afterward. A unique remnant gamma' precipitate structure is observed in the inward oxidation zone and this evidence indicates the preferential corrosion behavior. Sulfur layer above the original surface is one of the causes influencing the overall oxidation thickness by pushing the outward oxidation scale. As-cast CMSX-4 with a wide variety of phases is used to examine the phase effects. With short exposure, coarse gamma' phase influences the inward oxidation thickness but the effect becomes less with time. Specimens with different orientations (growth and transverse directions) are used to examine orientation effect. A notched specimen with a wedge was invented to maintain a stress gradient during hot corrosion test. The results suggest that there may be an effect of stress on the overall oxidation thickness.

  2. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt

    SciTech Connect

    Soares, Alexei S.; Mullen, Jeffrey D.; Parekh, Ruchi M.; McCarthy, Grace S.; Roessler, Christian G.; Jackimowicz, Rick; Skinner, John M.; Orville, Allen M.; Allaire, Marc; Sweet, Robert M.

    2014-10-09

    X-ray diffraction data were obtained at the National Synchrotron Light Source from insulin and lysozyme crystals that were densely deposited on three types of surfaces suitable for serial micro-crystallography: MiTeGen MicroMeshes™, Greiner Bio-One Ltdin situmicro-plates, and a moving kapton crystal conveyor belt that is used to deliver crystals directly into the X-ray beam. 6° wedges of data were taken from ~100 crystals mounted on each material, and these individual data sets were merged to form nine complete data sets (six from insulin crystals and three from lysozyme crystals). Insulin crystals have a parallelepiped habit with an extended flat face that preferentially aligned with the mounting surfaces, impacting the data collection strategy and the design of the serial crystallography apparatus. Lysozyme crystals had a cuboidal habit and showed no preferential orientation. Preferential orientation occluded regions of reciprocal space when the X-ray beam was incident normal to the data-collection medium surface, requiring a second pass of data collection with the apparatus inclined away from the orthogonal. In addition, crystals measuring less than 20 µm were observed to clump together into clusters of crystals. Clustering required that the X-ray beam be adjusted to match the crystal size to prevent overlapping diffraction patterns. No additional problems were encountered with the serial crystallography strategy of combining small randomly oriented wedges of data from a large number of specimens. Lastly, high-quality data able to support a realistic molecular replacement solution were readily obtained from both crystal types using all three serial crystallography strategies.

  3. Structural study of growth, orientation and defects characteristics in the functional microelectromechanical system material aluminium nitride

    SciTech Connect

    Hrkac, Viktor Schürmann, Ulrich; Kienle, Lorenz; Kobler, Aaron; Kübel, Christian; Marauska, Stephan; Wagner, Bernhard; Petraru, Adrian; Kohlstedt, Hermann; Kiran Chakravadhanula, Venkata Sai; Duppel, Viola; Lotsch, Bettina Valeska

    2015-01-07

    The real structure and morphology of piezoelectric aluminum nitride (AlN) thin films as essential components of magnetoelectric sensors are investigated via advanced transmission electron microscopy methods. State of the art electron diffraction techniques, including precession electron diffraction and automated crystal orientation mapping (ACOM), indicate a columnar growth of the AlN grains optimized for piezoelectric application with a (0 0 0 1) texture. Comparing ACOM with piezoresponse force microscopy measurements, a visual correlation of the structure and the piezoelectric properties is enabled. With a quantitative analysis of the ACOM measurements, a statistical evaluation of grain rotations is performed, indicating the presence of coincidence site lattices with Σ7, Σ13a, Σ13b, Σ25. Using a geometric phase analysis on high resolution micrographs, the occurrence of strain is detected almost exclusively at the grain boundaries. Moreover, high resolution imaging was applied for solving the atomic structure at stacking mismatch boundaries with a displacement vector of 1/2 〈1 0 -1 1〉. All real structural features can be interpreted via simulations based on crystallographic computing in terms of a supercell approach.

  4. Nanoscale Electric Characteristics and Oriented Assembly of Halobacterium salinarum Membrane Revealed by Electric Force Microscopy

    PubMed Central

    Li, Denghua; Wang, Yibing; Du, Huiwen; Xu, Shiwei; Li, Zhemin; Yang, Yanlian; Wang, Chen

    2016-01-01

    Purple membranes (PM) of the bacteria Halobacterium salinarum are a unique natural membrane where bacteriorhodopsin (BR) can convert photon energy and pump protons. Elucidating the electronic properties of biomembranes is critical for revealing biological mechanisms and developing new devices. We report here the electric properties of PMs studied by using multi-functional electric force microscopy (EFM) at the nanoscale. The topography, surface potential, and dielectric capacity of PMs were imaged and quantitatively measured in parallel. Two orientations of PMs were identified by EFM because of its high resolution in differentiating electrical characteristics. The extracellular (EC) sides were more negative than the cytoplasmic (CP) side by 8 mV. The direction of potential difference may facilitate movement of protons across the membrane and thus play important roles in proton pumping. Unlike the side-dependent surface potentials observed in PM, the EFM capacitive response was independent of the side and was measured to be at a dC/dz value of ~5.25 nF/m. Furthermore, by modification of PM with de novo peptides based on peptide-protein interaction, directional oriented PM assembly on silicon substrate was obtained for technical devices. This work develops a new method for studying membrane nanoelectronics and exploring the bioelectric application at the nanoscale. PMID:28335325

  5. Nanoscale Electric Characteristics and Oriented Assembly of Halobacterium salinarum Membrane Revealed by Electric Force Microscopy.

    PubMed

    Li, Denghua; Wang, Yibing; Du, Huiwen; Xu, Shiwei; Li, Zhemin; Yang, Yanlian; Wang, Chen

    2016-11-02

    Purple membranes (PM) of the bacteria Halobacterium salinarum are a unique natural membrane where bacteriorhodopsin (BR) can convert photon energy and pump protons. Elucidating the electronic properties of biomembranes is critical for revealing biological mechanisms and developing new devices. We report here the electric properties of PMs studied by using multi-functional electric force microscopy (EFM) at the nanoscale. The topography, surface potential, and dielectric capacity of PMs were imaged and quantitatively measured in parallel. Two orientations of PMs were identified by EFM because of its high resolution in differentiating electrical characteristics. The extracellular (EC) sides were more negative than the cytoplasmic (CP) side by 8 mV. The direction of potential difference may facilitate movement of protons across the membrane and thus play important roles in proton pumping. Unlike the side-dependent surface potentials observed in PM, the EFM capacitive response was independent of the side and was measured to be at a dC/dz value of ~5.25 nF/m. Furthermore, by modification of PM with de novo peptides based on peptide-protein interaction, directional oriented PM assembly on silicon substrate was obtained for technical devices. This work develops a new method for studying membrane nanoelectronics and exploring the bioelectric application at the nanoscale.

  6. X-ray and Raman scattering study of orientational order in nematic and heliconical nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Singh, Gautam; Fu, Jinxin; Agra-Kooijman, Dena M.; Song, Jang-Kun; Vengatesan, M. R.; Srinivasarao, Mohan; Fisch, Michael R.; Kumar, Satyendra

    2016-12-01

    The temperature dependence of the orientational order parameters and in the nematic (N ) and twist-bend nematic (Ntb) phases of the liquid crystal dimer CB7CB have been measured using x-ray and polarized Raman scattering. The obtained from both techniques are the same, while , determined by Raman scattering is, as expected, systematically larger than its x-ray value. Both order parameters increase in the N phase with decreasing temperature, drop across the N -Ntb transition, and continue to decrease. In the Ntb phase, the x-ray value of eventually becomes negative, providing a direct and independent confirmation of a conical molecular orientational distribution. The heliconical tilt angle α, determined from orientational distribution functions in the Ntb phase, increases to ˜24∘ at ˜15 K below the transition. In the Ntb phase, α (T ) ∝(T*-T)λ , with λ =0.19 ±0.03 . The transition supercools by 1.7 K, consistent with its weakly first-order nature. The value of λ is close to 0.25 indicating close proximity to a tricritical point.

  7. Coupled Crystal Plasticity-Phase Field Fracture Simulation Study on Damage Evolution Around a Void: Pore Shape Versus Crystallographic Orientation

    NASA Astrophysics Data System (ADS)

    Diehl, Martin; Wicke, Marcel; Shanthraj, Pratheek; Roters, Franz; Brueckner-Foit, Angelika; Raabe, Dierk

    2017-05-01

    Various mechanisms such as anisotropic plastic flow, damage nucleation, and crack propagation govern the overall mechanical response of structural materials. Understanding how these mechanisms interact, i.e. if they amplify mutually or compete with each other, is an essential prerequisite for the design of improved alloys. This study shows—by using the free and open source software DAMASK (the Düsseldorf Advanced Material Simulation Kit)—how the coupling of crystal plasticity and phase field fracture methods can increase the understanding of the complex interplay between crystallographic orientation and the geometry of a void. To this end, crack initiation and propagation around an experimentally obtained pore with complex shape is investigated and compared to the situation of a simplified spherical void. Three different crystallographic orientations of the aluminum matrix hosting the defects are considered. It is shown that crack initiation and propagation depend in a non-trivial way on crystallographic orientation and its associated plastic behavior as well as on the shape of the pore.

  8. Coupled Crystal Plasticity-Phase Field Fracture Simulation Study on Damage Evolution Around a Void: Pore Shape Versus Crystallographic Orientation

    NASA Astrophysics Data System (ADS)

    Diehl, Martin; Wicke, Marcel; Shanthraj, Pratheek; Roters, Franz; Brueckner-Foit, Angelika; Raabe, Dierk

    2017-03-01

    Various mechanisms such as anisotropic plastic flow, damage nucleation, and crack propagation govern the overall mechanical response of structural materials. Understanding how these mechanisms interact, i.e. if they amplify mutually or compete with each other, is an essential prerequisite for the design of improved alloys. This study shows—by using the free and open source software DAMASK (the Düsseldorf Advanced Material Simulation Kit)—how the coupling of crystal plasticity and phase field fracture methods can increase the understanding of the complex interplay between crystallographic orientation and the geometry of a void. To this end, crack initiation and propagation around an experimentally obtained pore with complex shape is investigated and compared to the situation of a simplified spherical void. Three different crystallographic orientations of the aluminum matrix hosting the defects are considered. It is shown that crack initiation and propagation depend in a non-trivial way on crystallographic orientation and its associated plastic behavior as well as on the shape of the pore.

  9. Application of the anisotropic phase-field crystal model to investigate the lattice systems of different anisotropic parameters and orientations

    NASA Astrophysics Data System (ADS)

    Kundin, Julia; Ajmal Choudhary, Muhammad

    2017-07-01

    In this article, we present the recent advances in the development of the anisotropic phase-field crystal (APFC) model. These advances are important in basic researches for multiferroic and thermoelectric materials with anisotropic crystal lattices and in thin-film applications. We start by providing a general description of the model derived in our previous studies based on the crystal symmetry and the microscopic dynamical density functional theory for anisotropic interactions and show that there exist only two possible degrees of freedom for the anisotropic lattices which are described by two independent parameters. New findings concerning the applications of the APFC model for the estimation of the elastic modules of anisotropic systems including sheared and stretched lattices as well as for the investigation of the heterogeneous thin film growth are described. The simulation results demonstrate the strong dependency of the misfit dislocation formation during the film growth on the anisotropy and reveal the asymmetric behavior in the cases of positive and negative misfits. We also present the development of the amplitude representation for the full APFC model of two orientation variants and show the relationship between the wave vectors and the base angles of the anisotropic lattices.

  10. Influence of Acoustic Field Structure on Polarization Characteristics of Acousto-optic Interaction in Crystals

    NASA Astrophysics Data System (ADS)

    Muromets, A. V.; Trushin, A. S.

    Influence of acoustic field structure on polarization characteristics of acousto-optic interaction is investigated. It is shown that inhomogeneity of acoustic field and mechanism of ultrasound excitation causes changes in values of acousto-optic figure of merit for ordinary and extraordinary light beams in comparison with theoretic values. The theoretic values were derived under assumption that acoustic wave is homogeneous. Experimental analysis was carried out in acousto-optic cell based on lithium niobate crystal where the acoustic wave propagates at the angle 13 degrees to Z axis of the crystal. We used three different methods of ultrasound generation in the crystal: by means of external piezotransducer, by interdigital transducer and by two sets of electrodes placed on top of the crystal surface. In the latter case, the first pair of the electrodes was directed along X crystal axis, while the second pair of the electrodes was directed orthogonally to X crystal axis and the direction of ultrasound. Obtained values for diffraction efficiencies for ordinary and extraordinary polarized optical beams were qualitatively different which may be caused by spatial inhomogeneity of the generated acoustic waves in the crystal. Structure of acoustic field generated by these sets of electrodes was examined by laser probing. We performed the analysis of the acoustic field intensity using acousto-optic method. A relation of diffraction efficiencies for ordinary and extraordinary light waves was measured during each iteration of the laser probing.

  11. Waveguide photonic crystals with characteristics controlled with p-i-n diodes

    SciTech Connect

    Usanov, D. A. Skripal, A. V.; Abramov, A. V.; Bogolyubov, A. S.; Skvortsov, V. S.; Merdanov, M. K.

    2010-12-15

    A one-dimensional waveguide photonic structure-specifically, a photonic crystal with a controllable frequency characteristic-is designed. The central frequency of the spectral window of the photonic crystal can be tuned by choosing the parameters of disturbance of periodicity in the photonic crystal, whereas the transmission coefficient at a particular frequency can be controlled by varying the voltage at a p-i-n diode. It is shown that the possibility exists of using the waveguide photonic crystal to design a microwave device operating in the 3-cm-wavelength region, with a transmission band of 70 MHz at a level 3 dB and the transmission coefficient controllable in the range from -1.5 to -25 dB under variations in the forward voltage bias at the p-i-n diode from zero to 700 mV.

  12. Kinetic characteristics of the crystallization from model solutions of blood plasma

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Solodyankina, A. A.

    2017-05-01

    The kinetic regularities of crystallization (growth order and constants) in a model solution of blood plasma have been investigated. The particular order and crystallization constant are determined to be n < 1 and k = 12.30-26.91 moln L-n s-n, respectively. The impurities are found to form the following descending sequence with respect to their inf luence on the particular kinetic characteristics of crystallization: milky acid > magnesium ions > alanine, glycine, glucose, and citric acid. It is shown that the impurities affect to a greater extent the nucleation rather than the growth stage. It is also established that a change in pH within 7.0-8.0 does not affect the crystallization parameters of the system modeling the composition of human blood plasma.

  13. [Physical and chemical characteristics of a new cefazolin sodium hydrate crystal].

    PubMed

    Hu, Chang-Qin; Yin, Li-Hui; Liang, Ya-Ning

    2008-08-01

    One kind of new cefazolin sodium hydrate crystal was obtained in the isopropyl alcohol - water system. There are two symmetry independent molecules in the asymmetric unit, both being well ordered in the lattice, and ten independent water positions but generally four to six (mean five) water molecules and one sodium ion present in the unit cell structure. Huge solvent tunnels can be found. Again there are two general regions of water molecules, those in the large solvent tunnels and those in proximity of the sodium ion and the tetrazole moieties of the drug molecule. The physical and chemical characteristics of the new cefazolin sodium hydrate crystal are similar to that of the alpha-form cefazolin sodium crystal, and the new crystal has better chemical stability than amorphous cefazolin sodium powder.

  14. Molecular tectonics: design of enantiomerically pure helical tubular crystals with controlled channel size and orientation.

    PubMed

    Lin, Mei-Jin; Jouaiti, Abdelaziz; Grosshans, Philippe; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2011-07-21

    The combination of four enantiomerically pure organic tectons composed of a rigid chiral backbone bearing two terminal pyridyl coordinating sites with ZnSiF(6) behaving as an infinite pillar leads to the formation of tubular 2-D enantiomerically pure helical channels with controlled size and orientation.

  15. Growth and Crystal Orientation of ZnTe on m-Plane Sapphire with Nanofaceted Structure

    NASA Astrophysics Data System (ADS)

    Nakasu, Taizo; Sun, Wei-Che; Kobayashi, Masakazu; Asahi, Toshiaki

    2017-04-01

    ZnTe thin films on sapphire substrate with nanofaceted structure have been studied. The nanofaceted structure of the m-plane (10-10) sapphire was obtained by heating the substrate at above 1100°C in air, and the r-plane (10-12) and S-plane (1-101) were confirmed. ZnTe layers were prepared on the nanofaceted m-plane sapphire substrates by molecular beam epitaxy (MBE). The effect of the nanofaceted structure on the orientation of the thin films was examined based on x-ray diffraction (XRD) pole figures. Transmission electron microscopy (TEM) was also employed to characterize the interface structures. The ZnTe layer on the nanofaceted m-plane sapphire substrate exhibited (331)-plane orientation, compared with (211)-plane without the nanofaceted structure. After thermal treatment, the m-plane surface vanished and (211) layer could not be formed because of the lack of surface lattice matching. On the other hand, (331)-plane thin film was formed on the nanofaceted m-plane sapphire substrate, since the (111) ZnTe domains were oriented on the S-facet. The orientation of the ZnTe epilayer depended on the atomic ordering on the surface and the influence of the S-plane.

  16. Enantiomer-specific oriented attachment: formation of macroscopic homochiral crystal aggregates from a racemic system.

    PubMed

    Viedma, Cristóbal; McBride, J Michael; Kahr, Bart; Cintas, Pedro

    2013-09-27

    Let's get together: Racemic samples of d- and l-enantiomorphous NaBrO3 (or NaClO3) crystals aggregate with nearly complete enantioselection. Centimeter-sized enantiopure megacrystals are often produced, and these can be sorted easily. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Optical Dichroism of Homeotropically Oriented Films of Comb-Shaped Liquid Crystal Polymer

    DTIC Science & Technology

    2000-09-29

    1990. [6] L. M. Blinov, Electro- and Magneto -optics of Liquid Crystals (in Russian). "Nauka", 1978. [7] L. M. Blinov, V. A. Kisel, V. G. Rumyantsev...V. V. Filippov, Optica i Spertroskopya, vol. 78, no. 5, p. 798, 1995. [13] V. V. Filippov and V. P. Kutavichus, Proceedings SPIE, "Polarimetry and

  18. Effect of crystal orientation on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films

    SciTech Connect

    Wu, Huaping E-mail: hpwu@zjut.edu.cn; Ma, Xuefu; Zhang, Zheng; Zeng, Jun; Chai, Guozhong; Wang, Jie

    2016-01-15

    The influence of crystal orientations on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films has been investigated using an expanded nonlinear thermodynamic theory. The calculations reveal that crystal orientation has significant influence on the phase stability and phase transitions in the misfit strain-temperature phase diagrams. In particular, the (110) orientation leads to a lower symmetry and more complicated phase transition than the (111) orientation in BaTiO{sub 3} films. The increase of compressive strain will dramatically enhance the Curie temperature T{sub C} of (110)-oriented BaTiO{sub 3} films, which matches well with previous experimental data. The polarization components experience a great change across the boundaries of different phases at room temperature in both (110)- and (111)-oriented films, which leads to the huge dielectric and piezoelectric responses. A good agreement is found between the present thermodynamics calculation and previous first-principles calculations. Our work provides an insight into how to use crystal orientation, epitaxial strain and temperature to tune the structure and properties of ferroelectrics.

  19. Laser patterning and preferential orientation of two-dimensional planar {beta}-BaB{sub 2}O{sub 4} crystals on the glass surface

    SciTech Connect

    Suzuki, F.; Ogawa, K.; Honma, T.; Komatsu, T.

    2012-01-15

    The laser-induced crystallization method is applied to pattern two-dimensional planar {beta}-BaB{sub 2}O{sub 4} crystals on the surface of Sm{sub 2}O{sub 3}-BaO-B{sub 2}O{sub 3} glass. By scanning Yb:YVO{sub 4} fiber lasers (wavelength: 1080 nm) continuously with a small step (0.5 {mu}m) between laser irradiated areas, homogeneous planar {beta}-BaB{sub 2}O{sub 4} crystals are patterned successfully, and a preferential growth orientation of {beta}-BaB{sub 2}O{sub 4} crystals is confirmed from linearly polarized micro-Raman scattering spectrum and second harmonic intensity measurements. It is found that the crystal growth direction is perpendicular to the laser scanning direction. This relation, i.e., the perpendicular relation, is different from the behavior in discrete crystal line patterning, where the crystal growth direction is consistent with the laser scanning direction. The present study proposes the possibility of the control of crystal growth direction in laser-induced crystallization in glasses. - Graphical abstract: This figure shows confocal scanning laser microscope and polarized optical microscope photographs for {beta}-BaB{sub 2}O{sub 4} crystals obtained by laser irradiations. The laser scanning was repeated with a step of 0.5 {mu}m between the lines using the condition of the power of P=0.8 W and a laser scanning speed of S=8 {mu}m/s. It is suggested that {beta}-BaB{sub 2}O{sub 4} crystals in the overlapped laser-irradiated region are highly oriented and the c-axis direction of {beta}-BaB{sub 2}O{sub 4} crystals is perpendicular to the laser scanning direction. Highlights: Black-Right-Pointing-Pointer Laser-induced crystallization method is applied to pattern {beta}-BaB{sub 2}O{sub 4} crystals. Black-Right-Pointing-Pointer Two-dimensional planar crystals are patterned on the glass surface. Black-Right-Pointing-Pointer Preferential growth orientation of {beta}-BaB{sub 2}O{sub 4} crystals is confirmed. Black-Right-Pointing-Pointer Crystal growth

  20. Self-organization and electrooptical characteristics of a nematic liquid crystal-cellulose diacetate composite

    NASA Astrophysics Data System (ADS)

    Sadovoy, A. V.; Shipovskaya, A. B.; Nazvanov, V. F.

    2008-12-01

    Stable self-organization process has been observed during the formation of thin films of a composite based on a nematic liquid crystal and a cellulose acetate polymer matrix. Optical transmission characteristics and electrooptical response time of the composite have been theoretically calculated and experimentally studied.

  1. Bearing alloys with hexagonal crystal structures provide improved friction and wear characteristics

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Johnson, R. L.

    1966-01-01

    Bearings of titanium, cobalt, and other hexagonal crystal alloys are used in vacuum and high temperature environments. These temperature-stabilized alloys have reduced friction and wear characteristics and therefore have potential use in aircraft seals, hydraulic equipment, and artificial human joints.

  2. Mechanisms of plastic deformation in [1 ¯ 11 ]-oriented single crystals of FeNiMnCrCo high entropy alloy

    NASA Astrophysics Data System (ADS)

    Kireeva, Irina; Chumlyakov, Yurii; Pobedennaya, Zinaida; Kuksgauzen, Dmitrii; Karaman, Ibrahim; Sehitoglu, Huseyin

    2016-11-01

    Single crystals of fcc Fe20Ni20Mn20Cr20Co20 (atom percent) high entropy alloy oriented along the [1 ¯11 ] direction are used to study flow curves and deformation mechanisms—slip, twinning under tensile deformation at early stages of plastic flow, ɛ = 2.5-5.0%, at the test temperature of 77 and 296 K. It is shown that twinning in [1 ¯11 ] -oriented single crystals is observed from the beginning of plastic flow when ɛ = 2.5-5.0% from 77 to 296 K. Plastic flow in [1 ¯11 ]-oriented single crystals under tension is developed with the high strain hardening coefficients 1800 and 2000 MPa, respectively, at 296 and 77 K. It is also characterized by a good plasticity of 58 and 60% and by a high level of stresses before fracture, 980 and 1580 MPa, respectively, at 296 and 77 K.

  3. Crystal Orientation Control of Bismuth Layer-Structured Dielectric Films Using Interface Layers of Perovskite-Type Oxides

    NASA Astrophysics Data System (ADS)

    Kondoh, Yohta; Sasajima, Keiichi; Hayashi, Mari; Kimura, Junichi; Takuwa, Itaru; Ehara, Yoshitaka; Funakubo, Hiroshi; Uchida, Hiroshi

    2011-09-01

    Thin films of SrBi4Ti4O15, a kind of bismuth layer-structured dielectrics (BLSDs), were prepared on platinized silicon wafers buffered by perovskite-type oxide interface layers, (100)LaNiO3/(111)Pt/TiO2/(100)Si and (001)Ca2Nb3O10-nanosheets/(111)Pt/TiO2/(100)Si, by chemical solution deposition (CSD). The Ca2Nb3O10 nanosheets were supported on a (111)Pt/TiO2/(100)Si substrate by dip coating using an aqueous dispersion, while (100)LaNiO3 was prepared by CSD. The (00l) planes of BLSD crystal were preferentially oriented on the surface of both substrates, which is caused by suitable lattice matching between the a-(b-)axis of BLSD and perovskite-type oxide layers. The film deposition on (001)Ca2Nb3O10 nanosheets yielded (001)-oriented BLSD films with higher crystallinity and smaller fluctuation in the tilting angle of the (001)BLSD plane than those on the (100)LaNiO3 interface layer. The dielectric constant (ɛr) of (001)-oriented SrBi4Ti4O15 film on (001)Ca2Nb3O10-nanosheets/(111)Pt/TiO2/(100)Si substrate was approximately 190, which was significantly stable against the change of frequency and bias voltage compared with that of the randomly-oriented SrBi4Ti4O15 film.

  4. [Study on the orientation of liquid crystals presented on the glass substrates spin-coated and functionalized with copper ions].

    PubMed

    Wang, Shiming; Xiong, Xingliang; Zhang, Yan; Li, Guang; Chen, Mengmeng

    2013-06-01

    A stable, uniform, easily implemented, LC-based chemical and biological sensor substrate for orientations of liquid crystals (LCs) for a long-term is urgently needed for medical applications of the sensors. We proposed a use of spin-coating of copper perchlorate (Cu(ClO4)2), with five different concentrations(0-100mmol/L), directly on glass slides for fabricating a layer of chemically-sensitive copper ions. Observing the transmitted light with a polarized microscope, we found the luminosity of the light propagated through sensors deposited with copper ions started to weaken gradually after a certain time. The higher was the concentration of copper ions covered on the glass substrates of the sensors, the faster the weakening occurred, and the less time was needed for transmitted light to turn completely dark. But there was no change in luminosity of the transmitted light for the sensors without Cu(ClO4)2 spin-coating even after stored at room temperature (25 degrees C) for a whole day. When the Cu(ClO4)2 deposited sensors were stored within a drying oven at room temperature (25 degrees C) for 2 months, it was found that there vas almost no change in luminosity of the transmitted lights. The results showed that all the thin films of LC on glass slides functionalized with Cu(ClO4)2 could keep homeotropic and stable orientation for a long time; the concentration of Cu (ClO4)2I has an influence on the orientation response speed of LC from planar to perpendicular orientation.

  5. Effects of crystal orientation on cellulose nanocrystals-cellulose acetate nanocomposite fibers prepared by dry spinning.

    PubMed

    Chen, Si; Schueneman, Greg; Pipes, R Byron; Youngblood, Jeffrey; Moon, Robert J

    2014-10-13

    This work presents the development of dry spun cellulose acetate (CA) fibers using cellulose nanocrystals (CNCs) as reinforcements. Increasing amounts of CNCs were dispersed into CA fibers in efforts to improve the tensile strength and elastic modulus of the fiber. A systematic characterization of dispersion of CNCs in the polymer fiber and their effect on the nanocomposites' mechanical properties is described. The birefringence, thermal properties, and degree of CNC orientation of the fibers are discussed. 2D X-ray diffraction was used to quantify the degree of CNC alignment within the fibers. It is shown that the CNC alignment directly correlates to the mechanical properties of the composite. Maximum improvements of 137% in tensile strength and 637% in elastic modulus were achieved. Empirical micromechanical models Halpin-Tsai equation and an orientation modified Cox model were used to predict the fiber performance and compared with experimental results.

  6. Novel Interphases: Synthesis, Molecular Orientation and Grafting of Liquid Crystal Polymers on Carbon Fibers

    DTIC Science & Technology

    1990-01-01

    rigid molecules into an anisotropic phase have been reported. Lars Onsager (13) showed that steric interactions between rigid rods can lead to...will eventually undergo an Onsager orientational transition. From a properties point of view the occurrence of a high density surface layer with...Plate’, N. A., Adv. in Polym. Sci., 1984, 173. (12) Flory, P. J., Proc. Royal Soc. London, 1956, A234, 73. (13) Onsager , L., Ann. N. Y. Acad. Sci

  7. Syntheses of single-crystal apatite particles with preferred orientation to the a- and c-axes as models of hard tissue and their applications.

    PubMed

    Aizawa, Mamoru; Matsuura, Tomokazu; Zhuang, Zhi

    2013-01-01

    Hydroxyapatite [Ca10(PO4)6(OH)2; HAp] is the mineral component of vertebrate hard tissues and an important raw material for biomaterials. The HAp crystal belongs to a hexagonal system and has two types of crystal plane with different atomic arrangements: positively charged calcium ions are mainly present in the a(b)-planes, while negatively charged phosphate ions and hydroxyl groups are mainly present in the c-planes. In vertebrate long bone surfaces, HAp crystals have a c-axis orientation, which leads to the development of the a(b)-plane; while in tooth enamel surfaces, they have an a(b)-axis orientation, which leads to the development of the c-plane. However, it is not clear why the orientations of long bone and tooth enamel are in different crystal planes. In order to clarify this question, we have synthesized single-crystal apatite particles with preferred orientation to the a- and c-axes as models for bone and teeth enamel. This review first describes the syntheses process of single-crystal apatite particles with preferred orientation to a(b)- and c-axes and then discusses specific protein adsorption to the crystal surface of the resulting plate- and fiber-shaped apatite particles with different surface charges. In addition, porous apatite-fiber scaffolds (AFSs) fabricated using the fiber-shaped apatite particles and their application to tissue engineering of bone are described on the basis of the three-dimensional cell culture of mesenchymal stem cells derived from rat bone marrow using the AFS settled into a radial-flow bioreactor.

  8. Effects of membrane orientation on fouling characteristics of forward osmosis membrane in concentration of microalgae culture.

    PubMed

    Honda, Ryo; Rukapan, Weerapong; Komura, Hitomi; Teraoka, Yuta; Noguchi, Mana; Hoek, Eric M V

    2015-12-01

    Application of forward osmosis (FO) membrane to microalgae cultivation processes enables concentration of microalgae and nutrients with low energy consumption. To understand fouling characteristics of FO membrane in concentration of microalgae culture, we studied flux decline, flux recovery by cleaning, and foulants characteristics, in different membrane orientation of active-layer-facing-feed-solution (AL-FS) and active-layer-facing-draw-solution (AL-DS) modes. Batch concentration of Chlorella vulgaris was conducted with a cellulose-triacetate FO membrane. Rapid flux decline and lower flux recovery was observed in AL-DS mode because of inner-membrane fouling including internal pore clogging, adsorption and internal concentration polarization in the support layer. A proportion of polysaccharides in extracellular polymeric substances to soluble microbial products were larger in chemical cleaning effluent than physical one in AL-DS mode, although those were not significantly different in AL-FS mode. Excitation-emission matrix analysis revealed that proteins and humic-like substances were also possible irreversible foulants both in AL-DS and AL-FS modes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Structural characteristics and crystal polymorphism of three local anaesthetic bases crystal polymorphism of local anaesthetic drugs: part VII.

    PubMed

    Schmidt, A C

    2005-07-14

    Benzocaine (BZC), butambene (BTN) and isobutambene (BTI) are basic local anaesthetic agents of the ester type, preferentially used for surgery and dental procedures. The compounds, official in the USP (BZC and BTN) and Ph. Eur. (BZC), were each found to exist in two polymorphic crystal forms and their solid state characteristics have been determined by thermomicroscopy, differential scanning calorimetry (DSC), FTIR-, FT-Raman-spectroscopy as well as X-ray powder diffractometry. This work further emphasizes the comparison of solid state characteristics of three compounds with closely related structural features on molecular level, leading to opportunities for the investigation of structure-property relationships. Mod. I0 is the particular thermodynamically stable form at room temperature in all of the three systems. This form is present in commercial products and can be crystallized from solvents at room conditions. Mod. II can be obtained by annealing the supercooled melt or fast cooling of a saturated solution, respectively. The endothermic transformation of mod. II to mod. I0 upon heating confirms that mod. I0 is thermodynamically stable at ambient conditions (heat of transition rule) whereas mod. II is enantiotropically related to mod. I0, i.e. is metastable at temperatures above the transition temperature. The metastable forms show different kinetic stabilities at room temperature.

  10. Elevated temperature tension, compression and creep-rupture behavior of (001)-oriented single crystal superalloy PWA 1480

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Miner, Robert V.

    1987-01-01

    Tensile and compressive flow behavior at various temperatures and strain rates, and tensile creep rupture behavior at 850 and 1050 C and various stresses were studied for (001)-oriented single crystals of the Ni-base superalloy PWA 1480. At temperatures up to 760 C, the flow stress is insensitive to strain rate and of greater magnitude in tension than in compression. At temperatures of 800 C and above, the flow stress decreases continuously with decreasing strain rate and the tension/compression anisotropy diminishes. The second stage creep rate and rupture time exhibited power law relationships with the applied stress for both 850 and 1050 C, however with different stress dependencies. The stress exponent for the steady state creep rate was about 7 at 1050 C, but much higher at 850 C, about 12. Directional coarsening of the gamma' phase occurred during creep at 1050 C, but not at 850 C.

  11. X-ray reflectivities, at low and high order of reflection, of flat highly oriented pyrolytic graphite crystals

    NASA Astrophysics Data System (ADS)

    Chabot, M.; Nicolai, P.; Wohrer, K.; Rozet, J. P.; Touati, A.; Chetioui, A.; Vernhet, D.; Politis, M. F.

    1991-10-01

    Integrated reflectivities of flat highly oriented pyrolytic graphite crystals have been measured at various energies (5.9 ≤ E ≤ 15.10 keV) and for various orders of reflection n (1 ≤ n ≤ 5). For low n values, the reflectivity is severely affected by secondary extinction; our results show that the theory of Zachariasen represents the experiment reasonably well, a conclusion reached by other authors for the case of n = 1 reflections. For high n values, the reflectivity is more sensitive to the structure factor's temperature correction, a quantity not precisely known. Our measurements are in favour of the larger temperature correction within the range reported in the literature.

  12. Modified timing characteristic of a scintillation detection system with photonic crystal structures.

    PubMed

    Liu, Jinliang; Liu, Bo; Zhu, Zhichao; Chen, Liang; Hu, Jing; Xu, Mengxuan; Cheng, Chuanwei; Ouyang, Xiaoping; Zhang, Zhongbing; Ruan, Jinlu; He, Shiyi; Liu, Linyue; Gu, Mu; Chen, Hong

    2017-03-01

    It is intuitively expected that an enhanced light extraction of a scintillator can be easily achieved by photonic crystal structures. Here, we demonstrate a modified timing characteristic for a detection system induced by enhanced light extraction with photonic crystal structures. Such improvement is due to the enhanced light extraction which can be clearly proven by the independent measurements of the light output and the timing resolution. The present investigation is advantageous to promote the development of a scintillation detection system performance based on the time-of-flight measurement.

  13. Beyond the crystallization paradigm: structure determination from diffraction patterns from ensembles of randomly oriented particles.

    PubMed

    Poon, H C; Saldin, D K

    2011-06-01

    We amplify on the principles of the method we have recently proposed for recovering an oversampled diffraction pattern of a single particle from measured diffraction patterns from multiple particles in orientations related by rotation about an axis parallel to the incident radiation. We propose an alternative method of phasing a reference resolution ring by means of a non-negativity constraint on the diffraction intensities, point out the need for caution about enantiomeric ambiguities in the reconstruction of a diffraction pattern from its angular correlations, and show that converged correlations may be deduced by appropriate averaging of even very noisy data. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Hydrogen effects in 001-line oriented nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Baker, C. L.; Chene, J.; Bernstein, I. M.; Williams, J. C.

    1988-01-01

    The entry and subsequent interaction of hydrogen on the mechanical properties of the single crystal nickel-base superalloy CMSX-2 has been studied. Significant amounts of hydrogen were introduced by high temperature hydrogen charging in molten salts which led to an increased lattice parameter and microhardness and to a degradation in tensile elongation to failure whose extent scales with the depth of the hydrogenated zone. In this region a fracture mode change from a 111 to a 100 plane type also occurred. The values of the binding energy of hydrogen to solidification voids and the effective hydrogen pressure in the voids were estimated.

  15. Orientation and patterning of zeolite micro-crystals on photorefractive templates

    NASA Astrophysics Data System (ADS)

    Elvira, I.; Muñoz-Martinez, J. F.; Ramiro, J.; Barroso, A.; Denz, C.; García-Cabañes, A.; Agulló-López, F.; Carrascosa, M.

    2017-06-01

    Evanescent fields photo-generated on the surface of photorefractive Fe-doped LiNbO3 templates have been used to trap and align anisotropic zeolite micro-cylinders. x- and z-cut crystal configurations have been employed to obtain different 1D and 2D zeolite micro-patterns. Inside of the patterns, a substructure of zeolites aligned along the electric field, either parallel or perpendicular to the surface, have been obtained. The experiments have been analyzed to the light of a theoretical analysis that satisfactorily explains the main experimental features.

  16. Toward the Fabrication of Advanced Nanofiltration Membranes by Controlling Morphologies and Mesochannel Orientations of Hexagonal Lyotropic Liquid Crystals.

    PubMed

    Wang, Guang; Garvey, Christopher J; Zhao, Han; Huang, Kang; Kong, Lingxue

    2017-07-21

    Water scarcity has been recognized as one of the major threats to human activity, and, therefore, water purification technologies are increasingly drawing attention worldwide. Nanofiltration (NF) membrane technology has been proven to be an efficient and cost-effective way in terms of the size and continuity of the nanostructure. Using a template based on hexagonal lyotropic liquid crystals (LLCs) and partitioning monomer units within this structure for subsequent photo-polymerisation presents a unique path for the fabrication of NF membranes, potentially producing pores of uniform size, ranging from 1 to 5 nm, and large surface areas. The subsequent orientation of this pore network in a direction normal to a flat polymer film that provides ideal transport properties associated with continuous pores running through the membrane has been achieved by the orientation of hexagonal LLCs through various strategies. This review presents the current progresses on the strategies for structure retention from a hexagonal LLCs template and the up-to-date techniques used for the reorientation of mesochanels for continuity through the whole membrane.

  17. Toward the Fabrication of Advanced Nanofiltration Membranes by Controlling Morphologies and Mesochannel Orientations of Hexagonal Lyotropic Liquid Crystals

    PubMed Central

    Zhao, Han; Huang, Kang

    2017-01-01

    Water scarcity has been recognized as one of the major threats to human activity, and, therefore, water purification technologies are increasingly drawing attention worldwide. Nanofiltration (NF) membrane technology has been proven to be an efficient and cost-effective way in terms of the size and continuity of the nanostructure. Using a template based on hexagonal lyotropic liquid crystals (LLCs) and partitioning monomer units within this structure for subsequent photo-polymerisation presents a unique path for the fabrication of NF membranes, potentially producing pores of uniform size, ranging from 1 to 5 nm, and large surface areas. The subsequent orientation of this pore network in a direction normal to a flat polymer film that provides ideal transport properties associated with continuous pores running through the membrane has been achieved by the orientation of hexagonal LLCs through various strategies. This review presents the current progresses on the strategies for structure retention from a hexagonal LLCs template and the up-to-date techniques used for the reorientation of mesochanels for continuity through the whole membrane. PMID:28753973

  18. Mechanisms of sequential particle transfer and characteristics of light neutron-excess and oriented nuclei

    NASA Astrophysics Data System (ADS)

    Galanina, L. I.; Zelenskaya, N. S.

    2012-03-01

    The procedure for evaluating the second-order corrections to the matrix elements of the reaction A( x, y) B, which are obtained using the method of distorted waves with a finite radius of intercluster interaction (DWBAFR), is developed. It is based on the assumption of a virtual cluster structure of light nuclei and uses integral equations for a four-body problem in the Alt-Grassberger-Sandhas formalism. These corrections are related with the mechanisms of sequential particles transfer. The latter are represented by the quadrangle diagrams. Their matrix elements are summed up coherently with those given by the pole and triangle diagrams which were calculated by using DWBAFR. The computer code QUADRO is written for the numerical implementation of the method proposed. The statistical tensors of nucleus B formed in the reaction A( x, y) B at incident particle energies of about 10 MeV/nucleon in the center of mass frame are determined. Specific calculations allowed for description of both the experimental cross sections (0-rank statistical tensors) of various reactions (including those where nucleus B has some excess neutrons) and polarized characteristics of nucleus B* (in the case of the latter produced in the exited state). A two-neutron periphery of nuclei 6He, 10Be, 12B (both in dineutron and cigarlike configurations) is restored by analyzing the differential cross sections of elastic alpha-6He-scattering and 9Be( d, p)10Be and 10B( t, p)12B reactions. It is shown that the structure of neutron peripheries is fundamentally different for these nuclei and its feature depends on the way those neutron-excess nuclei are formed: in 6He both configurations contribute to a two-neutron halo, while in 10Be there is a barely noticeable one-neutron halo, and in 12B there is a "dineutron skin". Orientation characteristics of nuclei B* are calculated. Their comparison with experimental data made it possible to draw important conclusions about a contribution to the statistical

  19. Enhancing thermoelectric properties of Sb2Te3 flexible thin film through microstructure control and crystal preferential orientation engineering

    NASA Astrophysics Data System (ADS)

    Shen, Shengfei; Zhu, Wei; Deng, Yuan; Zhao, Huaizhou; Peng, Yuncheng; Wang, Chuanjun

    2017-08-01

    Preparation of high performance flexible thermoelectric thin films would promote applications of flexible thermoelectric device. In this work, antimony telluride (Sb2Te3) thin films were directly deposited on polyimide substrate. The crystalline structures and morphologies of the thin films were analyzed, and the mechanism of crystal growth influenced by sputtering pressure was discussed. We also investigated the effects of microstructure on their thermoelectric properties, where Hall effect measurement was conducted to provide further insight into the enhancement of thermoelectric properties. The mean free path of the carrier was calculated on the basis of carrier concentration and mobility. Our results showed that with (015) crystal preferential orientation, the electrical conductivity and Seebeck coefficient of Sb2Te3 thin films were simultaneously increased, and a maximum power factor of 6.0 μW cm-1 K-2 was achieved, which was increased by 75% compared with the ordinary thin film. Meanwhile, due to the reduced lattice thermal conductivity and increased power factor, the estimated figure of merit (ZT) value was largely enhanced to 0.42.

  20. Sixfold bond orientational properties of a model liquid crystal in the dimensional crossover of B phases: A computer simulation study

    NASA Astrophysics Data System (ADS)

    De Gaetani, Luca; Tani, Alessandro

    2007-02-01

    A wide range of NPT simulations of a bead necklace liquid crystal model in the crystal B, smectic B, smectic A, and nematic phases have been performed. Systems with up to 21600molecules have been studied to observe the behavior of slowly decaying spatial correlation functions. The pair correlation function and its in-plane restriction are consistent with a crystalline phase made of independent two-dimensional crystalline layers. Smectic B phase is studied by the bond orientational pair correlation functions g6 and its extension g6ext. The first reaches a constant value, which seems to rule out a classical hexatic phase. The latter shows a power-law decay within the layers: its typical decay exponent (η6ext) is evaluated. Relationships between multiple harmonics of the C6n order parameter have been evaluated through the whole range of existence of B phases (crystalline and smectic): the extension to the crystalline phase holds and provides an excellent fit of the simulation data.

  1. Surface characterization and orientation interaction between diamond- like carbon layer structure and dimeric liquid crystals

    NASA Astrophysics Data System (ADS)

    Naradikian, H.; Petrov, M.; Katranchev, B.; Milenov, T.; Tinchev, S.

    2017-01-01

    Diamond-like carbon (DLC) and amorphous carbon films are very promising type of semiconductor materials. Depending on the hybridization sp2/sp3 ratio, the material’s band gap varies between 0.8 and 3 eV. Moreover carbon films possess different interesting for practice properties: comparable to the Silicon, Diamond like structure has 22-time better thermal conductivity etc. Here we present one type of implementation of such type nanostructure. That is one attempt for orientation of dimeric LC by using of pre-deposited DLC layer with different ratio of sp2/sp3 hybridized carbon content. It could be expected a pronounced π1-π2interaction between s and p orbital levels on the surface and the dimeric ring of LC. We present comparison of surface anchoring strengths of both orientation inter-surfaces DLC/dimeric LC and single wall carbon nanotubes (SWCNT)/dimeric LC. The mechanism of interaction of dimeric LC and activated surfaces with DLC or SWCNT will be discussed. In both cases we have π-π interaction, which in combination with hydrogen bonding, typical for the dimeric LCs, influence the LC alignment. The Raman spectroscopy data evidenced the presence of charge transfer between contacting hexagonal rings of DLC and the C = O groups of the LC molecules.

  2. Orientational Coherent Effects of High-Energy Particles in a LiNbO3 Crystal

    NASA Astrophysics Data System (ADS)

    Bagli, E.; Guidi, V.; Mazzolari, A.; Bandiera, L.; Germogli, G.; Sytov, A. I.; De Salvador, D.; Argiolas, A.; Bazzan, M.; Carnera, A.; Berra, A.; Bolognini, D.; Lietti, D.; Prest, M.; Vallazza, E.

    2015-07-01

    A bent lithium niobate strip was exposed to a 400 -GeV /c proton beam at the external lines of CERN Super Proton Synchrotron to probe its capabilities versus coherent interactions of the particles with the crystal such as channeling and volume reflection. Lithium niobate (LiNbO3 ) exhibits an interplanar electric field comparable to that of Silicon (Si) and remarkable piezoelectric properties, which could be exploited for the realization of piezo-actuated devices for the control of high-energy particle beams. In contrast to Si and germanium (Ge), LiNbO3 shows an intriguing effect; in spite of a low channeling efficiency (3%), the volume reflection maintains a high deflection efficiency (83%). Such discrepancy was ascribed to the high concentration (1 04 per cm2 ) of dislocations in our sample, which was obtained from a commercial wafer. Indeed, it has been theoretically shown that a channeling efficiency comparable with that of Si or Ge would be attained with a crystal at low defect concentration (less than ten per cm2 ). To better understand the role of dislocations on volume reflection, we have worked out computer simulation via dynecharm++ Monte Carlo code to study the effect of dislocations on volume reflection. The results of the simulations agree with experimental records, demonstrating that volume reflection is more robust than channeling in the presence of dislocations.

  3. Hierarchy of orientational phases and axial anisotropies in the gauge theoretical description of generalized nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Nissinen, Jaakko; de Boer, Josko; Slager, Robert-Jan; Zaanen, Jan

    2017-02-01

    The paradigm of spontaneous symmetry breaking encompasses the breaking of the rotational symmetries O(3 ) of isotropic space to a discrete subgroup, i.e., a three-dimensional point group. The subgroups form a rich hierarchy and allow for many different phases of matter with orientational order. Such spontaneous symmetry breaking occurs in nematic liquid crystals, and a highlight of such anisotropic liquids is the uniaxial and biaxial nematics. Generalizing the familiar uniaxial and biaxial nematics to phases characterized by an arbitrary point-group symmetry, referred to as generalized nematics, leads to a large hierarchy of phases and possible orientational phase transitions. We discuss how a particular class of nematic phase transitions related to axial point groups can be efficiently captured within a recently proposed gauge theoretical formulation of generalized nematics [K. Liu, J. Nissinen, R.-J. Slager, K. Wu, and J. Zaanen, Phys. Rev. X 6, 041025 (2016), 10.1103/PhysRevX.6.041025]. These transitions can be introduced in the model by considering anisotropic couplings that do not break any additional symmetries. By and large this generalizes the well-known uniaxial-biaxial nematic phase transition to any arbitrary axial point group in three dimensions. We find in particular that the generalized axial transitions are distinguished by two types of phase diagrams with intermediate vestigial orientational phases and that the window of the vestigial phase is intimately related to the amount of symmetry of the defining point group due to inherently growing fluctuations of the order parameter. This might explain the stability of the observed uniaxial-biaxial phases as compared to the yet to be observed other possible forms of generalized nematic order with higher point-group symmetries.

  4. Hierarchy of orientational phases and axial anisotropies in the gauge theoretical description of generalized nematic liquid crystals.

    PubMed

    Liu, Ke; Nissinen, Jaakko; de Boer, Josko; Slager, Robert-Jan; Zaanen, Jan

    2017-02-01

    The paradigm of spontaneous symmetry breaking encompasses the breaking of the rotational symmetries O(3) of isotropic space to a discrete subgroup, i.e., a three-dimensional point group. The subgroups form a rich hierarchy and allow for many different phases of matter with orientational order. Such spontaneous symmetry breaking occurs in nematic liquid crystals, and a highlight of such anisotropic liquids is the uniaxial and biaxial nematics. Generalizing the familiar uniaxial and biaxial nematics to phases characterized by an arbitrary point-group symmetry, referred to as generalized nematics, leads to a large hierarchy of phases and possible orientational phase transitions. We discuss how a particular class of nematic phase transitions related to axial point groups can be efficiently captured within a recently proposed gauge theoretical formulation of generalized nematics [K. Liu, J. Nissinen, R.-J. Slager, K. Wu, and J. Zaanen, Phys. Rev. X 6, 041025 (2016)2160-330810.1103/PhysRevX.6.041025]. These transitions can be introduced in the model by considering anisotropic couplings that do not break any additional symmetries. By and large this generalizes the well-known uniaxial-biaxial nematic phase transition to any arbitrary axial point group in three dimensions. We find in particular that the generalized axial transitions are distinguished by two types of phase diagrams with intermediate vestigial orientational phases and that the window of the vestigial phase is intimately related to the amount of symmetry of the defining point group due to inherently growing fluctuations of the order parameter. This might explain the stability of the observed uniaxial-biaxial phases as compared to the yet to be observed other possible forms of generalized nematic order with higher point-group symmetries.

  5. High magneto-optical characteristics of Holmium-doped terbium gallium garnet crystal.

    PubMed

    Chen, Zhe; Yang, Lei; Wang, Xiangyong; Yin, Hang

    2016-06-01

    Magneto-optical characteristics of a new magneto-active material, (Tb(1-x)Hox)3Ga5O12 crystal, have been grown by the Czochralski (Cz) method. A high value of the Verdet constant was obtained at room temperature-namely, 214.9 and 77.8  rad·m-1 T-1 for 632.8 and 1064 nm, respectively. The Verdet constant of the Ho-doped terbium gallium garnet crystal at 1064 nm is about 2 times higher than that of terbium gallium garnet crystal. High value of magneto-optical figure-of-merit makes it an attractive next-generation magneto-optics material for high-power Faraday isolators.

  6. Crystallization characteristics in supercooled liquid zinc during isothermal relaxation: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Zhou, Li-Li; Liu, Rang-Su; Tian, Ze-An; Liu, Hai-Rong; Hou, Zhao-Yang; Peng, Ping

    2016-08-01

    The crystallization characteristics in supercooled liquid Zn during isothermal relaxation were investigated using molecular dynamics simulations by adopting the cluster-type index method (CTIM) and the tracing method. Results showed that the crystallization process undergo three different stages. The size of the critical nucleus was found to be approximately 90-150 atoms in this system; the growth of nuclei proceeded via the successive formation of hcp and fcc structures with a layered distribution; and finally, the system evolved into a much larger crystal with a distinct layered distribution of hcp and fcc structures with an 8R stacking sequence of ABCBACAB by adjusting all of the atoms in the larger clusters according to a certain rule.

  7. Crystallization characteristics in supercooled liquid zinc during isothermal relaxation: A molecular dynamics simulation study

    PubMed Central

    Zhou, Li-li; Liu, Rang-su; Tian, Ze-an; Liu, Hai-rong; Hou, Zhao-yang; Peng, Ping

    2016-01-01

    The crystallization characteristics in supercooled liquid Zn during isothermal relaxation were investigated using molecular dynamics simulations by adopting the cluster-type index method (CTIM) and the tracing method. Results showed that the crystallization process undergo three different stages. The size of the critical nucleus was found to be approximately 90–150 atoms in this system; the growth of nuclei proceeded via the successive formation of hcp and fcc structures with a layered distribution; and finally, the system evolved into a much larger crystal with a distinct layered distribution of hcp and fcc structures with an 8R stacking sequence of ABCBACAB by adjusting all of the atoms in the larger clusters according to a certain rule. PMID:27526660

  8. Cryogenic nanoindentation size effect in [0 0 1]-oriented face-centered cubic and body-centered cubic single crystals

    NASA Astrophysics Data System (ADS)

    Lee, Seok-Woo; Meza, Lucas; Greer, Julia R.

    2013-09-01

    Cryogenic nanoindentation experiments performed on [0 0 1]-oriented single crystalline Nb, W, Al, and Au in an in situ nanomechanical instrument with customized cryogenic testing capability revealed temperature dependence on nanoindentation size effect. The Nix-Gao model, commonly used to capture indentation size effect at room temperature, does not take into account thermal effects and hence is not able to explain these experimental results where both hardness at infinite indentation depth and characteristic material length scale were found to be strong functions of temperature. Physical attributes are critically examined in the framework of intrinsic lattice resistance and dislocation cross-slip probability.

  9. Incipient plasticity of single-crystal tantalum as a function of temperature and orientation

    NASA Astrophysics Data System (ADS)

    Franke, O.; Alcalá, J.; Dalmau, R.; Chao Duan, Zhi; Biener, J.; Biener, M. M.; Hodge, A. M.

    2015-06-01

    The nanocontact plastic behaviour of single-crystalline Ta (1 0 0), Ta (1 1 0) and Ta (1 1 1) was studied as a function of temperature and indentation rate. Tantalum, a representative body centred cubic (BCC) metal, reveals a unique deformation behaviour dominated by twinning and the generation of stacking faults. Experiments performed at room temperature exhibit a single pop-in event, while at 200 °C, above the critical temperature, a transition to multiple pop-ins was observed. The experimental results are discussed with respect to the orientation as well as temperature and correlated to the defect structures using both anisotropic finite element and MD simulations. The serrated flow observed at 200 °C is related to differences in the quasi-elastic reloading originating from changes in the defect mechanism.

  10. Orientational order and translational dynamics of magnetic particle assemblies in liquid crystals.

    PubMed

    Peroukidis, Stavros D; Klapp, Sabine H L

    2016-08-10

    Implementing extensive molecular dynamics simulations we explore the organization of magnetic particle assemblies (clusters) in a uniaxial liquid crystalline matrix comprised of rodlike particles. The magnetic particles are modelled as soft dipolar spheres with diameter significantly smaller than the width of the rods. Depending on the dipolar strength coupling the magnetic particles arrange into head-to-tail configurations forming various types of clusters including rings (closed loops) and chains. In turn, the liquid crystalline matrix induces long range orientational ordering to these structures and promotes their diffusion along the director of the phase. Different translational dynamics are exhibited as the liquid crystalline matrix transforms either from isotropic to nematic or from nematic to smectic state. This is caused due to different collective motion of the magnetic particles into various clusters in the anisotropic environments. Our results offer a physical insight for understanding both the structure and dynamics of magnetic particle assemblies in liquid crystalline matrices.

  11. Orientational dynamics of a ferronematic liquid crystal in a rotating magnetic field

    SciTech Connect

    Boychuk, A. N. Zakhlevnykh, A. N.; Makarov, D. V.

    2015-09-15

    The behavior of the orientational structure of a ferronematic in a rotating uniform magnetic field is investigated using the continual theory. The time-dependent system of equations describing the dynamics of the ferronematic is derived. The dependences of the angles of rotation of the director and of the magnetization of the ferronematic on the velocity of field rotation are determined for various values of the material parameters. Two regimes (synchronous and asynchronous) of rotation of the ferronematic structure are detected. In the synchronous regime, the director rotates with the frequency of the magnetic field and a constant phase delay. The asynchronous regime is characterized by a time-dependent phase delay. The dependence of the critical angular velocity of magnetic field rotation, which determines the boundary between the synchronous and asynchronous regimes, on the magnetic field strength is derived.

  12. Width and Crystal Orientation Dependent Band Gap Renormalization in Substrate-Supported Graphene Nanoribbons.

    PubMed

    Kharche, Neerav; Meunier, Vincent

    2016-04-21

    The excitation energy levels of two-dimensional (2D) materials and their one-dimensional (1D) nanostructures, such as graphene nanoribbons (GNRs), are strongly affected by the presence of a substrate due to the long-range screening effects. We develop a first-principles approach combining density functional theory (DFT), the GW approximation, and a semiclassical image-charge model to compute the electronic band gaps in planar 1D systems in weak interaction with the surrounding environment. Application of our method to the specific case of GNRs yields good agreement with the range of available experimental data and shows that the band gap of substrate-supported GNRs are reduced by several tenths of an electronvolt compared to their isolated counterparts, with a width and orientation-dependent renormalization. Our results indicate that the band gaps in GNRs can be tuned by controlling screening at the interface by changing the surrounding dielectric materials.

  13. Incipient plasticity of single-crystal tantalum as a function of temperature and orientation

    DOE PAGES

    Franke, O.; Alcalá, J.; Dalmau, R.; ...

    2014-08-28

    The nanocontact plastic behavior of single-crystalline Ta (1 0 0), Ta (1 1 0) and Ta (1 1 1) was studied as a function of temperature and indentation rate. Tantalum, a representative body centred cubic (BCC) metal, reveals a unique deformation behavior dominated by twinning and the generation of stacking faults. Experiments performed at room temperature exhibit a single pop-in event, while at 200 °C, above the critical temperature, a transition to multiple pop-ins was observed. The experimental results are discussed with respect to the orientation as well as temperature and correlated to the defect structures using both anisotropic finitemore » element and MD simulations. In addition, the serrated flow observed at 200 °C is related to differences in the quasi-elastic reloading originating from changes in the defect mechanism.« less

  14. Incipient plasticity of single-crystal tantalum as a function of temperature and orientation

    SciTech Connect

    Franke, O.; Alcalá, J.; Dalmau, R.; Duan, Zhi Chao; Biener, J.; Biener, M. M.; Hodge, Andrea M.

    2014-08-28

    The nanocontact plastic behavior of single-crystalline Ta (1 0 0), Ta (1 1 0) and Ta (1 1 1) was studied as a function of temperature and indentation rate. Tantalum, a representative body centred cubic (BCC) metal, reveals a unique deformation behavior dominated by twinning and the generation of stacking faults. Experiments performed at room temperature exhibit a single pop-in event, while at 200 °C, above the critical temperature, a transition to multiple pop-ins was observed. The experimental results are discussed with respect to the orientation as well as temperature and correlated to the defect structures using both anisotropic finite element and MD simulations. In addition, the serrated flow observed at 200 °C is related to differences in the quasi-elastic reloading originating from changes in the defect mechanism.

  15. Characteristics of Value and Professional Orientation of the Technical University Students as Ideal Views on the Activity Goals

    ERIC Educational Resources Information Center

    Khinkanina, Alla L.; Serova, Olga E.

    2016-01-01

    The results of the empirical investigation of the characteristics of value and professional orientation of the students taking studies in social and computer engineering related fields are presented. The types of value structure uncovered depend on the students' attitudes to the values significant for the professional evolution (active mode of…

  16. Manifestations of dynamic strain aging in soft-oriented NiAl single crystals

    NASA Astrophysics Data System (ADS)

    Weaver, M. L.; Kaufman, M. J.; Noebe, R. D.

    1996-11-01

    The tensile and compressive properties of six NiAl-base single-crystal alloys have been investigated at temperatures between 77 and 1200 K. The normalized critical resolved shear stresses (CRSS/E) and work-hardening rates ( θ/E) for these alloys generally decreased with increasing temperature. However, anomalous peaks or plateaus for these properties were observed in conventional purity (CPNiAl), Si-doped (NiAl-Si), C-doped low Si (UF-NiAll), and Mo-doped (NiAl-Mo) alloys at intermediate temperatures (600 to 1000 K). This anomalous behavior was not observed in high-purity, low interstitial material (HP-NiAl). Low or negative strain-rate sensitivities (SRS) also were observed in all six alloys in this intermediate temperature range. Coincident with the occurrence of negative strain-rate sensitivities was the observation of serrated stress-strain curves in the CPNiAl and NiAl-Si alloys. These phenomena have been attributed to dynamic strain aging (DSA). Chemical analysis of the alloys used in this study suggests that the main specie responsible for strain aging in NiAl is C but indicate that residual Si impurities can enhance the strain aging effects. The corresponding dislocation microstructures at low temperatures (300 to 600 K) were composed of welldefined cells. At intermediate temperatures (600 to 900 K), either poorly defined cells or coarse bands of localized slip, reminiscent of the vein structures observed in low-cycle fatigue specimens deformed in the DSA regime, were observed in conventional purity, Si-doped, and in Mo-doped alloys. In contrast, a well-defined cell structure persisted in the low interstitial, high-purity alloy. At elevated temperatures (≥1000 K), more uniformly distributed dislocations and sub-boundaries were observed in all alloys. These observations are consistent with the occurrence of DSA in NiAl single-crystal alloys at intermediate temperatures.

  17. Correction: Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials

    NASA Astrophysics Data System (ADS)

    Rojo, Miguel Muñoz; Martín, Jaime; Grauby, Stéphane; Borca-Tasciuc, Theodorian; Dilhaire, Stefan; Martin-Gonzalez, Marisol

    2015-02-01

    Correction for `Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials' by Miguel Muñoz Rojo et al., Nanoscale, 2014, 6, 7858-7865.

  18. Micro-Imaging by Interference Microscopy: A Case Study of Orientation-Dependent Guest Diffusion in MFI-Type Zeolite Host Crystals.

    PubMed

    Gueudré, Laurent; Binder, Tomas; Chmelik, Christian; Hibbe, Florian; Ruthven, Douglas M; Kärger, Jörg

    2012-04-24

    Because of the small particle size, orientation-dependent diffusion measurements in microporous materials remains a challenging task. We highlight here the potential of micro-imaging by interference microscopy in a case study with MFI-type crystals in which, although with different accuracies, transient concentration profiles in all three directions can be observed. The measurements, which were performed with "rounded-boat" shaped crystals, reproduce the evolution patterns of the guest profiles recorded in previous studies with the more common "coffin-shaped" MFI crystals. The uptake and release patterns through the four principal faces (which in the coffin-shaped crystals extend in the longitudinal direction) are essentially coincident and there is no perceptible mass transfer in the direction of the long axis. The surface resistances of the four crystal faces through which mass transfer occurs are relatively small and have only a minor effect on the mass transfer rate. As a result of the pore structure, diffusion in the crystallographic c direction (which corresponds to the direction of the long axis) is expected to be much slower than in the transverse directions. This could explain the very low rate of mass transfer observed in the direction of the long axis, but it is also possible that the small end faces of the crystal may have high surface resistance. It is not possible to distinguish unequivocally between these two possibilities. All guest molecules studied (methyl-butane, benzene and 4-methyl-2-pentyne) show the same orientation dependence of mass transfer. The long 4-methyl-2-pentyne molecules would be expected to propagate at very different rates through the straight and sinusoidal channels. The coinciding patterns for uptake through the mutually perpendicular crystal faces therefore provide clear evidence that both the coffin shaped crystals and the rounded-boat-shaped crystals considered in this study, must be intergrowths rather than pure single

  19. Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode

    NASA Astrophysics Data System (ADS)

    Hong, S. H.; Jeong, Y. H.; Kim, H. Y.; Cho, H. M.; Lee, W. G.; Lee, S. H.

    2000-06-01

    We have fabricated a vertically aligned 4-domain nematic liquid crystal display cell with thin film transistor. Unlike the conventional method constructing 4-domain, i.e., protrusion and surrounding electrode which needs additional processes, in this study the pixel design forming 4-domain with interdigital electrodes is suggested. In the device, one pixel is divided into two parts. One part has a horizontal electric field in the vertical direction and the other part has a horizontal one in the horizontal direction. Such fields in the horizontal and vertical direction drive the liquid crystal director to tilt down in four directions. In this article, the electro-optic characteristics of cells with 2 and 4 domain have been studied. The device with 4 domain shows faster response time than normal twisted-nematic and in-plane switching cells, wide viewing angle with optical compensation film, and more stable color characteristics than 2-domain vertical alignment cell with similar structure.

  20. Experimental research on beam steering characteristics of liquid crystal optical phased array

    NASA Astrophysics Data System (ADS)

    Li, Man; Cai, Jun; Xu, Hong; Wang, Xiangru; Wu, Liang

    2016-01-01

    Beam steering characteristics of transmission liquid crystal optical phased array(LC-OPA) were measured using ultra precision electronic autocollimator. A continuous beam steering with a constant angular resolution in the order of 20 μrad is obtained experimentally from 0° to 6° based on the method of variable period grating (VPG).Meanwhile, the angular repeatability of less than 4 μrad (RMS) has been achieved.

  1. [111]-oriented PIN-PMN-PT crystals with ultrahigh dielectric permittivity and high frequency constant for high-frequency transducer applications

    NASA Astrophysics Data System (ADS)

    Li, Fei; Zhang, Shujun; Luo, Jun; Geng, Xuecang; Xu, Zhuo; Shrout, Thomas R.

    2016-08-01

    The electromechanical properties of [111]-oriented tetragonal Pb(In1/2Nb1/2O3)-Pb(Mg1/3Nb2/3O3)-PbTiO3 (PIN-PMN-PT) crystals were investigated for potential high frequency ultrasonic transducers. The domain-engineered tetragonal crystals exhibit an ultrahigh free dielectric permittivity ɛ33T > 10 000 with a moderate electromechanical coupling factor k33 ˜ 0.79, leading to a high clamped dielectric permittivity ɛ33S of 2800, significantly higher than those of the rhombohedral relaxor-PT crystals and high-K (dielectric permittivity) piezoelectric ceramics. Of particular significance is that the [111]-oriented tetragonal crystals were found to possess high elastic stiffness, with frequency constant N33 of ˜2400 Hz m, allowing relatively easy fabrication of high-frequency transducers. In addition, no scaling effect of piezoelectric and dielectric properties was observed down to thickness of 0.1 mm, corresponding to an operational frequency of ˜24 MHz. These advantages of [111]-oriented tetragonal PIN-PMN-PT crystals will benefit high-frequency ultrasonic array transducers, allowing for high sensitivity, broad bandwidth, and reduced noise/crosstalk.

  2. Reconstruction of the 3-D Shape and Crystal Preferred Orientation of Olivine: A Combined X-ray µ-CT and EBSD-SEM approach

    NASA Astrophysics Data System (ADS)

    Kahl, Wolf-Achim; Hidas, Károly; Dilissen, Nicole; Garrido, Carlos J.; López-Sánchez Vizcaíno, Vicente; Jesús Román-Alpiste, Manuel

    2017-04-01

    The complete reconstruction of the microstructure of rocks requires, among others, a full description of the shape preferred orientation (SPO) and crystal preferred orientation (CPO) of the constituent mineral phases. New advances in instrumental analyses, particularly electron backscatter diffraction (EBSD) coupled to focused ion beam-scanning electron microscope (FIB-SEM), allows a complete characterization of SPO and CPO in rocks at the micron scale [1-2]. Unfortunately, the large grain size of many crystalline rocks, such as peridotite, prevents a representative characterization of the CPO and SPO of their constituent minerals by this technique. Here, we present a new approach combining X-ray micro computed tomography (µ-CT) and EBSD to reconstruct the geographically oriented, 3-D SPO and CPO of cm- to mm-sized olivine crystals in two contrasting fabric types of chlorite harzburgites (Almírez ultramafic massif, SE Spain). The semi-destructive sample treatment involves drilling of geographically oriented micro drills in the field and preparation of oriented thin sections from µ-CT scanned cores. This allows for establishing the link among geological structures, macrostructure, fabric, and 3-D SPO-CPO at the thin section scale. Based on EBSD analyses, different CPO groups of olivine crystals can be discriminated in the thin sections and allocated to 3-D SPO in the µ-CT volume data. This approach overcomes the limitations of both methods (i.e., no crystal orientation data in µ-CT and no spatial information in EBSD), hence 3-D orientation of the crystallographic axes of olivines from different orientation groups could be correlated with the crystal shapes of olivine grains. This combined µ-CT and EBSD technique enables the correlation of both SPO and CPO and representative grain size, and is capable to characterize the 3-D microstructure of olivine-bearing rocks at the hand specimen scale. REFERENCES 1. Zaefferer, S., Wright, S.I., Raabe, D., 2008. Three

  3. Manifestations of Dynamic Strain Aging in Soft-Oriented NiAl Single Crystals

    NASA Technical Reports Server (NTRS)

    Weaver, M. L.; Kaufman, M. J.; Noebe, R. D.

    1996-01-01

    The tensile and compressive properties of six NiAl-base single-crystal alloys have been investigated at temperatures between 77 and 1200 K. The normalized critical resolved shear stresses (CRSS/E) and work-hardening rates (Theta/E) for these alloys generally decreased with increasing temperature. However, anomalous peaks or plateaus for these properties were observed in conventional purity (CPNiAl), Si-doped (NiAl-Si), C-doped low Si (UF-NiAl1), and Mo-doped (NiAl-Mo) alloys at intermediate temperatures (600 to 1000 K). This anomalous behavior was not observed in high-purity, low interstitial material (HP-NiAl). Low or negative strain-rate sensitivities (SRS) also were observed in all six alloys in this intermediate temperature range. Coincident with the occurrence of negative strain-rate sensitivities was the observation of serrated stress-strain curves in the CPNiAl and NiAl-Si alloys. These phenomena have been attributed to dynamic strain aging (DSA). Chemical analysis of the alloys used in this study suggests that the main specie responsible for strain aging in NiAl is C but indicate that residual Si impurities can enhance the strain aging effects. The corresponding dislocation microstructures at low temperatures (300 to 600 K) were composed of well-defined cells. At intermediate temperatures (600 to 900 K), either poorly defined cells or coarse bands of localized slip, reminiscent of the vein structures observed in low-cycle fatigue specimens deformed in the DSA regime, were observed in conventional purity, Si-doped, and in Mo-doped alloys. In contrast, a well-defined cell structure persisted in the low interstitial, high-purity alloy. At elevated temperatures (greater than or equal to 1000 K), more uniformly distributed dislocations and sub-boundaries were observed in all alloys. These observations are consistent with the occurrence of DSA in NiAl single-crystal alloys at intermediate temperatures.

  4. TEM illumination settings study for optimum spatial resolution and indexing reliability in crystal orientation mappings.

    PubMed

    Valery, A; Pofelski, A; Clément, L; Lorut, F; Rauch, E F

    2017-01-01

    The spatial resolution and the indexing quality obtained with an automated orientation and phase mapping tool are analyzed for different Transmission Electron Microscope (TEM) illumination settings. The electron probe size and convergence angle are studied for two TEM configuration modes referred as microprobe and nanoprobe modes. Using a 10μmC2 aperture in a FEI Tecnai F20 (S)TEM, the nanoprobe mode is used to get a small convergent electron beam while the microprobe mode provides a nearly parallel illumination at the cost of a larger probe size. The nanoprobe configuration enables to increase the spatial resolution (∼1nm vs 3nm) but also affects the fraction of mis-indexed points (15% vs 1%). Indexing errors are attributed to the increase by a factor of three of the convergence angle with respect to the microprobe mode. While intermediate optimum settings may be found and are potentially achievable on electron microscopes providing a 'free lens' control or a larger choice of C2 apertures, it is emphasized that the spatial resolution cannot be considered without reference to the indexing quality and, consequently to the convergence angle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Tilt orientationally disordered hexagonal columnar phase of phthalocyanine discotic liquid crystals

    NASA Astrophysics Data System (ADS)

    Yoneya, Makoto; Makabe, Takayoshi; Miyamoto, Ayano; Shimizu, Yo; Miyake, Yasuo; Yoshida, Hiroyuki; Fujii, Akihiko; Ozaki, Masanori

    2014-06-01

    The structures of the discotic liquid crystalline (LC) phase of metal-free octa-substituted phthalocyanine (Pc) derivatives were investigated using molecular dynamics (MD) simulations. Special attention was paid to the LC phase structure of the non-peripheral octa-hexyl substituted Pc-derivatives that were recently found to show very high carrier mobilities for the discotic LCs. We obtained spontaneous transition to the columnar hexagonal (Colh) LC phase in a melting simulation from the crystal structure obtained using an x-ray diffraction study. In this simulated Colh structure, the Pc-core normal vectors were tilted 47∘ from the column axis in parallel within each column, but the tilting directions are disordered between columns. We also found that the inter-core distance was not as large as previously suggested (0.4-0.5 nm) but similar to the common value (0.36 nm). This may resolve the contradiction between the high carrier mobility of the non-peripheral substituted Pcs, because larger inter-core separations degrade the mobilities.

  6. The Relationships between Different Personality Characteristics and Styles of Coping with Stress in Elite Orienteers.

    ERIC Educational Resources Information Center

    Zsheliaskova-Koynova, Zshivka

    1993-01-01

    Eighty orienteers, divided into three groups according to level of expertise in orienteering, completed questionnaires measuring extraversion, neuroticism, trait anxiety, social desirability, need for achievement, and locus of control. Subject interviews revealed individual styles of coping with precompetitive stress. A combination of high sport…

  7. The Relationships between Different Personality Characteristics and Styles of Coping with Stress in Elite Orienteers.

    ERIC Educational Resources Information Center

    Zsheliaskova-Koynova, Zshivka

    1993-01-01

    Eighty orienteers, divided into three groups according to level of expertise in orienteering, completed questionnaires measuring extraversion, neuroticism, trait anxiety, social desirability, need for achievement, and locus of control. Subject interviews revealed individual styles of coping with precompetitive stress. A combination of high sport…

  8. Optical and morphological characteristics of zinc selenide-zinc sulfide solid solution crystals

    NASA Astrophysics Data System (ADS)

    Singh, N. B.; Su, Ching-Hua; Arnold, Bradley; Choa, Fow-Sen

    2016-10-01

    Experiments were performed to study the effect of point defects on the optical and morphological characteristics of zinc selenide-zinc sulfide ZnSe-ZnS (ZnSexS(1-x)) solid solution crystals grown under terrestrial (1-g) condition. We used the composition ZnSe0.91S0.09 and ZnSe0.73S0.27 for the detailed studies. Crystals of 8 mm and 12 mm diameter were grown using physical vapor transport methods. These crystals did not exhibit gross defects such as voids, bubbles or precipitates. The photoluminescence spectra indicated strong red emission for the 610-630-nm wavelength region in both crystals. This emission could be explained on the basis of high energy irradiation of Zn selenide. For the ZnSe0.73S0.27 crystal, absorption starts at a lower wavelength range (300 nm) when compared to the ZnSe0.91S0.09 crystal presumably due to the much higher bandgap of ZnS than that of ZnSe. Sharp peaks at 451 and 455 nm were observed for both samples corresponding to the band edge transitions, followed by a strong peak at 632 nm. These results were consistent with the observations based on Raman spectroscopy studies. Under 532-nm laser illumination both transverse optical (TO) and longitudinal optical (LO) phonon peaks appeared at Raman shifts of 220 and 280 Δcm-1, respectively. These peaks are similar to those observed for pure ZnSe Raman spectra for which TO and LO occur at 200 and 250 Δcm-1 for the x-axis (first order) polarization.

  9. Characteristics of medium carbon steel solidification and mold flux crystallization using the multi-mold simulator

    NASA Astrophysics Data System (ADS)

    Park, Jun-Yong; Ko, Eun-yi; Choi, Joo; Sohn, Il

    2014-11-01

    An oscillating multi-mold simulator with embedded thermocouples was used to study the initial solidification of medium carbon steels and crystallization characteristics of the mold flux. Casting speed variations in the simulator from 0.7 m/min to 1.4 m/min at fixed oscillation frequency and stroke resulted in higher copper mold temperatures. Frequency modifications from 2.5 Hz to 5.0 Hz and stroke changes from 8.1 mm to 5.4 mm at fixed casting speeds also resulted in higher copper mold temperatures. Surface profile analysis of as-cast steel strips showed characteristic oscillation marks comparable to the narrow faces of the industrial cast slabs. The apparent effect of casting variables on the temperature and surface profiles during the solidification of the medium carbon steels could be correlated to the variations in the negative strip time and subsequent changes in the extent of mold flux infiltration. Back scattered scanning electron microscope analysis of the full length of the retrieved flux film after casting showed cuspidine crystallization ratio that increased from the upper to lower portion of the flux film. This dynamic crystallization and growth of the cuspidine phase increases as the flux is sustained at high temperatures for longer periods. Additional experiments with industrial fluxes designed for soft cooling of medium carbon steel grades showed comparable infiltration thickness of the flux, but the crystallization characteristics were significantly different, which could have a significant impact on the heat transfer rate and mechanism through the flux film.

  10. Surface-Controlled Orientational Transitions in Elastically Strained Films of Liquid Crystal That Are Triggered by Vapors of Toluene.

    PubMed

    Bedolla Pantoja, Marco A; Abbott, Nicholas L

    2016-05-25

    We report the fabrication of chemically patterned microwells that enable the rapid and facile preparation (by spin coating and patterned dewetting) of thin films of liquid crystals (LCs) that have precise thicknesses (0.7-30 μm), are supported on chemically defined substrates, and have free upper surfaces. We use these microwells to prepare elastically strained nematic LC films supported on silica glass, gold, or polystyrene substrates and thereby characterize the response of the strained LC films to vapors of toluene. We report that low concentrations of toluene vapor (<500 ppm) can partition into the LC to lower the anchoring energy of the LC on these substrates, thus allowing the elastic energy of the strained LC film to drive the LC films through an orientational transition. The central role of the toluene-induced change in surface anchoring energy is supported by additional experiments in which the response of the nematic LC to changes in film thickness and substrate identity are quantified. A simple thermodynamic model captures these trends and yielded estimates of anchoring energies (8-22 μJ/m(2)). Significantly, the orientational transitions observed in these strained LC thin films occur at concentrations of toluene vapor that are almost 1 order of magnitude below those which lead to bulk phase transitions, and they are not triggered by exposure to water vapor. Overall, these results hint at principles for the design of responsive LC-based materials that can be triggered by concentrations of aromatic, volatile organic compounds that are relevant to human health.

  11. Spectral and Lensing Characteristics of Gel-Derived Strontium Tartrate Single Crystals Using Dual-Beam Thermal Lens Technique.

    PubMed

    Rejeena, I; Thomas, V; Mathew, S; Lillibai, B; Nampoori, V P N; Radhakrishnan, P

    2016-09-01

    The Dual Beam mode-matched thermal lens spectrometry is a sensible technique for direct measurements of the thermal properties of tartrate crystalline materials. Here we report the measurement of thermal diffusivity of Strontium Tartrate single crystals incorporated with Rhodamine 6G using the thermal lens experiment. The respective crystals were prepared by solution-gel method at room temperature. The absorption characteristics of three different Strontium Tartrate crystals viz. pure, electric field applied and magnetic field applied were also carried out.

  12. Effect of cross-linking ultrahigh molecular weight polyethylene: Surface molecular orientation and wear characteristics

    SciTech Connect

    Sambasivan, Sharadha; Fischer, Daniel A.; Hsu, Stephen M.

    2007-07-15

    Molecular orientation at the surface layer of cross-linked ultrahigh molecular weight polyethylene (UHMWPE) has been examined. Molecular orientation has been shown to affect the wear resistance and surface mechanical properties of UHMWPE under biomechanical loading conditions. This study utilizes a nondestructive synchrotron based soft x-ray technique; near edge x-ray absorption fine structure at the carbon K-edge to examine the degree of surface molecular orientation of UHMWPE subjected to various cross-linking/sterilization techniques as a function of stress and wear. UHMWPE samples prepared under gamma irradiation, ethylene-oxide (EtO) treatment, and electron beam irradiation were worn in a wear tester systematically. Results suggest that the cross-linking resists surface orientation when the samples were under tensile and biomechanical stresses. The molecular orientation in the C-C chains in the polymer showed a monotonic decrease with an increase in gamma irradiation dosage levels. EtO sterilized samples showed more C-C chain orientation than the electron beam irradiated samples, but lower than the 30 kGy gamma irradiated samples. Ordered C-C chains in UHMWPE samples have been associated with more crystallinity or large strain plastic deformation of the polymer. Higher levels of gamma irradiation appear to induce cross-linking of C-C chains and render a polymer with more amorphous phase which resists orientation after wear and imparts wear resistance to the polymer.

  13. Silver as Seed-Particle Material for GaAs Nanowires—Dictating Crystal Phase and Growth Direction by Substrate Orientation

    PubMed Central

    2016-01-01

    Here we investigate the feasibility of silver as seed-particle material to synthesize GaAs nanowires and show that both crystal phase and growth direction can be controlled by choice of substrate orientation. A (111)B substrate orientation can be used to form vertically aligned wurtzite GaAs nanowires and a (100) substrate orientation to form vertically aligned zinc blende GaAs nanowires. A 45–50% yield of vertical nanowire growth is achieved on the (100) substrate orientation without employing any type of surface modification or nucleation strategy to promote a vertical growth direction. In addition, photoluminescence measurements reveal that the photon emission from the silver seeded wurtzite GaAs nanowires is characterized by a single and narrow emission peak at 1.52 eV. PMID:26998550

  14. Radially oriented mesoporous TiO2 microspheres with single-crystal-like anatase walls for high-efficiency optoelectronic devices.

    PubMed

    Liu, Yong; Che, Renchao; Chen, Gang; Fan, Jianwei; Sun, Zhenkun; Wu, Zhangxiong; Wang, Minghong; Li, Bin; Wei, Jing; Wei, Yong; Wang, Geng; Guan, Guozhen; Elzatahry, Ahmed A; Bagabas, Abdulaziz A; Al-Enizi, Abdullah M; Deng, Yonghui; Peng, Huisheng; Zhao, Dongyuan

    2015-05-01

    Highly crystalline mesoporous materials with oriented configurations are in demand for high-performance energy conversion devices. We report a simple evaporation-driven oriented assembly method to synthesize three-dimensional open mesoporous TiO2 microspheres with a diameter of ~800 nm, well-controlled radially oriented hexagonal mesochannels, and crystalline anatase walls. The mesoporous TiO2 spheres have a large accessible surface area (112 m(2)/g), a large pore volume (0.164 cm(3)/g), and highly single-crystal-like anatase walls with dominant (101) exposed facets, making them ideal for conducting mesoscopic photoanode films. Dye-sensitized solar cells (DSSCs) based on the mesoporous TiO2 microspheres and commercial dye N719 have a photoelectric conversion efficiency of up to 12.1%. This evaporation-driven approach can create opportunities for tailoring the orientation of inorganic building blocks in the assembly of various mesoporous materials.

  15. Mechanism of competitive grain growth in a curvilinear channel of crystal-sorter during the orientational solidification of nickel-based heat-resistant alloy

    NASA Astrophysics Data System (ADS)

    Monastyrskiy, V. P.; Pozdnyakov, A. N.; Ershov, M. Yu.; Monastyrskiy, A. V.

    2017-07-01

    Using numerical simulation in the ProCAST program complex, the conditions of the solidification of heat-resistant nickel alloy in curvilinear channels of a ceramic mold have been investigated. It has been shown that, in practically important cases, the vector of the temperature gradient is oriented along the axis of the curvilinear channel. In a spiral crystal selector, a cyclic change in the preferred direction of growth occurs because of the cyclic change in the direction of the vector of the temperature gradient. The fact that the vector of the temperature gradient is almost always directed along the axis of the curvilinear channel makes it possible to govern the orientation of the vector of the temperature gradient in space and, therefore, to obtain a grain with the preferred crystallographic orientation. Based on the results of this investigation, a method of the grain selection with a desired azimuthal orientation is proposed.

  16. Morphology and orientation of β-BaB{sub 2}O{sub 4} crystals patterned by laser in the inside of samarium barium borate glass

    SciTech Connect

    Nishii, Akihito; Shinozaki, Kenji; Honma, Tsuyoshi; Komatsu, Takayuki

    2015-01-15

    Nonlinear optical β-BaB{sub 2}O{sub 4} crystal lines (β-BBO) were patterned in the inside of 8Sm{sub 2}O{sub 3}–42BaO–50B{sub 2}O{sub 3} glass by irradiations of continuous-wave Yb:YVO{sub 4} lasers with a wavelength of 1080 nm (power: P=0.8–1.0 W, scanning speed: S=0.2–2.5 μm/s), in which the laser focal position was moved gradually from the surface to the inside. The morphology, size, and orientation of β-BBO crystals were examined from polarization optical microscope and birefringence imaging observations. It was demonstrated that c-axis oriented β-BBO crystals with long lengths (e.g., 20 mm) were patterned in the inside of the glass. The morphology of β-BBO in the cross-section of lines was a rectangular shape with rounded corners, and the volume of β-BBO formed increased with increasing laser power and with decreasing laser scanning speed. The maximum depth in the inside from the surface for β-BBO patterning increased with increasing laser power, e.g., D{sub max}∼100 μm at P=0.8 W, D{sub max}∼170 μm at P=0.9 W, and D{sub max}∼200 μm at P=1 W. The present study proposes that the laser-induced crystallization opens a new door for applied engineering in glassy solids. - Graphical abstract: This figure shows the POM photographs for β-BaB{sub 2}O{sub 4} crystal lines patterned by cw Yb:YVO{sub 4} fiber laser irradiations with a laser power of P=0.8 W and a laser scanning speed S=2 μm/s in the glass. The laser focal point was moved gradually from the surface into the inside. The results shown in Fig. 1 demonstrate that it is possible to pattern highly oriented β-BaB{sub 2}O{sub 4} crystals even in the inside of glasses. - Highlights: • β-BaB{sub 2}O{sub 4} crystal lines were patterned in the inside of a glass by lasers. • Laser focal position was moved gradually from the surface to the inside. • Birefringence imaging was observed. • Morphology, size, and orientation of crystals were clarified. • Crystal lines with long lengths

  17. Ferroelectric domain structures in <001>-oriented K{sub 0.15}Na{sub 0.85}NbO{sub 3} lead-free single crystal

    SciTech Connect

    Chen, Yan; Wong, Chi-Man; Yau, Hei-Man; Dai, Jiyan; Deng, Hao; Luo, Haosu; Wang, Danyang; Yan, Zhibo; Chan, Helen L. W.

    2015-03-15

    In this work, ferroelectric domain structures of <001 >-oriented K{sub 0.15}Na{sub 0.85}NbO{sub 3} single crystal are characterized. Transmission electron microscopy (TEM) observation revealed high-density of laminate domain structures in the crystal and the lattices of the neighboring domains are found to be twisted in a small angle. Superlattice diffraction spots of 1/2 (eeo) and 1/2 (ooe) in electron diffraction patterns are observed in the crystal, revealing the a{sup +}a{sup +}c{sup −} tilting of oxygen octahedral in the perovskite structure. The piezoresponse of domains and in-situ poling responses of K{sub 0.15}Na{sub 0.85}NbO{sub 3} crystal are observed by piezoresponse force microscopy (PFM), and the results assure its good ferroelectric properties.

  18. Ferroelectric domain structures in <001>-oriented K0.15Na0.85NbO3 lead-free single crystal

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Wong, Chi-Man; Deng, Hao; Yau, Hei-Man; Wang, Danyang; Yan, Zhibo; Luo, Haosu; Chan, Helen L. W.; Dai, Jiyan

    2015-03-01

    In this work, ferroelectric domain structures of <001 >-oriented K0.15Na0.85NbO3 single crystal are characterized. Transmission electron microscopy (TEM) observation revealed high-density of laminate domain structures in the crystal and the lattices of the neighboring domains are found to be twisted in a small angle. Superlattice diffraction spots of 1/2 { eeo } and 1/2 { ooe } in electron diffraction patterns are observed in the crystal, revealing the a+a+c- tilting of oxygen octahedral in the perovskite structure. The piezoresponse of domains and in-situ poling responses of K0.15Na0.85NbO3 crystal are observed by piezoresponse force microscopy (PFM), and the results assure its good ferroelectric properties.

  19. Orientation epitaxy of Ge1–xSnx films grown on single crystal CaF2 substrates

    SciTech Connect

    A. J. Littlejohn; Zhang, L. H.; Lu, T. -M.; Kisslinger, K.; and Wang, G. -C.

    2016-03-15

    Ge1–xSnx films were grown via physical vapor deposition below the crystallization temperature of Ge on single crystal (111) and (100) CaF2 substrates to assess the role of Sn alloying in Ge crystallization. By studying samples grown at several growth temperatures ranging from 250 °C to 400 °C we report temperature-dependent trends in several of the films' properties. X-ray diffraction theta vs. two-theta (θ/2θ) scans indicate single orientation Ge1–xSnx(111) films are grown on CaF2(111) substrates at each temperature, while a temperature-dependent superposition of (111) and (100) orientations are exhibited in films grown on CaF2(100) above 250 °C. This is the first report of (111) oriented Ge1–xSnx grown on a (100) oriented CaF2 substrate, which is successfully predicted by a superlattice area matching model. These results are confirmed by X-ray diffraction pole figure analysis. θ/2θ results indicate substitutional Sn alloying in each film of about 5%, corroborated by energy dispersive spectroscopy. In addition, morphological and electrical properties are measured by scanning electron microscopy, atomic force microscopy and Hall mobility measurements and are also shown to be dependent upon growth temperature.

  20. Inheritance of Crystallographic Orientation during Lithiation/Delithiation Processes of Single-Crystal α-Fe2O3 Nanocubes in Lithium-Ion Batteries.

    PubMed

    Ma, Xiaowei; Zhang, Manyu; Liang, Chongyun; Li, Yuesheng; Wu, Jingjing; Che, Renchao

    2015-11-04

    Iron oxides are very promising anode materials based on conversion reactions for lithium-ion batteries (LIBs). During conversion processes, the crystal structure and composition of the electrode material are drastically changed. Surprisingly, in our study, inheritance of a crystallographic orientation was found during lithiation/delithiation processes of single-crystal α-Fe2O3 nanocubes by ex situ transmission electron microscopy. Single-crystal α-Fe2O3 was first transformed into numerous Fe nanograins embedded in a Li2O matrix, and then the conversion between Fe and FeO nanograins became the main reversible electrochemical reaction for energy storage. Interestingly, these Fe/FeO nanograins had almost the same crystallographic orientation, indicating that the lithiated/delithiated products can inherit the crystallographic orientation of single-crystal α-Fe2O3. This finding is important for understanding the detailed electrochemical conversion processes of iron oxides, and this feature may also exist during lithiation/delithiation processes of other transition-metal oxides.

  1. The Influence of Hydrogen on Shape Memory Effect and Superelasticity in [001]-Oriented FeNiCoAlTi Single Crystals

    NASA Astrophysics Data System (ADS)

    Chumlyakov, Yu. I.; Kireeva, I. V.; Platonova, Yu. N.

    2016-04-01

    Using [001]-oriented single crystals of an iron-based alloy (Fe - 28% Ni - 17% Co - 11.5% Al - 2.5% Ti at.%), which were aged at 973 K for 7 h, the influence of hydrogen on the axial-stress temperature response σ0.1(T), the values of shape-memory effect (SME) and superelasticity (SE) is investigated during thermoelastic γ-α'-martensitic transformation (MT) (γ-FCC - face centered lattice, α'-BCT - body centered tetragonal lattice) under tensile conditions. It is found that saturation of [001]-oriented single crystals of the Fe - 28% Ni - 17% Co - 11.5% Al - 2.5% Ti alloy with hydrogen within 2 h at T = 300 K and current density j = 50 mA/cm2 results in lower starting temperature, Ms, of a forward MT during cooling and Md temperature, increased strength properties of the high-temperature phase at Md temperature and wider temperature range of SE observation compared to hydrogen-free crystals. It is shown that hydrogen affects but only slightly the SME and SE values, the temperature and stress hysteresis under the above saturation mode. In [001]-oriented crystals aged at 973 K for 7 h, which are saturated with hydrogen and hydrogen-free, the SME and SE values are found to be equal to 7.8-8 and 6.5-6.9%, respectively.

  2. Correction: Spectroscopic characteristics of the OSIRIS near-backscattering crystal analyser spectrometer on the ISIS pulsed neutron source.

    PubMed

    Telling, Mark T F; Campbell, Stuart I; Engberg, Dennis; Martín Y Marero, David; Andersen, Ken H

    2016-03-21

    Correction for 'Spectroscopic characteristics of the OSIRIS near-backscattering crystal analyser spectrometer on the ISIS pulsed neutron source' by Mark T. F. Telling et al., Phys. Chem. Chem. Phys., 2005, 7, 1255-1261.

  3. Fe/CoO(001) and Fe/CoO(111) bilayers: Effect of crystal orientation on the exchange bias

    NASA Astrophysics Data System (ADS)

    Młyńczak, E.; Matlak, B.; Kozioł-Rachwał, A.; Gurgul, J.; Spiridis, N.; Korecki, J.

    2013-08-01

    A comparative study of the structure and magnetism of Fe/CoO(111) and Fe/CoO(001) epitaxial bilayers was performed to investigate the role of uncompensated spins in the exchange bias (EB) phenomenon. Low-energy electron diffraction, x-ray photoelectron spectroscopy, conversion electron Mössbauer spectroscopy (CEMS), and the magneto-optic Kerr effect were used to characterize the structural and magnetic properties of the bilayers. Magnetically compensated and uncompensated CoO films were prepared using molecular beam epitaxy through the evaporation of single Co atomic layers and their subsequent oxidation (layer-by-layer technique) on MgO crystals with (001) and (111) orientations. Two-monolayer-thick 57Fe probes located on top of the oxide films and covered with 56Fe allowed for an analysis of the interfacial chemical and magnetic structure using CEMS. For both structures, submonolayer oxidation of the iron detected at the Fe/CoO interface was found to be accompanied by the formation of a mixed FeCo region. The Fe layers showed fourfold magnetocrystalline anisotropy when grown on CoO(001) and weak uniaxial anisotropy when grown on CoO(111). Although the structural quality and composition of the two structures were comparable, they exhibited distinct EB properties. A hysteresis loop shift as high as 354 Oe at 80 K was obtained for the Fe/CoO(111) bilayer, compared to only 37 Oe for the magnetically compensated Fe/CoO(001).

  4. Discovery of room-temperature spin-glass behaviors in two-dimensional oriented attached single crystals

    NASA Astrophysics Data System (ADS)

    Ma, Ji; Chen, Kezheng

    2016-05-01

    In this study, room-temperature spin-glass behaviors were observed in flake-like oriented attached hematite (α-Fe2O3) and iron phosphate hydroxide hydrate (Fe5(PO4)4(OH)3·2H2O) single crystals. Remarkably, their coercivity (HC) values were found to be almost invariable at various given temperatures from 5 to 300 K. The spin topographic map in these flakes was assumed as superparamagnetic (SPM) "islands" isolated by spin glass (SG)-like "bridges". A spin-glass model was then proposed to demonstrate the spin frustration within these "bridges", which were formed by the staggered atomic planes in the uneven surfaces belonging to different attached nanoparticles. Under the spatial limitation and coupling shield of these "bridges", the SPM "islands" were found to be collectively frozen to form a superspin glass (SSG) state below 80 K in weak applied magnetic fields; whereas, when strong magnetic fields were applied, the magnetic coupling of these "islands" would become superferromagnetic (SFM) through tunneling superexchange, so that, these SFM spins could antiferromagnetically couple with the SG-like "bridges" to yield pronounced exchange bias (EB) effect.

  5. Crystal growth and optical characteristics of beryllium-free polyphosphate, KLa(PO3)4, a possible deep-ultraviolet nonlinear optical crystal

    PubMed Central

    Shan, Pai; Sun, Tongqing; Chen, Hong; Liu, Hongde; Chen, Shaolin; Liu, Xuanwen; Kong, Yongfa; Xu, Jingjun

    2016-01-01

    Deep-ultraviolet nonlinear optical crystals are of great importance as key materials in generating coherent light with wavelength below 200 nm through cascaded frequency conversion of solid-state lasers. However, the solely usable crystal in practice, KBe2BO3F2 (KBBF), is still commercially unavailable because of the high toxicity of beryllium-containing and the extreme difficulty of crystal growth. Here, we report the crystal growth and characteristics of an beryllium-free polyphosphate, KLa(PO3)4. Centimeter-sized single crystals have been easily obtained by the flux method and slow-cooling technique. The second-harmonic generation efficiency of KLa(PO3)4 powder is 0.7 times that of KH2PO4; moreover, the KLa(PO3)4 crystal is phase-matchable. Remarkably, the KLa(PO3)4 crystal exhibits an absorption edge of 162 nm, which is the shortest among phase-matchable phosphates so far. These attributes make KLa(PO3)4 a possible deep-ultraviolet nonlinear optical crystal. An analysis of the dipole moments of the polyhedra and theoretical calculations by density functional theory were made to elucidate the structure-properties relationships of KLa(PO3)4. PMID:27126353

  6. Crystal growth and optical characteristics of beryllium-free polyphosphate, KLa(PO3)4, a possible deep-ultraviolet nonlinear optical crystal.

    PubMed

    Shan, Pai; Sun, Tongqing; Chen, Hong; Liu, Hongde; Chen, Shaolin; Liu, Xuanwen; Kong, Yongfa; Xu, Jingjun

    2016-04-29

    Deep-ultraviolet nonlinear optical crystals are of great importance as key materials in generating coherent light with wavelength below 200 nm through cascaded frequency conversion of solid-state lasers. However, the solely usable crystal in practice, KBe2BO3F2 (KBBF), is still commercially unavailable because of the high toxicity of beryllium-containing and the extreme difficulty of crystal growth. Here, we report the crystal growth and characteristics of an beryllium-free polyphosphate, KLa(PO3)4. Centimeter-sized single crystals have been easily obtained by the flux method and slow-cooling technique. The second-harmonic generation efficiency of KLa(PO3)4 powder is 0.7 times that of KH2PO4; moreover, the KLa(PO3)4 crystal is phase-matchable. Remarkably, the KLa(PO3)4 crystal exhibits an absorption edge of 162 nm, which is the shortest among phase-matchable phosphates so far. These attributes make KLa(PO3)4 a possible deep-ultraviolet nonlinear optical crystal. An analysis of the dipole moments of the polyhedra and theoretical calculations by density functional theory were made to elucidate the structure-properties relationships of KLa(PO3)4.

  7. Crystal growth and optical characteristics of beryllium-free polyphosphate, KLa(PO3)4, a possible deep-ultraviolet nonlinear optical crystal

    NASA Astrophysics Data System (ADS)

    Shan, Pai; Sun, Tongqing; Chen, Hong; Liu, Hongde; Chen, Shaolin; Liu, Xuanwen; Kong, Yongfa; Xu, Jingjun

    2016-04-01

    Deep-ultraviolet nonlinear optical crystals are of great importance as key materials in generating coherent light with wavelength below 200 nm through cascaded frequency conversion of solid-state lasers. However, the solely usable crystal in practice, KBe2BO3F2 (KBBF), is still commercially unavailable because of the high toxicity of beryllium-containing and the extreme difficulty of crystal growth. Here, we report the crystal growth and characteristics of an beryllium-free polyphosphate, KLa(PO3)4. Centimeter-sized single crystals have been easily obtained by the flux method and slow-cooling technique. The second-harmonic generation efficiency of KLa(PO3)4 powder is 0.7 times that of KH2PO4; moreover, the KLa(PO3)4 crystal is phase-matchable. Remarkably, the KLa(PO3)4 crystal exhibits an absorption edge of 162 nm, which is the shortest among phase-matchable phosphates so far. These attributes make KLa(PO3)4 a possible deep-ultraviolet nonlinear optical crystal. An analysis of the dipole moments of the polyhedra and theoretical calculations by density functional theory were made to elucidate the structure-properties relationships of KLa(PO3)4.

  8. Dynamic Dislocation Mechanisms For the Anomalous Slip in a Single-Crystal BCC Metal Oriented for "Single Slip"

    SciTech Connect

    Hsiung, L; La Cruz, C

    2007-01-11

    Dislocation substructures of high-purity Mo single crystals deformed under uniaxial compression at room temperature to an axial strain of 0.6% were investigated in order to elucidate the underlying mechanisms for the {l_brace}0{bar 1}1{r_brace} anomalous slip in bcc metals [1], which is also known as the violation of Schmid law [2]. The test sample was oriented with the stress axis parallel to a nominal ''single-slip'' orientation of [{bar 2} 9 20], in which ({bar 1}01) [111] is the primary slip system that has a maximum Schmid factor (m = 0.5), which requires the lowest stress to operate among the twelve {l_brace}{bar 1}10{r_brace} <111> slip systems. Nevertheless, the recorded stress-strain curve reveals no easy-glide or single-slip stage; work hardening starts immediately after yielding. Moreover, the result of slip trace analysis indicates the occurrence of anomalous slip on both the (011) and (0{bar 1}1) planes, which according to the Schmid law requires relatively higher stresses to operate. TEM examinations of dislocation structures formed on the (101) primary slip plane reveal that in addition to the ({bar 1}01) [111] slip system, the coplanar ({bar 1}01) [1{bar 1}1] slip system which has a much smaller Schmid factor (m = 0.167) is also operative. Similarly, (0{bar 1}1) [111] (m = 0.25) is cooperative with the coplanar (0{bar 1}1) [{bar 1}11] slip system (m = 0.287) on the (0{bar 1}1) slip plane, and (011) [1{bar 1}1] (m = 0.222) is cooperative with the coplanar (011) [11{bar 1}] slip system (m = 0.32) on the (011) plane. The occurrence of {l_brace}0{bar 1}1{r_brace} anomalous slip is accordingly proposed to be originated from the cooperative dislocation motion of the {+-} 1/2 [111] and {+-} 1/2 [1{bar 1}1] dislocations on the ({bar 1}01) slip plane; the mutual interaction and blocking of {+-} 1/2 [111] and {+-} 1/2 [1{bar 1}1] dislocations not only cause an increase of glide resistance to the dislocation motion on the ({bar 1}01) plane but also render the

  9. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Rene N4. II - Low cycle fatigue behavior

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Gayda, J.; Miner, R. V.

    1986-01-01

    The low cycle fatigue (LCF) properties of a single-crystal nickel-base superalloy Rene N4, have been examined at 760 and 980 C in air. Specimens having crystallographic orientations near the 001, 011, -111, 023, -236, and -145 lines were tested in fully reversed, total-strain-controlled LCF tests at a frequency of 0.1 Hz. At 760 C, this alloy exhibited orientation dependent tension-compression anisotropies of yielding which continued to failure. Also at 760 C, orientations exhibiting predominately single slip exhibited serrated yielding for many cycles. At 980 C, orientation dependencies of yielding behavior were smaller. In spite of the tension-compression anisotropies, cyclic stress range-strain range behavior was not strongly orientation dependent for either test temperature. Fatigue life on a total strain range basis was highly orientation dependent at 760 and 980 C and was related chiefly to elastic modulus, low modulus orientations having longer lives. Stage I crack growth on 111 planes was dominant at 760 C, while Stage II crack growth occurred at 980 C. Crack initiation generally occurred at near-surface micropores, but occasionally at oxidation spikes in the 980 C tests.

  10. Effect of Imidazolium-Based Surface-Active Ionic Liquids on the Orientation of Liquid Crystals at Various Fluid/Liquid Crystal Interfaces.

    PubMed

    Tian, Tongtong; Hu, Qiongzheng; Wang, Yi; Gao, Yan'an; Yu, Li

    2016-11-15

    A series of imidazolium-based surface-active ionic liquids (IM-SAILs), viz., single-chained IM-SAILs, 1-alkyl-3-methylimidazolium bromide ([Cnmim]Br, n = 12, 14, 16), 1-dodecyl-3-methylimidazolium salicylate ([C12mim]Sal), 1-dodecyl-3-methylimidazolium 3-hydroxy-2-naphthoate ([C12mim]HNC), 1-dodecyl-3-methylimidazolium cinnamate ([C12mim]CA), 1-dodecyl-3-methylimidazolium para-hydroxy-cinnamate ([C12mim]PCA), gemini IM-SAIL, and 1,2-bis(3-dodecylimidazolium-1-yl)ethane bromide ([C12-2-C12im]Br2), along with three short-chained ionic liquids (ILs) [ethylammonium nitrate (EAN), propylammonium nitrate (PAN), and butylammonium nitrate (BAN)] were synthesized and applied to nematic liquid crystal (LC)/fluid interfaces. First, we evaluated the influence of the length and number of aliphatic chains as well as the counterion in the IM-SAIL structures on the anchoring of LCs at the aqueous/LC interface. It was observed that the threshold concentration of [Cnmim]Br (n = 12, 14, 16) decreased with the increase in aliphatic chain length. And double-chained [C12-2-C12im]Br2 has a far lower threshold concentration than single-chained [C12mim]Br. But the alteration of counterions (e.g., Br(-) and aromatic counterions) scarcely affected the anchoring of LCs at the interface. Second, we investigated the alignment of LCs at the diverse IL/LC interfaces in the presence of IM-SAILs. It is found that the variations in both aliphatic chain length and number can remarkably change the trigger points of the orientational transition of LCs at the EAN/LC interface. Specifically, with a slight increase in the alkyl chain length of short-chained ILs, as the fluid medium, the orientation of LCs varied tremendously at the IL/LC interface. Therefore, the higher threshold concentration of IM-SAILs and the corresponding greater stability in the optical appearance of LCs at the EAN/LC interface compared to that of the aqueous/LC interface can be ascribed to the discrepancy in the microstructure of

  11. Electric and Magnetic Field-Assisted Orientational Transitions in the Ensembles of Domains in a Nematic Liquid Crystal on the Polymer Surface

    PubMed Central

    Parshin, Alexander M.; Gunyakov, Vladimir A.; Zyryanov, Victor Y.; Shabanov, Vasily F.

    2014-01-01

    Using electro- and magneto-optical techniques, we investigated orientational transitions in the ensembles of domains in a nematic liquid crystal on the polycarbonate film surface under the conditions of competing surface forces that favor radial and uniform planar alignment of nematic molecules. Having analyzed field dependences of the intensity of light passed through a sample, we established the threshold character of the orientational effects, plotted the calculated intensity versus magnetic coherence length, and compared the latter with the equilibrium length that characterizes the balance of forces on the polymer surface. PMID:25279586

  12. High (1 1 1) orientation poly-Ge film fabricated by Al induced crystallization without the introduction of AlO{sub x} interlayer

    SciTech Connect

    Wang, Peng; Li, Xin; Liu, Hanhui; Lai, Shumei; Chen, Yuye; Xu, Yihong; Chen, Songyan Li, Cheng; Huang, Wei; Tang, Dingliang

    2015-12-15

    High (1 1 1) orientation poly-Ge film was fabricated by Al induced crystallization (AIC), where Al and amorphous Ge (a-Ge) layers were continuously deposited by magnetron sputtering, avoiding the deliberate introduction of an AlO{sub x} interlayer. To improve the quality of poly-Ge film, the ratio of thicknesses of Al and a-Ge was adjusted. Electron backscattered diffraction (EBSD) results revealed that the (1 1 1) fraction of poly-Ge film reached 97% and the average crystal grain size surpassed 100 μm.

  13. Single crystal growth and enhancing effect of glycine on characteristic properties of bis-thiourea zinc acetate crystal

    NASA Astrophysics Data System (ADS)

    Anis, Mohd; Muley, G. G.

    2016-08-01

    A single crystal of glycine-doped bis-thiourea zinc acetate (G-BTZA) with a dimension of 15 × 6 × 4 mm3 has been grown using the slow solution evaporation technique. The structural parameters of the crystals were determined using the single crystal XRD technique. The increase in optical transparency of the doped BTZA crystal was ascertained in the range of 200 to 900 nm using UV-visible spectral analysis. The improved optical band gap of the G-BTZA crystal is found to be 4.19 eV, and vital optical constants have been calculated using the transmittance data. The influence of glycine on the mechanical parameters of the BTZA crystal has been investigated via microhardness studies. The thermal stability of pure and doped BTZA crystals has been determined by employing the thermogravimetric and differential thermal analysis technique. The improvement in the dielectric properties of the BTZA crystal after the addition of glycine has been evaluated in a temperature range of 30 to 120 °C at a frequency of 100 KHz. The SHG efficiency of the glycine-doped BTZA crystal is found to be much higher than KDP and BTZA crystal material in a Kurtz-Perry powder analysis.

  14. Features of electro-optical characteristics of composite liquid crystal media (a review)

    NASA Astrophysics Data System (ADS)

    Amosova, L. P.; Venediktov, V. Yu.

    2016-11-01

    Main patterns of structure formation of composite liquid crystal (LC) media and their classification according to the percentage content of liquid crystal and polymer are considered. Their properties are compared with the properties of homogeneous LC layers and the opportunities of their practical use in optical modulators are discussed. It is shown that, at small (10 wt %) monomer concentrations in the composite, its polymerization leads to formation of a thin-wall network which separates the liquid crystal into domains and provides an uniform orientation in the bulk. The polymer network increases the elasticity of the layer and decreases the relaxation time, but the devices usually work in polarized light and use the same principle as the devices filled with pure LC; i.e. the phase of the light or its polarization changes due to a change in the effective refraction index. However, the division of the LC volume into relatively autonomous domains also allows one to create a polarization-independent device based on the scattering effect. By increasing the relative content of the monomer, it is possible to ensure formation of a porous polymer matrix with inclusions of isolated from each other LC droplets. Such polymer-dispersed LC in its initial state either scatter the light of any polarization and becomes transparent state when an electric field is applied, or, with the use of special methods, the switch-off and switch-on states are swapped ("reverse mode" devices). The main advantages of the composite media are independence of polarization, mechanical strength, and small relaxation times, while the main disadvantages are increased power consumption, high polarization-independent optical losses, and significantly lower contrast. Possible ways to increase the contrast are described.

  15. Evaluation of photoelectric processes in photorefractive crystals via the exposure characteristics of light diffraction.

    PubMed

    Kadys, A; Gudelis, V; Sudzius, M; Jarasiunas, K

    2005-01-12

    We demonstrate a novel way to analyse carrier recombination and transport processes in photorefractive semiconductors via the exposure characteristics of light induced diffraction. The results of a picosecond four-wave mixing on free carrier gratings in semi-insulating GaAs crystals at various grating periods and modulation depths of a light interference pattern are discussed. The role of a deep-trap recharging in carrier diffusion and recombination is sensitively revealed through a feedback effect of a space-charge field to non-equilibrium carrier transport.

  16. Characteristics of photonic crystal fibers designed with an annular core using a single material.

    PubMed

    Li, Shuguang; Zhang, Xiaoxia; Agrawal, Govind P

    2013-05-01

    We propose a kind of photonic crystal fiber (PCF) designed with an annular core and fabricated using a single material. Characteristics of such fibers, including the mode field distributions of both the core and cladding modes, the effective mode area of the fundamental core mode, and the dispersion profile, are investigated using the finite element method. The coupling between the fundamental mode and an excited core mode or cladding mode is discussed in order to apply the proposed design in mode-coupling devices. Results show that such a PCF may be suitable for both optical communications and optical sensing technologies.

  17. Study on the Phase Modulation Characteristics of Liquid Crystal Spatial Light Modulator

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wu, L. Y.; Zhang, J.

    2006-10-01

    A special Twyman-Green interferometer is designed to measure the phase modulation characteristics of liquid crystal spatial light modulator (LC-SLM), namely, the relationship between phase shift and gray value (applied voltage). By measuring a reflective LC-SLM produced by BNS (Boulder Nonlinear Systems), it is indicated that the LC-SLM has linear phase response within a gray value range between 60 and 200, and the RMS deviation between the average phase and the spatially resolved phase measurements increases with the gray value but is always less than λ/10.

  18. Modular interference characteristics and beat length of a two-hole photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Liu, Ying; Guo, Xuan

    2016-10-01

    We show the mode propagation characteristics of fundamental and second-order modes in a two-mode highly birefringent photonics crystal fiber (HB-PCF) under a longitudinal strain. The two-mode operation range in HB-PCF is researched. Within this range, the modular interference beat length LMB in each Eigen polarization are simulated with respect to wavelength λ , and the fitting equations between LMB and λ are presented. We also measure LMB at λ = 532nm , respectively. The results show that the theoretical simulation is basically in accordance with the experimental data.

  19. Electro-optical response of polymer-dispersed liquid crystal single layers of large nematic droplets oriented by rubbed teflon nanolayers

    NASA Astrophysics Data System (ADS)

    Marinov, Y. G.; Hadjichristov, G. B.; Petrov, A. G.; Marino, S.; Versace, C.; Scaramuzza, N.

    2013-02-01

    The surface orienting effect of rubbed teflon nanolayers on the morphology and electro-optical (EO) response of polymer-dispersed liquid crystal (PDLC) single layers of large nematic droplets was studied experimentally. In PDLC composites of the nematic liquid crystal (LC) E7 and NOA65 polymer, single droplets of LC with diameters as larger as 10 μm were confined in layers with a thickness of 10 μm, and the nematic director field was efficiently modified by nanostructuring teflon rubbing of the glass plates of the PDLC cell. For layered PDLCs arranged and oriented in this way, the modulated EO response by the dielectric oscillations of the nematic director exhibits a selective amplitude-frequency modulation controllable by both temperature and voltage applied, and is simply related to the LC droplet size. That may be of practical interest for PDLC-based modulators operating in the infrasound frequency range.

  20. Single crystal growth, structural characteristics and magnetic properties of chromium substituted M-type ferrites

    NASA Astrophysics Data System (ADS)

    Shlyk, L.; Vinnik, D. A.; Zherebtsov, D. A.; Hu, Z.; Kuo, C.-Y.; Chang, C.-F.; Lin, H.-J.; Yang, L.-Y.; Semisalova, A. S.; Perov, N. S.; Langer, T.; Pöttgen, R.; Nemrava, S.; Niewa, R.

    2015-12-01

    Two different types of fluxes, namely sodium based and chloride based fluxes were used to grow Cr substituted barium and strontium hexaferrite ferrite crystals, (Sr,Ba)Fe12 - xCrxO19 at comparatively low temperatures of about 1300 °C. The sodium based flux led to growth of larger crystals up to 5 mm, but with only minor Cr contents x ≤ 0.07. From the chloride based flux the obtained Cr contents are significantly higher with x = 5.7 (Sr) and x = 3.4 (Ba), however, crystals reach only sizes in the sub-mm range. X-ray absorption spectroscopy data support exclusively isovalent substitution of Fe3+ by Cr3+ even for very low Cr contents. 57Fe Mößbauer spectroscopy reveals Cr to preferentially occupy the six-fold by oxygen coordinated site at 12k and, to a lower degree, 2a and 4f2 in space group P63/mmc. All characteristic magnetic properties drop upon Cr substitution, e. g., the Curie temperature from 728 K for pure BaFe12O19 to 465 K for BaFe8.6Cr3.4O19, the saturation magnetization from 71 emu/g to 29.7 emu/g and the coercive field from 363 Oe to 45 Oe.

  1. The impact of MgO-doped near-stoichiometric lithium niobate crystals on the THz wave output characteristics

    NASA Astrophysics Data System (ADS)

    Xianbin, Zhang; Yunfeng, Li; lijuan, Ma; ke, Yuan; Wei, Shi

    2011-02-01

    The control experimental study on the THz wave parametric oscillator (TPO) output characteristics based on the congruent LiNbO3 crystal (CLN) and stoichiometric MgO-doped lithium niobate (SLN) crystal is performed. As a nonlinear medium in the aspect of the THz wave output experiments show that the congruent LiNbO3 crystal is more stable than the SLN crystal. Compared with the CLN crystal SLN showed significant photorefractive effect which adversely the stability of the THz wave output. Experiments indicated that different molar concentration of MgO doped can significantly change the photorefractive properties of SLN crystal. The results showed that with the increase of MgO doping concentration the photorefractive of SLN gradually become weaker and THz wave output stability has the significantly increase. The output stability of mol 5.0% MgO droped SLN crystal has not significantly different with the CLN. In the contrast experiment of TPO with the 160mm cavity length and 65mm crystal length the pump laser threshold of the 5% mol MgO: SLN crystal decreased by 23% than the CLN crystal while the peak THz energy output increased 28%.

  2. Orthoclase dissolution kinetics probed by in situ X-ray reflectivity: effects of temperature, pH, and crystal orientation

    NASA Astrophysics Data System (ADS)

    Fenter, P.; Park, C.; Cheng, L.; Zhang, Z.; Krekeler, M. P. S.; Sturchio, N. C.

    2003-01-01

    Initial dissolution kinetics at orthoclase (001) and (010) cleavage surfaces were measured for ˜2 to 7 monolayers as a function of temperature using in situ X-ray reflectivity. The sensitivity of X-ray reflectivity to probe mineral dissolution is discussed, including the applicability of this approach for different dissolution processes and the range of dissolution rates (˜10 -12 to 10 -6 mol/m 2/sec) that can be measured. Measurements were performed at pH 12.9 for the (001) surface and at pH 1.1 for the (001) and (010) surfaces at temperatures between 46 and 83°C. Dissolution at pH 12.9 showed a temperature-invariant process with an apparent activation energy of 65 ± 7 kJ/mol for the (001) cleavage surface consistent with previous powder dissolution results. Dissolution at pH 1.1 of the (001) and (010) surfaces revealed a similar process for both surfaces, with apparent activation energies of 87 ± 7 and 41 ± 7 kJ/mol, respectively, but with systematic differences in the dissolution process as a function of temperature. Longer-term measurements (five monolayers) show that the initial rates reported here at acidic pH are greater than steady-state rates by a factor of 2. Apparent activation energies at acidic pH differ substantially from powder dissolution results for K-feldspar; the present results bracket the value derived from powder dissolution measurements. The difference in apparent activation energies for the (001) and (010) faces at pH 1.1 reveals an anisotropy in dissolution kinetics that depends strongly on temperature. Our results imply a projected ˜25-fold change in the ratio of dissolution rates for the (001) and (010) surfaces between 25 and 90°C. The dissolution rate of the (001) surface is higher than that of the (010) surface above 51°C and is projected to be lower below this temperature. These results indicate clearly that the kinetics and energetics of orthoclase dissolution at acidic pH depend on crystal orientation. This dependence may

  3. Surface reformation and electro-optical characteristics of liquid crystal alignment layers using ion beam irradiation

    SciTech Connect

    Oh, Byeong-Yun; Lee, Kang-Min; Kim, Byoung-Yong; Kim, Young-Hwan; Han, Jin-Woo; Han, Jeong-Min; Lee, Sang-Keuk; Seo, Dae-Shik

    2008-09-15

    The surface modification characteristics of liquid crystal (LC) alignment layers irradiated with various argon (Ar) ion beam (IB) energies were investigated as a substitute for rubbing technology. Various pretilt angles were created on the IB-irradiated polyimide (PI) surfaces after IB irradiation, but the Ar ions did not alter the morphology on the PI surface, indicating that the pretilt angle was not due to microgrooves. The chemical bonding states of the IB-irradiated PI surfaces were analyzed in detail by x-ray photoelectron spectroscopy to verify the compositional behavior for the LC alignment. Chemical structure analysis showed that the alignment ability of LCs was due to the preferential reorientation of the carbon network due to the breaking of C=O double bonds in the imide ring parallel to the incident IB direction. The potential of applying nonrubbing technology to display devices was further supported by the superior electro-optical characteristics compared to rubbed PI.

  4. Quantification of the orientational disorder in ortho-dichlorotetramethylbenzene: A single crystal deuterium nuclear magnetic resonance and x-ray study of the site populations

    NASA Astrophysics Data System (ADS)

    Bräuniger, Thomas; Poupko, Raphy; Luz, Zeev; Zimmermann, Herbert; Haeberlen, Ulrich

    2001-11-01

    The title compound, 1,2-dichloro-3,4,5,6-tetramethylbenzene (DCTMB) exhibits three solid phases, III, II, and I, of which two, Phase III (<170 K) and Phase II (170-381 K), have been investigated in the present study by means of x-ray diffraction and deuterium NMR. The latter measurements were performed on powder and single crystal samples of perdeuterated DCTMB (DCTMB-d12). Phase III is "right-left" disordered, with the molecular para axes (the axes having two methyls in para positions) well ordered in the crystal. The right-left disorder is manifested by the fact that the chlorine and ortho methyls have each an occupancy number of 1/2, thus ensuring an average inversion symmetry at the molecular site. The NMR results also indicate that at least one of the ortho methyls, and probably the second one too, are slightly distorted, randomly up and down, relative to the benzene plane. Except for fast methyl group rotation the molecules in this phase are static on the NMR time scale. Phase II is much more mobile and disordered, with the molecular para axes distributed over all six local crystallographic orientations. A detailed analysis of the single crystal NMR results shows that the fractional populations in the various orientations are biased with some orientations more populated than others (while keeping average inversion symmetry). It is shown that this bias is due to differences in both the enthalpy and entropy associated with the various orientations. NMR line shape and T1 relaxation data in Phase II (and I) indicate rapid jumps between the different orientations in the high temperature range of the measurements. The estimated activation parameters for the reorientational jumps are Ea=33 kJ/mol and k(260 K)=4.5×107 s-1.

  5. Anisotropy of mobility ratio between electron and hole along different orientations in ReGe{sub x}Si{sub 1.75-x} thermoelectric single crystals

    SciTech Connect

    Gu, J.-J.; Oh, M.-W.; Inui, H.; Zhang, D.

    2005-03-15

    It was recently found that ReSi{sub 1.75} based semiconductor single crystals can be of either p or n type with a fixed composition, just depending on their different crystal orientations. To investigate the mechanism of this interesting phenomenon, we grow ReGe{sub x}Si{sub 1.75-x} (x=0.02 and 0.04) single crystals with a floating zone method with radiation heating. The Seebeck coefficient and electric resistivity of these samples are measured along [100] and [001], respectively. The conduction mechanism is of p type along [100] and of n type along [001], like binary ReSi{sub 1.75}, in the temperature range 50 to 800 deg. C. The mobility ratio between electron and hole is calculated from the Seebeck coefficient data and it is highly anisotropic along two different orientations (about 0.4 to 0.6 along [100] while 4 to 5 along [001] direction), giving rise to the orientation-dependent conduction sign reversal phenomenon observed in ReSi{sub 1.75}.

  6. Effect of pre-deposition RF plasma etching on wafer surface morphology and crystal orientation of piezoelectric AlN thin films.

    PubMed

    Felmetsger, V; Mikhov, M; Laptev, P

    2015-02-01

    In this work, we describe the design and operation of a planarized capacitively coupled RF plasma module and investigate the effects of non-reactive RF plasma etching on Si (100) wafer surface morphology and crystal orientation of Al bottom electrodes and subsequently deposited AlN films. To ensure formation of highly (111) textured Al electrode, a thin 25-nm AlN seed layer was grown before the Al deposition. The seed layer's orientation efficiency improved with increasing the RF power from 70 to 300 W and resulted in narrowing the Al (111) rocking curves. AFM and XRD data have shown that crystal orientations of both the electrode and reactively sputtered AlN film are considerably improved when the substrate micro roughness is reduced from an ordinary level of a few nanometers to atomic level corresponding to root mean square roughness as low as about 0.2 to 0.3 nm. The most perfectly crystallized film stacks of 100-nm Al and 500-nm AlN were obtained in this work using etching in Ar plasma optimized to create an atomically smooth, epi-ready Si surface morphology that enables superior AlN seed layer nucleation conditions. X-ray rocking curves around the Al (111) and AlN (0002) diffraction peaks exhibited extremely low FWHM values of 0.68° and 1.05°, respectively.

  7. Molecular orientation behavior of chiral nematic liquid crystals based on the presence of blue phases using polarized microscopic FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsumura, Masanori; Katayama, Norihisa

    2016-07-01

    Study on molecular orientation behavior of highly twisted chiral nematic liquid crystals (N∗LCs) expressing blue phases (BPs) is important for developing new devices. This study examines the change of molecular orientation of N∗LCs due to the presence of BPs. Polarized microscopic FT-IR spectroscopy was used to study the in- and out-of-plane molecular orientations of N∗LCs that undergo a phase transition involving BPs. The band intensity ratio of CN to CH2 stretching modes (CN/CH2) in the IR spectra was used to determine the orientation of N∗LC molecules. The measured spectra indicated that the helical axis of N∗LC molecules was perpendicular to the substrate before heating and inclined on the substrate after cooling the sample which has phase transition from BP I to chiral nematic (N∗). The N∗LC molecule in the cell of rubbed orientation film exhibited the in-plane anisotropy after a heating-cooling ramp only in samples that passed through BP I. These results indicate that the changes of molecular orientation of N∗LC by phase transition are affected by BP I.

  8. Caller sex and orientation influence spectral characteristics of "two-voice" stereotyped calls produced by free-ranging killer whales.

    PubMed

    Miller, Patrick J O; Samarra, Filipa I P; Perthuison, Aurélie D

    2007-06-01

    This study investigates how particular received spectral characteristics of stereotyped calls of sexually dimorphic adult killer whales may be influenced by caller sex, orientation, and range. Calls were ascribed to individuals during natural behavior using a towed beamforming array. The fundamental frequency of both high-frequency and low-frequency components did not differ consistently by sex. The ratio of peak energy within the fundamental of the high-frequency component relative to summed peak energy in the first two low-frequency component harmonics, and the number of modulation bands off the high-frequency component, were significantly greater when whales were oriented towards the array, while range and adult sex had little effect. In contrast, the ratio of peak energy in the first versus second harmonics of the low-frequency component was greater in calls produced by adult females than adult males, while orientation and range had little effect. The dispersion of energy across harmonics has been shown to relate to body size or sex in terrestrial species, but pressure effects during diving are thought to make such a signal unreliable in diving animals. The observed spectral differences by signaler sex and orientation suggest that these types of information may be transmitted acoustically by freely diving killer whales.

  9. Workplace Learning within Teacher Education: The Role of Job Characteristics and Goal Orientation

    ERIC Educational Resources Information Center

    Kyndt, Eva; Donche, Vincent; Gijbels, David; Van Petegem, Peter

    2014-01-01

    Within teacher education, it is widely recognised that internships play a major role in preparing prospective teachers. The current research examines if the learning activities students' undertake in the workplace can be explained by students' goal orientation and their perceptions of the workplace. In addition, it will be investigated…

  10. Workplace Learning within Teacher Education: The Role of Job Characteristics and Goal Orientation

    ERIC Educational Resources Information Center

    Kyndt, Eva; Donche, Vincent; Gijbels, David; Van Petegem, Peter

    2014-01-01

    Within teacher education, it is widely recognised that internships play a major role in preparing prospective teachers. The current research examines if the learning activities students' undertake in the workplace can be explained by students' goal orientation and their perceptions of the workplace. In addition, it will be investigated…

  11. Optical Anisotropy and Four Possible Orientations of a Nematic Liquid Crystal on the Same Film of a Photochromic Chiral Smectic Polymer

    NASA Astrophysics Data System (ADS)

    Blinov, Lev M.; Barberi, Riccardo; Kozlovsky, Mikhail V.; Lazarev, Vladimir V.; de Santo, Maria P.

    Spin coated films of a chiral comb-like liquid crystalline copolymer containing azobenzene chromophores in its side chains are optically isotropic in their twisted smectic-like glassy state. In contact with a nematic liquid crystal (5CB, E7, MBBA) they provide a degenerate planar orientation. When irradiated by unpolarized UV light, they orient the same nematics homeotropically. Treated with linearly polarized UV light they orient nematics homogeneously with the director along the electric vector of the exciting light. After a combined irradiation first with unpolarized UV light and then with linearly polarized visible light, the films again provide a homogeneous liquid crystal orientation, this time with the director perpendicular to the visible light electric vector. The phenomena observed are related to the light induced optical anisotropy. Two main processes are responsible for the anisotropy (1) a UV light depletion of trans-isomers of the azobenzene chromophores from the chosen direction and (2) a reorientation of the chromophores by polarized visible light.

  12. Cyclic stability of superelasticity in the aged [ {bar{1}}23 ]-oriented Ni49Fe18Ga27Co6 single crystals

    NASA Astrophysics Data System (ADS)

    Panchenko, E. Yu.; Chumlyakov, Yu. I.; Timofeeva, E. E.; Vetoshkina, N. G.; Maier, H.

    2013-02-01

    The results of investigation of the effect of precipitates of different sizes, from 5 to 300 nm, on the character of stress-induced martensitic transformations, the value of stress hysteresis and cyclic stability of superelasticity in Ni49Fe18Ga27Со6 (at.%) ferromagnetic single crystals oriented along the [ {bar{1}}23 ] axis are presented. It is shown that a martensitic transformation in single crystals of Ni49Fe18Ga27Со6 containing dispersed particles of the γ- and γ'-phases measuring up to 30 nm (ageing at 673 K for 1 and 4 hours) is characterized by storing considerable elastic energy. It is revealed that these single crystals exhibit higher cyclic stability of superelasticity and a narrower stress hysteresis compared to those in the initial state and aged at 823 K for 0.5 hour, the latter containing much larger (150-300 nm) particles.

  13. Method to measure the phase modulation characteristics of a liquid crystal spatial light modulator.

    PubMed

    Wu, Yunlong; Nie, Jinsong; Shao, Li

    2016-11-01

    The universal liquid crystal spatial light modulator (LC-SLM) is widely used in many aspects of optical studies. The working principles and applications of LC-SLM were introduced briefly. The traditional Twyman-Green interference method, which was used to measure the phase modulation characteristics of a liquid spatial light modulator, had some obvious disadvantages in practice. To avoid these issues, the traditional Twyman-Green interference method was improved. Also, a new method to process interference fringes and measure the shift distances and cycles automatically by computers was proposed. The phase modulation characteristics of P512-1064 LC-SLM produced by the Meadowlark Company were measured to verify the validity of the newly proposed method. In addition, in order to compensate and correct the nonlinear characteristics of the phase modulation curve, three universal inverse interpolation methods were utilized. The root mean squared error and residual sum of squares between the calibrated phase modulation curve and the ideal phase modulation curve were reduced obviously by taking advantage of the inverse interpolation methods. Subsequently, the method of shape-preserving subsection cubic interpolation had acquired the best performance with high computation efficiency. Experiments have been performed to verify the validity of the interpolation method. The experimental results showed that the phase modulation characteristics of LC-LSM could be acquired and calibrated automatically with convenience and high efficiency by utilizing the newly proposed processing method.

  14. Characteristics of indomethacin-saccharin (IMC-SAC) co-crystals prepared by an anti-solvent crystallization process.

    PubMed

    Chun, Nan-Hee; Wang, In-Chun; Lee, Min-Jeong; Jung, Yun-Taek; Lee, Sangkil; Kim, Woo-Sik; Choi, Guang J

    2013-11-01

    The creation of co-crystals of various insoluble drug substances has been extensively investigated as a promising approach to improve their pharmaceutical performance. In this study, co-crystal powders of indomethacin and saccharin (IMC-SAC) were prepared by an anti-solvent (water) addition and compared with co-crystals by evaporation method. No successful synthesis of a pharmaceutical co-crystal powder via an anti-solvent approach has been reported. Among solvents examined, methanol was practically the only one that resulted in the formation of highly pure IMC-SAC co-crystal powders by anti-solvent approach. The mechanism of a preferential formation of IMC-SAC co-crystal to IMC was explained with two aspects: phase solubility diagram and solution complexation concept. Accordingly, the anti-solvent approach can be considered as a competitive route for producing pharmaceutical co-crystal powders with acceptable properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Travelling interplanetary shocks: their local orientations and inference of their global characteristics

    NASA Astrophysics Data System (ADS)

    Berdichevsky, D. B.; Reames, D. V.; Lepping, R. P.; Schwenn, R.; Farrugia, C. J.; Wu, C.; MacDowall, R. J.; Kaiser, M. L.; Lazarus, A. J.; Kaspers, J. C.

    2004-05-01

    The orientation of the evaluated normal direction to the interplanetary shock tells us of its local propagation in the interplanetary medium. It has recently been established for case studies like the Oct 19, 1995 and the July 15, 2000 (1) interplanetary magnetic clouds that the orientation of the respective shock normals appear consistent with their overall evolution, e.g., orientation and propagation of the driver. We test this result for a series of shocks observed simultaneously at widely extended locations. Preliminary single case studies (Jan 1978, Sept 1978, and Apr 1979) are used to infer the global geometry of the shock. We examine the relationship between the existence of a strong shock and the level of energization and intensity of the gradual solar energetic particle events. We will test hypotheses on the possible correlation between the extension of the strong shock and the level of energization and flux intensity observed for gradual solar energetic particle events. For selected cases, we also apply type II radio burst remote sensing using ISEE-3 radio data. Also we compare with some unusual shocks of the current solar cycle. For this purpose we will mainly use Wind magnetic field and plasma data from the MFI and SWE instruments, as well as radio emissions from its radio receiver WAVES. The shock normal will be tested against shock passage at other spacecraft (ACE, IMP-8). [(1) see e.g. Lepping et al, Sol Phys, 204, 287, 2001.

  16. Control multiple electrocaloric effect peak in Pb(Mg1/3Nb2/3)O3-PbTiO3 by phase composition and crystal orientation

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Wei, De; Qiao, Li-Jie

    2015-11-01

    This paper demonstrates the effect of phase composition and crystal orientation on the electrocaloric effect (ECE) in Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics and single crystals. The ECE features are closely related to phase diagram. Each ECE peak refers to a transition between rhombohedra, tetragonal, and cubic phases. The samples near morphotropic phase boundary have two ECE peaks corresponding to rhombohedra-tetragonal and tetragonal-cubic transitions, the latter induces large ECE of ΔT = 0.60 K (@20 kV/cm) in ceramics and ΔT = 0.69 K (@10 kV/cm) in <001> single crystal. Different orientations of single crystal change both ECE value and position, where <001>-orientation works for tetragonal-cubic ECE peak and <111>-orientation for rhombohedra-tetragonal peak.

  17. [Study on Spectral Characteristics of Two Kinds of Home-Made Novel Yb-Doped Fluoride Laser Crystals].

    PubMed

    Xu, Wen-bin; Chai, Lu; Shi, Jun-kai; Song, You-jian; Hu, Ming-lie; Wang, Qing-yue; Su, Liang-bi; Jiang, Da-peng; Xu, Jun

    2015-09-01

    Yb-doped fluoride crystals are of important another Yb-doped laser materials besides Yb-doped oxide, which are becoming one of interests for developing tunable lasers and ultrafast lasers. In this paper, the systematic and contrastive experiments of the optical spectral characteristics are presented for two types of home-made novel Yb-doped fluoride laser crystals, namely, Yb-doped CaF2-SrF2 mixed crystal and co-doped Yb, Y:CaF2 single crystal. The fluorescent features of Yb-doped CaF2-SrF2 mixed crystal and co-doped Yb, Y:CaF2 single crystal are apparently different by the fluorescence experiment. The physical mechanism of these fluorescence spectra were analyzed and proposed. The influence of doping concentrations of active Yb(3+) ions or co-doping Y ions on the absorption of Yb-doped CaF2-SrF2 mixed crystal and co-doped Yb, Y:CaF2 single crystal was experimentally investigated, and the optimal values of doping concentrations of active Yb(3+) ions or co-doping Y ions in the two types of fluoride laser crystals were obtained. Continuous-wave laser operation for the two novel fluoride laser crystals has been achieved in three-mirror-folded resonator using a laser diode as the pump source. Therein, the laser operation for the co-doped Yb, Y:CaF2 crystal is demonstrated for the first time. For the two types of fluoride laser crystals (four samples), the input-output power relational curves, the optical slope efficiencies and the laser spectra were demonstrated by the laser experiments. By comparisons between the two types of fluoride laser crystals in the absorbability, fluorescence and laser spectra, laser threshold and slope efficiency of the continuous-wave laser operation, the results show that the best one of the four samples in spectral and laser characteristics is co-doped 3at%Yb, 6at% Y:CaF2 single crystal, which has an expected potential in the application. The research results provide available references for improving further laser performance of Yb

  18. Determination of the Origin of Crystal Orientation for Nanocrystalline Bismuth Telluride-Based Thin Films Prepared by Use of the Flash Evaporation Method

    NASA Astrophysics Data System (ADS)

    Takashiri, M.; Tanaka, S.; Miyazaki, K.

    2014-06-01

    We have investigated the origin of crystal orientation for nanocrystalline bismuth telluride-based thin films. Thin films of p-type bismuth telluride antimony (Bi-Te-Sb) and n-type bismuth telluride selenide (Bi-Te-Se) were fabricated by a flash evaporation method, with exactly the same deposition conditions except for the elemental composition of the starting powders. For p-type Bi-Te-Sb thin films the main x-ray diffraction (XRD) peaks were from the c-axis (Σ{00l}/Σ{ hkl} = 0.88) whereas n-type Bi-Te-Se thin films were randomly oriented (Σ{00l}/Σ{ hkl} = 0.40). Crystal orientation, crystallinity, and crystallite size were improved for both types of thin film by sintering. For p-type Bi-Te-Sb thin films, especially, high-quality structures were obtained compared with those of n-type Bi-Te-Se thin films. We also estimated the thermoelectric properties of the as-grown and sintered thin films. The power factor was enhanced by sintering; maximum values were 34.9 μW/cm K2 for p-type Bi-Te-Sb thin films at a sintering temperature of 300°C and 23.9 μW/cm K2 for n-type Bi-Te-Se thin films at a sintering temperature of 350°C. The exact mechanisms of film growth are not yet clear but we deduce the crystal orientation originates from the size of nano-clusters generated on the tungsten boat during flash evaporation.

  19. Orientational order parameters of a de Vries-type ferroelectric liquid crystal obtained by polarized Raman spectroscopy and x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Sanchez-Castillo, A.; Osipov, M. A.; Jagiella, S.; Nguyen, Z. H.; Kašpar, M.; Hamplovă, V.; Maclennan, J.; Giesselmann, F.

    2012-06-01

    The orientational order parameters and of the ferroelectric, de Vries-type liquid crystal 9HL have been determined in the SmA* and SmC* phases by means of polarized Raman spectroscopy, and in the SmA* phase using x-ray diffraction. Quantum density functional theory predicts Raman spectra for 9HL that are in good agreement with the observations and indicates that the strong Raman band probed in the experiment corresponds to the uniaxial, coupled vibration of the three phenyl rings along the molecular long axis. The magnitudes of the orientational order parameters obtained in the Raman and x-ray experiments differ dramatically from each other, a discrepancy that is resolved by considering that the two techniques probe the orientational distributions of different molecular axes. We have developed a systematic procedure in which we calculate the angle between these axes and rescale the orientational order parameters obtained from x-ray scattering with results that are then in good agreement with the Raman data. At least in the case of 9HL, the results obtained by both techniques support a “sugar loaf” orientational distribution in the SmA* phase with no qualitative difference to conventional smectics A. The role of individual molecular fragments in promoting de Vries-type behavior is considered.

  20. A Study on Field Emission Characteristics of Planar Graphene Layers Obtained from a Highly Oriented Pyrolyzed Graphite Block

    PubMed Central

    2009-01-01

    This paper describes an experimental study on field emission characteristics of individual graphene layers for vacuum nanoelectronics. Graphene layers were prepared by mechanical exfoliation from a highly oriented pyrolyzed graphite block and placed on an insulating substrate, with the resulting field emission behavior investigated using a nanomanipulator operating inside a scanning electron microscope. A pair of tungsten tips controlled by the nanomanipulator enabled electric connection with the graphene layers without postfabrication. The maximum emitted current from the graphene layers was 170 nA and the turn-on voltage was 12.1 V. PMID:20596315

  1. Surface and subsurface cracks characteristics of single crystal SiC wafer in surface machining

    NASA Astrophysics Data System (ADS)

    Qiusheng, Y.; Senkai, C.; Jisheng, P.

    2015-03-01

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller, the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.

  2. Surface and subsurface cracks characteristics of single crystal SiC wafer in surface machining

    SciTech Connect

    Qiusheng, Y. Senkai, C. Jisheng, P.

    2015-03-30

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller, the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.

  3. Antisolvent crystallization of pharmaceutical excipients from aqueous solutions and the use of preferred orientation in phase identification by powder X-ray diffraction.

    PubMed

    Crisp, J L; Dann, S E; Blatchford, C G

    2011-04-18

    Crystallization of lactose from 10% (w/v) aqueous solutions was investigated with the use of polar antisolvents. Crystal growth was observed at 50-65% antisolvent content and showed a morphological transition from a polyhedral to needle-like habit with increasing antisolvent content, which coincided with a polymorphic transition from alpha lactose monohydrate (Lα·H(2)O) to beta lactose (Lβ). Where dehydrating antisolvents were employed such as methanol and ethanol, evidence of Lα·H(2)O dehydration to form Lα(S) was also observed at 95% antisolvent content. Powder X-ray diffraction (PXRD) analysis of the crystals highlighted the preferred orientation effects exhibited by large crystals of this kind, indicating the difficulties experienced by the non-specialist when performing phase identification of lactose polymorphs. The same studies were applied to raffinose pentahydrate, trehalose dihydrate and mannitol to assess the effects of crystallization conditions on other pharmaceutical excipients. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels.

    PubMed

    Wang, Ruixue; Xu, Zhenming

    2016-01-25

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box-Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min(-1) and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Distribution of leaf characteristics in relation to orientation within the canopy of woody species

    NASA Astrophysics Data System (ADS)

    Escudero, Alfonso; Fernández, José; Cordero, Angel; Mediavilla, Sonia

    2013-04-01

    Over the last few decades considerable effort has been devoted to research of leaf adaptations to environmental conditions. Many studies have reported strong differences in leaf mass per unit area (LMA) within a single tree depending on the photosynthetic photon flux density (PPFD) incident on different locations in the crown. There are fewer studies, however, of the effects of differences in the timing of light incidence during the day on different crown orientations. Leaves from isolated trees of Quercus suber and Quercus ilex in a cold Mediterranean climate were sampled to analyze differences in LMA and other leaf traits among different crown orientations. Gas-exchange rates, leaf water potentials, leaf temperatures and PPFD incident on leaf surfaces in different crown orientations were also measured throughout one entire summer day for each species. Mean daily PPFD values were similar for the leaves from the eastern and western sides of the canopy. On the western side, PPFD reached maximum values during the afternoon. Maximum leaf temperatures were approximately 10-20% higher on the west side, whereas minimum leaf water potentials were between 10 and 24% higher on the east side. Maximum transpiration rates were approximately 22% greater on the west, because of the greater leaf-to-air vapor pressure deficits (LAVPD). Mean individual leaf area was around 10% larger on the east than on the west side of the trees. In contrast, there were no significant differences in LMA between east and west sides of the crown. Contrary to our expectations, more severe water stress on the west side did not result in increases in LMA, although it was associated with lower individual leaf area. We conclude that increases in LMA measured by other authors along gradients of water stress would be due to differences in light intensity between dry and humid sites.

  6. Effects of crystal preferred orientation on upper-mantle flow near plate boundaries: rheologic feedbacks and seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Blackman, D. K.; Boyce, D. E.; Castelnau, O.; Dawson, P. R.; Laske, G.

    2017-09-01

    Insight into upper-mantle processes can be gained by linking flow-induced mineral alignment to regional deformation and seismic anisotropy patterns. Through a series of linked micro-macro scale numerical experiments, we explore the rheologic effects of crystal preferred orientation (CPO) and evaluate the magnitude of possible impacts on the pattern of flow and associated seismic signals for mantle that includes a cooling, thickening young oceanic lithosphere. The CPO and associated anisotropic rheology, computed by a micromechanical polycrystal model, are coupled with a large scale flow model (Eulerian Finite Element method) via a local viscosity tensor field, which quantifies the stress:strain rate response of a textured polycrystal. CPO is computed along streamlines throughout the model space and the corresponding viscosity tensor field at each element defines the local properties for the next iteration of the flow field. Stable flow and CPO distributions were obtained after several iterations for the two dislocation glide cases tested: linear and nonlinear stress:strain rate polycrystal behaviour. The textured olivine polycrystals are found to have anisotropic viscosity tensors in a significant portion of the model space. This directional dependence in strength impacts the pattern of upper-mantle flow. For background asthenosphere viscosity of ∼1020 Pa s and a rigid lithosphere, the modification of the corner flow pattern is not drastic but the change could have geologic implications. Feedback in the development of CPO occurs, particularly in the region immediately below the base of the lithosphere. Stronger fabric is predicted below the flanks of a spreading centre for fully coupled, power-law polycrystals than was determined using prior linear, intermediate coupling polycrystal models. The predicted SKS splitting is modestly different (∼0.5 s) between the intermediate and fully coupled cases for oceanic plates less than 20 Myr old. The magnitude of

  7. Modeling and validation of photometric characteristics of space targets oriented to space-based observation.

    PubMed

    Wang, Hongyuan; Zhang, Wei; Dong, Aotuo

    2012-11-10

    A modeling and validation method of photometric characteristics of the space target was presented in order to track and identify different satellites effectively. The background radiation characteristics models of the target were built based on blackbody radiation theory. The geometry characteristics of the target were illustrated by the surface equations based on its body coordinate system. The material characteristics of the target surface were described by a bidirectional reflectance distribution function model, which considers the character of surface Gauss statistics and microscale self-shadow and is obtained by measurement and modeling in advance. The contributing surfaces of the target to observation system were determined by coordinate transformation according to the relative position of the space-based target, the background radiation sources, and the observation platform. Then a mathematical model on photometric characteristics of the space target was built by summing reflection components of all the surfaces. Photometric characteristics simulation of the space-based target was achieved according to its given geometrical dimensions, physical parameters, and orbital parameters. Experimental validation was made based on the scale model of the satellite. The calculated results fit well with the measured results, which indicates the modeling method of photometric characteristics of the space target is correct.

  8. Evaluation of curving characteristics of flexible liquid crystal displays fabricated using polycarbonate substrates

    NASA Astrophysics Data System (ADS)

    Sato, Akihito; Ishinabe, Takahiro; Fujikake, Hideo

    2016-01-01

    The improvement of the contrast ratio of flexible liquid crystal displays (LCDs) fabricated using plastic substrates in a curved state is an important problem to achieve high-quality flexible LCDs. In this study, we evaluated the distributions of in-plane phase retardation and slow axis direction of polycarbonate substrates and the effects of curvature on the electro-optical properties of flexible LCDs. As a result, we clarified that the polycarbonate substrates have high uniformity in the in-plane phase retardation and slow axis direction, and that the change in the phase retardation of the polycarbonate substrate caused by the curvature deformation has a small effect on the electro-optical characteristics of flexible LCDs. We successfully achieved a high contrast ratio of 1042:1 by fabricating the device using polycarbonate substrates. This result indicates that it is possible to realize high-quality images in flexible LCDs fabricated using polycarbonate substrates even in the curved state.

  9. Study of a liquid crystal structure with improved electro-optical characteristics

    SciTech Connect

    Lim, Ji-Hun; Oh, Byeong-Yun; Kim, Byoung-Yong; Kim, Young-Hwan; Lee, Kang-Min; Han, Jeoung-Min; Lee, Sang-Keuk; Seo, Dae-Shik

    2009-01-01

    This paper introduces the vertically aligned twisted nematic in-plane switching (VPS) structure, and compares the electro-optical (EO) characteristics of VPS liquid crystal displays (LCDs) and in-plane switching (IPS) LCDs. Various VPS-LCD pretilt angles were induced, and ion beam (IB) irradiation was used to enhance the EO properties. An x-ray photoelectron spectroscopic analysis of the IB-irradiated polymer surface confirmed that the intensity of C=O bonding as a function of exposure time traced the pretilt angles. The pretilt angle effect on optical properties was first analyzed in the experimental results. While multidomain vertical alignment LCDs and IPS-LCDs only resolve one difficulty, the VPS-LCDs described here overcome several viewing angle and transmittance curve problems.

  10. Comprehensive study of Al-induced layer-exchange growth for orientation-controlled Si crystals on SiO{sub 2} substrates

    SciTech Connect

    Kurosawa, Masashi; Sadoh, Taizoh; Miyao, Masanobu

    2014-11-07

    Orientation-controlled crystalline Si films on insulating substrates are strongly required to achieve high-performance thin-film devices for next-generation electronics. We have comprehensively investigated the layer-exchange kinetics of Al-induced crystallization (AIC) in stacked structures, i.e., amorphous-Si/Al-oxide/Al/SiO{sub 2}-substrates, as a function of the air-exposure time of Al surfaces (t{sub air}: 0–24 h) to form Al-oxide interface-layers, the thickness of Al and Si layers (d{sub Al,} d{sub Si}: 50–200 nm), the annealing temperature (450–500 °C), and the annealing time (0–50 h). It has been clarified that longer t{sub air} (>60 min) and/or thinner d{sub Al} and d{sub Si} (<50 nm) lead to the (111) oriented growth; in contrast, shorter t{sub air} (<60 min) and/or thicker d{sub Al} and d{sub Si} (>100 nm) lead to the (100) oriented growth. No correlation between the annealing temperature and the crystal orientation is observed. Detailed analysis reveals that the layer-exchange kinetics are dominated by “supply-limited” processing, i.e., diffusion of Si atoms into Al layers through Al-oxide layer. Based on the growth rate dependent Si concentration profiles in Al layers, and the free-energy of Si at Al-oxide/Al or Al/SiO{sub 2} interfaces, a comprehensive model for layer-exchange growth is proposed. This well explains the experimental results of not only Si-AIC but also another material system such as gold-induced crystallization of Ge. In this way, a growth technique achieving the orientation-controlled Si crystals on insulating substrates is established from both technological and scientific points of view.

  11. Evaluation of the effects of 3D diffusion, crystal geometry, and initial conditions on retrieved time-scales from Fe-Mg zoning in natural oriented orthopyroxene crystals

    NASA Astrophysics Data System (ADS)

    Krimer, Daniel; Costa, Fidel

    2017-01-01

    Volcano petrologists and geochemists increasingly use time-scale determinations of magmatic processes from modeling the chemical zoning patterns in crystals. Most determinations are done using one-dimensional traverses across a two-dimensional crystal section. However, crystals are three-dimensional objects with complex shapes, and diffusion and re-equilibration occurs in multiple dimensions. Given that we can mainly study the crystals in two-dimensional petrographic thin sections, the determined time-scales could be in error if multiple dimensional and geometrical effects are not identified and accounted for. Here we report the results of a numerical study where we investigate the role of multiple dimensions, geometry, and initial conditions of Fe-Mg diffusion in an orthopyroxene crystal with the view towards proper determinations of time scales from modeling natural crystals. We found that merging diffusion fronts (i.e. diffusion from multiple directions) causes 'additional' diffusion that has the greatest influence close to the crystal's corners (i.e. where two crystal faces meet), and with longer times the affected area widens. We also found that the one-dimensional traverses that can lead to the most accurate calculated time-scales from natural crystals are along the b- crystallographic axis on the ab-plane when model inputs (concentration and zoning geometry) are taken as measured (rather than inferred from other observations). More specifically, accurate time-scales are obtained if the compositional traverses are highly symmetrical and contain a concentration plateau measured through the crystal center. On the other hand, for two-dimensional models the ab- and ac-planes are better suited if the initial (pre-diffusion) concentration and zoning geometry inputs are known or can be estimated, although these are a priory unknown, and thus, may be difficult to use in practical terms. We also found that under certain conditions, a combined one-dimensional and two

  12. Orientation-dependent x-ray Raman scattering from cubic crystals: Natural linear dichroism in MnO and CeO2

    NASA Astrophysics Data System (ADS)

    Gordon, R. A.; Haverkort, M. W.; Gupta, Subhra Sen; Sawatzky, G. A.

    2009-11-01

    Information on valence orbitals and electronic interactions in single crystal systems can be obtained through orientation-dependent x-ray measurements, but this can be problematic for a cubic system. Polarisation-dependent x-ray absorption measurements are common, but are dominated by dipole transitions which, for a cubic system, are isotropic even though a cubic system is not. Many edges, particularly for transition metals, do have electric quadrupole features that could lead to dichroism but proximity to the dipole transition can make interpretation challenging. X-ray Raman Spectroscopy (XRS) can also be used to perform orientation-dependent near-edge measurements - not only dependent on the direction of the momentum transfer but also its magnitude, q. Previous XRS measurements on polycrystalline materials revealed that multipole (higher order than dipole) transitions are readily observable in the pre-threshold region of rare earth N4,5 edges, actually replacing the dipole at high-q. We have extended these studies to examine orientation-dependent XRS for CeO2 and MnO single crystals, as prototype systems for theoretical treatment. Dichroism is observed at both the Ce N4,5 and Mn M2,3 edges in these cubic materials.

  13. Slip and Twinning in the [ 1 ¯ $ /line{mathbf{1}} $ 49]-Oriented Single Crystals of a High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Kireeva, I. V.; Chumlyakov, Yu. I.; Pobedennaya, Z. V.; Platonova, Yu. N.; Kuksgauzen, I. V.; Kuksgauzen, D. A.; Poklonov, V. V.; Karaman, I.; Sehitoglu, H.

    2016-12-01

    Using [ overline{1} 49] - oriented single crystals of an FCC Fe20Ni20Mn20Cr20Co20 (at.%) high-entropy alloy subjected to tensile deformation, the temperature dependence of critical resolved shear stresses τcr(T) and the deformation mechanism of slip and twinning are investigated in the early stages of deformation at ɛ ≤ 5% within the temperature interval T = 77-573 K. It is shown that τcr increases with decreasing the testing temperature and the τcr(T) temperature dependence is controlled by the slip of perfect dislocations a/2<110>. The early deformation stages ɛ ≤ 5% are associated with the development of planar slip by pileups of perfect dislocations a/2<110>, stacking faults and mechanical twins, which is observed in the temperature interval from 77 to 423 K. A comparison of the temperature dependence τcr(T) and the development of mechanical twinning is performed between the [ overline{1} 49] -oriented single crystals of the Fe20Ni20Mn20Cr20Co20 high-entropy alloy, the single crystals of the austenitic stainless steel, Fe - 18% Cr - 12% Ni - 2Mo (wt.%) without nitrogen atoms (Steel 316) and Hadfield steel, Fe - 13% Mn - (1-1.3)% C (wt.%).

  14. Self-construction of core-shell and hollow zeolite analcime icositetrahedra: a reversed crystal growth process via oriented aggregation of nanocrystallites and recrystallization from surface to core.

    PubMed

    Chen, Xueying; Qiao, Minghua; Xie, Songhai; Fan, Kangnian; Zhou, Wuzong; He, Heyong

    2007-10-31

    Zeolite analcime with a core-shell and hollow icositetrahedron architecture was prepared by a one-pot hydrothermal route in the presence of ethylamine and Raney Ni. Detailed investigations on samples at different preparation stages revealed that the growth of the complex single crystalline geometrical structure did not follow the classic crystal growth route, i.e., a crystal with a highly symmetric morphology (such as polyhedra) is normally developed by attachment of atoms or ions to a nucleus. A reversed crystal growth process through oriented aggregation of nanocrystallites and surface recrystallization was observed. The whole process can be described by the following four successive steps. (1) Primary analcime nanoplatelets undergo oriented aggregation to yield discus-shaped particles. (2) These disci further assemble into polycrystalline microspheres. (3) The relatively large platelets grow into nanorods by consuming the smaller ones, and meanwhile, the surface of the microspheres recrystallizes into a thin single crystalline icositetrahedral shell via Ostwald ripening. (4) Recrystallization continues from the surface to the core at the expense of the nanorods, and the thickness of the monocrystalline shell keeps on increasing until all the nanorods are consumed, leading to hollow single crystalline analcime icositetrahedra. The present work adds new useful information for the understanding of the principles of zeolite growth.

  15. Characteristics of covert and overt visual orienting: Evidence from attentional and oculomotor capture

    NASA Technical Reports Server (NTRS)

    Wu, Shu-Chieh; Remington, Roger W.

    2003-01-01

    Five visual search experiments found oculomotor and attentional capture consistent with predictions of contingent orienting, contrary to claims that oculomotor capture is purely stimulus driven. Separate saccade and attend-only conditions contained a color target appearing either singly, with an onset or color distractor, or both. In singleton mode, onsets produced oculomotor and attentional capture. In feature mode, capture was absent or greatly reduced, providing evidence for top-down modulation of both types of capture. Although attentional capture by color abstractors was present throughout, oculomotor capture by color occurred only when accompanied by transient change, providing evidence for a dissociation between oculomotor and attentional capture. Oculomotor and attentional capture appear to be mediated by top-down attentional control settings, but transient change may be necessary for oculomotor capture. ((c) 2003 APA, all rights reserved).

  16. Radiation-Induced Organizing Pneumonia: A Characteristic Disease that Requires Symptom-Oriented Management

    PubMed Central

    Otani, Keisuke; Seo, Yuji; Ogawa, Kazuhiko

    2017-01-01

    Radiation-induced organizing pneumonia (RIOP) is an inflammatory lung disease that is occasionally observed after irradiation to the breast. It is a type of secondary organizing pneumonia that is characterized by infiltrates outside the irradiated volume that are sometimes migratory. Corticosteroids work acutely, but relapse of pneumonia is often experienced. Management of RIOP should simply be symptom-oriented, and the use of corticosteroids should be limited to severe symptoms from the perspective not only of cost-effectiveness but also of cancer treatment. Once steroid therapy is started, it takes a long time to stop it due to frequent relapses. We review RIOP from the perspective of its diagnosis, epidemiology, molecular pathogenesis, and patient management. PMID:28134830

  17. Characteristics of covert and overt visual orienting: Evidence from attentional and oculomotor capture

    NASA Technical Reports Server (NTRS)

    Wu, Shu-Chieh; Remington, Roger W.

    2003-01-01

    Five visual search experiments found oculomotor and attentional capture consistent with predictions of contingent orienting, contrary to claims that oculomotor capture is purely stimulus driven. Separate saccade and attend-only conditions contained a color target appearing either singly, with an onset or color distractor, or both. In singleton mode, onsets produced oculomotor and attentional capture. In feature mode, capture was absent or greatly reduced, providing evidence for top-down modulation of both types of capture. Although attentional capture by color abstractors was present throughout, oculomotor capture by color occurred only when accompanied by transient change, providing evidence for a dissociation between oculomotor and attentional capture. Oculomotor and attentional capture appear to be mediated by top-down attentional control settings, but transient change may be necessary for oculomotor capture. ((c) 2003 APA, all rights reserved).

  18. Radiation-Induced Organizing Pneumonia: A Characteristic Disease that Requires Symptom-Oriented Management.

    PubMed

    Otani, Keisuke; Seo, Yuji; Ogawa, Kazuhiko

    2017-01-27

    Radiation-induced organizing pneumonia (RIOP) is an inflammatory lung disease that is occasionally observed after irradiation to the breast. It is a type of secondary organizing pneumonia that is characterized by infiltrates outside the irradiated volume that are sometimes migratory. Corticosteroids work acutely, but relapse of pneumonia is often experienced. Management of RIOP should simply be symptom-oriented, and the use of corticosteroids should be limited to severe symptoms from the perspective not only of cost-effectiveness but also of cancer treatment. Once steroid therapy is started, it takes a long time to stop it due to frequent relapses. We review RIOP from the perspective of its diagnosis, epidemiology, molecular pathogenesis, and patient management.

  19. In-plane orientation and composition dependences of crystal structure and electrical properties of {100}-oriented Pb(Zr,Ti)O3 films grown on (100) Si substrates by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Okamoto, Shoji; Sankara Rama Krishnan, P. S.; Okamoto, Satoshi; Yokoyama, Shintaro; Akiyama, Kensuke; Funakubo, Hiroshi

    2017-10-01

    In-plane orientation-controlled Pb(Zr x ,Ti1‑ x )O3 (PZT) films with a thickness of approximately 2 µm and a Zr/(Zr + Ti) ratio of 0.39–0.65 were grown on (100) Si substrates by pulsed metal–organic chemical vapor deposition (MOCVD). In-plane-oriented epitaxial PZT films and in-plane random fiber-textured PZT films with {100} out-of-plane orientation were grown on (100)c SrRuO3//(100)c LaNiO3//(100) CeO2//(100) YSZ//(100) Si and (100)c SrRuO3/(100)c LaNiO3/(111) Pt/TiO2/SiO2/(100) Si substrates, respectively. The effects of Zr/(Zr + Ti) ratio and in-plane orientation on the crystal structure, dielectric, ferroelectric, and piezoelectric properties of the films were systematically investigated. The X-ray diffraction measurement showed that the epitaxial PZT films had a higher volume fraction of (100) orientation than the fiber-textured PZT films in the tetragonal Zr/(Zr + Ti) ratio region. A large difference was not detected between the epitaxial films and the fiber-textured films for Zr/(Zr + Ti) ratio dependence of the dielectric constant, and remanent polarization. However, in the rhombohedral phase region [Zr/(Zr + Ti) = 0.65], coercive field was found to be 1.5-fold different between the epitaxial and fiber-textured PZT films. The maximum field-induced strains measured at 0–100 kV/cm by scanning atomic force microscopy were obtained at approximately Zr/(Zr + Ti) = 0.50 and were about 0.5 and 0.3% for the epitaxial and fiber-textured PZT films, respectively.

  20. Disordering of the vortex lattice through successive destruction of positional and orientational order in a weakly pinned Co0.0075NbSe2 single crystal

    PubMed Central

    Chandra Ganguli, Somesh; Singh, Harkirat; Saraswat, Garima; Ganguly, Rini; Bagwe, Vivas; Shirage, Parasharam; Thamizhavel, Arumugam; Raychaudhuri, Pratap

    2015-01-01

    The vortex lattice in a Type II superconductor provides a versatile model system to investigate the order-disorder transition in a periodic medium in the presence of random pinning. Here, using scanning tunnelling spectroscopy in a weakly pinned Co0.0075NbSe2 single crystal, we show that the vortex lattice in a 3-dimensional superconductor disorders through successive destruction of positional and orientational order, as the magnetic field is increased across the peak effect. At the onset of the peak effect, the equilibrium quasi-long range ordered state transforms into an orientational glass through the proliferation of dislocations. At a higher field, the dislocations dissociate into isolated disclination giving rise to an amorphous vortex glass. We also show the existence of a variety of additional non-equilibrium metastable states, which can be accessed through different thermomagnetic cycling. PMID:26039699