Sample records for characterization method based

  1. Characterizing Task-Based OpenMP Programs

    PubMed Central

    Muddukrishna, Ananya; Jonsson, Peter A.; Brorsson, Mats

    2015-01-01

    Programmers struggle to understand performance of task-based OpenMP programs since profiling tools only report thread-based performance. Performance tuning also requires task-based performance in order to balance per-task memory hierarchy utilization against exposed task parallelism. We provide a cost-effective method to extract detailed task-based performance information from OpenMP programs. We demonstrate the utility of our method by quickly diagnosing performance problems and characterizing exposed task parallelism and per-task instruction profiles of benchmarks in the widely-used Barcelona OpenMP Tasks Suite. Programmers can tune performance faster and understand performance tradeoffs more effectively than existing tools by using our method to characterize task-based performance. PMID:25860023

  2. Combining Land Use Information and Small Stream Sampling with PCR-Based Methods for Better Characterization of Diffuse Sources of Human Fecal Pollution

    EPA Science Inventory

    Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between...

  3. A method for radiological characterization based on fluence conversion coefficients

    NASA Astrophysics Data System (ADS)

    Froeschl, Robert

    2018-06-01

    Radiological characterization of components in accelerator environments is often required to ensure adequate radiation protection during maintenance, transport and handling as well as for the selection of the proper disposal pathway. The relevant quantities are typical the weighted sums of specific activities with radionuclide-specific weighting coefficients. Traditional methods based on Monte Carlo simulations are radionuclide creation-event based or the particle fluences in the regions of interest are scored and then off-line weighted with radionuclide production cross sections. The presented method bases the radiological characterization on a set of fluence conversion coefficients. For a given irradiation profile and cool-down time, radionuclide production cross-sections, material composition and radionuclide-specific weighting coefficients, a set of particle type and energy dependent fluence conversion coefficients is computed. These fluence conversion coefficients can then be used in a Monte Carlo transport code to perform on-line weighting to directly obtain the desired radiological characterization, either by using built-in multiplier features such as in the PHITS code or by writing a dedicated user routine such as for the FLUKA code. The presented method has been validated against the standard event-based methods directly available in Monte Carlo transport codes.

  4. Mass Median Plume Angle: A novel approach to characterize plume geometry in solution based pMDIs.

    PubMed

    Moraga-Espinoza, Daniel; Eshaghian, Eli; Smyth, Hugh D C

    2018-05-30

    High-speed laser imaging (HSLI) is the preferred technique to characterize the geometry of the plume in pressurized metered dose inhalers (pMDIs). However, current methods do not allow for simulation of inhalation airflow and do not use drug mass quantification to determine plume angles. To address these limitations, a Plume Induction Port Evaluator (PIPE) was designed to characterize the plume geometry based on mass deposition patterns. The method is easily adaptable to current pMDI characterization methodologies, uses similar calculations methods, and can be used under airflow. The effect of airflow and formulation on the plume geometry were evaluated using PIPE and HSLI. Deposition patterns in PIPE were highly reproducible and log-normal distributed. Mass Median Plume Angle (MMPA) was a new characterization parameter to describe the effective angle of the droplets deposited in the induction port. Plume angles determined by mass showed a significant decrease in size as ethanol increases which correlates to the decrease on vapor pressure in the formulation. Additionally, airflow significantly decreased the angle of the plumes when cascade impactor was operated under flow. PIPE is an alternative to laser-based characterization methods to evaluate the plume angle of pMDIs based on reliable drug quantification while simulating patient inhalation. Copyright © 2018. Published by Elsevier B.V.

  5. A critical review on characterization strategies of organic matter for wastewater and water treatment processes.

    PubMed

    Tran, Ngoc Han; Ngo, Huu Hao; Urase, Taro; Gin, Karina Yew-Hoong

    2015-10-01

    The presence of organic matter (OM) in raw wastewater, treated wastewater effluents, and natural water samples has been known to cause many problems in wastewater treatment and water reclamation processes, such as treatability, membrane fouling, and the formation of potentially toxic by-products during wastewater treatment. This paper summarizes the current knowledge on the methods for characterization and quantification of OM in water samples in relation to wastewater and water treatment processes including: (i) characterization based on the biodegradability; (ii) characterization based on particle size distribution; (iii) fractionation based on the hydrophilic/hydrophobic properties; (iv) characterization based on the molecular weight (MW) size distribution; and (v) characterization based on fluorescence excitation emission matrix. In addition, the advantages, disadvantages and applications of these methods are discussed in detail. The establishment of correlations among biodegradability, hydrophobic/hydrophilic fractions, MW size distribution of OM, membrane fouling and formation of toxic by-products potential is highly recommended for further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Combining watershed attributes with culture- and PCR-based methods for improved characterization and management of fecal pollution

    EPA Science Inventory

    Culture- and PCR-based methods for characterization of fecal pollution were evaluated in relation to physiographic, biotic, and chemical indicators of stream condition. Stream water samples (n = 235) were collected monthly over a two year period from ten channels draining subwat...

  7. Methods and systems for detecting abnormal digital traffic

    DOEpatents

    Goranson, Craig A [Kennewick, WA; Burnette, John R [Kennewick, WA

    2011-03-22

    Aspects of the present invention encompass methods and systems for detecting abnormal digital traffic by assigning characterizations of network behaviors according to knowledge nodes and calculating a confidence value based on the characterizations from at least one knowledge node and on weighting factors associated with the knowledge nodes. The knowledge nodes include a characterization model based on prior network information. At least one of the knowledge nodes should not be based on fixed thresholds or signatures. The confidence value includes a quantification of the degree of confidence that the network behaviors constitute abnormal network traffic.

  8. Evaluation of Electrochemical Methods for Electrolyte Characterization

    NASA Technical Reports Server (NTRS)

    Heidersbach, Robert H.

    2001-01-01

    This report documents summer research efforts in an attempt to develop an electrochemical method of characterizing electrolytes. The ultimate objective of the characterization would be to determine the composition and corrosivity of Martian soil. Results are presented using potentiodynamic scans, Tafel extrapolations, and resistivity tests in a variety of water-based electrolytes.

  9. An overview on the emerging area of identification, characterization, and assessment of health apps.

    PubMed

    Paglialonga, Alessia; Lugo, Alessandra; Santoro, Eugenio

    2018-05-28

    The need to characterize and assess health apps has inspired a significant amount of research in the past years, in search for methods able to provide potential app users with relevant, meaningful knowledge. This article presents an overview of the recent literature in this field and categorizes - by discussing some specific examples - the various methodologies introduced so far for the identification, characterization, and assessment of health apps. Specifically, this article outlines the most significant web-based resources for app identification, relevant frameworks for descriptive characterization of apps' features, and a number of methods for the assessment of quality along its various components (e.g., evidence base, trustworthiness, privacy, or user engagement). The development of methods to characterize the apps' features and to assess their quality is important to define benchmarks and minimum requirements. Similarly, such methods are important to categorize potential risks and challenges in the field so that risks can be minimized, whenever possible, by design. Understanding methods to assess apps is key to raise the standards of quality of health apps on the market, towards the final goal of delivering apps that are built on the pillars of evidence-base, reliability, long-term effectiveness, and user-oriented quality. Copyright © 2018. Published by Elsevier Inc.

  10. Acousto-Optic Tunable Filter Hyperspectral Microscope Imaging Method for Characterizing Spectra from Foodborne Pathogens.

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral microscope imaging (HMI) method, which provides both spatial and spectral characteristics of samples, can be effective for foodborne pathogen detection. The acousto-optic tunable filter (AOTF)-based HMI method can be used to characterize spectral properties of biofilms formed by Salmon...

  11. The need and approach for characterization - U.S. air force perspectives on materials state awareness

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Lindgren, Eric A.

    2018-04-01

    This paper expands on the objective and motivation for NDE-based characterization and includes a discussion of the current approach using model-assisted inversion being pursued within the Air Force Research Laboratory (AFRL). This includes a discussion of the multiple model-based methods that can be used, including physics-based models, deep machine learning, and heuristic approaches. The benefits and drawbacks of each method is reviewed and the potential to integrate multiple methods is discussed. Initial successes are included to highlight the ability to obtain quantitative values of damage. Additional steps remaining to realize this capability with statistical metrics of accuracy are discussed, and how these results can be used to enable probabilistic life management are addressed. The outcome of this initiative will realize the long-term desired capability of NDE methods to provide quantitative characterization to accelerate certification of new materials and enhance life management of engineered systems.

  12. Non-invasive continuous imaging of drug release from soy-based skin equivalent using wide-field interferometry

    NASA Astrophysics Data System (ADS)

    Gabai, Haniel; Baranes-Zeevi, Maya; Zilberman, Meital; Shaked, Natan T.

    2013-04-01

    We propose an off-axis interferometric imaging system as a simple and unique modality for continuous, non-contact and non-invasive wide-field imaging and characterization of drug release from its polymeric device used in biomedicine. In contrast to the current gold-standard methods in this field, usually based on chromatographic and spectroscopic techniques, our method requires no user intervention during the experiment, and only one test-tube is prepared. We experimentally demonstrate imaging and characterization of drug release from soy-based protein matrix, used as skin equivalent for wound dressing with controlled anesthetic, Bupivacaine drug release. Our preliminary results demonstrate the high potential of our method as a simple and low-cost modality for wide-field imaging and characterization of drug release from drug delivery devices.

  13. Effect of tensile mean stress on fatigue behavior of single-crystal and directionally solidified superalloys

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Mcgaw, Michael A.

    1992-01-01

    Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the Space Shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. A stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. These methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.

  14. Feasibility of digital imaging to characterize earth materials : part 2.

    DOT National Transportation Integrated Search

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  15. Feasibility of digital imaging to characterize earth materials : part 6.

    DOT National Transportation Integrated Search

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  16. Feasibility of digital imaging to characterize earth materials : part 3.

    DOT National Transportation Integrated Search

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  17. Feasibility of digital imaging to characterize earth materials : part 1.

    DOT National Transportation Integrated Search

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  18. Feasibility of digital imaging to characterize earth materials : part 4.

    DOT National Transportation Integrated Search

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  19. Feasibility of digital imaging to characterize earth materials : part 5.

    DOT National Transportation Integrated Search

    2012-05-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  20. Model-based frequency response characterization of a digital-image analysis system for epifluorescence microscopy

    NASA Technical Reports Server (NTRS)

    Hazra, Rajeeb; Viles, Charles L.; Park, Stephen K.; Reichenbach, Stephen E.; Sieracki, Michael E.

    1992-01-01

    Consideration is given to a model-based method for estimating the spatial frequency response of a digital-imaging system (e.g., a CCD camera) that is modeled as a linear, shift-invariant image acquisition subsystem that is cascaded with a linear, shift-variant sampling subsystem. The method characterizes the 2D frequency response of the image acquisition subsystem to beyond the Nyquist frequency by accounting explicitly for insufficient sampling and the sample-scene phase. Results for simulated systems and a real CCD-based epifluorescence microscopy system are presented to demonstrate the accuracy of the method.

  1. Simple method based on intensity measurements for characterization of aberrations from micro-optical components.

    PubMed

    Perrin, Stephane; Baranski, Maciej; Froehly, Luc; Albero, Jorge; Passilly, Nicolas; Gorecki, Christophe

    2015-11-01

    We report a simple method, based on intensity measurements, for the characterization of the wavefront and aberrations produced by micro-optical focusing elements. This method employs the setup presented earlier in [Opt. Express 22, 13202 (2014)] for measurements of the 3D point spread function, on which a basic phase-retrieval algorithm is applied. This combination allows for retrieval of the wavefront generated by the micro-optical element and, in addition, quantification of the optical aberrations through the wavefront decomposition with Zernike polynomials. The optical setup requires only an in-motion imaging system. The technique, adapted for the optimization of micro-optical component fabrication, is demonstrated by characterizing a planoconvex microlens.

  2. Functional connectivity analysis of the neural bases of emotion regulation: A comparison of independent component method with density-based k-means clustering method.

    PubMed

    Zou, Ling; Guo, Qian; Xu, Yi; Yang, Biao; Jiao, Zhuqing; Xiang, Jianbo

    2016-04-29

    Functional magnetic resonance imaging (fMRI) is an important tool in neuroscience for assessing connectivity and interactions between distant areas of the brain. To find and characterize the coherent patterns of brain activity as a means of identifying brain systems for the cognitive reappraisal of the emotion task, both density-based k-means clustering and independent component analysis (ICA) methods can be applied to characterize the interactions between brain regions involved in cognitive reappraisal of emotion. Our results reveal that compared with the ICA method, the density-based k-means clustering method provides a higher sensitivity of polymerization. In addition, it is more sensitive to those relatively weak functional connection regions. Thus, the study concludes that in the process of receiving emotional stimuli, the relatively obvious activation areas are mainly distributed in the frontal lobe, cingulum and near the hypothalamus. Furthermore, density-based k-means clustering method creates a more reliable method for follow-up studies of brain functional connectivity.

  3. Mitigating component performance variation

    DOEpatents

    Gara, Alan G.; Sylvester, Steve S.; Eastep, Jonathan M.; Nagappan, Ramkumar; Cantalupo, Christopher M.

    2018-01-09

    Apparatus and methods may provide for characterizing a plurality of similar components of a distributed computing system based on a maximum safe operation level associated with each component and storing characterization data in a database and allocating non-uniform power to each similar component based at least in part on the characterization data in the database to substantially equalize performance of the components.

  4. A flower image retrieval method based on ROI feature.

    PubMed

    Hong, An-Xiang; Chen, Gang; Li, Jun-Li; Chi, Zhe-Ru; Zhang, Dan

    2004-07-01

    Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our Region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999).

  5. Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins.

    PubMed

    Lakbub, Jude C; Shipman, Joshua T; Desaire, Heather

    2018-04-01

    Disulfide bonds are important structural moieties of proteins: they ensure proper folding, provide stability, and ensure proper function. With the increasing use of proteins for biotherapeutics, particularly monoclonal antibodies, which are highly disulfide bonded, it is now important to confirm the correct disulfide bond connectivity and to verify the presence, or absence, of disulfide bond variants in the protein therapeutics. These studies help to ensure safety and efficacy. Hence, disulfide bonds are among the critical quality attributes of proteins that have to be monitored closely during the development of biotherapeutics. However, disulfide bond analysis is challenging because of the complexity of the biomolecules. Mass spectrometry (MS) has been the go-to analytical tool for the characterization of such complex biomolecules, and several methods have been reported to meet the challenging task of mapping disulfide bonds in proteins. In this review, we describe the relevant, recent MS-based techniques and provide important considerations needed for efficient disulfide bond analysis in proteins. The review focuses on methods for proper sample preparation, fragmentation techniques for disulfide bond analysis, recent disulfide bond mapping methods based on the fragmentation techniques, and automated algorithms designed for rapid analysis of disulfide bonds from liquid chromatography-MS/MS data. Researchers involved in method development for protein characterization can use the information herein to facilitate development of new MS-based methods for protein disulfide bond analysis. In addition, individuals characterizing biotherapeutics, especially by disulfide bond mapping in antibodies, can use this review to choose the best strategies for disulfide bond assignment of their biologic products. Graphical Abstract This review, describing characterization methods for disulfide bonds in proteins, focuses on three critical components: sample preparation, mass spectrometry data, and software tools.

  6. Evaluation of field methods for vertical high resolution aquifer characterization

    NASA Astrophysics Data System (ADS)

    Vienken, T.; Tinter, M.; Rogiers, B.; Leven, C.; Dietrich, P.

    2012-12-01

    The delineation and characterization of subsurface (hydro)-stratigraphic structures is one of the challenging tasks of hydrogeological site investigations. The knowledge about the spatial distribution of soil specific properties and hydraulic conductivity (K) is the prerequisite for understanding flow and fluid transport processes. This is especially true for heterogeneous unconsolidated sedimentary deposits with a complex sedimentary architecture. One commonly used approach to investigate and characterize sediment heterogeneity is soil sampling and lab analyses, e.g. grain size distribution. Tests conducted on 108 samples show that calculation of K based on grain size distribution is not suitable for high resolution aquifer characterization of highly heterogeneous sediments due to sampling effects and large differences of calculated K values between applied formulas (Vienken & Dietrich 2011). Therefore, extensive tests were conducted at two test sites under different geological conditions to evaluate the performance of innovative Direct Push (DP) based approaches for the vertical high resolution determination of K. Different DP based sensor probes for the in-situ subsurface characterization based on electrical, hydraulic, and textural soil properties were used to obtain high resolution vertical profiles. The applied DP based tools proved to be a suitable and efficient alternative to traditional approaches. Despite resolution differences, all of the applied methods captured the main aquifer structure. Correlation of the DP based K estimates and proxies with DP based slug tests show that it is possible to describe the aquifer hydraulic structure on less than a meter scale by combining DP slug test data and continuous DP measurements. Even though correlations are site specific and appropriate DP tools must be chosen, DP is reliable and efficient alternative for characterizing even strongly heterogeneous sites with complex structured sedimentary aquifers (Vienken et al. 2012). References: Vienken, T., Leven, C., and Dietrich, P. 2012. Use of CPT and other direct push methods for (hydro-) stratigraphic aquifer characterization — a field study. Canadian Geotechnical Journal, 49(2): 197-206. Vienken, T., and Dietrich, P. 2011. Field evaluation of methods for determining hydraulic conductivity from grain size data. Journal of Hydrology, 400(1-2): 58-71.

  7. Bioforensics: Characterization of biological weapons agents by NanoSIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, P K; Ghosal, S; Leighton, T J

    2007-02-26

    The anthrax attacks of Fall 2001 highlight the need to develop forensic methods based on multiple identifiers to determine the origin of biological weapons agents. Genetic typing methods (i.e., DNA and RNA-based) provide one attribution technology, but genetic information alone is not usually sufficient to determine the provenance of the material. Non-genetic identifiers, including elemental and isotopic signatures, provide complementary information that can be used to identify the means, geographic location and date of production. Under LDRD funding, we have successfully developed the techniques necessary to perform bioforensic characterization with the NanoSIMS at the individual spore level. We have developedmore » methods for elemental and isotopic characterization at the single spore scale. We have developed methods for analyzing spore sections to map elemental abundance within spores. We have developed rapid focused ion beam (FIB) sectioning techniques for spores to preserve elemental and structural integrity. And we have developed a high-resolution depth profiling method to characterize the elemental distribution in individual spores without sectioning. We used these newly developed methods to study the controls on elemental abundances in spores, characterize the elemental distribution of in spores, and to study elemental uptake by spores. Our work under this LDRD project attracted FBI and DHS funding for applied purposes.« less

  8. An alternative approach to characterize nonlinear site effects

    USGS Publications Warehouse

    Zhang, R.R.; Hartzell, S.; Liang, J.; Hu, Y.

    2005-01-01

    This paper examines the rationale of a method of nonstationary processing and analysis, referred to as the Hilbert-Huang transform (HHT), for its application to a recording-based approach in quantifying influences of soil nonlinearity in site response. In particular, this paper first summarizes symptoms of soil nonlinearity shown in earthquake recordings, reviews the Fourier-based approach to characterizing nonlinearity, and offers justifications for the HHT in addressing nonlinearity issues. This study then uses the HHT method to analyze synthetic data and recordings from the 1964 Niigata and 2001 Nisqually earthquakes. In doing so, the HHT-based site response is defined as the ratio of marginal Hilbert amplitude spectra, alternative to the Fourier-based response that is the ratio of Fourier amplitude spectra. With the Fourier-based approach in studies of site response as a reference, this study shows that the alternative HHT-based approach is effective in characterizing soil nonlinearity and nonlinear site response.

  9. End-to-end performance measurement of Internet based medical applications.

    PubMed

    Dev, P; Harris, D; Gutierrez, D; Shah, A; Senger, S

    2002-01-01

    We present a method to obtain an end-to-end characterization of the performance of an application over a network. This method is not dependent on any specific application or type of network. The method requires characterization of network parameters, such as latency and packet loss, between the expected server or client endpoints, as well as characterization of the application's constraints on these parameters. A subjective metric is presented that integrates these characterizations and that operates over a wide range of applications and networks. We believe that this method may be of wide applicability as research and educational applications increasingly make use of computation and data servers that are distributed over the Internet.

  10. A validated stability indicating RP-HPLC method for estimation of Armodafinil in pharmaceutical dosage forms and characterization of its base hydrolytic product.

    PubMed

    Venkateswarlu, Kambham; Rangareddy, Ardhgeri; Narasimhaiah, Kanaka; Sharma, Hemraj; Bandi, Naga Mallikarjuna Raja

    2017-01-01

    The main objective of present study was to develop a RP-HPLC method for estimation of Armodafinil in pharmaceutical dosage forms and characterization of its base hydrolytic product. The method was developed for Armodafinil estimation and base hydrolytic products were characterized. The separation was carried out on C18 column by using mobile phase as mixture of water and methanol (45:55%v/v). Eluents were detected at 220nm at 1ml/min. Stress studies were performed with milder conditions followed by stronger conditions so as to get sufficient degradation around 20%. A total of five degradation products were detected and separated from analyte. The linearity of the proposed method was investigated in the range of 20-120µg/ml for Armodafinil. The detection limit and quantification limit was found to be 0.01183μg/ml and 0.035µg/ml respectively. The precision % RSD was found to be less than 2% and the recovery was between 98-102%. Armodafinil was found to be more sensitive to the base hydrolysis and yielded its carboxylic acid as degradant. The developed method was stability indicating assay, suitable to quantify Armodafinil in presence of possible degradants. The drug was sensitive to acid, base &photolytic stress and resistant to thermal &oxidation.

  11. Study on the evaluation method for fault displacement based on characterized source model

    NASA Astrophysics Data System (ADS)

    Tonagi, M.; Takahama, T.; Matsumoto, Y.; Inoue, N.; Irikura, K.; Dalguer, L. A.

    2016-12-01

    In IAEA Specific Safety Guide (SSG) 9 describes that probabilistic methods for evaluating fault displacement should be used if no sufficient basis is provided to decide conclusively that the fault is not capable by using the deterministic methodology. In addition, International Seismic Safety Centre compiles as ANNEX to realize seismic hazard for nuclear facilities described in SSG-9 and shows the utility of the deterministic and probabilistic evaluation methods for fault displacement. In Japan, it is required that important nuclear facilities should be established on ground where fault displacement will not arise when earthquakes occur in the future. Under these situations, based on requirements, we need develop evaluation methods for fault displacement to enhance safety in nuclear facilities. We are studying deterministic and probabilistic methods with tentative analyses using observed records such as surface fault displacement and near-fault strong ground motions of inland crustal earthquake which fault displacements arose. In this study, we introduce the concept of evaluation methods for fault displacement. After that, we show parts of tentative analysis results for deterministic method as follows: (1) For the 1999 Chi-Chi earthquake, referring slip distribution estimated by waveform inversion, we construct a characterized source model (Miyake et al., 2003, BSSA) which can explain observed near-fault broad band strong ground motions. (2) Referring a characterized source model constructed in (1), we study an evaluation method for surface fault displacement using hybrid method, which combines particle method and distinct element method. At last, we suggest one of the deterministic method to evaluate fault displacement based on characterized source model. This research was part of the 2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (S/NRA), Japan.

  12. Advanced mass spectrometry-based methods for the analysis of conformational integrity of biopharmaceutical products

    PubMed Central

    Bobst, Cedric E.; Kaltashov, Igor A.

    2012-01-01

    Mass spectrometry has already become an indispensable tool in the analytical armamentarium of the biopharmaceutical industry, although its current uses are limited to characterization of covalent structure of recombinant protein drugs. However, the scope of applications of mass spectrometry-based methods is beginning to expand to include characterization of the higher order structure and dynamics of biopharmaceutical products, a development which is catalyzed by the recent progress in mass spectrometry-based methods to study higher order protein structure. The two particularly promising methods that are likely to have the most significant and lasting impact in many areas of biopharmaceutical analysis, direct ESI MS and hydrogen/deuterium exchange, are focus of this article. PMID:21542797

  13. New horizons in selective laser sintering surface roughness characterization

    NASA Astrophysics Data System (ADS)

    Vetterli, M.; Schmid, M.; Knapp, W.; Wegener, K.

    2017-12-01

    Powder-based additive manufacturing of polymers and metals has evolved from a prototyping technology to an industrial process for the fabrication of small to medium series of complex geometry parts. Unfortunately due to the processing of powder as a basis material and the successive addition of layers to produce components, a significant surface roughness inherent to the process has been observed since the first use of such technologies. A novel characterization method based on an elastomeric pad coated with a reflective layer, the Gelsight, was found to be reliable and fast to characterize surfaces processed by selective laser sintering (SLS) of polymers. With help of this method, a qualitative and quantitative investigation of SLS surfaces is feasible. Repeatability and reproducibility investigations are performed for both 2D and 3D areal roughness parameters. Based on the good results, the Gelsight is used for the optimization of vertical SLS surfaces. A model built on laser scanning parameters is proposed and after confirmation could achieve a roughness reduction of 10% based on the S q parameter. The Gelsight could be successfully identified as a fast, reliable and versatile surface topography characterization method as it applies to all kind of surfaces.

  14. LANDSCAPE CHARACTERIZATION AND CHANGE DETECTION METHODS DEVELOPMENT RESEARCH (2005-2007)

    EPA Science Inventory

    The characterization of land-cover (LC) type, extent, and distribution represent important landscape characterization element required for monitoring ecosystem conditions and for primary data input to biogenic emission and atmospheric deposition models. Current spectral-based ch...

  15. Characterization of free thiol variants of an IgG1 by reversed phase ultra high pressure liquid chromatography coupled with mass spectrometry.

    PubMed

    Liu, Hongbin; Jeong, Justin; Kao, Yung-Hsiang; Zhang, Yonghua Taylor

    2015-05-10

    RP-HPLC has been demonstrated as a powerful tool to study antibody free thiol and disulfide variants. Recently, the introduction of UHPLC columns with wide pore size (300Å) and small particle size (1.7μm) offered the opportunity to further improve the separation of such variants. This paper describes a systematic evaluation of stationary phases, operating parameters, and mobile phases for a UHPLC based method to separate free thiol variants of a recombinant monoclonal antibody (referred as mAb A), targeting high resolution, high throughput and improved recovery. Among the four different stationary phases evaluated, UHPLC diphenyl columns were found to provide the best separation. Using an optimized UHPLC method, free thiol variants of mAb A were separated in 5min. Importantly, the UHPLC method revealed minor variants that had coeluted in an HPLC based method, and the UHPLC method is also applicable as a platform method for characterization of other mAbs as well. Furthermore, an on-line UHPLC-MS method was developed to characterize the separated variants, and this method can streamline the characterization of fully assembled monoclonal and bispecific therapeutic antibodies. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A Novel Physical Sensing Principle for Liquid Characterization Using Paper-Based Hygro-Mechanical Systems (PB-HMS).

    PubMed

    Perez-Cruz, Angel; Stiharu, Ion; Dominguez-Gonzalez, Aurelio

    2017-07-20

    In recent years paper-based microfluidic systems have emerged as versatile tools for developing sensors in different areas. In this work; we report a novel physical sensing principle for the characterization of liquids using a paper-based hygro-mechanical system (PB-HMS). The PB-HMS is formed by the interaction of liquid droplets and paper-based mini-structures such as cantilever beams. The proposed principle takes advantage of the hygroscopic properties of paper to produce hygro-mechanical motion. The dynamic response of the PB-HMS reveals information about the tested liquid that can be applied to characterize certain properties of liquids. A suggested method to characterize liquids by means of the proposed principle is introduced. The experimental results show the feasibility of such a method. It is expected that the proposed principle may be applied to sense properties of liquids in different applications where both disposability and portability are of extreme importance.

  17. 3D imaging of cement-based materials at submicron resolution by combining laser scanning confocal microscopy with serial sectioning.

    PubMed

    Yio, M H N; Mac, M J; Wong, H S; Buenfeld, N R

    2015-05-01

    In this paper, we present a new method to reconstruct large volumes of nontransparent porous materials at submicron resolution. The proposed method combines fluorescence laser scanning confocal microscopy with serial sectioning to produce a series of overlapping confocal z-stacks, which are then aligned and stitched based on phase correlation. The method can be extended in the XY plane to further increase the overall image volume. Resolution of the reconstructed image volume does not degrade with increase in sample size. We have used the method to image cementitious materials, hardened cement paste and concrete and the results obtained show that the method is reliable. Possible applications of the method such as three-dimensional characterization of the pores and microcracks in hardened concrete, three-dimensional particle shape characterization of cementitious materials and three-dimensional characterization of other porous materials such as rocks and bioceramics are discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  18. Parameter retrieval of chiral metamaterials based on the state-space approach.

    PubMed

    Zarifi, Davoud; Soleimani, Mohammad; Abdolali, Ali

    2013-08-01

    This paper deals with the introduction of an approach for the electromagnetic characterization of homogeneous chiral layers. The proposed method is based on the state-space approach and properties of a 4×4 state transition matrix. Based on this, first, the forward problem analysis through the state-space method is reviewed and properties of the state transition matrix of a chiral layer are presented and proved as two theorems. The formulation of a proposed electromagnetic characterization method is then presented. In this method, scattering data for a linearly polarized plane wave incident normally on a homogeneous chiral slab are combined with properties of a state transition matrix and provide a powerful characterization method. The main difference with respect to other well-established retrieval procedures based on the use of the scattering parameters relies on the direct computation of the transfer matrix of the slab as opposed to the conventional calculation of the propagation constant and impedance of the modes supported by the medium. The proposed approach allows avoiding nonlinearity of the problem but requires getting enough equations to fulfill the task which was provided by considering some properties of the state transition matrix. To demonstrate the applicability and validity of the method, the constitutive parameters of two well-known dispersive chiral metamaterial structures at microwave frequencies are retrieved. The results show that the proposed method is robust and reliable.

  19. Characterization of novel soybean-oil-based thermosensitive amphiphilic polymers for drug delivery applications

    USDA-ARS?s Scientific Manuscript database

    Characterization, aggregation behavior, physical properties and drug-polymer interaction of novel soybean oil-based polymers i.e., hydrolyzed polymers of (epoxidized) soybean oil (HPESO), were studied. The surface tension method was used to determine the critical micelle concentration (CMC). CMC w...

  20. Characterization of Lactobacillus from Algerian Goat’S Milk Based on Phenotypic, 16S rDNA Sequencing and their Technological Properties

    PubMed Central

    Marroki, Ahmed; Zúñiga, Manuel; Kihal, Mabrouk; Pérez- Martínez, Gaspar

    2011-01-01

    Nineteen strains of Lactobacillus isolated from goat’s milk from farms in north-west of Algeria were characterized. Isolates were identified by phenotypic, physiological and genotypic methods and some of their important technological properties were studied. Phenotypic characterization was carried out by studying physiological, morphological characteristics and carbohydrate fermentation patterns using API 50 CHL system. Isolates were also characterized by partial 16S rDNA sequencing. Results obtained with phenotypic methods were correlated with the genotypic characterization and 13 isolates were identified as L. plantarum, two isolates as L. rhamnosus and one isolate as L. fermentum. Three isolates identified as L. plantarum by phenotypic characterization were found to be L. pentosus by the genotypic method. A large diversity in technological properties (acid production in skim milk, exopolysaccharide production, aminopeptidase activity, antibacterial activity and antibiotic susceptibility) was observed. Based on these results, two strains of L. plantarum (LbMS16 and LbMS21) and one strain of L. rhamnosus (LbMF25) have been tentatively selected for use as starter cultures in the manufacture of artisanal fermented dairy products in Algeria. PMID:24031617

  1. Total strain version of strainrange partitioning for thermomechanical fatigue at low strains

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Saltsman, J. F.

    1987-01-01

    A new method is proposed for characterizing and predicting the thermal fatigue behavior of materials. The method is based on three innovations in characterizing high temperature material behavior: (1) the bithermal concept of fatigue testing; (2) advanced, nonlinear, cyclic constitutive models; and (3) the total strain version of traditional strainrange partitioning.

  2. Effect-Based Screening Methods for Water Quality Characterization Will Augment Conventional Analyte-by-Analyte Chemical Methods in Research As Well As Regulatory Monitoring

    EPA Science Inventory

    Conventional approaches to water quality characterization can provide data on individual chemical components of each water sample. This analyte-by-analyte approach currently serves many useful research and compliance monitoring needs. However these approaches, which require a ...

  3. Reasoning Maps: A Generally Applicable Method for Characterizing Hypothesis-Testing Behaviour. Research Report

    ERIC Educational Resources Information Center

    White, Brian

    2004-01-01

    This paper presents a generally applicable method for characterizing subjects' hypothesis-testing behaviour based on a synthesis that extends on previous work. Beginning with a transcript of subjects' speech and videotape of their actions, a Reasoning Map is created that depicts the flow of their hypotheses, tests, predictions, results, and…

  4. Characterization of coronary plaque regions in intravascular ultrasound images using a hybrid ensemble classifier.

    PubMed

    Hwang, Yoo Na; Lee, Ju Hwan; Kim, Ga Young; Shin, Eun Seok; Kim, Sung Min

    2018-01-01

    The purpose of this study was to propose a hybrid ensemble classifier to characterize coronary plaque regions in intravascular ultrasound (IVUS) images. Pixels were allocated to one of four tissues (fibrous tissue (FT), fibro-fatty tissue (FFT), necrotic core (NC), and dense calcium (DC)) through processes of border segmentation, feature extraction, feature selection, and classification. Grayscale IVUS images and their corresponding virtual histology images were acquired from 11 patients with known or suspected coronary artery disease using 20 MHz catheter. A total of 102 hybrid textural features including first order statistics (FOS), gray level co-occurrence matrix (GLCM), extended gray level run-length matrix (GLRLM), Laws, local binary pattern (LBP), intensity, and discrete wavelet features (DWF) were extracted from IVUS images. To select optimal feature sets, genetic algorithm was implemented. A hybrid ensemble classifier based on histogram and texture information was then used for plaque characterization in this study. The optimal feature set was used as input of this ensemble classifier. After tissue characterization, parameters including sensitivity, specificity, and accuracy were calculated to validate the proposed approach. A ten-fold cross validation approach was used to determine the statistical significance of the proposed method. Our experimental results showed that the proposed method had reliable performance for tissue characterization in IVUS images. The hybrid ensemble classification method outperformed other existing methods by achieving characterization accuracy of 81% for FFT and 75% for NC. In addition, this study showed that Laws features (SSV and SAV) were key indicators for coronary tissue characterization. The proposed method had high clinical applicability for image-based tissue characterization. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of tensile mean stress on fatigue behavior of single-crystal and directionally solidified superalloys

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Mcgaw, Michael A.

    1990-01-01

    Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the space shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. At room temperature these superalloys have lower ductilities and higher strengths than most polycrystalline engineering alloys. The cycle stress-strain response was thus nominally elastic in most of the fatigue tests. Therefore, a stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. However, the applicability of these methods to single crystal and directionally solidified superalloys has not been established. In this study, these methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.

  6. SCMPSP: Prediction and characterization of photosynthetic proteins based on a scoring card method.

    PubMed

    Vasylenko, Tamara; Liou, Yi-Fan; Chen, Hong-An; Charoenkwan, Phasit; Huang, Hui-Ling; Ho, Shinn-Ying

    2015-01-01

    Photosynthetic proteins (PSPs) greatly differ in their structure and function as they are involved in numerous subprocesses that take place inside an organelle called a chloroplast. Few studies predict PSPs from sequences due to their high variety of sequences and structues. This work aims to predict and characterize PSPs by establishing the datasets of PSP and non-PSP sequences and developing prediction methods. A novel bioinformatics method of predicting and characterizing PSPs based on scoring card method (SCMPSP) was used. First, a dataset consisting of 649 PSPs was established by using a Gene Ontology term GO:0015979 and 649 non-PSPs from the SwissProt database with sequence identity <= 25%.- Several prediction methods are presented based on support vector machine (SVM), decision tree J48, Bayes, BLAST, and SCM. The SVM method using dipeptide features-performed well and yielded - a test accuracy of 72.31%. The SCMPSP method uses the estimated propensity scores of 400 dipeptides - as PSPs and has a test accuracy of 71.54%, which is comparable to that of the SVM method. The derived propensity scores of 20 amino acids were further used to identify informative physicochemical properties for characterizing PSPs. The analytical results reveal the following four characteristics of PSPs: 1) PSPs favour hydrophobic side chain amino acids; 2) PSPs are composed of the amino acids prone to form helices in membrane environments; 3) PSPs have low interaction with water; and 4) PSPs prefer to be composed of the amino acids of electron-reactive side chains. The SCMPSP method not only estimates the propensity of a sequence to be PSPs, it also discovers characteristics that further improve understanding of PSPs. The SCMPSP source code and the datasets used in this study are available at http://iclab.life.nctu.edu.tw/SCMPSP/.

  7. Experimental preparation and characterization of four-dimensional quantum states using polarization and time-bin modes of a single photon

    NASA Astrophysics Data System (ADS)

    Yoo, Jinwon; Choi, Yujun; Cho, Young-Wook; Han, Sang-Wook; Lee, Sang-Yun; Moon, Sung; Oh, Kyunghwan; Kim, Yong-Su

    2018-07-01

    We present a detailed method to prepare and characterize four-dimensional pure quantum states or ququarts using polarization and time-bin modes of a single-photon. In particular, we provide a simple method to generate an arbitrary pure ququart and fully characterize the state with quantum state tomography. We also verify the reliability of the recipe by showing experimental preparation and characterization of 20 ququart states in mutually unbiased bases. As qudits provide superior properties over qubits in many fundamental tests of quantum physics and applications in quantum information processing, the presented method will be useful for photonic quantum information science.

  8. Optical characterization of high speed microscanners based on static slit profiling method

    NASA Astrophysics Data System (ADS)

    Alaa Elhady, A.; Sabry, Yasser M.; Khalil, Diaa

    2017-01-01

    Optical characterization of high-speed microscanners is a challenging task that usually requires special high speed, extremely expensive camera systems. This paper presents a novel simple method to characterize the scanned beam spot profile and size in high-speed optical scanners under operation. It allows measuring the beam profile and the spot sizes at different scanning angles. The method is analyzed theoretically and applied experimentally on the characterization of a Micro Electro Mechanical MEMS scanner operating at 2.6 kHz. The variation of the spot size versus the scanning angle, up to ±15°, is extracted and the dynamic bending curvature effect of the micromirror is predicted.

  9. Photothermal imaging scanning microscopy

    DOEpatents

    Chinn, Diane [Pleasanton, CA; Stolz, Christopher J [Lathrop, CA; Wu, Zhouling [Pleasanton, CA; Huber, Robert [Discovery Bay, CA; Weinzapfel, Carolyn [Tracy, CA

    2006-07-11

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  10. Color-coded automated signal intensity curves for detection and characterization of breast lesions: preliminary evaluation of a new software package for integrated magnetic resonance-based breast imaging.

    PubMed

    Pediconi, Federica; Catalano, Carlo; Venditti, Fiammetta; Ercolani, Mauro; Carotenuto, Luigi; Padula, Simona; Moriconi, Enrica; Roselli, Antonella; Giacomelli, Laura; Kirchin, Miles A; Passariello, Roberto

    2005-07-01

    The objective of this study was to evaluate the value of a color-coded automated signal intensity curve software package for contrast-enhanced magnetic resonance mammography (CE-MRM) in patients with suspected breast cancer. Thirty-six women with suspected breast cancer based on mammographic and sonographic examinations were preoperatively evaluated on CE-MRM. CE-MRM was performed on a 1.5-T magnet using a 2D Flash dynamic T1-weighted sequence. A dosage of 0.1 mmol/kg of Gd-BOPTA was administered at a flow rate of 2 mL/s followed by 10 mL of saline. Images were analyzed with the new software package and separately with a standard display method. Statistical comparison was performed of the confidence for lesion detection and characterization with the 2 methods and of the diagnostic accuracy for characterization compared with histopathologic findings. At pathology, 54 malignant lesions and 14 benign lesions were evaluated. All 68 (100%) lesions were detected with both methods and good correlation with histopathologic specimens was obtained. Confidence for both detection and characterization was significantly (P < or = 0.025) better with the color-coded method, although no difference (P > 0.05) between the methods was noted in terms of the sensitivity, specificity, and overall accuracy for lesion characterization. Excellent agreement between the 2 methods was noted for both the determination of lesion size (kappa = 0.77) and determination of SI/T curves (kappa = 0.85). The novel color-coded signal intensity curve software allows lesions to be visualized as false color maps that correspond to conventional signal intensity time curves. Detection and characterization of breast lesions with this method is quick and easily interpretable.

  11. Solution-Based Electro-Orientation Spectroscopy (EOS) for Contactless Measurement of Semiconductor Nanowires

    NASA Astrophysics Data System (ADS)

    Yuan, Wuhan; Mohabir, Amar; Tutuncuoglu, Gozde; Filler, Michael; Feldman, Leonard; Shan, Jerry

    2017-11-01

    Solution-based, contactless methods for determining the electrical conductivity of nanowires and nanotubes have unique advantages over conventional techniques in terms of high throughput and compatibility with further solution-based processing and assembly methods. Here, we describe the solution-based electro-orientation spectroscopy (EOS) method, in which nanowire conductivity is measured from the AC-electric-field-induced alignment rate of the nanowire in a suspending fluid. The particle conductivity is determined from the measured crossover frequency between conductivity-dominated, low-frequency alignment to the permittivity-dominated, high-frequency regime. We discuss the extension of the EOS measurement range by an order-of-magnitude, taking advantage of the high dielectric constant of deionized water. With water and other fluids, we demonstrate that EOS can quantitatively characterize the electrical conductivities of nanowires over a 7-order-of-magnitude range, 10-5 to 102 S/m. We highlight the efficiency and utility of EOS for nanomaterial characterization by statistically characterizing the variability of semiconductor nanowires of the same nominal composition, and studying the connection between synthesis parameters and properties. NSF CBET-1604931.

  12. SH-wave refraction/reflection and site characterization

    USGS Publications Warehouse

    Wang, Z.; Street, R.L.; Woolery, E.W.; Madin, I.P.

    2000-01-01

    Traditionally, nonintrusive techniques used to characterize soils have been based on P-wave refraction/reflection methods. However, near-surface unconsolidated soils are oftentimes water-saturated, and when groundwater is present at a site, the velocity of the P-waves is more related to the compressibility of the pore water than to the matrix of the unconsolidated soils. Conversely, SH-waves are directly relatable to the soil matrix. This makes SH-wave refraction/reflection methods effective in site characterizations where groundwater is present. SH-wave methods have been used extensively in site characterization and subsurface imaging for earthquake hazard assessments in the central United States and western Oregon. Comparison of SH-wave investigations with geotechnical investigations shows that SH-wave refraction/reflection techniques are viable and cost-effective for engineering site characterization.

  13. Continental-scale Validation of MODIS-based and LEDAPS Landsat ETM+ Atmospheric Correction Methods

    NASA Technical Reports Server (NTRS)

    Ju, Junchang; Roy, David P.; Vermote, Eric; Masek, Jeffrey; Kovalskyy, Valeriy

    2012-01-01

    The potential of Landsat data processing to provide systematic continental scale products has been demonstrated by several projects including the NASA Web-enabled Landsat Data (WELD) project. The recent free availability of Landsat data increases the need for robust and efficient atmospheric correction algorithms applicable to large volume Landsat data sets. This paper compares the accuracy of two Landsat atmospheric correction methods: a MODIS-based method and the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) method. Both methods are based on the 6SV radiative transfer code but have different atmospheric characterization approaches. The MODIS-based method uses the MODIS Terra derived dynamic aerosol type, aerosol optical thickness, and water vapor to atmospherically correct ETM+ acquisitions in each coincident orbit. The LEDAPS method uses aerosol characterizations derived independently from each Landsat acquisition and assumes a fixed continental aerosol type and uses ancillary water vapor. Validation results are presented comparing ETM+ atmospherically corrected data generated using these two methods with AERONET corrected ETM+ data for 95 10 km×10 km 30 m subsets, a total of nearly 8 million 30 m pixels, located across the conterminous United States. The results indicate that the MODIS-based method has better accuracy than the LEDAPS method for the ETM+ red and longer wavelength bands.

  14. Spectral characterization and calibration of AOTF spectrometers and hyper-spectral imaging system

    NASA Astrophysics Data System (ADS)

    Katrašnik, Jaka; Pernuš, Franjo; Likar, Boštjan

    2010-02-01

    The goal of this article is to present a novel method for spectral characterization and calibration of spectrometers and hyper-spectral imaging systems based on non-collinear acousto-optical tunable filters. The method characterizes the spectral tuning curve (frequency-wavelength characteristic) of the AOTF (Acousto-Optic Tunable Filter) filter by matching the acquired and modeled spectra of the HgAr calibration lamp, which emits line spectrum that can be well modeled via AOTF transfer function. In this way, not only tuning curve characterization and corresponding spectral calibration but also spectral resolution assessment is performed. The obtained results indicated that the proposed method is efficient, accurate and feasible for routine calibration of AOTF spectrometers and hyper-spectral imaging systems and thereby a highly competitive alternative to the existing calibration methods.

  15. Spectral characterization of near-infrared acousto-optic tunable filter (AOTF) hyperspectral imaging systems using standard calibration materials.

    PubMed

    Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2011-04-01

    In this study, we propose and evaluate a method for spectral characterization of acousto-optic tunable filter (AOTF) hyperspectral imaging systems in the near-infrared (NIR) spectral region from 900 nm to 1700 nm. The proposed spectral characterization method is based on the SRM-2035 standard reference material, exhibiting distinct spectral features, which enables robust non-rigid matching of the acquired and reference spectra. The matching is performed by simultaneously optimizing the parameters of the AOTF tuning curve, spectral resolution, baseline, and multiplicative effects. In this way, the tuning curve (frequency-wavelength characteristics) and the corresponding spectral resolution of the AOTF hyperspectral imaging system can be characterized simultaneously. Also, the method enables simple spectral characterization of the entire imaging plane of hyperspectral imaging systems. The results indicate that the method is accurate and efficient and can easily be integrated with systems operating in diffuse reflection or transmission modes. Therefore, the proposed method is suitable for characterization, calibration, or validation of AOTF hyperspectral imaging systems. © 2011 Society for Applied Spectroscopy

  16. Starting from the bench--prevention and control of foodborne and zoonotic diseases.

    PubMed

    Vongkamjan, Kitiya; Wiedmann, Martin

    2015-02-01

    Foodborne diseases are estimated to cause around 50 million disease cases and 3000 deaths a year in the US. Worldwide, food and waterborne diseases are estimated to cause more than 2 million deaths per year. Lab-based research is a key component of efforts to prevent and control foodborne diseases. Over the last two decades, molecular characterization of pathogen isolates has emerged as a key component of foodborne and zoonotic disease prevention and control. Characterization methods have evolved from banding pattern-based subtyping methods to sequenced-based approaches, including full genome sequencing. Molecular subtyping methods not only play a key role for characterizing pathogen transmission and detection of disease outbreaks, but also allow for identification of clonal pathogen groups that show distinct transmission characteristics. Importantly, the data generated from molecular characterization of foodborne pathogens also represent critical inputs for epidemiological and modeling studies. Continued and enhanced collaborations between infectious disease related laboratory sciences and epidemiologists, modelers, and other quantitative scientists will be critical to a One-Health approach that delivers societal benefits, including improved surveillance systems and prevention approaches for zoonotic and foodborne pathogens. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Synthesis and characterization of iron based superconductor Nd-1111

    NASA Astrophysics Data System (ADS)

    Alborzi, Z.; Daadmehr, V.

    2018-06-01

    Polycrystalline sample of NdFeAsO0.8F0.2 was prepared by one-step solid-state reaction method. The structural and electrical properties of sample were characterized through XRD pattern and the 4-probe method. The critical temperature was obtained at 56 K. The crystal structure was tetragonal with P4/nmm:2 symmetry group.

  18. Characterizing natural colloidal/particulate-protein interactions using fluorescence-based techniques and principal component analysis.

    PubMed

    Peiris, Ramila H; Ignagni, Nicholas; Budman, Hector; Moresoli, Christine; Legge, Raymond L

    2012-09-15

    Characterization of the interactions between natural colloidal/particulate- and protein-like matter is important for understanding their contribution to different physiochemical phenomena like membrane fouling, adsorption of bacteria onto surfaces and various applications of nanoparticles in nanomedicine and nanotoxicology. Precise interpretation of the extent of such interactions is however hindered due to the limitations of most characterization methods to allow rapid, sensitive and accurate measurements. Here we report on a fluorescence-based excitation-emission matrix (EEM) approach in combination with principal component analysis (PCA) to extract information related to the interaction between natural colloidal/particulate- and protein-like matter. Surface plasmon resonance (SPR) analysis and fiber-optic probe based surface fluorescence measurements were used to confirm that the proposed approach can be used to characterize colloidal/particulate-protein interactions at the physical level. This method has potential to be a fundamental measurement of these interactions with the advantage that it can be performed rapidly and with high sensitivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Thermographic venous blood flow characterization with external cooling stimulation

    NASA Astrophysics Data System (ADS)

    Saxena, Ashish; Ng, E. Y. K.; Raman, Vignesh

    2018-05-01

    Experimental characterization of blood flow in a human forearm is done with the application of continuous external cooling based active thermography method. Qualitative and quantitative detection of the blood vessel in a thermal image is done, along with the evaluation of blood vessel diameter, blood flow direction, and velocity in the target blood vessel. Subtraction based image manipulation is performed to enhance the feature contrast of the thermal image acquired after the removal of external cooling. To demonstrate the effect of occlusion diseases (obstruction), an external cuff based occlusion is applied after the removal of cooling and its effect on the skin rewarming is studied. Using external cooling, a transit time method based blood flow velocity estimation is done. From the results obtained, it is evident that an external cooling based active thermography method can be used to develop a diagnosis tool for superficial blood vessel diseases.

  20. Contactless Determination of Electrical Conductivity of One-Dimensional Nanomaterials by Solution-Based Electro-orientation Spectroscopy

    DOE PAGES

    Akin, Cevat; Yi, Jingang; Feldman, Leonard C.; ...

    2015-05-05

    For nanowires of the same composition, and even fabricated within the same batch, often exhibit electrical conductivities that can vary by orders of magnitude. Unfortunately, existing electrical characterization methods are time-consuming, making the statistical survey of highly variable samples essentially impractical. Here, we demonstrate a contactless, solution-based method to efficiently measure the electrical conductivity of 1D nanomaterials based on their transient alignment behavior in ac electric fields of different frequencies. In comparison with direct transport measurements by probe-based scanning tunneling microscopy shows that electro-orientation spectroscopy can quantitatively measure nanowire conductivity over a 5-order-of-magnitude range, 10–5–1 Ω–1 m–1 (corresponding to resistivitiesmore » in the range 102–107 Ω·cm). With this method, we statistically characterize the conductivity of a variety of nanowires and find significant variability in silicon nanowires grown by metal-assisted chemical etching from the same wafer. We also find that the active carrier concentration of n-type silicon nanowires is greatly reduced by surface traps and that surface passivation increases the effective conductivity by an order of magnitude. Moreover, this simple method makes electrical characterization of insulating and semiconducting 1D nanomaterials far more efficient and accessible to more researchers than current approaches. Electro-orientation spectroscopy also has the potential to be integrated with other solution-based methods for the high-throughput sorting and manipulation of 1D nanomaterials for postgrowth device assembly.« less

  1. Paper-Based MicroRNA Expression Profiling from Plasma and Circulating Tumor Cells.

    PubMed

    Leong, Sai Mun; Tan, Karen Mei-Ling; Chua, Hui Wen; Huang, Mo-Chao; Cheong, Wai Chye; Li, Mo-Huang; Tucker, Steven; Koay, Evelyn Siew-Chuan

    2017-03-01

    Molecular characterization of circulating tumor cells (CTCs) holds great promise for monitoring metastatic progression and characterizing metastatic disease. However, leukocyte and red blood cell contamination of routinely isolated CTCs makes CTC-specific molecular characterization extremely challenging. Here we report the use of a paper-based medium for efficient extraction of microRNAs (miRNAs) from limited amounts of biological samples such as rare CTCs harvested from cancer patient blood. Specifically, we devised a workflow involving the use of Flinders Technology Associates (FTA) ® Elute Card with a digital PCR-inspired "partitioning" method to extract and purify miRNAs from plasma and CTCs. We demonstrated the sensitivity of this method to detect miRNA expression from as few as 3 cancer cells spiked into human blood. Using this method, background miRNA expression was excluded from contaminating blood cells, and CTC-specific miRNA expression profiles were derived from breast and colorectal cancer patients. Plasma separated out during purification of CTCs could likewise be processed using the same paper-based method for miRNA detection, thereby maximizing the amount of patient-specific information that can be derived from a single blood draw. Overall, this paper-based extraction method enables an efficient, cost-effective workflow for maximized recovery of small RNAs from limited biological samples for downstream molecular analyses. © 2016 American Association for Clinical Chemistry.

  2. Estimating Classification Accuracy for Complex Decision Rules Based on Multiple Scores

    ERIC Educational Resources Information Center

    Douglas, Karen M.; Mislevy, Robert J.

    2010-01-01

    Important decisions about students are made by combining multiple measures using complex decision rules. Although methods for characterizing the accuracy of decisions based on a single measure have been suggested by numerous researchers, such methods are not useful for estimating the accuracy of decisions based on multiple measures. This study…

  3. Colorimetric characterization of digital cameras with unrestricted capture settings applicable for different illumination circumstances

    NASA Astrophysics Data System (ADS)

    Fang, Jingyu; Xu, Haisong; Wang, Zhehong; Wu, Xiaomin

    2016-05-01

    With colorimetric characterization, digital cameras can be used as image-based tristimulus colorimeters for color communication. In order to overcome the restriction of fixed capture settings adopted in the conventional colorimetric characterization procedures, a novel method was proposed considering capture settings. The method calculating colorimetric value of the measured image contains five main steps, including conversion from RGB values to equivalent ones of training settings through factors based on imaging system model so as to build the bridge between different settings, scaling factors involved in preparation steps for transformation mapping to avoid errors resulted from nonlinearity of polynomial mapping for different ranges of illumination levels. The experiment results indicate that the prediction error of the proposed method, which was measured by CIELAB color difference formula, reaches less than 2 CIELAB units under different illumination levels and different correlated color temperatures. This prediction accuracy for different capture settings remains the same level as the conventional method for particular lighting condition.

  4. Generation and characterization of biological aerosols for laser measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yung-Sung; Barr, E.B.

    1995-12-01

    Concerns for proliferation of biological weapons including bacteria, fungi, and viruses have prompted research and development on methods for the rapid detection of biological aerosols in the field. Real-time instruments that can distinguish biological aerosols from background dust would be especially useful. Sandia National Laboratories (SNL) is developing a laser-based, real-time instrument for rapid detection of biological aerosols, and ITRI is working with SNL scientists and engineers to evaluate this technology for a wide range of biological aerosols. This paper describes methods being used to generate the characterize the biological aerosols for these tests. In summary, a biosafe system hasmore » been developed for generating and characterizing biological aerosols and using those aerosols to test the SNL laser-based real-time instrument. Such tests are essential in studying methods for rapid detection of airborne biological materials.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Ehwang; Gao, Yuqian; Wu, Chaochao

    Here, mass spectrometry (MS) based targeted proteomic methods such as selected reaction monitoring (SRM) are becoming the method of choice for preclinical verification of candidate protein biomarkers. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute has investigated the standardization and analytical validation of the SRM assays and demonstrated robust analytical performance on different instruments across different laboratories. An Assay Portal has also been established by CPTAC to provide the research community a resource consisting of large set of targeted MS-based assays, and a depository to share assays publicly, providing that assays meet the guidelines proposed bymore » CPTAC. Herein, we report 98 SRM assays covering 70 candidate protein biomarkers previously reported as associated with ovarian cancer that have been thoroughly characterized according to the CPTAC Assay Characterization Guidance Document. The experiments, methods and results for characterizing these SRM assays for their MS response, repeatability, selectivity, stability, and reproducible detection of endogenous analytes are described in detail.« less

  6. Systems and Methods for Automated Vessel Navigation Using Sea State Prediction

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance L. (Inventor); Howard, Andrew B. (Inventor); Reinhart, Rene Felix (Inventor); Aghazarian, Hrand (Inventor); Rankin, Arturo (Inventor)

    2017-01-01

    Systems and methods for sea state prediction and autonomous navigation in accordance with embodiments of the invention are disclosed. One embodiment of the invention includes a method of predicting a future sea state including generating a sequence of at least two 3D images of a sea surface using at least two image sensors, detecting peaks and troughs in the 3D images using a processor, identifying at least one wavefront in each 3D image based upon the detected peaks and troughs using the processor, characterizing at least one propagating wave based upon the propagation of wavefronts detected in the sequence of 3D images using the processor, and predicting a future sea state using at least one propagating wave characterizing the propagation of wavefronts in the sequence of 3D images using the processor. Another embodiment includes a method of autonomous vessel navigation based upon a predicted sea state and target location.

  7. Systems and Methods for Automated Vessel Navigation Using Sea State Prediction

    NASA Technical Reports Server (NTRS)

    Aghazarian, Hrand (Inventor); Reinhart, Rene Felix (Inventor); Huntsberger, Terrance L. (Inventor); Rankin, Arturo (Inventor); Howard, Andrew B. (Inventor)

    2015-01-01

    Systems and methods for sea state prediction and autonomous navigation in accordance with embodiments of the invention are disclosed. One embodiment of the invention includes a method of predicting a future sea state including generating a sequence of at least two 3D images of a sea surface using at least two image sensors, detecting peaks and troughs in the 3D images using a processor, identifying at least one wavefront in each 3D image based upon the detected peaks and troughs using the processor, characterizing at least one propagating wave based upon the propagation of wavefronts detected in the sequence of 3D images using the processor, and predicting a future sea state using at least one propagating wave characterizing the propagation of wavefronts in the sequence of 3D images using the processor. Another embodiment includes a method of autonomous vessel navigation based upon a predicted sea state and target location.

  8. Computer-based objective quantitative assessment of pulmonary parenchyma via x-ray CT

    NASA Astrophysics Data System (ADS)

    Uppaluri, Renuka; McLennan, Geoffrey; Sonka, Milan; Hoffman, Eric A.

    1998-07-01

    This paper is a review of our recent studies using a texture- based tissue characterization method called the Adaptive Multiple Feature Method. This computerized method is automated and performs tissue classification based upon the training acquired on a set of representative examples. The AMFM has been applied to several different discrimination tasks including normal subjects, subjects with interstitial lung disease, smokers, asbestos-exposed subjects, and subjects with cystic fibrosis. The AMFM has also been applied to data acquired using different scanners and scanning protocols. The AMFM has shown to be successful and better than other existing techniques in discriminating the tissues under consideration. We demonstrate that the AMFM is considerably more sensitive and specific in characterizing the lung, especially in the presence of mixed pathology, as compared to more commonly used methods. Evidence is presented suggesting that the AMFM is highly sensitive to some of the earliest disease processes.

  9. Concentration solar power optimization system and method of using the same

    DOEpatents

    Andraka, Charles E

    2014-03-18

    A system and method for optimizing at least one mirror of at least one CSP system is provided. The system has a screen for displaying light patterns for reflection by the mirror, a camera for receiving a reflection of the light patterns from the mirror, and a solar characterization tool. The solar characterization tool has a characterizing unit for determining at least one mirror parameter of the mirror based on an initial position of the camera and the screen, and a refinement unit for refining the determined parameter(s) based on an adjusted position of the camera and screen whereby the mirror is characterized. The system may also be provided with a solar alignment tool for comparing at least one mirror parameter of the mirror to a design geometry whereby an alignment error is defined, and at least one alignment unit for adjusting the mirror to reduce the alignment error.

  10. Radiological Characterization Methodology of INEEL Stored RH-TRU Waste from ANL-E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajiv N. Bhatt

    2003-02-01

    An Acceptable Knowledge (AK)-based radiological characterization methodology is being developed for RH TRU waste generated from ANL-E hot cell operations performed on fuel elements irradiated in the EBR-II reactor. The methodology relies on AK for composition of the fresh fuel elements, their irradiation history, and the waste generation and collection processes. Radiological characterization of the waste involves the estimates of the quantities of significant fission products and transuranic isotopes in the waste. Methods based on reactor and physics principles are used to achieve these estimates. Because of the availability of AK and the robustness of the calculation methods, the AK-basedmore » characterization methodology offers a superior alternative to traditional waste assay techniques. Using this methodology, it is shown that the radiological parameters of a test batch of ANL-E waste is well within the proposed WIPP Waste Acceptance Criteria limits.« less

  11. Radiological Characterization Methodology for INEEL-Stored Remote-Handled Transuranic (RH TRU) Waste from Argonne National Laboratory-East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuan, P.; Bhatt, R.N.

    2003-01-14

    An Acceptable Knowledge (AK)-based radiological characterization methodology is being developed for RH TRU waste generated from ANL-E hot cell operations performed on fuel elements irradiated in the EBR-II reactor. The methodology relies on AK for composition of the fresh fuel elements, their irradiation history, and the waste generation and collection processes. Radiological characterization of the waste involves the estimates of the quantities of significant fission products and transuranic isotopes in the waste. Methods based on reactor and physics principles are used to achieve these estimates. Because of the availability of AK and the robustness of the calculation methods, the AK-basedmore » characterization methodology offers a superior alternative to traditional waste assay techniques. Using the methodology, it is shown that the radiological parameters of a test batch of ANL-E waste is well within the proposed WIPP Waste Acceptance Criteria limits.« less

  12. Exploitation of immunofluorescence for the quantification and characterization of small numbers of Pasteuria endospores.

    PubMed

    Costa, Sofia R; Kerry, Brian R; Bardgett, Richard D; Davies, Keith G

    2006-12-01

    The Pasteuria group of endospore-forming bacteria has been studied as a biocontrol agent of plant-parasitic nematodes. Techniques have been developed for its detection and quantification in soil samples, and these mainly focus on observations of endospore attachment to nematodes. Characterization of Pasteuria populations has recently been performed with DNA-based techniques, which usually require the extraction of large numbers of spores. We describe a simple immunological method for the quantification and characterization of Pasteuria populations. Bayesian statistics were used to determine an extraction efficiency of 43% and a threshold of detection of 210 endospores g(-1) sand. This provided a robust means of estimating numbers of endospores in small-volume samples from a natural system. Based on visual assessment of endospore fluorescence, a quantitative method was developed to characterize endospore populations, which were shown to vary according to their host.

  13. Advances in mass spectrometric characterization of naphthenic acids fraction compounds in oil sands environmental samples and crude oil--A review.

    PubMed

    Headley, John V; Peru, Kerry M; Barrow, Mark P

    2016-01-01

    There has been a recent surge in the development of mass spectrometric methods for detailed characterization of naphthenic acid fraction compounds (all C(c)H(h)N(n)O(o)S(s), species, including heteroatomic and aromatic components in the acid-extractable fraction) in environmental samples. This surge is driven by the increased activity in oil sands environmental monitoring programs in Canada, the exponential increase in research studies on the isolation and toxicity identification of components in oil sands process water (OSPW), and the analytical requirements for development of technologies for treatment of OSPW. There has been additional impetus due to the parallel studies to control corrosion from naphthenic acids during the mining and refining of heavy bitumen and crude oils. As a result, a range of new mass spectrometry tools have been introduced since our last major review of this topic in 2009. Of particular significance are the developments of combined mass spectrometric methods that incorporate technologies such as gas chromatography, liquid chromatography, and ion mobility. There has been additional progress with respect to improved visualization methods for petroleomics and oil sands environmental forensics. For comprehensive coverage and more reliable characterization of samples, an approach based on multiple-methods that employ two or more ionization modes is recommended. On-line or off-line fractionation of isolated extracts, with or without derivatization, might also be used prior to mass spectrometric analyses. Individual ionization methods have their associated strengths and weaknesses, including biases, and thus dependence upon a single ionization method is potentially misleading. There is also a growing trend to not rely solely on low-resolution mass spectrometric methods (<20,000 resolving power at m/z 200) for characterization of complex samples. Future research is anticipated to focus upon (i) structural elucidation of components to determine the correlation with toxicity or corrosion, (ii) verification of characterization studies based on authentic reference standards and reference materials, and (iii) integrated approaches based on multiple-methods and ionization methods for more-reliable oil sands environmental forensics. © 2015 Wiley Periodicals, Inc.

  14. Visual Servoing-Based Nanorobotic System for Automated Electrical Characterization of Nanotubes inside SEM.

    PubMed

    Ding, Huiyang; Shi, Chaoyang; Ma, Li; Yang, Zhan; Wang, Mingyu; Wang, Yaqiong; Chen, Tao; Sun, Lining; Toshio, Fukuda

    2018-04-08

    The maneuvering and electrical characterization of nanotubes inside a scanning electron microscope (SEM) has historically been time-consuming and laborious for operators. Before the development of automated nanomanipulation-enabled techniques for the performance of pick-and-place and characterization of nanoobjects, these functions were still incomplete and largely operated manually. In this paper, a dual-probe nanomanipulation system vision-based feedback was demonstrated to automatically perform 3D nanomanipulation tasks, to investigate the electrical characterization of nanotubes. The XY-position of Atomic Force Microscope (AFM) cantilevers and individual carbon nanotubes (CNTs) were precisely recognized via a series of image processing operations. A coarse-to-fine positioning strategy in the Z-direction was applied through the combination of the sharpness-based depth estimation method and the contact-detection method. The use of nanorobotic magnification-regulated speed aided in improving working efficiency and reliability. Additionally, we proposed automated alignment of manipulator axes by visual tracking the movement trajectory of the end effector. The experimental results indicate the system's capability for automated measurement electrical characterization of CNTs. Furthermore, the automated nanomanipulation system has the potential to be extended to other nanomanipulation tasks.

  15. Visual Servoing-Based Nanorobotic System for Automated Electrical Characterization of Nanotubes inside SEM

    PubMed Central

    Ding, Huiyang; Shi, Chaoyang; Ma, Li; Yang, Zhan; Wang, Mingyu; Wang, Yaqiong; Chen, Tao; Sun, Lining; Toshio, Fukuda

    2018-01-01

    The maneuvering and electrical characterization of nanotubes inside a scanning electron microscope (SEM) has historically been time-consuming and laborious for operators. Before the development of automated nanomanipulation-enabled techniques for the performance of pick-and-place and characterization of nanoobjects, these functions were still incomplete and largely operated manually. In this paper, a dual-probe nanomanipulation system vision-based feedback was demonstrated to automatically perform 3D nanomanipulation tasks, to investigate the electrical characterization of nanotubes. The XY-position of Atomic Force Microscope (AFM) cantilevers and individual carbon nanotubes (CNTs) were precisely recognized via a series of image processing operations. A coarse-to-fine positioning strategy in the Z-direction was applied through the combination of the sharpness-based depth estimation method and the contact-detection method. The use of nanorobotic magnification-regulated speed aided in improving working efficiency and reliability. Additionally, we proposed automated alignment of manipulator axes by visual tracking the movement trajectory of the end effector. The experimental results indicate the system’s capability for automated measurement electrical characterization of CNTs. Furthermore, the automated nanomanipulation system has the potential to be extended to other nanomanipulation tasks. PMID:29642495

  16. Characterization of glycoprotein biopharmaceutical products by Caliper LC90 CE-SDS gel technology.

    PubMed

    Chen, Grace; Ha, Sha; Rustandi, Richard R

    2013-01-01

    Over the last decade, science has greatly improved in the area of protein sizing and characterization. Efficient high-throughput methods are now available to substitute for the traditional labor-intensive SDS-PAGE methods, which alternatively take days to analyze a very limited number of samples. Currently, PerkinElmer(®) (Caliper) has designed an automated chip-based fluorescence detection method capable of analyzing proteins in minutes with sensitivity similar to standard SDS-PAGE. Here, we describe the use and implementation of this technology to characterize and screen a large number of formulations of target glycoproteins in the 14-200 kDa molecular weight range.

  17. Characterization of a subwavelength-scale 3D void structure using the FDTD-based confocal laser scanning microscopic image mapping technique.

    PubMed

    Choi, Kyongsik; Chon, James W; Gu, Min; Lee, Byoungho

    2007-08-20

    In this paper, a simple confocal laser scanning microscopic (CLSM) image mapping technique based on the finite-difference time domain (FDTD) calculation has been proposed and evaluated for characterization of a subwavelength-scale three-dimensional (3D) void structure fabricated inside polymer matrix. The FDTD simulation method adopts a focused Gaussian beam incident wave, Berenger's perfectly matched layer absorbing boundary condition, and the angular spectrum analysis method. Through the well matched simulation and experimental results of the xz-scanned 3D void structure, we first characterize the exact position and the topological shape factor of the subwavelength-scale void structure, which was fabricated by a tightly focused ultrashort pulse laser. The proposed CLSM image mapping technique based on the FDTD can be widely applied from the 3D near-field microscopic imaging, optical trapping, and evanescent wave phenomenon to the state-of-the-art bio- and nanophotonics.

  18. Quantitative characterization of genetic parts and circuits for plant synthetic biology.

    PubMed

    Schaumberg, Katherine A; Antunes, Mauricio S; Kassaw, Tessema K; Xu, Wenlong; Zalewski, Christopher S; Medford, June I; Prasad, Ashok

    2016-01-01

    Plant synthetic biology promises immense technological benefits, including the potential development of a sustainable bio-based economy through the predictive design of synthetic gene circuits. Such circuits are built from quantitatively characterized genetic parts; however, this characterization is a significant obstacle in work with plants because of the time required for stable transformation. We describe a method for rapid quantitative characterization of genetic plant parts using transient expression in protoplasts and dual luciferase outputs. We observed experimental variability in transient-expression assays and developed a mathematical model to describe, as well as statistical normalization methods to account for, this variability, which allowed us to extract quantitative parameters. We characterized >120 synthetic parts in Arabidopsis and validated our method by comparing transient expression with expression in stably transformed plants. We also tested >100 synthetic parts in sorghum (Sorghum bicolor) protoplasts, and the results showed that our method works in diverse plant groups. Our approach enables the construction of tunable gene circuits in complex eukaryotic organisms.

  19. Microwave absorption properties of gold nanoparticle doped polymers

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Ouattara, L.; Ingrosso, C.; Curri, M. L.; Krozer, V.; Boisen, A.; Jakobsen, M. H.; Johansen, T. K.

    2011-03-01

    This paper presents a method for characterizing microwave absorption properties of gold nanoparticle doped polymers. The method is based on on-wafer measurements at the frequencies from 0.5 GHz to 20 GHz. The on-wafer measurement method makes it possible to characterize electromagnetic (EM) property of small volume samples. The epoxy based SU8 polymer and SU8 doped with gold nanoparticles are chosen as the samples under test. Two types of microwave test devices are designed for exciting the samples through electrical coupling and magnetic coupling, respectively. Measurement results demonstrate that the nanocomposites absorb a certain amount of microwave energy due to gold nanoparticles. Higher nanoparticle concentration results in more significant absorption effect.

  20. Carbon Dioxide Adsorption Behavior of Modified HKUST-1

    NASA Astrophysics Data System (ADS)

    Ma, Lan; Tang, Huamin; Zhou, Chaohua; Zhang, Hongpeng; Yan, Chunxiao; Hu, Xiaochun; Yang, Yang; Yang, Weiwei; Li, Yuming; He, Dehua

    2014-12-01

    A kind of typical metal-organic frameworks (MOFs) material, HKUST-1 was prepared by hydrothermal method and characterized by XRD and SEM. The results of characterizations manifested that HKUST-1 showed a regular octahedral crystal structure. The as-prepared HKUST-1 was modified by several kinds of organic base materials and the CO2 adsorption behaviors of modified HKUST-1 materials were evaluated. The CO2 adsorption capacities of different base modified HKUST-1 varied with the base intensity of modified organic base materials.

  1. Performance of PCR-based assays targeting Bacteroidales genetic markers of human fecal pollution in sewage and fecal samples

    EPA Science Inventory

    There are numerous PCR-based methods available to characterize human fecal pollution in ambient waters. Each assay employs distinct oligonucleotides and many target different genes and microorganisms leading to potential variations in method performance. Laboratory comparisons ...

  2. Multiscale tomography of buried magnetic structures: its use in the localization and characterization of archaeological structures

    NASA Astrophysics Data System (ADS)

    Saracco, Ginette; Moreau, Frédérique; Mathé, Pierre-Etienne; Hermitte, Daniel; Michel, Jean-Marie

    2007-10-01

    We have previously developed a method for characterizing and localizing `homogeneous' buried sources, from the measure of potential anomalies at a fixed height above ground (magnetic, electric and gravity). This method is based on potential theory and uses the properties of the Poisson kernel (real by definition) and the continuous wavelet theory. Here, we relax the assumption on sources and introduce a method that we call the `multiscale tomography'. Our approach is based on the harmonic extension of the observed magnetic field to produce a complex source by use of a complex Poisson kernel solution of the Laplace equation for complex potential field. A phase and modulus are defined. We show that the phase provides additional information on the total magnetic inclination and the structure of sources, while the modulus allows us to characterize its spatial location, depth and `effective degree'. This method is compared to the `complex dipolar tomography', extension of the Patella method that we previously developed. We applied both methods and a classical electrical resistivity tomography to detect and localize buried archaeological structures like antique ovens from magnetic measurements on the Fox-Amphoux site (France). The estimates are then compared with the results of excavations.

  3. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1993-01-01

    In this Progress Report, we describe our current research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the characterization of stitched composite materials and bonded aluminum plate specimens. One purpose of this investigation is to identify and characterize specific features of polar backscatter interrogation which enhance the ability of ultrasound to detect flaws in a stitched composite laminate. Another focus is to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize bonded aluminum lap joints. As an approach to implementing quantitative ultrasonic inspection methods to both of these materials, we focus on the physics that underlies the detection of flaws in such materials.

  4. Immobilizing affinity proteins to nitrocellulose: a toolbox for paper-based assay developers.

    PubMed

    Holstein, Carly A; Chevalier, Aaron; Bennett, Steven; Anderson, Caitlin E; Keniston, Karen; Olsen, Cathryn; Li, Bing; Bales, Brian; Moore, David R; Fu, Elain; Baker, David; Yager, Paul

    2016-02-01

    To enable enhanced paper-based diagnostics with improved detection capabilities, new methods are needed to immobilize affinity reagents to porous substrates, especially for capture molecules other than IgG. To this end, we have developed and characterized three novel methods for immobilizing protein-based affinity reagents to nitrocellulose membranes. We have demonstrated these methods using recombinant affinity proteins for the influenza surface protein hemagglutinin, leveraging the customizability of these recombinant "flu binders" for the design of features for immobilization. The three approaches shown are: (1) covalent attachment of thiolated affinity protein to an epoxide-functionalized nitrocellulose membrane, (2) attachment of biotinylated affinity protein through a nitrocellulose-binding streptavidin anchor protein, and (3) fusion of affinity protein to a novel nitrocellulose-binding anchor protein for direct coupling and immobilization. We also characterized the use of direct adsorption for the flu binders, as a point of comparison and motivation for these novel methods. Finally, we demonstrated that these novel methods can provide improved performance to an influenza hemagglutinin assay, compared to a traditional antibody-based capture system. Taken together, this work advances the toolkit available for the development of next-generation paper-based diagnostics.

  5. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    DOEpatents

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  6. A Quadrupole Dalton-based multi-attribute method for product characterization, process development, and quality control of therapeutic proteins.

    PubMed

    Xu, Weichen; Jimenez, Rod Brian; Mowery, Rachel; Luo, Haibin; Cao, Mingyan; Agarwal, Nitin; Ramos, Irina; Wang, Xiangyang; Wang, Jihong

    2017-10-01

    During manufacturing and storage process, therapeutic proteins are subject to various post-translational modifications (PTMs), such as isomerization, deamidation, oxidation, disulfide bond modifications and glycosylation. Certain PTMs may affect bioactivity, stability or pharmacokinetics and pharmacodynamics profile and are therefore classified as potential critical quality attributes (pCQAs). Identifying, monitoring and controlling these PTMs are usually key elements of the Quality by Design (QbD) approach. Traditionally, multiple analytical methods are utilized for these purposes, which is time consuming and costly. In recent years, multi-attribute monitoring methods have been developed in the biopharmaceutical industry. However, these methods combine high-end mass spectrometry with complicated data analysis software, which could pose difficulty when implementing in a quality control (QC) environment. Here we report a multi-attribute method (MAM) using a Quadrupole Dalton (QDa) mass detector to selectively monitor and quantitate PTMs in a therapeutic monoclonal antibody. The result output from the QDa-based MAM is straightforward and automatic. Evaluation results indicate this method provides comparable results to the traditional assays. To ensure future application in the QC environment, this method was qualified according to the International Conference on Harmonization (ICH) guideline and applied in the characterization of drug substance and stability samples. The QDa-based MAM is shown to be an extremely useful tool for product and process characterization studies that facilitates facile understanding of process impact on multiple quality attributes, while being QC friendly and cost-effective.

  7. COMPARISON OF TAXONOMIC, COLONY MORPHOTYPE AND PCR-RFLP METHODS TO CHARACTERIZE MICROFUNGAL DIVERSITY

    EPA Science Inventory

    We compared three methods for estimating fungal species diversity in soil samples. A rapid screening method based on gross colony morphological features and color reference standards was compared with traditional fungal taxonomic methods and PCR-RFLP for estimation of ecological ...

  8. Analytical approaches for the characterization and quantification of nanoparticles in food and beverages.

    PubMed

    Mattarozzi, Monica; Suman, Michele; Cascio, Claudia; Calestani, Davide; Weigel, Stefan; Undas, Anna; Peters, Ruud

    2017-01-01

    Estimating consumer exposure to nanomaterials (NMs) in food products and predicting their toxicological properties are necessary steps in the assessment of the risks of this technology. To this end, analytical methods have to be available to detect, characterize and quantify NMs in food and materials related to food, e.g. food packaging and biological samples following metabolization of food. The challenge for the analytical sciences is that the characterization of NMs requires chemical as well as physical information. This article offers a comprehensive analysis of methods available for the detection and characterization of NMs in food and related products. Special attention was paid to the crucial role of sample preparation methods since these have been partially neglected in the scientific literature so far. The currently available instrumental methods are grouped as fractionation, counting and ensemble methods, and their advantages and limitations are discussed. We conclude that much progress has been made over the last 5 years but that many challenges still exist. Future perspectives and priority research needs are pointed out. Graphical Abstract Two possible analytical strategies for the sizing and quantification of Nanoparticles: Asymmetric Flow Field-Flow Fractionation with multiple detectors (allows the determination of true size and mass-based particle size distribution); Single Particle Inductively Coupled Plasma Mass Spectrometry (allows the determination of a spherical equivalent diameter of the particle and a number-based particle size distribution).

  9. In-vivo analysis of ankle joint movement for patient-specific kinematic characterization.

    PubMed

    Ferraresi, Carlo; De Benedictis, Carlo; Franco, Walter; Maffiodo, Daniela; Leardini, Alberto

    2017-09-01

    In this article, a method for the experimental in-vivo characterization of the ankle kinematics is proposed. The method is meant to improve personalization of various ankle joint treatments, such as surgical decision-making or design and application of an orthosis, possibly to increase their effectiveness. This characterization in fact would make the treatments more compatible with the specific patient's joint physiological conditions. This article describes the experimental procedure and the analytical method adopted, based on the instantaneous and mean helical axis theories. The results obtained in this experimental analysis reveal that more accurate techniques are necessary for a robust in-vivo assessment of the tibio-talar axis of rotation.

  10. Experimental Methods to Characterize Nonlinear Vibration of Flapping Wing Micro Air Vehicles

    DTIC Science & Technology

    2007-03-01

    EXPERIMENTAL METHODS TO CHARACTERIZE NONLINEAR VIBRATION OF FLAPPING WING MICRO AIR VEHICLES THESIS Adam P. Tobias, Captain, USAF...AFIT/GAE/ENY/07-M23 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio...author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government

  11. A model based bayesian solution for characterization of complex damage scenarios in aerospace composite structures.

    PubMed

    Reed, H; Leckey, Cara A C; Dick, A; Harvey, G; Dobson, J

    2018-01-01

    Ultrasonic damage detection and characterization is commonly used in nondestructive evaluation (NDE) of aerospace composite components. In recent years there has been an increased development of guided wave based methods. In real materials and structures, these dispersive waves result in complicated behavior in the presence of complex damage scenarios. Model-based characterization methods utilize accurate three dimensional finite element models (FEMs) of guided wave interaction with realistic damage scenarios to aid in defect identification and classification. This work describes an inverse solution for realistic composite damage characterization by comparing the wavenumber-frequency spectra of experimental and simulated ultrasonic inspections. The composite laminate material properties are first verified through a Bayesian solution (Markov chain Monte Carlo), enabling uncertainty quantification surrounding the characterization. A study is undertaken to assess the efficacy of the proposed damage model and comparative metrics between the experimental and simulated output. The FEM is then parameterized with a damage model capable of describing the typical complex damage created by impact events in composites. The damage is characterized through a transdimensional Markov chain Monte Carlo solution, enabling a flexible damage model capable of adapting to the complex damage geometry investigated here. The posterior probability distributions of the individual delamination petals as well as the overall envelope of the damage site are determined. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Evolution of microbiological analytical methods for dairy industry needs

    PubMed Central

    Sohier, Danièle; Pavan, Sonia; Riou, Armelle; Combrisson, Jérôme; Postollec, Florence

    2014-01-01

    Traditionally, culture-based methods have been used to enumerate microbial populations in dairy products. Recent developments in molecular methods now enable faster and more sensitive analyses than classical microbiology procedures. These molecular tools allow a detailed characterization of cell physiological states and bacterial fitness and thus, offer new perspectives to integration of microbial physiology monitoring to improve industrial processes. This review summarizes the methods described to enumerate and characterize physiological states of technological microbiota in dairy products, and discusses the current deficiencies in relation to the industry’s needs. Recent studies show that Polymerase chain reaction-based methods can successfully be applied to quantify fermenting microbes and probiotics in dairy products. Flow cytometry and omics technologies also show interesting analytical potentialities. However, they still suffer from a lack of validation and standardization for quality control analyses, as reflected by the absence of performance studies and official international standards. PMID:24570675

  13. Evolution of microbiological analytical methods for dairy industry needs.

    PubMed

    Sohier, Danièle; Pavan, Sonia; Riou, Armelle; Combrisson, Jérôme; Postollec, Florence

    2014-01-01

    Traditionally, culture-based methods have been used to enumerate microbial populations in dairy products. Recent developments in molecular methods now enable faster and more sensitive analyses than classical microbiology procedures. These molecular tools allow a detailed characterization of cell physiological states and bacterial fitness and thus, offer new perspectives to integration of microbial physiology monitoring to improve industrial processes. This review summarizes the methods described to enumerate and characterize physiological states of technological microbiota in dairy products, and discusses the current deficiencies in relation to the industry's needs. Recent studies show that Polymerase chain reaction-based methods can successfully be applied to quantify fermenting microbes and probiotics in dairy products. Flow cytometry and omics technologies also show interesting analytical potentialities. However, they still suffer from a lack of validation and standardization for quality control analyses, as reflected by the absence of performance studies and official international standards.

  14. Combining land use information and small stream sampling with PCR-based methods for better characterization of diffuse sources of human fecal pollution.

    PubMed

    Peed, Lindsay A; Nietch, Christopher T; Kelty, Catherine A; Meckes, Mark; Mooney, Thomas; Sivaganesan, Mano; Shanks, Orin C

    2011-07-01

    Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between human and other animal sources of fecal pollution making it difficult to identify diffuse pollution sources. Human-associated quantitative real-time PCR (qPCR) methods in combination with low-order headwatershed sampling, precipitation information, and high-resolution geographic information system land use data can be useful for identifying diffuse source of human fecal pollution in receiving waters. To test this assertion, this study monitored nine headwatersheds over a two-year period potentially impacted by faulty septic systems and leaky sanitary sewer lines. Human fecal pollution was measured using three different human-associated qPCR methods and a positive significant correlation was seen between abundance of human-associated genetic markers and septic systems following wet weather events. In contrast, a negative correlation was observed with sanitary sewer line densities suggesting septic systems are the predominant diffuse source of human fecal pollution in the study area. These results demonstrate the advantages of combining water sampling, climate information, land-use computer-based modeling, and molecular biology disciplines to better characterize diffuse sources of human fecal pollution in environmental waters.

  15. Synthesis of 2-(bis(cyanomethyl)amino)-2-oxoethyl methacrylate monomer molecule and its characterization by experimental and theoretical methods

    NASA Astrophysics Data System (ADS)

    Sas, E. B.; Cankaya, N.; Kurt, M.

    2018-06-01

    In this work 2-(bis(cyanomethyl)amino)-2-oxoethyl methacrylate monomer has been synthesized as newly, characterized both experimentally and theoretically. Experimentally, it has been characterized by FT-IR, FT-Raman, 1H and 13C NMR spectroscopy techniques. The theoretical calculations have been performed with Density Functional Theory (DFT) including B3LYP method. The scaled theoretical wavenumbers have been assigned based on total energy distribution (TED). Electronic properties of monomer have been performed using time-dependent TD-DFT/B3LYP/B3LYP/6-311G++(d,p) method. The results of experimental have been compared with theoretical values. Both experimental and theoretical methods have shown that the monomer was suitable for the literature.

  16. Reconstruction of nonlinear wave propagation

    DOEpatents

    Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie

    2013-04-23

    Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.

  17. Downstream processing and chromatography based analytical methods for production of vaccines, gene therapy vectors, and bacteriophages.

    PubMed

    Kramberger, Petra; Urbas, Lidija; Štrancar, Aleš

    2015-01-01

    Downstream processing of nanoplexes (viruses, virus-like particles, bacteriophages) is characterized by complexity of the starting material, number of purification methods to choose from, regulations that are setting the frame for the final product and analytical methods for upstream and downstream monitoring. This review gives an overview on the nanoplex downstream challenges and chromatography based analytical methods for efficient monitoring of the nanoplex production.

  18. Downstream processing and chromatography based analytical methods for production of vaccines, gene therapy vectors, and bacteriophages

    PubMed Central

    Kramberger, Petra; Urbas, Lidija; Štrancar, Aleš

    2015-01-01

    Downstream processing of nanoplexes (viruses, virus-like particles, bacteriophages) is characterized by complexity of the starting material, number of purification methods to choose from, regulations that are setting the frame for the final product and analytical methods for upstream and downstream monitoring. This review gives an overview on the nanoplex downstream challenges and chromatography based analytical methods for efficient monitoring of the nanoplex production. PMID:25751122

  19. Targeted proteomic assays for quantitation of proteins identified by proteogenomic analysis of ovarian cancer

    DOE PAGES

    Song, Ehwang; Gao, Yuqian; Wu, Chaochao; ...

    2017-07-19

    Here, mass spectrometry (MS) based targeted proteomic methods such as selected reaction monitoring (SRM) are becoming the method of choice for preclinical verification of candidate protein biomarkers. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute has investigated the standardization and analytical validation of the SRM assays and demonstrated robust analytical performance on different instruments across different laboratories. An Assay Portal has also been established by CPTAC to provide the research community a resource consisting of large set of targeted MS-based assays, and a depository to share assays publicly, providing that assays meet the guidelines proposed bymore » CPTAC. Herein, we report 98 SRM assays covering 70 candidate protein biomarkers previously reported as associated with ovarian cancer that have been thoroughly characterized according to the CPTAC Assay Characterization Guidance Document. The experiments, methods and results for characterizing these SRM assays for their MS response, repeatability, selectivity, stability, and reproducible detection of endogenous analytes are described in detail.« less

  20. Combining Watershed Variables with PCR-based Methods for Better Characterization and Management of Fecal Pollution in Small Streams

    EPA Science Inventory

    Ability to distinguish between human and animal fecal pollution is important for risk assessment and watershed management, particularly in bodies of water used as sources of drinking water or for recreation. PCR-based methods were used to determine the source of fecal pollution ...

  1. [Analysis of scatterer microstructure feature based on Chirp-Z transform cepstrum].

    PubMed

    Guo, Jianzhong; Lin, Shuyu

    2007-12-01

    The fundamental research field of medical ultrasound has been the characterization of tissue scatterers. The signal processing method is widely used in this research field. A new method of Chirp-Z Transform Cepstrum for mean spacing estimation of tissue scatterers using ultrasonic scattered signals has been developed. By using this method together with conventional AR cepstrum method, we processed the backscattered signals of mimic tissue and pig liver in vitro. The results illustrated that the Chirp-Z Transform Cepstrum method is effective for signal analysis of ultrasonic scattering and characterization of tissue scatterers, and it can improve the resolution for mean spacing estimation of tissue scatterers.

  2. Propagation of Gaussian wave packets in complex media and application to fracture characterization

    NASA Astrophysics Data System (ADS)

    Ding, Yinshuai; Zheng, Yingcai; Zhou, Hua-Wei; Howell, Michael; Hu, Hao; Zhang, Yu

    2017-08-01

    Knowledge of the subsurface fracture networks is critical in probing the tectonic stress states and flow of fluids in reservoirs containing fractures. We propose to characterize fractures using scattered seismic data, based on the theory of local plane-wave multiple scattering in a fractured medium. We construct a localized directional wave packet using point sources on the surface and propagate it toward the targeted subsurface fractures. The wave packet behaves as a local plane wave when interacting with the fractures. The interaction produces multiple scattering of the wave packet that eventually travels up to the surface receivers. The propagation direction and amplitude of the multiply scattered wave can be used to characterize fracture density, orientation and compliance. Two key aspects in this characterization process are the spatial localization and directionality of the wave packet. Here we first show the physical behaviour of a new localized wave, known as the Gaussian Wave Packet (GWP), by examining its analytical solution originally formulated for a homogenous medium. We then use a numerical finite-difference time-domain (FDTD) method to study its propagation behaviour in heterogeneous media. We find that a GWP can still be localized and directional in space even over a large propagation distance in heterogeneous media. We then propose a method to decompose the recorded seismic wavefield into GWPs based on the reverse-time concept. This method enables us to create a virtually recorded seismic data using field shot gathers, as if the source were an incident GWP. Finally, we demonstrate the feasibility of using GWPs for fracture characterization using three numerical examples. For a medium containing fractures, we can reliably invert for the local parameters of multiple fracture sets. Differing from conventional seismic imaging such as migration methods, our fracture characterization method is less sensitive to errors in the background velocity model. For a layered medium containing fractures, our method can correctly recover the fracture density even with an inaccurate velocity model.

  3. A centrifugation-based physicochemical characterization method for the interaction between proteins and nanoparticles

    NASA Astrophysics Data System (ADS)

    Bekdemir, Ahmet; Stellacci, Francesco

    2016-10-01

    Nanomedicine requires in-depth knowledge of nanoparticle-protein interactions. These interactions are studied with methods limited to large or fluorescently labelled nanoparticles as they rely on scattering or fluorescence-correlation signals. Here, we have developed a method based on analytical ultracentrifugation (AUC) as an absorbance-based, label-free tool to determine dissociation constants (KD), stoichiometry (Nmax), and Hill coefficient (n), for the association of bovine serum albumin (BSA) with gold nanoparticles. Absorption at 520 nm in AUC renders the measurements insensitive to unbound and aggregated proteins. Measurements remain accurate and do not become more challenging for small (sub-10 nm) nanoparticles. In AUC, frictional ratio analysis allows for the qualitative assessment of the shape of the analyte. Data suggests that small-nanoparticles/protein complexes significantly deviate from a spherical shape even at maximum coverage. We believe that this method could become one of the established approaches for the characterization of the interaction of (small) nanoparticles with proteins.

  4. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol.

    PubMed

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-05-03

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus.

  5. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol

    NASA Astrophysics Data System (ADS)

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-05-01

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus.

  6. Image Analysis Based Estimates of Regolith Erosion Due to Plume Impingement Effects

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Metzger, Philip T.

    2014-01-01

    Characterizing dust plumes on the moon's surface during a rocket landing is imperative to the success of future operations on the moon or any other celestial body with a dusty or soil surface (including cold surfaces covered by frozen gas ice crystals, such as the moons of the outer planets). The most practical method of characterizing the dust clouds is to analyze video or still camera images of the dust illuminated by the sun or on-board light sources (such as lasers). The method described below was used to characterize the dust plumes from the Apollo 12 landing.

  7. Methods And Devices For Characterizing Duplex Nucleic Acid Molecules

    DOEpatents

    Akeson, Mark; Vercoutere, Wenonah; Haussler, David; Winters-Hilt, Stephen

    2005-08-30

    Methods and devices are provided for characterizing a duplex nucleic acid, e.g., a duplex DNA molecule. In the subject methods, a fluid conducting medium that includes a duplex nucleic acid molecule is contacted with a nanopore under the influence of an applied electric field and the resulting changes in current through the nanopore caused by the duplex nucleic acid molecule are monitored. The observed changes in current through the nanopore are then employed as a set of data values to characterize the duplex nucleic acid, where the set of data values may be employed in raw form or manipulated, e.g., into a current blockade profile. Also provided are nanopore devices for practicing the subject methods, where the subject nanopore devices are characterized by the presence of an algorithm which directs a processing means to employ monitored changes in current through a nanopore to characterize a duplex nucleic acid molecule responsible for the current changes. The subject methods and devices find use in a variety of applications, including, among other applications, the identification of an analyte duplex DNA molecule in a sample, the specific base sequence at a single nulceotide polymorphism (SNP), and the sequencing of duplex DNA molecules.

  8. Facile synthesis of nickel-based metal organic framework [Ni3(HCOO)6] by microwave method and application for supercapacitor

    NASA Astrophysics Data System (ADS)

    Luo, Jujie; Yang, Xing; Wang, Shumin; Bi, Yuhong; Nautiyal, Amit; Zhang, Xinyu

    The metal organic framework (MOF) [Ni3(HCOO)6] was synthesized via the simple and fast microwave method, and the effect of irradiation power on crystallinity of synthesized Ni-based MOF was studied. The samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The synthesized Ni-based MOF was electrochemically characterized by using galvanostatic charge-discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) techniques. The synthesized MOF showed the highest specific capacitance of 1196.2F/g at 1A/g with excellent cyclability (86.04% capacitance retention after 2,000 cycles), thereby demonstrating its potential application in supercapacitors.

  9. Learning-based controller for biotechnology processing, and method of using

    DOEpatents

    Johnson, John A.; Stoner, Daphne L.; Larsen, Eric D.; Miller, Karen S.; Tolle, Charles R.

    2004-09-14

    The present invention relates to process control where some of the controllable parameters are difficult or impossible to characterize. The present invention relates to process control in biotechnology of such systems, but not limited to. Additionally, the present invention relates to process control in biotechnology minerals processing. In the inventive method, an application of the present invention manipulates a minerals bioprocess to find local exterma (maxima or minima) for selected output variables/process goals by using a learning-based controller for bioprocess oxidation of minerals during hydrometallurgical processing. The learning-based controller operates with or without human supervision and works to find processor optima without previously defined optima due to the non-characterized nature of the process being manipulated.

  10. Standardization of Nanoparticle Characterization: Methods for Testing Properties, Stability, and Functionality of Edible Nanoparticles.

    PubMed

    McClements, Jake; McClements, David Julian

    2016-06-10

    There has been a rapid increase in the fabrication of various kinds of edible nanoparticles for oral delivery of bioactive agents, such as those constructed from proteins, carbohydrates, lipids, and/or minerals. It is currently difficult to compare the relative advantages and disadvantages of different kinds of nanoparticle-based delivery systems because researchers use different analytical instruments and protocols to characterize them. In this paper, we briefly review the various analytical methods available for characterizing the properties of edible nanoparticles, such as composition, morphology, size, charge, physical state, and stability. This information is then used to propose a number of standardized protocols for characterizing nanoparticle properties, for evaluating their stability to environmental stresses, and for predicting their biological fate. Implementation of these protocols would facilitate comparison of the performance of nanoparticles under standardized conditions, which would facilitate the rational selection of nanoparticle-based delivery systems for different applications in the food, health care, and pharmaceutical industries.

  11. The multilocus sequence typing network: mlst.net.

    PubMed

    Aanensen, David M; Spratt, Brian G

    2005-07-01

    The unambiguous characterization of strains of a pathogen is crucial for addressing questions relating to its epidemiology, population and evolutionary biology. Multilocus sequence typing (MLST), which defines strains from the sequences at seven house-keeping loci, has become the method of choice for molecular typing of many bacterial and fungal pathogens (and non-pathogens), and MLST schemes and strain databases are available for a growing number of prokaryotic and eukaryotic organisms. Sequence data are ideal for strain characterization as they are unambiguous, meaning strains can readily be compared between laboratories via the Internet. Laboratories undertaking MLST can quickly progress from sequencing the seven gene fragments to characterizing their strains and relating them to those submitted by others and to the population as a whole. We provide the gateway to a number of MLST schemes, each of which contain a set of tools for the initial characterization of strains, and methods for relating query strains to other strains of the species, including clustering based on differences in allelic profiles, phylogenetic trees based on concatenated sequences, and a recently developed method (eBURST) for identifying clonal complexes within a species and displaying the overall structure of the population. This network of MLST websites is available at http://www.mlst.net.

  12. Modeling Infrared Signal Reflections to Characterize Indoor Multipath Propagation

    PubMed Central

    De-La-Llana-Calvo, Álvaro; Lázaro-Galilea, José Luis; Gardel-Vicente, Alfredo; Rodríguez-Navarro, David; Bravo-Muñoz, Ignacio; Tsirigotis, Georgios; Iglesias-Miguel, Juan

    2017-01-01

    In this paper, we propose a model to characterize Infrared (IR) signal reflections on any kind of surface material, together with a simplified procedure to compute the model parameters. The model works within the framework of Local Positioning Systems (LPS) based on IR signals (IR-LPS) to evaluate the behavior of transmitted signal Multipaths (MP), which are the main cause of error in IR-LPS, and makes several contributions to mitigation methods. Current methods are based on physics, optics, geometry and empirical methods, but these do not meet our requirements because of the need to apply several different restrictions and employ complex tools. We propose a simplified model based on only two reflection components, together with a method for determining the model parameters based on 12 empirical measurements that are easily performed in the real environment where the IR-LPS is being applied. Our experimental results show that the model provides a comprehensive solution to the real behavior of IR MP, yielding small errors when comparing real and modeled data (the mean error ranges from 1% to 4% depending on the environment surface materials). Other state-of-the-art methods yielded mean errors ranging from 15% to 40% in test measurements. PMID:28406436

  13. Development of an enzyme free glucose sensor based on copper oxide-graphene composite by using green reducing agent ascorbic acid

    NASA Astrophysics Data System (ADS)

    Palve, Yogesh Pandit; Jha, Neetu

    2018-05-01

    In this research work we have developed high sensitive and selective glucose sensor based on copper oxide-graphene composite which is prepared by green synthesis method and used for nonenzymatic glucose sensor. In present paper we report that present method highly selective, simple, efficient, accurate, ecofriendly, less toxic. The prepared composite were characterized by material characterization like SEM, XRD and also by electrochemical characterization like CV, chronoamperometry represents that copper oxide-graphene shows excellent electrocatalytic activity towards glucose, exhibiting a good sensitivity of 103.84 µA mM-1 cm-2, a fast response time 2s, a low detection limit 0.00033µM and linear range from 10 µM-3000 µM. The present sensor can successfully apply for determination of glucose concentration in human blood sample.

  14. Mode extraction on wind turbine blades via phase-based video motion estimation

    NASA Astrophysics Data System (ADS)

    Sarrafi, Aral; Poozesh, Peyman; Niezrecki, Christopher; Mao, Zhu

    2017-04-01

    In recent years, image processing techniques are being applied more often for structural dynamics identification, characterization, and structural health monitoring. Although as a non-contact and full-field measurement method, image processing still has a long way to go to outperform other conventional sensing instruments (i.e. accelerometers, strain gauges, laser vibrometers, etc.,). However, the technologies associated with image processing are developing rapidly and gaining more attention in a variety of engineering applications including structural dynamics identification and modal analysis. Among numerous motion estimation and image-processing methods, phase-based video motion estimation is considered as one of the most efficient methods regarding computation consumption and noise robustness. In this paper, phase-based video motion estimation is adopted for structural dynamics characterization on a 2.3-meter long Skystream wind turbine blade, and the modal parameters (natural frequencies, operating deflection shapes) are extracted. Phase-based video processing adopted in this paper provides reliable full-field 2-D motion information, which is beneficial for manufacturing certification and model updating at the design stage. The phase-based video motion estimation approach is demonstrated through processing data on a full-scale commercial structure (i.e. a wind turbine blade) with complex geometry and properties, and the results obtained have a good correlation with the modal parameters extracted from accelerometer measurements, especially for the first four bending modes, which have significant importance in blade characterization.

  15. On-orbit characterization of hyperspectral imagers

    NASA Astrophysics Data System (ADS)

    McCorkel, Joel

    Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne- and satellite-based sensors. Often, ground-truth measurements at these tests sites are not always successful due to weather and funding availability. Therefore, RSG has also employed automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor. This dissertation presents a method for determining the radiometric calibration of a hyperspectral imager using multispectral imagery. The work relies on a multispectral sensor, Moderate-resolution Imaging Spectroradiometer (MODIS), as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. A method to predict hyperspectral surface reflectance using a combination of MODIS data and spectral shape information is developed and applied for the characterization of Hyperion. Spectral shape information is based on RSG's historical in situ data for the Railroad Valley test site and spectral library data for the Libyan test site. Average atmospheric parameters, also based on historical measurements, are used in reflectance prediction and transfer to space. Results of several cross-calibration scenarios that differ in image acquisition coincidence, test site, and reference sensor are found for the characterization of Hyperion. These are compared with results from the reflectance-based approach of vicarious calibration, a well-documented method developed by the RSG that serves as a baseline for calibration performance for the cross-calibration method developed here. Cross-calibration provides results that are within 2% of those of reflectance-based results in most spectral regions. Larger disagreements exist for shorter wavelengths studied in this work as well as in spectral areas that experience absorption by the atmosphere.

  16. Characterization of 3D joint space morphology using an electrostatic model (with application to osteoarthritis)

    NASA Astrophysics Data System (ADS)

    Cao, Qian; Thawait, Gaurav; Gang, Grace J.; Zbijewski, Wojciech; Reigel, Thomas; Brown, Tyler; Corner, Brian; Demehri, Shadpour; Siewerdsen, Jeffrey H.

    2015-02-01

    Joint space morphology can be indicative of the risk, presence, progression, and/or treatment response of disease or trauma. We describe a novel methodology of characterizing joint space morphology in high-resolution 3D images (e.g. cone-beam CT (CBCT)) using a model based on elementary electrostatics that overcomes a variety of basic limitations of existing 2D and 3D methods. The method models each surface of a joint as a conductor at fixed electrostatic potential and characterizes the intra-articular space in terms of the electric field lines resulting from the solution of Gauss’ Law and the Laplace equation. As a test case, the method was applied to discrimination of healthy and osteoarthritic subjects (N = 39) in 3D images of the knee acquired on an extremity CBCT system. The method demonstrated improved diagnostic performance (area under the receiver operating characteristic curve, AUC > 0.98) compared to simpler methods of quantitative measurement and qualitative image-based assessment by three expert musculoskeletal radiologists (AUC = 0.87, p-value = 0.007). The method is applicable to simple (e.g. the knee or elbow) or multi-axial joints (e.g. the wrist or ankle) and may provide a useful means of quantitatively assessing a variety of joint pathologies.

  17. Characterization of System Status Signals for Multivariate Time Series Discretization Based on Frequency and Amplitude Variation

    PubMed Central

    2018-01-01

    Many fault detection methods have been proposed for monitoring the health of various industrial systems. Characterizing the monitored signals is a prerequisite for selecting an appropriate detection method. However, fault detection methods tend to be decided with user’s subjective knowledge or their familiarity with the method, rather than following a predefined selection rule. This study investigates the performance sensitivity of two detection methods, with respect to status signal characteristics of given systems: abrupt variance, characteristic indicator, discernable frequency, and discernable index. Relation between key characteristics indicators from four different real-world systems and the performance of two fault detection methods using pattern recognition are evaluated. PMID:29316731

  18. Electro-optical and Magneto-optical Sensing Apparatus and Method for Characterizing Free-space Electromagnetic Radiation

    DOEpatents

    Zhang, Xi-Cheng; Riordan, Jenifer Ann; Sun, Feng-Guo

    2000-08-29

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric (or magnetic) field and a laser beam in an electro-optic (or magnetic-optic) crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field-optical beam interaction length, thereby making imaging applications practical.

  19. How Accurate Are Transition States from Simulations of Enzymatic Reactions?

    PubMed Central

    2015-01-01

    The rate expression of traditional transition state theory (TST) assumes no recrossing of the transition state (TS) and thermal quasi-equilibrium between the ground state and the TS. Currently, it is not well understood to what extent these assumptions influence the nature of the activated complex obtained in traditional TST-based simulations of processes in the condensed phase in general and in enzymes in particular. Here we scrutinize these assumptions by characterizing the TSs for hydride transfer catalyzed by the enzyme Escherichia coli dihydrofolate reductase obtained using various simulation approaches. Specifically, we compare the TSs obtained with common TST-based methods and a dynamics-based method. Using a recently developed accurate hybrid quantum mechanics/molecular mechanics potential, we find that the TST-based and dynamics-based methods give considerably different TS ensembles. This discrepancy, which could be due equilibrium solvation effects and the nature of the reaction coordinate employed and its motion, raises major questions about how to interpret the TSs determined by common simulation methods. We conclude that further investigation is needed to characterize the impact of various TST assumptions on the TS phase-space ensemble and on the reaction kinetics. PMID:24860275

  20. Fractional Gaussian model in global optimization

    NASA Astrophysics Data System (ADS)

    Dimri, V. P.; Srivastava, R. P.

    2009-12-01

    Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.

  1. Method for characterizing and choosing the solid mixed fuel for microthrusters of microelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Futko, S. I.; Bondarenko, V. P.; Dolgii, L. N.

    2012-05-01

    We propose a method for characterizing and choosing solid mixed fuels for use as the solid-fuel charge of microthrusters of microelectromechanical systems. The method is based on the solution of the problem on the dependence of impulse responses of such a microthruster on the diameter of the outlet cross-section of its combustion chamber and the microkinetic parameters of the fuel. The variants of choosing the above fuels have been illustrated using glycidyl azide polymer/RDX as the example of a solid fuel mixture. The paper presents the characteristic criteria determining the composition of mixed fuels for the microthruster of a microelectromechanical system and considers the main types of "direct" and "inverse" problems arising in characterizing and choosing such fuels.

  2. Power-law statistics of neurophysiological processes analyzed using short signals

    NASA Astrophysics Data System (ADS)

    Pavlova, Olga N.; Runnova, Anastasiya E.; Pavlov, Alexey N.

    2018-04-01

    We discuss the problem of quantifying power-law statistics of complex processes from short signals. Based on the analysis of electroencephalograms (EEG) we compare three interrelated approaches which enable characterization of the power spectral density (PSD) and show that an application of the detrended fluctuation analysis (DFA) or the wavelet-transform modulus maxima (WTMM) method represents a useful way of indirect characterization of the PSD features from short data sets. We conclude that despite DFA- and WTMM-based measures can be obtained from the estimated PSD, these tools outperform the standard spectral analysis when characterization of the analyzed regime should be provided based on a very limited amount of data.

  3. Method for estimating protein binding capacity of polymeric systems.

    PubMed

    Sharma, Vaibhav; Blackwood, Keith A; Haddow, David; Hook, Lilian; Mason, Chris; Dye, Julian F; García-Gareta, Elena

    2015-01-01

    Composite biomaterials made from synthetic and protein-based polymers are extensively researched in tissue engineering. To successfully fabricate a protein-polymer composite, it is critical to understand how strongly the protein binds to the synthetic polymer, which occurs through protein adsorption. Currently, there is no cost-effective and simple method for characterizing this interfacial binding. To characterize this interfacial binding, we introduce a simple three-step method that involves: 1) synthetic polymer surface characterisation, 2) a quick, inexpensive and robust novel immuno-based assay that uses protein extraction compounds to characterize protein binding strength followed by 3) an in vitro 2D model of cell culture to confirm the results of the immuno-based assay. Fibrinogen, precursor of fibrin, was adsorbed (test protein) on three different polymeric surfaces: silicone, poly(acrylic acid)-coated silicone and poly(allylamine)-coated silicone. Polystyrene surface was used as a reference. Characterisation of the different surfaces revealed different chemistry and roughness. The novel immuno-based assay showed significantly stronger binding of fibrinogen to both poly(acrylic acid) and poly(allylamine) coated silicone. Finally, cell studies showed that the strength of the interaction between the protein and the polymer had an effect on cell growth. This novel immuno-based assay is a valuable tool in developing composite biomaterials of synthetic and protein-based polymers with the potential to be applied in other fields of research where protein adsorption onto surfaces plays an important role.

  4. An open, object-based modeling approach for simulating subsurface heterogeneity

    NASA Astrophysics Data System (ADS)

    Bennett, J.; Ross, M.; Haslauer, C. P.; Cirpka, O. A.

    2017-12-01

    Characterization of subsurface heterogeneity with respect to hydraulic and geochemical properties is critical in hydrogeology as their spatial distribution controls groundwater flow and solute transport. Many approaches of characterizing subsurface heterogeneity do not account for well-established geological concepts about the deposition of the aquifer materials; those that do (i.e. process-based methods) often require forcing parameters that are difficult to derive from site observations. We have developed a new method for simulating subsurface heterogeneity that honors concepts of sequence stratigraphy, resolves fine-scale heterogeneity and anisotropy of distributed parameters, and resembles observed sedimentary deposits. The method implements a multi-scale hierarchical facies modeling framework based on architectural element analysis, with larger features composed of smaller sub-units. The Hydrogeological Virtual Reality simulator (HYVR) simulates distributed parameter models using an object-based approach. Input parameters are derived from observations of stratigraphic morphology in sequence type-sections. Simulation outputs can be used for generic simulations of groundwater flow and solute transport, and for the generation of three-dimensional training images needed in applications of multiple-point geostatistics. The HYVR algorithm is flexible and easy to customize. The algorithm was written in the open-source programming language Python, and is intended to form a code base for hydrogeological researchers, as well as a platform that can be further developed to suit investigators' individual needs. This presentation will encompass the conceptual background and computational methods of the HYVR algorithm, the derivation of input parameters from site characterization, and the results of groundwater flow and solute transport simulations in different depositional settings.

  5. Mode I Cohesive Law Characterization of Through-Crack Propagation in a Multidirectional Laminate

    NASA Technical Reports Server (NTRS)

    Bergan, Andrew C.; Davila, Carlos G.; Leone, Frank A.; Awerbuch, Jonathan; Tan, Tein-Min

    2014-01-01

    A method is proposed and assessed for the experimental characterization of through-the-thickness crack propagation in multidirectional composite laminates with a cohesive law. The fracture toughness and crack opening displacement are measured and used to determine a cohesive law. Two methods of computing fracture toughness are assessed and compared. While previously proposed cohesive characterizations based on the R-curve exhibit size effects, the proposed approach results in a cohesive law that is a material property. The compact tension specimen configuration is used to propagate damage while load and full-field displacements are recorded. These measurements are used to compute the fracture toughness and crack opening displacement from which the cohesive law is characterized. The experimental results show that a steady-state fracture toughness is not reached. However, the proposed method extrapolates to steady-state and is demonstrated capable of predicting the structural behavior of geometrically-scaled specimens.

  6. Multiscale Structure of UXO Site Characterization: Spatial Estimation and Uncertainty Quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrouchov, George; Doll, William E.; Beard, Les P.

    2009-01-01

    Unexploded ordnance (UXO) site characterization must consider both how the contamination is generated and how we observe that contamination. Within the generation and observation processes, dependence structures can be exploited at multiple scales. We describe a conceptual site characterization process, the dependence structures available at several scales, and consider their statistical estimation aspects. It is evident that most of the statistical methods that are needed to address the estimation problems are known but their application-specific implementation may not be available. We demonstrate estimation at one scale and propose a representation for site contamination intensity that takes full account of uncertainty,more » is flexible enough to answer regulatory requirements, and is a practical tool for managing detailed spatial site characterization and remediation. The representation is based on point process spatial estimation methods that require modern computational resources for practical application. These methods have provisions for including prior and covariate information.« less

  7. Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange

    USGS Publications Warehouse

    Harvey, Judson W.; Wagner, Brian J.; Bencala, Kenneth E.

    1996-01-01

    Stream water was locally recharged into shallow groundwater flow paths that returned to the stream (hyporheic exchange) in St. Kevin Gulch, a Rocky Mountain stream in Colorado contaminated by acid mine drainage. Two approaches were used to characterize hyporheic exchange: sub-reach-scale measurement of hydraulic heads and hydraulic conductivity to compute streambed fluxes (hydrometric approach) and reachscale modeling of in-stream solute tracer injections to determine characteristic length and timescales of exchange with storage zones (stream tracer approach). Subsurface data were the standard of comparison used to evaluate the reliability of the stream tracer approach to characterize hyporheic exchange. The reach-averaged hyporheic exchange flux (1.5 mL s−1 m−1), determined by hydrometric methods, was largest when stream base flow was low (10 L s−1); hyporheic exchange persisted when base flow was 10-fold higher, decreasing by approximately 30%. Reliability of the stream tracer approach to detect hyporheic exchange was assessed using first-order uncertainty analysis that considered model parameter sensitivity. The stream tracer approach did not reliably characterize hyporheic exchange at high base flow: the model was apparently more sensitive to exchange with surface water storage zones than with the hyporheic zone. At low base flow the stream tracer approach reliably characterized exchange between the stream and gravel streambed (timescale of hours) but was relatively insensitive to slower exchange with deeper alluvium (timescale of tens of hours) that was detected by subsurface measurements. The stream tracer approach was therefore not equally sensitive to all timescales of hyporheic exchange. We conclude that while the stream tracer approach is an efficient means to characterize surface-subsurface exchange, future studies will need to more routinely consider decreasing sensitivities of tracer methods at higher base flow and a potential bias toward characterizing only a fast component of hyporheic exchange. Stream tracer models with multiple rate constants to consider both fast exchange with streambed gravel and slower exchange with deeper alluvium appear to be warranted.

  8. Comparison of dynamic isotope power systems for distributed planet surface applications

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Mckissock, Barbara I.; Hanlon, James C.; Schmitz, Paul C.; Rodriguez, Carlos D.; Withrow, Colleen A.

    1991-01-01

    Dynamic isotope power system (DIPS) alternatives were investigated and characterized for the surface mission elements associated with a lunar base and subsequent manned Mars expedition. System designs based on two convertor types were studied. These systems were characterized parametrically and compared over the steady-state electrical output power range 0.2 to 20 kWe. Three methods of thermally integrating the heat source and the Stirling heater head were considered, depending on unit size. Figures of merit were derived from the characterizations and compared over the parametric range. Design impacts of mission environmental factors are discussed and quantitatively assessed.

  9. Molecular analysis of single oocyst of Eimeria by whole genome amplification (WGA) based nested PCR.

    PubMed

    Wang, Yunzhou; Tao, Geru; Cui, Yujuan; Lv, Qiyao; Xie, Li; Li, Yuan; Suo, Xun; Qin, Yinghe; Xiao, Lihua; Liu, Xianyong

    2014-09-01

    PCR-based molecular tools are widely used for the identification and characterization of protozoa. Here we report the molecular analysis of Eimeria species using combined methods of whole genome amplification (WGA) and nested PCR. Single oocyst of Eimeria stiedai or Eimeriamedia was directly used for random amplification of the genomic DNA with either primer extension preamplification (PEP) or multiple displacement amplification (MDA), and then the WGA product was used as template in nested PCR with species-specific primers for ITS-1, 18S rDNA and 23S rDNA of E. stiedai and E. media. WGA-based PCR was successful for the amplification of these genes from single oocyst. For the species identification of single oocyst isolated from mixed E. stiedai or E. media, the results from WGA-based PCR were exactly in accordance with those from morphological identification, suggesting the availability of this method in molecular analysis of eimerian parasites at the single oocyst level. WGA-based PCR method can also be applied for the identification and genetic characterization of other protists. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Characterization of lipid-rich plaques using spectroscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nam, Hyeong Soo; Song, Joon Woo; Jang, Sun-Joo; Lee, Jae Joong; Oh, Wang-Yuhl; Kim, Jin Won; Yoo, Hongki

    2016-07-01

    Intravascular optical coherence tomography (IV-OCT) is a high-resolution imaging method used to visualize the internal structures of walls of coronary arteries in vivo. However, accurate characterization of atherosclerotic plaques with gray-scale IV-OCT images is often limited by various intrinsic artifacts. In this study, we present an algorithm for characterizing lipid-rich plaques with a spectroscopic OCT technique based on a Gaussian center of mass (GCOM) metric. The GCOM metric, which reflects the absorbance properties of lipids, was validated using a lipid phantom. In addition, the proposed characterization method was successfully demonstrated in vivo using an atherosclerotic rabbit model and was found to have a sensitivity and specificity of 94.3% and 76.7% for lipid classification, respectively.

  11. Colloid-based multiplexed method for screening plant biomass-degrading glycoside hydrolase activities in microbial communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reindl, W.; Deng, K.; Gladden, J.M.

    2011-05-01

    The enzymatic hydrolysis of long-chain polysaccharides is a crucial step in the conversion of biomass to lignocellulosic biofuels. The identification and characterization of optimal glycoside hydrolases is dependent on enzyme activity assays, however existing methods are limited in terms of compatibility with a broad range of reaction conditions, sample complexity, and especially multiplexity. The method we present is a multiplexed approach based on Nanostructure-Initiator Mass Spectrometry (NIMS) that allowed studying several glycolytic activities in parallel under diverse assay conditions. Although the substrate analogs carried a highly hydrophobic perfluorinated tag, assays could be performed in aqueous solutions due colloid formation ofmore » the substrate molecules. We first validated our method by analyzing known {beta}-glucosidase and {beta}-xylosidase activities in single and parallel assay setups, followed by the identification and characterization of yet unknown glycoside hydrolase activities in microbial communities.« less

  12. Characterizing human activity induced impulse and slip-pulse excitations through structural vibration

    NASA Astrophysics Data System (ADS)

    Pan, Shijia; Mirshekari, Mostafa; Fagert, Jonathon; Ramirez, Ceferino Gabriel; Chung, Albert Jin; Hu, Chih Chi; Shen, John Paul; Zhang, Pei; Noh, Hae Young

    2018-02-01

    Many human activities induce excitations on ambient structures with various objects, causing the structures to vibrate. Accurate vibration excitation source detection and characterization enable human activity information inference, hence allowing human activity monitoring for various smart building applications. By utilizing structural vibrations, we can achieve sparse and non-intrusive sensing, unlike pressure- and vision-based methods. Many approaches have been presented on vibration-based source characterization, and they often either focus on one excitation type or have limited performance due to the dispersion and attenuation effects of the structures. In this paper, we present our method to characterize two main types of excitations induced by human activities (impulse and slip-pulse) on multiple structures. By understanding the physical properties of waves and their propagation, the system can achieve accurate excitation tracking on different structures without large-scale labeled training data. Specifically, our algorithm takes properties of surface waves generated by impulse and of body waves generated by slip-pulse into account to handle the dispersion and attenuation effects when different types of excitations happen on various structures. We then evaluate the algorithm through multiple scenarios. Our method achieves up to a six times improvement in impulse localization accuracy and a three times improvement in slip-pulse trajectory length estimation compared to existing methods that do not take wave properties into account.

  13. Cloning, sequencing and characterization of lipase from a polyhydroxyalkanoate- (PHA-) synthesizing Pseudomonas resinovorans

    USDA-ARS?s Scientific Manuscript database

    Lipase gene (lip) of a biodegradable polyhydroxyalkanoate- (PHA-) synthesizing bacterium P. resinovorans NRRL B-2649 was cloned, sequenced and characterized by using consensus primers and PCR-based genome walking method. The ORF of the putative Lip (314 amino acids) and its active site (Ser111, Asp...

  14. Characterization of growth inhibition of oral bacteria by sophorolipid using a microplate-format assay

    USDA-ARS?s Scientific Manuscript database

    Sophorolipid (SL) is a class of glycolipid biosurfactant produced by yeast and has potent antimicrobial activity against many microorganisms. In this paper, a microplate-based method was developed to characterize the growth inhibition by SL on five representative species of caries-causing oral bact...

  15. A location-based multiple point statistics method: modelling the reservoir with non-stationary characteristics

    NASA Astrophysics Data System (ADS)

    Yin, Yanshu; Feng, Wenjie

    2017-12-01

    In this paper, a location-based multiple point statistics method is developed to model a non-stationary reservoir. The proposed method characterizes the relationship between the sedimentary pattern and the deposit location using the relative central position distance function, which alleviates the requirement that the training image and the simulated grids have the same dimension. The weights in every direction of the distance function can be changed to characterize the reservoir heterogeneity in various directions. The local integral replacements of data events, structured random path, distance tolerance and multi-grid strategy are applied to reproduce the sedimentary patterns and obtain a more realistic result. This method is compared with the traditional Snesim method using a synthesized 3-D training image of Poyang Lake and a reservoir model of Shengli Oilfield in China. The results indicate that the new method can reproduce the non-stationary characteristics better than the traditional method and is more suitable for simulation of delta-front deposits. These results show that the new method is a powerful tool for modelling a reservoir with non-stationary characteristics.

  16. Abdominal Tumor Characterization and Recognition Using Superior-Order Cooccurrence Matrices, Based on Ultrasound Images

    PubMed Central

    Mitrea, Delia; Mitrea, Paulina; Nedevschi, Sergiu; Badea, Radu; Lupsor, Monica; Socaciu, Mihai; Golea, Adela; Hagiu, Claudia; Ciobanu, Lidia

    2012-01-01

    The noninvasive diagnosis of the malignant tumors is an important issue in research nowadays. Our purpose is to elaborate computerized, texture-based methods for performing computer-aided characterization and automatic diagnosis of these tumors, using only the information from ultrasound images. In this paper, we considered some of the most frequent abdominal malignant tumors: the hepatocellular carcinoma and the colonic tumors. We compared these structures with the benign tumors and with other visually similar diseases. Besides the textural features that proved in our previous research to be useful in the characterization and recognition of the malignant tumors, we improved our method by using the grey level cooccurrence matrix and the edge orientation cooccurrence matrix of superior order. As resulted from our experiments, the new textural features increased the malignant tumor classification performance, also revealing visual and physical properties of these structures that emphasized the complex, chaotic structure of the corresponding tissue. PMID:22312411

  17. Correction of photoresponse nonuniformity for matrix detectors based on prior compensation for their nonlinear behavior.

    PubMed

    Ferrero, Alejandro; Campos, Joaquin; Pons, Alicia

    2006-04-10

    What we believe to be a novel procedure to correct the nonuniformity that is inherent in all matrix detectors has been developed and experimentally validated. This correction method, unlike other nonuniformity-correction algorithms, consists of two steps that separate two of the usual problems that affect characterization of matrix detectors, i.e., nonlinearity and the relative variation of the pixels' responsivity across the array. The correction of the nonlinear behavior remains valid for any illumination wavelength employed, as long as the nonlinearity is not due to power dependence of the internal quantum efficiency. This method of correction of nonuniformity permits the immediate calculation of the correction factor for any given power level and for any illuminant that has a known spectral content once the nonuniform behavior has been characterized for a sufficient number of wavelengths. This procedure has a significant advantage compared with other traditional calibration-based methods, which require that a full characterization be carried out for each spectral distribution pattern of the incident optical radiation. The experimental application of this novel method has achieved a 20-fold increase in the uniformity of a CCD array for response levels close to saturation.

  18. Isolation and characterization of mouse innate lymphoid cells.

    PubMed

    Halim, Timotheus Y F; Takei, Fumio

    2014-08-01

    Innate lymphoid cells (ILCs) are rare populations of cytokine-producing lymphocytes and are divided into three groups, namely ILC1, ILC2, and ILC3, based on the cytokines that they produce. They comprise less than 1% of lymphocytes in mucosal tissues and express no unique cell surface markers. Therefore, they can only be identified by combinations of multiple cell surface markers and further characterized by cytokine production in vitro. Thus, multicolor flow cytometry is the only reliable method to purify and characterize ILCs. Here we describe the methods for cell preparation, flow cytometric analysis, and purification of murine ILC2 and ILC3. Copyright © 2014 John Wiley & Sons, Inc.

  19. Characterization of Infrastructure Materials using Nonlinear Ultrasonics

    NASA Astrophysics Data System (ADS)

    Liu, Minghe

    In order to improve the safety, reliability, cost, and performance of civil and mechanical structures/components, it is necessary to develop techniques that are capable of characterizing and quantifying the amount of distributed damage in engineering materials before any detectable discontinuities (cracks, delaminations, voids, etc.) appear. In this dissertation, novel nonlinear ultrasonic NDE methods are developed and applied to characterize cumulative damage such as fatigue damage in metallic materials and degradation of cement-based materials due to chemical reactions. First, nonlinear Rayleigh surface waves are used to measure the near-surface residual stresses in shot-peened aluminum alloy (AA 7075) samples. Results show that the nonlinear Rayleigh wave is very sensitive to near-surface residual stresses, and has the potential to quantitatively detect them. Second, a novel two-wave mixing method is theoretically developed and numerically verified. This method is then successfully applied to detect the fatigue damage in aluminum alloy (AA 6061) samples subjected to monotonic compression. In addition to its high sensitivity to fatigue damage, this collinear wave mixing method allows the measurement over a specific region of interest in the specimen, and this capability makes it possible to obtain spatial distribution of fatigue damage through the thickness direction of the sample by simply timing the transducers. Third, the nonlinear wave mixing method is used to characterize the degradation of cement-based materials caused by alkali-silica reaction (ASR). It is found that the nonlinear ultrasonic method is sensitive to detect ASR damage at very early stage, and has the potential to identify the different damage stages. Finally, a micromechanics-based chemo-mechanical model is developed which relates the acoustic nonlinearity parameter to ASR damage. This model provides a way to quantitatively predict the changes in the acoustic nonlinearity parameter due to ASR damage, which can be used to guide experimental measurements for nondestructive evaluation of ASR damage.

  20. A terrain-based site characterization map of California with implications for the contiguous United States

    USGS Publications Warehouse

    Yong, Alan K.; Hough, Susan E.; Iwahashi, Junko; Braverman, Amy

    2012-01-01

    We present an approach based on geomorphometry to predict material properties and characterize site conditions using the VS30 parameter (time‐averaged shear‐wave velocity to a depth of 30 m). Our framework consists of an automated terrain classification scheme based on taxonomic criteria (slope gradient, local convexity, and surface texture) that systematically identifies 16 terrain types from 1‐km spatial resolution (30 arcsec) Shuttle Radar Topography Mission digital elevation models (SRTM DEMs). Using 853 VS30 values from California, we apply a simulation‐based statistical method to determine the mean VS30 for each terrain type in California. We then compare the VS30 values with models based on individual proxies, such as mapped surface geology and topographic slope, and show that our systematic terrain‐based approach consistently performs better than semiempirical estimates based on individual proxies. To further evaluate our model, we apply our California‐based estimates to terrains of the contiguous United States. Comparisons of our estimates with 325 VS30 measurements outside of California, as well as estimates based on the topographic slope model, indicate our method to be statistically robust and more accurate. Our approach thus provides an objective and robust method for extending estimates of VS30 for regions where in situ measurements are sparse or not readily available.

  1. Versatile light-emitting-diode-based spectral response measurement system for photovoltaic device characterization.

    PubMed

    Hamadani, Behrang H; Roller, John; Dougherty, Brian; Yoon, Howard W

    2012-07-01

    An absolute differential spectral response measurement system for solar cells is presented. The system couples an array of light emitting diodes with an optical waveguide to provide large area illumination. Two unique yet complementary measurement methods were developed and tested with the same measurement apparatus. Good agreement was observed between the two methods based on testing of a variety of solar cells. The first method is a lock-in technique that can be performed over a broad pulse frequency range. The second method is based on synchronous multifrequency optical excitation and electrical detection. An innovative scheme for providing light bias during each measurement method is discussed.

  2. Solvent-based and solvent-free characterization of low solubility and low molecular weight polyamides by mass spectrometry: a complementary approach.

    PubMed

    Barrère, Caroline; Hubert-Roux, Marie; Lange, Catherine M; Rejaibi, Majed; Kebir, Nasreddine; Désilles, Nicolas; Lecamp, Laurence; Burel, Fabrice; Loutelier-Bourhis, Corinne

    2012-06-15

    Polyamides (PA) belong to the most used classes of polymers because of their attractive chemical and mechanical properties. In order to monitor original PA design, it is essential to develop analytical methods for the characterization of these compounds that are mostly insoluble in usual solvents. A low molecular weight polyamide (PA11), synthesized with a chain limiter, has been used as a model compound and characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In the solvent-based approach, specific solvents for PA, i.e. trifluoroacetic acid (TFA) and hexafluoroisopropanol (HFIP), were tested. Solvent-based sample preparation methods, dried-droplet and thin layer, were optimized through the choice of matrix and salt. Solvent-based (thin layer) and solvent-free methods were then compared for this low solubility polymer. Ultra-high-performance liquid chromatography/electrospray ionization (UHPLC/ESI)-TOF-MS analyses were then used to confirm elemental compositions through accurate mass measurement. Sodium iodide (NaI) and 2,5-dihydroxybenzoic acid (2,5-DHB) are, respectively, the best cationizing agent and matrix. The dried-droplet sample preparation method led to inhomogeneous deposits, but the thin-layer method could overcome this problem. Moreover, the solvent-free approach was the easiest and safest sample preparation method giving equivalent results to solvent-based methods. Linear as well as cyclic oligomers were observed. Although the PA molecular weights obtained by MALDI-TOF-MS were lower than those obtained by (1)H NMR and acido-basic titration, this technique allowed us to determine the presence of cyclic and linear species, not differentiated by the other techniques. TFA was shown to induce modification of linear oligomers that permitted cyclic and linear oligomers to be clearly highlighted in spectra. Optimal sample preparation conditions were determined for the MALDI-TOF-MS analysis of PA11, a model of polyamide analogues. The advantages of the solvent-free and solvent-based approaches were shown. Molecular weight determination using MALDI was discussed. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Development of LC/MS/MS Methods for Implementation in US EPA’s Drinking Water Unregulated Contaminant Monitoring Regulations

    EPA Science Inventory

    Well-characterized and standardized methods are the foundation upon which monitoring of regulated and unregulated contaminants in drinking water are based. To obtain reliable, high quality data for trace analysis of contaminants, these methods must be rugged, selective and sensit...

  4. Advantages of virulotyping foodborne pathogens over traditional identification and characterization methods

    USDA-ARS?s Scientific Manuscript database

    This chapter provides an overview regarding the advantages of virulotyping over historic serology-based, PCR-based on genes that identify an organism, or enzymatic and biochemical-based analyses of foodborne pathogens in clinical diagnostics and food industry microbiology testing. Traditional ident...

  5. Performance evaluation of thermally treated graphite felt electrodes for vanadium redox flow battery and their four-point single cell characterization

    NASA Astrophysics Data System (ADS)

    Mazúr, P.; Mrlík, J.; Beneš, J.; Pocedič, J.; Vrána, J.; Dundálek, J.; Kosek, J.

    2018-03-01

    In our contribution we study the electrocatalytic effect of oxygen functionalization of thermally treated graphite felt on kinetics of electrode reactions of vanadium redox flow battery. Chemical and morphological changes of the felts are analysed by standard physico-chemical characterization techniques. A complex method four-point method is developed and employed for characterization of the felts in a laboratory single-cell. The method is based on electrochemical impedance spectroscopy and load curves measurements of positive and negative half-cells using platinum wire pseudo-reference electrodes. The distribution of ohmic and faradaic losses within a single-cell is evaluated for both symmetric and asymmetric electrode set-up with respect to the treatment conditions. Positive effect of oxygen functionalization is observed only for negative electrode, whereas kinetics of positive electrode reaction is almost unaffected by the treatment. This is in a contradiction to the results of typically employed cyclovoltammetric characterization which indicate that both electrodes are enhanced by the treatment to a similar extent. The developed four-point characterization method can be further used e.g., for the component screening and in-situ durability studies on single-cell scale redox flow batteries of various chemistries.

  6. A fluorescent-photochrome method for the quantitative characterization of solid phase antibody orientation.

    PubMed

    Ahluwalia, Arti; De Rossi, Danilo; Giusto, Giuseppe; Chen, Oren; Papper, Vladislav; Likhtenshtein, Gertz I

    2002-06-15

    A fluorescent-photochrome method of quantifying the orientation and surface density of solid phase antibodies is described. The method is based on measurements of quenching and rates of cis-trans photoisomerization and photodestruction of a stilbene-labeled hapten by a quencher in solution. These experimental parameters enable a quantitative description of the order of binding sites of antibodies immobilized on a surface and can be used to characterize the microviscosity and steric hindrance in the vicinity of the binding site. Furthermore, a theoretical method for the determination of the depth of immersion of the fluorescent label in a two-phase system was developed. The model exploits the concept of dynamic interactions and is based on the empirical dependence of parameters of static exchange interactions on distances between exchangeable centers. In the present work, anti-dinitrophenyl (DNP) antibodies and stilbene-labeled DNP were used to investigate three different protein immobilization methods: physical adsorption, covalent binding, and the Langmuir-Blodgett technique. Copyright 2002 Elsevier Science (USA).

  7. Untangling Brain-Wide Dynamics in Consciousness by Cross-Embedding

    PubMed Central

    Tajima, Satohiro; Yanagawa, Toru; Fujii, Naotaka; Toyoizumi, Taro

    2015-01-01

    Brain-wide interactions generating complex neural dynamics are considered crucial for emergent cognitive functions. However, the irreducible nature of nonlinear and high-dimensional dynamical interactions challenges conventional reductionist approaches. We introduce a model-free method, based on embedding theorems in nonlinear state-space reconstruction, that permits a simultaneous characterization of complexity in local dynamics, directed interactions between brain areas, and how the complexity is produced by the interactions. We demonstrate this method in large-scale electrophysiological recordings from awake and anesthetized monkeys. The cross-embedding method captures structured interaction underlying cortex-wide dynamics that may be missed by conventional correlation-based analysis, demonstrating a critical role of time-series analysis in characterizing brain state. The method reveals a consciousness-related hierarchy of cortical areas, where dynamical complexity increases along with cross-area information flow. These findings demonstrate the advantages of the cross-embedding method in deciphering large-scale and heterogeneous neuronal systems, suggesting a crucial contribution by sensory-frontoparietal interactions to the emergence of complex brain dynamics during consciousness. PMID:26584045

  8. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.

  9. An axisymmetric PFEM formulation for bottle forming simulation

    NASA Astrophysics Data System (ADS)

    Ryzhakov, Pavel B.

    2017-01-01

    A numerical model for bottle forming simulation is proposed. It is based upon the Particle Finite Element Method (PFEM) and is developed for the simulation of bottles characterized by rotational symmetry. The PFEM strategy is adapted to suit the problem of interest. Axisymmetric version of the formulation is developed and a modified contact algorithm is applied. This results in a method characterized by excellent computational efficiency and volume conservation characteristics. The model is validated. An example modelling the final blow process is solved. Bottle wall thickness is estimated and the mass conservation of the method is analysed.

  10. An Illumination-Adaptive Colorimetric Measurement Using Color Image Sensor

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Hak; Lee, Jong-Hyub; Sohng, Kyu-Ik

    An image sensor for a use of colorimeter is characterized based on the CIE standard colorimetric observer. We use the method of least squares to derive a colorimetric characterization matrix between RGB output signals and CIE XYZ tristimulus values. This paper proposes an adaptive measuring method to obtain the chromaticity of colored scenes and illumination through a 3×3 camera transfer matrix under a certain illuminant. Camera RGB outputs, sensor status values, and photoelectric characteristic are used to obtain the chromaticity. Experimental results show that the proposed method is valid in the measuring performance.

  11. Standardizing lightweight deflectometer modulus measurements for compaction quality assurance : research summary.

    DOT National Transportation Integrated Search

    2017-09-01

    The mechanistic-empirical pavement design method requires the elastic resilient modulus as the key input for characterization of geomaterials. Current density-based QA procedures do not measure resilient modulus. Additionally, the density-based metho...

  12. Fabrication and Characterization of All-Polystyrene Microfluidic Devices with Integrated Electrodes and Tubing.

    PubMed

    Pentecost, Amber M; Martin, R Scott

    2015-01-01

    A new method of fabricating all-polystyrene devices with integrated electrodes and fluidic tubing is described. As opposed to expensive polystyrene (PS) fabrication techniques that use hot embossing and bonding with a heated lab press, this approach involves solvent-based etching of channels and lamination-based bonding of a PS cover, all of which do not need to occur in a clean room. PS has been studied as an alternative microchip substrate to PDMS, as it is more hydrophilic, biologically compatible in terms of cell adhesion, and less prone to absorption of hydrophobic molecules. The etching/lamination-based method described here results in a variety of all-PS devices, with or without electrodes and tubing. To characterize the devices, micrographs of etched channels (straight and intersected channels) were taken using confocal and scanning electron microscopy. Microchip-based electrophoresis with repetitive injections of fluorescein was conducted using a three-sided PS (etched pinched, twin-tee channel) and one-sided PDMS device. Microchip-based flow injection analysis, with dopamine and NO as analytes, was used to characterize the performance of all-PS devices with embedded tubing and electrodes. Limits of detection for dopamine and NO were 130 nM and 1.8 μM, respectively. Cell immobilization studies were also conducted to assess all-PS devices for cellular analysis. This paper demonstrates that these easy to fabricate devices can be attractive alternative to other PS fabrication methods for a wide variety of analytical and cell culture applications.

  13. [On-Orbit Multispectral Sensor Characterization Based on Spectral Tarps].

    PubMed

    Li, Xin; Zhang, Li-ming; Chen, Hong-yao; Xu, Wei-wei

    2016-03-01

    The multispectral remote sensing technology has been a primary means in the research of biomass monitoring, climate change, disaster prediction and etc. The spectral sensitivity is essential in the quantitative analysis of remote sensing data. When the sensor is running in the space, it will be influenced by cosmic radiation, severe change of temperature, chemical molecular contamination, cosmic dust and etc. As a result, the spectral sensitivity will degrade by time, which has great implication on the accuracy and consistency of the physical measurements. This paper presents a characterization method of the degradation based on man-made spectral targets. Firstly, a degradation model is established in the paper. Then, combined with equivalent reflectance of spectral targets measured and inverted from image, the degradation characterization can be achieved. The simulation and on orbit experiment results showed that, using the proposed method, the change of center wavelength and band width can be monotored. The method proposed in the paper has great significance for improving the accuracy of long time series remote sensing data product and comprehensive utilization level of multi sensor data products.

  14. Development of an Enhanced Metaproteomic Approach for Deepening the Microbiome Characterization of the Human Infant Gut

    PubMed Central

    2015-01-01

    The establishment of early life microbiota in the human infant gut is highly variable and plays a crucial role in host nutrient availability/uptake and maturation of immunity. Although high-performance mass spectrometry (MS)-based metaproteomics is a powerful method for the functional characterization of complex microbial communities, the acquisition of comprehensive metaproteomic information in human fecal samples is inhibited by the presence of abundant human proteins. To alleviate this restriction, we have designed a novel metaproteomic strategy based on double filtering (DF) the raw samples, a method that fractionates microbial from human cells to enhance microbial protein identification and characterization in complex fecal samples from healthy premature infants. This method dramatically improved the overall depth of infant gut proteome measurement, with an increase in the number of identified low-abundance proteins and a greater than 2-fold improvement in microbial protein identification and quantification. This enhancement of proteome measurement depth enabled a more extensive microbiome comparison between infants by not only increasing the confidence of identified microbial functional categories but also revealing previously undetected categories. PMID:25350865

  15. Random Weighting, Strong Tracking, and Unscented Kalman Filter for Soft Tissue Characterization.

    PubMed

    Shin, Jaehyun; Zhong, Yongmin; Oetomo, Denny; Gu, Chengfan

    2018-05-21

    This paper presents a new nonlinear filtering method based on the Hunt-Crossley model for online nonlinear soft tissue characterization. This method overcomes the problem of performance degradation in the unscented Kalman filter due to contact model error. It adopts the concept of Mahalanobis distance to identify contact model error, and further incorporates a scaling factor in predicted state covariance to compensate identified model error. This scaling factor is determined according to the principle of innovation orthogonality to avoid the cumbersome computation of Jacobian matrix, where the random weighting concept is adopted to improve the estimation accuracy of innovation covariance. A master-slave robotic indentation system is developed to validate the performance of the proposed method. Simulation and experimental results as well as comparison analyses demonstrate that the efficacy of the proposed method for online characterization of soft tissue parameters in the presence of contact model error.

  16. Characterization and classification of seven citrus herbs by liquid chromatography-quadrupole time-of-flight mass spectrometry and genetic algorithm optimized support vector machines.

    PubMed

    Duan, Li; Guo, Long; Liu, Ke; Liu, E-Hu; Li, Ping

    2014-04-25

    Citrus herbs have been widely used in traditional medicine and cuisine in China and other countries since the ancient time. However, the authentication and quality control of Citrus herbs has always been a challenging task due to their similar morphological characteristics and the diversity of the multi-components existed in the complicated matrix. In the present investigation, we developed a novel strategy to characterize and classify seven Citrus herbs based on chromatographic analysis and chemometric methods. Firstly, the chemical constituents in seven Citrus herbs were globally characterized by liquid chromatography combined with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Based on their retention time, UV spectra and MS fragmentation behavior, a total of 75 compounds were identified or tentatively characterized in these herbal medicines. Secondly, a segmental monitoring method based on LC-variable wavelength detection was developed for simultaneous quantification of ten marker compounds in these Citrus herbs. Thirdly, based on the contents of the ten analytes, genetic algorithm optimized support vector machines (GA-SVM) was employed to differentiate and classify the 64 samples covering these seven herbs. The obtained classifier showed good prediction performance and the overall prediction accuracy reached 96.88%. The proposed strategy is expected to provide new insight for authentication and quality control of traditional herbs. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Modelling based on Spatial Impulse Response Model for Optimization of Inter Digital Transducers (SAW Sensors) for Non Destructive Testing

    NASA Astrophysics Data System (ADS)

    Fall, D.; Duquennoy, M.; Ouaftouh, M.; Piwakowski, B.; Jenot, F.

    This study deals with modelling SAW-IDT transducers for their optimization. These sensors are specifically developed to characterize properties of thin layers, coatings and functional surfaces. Among the methods of characterization, the ultrasonic methods using Rayleigh surface waves are particularly interesting because the propagation of these waves is close to the surface of material and the energy is concentrated within a layer under the surface of about one wavelength thick. In order to characterize these coatings and structures, it is necessary to work in high frequencies, this is why in this study, SAW-IDT sensors are realized for surface acoustic wave generation. For optimization of these SAW-IDT sensors, particularly their band-width, it is necessary to study various IDT configurations by varying the number of electrodes, dimensions of the electrodes, their shapes and spacings. Thus it is necessary to implement effective and rapid technique for modelling. The originality of this study is to develop simulation tools based on Spatial Impulse Response model. Therefore it will be possible to reduce considerably computing time and results are obtained in a few seconds, instead of several hours (or days) by using finite element method. In order to validate this method, theoretical and experimental results are compared with finite element method and Interferometric measurements. The results obtained show a good overall concordance and confirm effectiveness of suggested method.

  18. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass-Spectrometry (MALDI-TOF MS) Based Microbial Identifications: Challenges and Scopes for Microbial Ecologists

    PubMed Central

    Rahi, Praveen; Prakash, Om; Shouche, Yogesh S.

    2016-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based biotyping is an emerging technique for high-throughput and rapid microbial identification. Due to its relatively higher accuracy, comprehensive database of clinically important microorganisms and low-cost compared to other microbial identification methods, MALDI-TOF MS has started replacing existing practices prevalent in clinical diagnosis. However, applicability of MALDI-TOF MS in the area of microbial ecology research is still limited mainly due to the lack of data on non-clinical microorganisms. Intense research activities on cultivation of microbial diversity by conventional as well as by innovative and high-throughput methods has substantially increased the number of microbial species known today. This important area of research is in urgent need of rapid and reliable method(s) for characterization and de-replication of microorganisms from various ecosystems. MALDI-TOF MS based characterization, in our opinion, appears to be the most suitable technique for such studies. Reliability of MALDI-TOF MS based identification method depends mainly on accuracy and width of reference databases, which need continuous expansion and improvement. In this review, we propose a common strategy to generate MALDI-TOF MS spectral database and advocated its sharing, and also discuss the role of MALDI-TOF MS based high-throughput microbial identification in microbial ecology studies. PMID:27625644

  19. Term Based Comparison Metrics for Controlled and Uncontrolled Indexing Languages

    ERIC Educational Resources Information Center

    Good, B. M.; Tennis, J. T.

    2009-01-01

    Introduction: We define a collection of metrics for describing and comparing sets of terms in controlled and uncontrolled indexing languages and then show how these metrics can be used to characterize a set of languages spanning folksonomies, ontologies and thesauri. Method: Metrics for term set characterization and comparison were identified and…

  20. Characterizing heterogeneous cellular responses to perturbations.

    PubMed

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J

    2008-12-09

    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  1. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods.

    PubMed

    Greening, David W; Xu, Rong; Ji, Hong; Tauro, Bow J; Simpson, Richard J

    2015-01-01

    Exosomes are 40-150 nm extracellular vesicles that are released from a multitude of cell types, and perform diverse cellular functions including intercellular communication, antigen presentation, and transfer of tumorigenic proteins, mRNA and miRNA. Exosomes are important regulators of the cellular niche, and their altered characteristics in many diseases, such as cancer, suggest their importance for diagnostic and therapeutic applications, and as drug delivery vehicles. Exosomes have been purified from biological fluids and in vitro cell cultures using a variety of strategies and techniques. In this chapter, we reveal the protocol and key insights into the isolation, purification and characterization of exosomes, distinct from shed microvesicles and apoptotic blebs. Using the colorectal cancer cell line LIM1863 as a cell model, a comprehensive evaluation of exosome isolation methods including ultracentrifugation (UC-Exos), OptiPrep™ density-based separation (DG-Exos), and immunoaffinity capture using anti-EpCAM-coated magnetic beads (IAC-Exos) were examined. All exosome isolation methodologies contained 40-150 nm vesicles based on electron microscopy, and positive for exosome markers (Alix, TSG101, HSP70) based on immunoblotting. This protocol employed a proteomic profiling approach to characterize the protein composition of exosomes, and label-free spectral counting to evaluate the effectiveness of each method in exosome isolation. Based on the number of MS/MS spectra identified for exosome markers and proteins associated with their biogenesis, trafficking, and release, IAC-Exos was shown to be the most effective method to isolate exosomes. However, the use of density-based separation (DG-Exos) provides significant advantages for exosome isolation when the use of immunoaffinity capture is limited (due to antibody availability and suitability of exosome markers).

  2. AN OBJECTIVE CLIMATOLOGY OF CAROLINA COASTAL FRONTS

    EPA Science Inventory

    This study describes a simple objective method to identify cases of coastal frontogenesis offshore of the Carolinas and to characterize the sensible weather associated with frontal passage at measurement sites near the coast. The identification method, based on surface hourly d...

  3. Quantification of Shape, Angularity, and Surface texture of Base Course Materials

    DOT National Transportation Integrated Search

    1998-01-01

    A state-of-the-art review was conducted to determine existing test methods for characterizing the shape, angularity, and surface texture of coarse aggregates. The review found direct methods used by geologists to determine these characteristics. Thes...

  4. CHARACTERIZATION OF PRECURSOR 165 RRNA FOR AEROMONAS HYDROPHILA

    EPA Science Inventory

    Current strategies for monitoring drinking water quality involve culture-based methods to detect the presence of microbial indicators. However, these methods are insensitive when the organisms have undergone physiological changes such as injury and starvation that can occur in h...

  5. Analysis and feasibility of asphalt pavement performance-based specifications for WisDOT.

    DOT National Transportation Integrated Search

    2016-12-25

    Literature review of most recent methods used for effective characterization of asphalt mixtures resulted in selecting aset of test methods for measuring mixture resistance for rutting and moisture damage at high temperature, fatigue cracking at inte...

  6. Diagnosis of toxoplasmosis and typing of Toxoplasma gondii.

    PubMed

    Liu, Quan; Wang, Ze-Dong; Huang, Si-Yang; Zhu, Xing-Quan

    2015-05-28

    Toxoplasmosis, caused by the obligate intracellular protozoan Toxoplasma gondii, is an important zoonosis with medical and veterinary importance worldwide. The disease is mainly contracted by ingesting undercooked or raw meat containing viable tissue cysts, or by ingesting food or water contaminated with oocysts. The diagnosis and genetic characterization of T. gondii infection is crucial for the surveillance, prevention and control of toxoplasmosis. Traditional approaches for the diagnosis of toxoplasmosis include etiological, immunological and imaging techniques. Diagnosis of toxoplasmosis has been improved by the emergence of molecular technologies to amplify parasite nucleic acids. Among these, polymerase chain reaction (PCR)-based molecular techniques have been useful for the genetic characterization of T. gondii. Serotyping methods based on polymorphic polypeptides have the potential to become the choice for typing T. gondii in humans and animals. In this review, we summarize conventional non-DNA-based diagnostic methods, and the DNA-based molecular techniques for the diagnosis and genetic characterization of T. gondii. These techniques have provided foundations for further development of more effective and accurate detection of T. gondii infection. These advances will contribute to an improved understanding of the epidemiology, prevention and control of toxoplasmosis.

  7. Micro-patterning and characterization of PHEMA-co-PAM-based optical chemical sensors for lab-on-a-chip applications.

    PubMed

    Zhu, Haixin; Zhou, Xianfeng; Su, Fengyu; Tian, Yanqing; Ashili, Shashanka; Holl, Mark R; Meldrum, Deirdre R

    2012-10-01

    We report a novel method for wafer level, high throughput optical chemical sensor patterning, with precise control of the sensor volume and capability of producing arbitrary microscale patterns. Monomeric oxygen (O(2)) and pH optical probes were polymerized with 2-hydroxyethyl methacrylate (HEMA) and acrylamide (AM) to form spin-coatable and further crosslinkable polymers. A micro-patterning method based on micro-fabrication techniques (photolithography, wet chemical process and reactive ion etch) was developed to miniaturize the sensor film onto glass substrates in arbitrary sizes and shapes. The sensitivity of fabricated micro-patterns was characterized under various oxygen concentrations and pH values. The process for spatially integration of two sensors (Oxygen and pH) on the same substrate surface was also developed, and preliminary fabrication and characterization results were presented. To the best of our knowledge, it is the first time that poly (2-hydroxylethyl methacrylate)-co-poly (acrylamide) (PHEMA-co-PAM)-based sensors had been patterned and integrated at the wafer level with micron scale precision control using microfabrication techniques. The developed methods can provide a feasible way to miniaturize and integrate the optical chemical sensor system and can be applied to any lab-on-a-chip system, especially the biological micro-systems requiring optical sensing of single or multiple analytes.

  8. Revised Methods for Characterizing Stream Habitat in the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Waite, Ian R.; D'Arconte, Patricia J.; Meador, Michael R.; Maupin, Molly A.; Gurtz, Martin E.

    1998-01-01

    Stream habitat is characterized in the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. The goal of stream habitat characterization is to relate habitat to other physical, chemical, and biological factors that describe water-quality conditions. To accomplish this goal, environmental settings are described at sites selected for water-quality assessment. In addition, spatial and temporal patterns in habitat are examined at local, regional, and national scales. This habitat protocol contains updated methods for evaluating habitat in NAWQA Study Units. Revisions are based on lessons learned after 6 years of applying the original NAWQA habitat protocol to NAWQA Study Unit ecological surveys. Similar to the original protocol, these revised methods for evaluating stream habitat are based on a spatially hierarchical framework that incorporates habitat data at basin, segment, reach, and microhabitat scales. This framework provides a basis for national consistency in collection techniques while allowing flexibility in habitat assessment within individual Study Units. Procedures are described for collecting habitat data at basin and segment scales; these procedures include use of geographic information system data bases, topographic maps, and aerial photographs. Data collected at the reach scale include channel, bank, and riparian characteristics.

  9. Synthesis and Characterization of Molybdenum Based Colloidal Particles.

    PubMed

    Moreno; Vidoni; Ovalles; Chaudret; Urbina; Krentzein

    1998-11-15

    The synthesis and characterization of molybdenum colloidal particles were evaluated using thermal and sonochemical methods and starting from different metal precursors, Mo(CO)6 and (NH4)2MoS4. The products were characterized by elemental analysis, spectroscopic (UV, FTIR), and surface analysis (XPS) techniques, as well as by transmission electron microscopy (TEM) for determining the particle sizes. Using Mo(CO)6 as metal source, particle sizes with an average diameter of 1.5 nm can be obtained using tert-amyl alcohol as solvent and tetrahydrothiophene as sulfurating ligand. The characterization of these particles showed that they are composed of molybdenum oxide MoO3. Using (NH4)2MoS4 as metal precursor, particles with average diameters of 4.7 and 2.5 nm were synthesized using thermal and sonochemical methods, respectively. The characterization of these particles showed them to be composed of molybdenum sulfide, MoS2. The sonochemical method proved to be the fastest and most convenient synthetic pathway of obtaining small colloidal particles at low temperatures and with control of the average size. Copyright 1998 Academic Press.

  10. Characterization of the gas sensors based on polymer-coated resonant microcantilevers for the detection of volatile organic compounds.

    PubMed

    Dong, Ying; Gao, Wei; Zhou, Qin; Zheng, Yi; You, Zheng

    2010-06-25

    The gas sensors based on polymer-coated resonant microcantilevers for volatile organic compounds (VOCs) detection are investigated. A method to characterize the gas sensors through sensor calibration is proposed. The expressions for the estimation of the characteristic parameters are derived. The effect of the polymer coating location on the sensor's sensitivity is investigated and the formula to calculate the polymer-analyte partition coefficient without knowing the polymer coating features is presented for the first time. Three polymers: polyethyleneoxide (PEO), polyethylenevinylacetate (PEVA) and polyvinylalcohol (PVA) are used to perform the experiments. Six organic solvents: toluene, benzene, ethanol, acetone, hexane and octane are used as analytes. The response time, reversibility, hydrophilicity, sensitivity and selectivity of the polymer layers are discussed. According to the results, highly sensitive sensors for each of the analytes are proposed. Based on the characterization method, a convenient and flexible way to the construction of electric nose system by the polymer-coated resonant microcantilevers can be achieved. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Analysis and Characterization of High-Purity Talc for Use in Propellants; Determination of Talc in Propellants

    DTIC Science & Technology

    1975-12-01

    is determined by combustion in an induction furnace with iron as a flux. The methods for moisture, loss in ignition, water-soluble matter, acid... determination of talc in nitro- cellulose-base propellants. The first method (which is the method recom- mended for the usual nitrocellulose -base...In the present report an improved scheme is proposed for the analysis of talc. The silica and magnesium oxide are determined by fusion with sodium

  12. Characterizing Sorghum Panicles using 3D Point Clouds

    NASA Astrophysics Data System (ADS)

    Lonesome, M.; Popescu, S. C.; Horne, D. W.; Pugh, N. A.; Rooney, W.

    2017-12-01

    To address demands of population growth and impacts of global climate change, plant breeders must increase crop yield through genetic improvement. However, plant phenotyping, the characterization of a plant's physical attributes, remains a primary bottleneck in modern crop improvement programs. 3D point clouds generated from terrestrial laser scanning (TLS) and unmanned aerial systems (UAS) based structure from motion (SfM) are a promising data source to increase the efficiency of screening plant material in breeding programs. This study develops and evaluates methods for characterizing sorghum (Sorghum bicolor) panicles (heads) in field plots from both TLS and UAS-based SfM point clouds. The TLS point cloud over experimental sorghum field at Texas A&M farm in Burleston County TX were collected using a FARO Focus X330 3D laser scanner. SfM point cloud was generated from UAS imagery captured using a Phantom 3 Professional UAS at 10m altitude and 85% image overlap. The panicle detection method applies point cloud reflectance, height and point density attributes characteristic of sorghum panicles to detect them and estimate their dimensions (panicle length and width) through image classification and clustering procedures. We compare the derived panicle counts and panicle sizes with field-based and manually digitized measurements in selected plots and study the strengths and limitations of each data source for sorghum panicle characterization.

  13. Remote Determination of Time-Dependent Stiffness of Surface-Degrading-Polymer Scaffolds Via Synchrotron-Based Imaging.

    PubMed

    Bawolin, N K; Chen, X B

    2017-04-01

    Surface-degrading polymers have been widely used to fabricate scaffolds with the mechanical properties appropriate for tissue regeneration/repair. During their surface degradation, the material properties of polymers remain approximately unchanged, but the scaffold geometry and thus mechanical properties vary with time. This paper presents a novel method to determine the time-dependent mechanical properties, particularly stiffness, of scaffolds from the geometric changes captured by synchrotron-based imaging, with the help of finite element analysis (FEA). Three-dimensional (3D) tissue scaffolds were fabricated from surface-degrading polymers, and during their degradation, the tissue scaffolds were imaged via the synchrotron-based imaging to characterize their changing geometry. On this basis, the stiffness behavior of scaffolds was estimated from the FEA, and the results obtained were compared to the direct measurements of scaffold stiffness from the load-displacement material testing. The comparison illustrates that the Young's moduli estimated from the FEA and characterized geometry are in agreement with the ones of direct measurements. The developed method of estimating the mechanical behavior was also demonstrated effective with a nondegrading scaffold that displays the nonlinear stress-strain behavior. The in vivo monitoring of Young's modulus by morphology characterization also suggests the feasibility of characterizing experimentally the difference between in vivo and in vitro surface degradation of tissue engineering constructs.

  14. Investigating Students' Reasoning about Acid-Base Reactions

    ERIC Educational Resources Information Center

    Cooper, Melanie M.; Kouyoumdjian, Hovig; Underwood, Sonia M.

    2016-01-01

    Acid-base chemistry is central to a wide range of reactions. If students are able to understand how and why acid-base reactions occur, it should provide a basis for reasoning about a host of other reactions. Here, we report the development of a method to characterize student reasoning about acid-base reactions based on their description of…

  15. Characterization of Change and Significance for Clinical Findings in Radiology Reports Through Natural Language Processing.

    PubMed

    Hassanpour, Saeed; Bay, Graham; Langlotz, Curtis P

    2017-06-01

    We built a natural language processing (NLP) method to automatically extract clinical findings in radiology reports and characterize their level of change and significance according to a radiology-specific information model. We utilized a combination of machine learning and rule-based approaches for this purpose. Our method is unique in capturing different features and levels of abstractions at surface, entity, and discourse levels in text analysis. This combination has enabled us to recognize the underlying semantics of radiology report narratives for this task. We evaluated our method on radiology reports from four major healthcare organizations. Our evaluation showed the efficacy of our method in highlighting important changes (accuracy 99.2%, precision 96.3%, recall 93.5%, and F1 score 94.7%) and identifying significant observations (accuracy 75.8%, precision 75.2%, recall 75.7%, and F1 score 75.3%) to characterize radiology reports. This method can help clinicians quickly understand the key observations in radiology reports and facilitate clinical decision support, review prioritization, and disease surveillance.

  16. Virtual substrate method for nanomaterials characterization

    PubMed Central

    Da, Bo; Liu, Jiangwei; Yamamoto, Mahito; Ueda, Yoshihiro; Watanabe, Kazuyuki; Cuong, Nguyen Thanh; Li, Songlin; Tsukagoshi, Kazuhito; Yoshikawa, Hideki; Iwai, Hideo; Tanuma, Shigeo; Guo, Hongxuan; Gao, Zhaoshun; Sun, Xia; Ding, Zejun

    2017-01-01

    Characterization techniques available for bulk or thin-film solid-state materials have been extended to substrate-supported nanomaterials, but generally non-quantitatively. This is because the nanomaterial signals are inevitably buried in the signals from the underlying substrate in common reflection-configuration techniques. Here, we propose a virtual substrate method, inspired by the four-point probe technique for resistance measurement as well as the chop-nod method in infrared astronomy, to characterize nanomaterials without the influence of underlying substrate signals from four interrelated measurements. By implementing this method in secondary electron (SE) microscopy, a SE spectrum (white electrons) associated with the reflectivity difference between two different substrates can be tracked and controlled. The SE spectrum is used to quantitatively investigate the covering nanomaterial based on subtle changes in the transmission of the nanomaterial with high efficiency rivalling that of conventional core-level electrons. The virtual substrate method represents a benchmark for surface analysis to provide ‘free-standing' information about supported nanomaterials. PMID:28548114

  17. A new method for sperm characterization for infertility treatment: hypothesis testing by using combination of watershed segmentation and graph theory.

    PubMed

    Shojaedini, Seyed Vahab; Heydari, Masoud

    2014-10-01

    Shape and movement features of sperms are important parameters for infertility study and treatment. In this article, a new method is introduced for characterization sperms in microscopic videos. In this method, first a hypothesis framework is defined to distinguish sperms from other particles in captured video. Then decision about each hypothesis is done in following steps: Selecting some primary regions as candidates for sperms by watershed-based segmentation, pruning of some false candidates during successive frames using graph theory concept and finally confirming correct sperms by using their movement trajectories. Performance of the proposed method is evaluated on real captured images belongs to semen with high density of sperms. The obtained results show the proposed method may detect 97% of sperms in presence of 5% false detections and track 91% of moving sperms. Furthermore, it can be shown that better characterization of sperms in proposed algorithm doesn't lead to extracting more false sperms compared to some present approaches.

  18. Gate frequency sweep: An effective method to evaluate the dynamic performance of AlGaN/GaN power heterojunction field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santi, C. de; Meneghini, M., E-mail: matteo.meneghini@dei.unipd.it; Meneghesso, G.

    2014-08-18

    With this paper we propose a test method for evaluating the dynamic performance of GaN-based transistors, namely, gate-frequency sweep measurements: the effectiveness of the method is verified by characterizing the dynamic performance of Gate Injection Transistors. We demonstrate that this method can provide an effective description of the impact of traps on the transient performance of Heterojunction Field Effect Transistors, and information on the properties (activation energy and cross section) of the related defects. Moreover, we discuss the relation between the results obtained by gate-frequency sweep measurements and those collected by conventional drain current transients and double pulse characterization.

  19. Synthesis, characterization and biological studies of Schiff bases derived from heterocyclic moiety.

    PubMed

    Shanty, Angamaly Antony; Philip, Jessica Elizabeth; Sneha, Eeettinilkunnathil Jose; Prathapachandra Kurup, Maliyeckal R; Balachandran, Sreedharannair; Mohanan, Puzhavoorparambil Velayudhan

    2017-02-01

    Some new Schiff bases (H 1 -H 7 ) have been synthesized by the condensation of 2-aminophenol, 2-amino-4-nitrophenol, 2-amino-4-methylphenol, 2-amino benzimidazole with thiophene-2-carboxaldehyde and pyrrole-2-carboxaldehyde. The structures of newly synthesized compounds were characterized by elemental analysis, FT-IR, 1 H NMR, UV-VIS, and single crystal X-ray crystallography. The in vitro antibacterial activity of the synthesized compounds has been tested against Salmonella typhi, Bacillus coagulans, Bacillus pumills, Escherichia coli, Bacillus circulans, Pseudomonas, Clostridium and Klebsilla pneumonia by disk diffusion method. The quantitative antimicrobial activity of the test compounds was evaluated using Resazurin based Microtiter Dilution Assay. Ampicillin was used as standard antibiotics. Schiff bases individually exhibited varying degrees of inhibitory effects on the growth of the tested bacterial species. The antioxidant activity of the synthesized compounds was determined by the 1,1-diphenyl-2-picrylhydrazyl(DPPH) method. IC 50 value of synthesized Schiff bases were calculated and compared with standard BHA. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Capillary zone electrophoresis method for a highly glycosylated and sialylated recombinant protein: development, characterization and application for process development.

    PubMed

    Zhang, Le; Lawson, Ken; Yeung, Bernice; Wypych, Jette

    2015-01-06

    A purity method based on capillary zone electrophoresis (CZE) has been developed for the separation of isoforms of a highly glycosylated protein. The separation was found to be driven by the number of sialic acids attached to each isoform. The method has been characterized using orthogonal assays and shown to have excellent specificity, precision and accuracy. We have demonstrated the CZE method is a useful in-process assay to support cell culture and purification development of this glycoprotein. Compared to isoelectric focusing (IEF), the CZE method provides more quantitative results and higher sample throughput with excellent accuracy, qualities that are required for process development. In addition, the CZE method has been applied in the stability testing of purified glycoprotein samples.

  1. EVALUATION OF FUGITIVE EMISSIONS USING GROUND-BASED OPTICAL REMOTE SENSING TECHNOLOGY

    EPA Science Inventory

    EPA has developed and evaluated a method for characterizing fugitive emissions from large area sources. The method, known as radial plume mapping (RPM) uses multiple-beam, scanning, optical remote sensing (ORS) instrumentation such as open-path Fourier transform infrared spectro...

  2. Development of Cross-Assembly Phage PCR-Based Methods for Human Fecal Source Identification

    EPA Science Inventory

    Technologies that can characterize human fecal pollution in environmental waters offer many advantages over traditional general indicator approaches. However, many human-associated methods cross-react with non-human animal sources and lack suitable sensitivity for fecal source id...

  3. CHARACTERIZATION OF PRECURSOR FOR 16S rRNA FOR AEROMONAS HYDROPHILA

    EPA Science Inventory

    Current strategies for monitoring drinking water quality involve culture-based methods to detect the presence of microbial indicators. However, these methods are insensitive when the organisms have undergone physiological changes such as injury and starvation that can occur in h...

  4. Information-Processing Theory and Perspectives on Development: A Look at Concepts and Methods--The View of a Developmental Ethologist.

    ERIC Educational Resources Information Center

    Jesness, Bradley

    This paper examines concepts in information-processing theory which are likely to be relevant to development and characterizes the methods and data upon which the concepts are based. Among the concepts examined are those which have slight empirical grounds. Other concepts examined are those which seem to have empirical bases but which are…

  5. Chromatic characterization of ion-exchanged glass binary phase plates for mode-division multiplexing.

    PubMed

    Prieto-Blanco, Xesús; Montero-Orille, Carlos; Moreno, Vicente; Mateo, Eduardo F; Liñares, Jesús

    2015-04-10

    Mode-division multiplexing (MDM) in few-mode fibers is regarded as a promising candidate to increase optical network capacity. A fundamental element for MDM is a modal transformer to LP modes which can be implemented in a free-space basis by using multiregion phase plates, that is, LP plates. Likewise, several wavelengths have to be used due to wavelength multiplexing purposes, optical amplification tasks, and so on. In this work we show that efficient monolithic binary phase plates for different wavelengths can be fabricated by ion-exchange in glass and used for MDM tasks. We introduce an optical characterization method of the chromatic properties of such phase plates which combines the inverse Wentzel-Kramers-Brillouin (IWKB) together with Mach-Zehnder and Michelson-based interferometric techniques. The interferometric method provides a measurement of the phase step for several wavelengths, which characterizes the chromatic properties of the phase plate. Consequently, it is shown that the IWKB method allows us to design and characterize the phase plates in an easy and fast way.

  6. The uniformity study of non-oxide thin film at device level using electron energy loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Peng; Zheng, Yuankai; Li, Shaoping; Wang, Haifeng

    2018-05-01

    Electron energy loss spectroscopy (EELS) has been widely used as a chemical analysis technique to characterize materials chemical properties, such as element valence states, atoms/ions bonding environment. This study provides a new method to characterize physical properties (i.e., film uniformity, grain orientations) of non-oxide thin films in the magnetic device by using EELS microanalysis on scanning transmission electron microscope. This method is based on analyzing white line ratio of spectra and related extended energy loss fine structures so as to correlate it with thin film uniformity. This new approach can provide an effective and sensitive method to monitor/characterize thin film quality (i.e., uniformity) at atomic level for thin film development, which is especially useful for examining ultra-thin films (i.e., several nanometers) or embedded films in devices for industry applications. More importantly, this technique enables development of quantitative characterization of thin film uniformity and it would be a remarkably useful technique for examining various types of devices for industrial applications.

  7. A Parameter Identification Method for Helicopter Noise Source Identification and Physics-Based Semi-Empirical Modeling

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric, II; Schmitz, Fredric H.

    2010-01-01

    A new physics-based parameter identification method for rotor harmonic noise sources is developed using an acoustic inverse simulation technique. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. This new method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor Blade-Vortex Interaction (BVI) noise, allowing accurate estimates of BVI noise to be made for operating conditions based on a small number of measurements taken at different operating conditions.

  8. Critical review of methods for risk ranking of food-related hazards, based on risks for human health.

    PubMed

    Van der Fels-Klerx, H J; Van Asselt, E D; Raley, M; Poulsen, M; Korsgaard, H; Bredsdorff, L; Nauta, M; D'agostino, M; Coles, D; Marvin, H J P; Frewer, L J

    2018-01-22

    This study aimed to critically review methods for ranking risks related to food safety and dietary hazards on the basis of their anticipated human health impacts. A literature review was performed to identify and characterize methods for risk ranking from the fields of food, environmental science and socio-economic sciences. The review used a predefined search protocol, and covered the bibliographic databases Scopus, CAB Abstracts, Web of Sciences, and PubMed over the period 1993-2013. All references deemed relevant, on the basis of predefined evaluation criteria, were included in the review, and the risk ranking method characterized. The methods were then clustered-based on their characteristics-into eleven method categories. These categories included: risk assessment, comparative risk assessment, risk ratio method, scoring method, cost of illness, health adjusted life years (HALY), multi-criteria decision analysis, risk matrix, flow charts/decision trees, stated preference techniques and expert synthesis. Method categories were described by their characteristics, weaknesses and strengths, data resources, and fields of applications. It was concluded there is no single best method for risk ranking. The method to be used should be selected on the basis of risk manager/assessor requirements, data availability, and the characteristics of the method. Recommendations for future use and application are provided.

  9. Techniques for the characterization of sub-10-fs optical pulses: a comparison

    NASA Astrophysics Data System (ADS)

    Gallmann, L.; Sutter, D. H.; Matuschek, N.; Steinmeyer, G.; Keller, U.

    Several methods have been proposed for the phase and amplitude characterization of sub-10-fs pulses with nJ energies. An overview of these techniques is presented, with a focus on the comparison of second-harmonic generation frequency-resolved optical gating (SHG-FROG) and spectral phase interferometry for direct electric-field reconstruction (SPIDER). We describe a collinear FROG variant based on type-II phase-matching that completely avoids the geometrical blurring artifact and use both this and SPIDER for the characterization of sub-10-fs Ti:sapphire laser pulses. The results of both methods are compared in an extensive statistical analysis. From this first direct experimental comparison of FROG and SPIDER, guidelines for accurate measurements of sub-10-fs pulses are derived. We point out limitations of both methods for pulses in this ultrashort pulse regime.

  10. Colorimetric characterization models based on colorimetric characteristics evaluation for active matrix organic light emitting diode panels.

    PubMed

    Gong, Rui; Xu, Haisong; Tong, Qingfen

    2012-10-20

    The colorimetric characterization of active matrix organic light emitting diode (AMOLED) panels suffers from their poor channel independence. Based on the colorimetric characteristics evaluation of channel independence and chromaticity constancy, an accurate colorimetric characterization method, namely, the polynomial compensation model (PC model) considering channel interactions was proposed for AMOLED panels. In this model, polynomial expressions are employed to calculate the relationship between the prediction errors of XYZ tristimulus values and the digital inputs to compensate the XYZ prediction errors of the conventional piecewise linear interpolation assuming the variable chromaticity coordinates (PLVC) model. The experimental results indicated that the proposed PC model outperformed other typical characterization models for the two tested AMOLED smart-phone displays and for the professional liquid crystal display monitor as well.

  11. Crystal structure characterization as well as theoretical study of spectroscopic properties of novel Schiff bases containing pyrazole group.

    PubMed

    Guo, Jia; Ren, Tiegang; Zhang, Jinglai; Li, Guihui; Li, Weijie; Yang, Lirong

    2012-09-01

    A series of novel Schiff bases containing pyrazole group were synthesized using 1-aryl-3-methyl-4-benzoyl-5-pyrazolone and phenylenediamine as the starting materials. All as-synthesized Schiff bases were characterized by means of NMR, FT-IR, and MS; and the molecular geometries of two Schiff bases as typical examples were determined by means of single crystal X-ray diffraction. In the meantime, the ultraviolet-visible light absorption spectra and fluorescent spectra of various as-synthesized products were also measured. Moreover, the B3LYP/6-1G(d,p) method was used for the optimization of the ground state geometry of the Schiff bases; and the spectroscopic properties of the products were computed and compared with corresponding experimental data based on cc-pVTZ basis set of TD-B3LYP method. It has been found that all as-synthesized Schiff bases show a remarkable absorption peak in a wavelength range of 270-370 nm; and their maximum emission peaks are around 344 nm and 332 nm, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Characterization of background concentrations of contaminants using a mixture of normal distributions.

    PubMed

    Qian, Song S; Lyons, Regan E

    2006-10-01

    We present a Bayesian approach for characterizing background contaminant concentration distributions using data from sites that may have been contaminated. Our method, focused on estimation, resolves several technical problems of the existing methods sanctioned by the U.S. Environmental Protection Agency (USEPA) (a hypothesis testing based method), resulting in a simple and quick procedure for estimating background contaminant concentrations. The proposed Bayesian method is applied to two data sets from a federal facility regulated under the Resource Conservation and Restoration Act. The results are compared to background distributions identified using existing methods recommended by the USEPA. The two data sets represent low and moderate levels of censorship in the data. Although an unbiased estimator is elusive, we show that the proposed Bayesian estimation method will have a smaller bias than the EPA recommended method.

  13. Impulse response method for characterization of echogenic liposomes.

    PubMed

    Raymond, Jason L; Luan, Ying; van Rooij, Tom; Kooiman, Klazina; Huang, Shao-Ling; McPherson, David D; Versluis, Michel; de Jong, Nico; Holland, Christy K

    2015-04-01

    An optical characterization method is presented based on the use of the impulse response to characterize the damping imparted by the shell of an air-filled ultrasound contrast agent (UCA). The interfacial shell viscosity was estimated based on the unforced decaying response of individual echogenic liposomes (ELIP) exposed to a broadband acoustic impulse excitation. Radius versus time response was measured optically based on recordings acquired using an ultra-high-speed camera. The method provided an efficient approach that enabled statistical measurements on 106 individual ELIP. A decrease in shell viscosity, from 2.1 × 10(-8) to 2.5 × 10(-9) kg/s, was observed with increasing dilatation rate, from 0.5 × 10(6) to 1 × 10(7) s(-1). This nonlinear behavior has been reported in other studies of lipid-shelled UCAs and is consistent with rheological shear-thinning. The measured shell viscosity for the ELIP formulation used in this study [κs = (2.1 ± 1.0) × 10(-8) kg/s] was in quantitative agreement with previously reported values on a population of ELIP and is consistent with other lipid-shelled UCAs. The acoustic response of ELIP therefore is similar to other lipid-shelled UCAs despite loading with air instead of perfluorocarbon gas. The methods described here can provide an accurate estimate of the shell viscosity and damping for individual UCA microbubbles.

  14. Analysis of x-ray tomography data of an extruded low density styrenic foam: an image analysis study

    NASA Astrophysics Data System (ADS)

    Lin, Jui-Ching; Heeschen, William

    2016-10-01

    Extruded styrenic foams are low density foams that are widely used for thermal insulation. It is difficult to precisely characterize the structure of the cells in low density foams by traditional cross-section viewing due to the frailty of the walls of the cells. X-ray computed tomography (CT) is a non-destructive, three dimensional structure characterization technique that has great potential for structure characterization of styrenic foams. Unfortunately the intrinsic artifacts of the data and the artifacts generated during image reconstruction are often comparable in size and shape to the thin walls of the foam, making robust and reliable analysis of cell sizes challenging. We explored three different image processing methods to clean up artifacts in the reconstructed images, thus allowing quantitative three dimensional determination of cell size in a low density styrenic foam. Three image processing approaches - an intensity based approach, an intensity variance based approach, and a machine learning based approach - are explored in this study, and the machine learning image feature classification method was shown to be the best. Individual cells are segmented within the images after the images were cleaned up using the three different methods and the cell sizes are measured and compared in the study. Although the collected data with the image analysis methods together did not yield enough measurements for a good statistic of the measurement of cell sizes, the problem can be resolved by measuring multiple samples or increasing imaging field of view.

  15. Remote sensing for site characterization

    USGS Publications Warehouse

    Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.; Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.

    2000-01-01

    This volume, Remote Sensing for Site Characterization, describes the feasibility of aircraft- and satellite-based methods of revealing environmental-geological problems. A balanced ratio between explanations of the methodological/technical side and presentations of case studies is maintained. The comparison of case studies from North America and Germany show how the respective territorial conditions lead to distinct methodological approaches.

  16. Expression, Purification, and Characterization of a Carbohydrate-Active Enzyme: A Research-Inspired Methods Optimization Experiment for the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Willbur, Jaime F.; Vail, Justin D.; Mitchell, Lindsey N.; Jakeman, David L.; Timmons, Shannon C.

    2016-01-01

    The development and implementation of research-inspired, discovery-based experiences into science laboratory curricula is a proven strategy for increasing student engagement and ownership of experiments. In the novel laboratory module described herein, students learn to express, purify, and characterize a carbohydrate-active enzyme using modern…

  17. Nanoparticle Synthesis, Characterization, and Ecotoxicity: A Research-Based Set of Laboratory Experiments for a General Chemistry Course

    ERIC Educational Resources Information Center

    Amaris, Zoe N.; Freitas, Daniel N.; Mac, Karen; Gerner, Kyle T.; Nameth, Catherine; Wheeler, Korin E.

    2017-01-01

    A series of laboratory experiments were developed to introduce first-year chemistry students to nanoscience through a green chemistry approach. Students made and characterized the stability of silver nanoparticles using two different methods: UV-visible spectroscopy and dynamic light scattering. They then assessed the ecotoxicity of silver…

  18. Materials thermal and thermoradiative properties/characterization technology

    NASA Technical Reports Server (NTRS)

    Dewitt, D. P.; Ho, C. Y.

    1989-01-01

    Reliable properties data on well characterized materials are necessary for design of experiments and interpretation of experimental results. The activities of CINDAS to provide data bases and predict properties are discussed. An understanding of emissivity behavior is important in order to select appropriate methods for non-contact temperature determination. Related technical issues are identified and recommendations are offered.

  19. Characterizing the Motivational Orientation of Students in Higher Education: A Naturalistic Study in Three Hong Kong Universities

    ERIC Educational Resources Information Center

    Kember, David; Hong, Celina; Ho, Amber

    2008-01-01

    Background: Consideration of motivation in higher education has often been drawn upon theories and research that were based upon school or workplace studies. Aims: This paper reports an open naturalistic study to better characterize the motivational orientation of students in higher education. Method: Open semi-structured individual interviews…

  20. Statistical characterization of carbon phenolic prepreg materials, volume 1

    NASA Technical Reports Server (NTRS)

    Beckley, Don A.; Stites, John, Jr.

    1988-01-01

    The objective was to characterize several lots of materials used for carbon/carbon and carbon/phenol product manufacture. Volume one is organized into testing categories based on raw material of product form. Each category contains a discussion of the sampling plan, comments and observations on each test method utilized, and a summary of the results obtained each category.

  1. Observer for a thick layer of solid deuterium-tritium using backlit optical shadowgraphy and interferometry.

    PubMed

    Choux, Alexandre; Busvelle, Eric; Gauthier, Jean Paul; Pascal, Ghislain

    2007-11-20

    Our work is in the context of the French "laser mégajoule" project, about fusion by inertial confinement. The project leads to the problem of characterizing the inner surface, of the approximately spherical target, by optical shadowgraphy techniques. Our work is entirely based on the basic idea that optical shadowgraphy produces "caustics" of systems of optical rays, which contain a great deal of 3D information about the surface to be characterized. We develop a method of 3D reconstruction based upon this idea plus a "small perturbations" technique. Although computations are made in the special "spherical" case, the method is in fact general and may be extended to several other situations.

  2. Glycation of antibodies: Modification, methods and potential effects on biological functions.

    PubMed

    Wei, Bingchuan; Berning, Kelsey; Quan, Cynthia; Zhang, Yonghua Taylor

    Glycation is an important protein modification that could potentially affect bioactivity and molecular stability, and glycation of therapeutic proteins such as monoclonal antibodies should be well characterized. Glycated protein could undergo further degradation into advance glycation end (AGE) products. Here, we review the root cause of glycation during the manufacturing, storage and in vivo circulation of therapeutic antibodies, and the current analytical methods used to detect and characterize glycation and AGEs, including boronate affinity chromatography, charge-based methods, liquid chromatography-mass spectrometry and colorimetric assay. The biological effects of therapeutic protein glycation and AGEs, which ranged from no affect to loss of activity, are also discussed.

  3. Study and characterization of a MEMS micromirror device

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    2004-08-01

    In this paper, advances in our study and characterization of a MEMS micromirror device are presented. The micromirror device, of 510 mm characteristic length, operates in a dynamic mode with a maximum displacement on the order of 10 mm along its principal optical axis and oscillation frequencies of up to 1.3 kHz. Developments are carried on by analytical, computational, and experimental methods. Analytical and computational nonlinear geometrical models are developed in order to determine the optimal loading-displacement operational characteristics of the micromirror. Due to the operational mode of the micromirror, the experimental characterization of its loading-displacement transfer function requires utilization of advanced optical metrology methods. Optoelectronic holography (OEH) methodologies based on multiple wavelengths that we are developing to perform such characterization are described. It is shown that the analytical, computational, and experimental approach is effective in our developments.

  4. Application of the UTCHEM simulator to DNAPL site characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, G.W.

    1995-12-31

    Numerical simulation using the University of Texas Chemical Flood Simulator (UTCHEM) was used to evaluate two dense, nonaqueous phase liquid (DNAPL) characterization methods. The methods involved the use of surfactants and partitioning tracers to characterize a suspected trichloroethene (TCE) DNAPL zone beneath a US Air Force Plant in Texas. The simulations were performed using a cross-sectional model of the alluvial aquifer in an area that is believed to contain residual TCE at the base of the aquifer. Characterization simulations compared standard groundwater sampling, an interwell NAPL Solubilization Test, and an interwell NAPL Partitioning Tracer Test. The UTCHEM simulations illustrated howmore » surfactants and partitioning tracers can be used to give definite evidence of the presence and volume of DNAPL in a situation where conventional groundwater sampling can only indicate the existence of the dissolved contaminant plume.« less

  5. Quantitative Characterization of Magnetic Mobility of Nanoparticle in Solution-Based Condition.

    PubMed

    Rodoplu, Didem; Boyaci, Ismail H; Bozkurt, Akif G; Eksi, Haslet; Zengin, Adem; Tamer, Ugur; Aydogan, Nihal; Ozcan, Sadan; Tugcu-Demiröz, Fatmanur

    2015-01-01

    Magnetic nanoparticles are considered as the ideal substrate to selectively isolate target molecules or organisms from sample solutions in a wide variety of applications including bioassays, bioimaging and environmental chemistry. The broad array of these applications in fields requires the accurate magnetic characterization of nanoparticles for a variety of solution based-conditions. Because the freshly synthesized magnetic nanoparticles demonstrated a perfect magnetization value in solid form, they exhibited a different magnetic behavior in solution. Here, we present simple quantitative method for the measurement of magnetic mobility of nanoparticles in solution-based condition. Magnetic mobility of the nanoparticles was quantified with initial mobility of the particles using UV-vis absorbance spectroscopy in water, ethanol and MES buffer. We demonstrated the efficacy of this method through a systematic characterization of four different core-shell structures magnetic nanoparticles over three different surface modifications. The solid nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and saturation magnetization (Ms). The surfaces of the nanoparticles were functionalized with 11-mercaptoundecanoic acid and bovine serum albumin BSA was selected as biomaterial. The effect of the surface modification and solution media on the stability of the nanoparticles was monitored by zeta potentials and hydrodynamic diameters of the nanoparticles. Results obtained from the mobility experiments indicate that the initial mobility was altered with solution media, surface functionalization, size and shape of the magnetic nanoparticle. The proposed method easily determines the interactions between the magnetic nanoparticles and their surrounding biological media, the magnetophoretic responsiveness of nanoparticles and the initial mobilities of the nanoparticles.

  6. Mapping the distribution of materials in hyperspectral data using the USGS Material Identification and Characterization Algorithm (MICA)

    USGS Publications Warehouse

    Kokaly, R.F.; King, T.V.V.; Hoefen, T.M.

    2011-01-01

    Identifying materials by measuring and analyzing their reflectance spectra has been an important method in analytical chemistry for decades. Airborne and space-based imaging spectrometers allow scientists to detect materials and map their distributions across the landscape. With new satellite-borne hyperspectral sensors planned for the future, for example, HYSPIRI (HYPerspectral InfraRed Imager), robust methods are needed to fully exploit the information content of hyperspectral remote sensing data. A method of identifying and mapping materials using spectral-feature based analysis of reflectance data in an expert-system framework called MICA (Material Identification and Characterization Algorithm) is described in this paper. The core concepts and calculations of MICA are presented. A MICA command file has been developed and applied to map minerals in the full-country coverage of the 2007 Afghanistan HyMap hyperspectral data. ?? 2011 IEEE.

  7. shinyGISPA: A web application for characterizing phenotype by gene sets using multiple omics data combinations.

    PubMed

    Dwivedi, Bhakti; Kowalski, Jeanne

    2018-01-01

    While many methods exist for integrating multi-omics data or defining gene sets, there is no one single tool that defines gene sets based on merging of multiple omics data sets. We present shinyGISPA, an open-source application with a user-friendly web-based interface to define genes according to their similarity in several molecular changes that are driving a disease phenotype. This tool was developed to help facilitate the usability of a previously published method, Gene Integrated Set Profile Analysis (GISPA), among researchers with limited computer-programming skills. The GISPA method allows the identification of multiple gene sets that may play a role in the characterization, clinical application, or functional relevance of a disease phenotype. The tool provides an automated workflow that is highly scalable and adaptable to applications that go beyond genomic data merging analysis. It is available at http://shinygispa.winship.emory.edu/shinyGISPA/.

  8. shinyGISPA: A web application for characterizing phenotype by gene sets using multiple omics data combinations

    PubMed Central

    Dwivedi, Bhakti

    2018-01-01

    While many methods exist for integrating multi-omics data or defining gene sets, there is no one single tool that defines gene sets based on merging of multiple omics data sets. We present shinyGISPA, an open-source application with a user-friendly web-based interface to define genes according to their similarity in several molecular changes that are driving a disease phenotype. This tool was developed to help facilitate the usability of a previously published method, Gene Integrated Set Profile Analysis (GISPA), among researchers with limited computer-programming skills. The GISPA method allows the identification of multiple gene sets that may play a role in the characterization, clinical application, or functional relevance of a disease phenotype. The tool provides an automated workflow that is highly scalable and adaptable to applications that go beyond genomic data merging analysis. It is available at http://shinygispa.winship.emory.edu/shinyGISPA/. PMID:29415010

  9. Authorship attribution based on Life-Like Network Automata.

    PubMed

    Machicao, Jeaneth; Corrêa, Edilson A; Miranda, Gisele H B; Amancio, Diego R; Bruno, Odemir M

    2018-01-01

    The authorship attribution is a problem of considerable practical and technical interest. Several methods have been designed to infer the authorship of disputed documents in multiple contexts. While traditional statistical methods based solely on word counts and related measurements have provided a simple, yet effective solution in particular cases; they are prone to manipulation. Recently, texts have been successfully modeled as networks, where words are represented by nodes linked according to textual similarity measurements. Such models are useful to identify informative topological patterns for the authorship recognition task. However, there is no consensus on which measurements should be used. Thus, we proposed a novel method to characterize text networks, by considering both topological and dynamical aspects of networks. Using concepts and methods from cellular automata theory, we devised a strategy to grasp informative spatio-temporal patterns from this model. Our experiments revealed an outperformance over structural analysis relying only on topological measurements, such as clustering coefficient, betweenness and shortest paths. The optimized results obtained here pave the way for a better characterization of textual networks.

  10. Preparation, isolation, and characterization of cutin monomers and oligomers from tomato peels.

    PubMed

    Osman, S F; Irwin, P; Fett, W F; O'Connor, J V; Parris, N

    1999-02-01

    Cutin in tomato peels was depolymerized in methanolic base to yield cutin monomers or a mixture of cutin oligomers. These products were isolated by typical solvent extraction methods or by precipitation, and the isolates were characterized by chromatographic and spectroscopic analyses. It was determined that the compositions of the isolates from both isolation procedures were similar, although solvent extraction gave higher yields. However, the precipitation method, which is easy to carry out and avoids the use of undesirable organic solvents, may be preferable in commercial processes for recovering these compounds.

  11. Perceptual Color Characterization of Cameras

    PubMed Central

    Vazquez-Corral, Javier; Connah, David; Bertalmío, Marcelo

    2014-01-01

    Color camera characterization, mapping outputs from the camera sensors to an independent color space, such as XY Z, is an important step in the camera processing pipeline. Until now, this procedure has been primarily solved by using a 3 × 3 matrix obtained via a least-squares optimization. In this paper, we propose to use the spherical sampling method, recently published by Finlayson et al., to perform a perceptual color characterization. In particular, we search for the 3 × 3 matrix that minimizes three different perceptual errors, one pixel based and two spatially based. For the pixel-based case, we minimize the CIE ΔE error, while for the spatial-based case, we minimize both the S-CIELAB error and the CID error measure. Our results demonstrate an improvement of approximately 3% for the ΔE error, 7% for the S-CIELAB error and 13% for the CID error measures. PMID:25490586

  12. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization

    PubMed Central

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K. Kirk

    2015-01-01

    Background Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. Methods The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 
147 µm with an effective FOV of 2 mm in depth. Results The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system’s improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. Conclusions All together high resolution HMI appears to be a promising ultrasound-only technology for characterizing tissue biomechanical properties at the microstructural level to improve the image-based diseases diagnosis in multiple clinical applications. PMID:25694960

  13. COME: a robust coding potential calculation tool for lncRNA identification and characterization based on multiple features.

    PubMed

    Hu, Long; Xu, Zhiyu; Hu, Boqin; Lu, Zhi John

    2017-01-09

    Recent genomic studies suggest that novel long non-coding RNAs (lncRNAs) are specifically expressed and far outnumber annotated lncRNA sequences. To identify and characterize novel lncRNAs in RNA sequencing data from new samples, we have developed COME, a coding potential calculation tool based on multiple features. It integrates multiple sequence-derived and experiment-based features using a decompose-compose method, which makes it more accurate and robust than other well-known tools. We also showed that COME was able to substantially improve the consistency of predication results from other coding potential calculators. Moreover, COME annotates and characterizes each predicted lncRNA transcript with multiple lines of supporting evidence, which are not provided by other tools. Remarkably, we found that one subgroup of lncRNAs classified by such supporting features (i.e. conserved local RNA secondary structure) was highly enriched in a well-validated database (lncRNAdb). We further found that the conserved structural domains on lncRNAs had better chance than other RNA regions to interact with RNA binding proteins, based on the recent eCLIP-seq data in human, indicating their potential regulatory roles. Overall, we present COME as an accurate, robust and multiple-feature supported method for the identification and characterization of novel lncRNAs. The software implementation is available at https://github.com/lulab/COME. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Design and Optimization of Nanomaterials for Sensing Applications

    NASA Astrophysics Data System (ADS)

    Sanderson, Robert Noboru

    Nanomaterials, materials with one or more of their dimensions on the nanoscale, have emerged as an important field in the development of next-generation sensing systems. Their high surface-to-volume ratio makes them useful for sensing, but also makes them sensitive to processing defects and inherent material defects. To develop and optimize these systems, it is thus necessary to characterize these defects to understand their origin and how to work around them. Scanning probe microscopy (SPM) techniques like atomic force microscopy (AFM) and scanning tunneling microscopy (STM) are important characterization methods which can measure nanoscale topography and electronic structure. These methods are appealing in nanomaterial systems because they are non-damaging and provide local, high-resolution data, and so are capable of detecting nanoscale features such as single defect sites. There are difficulties, however, in the interpretation of SPM data. For instance, AFM-based methods are prone to experimental artifacts due to long-range interactions, such as capacitive crosstalk in Kelvin probe force microscopy (KPFM), and artifacts due to the finite size of the probe tip, such as incorrect surface tracking at steep topographical features. Mechanical characterization (via force spectroscopy) of nanomaterials with significant nanoscale variations, such as tethered lipid bilayer membranes (tLBMs), is also difficult since variations in the bulk system's mechanical behavior must be distinguished from local fluctuations. Additionally, interpretation of STM data is non-trivial due to local variations in electron density in addition to topographical variations. In this thesis we overcome some limitations of SPM methods by supplementing them with additional surface analytical methods as well as computational methods, and we characterize several nanomaterial systems. Current-carrying vapor-liquid-solid Si nanowires (useful for interdigitated-electrode-based sensors) are characterized using finite-element-method (FEM)-supplemented KPFM to retrieve useful information about processing defects, contact resistance, and the primary charge carriers. Next, a tLBM system's stiffness and the stiffness' dependence on tethering molecule concentration is measured using statistical analysis of thousands of AFM force spectra, demonstrating a biosensor-compatible system with a controllable bulk rigidity. Finally, we utilize surface analytical techniques to inform the development of a novel three-dimensional graphene system for sensing applications.

  15. Novel electrochemical method for the characterization of the degree of chirality in chiral polyaniline.

    PubMed

    Feng, Zhang; Li, Ma; Yan, Yang; Jihai, Tang; Xiao, Li; Wanglin, Li

    2013-01-01

    A novel method to indicate the degree of chirality in polyaniline (PANI) was developed. The (D-camphorsulfonic acid)- and (HCl)-PANI-based electrodes exhibited significantly different electrochemical performances in D- and L-Alanine (Ala) aqueous solution, respectively, which can be used for the characterization the optical activity of chiral PANI. Cyclic voltammogram, tafel, and open circuit potential of PANI-based electrodes were measured within D- and L-Ala electrolyte solution, respectively. The open circuit potentials under different reacting conditions were analyzed by Doblhofer model formula, in which [C(+)](poly1)/[C(+)](poly2) was used as a parameter to characterize the degree of chirality in chiral PANI. The results showed that [C(+)](poly1)/[C(+)](poly2) can be increased with increasing concentrations of (1S)-(+)- and (1R)-(-)-10-camphorsulfonic acid. In addition, we detected that appropriate response time and lower temperature are necessary to improve the degree of chirality. Copyright © 2012 Wiley Periodicals, Inc.

  16. In vitro culture and characterization of human lung cancer circulating tumor cells isolated by size exclusion from an orthotopic nude-mouse model expressing fluorescent protein.

    PubMed

    Kolostova, Katarina; Zhang, Yong; Hoffman, Robert M; Bobek, Vladimir

    2014-09-01

    In the present study, we demonstrate an animal model and recently introduced size-based exclusion method for circulating tumor cells (CTCs) isolation. The methodology enables subsequent in vitro CTC-culture and characterization. Human lung cancer cell line H460, expressing red fluorescent protein (H460-RFP), was orthotopically implanted in nude mice. CTCs were isolated by a size-based filtration method and successfully cultured in vitro on the separating membrane (MetaCell®), analyzed by means of time-lapse imaging. The cultured CTCs were heterogeneous in size and morphology even though they originated from a single tumor. The outer CTC-membranes were blebbing in general. Abnormal mitosis resulting in three daughter cells was frequently observed. The expression of RFP ensured that the CTCs originated from lung tumor. These readily isolatable, identifiable and cultivable CTCs can be used to characterize individual patient cancers and for screening of more effective treatment.

  17. Formulation and Solid State Characterization of Nicotinamide-based Co-crystals of Fenofibrate

    PubMed Central

    Shewale, Sheetal; Shete, A. S.; Doijad, R. C.; Kadam, S. S.; Patil, V. A.; Yadav, A. V.

    2015-01-01

    The present investigation deals with formulation of nicotinamide-based co-crystals of fenofibrate by different methods and solid-state characterization of the prepared co-crystals. Fenofibrate and nicotinamide as a coformer in 1:1 molar ratio were used to formulate molecular complexes by kneading, solution crystallization, antisolvent addition and solvent drop grinding methods. The prepared molecular complexes were characterized by powder X-ray diffractometry, differential scanning calorimetry, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and in vitro dissolution study. Considerable improvement in the dissolution rate of fenofibrate from optimized co-crystal formulation was due to an increased solubility that is attributed to the super saturation from the fine co-crystals is faster because of large specific surface area of small particles and prevention of phase transformation to pure fenofibrate. In vitro dissolution study showed that the formation of co-crystals improves the dissolution rate of fenofibrate. Nicotinamide forms the co-crystals with fenofibrate, theoretically and practically. PMID:26180279

  18. Template-DTW based on inertial signals: Preliminary results for step characterization.

    PubMed

    Mantilla, Juan; Oudre, Laurent; Barrois, Remi; Vienne, Alienor; Ricard, Damien

    2017-07-01

    In this paper, we present a method for the creation of a library of inertial signals based on Dynamic Time Warping (DTW) for step characterization, with preliminary results in control subjects and patients with neurological diseases. Subjects performed a protocol including a 10 m straight walking, then turn back and walking for additional 10 m. The library is constructed with inertial signals (acceleration and angular velocities recorded in three directions) aligned with the DTW. Templates in the library are obtained for a specific cohort and for the different walking phases of the protocol. They are compared to the signal of a single subject by calculating a Pearson correlation coefficient. The method has been tested on a database of 864 exercises, obtained from 71 healthy controls, 24 patients with Parkinson disease and 48 patients with Radiation Induced Leukoencephalopathy (RIL). Pearson correlation classification reports a precision of about 85% for step detection. For exercise characterization the sensitivity is about 57%, 56% and 82% for Parkinson, RIL and control subjects respectively.

  19. A Comparison of Two Methods of Teaching an Elementary School Science Methods Course at Hunter College.

    ERIC Educational Resources Information Center

    Graeber, Mary

    The typical approach to the teaching of an elementary school science methods course for undergraduate students was compared with an experimental approach based upon activities appearing in the Conceptually Oriented Program in Elementary Science (COPES) teacher's guides. The typical approach was characterized by a coverage of many topics and a…

  20. Studies on the formation and stability of triplex DNA using fluorescence correlation spectroscopy.

    PubMed

    Hu, Hongyan; Huang, Xiangyi; Ren, Jicun

    2016-05-01

    Triplex DNA has become one of the most useful recognition motifs in the design of new molecular biology tools, therapeutic agents and sophisticated DNA-based nanomaterials because of its direct recognition of natural double-stranded DNA. In this paper, we developed a sensitive and microscale method to study the formation and stability characterization of triplex DNA using fluorescence correlation spectroscopy (FCS). The principle of this method is mainly based on the excellent capacity of FCS for sensitively distinguishing between free single-strand DNA (ssDNA) fluorescent probes and fluorescent probe-double-strand DNA (dsDNA) hybridized complexes. First, we systematically investigated the experimental conditions of triplex DNA formation. Then, we evaluated the equilibrium association constants (K(a)) under different ssDNA probe lengths, composition and pH. Finally, we used FCS to measure the hybridization fraction of a 20-mer perfectly matched ssDNA probe and three single-base mismatched ssDNA probes with 146-mer dsDNA. Our data illustrated that FCS is a useful tool for the direct determination of the thermodynamic parameters of triplex DNA formation and discrimination of a single-base mismatch of triplex DNA without denaturation. Compared with current methods, our method is characterized by high sensitivity, good universality and small sample and reagent requirements. More importantly, our method has the potential to become a platform for triplex DNA research in vitro. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Characterization of Diffusion Metric Map Similarity in Data From a Clinical Data Repository Using Histogram Distances

    PubMed Central

    Warner, Graham C.; Helmer, Karl G.

    2018-01-01

    As the sharing of data is mandated by funding agencies and journals, reuse of data has become more prevalent. It becomes imperative, therefore, to develop methods to characterize the similarity of data. While users can group data based on the acquisition parameters stored in the file headers, these gives no indication whether a file can be combined with other data without increasing the variance in the data set. Methods have been implemented that characterize the signal-to-noise ratio or identify signal drop-outs in the raw image files, but potential users of data often have access to calculated metric maps and these are more difficult to characterize and compare. Here we describe a histogram-distance-based method applied to diffusion metric maps of fractional anisotropy and mean diffusivity that were generated using data extracted from a repository of clinically-acquired MRI data. We describe the generation of the data set, the pitfalls specific to diffusion MRI data, and the results of the histogram distance analysis. We find that, in general, data from GE scanners are less similar than are data from Siemens scanners. We also find that the distribution of distance metric values is not Gaussian at any selection of the acquisition parameters considered here (field strength, number of gradient directions, b-value, and vendor). PMID:29568257

  2. "Spoligoriftyping," a dual-priming-oligonucleotide-based direct-hybridization assay for tuberculosis control with a multianalyte microbead-based hybridization system.

    PubMed

    Gomgnimbou, Michel Kiréopori; Abadia, Edgar; Zhang, Jian; Refrégier, Guislaine; Panaiotov, Stefan; Bachiyska, Elizabeta; Sola, Christophe

    2012-10-01

    We developed "spoligoriftyping," a 53-plex assay based on two preexisting methods, the spoligotyping and "rifoligotyping" assays, by combining them into a single assay. Spoligoriftyping allows simultaneous spoligotyping (i.e., clustered regularly interspaced short palindromic repeat [CRISPR]-based genotyping) and characterization of the main rifampin drug resistance mutations on the rpoB hot spot region in a few hours. This test partly uses the dual-priming-oligonucleotide (DPO) principle, which allows simultaneous efficient amplifications of rpoB and the CRISPR locus in the same sample. We tested this method on a set of 114 previously phenotypically and genotypically characterized multidrug-resistant (MDR) Mycobacterium tuberculosis or drug-susceptible M. tuberculosis DNA extracted from clinical isolates obtained from patients from Bulgaria, Nigeria, and Germany. We showed that our method is 100% concordant with rpoB sequencing results and 99.95% (3,911/3,913 spoligotype data points) correlated with classical spoligotyping results. The sensitivity and specificity of our assay were 99 and 100%, respectively, compared to those of phenotypic drug susceptibility testing. Such assays pave the way to the implementation of locally and specifically adapted methods of performing in a single tube both drug resistance mutation detection and genotyping in a few hours.

  3. Depth estimation of laser glass drilling based on optical differential measurements of acoustic response

    NASA Astrophysics Data System (ADS)

    Gorodesky, Niv; Ozana, Nisan; Berg, Yuval; Dolev, Omer; Danan, Yossef; Kotler, Zvi; Zalevsky, Zeev

    2016-09-01

    We present the first steps of a device suitable for characterization of complex 3D micro-structures. This method is based on an optical approach allowing extraction and separation of high frequency ultrasonic sound waves induced to the analyzed samples. Rapid, non-destructive characterization of 3D micro-structures are limited in terms of geometrical features and optical properties of the sample. We suggest a method which is based on temporal tracking of secondary speckle patterns generated when illuminating a sample with a laser probe while applying known periodic vibration using an ultrasound transmitter. In this paper we investigated lasers drilled through glass vias. The large aspect ratios of the vias possess a challenge for traditional microscopy techniques in analyzing depth and taper profiles of the vias. The correlation of the amplitude vibrations to the vias depths is experimentally demonstrated.

  4. A Fast and Robust UHPLC-MRM-MS Method to Characterize and Quantify Grape Skin Tannins after Chemical Depolymerization.

    PubMed

    Pinasseau, Lucie; Verbaere, Arnaud; Roques, Maryline; Meudec, Emmanuelle; Vallverdú-Queralt, Anna; Terrier, Nancy; Boulet, Jean-Claude; Cheynier, Véronique; Sommerer, Nicolas

    2016-10-21

    A rapid, sensitive, and selective analysis method using ultra high performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-QqQ-MS) has been developed for the characterization and quantification of grape skin flavan-3-ols after acid-catalysed depolymerization in the presence of phloroglucinol (phloroglucinolysis). The compound detection being based on specific MS transitions in Multiple Reaction Monitoring (MRM) mode, this fast gradient robust method allows analysis of constitutive units of grape skin proanthocyanidins, including some present in trace amounts, in a single injection, with a throughput of 6 samples per hour. This method was applied to a set of 214 grape skin samples from 107 different red and white grape cultivars grown under two conditions in the vineyard, irrigated or non-irrigated. The results of triplicate analyses confirmed the robustness of the method, which was thus proven to be suitable for high-throughput and large-scale metabolomics studies. Moreover, these preliminary results suggest that analysis of tannin composition is relevant to investigate the genetic bases of grape response to drought.

  5. Characterization of Human Mammary Epithelial Stem Cells

    DTIC Science & Technology

    2010-10-01

    This term reflects the method used to detect murine mammary stem cells which is based on their individual ability to regenerate an entire mammary tree......mammary stem cells. We now describe a method for detecting an analogous subpopulation in normal human mammary tissue. Dissociated cells are suspended

  6. Lidar Based Emissions Measurement at the Whole Facility Scale: Method and Error Analysis

    USDA-ARS?s Scientific Manuscript database

    Particulate emissions from agricultural sources vary from dust created by operations and animal movement to the fine secondary particulates generated from ammonia and other emitted gases. The development of reliable facility emission data using point sampling methods designed to characterize regiona...

  7. Purity Determination by Capillary Electrophoresis Sodium Hexadecyl Sulfate (CE-SHS): A Novel Application For Therapeutic Protein Characterization.

    PubMed

    Beckman, Jeff; Song, Yuanli; Gu, Yan; Voronov, Sergey; Chennamsetty, Naresh; Krystek, Stanley; Mussa, Nesredin; Li, Zheng Jian

    2018-02-20

    Capillary gel electrophoresis using sodium dodecyl sulfate (CE-SDS) is used commercially to provide quantitative purity data for therapeutic protein characterization and release. In CE-SDS, proteins are denatured under reducing or nonreducing conditions in the presence of SDS and electrophoretically separated by molecular weight and hydrodynamic radius through a sieving polymer matrix. Acceptable performance of this method would yield protein peaks that are baseline resolved and symmetrical. Nominal CE-SDS conditions and parameters are not optimal for all therapeutic proteins, specifically for Recombinant Therapeutic Protein-1 (RTP-1), where acceptable resolution and peak symmetry were not achieved. The application of longer alkyl chain detergents in the running buffer matrix substantially improved assay performance. Matrix running buffer containing sodium hexadecyl sulfate (SHS) increased peak resolution and plate count 3- and 8-fold, respectively, compared to a traditional SDS-based running gel matrix. At Bristol-Myers Squibb (BMS), we developed and qualified a viable method for the characterization and release of RTP-1 using an SHS-containing running buffer matrix. This work underscores the potential of detergents other than SDS to enhance the resolution and separation power of CE-based separation methods.

  8. Integrated workflow for characterizing and modeling fracture network in unconventional reservoirs using microseismic data

    NASA Astrophysics Data System (ADS)

    Ayatollahy Tafti, Tayeb

    We develop a new method for integrating information and data from different sources. We also construct a comprehensive workflow for characterizing and modeling a fracture network in unconventional reservoirs, using microseismic data. The methodology is based on combination of several mathematical and artificial intelligent techniques, including geostatistics, fractal analysis, fuzzy logic, and neural networks. The study contributes to scholarly knowledge base on the characterization and modeling fractured reservoirs in several ways; including a versatile workflow with a novel objective functions. Some the characteristics of the methods are listed below: 1. The new method is an effective fracture characterization procedure estimates different fracture properties. Unlike the existing methods, the new approach is not dependent on the location of events. It is able to integrate all multi-scaled and diverse fracture information from different methodologies. 2. It offers an improved procedure to create compressional and shear velocity models as a preamble for delineating anomalies and map structures of interest and to correlate velocity anomalies with fracture swarms and other reservoir properties of interest. 3. It offers an effective way to obtain the fractal dimension of microseismic events and identify the pattern complexity, connectivity, and mechanism of the created fracture network. 4. It offers an innovative method for monitoring the fracture movement in different stages of stimulation that can be used to optimize the process. 5. Our newly developed MDFN approach allows to create a discrete fracture network model using only microseismic data with potential cost reduction. It also imposes fractal dimension as a constraint on other fracture modeling approaches, which increases the visual similarity between the modeled networks and the real network over the simulated volume.

  9. Catalytic activity of calcium-based mixed metal oxides nanocatalysts in transesterification reaction of palm oil

    NASA Astrophysics Data System (ADS)

    Hassan, Noraakinah; Ismail, Kamariah Noor; Hamid, Ku Halim Ku; Hadi, Abdul

    2017-12-01

    Nowadays, biodiesel has become the forefront development as an alternative diesel fuel derived from biological sources such as oils of plant and fats. Presently, the conventional transesterification of vegetable oil to biodiesel gives rise to some technological problem. In this sense, heterogeneous nanocatalysts of calcium-based mixed metal oxides were synthesized through sol-gel method. It was found that significant increase of biodiesel yield, 91.75 % was obtained catalyzed by CaO-NbO2 from palm oil compared to pure CaO of 53.99 % under transesterification conditions (methanol/oil ratio 10:1, reaction time 3 h, catalyst concentration 4 wt%, reaction temperature 60 °C, and mixing speed of 600 rpm). The phase structure and crystallinity as well as the texture properties of the prepared catalysts were characterized by X-ray Diffraction (XRD) and the textural properties were characterized by N2 adsorption-desorption analysis. Sol-gel method has been known as versatile method in controlling the structural and chemical properties of the catalyst. Calcium-based mixed oxide synthesized from sol-gel method was found to exist as smaller crystallite size with high surface area.

  10. Molecular Methods for the Detection of Mycoplasma and Ureaplasma Infections in Humans

    PubMed Central

    Waites, Ken B.; Xiao, Li; Paralanov, Vanya; Viscardi, Rose M.; Glass, John I.

    2012-01-01

    Mycoplasma and Ureaplasma species are well-known human pathogens responsible for a broad array of inflammatory conditions involving the respiratory and urogenital tracts of neonates, children, and adults. Greater attention is being given to these organisms in diagnostic microbiology, largely as a result of improved methods for their laboratory detection, made possible by powerful molecular-based techniques that can be used for primary detection in clinical specimens. For slow-growing species, such as Mycoplasma pneumoniae and Mycoplasma genitalium, molecular-based detection is the only practical means for rapid microbiological diagnosis. Most molecular-based methods used for detection and characterization of conventional bacteria have been applied to these organisms. A complete genome sequence is available for one or more strains of all of the important human pathogens in the Mycoplasma and Ureaplasma genera. Information gained from genome analyses and improvements in efficiency of DNA sequencing are expected to significantly advance the field of molecular detection and genotyping during the next few years. This review provides a summary and critical review of methods suitable for detection and characterization of mycoplasmas and ureaplasmas of humans, with emphasis on molecular genotypic techniques. PMID:22819362

  11. Micro-patterning and characterization of PHEMA-co-PAM-based optical chemical sensors for lab-on-a-chip applications

    PubMed Central

    Zhu, Haixin; Zhou, Xianfeng; Su, Fengyu; Tian, Yanqing; Ashili, Shashanka; Holl, Mark R.; Meldrum, Deirdre R.

    2012-01-01

    We report a novel method for wafer level, high throughput optical chemical sensor patterning, with precise control of the sensor volume and capability of producing arbitrary microscale patterns. Monomeric oxygen (O2) and pH optical probes were polymerized with 2-hydroxyethyl methacrylate (HEMA) and acrylamide (AM) to form spin-coatable and further crosslinkable polymers. A micro-patterning method based on micro-fabrication techniques (photolithography, wet chemical process and reactive ion etch) was developed to miniaturize the sensor film onto glass substrates in arbitrary sizes and shapes. The sensitivity of fabricated micro-patterns was characterized under various oxygen concentrations and pH values. The process for spatially integration of two sensors (Oxygen and pH) on the same substrate surface was also developed, and preliminary fabrication and characterization results were presented. To the best of our knowledge, it is the first time that poly (2-hydroxylethyl methacrylate)-co-poly (acrylamide) (PHEMA-co-PAM)-based sensors had been patterned and integrated at the wafer level with micron scale precision control using microfabrication techniques. The developed methods can provide a feasible way to miniaturize and integrate the optical chemical sensor system and can be applied to any lab-on-a-chip system, especially the biological micro-systems requiring optical sensing of single or multiple analytes. PMID:23175599

  12. Ultrasonic NDE Simulation for Composite Manufacturing Defects

    NASA Technical Reports Server (NTRS)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    The increased use of composites in aerospace components is expected to continue into the future. The large scale use of composites in aerospace necessitates the development of composite-appropriate nondestructive evaluation (NDE) methods to quantitatively characterize defects in as-manufactured parts and damage incurred during or post manufacturing. Ultrasonic techniques are one of the most common approaches for defect/damage detection in composite materials. One key technical challenge area included in NASA's Advanced Composite's Project is to develop optimized rapid inspection methods for composite materials. Common manufacturing defects in carbon fiber reinforced polymer (CFRP) composites include fiber waviness (in-plane and out-of-plane), porosity, and disbonds; among others. This paper is an overview of ongoing work to develop ultrasonic wavefield based methods for characterizing manufacturing waviness defects. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with in-plane fiber waviness (also known as marcelling). Wavefield data processing methods are applied to the simulation data to explore possible routes for quantitative defect characterization.

  13. Evolution of Pedostructure Parameters Under Tillage Practices

    USDA-ARS?s Scientific Manuscript database

    The pedostructure (PS) concept is a physically-based method of soil characterization that defines a soil based on its structure and the relationship between structure and soil water behavior. There are 15 unique pedostructure parameters that define the macropore and micropore soil water behavior fo...

  14. Chromatic characterization of a three-channel colorimeter using back-propagation neural networks

    NASA Astrophysics Data System (ADS)

    Pardo, P. J.; Pérez, A. L.; Suero, M. I.

    2004-09-01

    This work describes a method for the chromatic characterization of a three-channel colorimeter of recent design and construction dedicated to color vision research. The colorimeter consists of two fixed monochromators and a third monochromator interchangeable with a cathode ray tube or any other external light source. Back-propagation neural networks were used for the chromatic characterization to establish the relationship between each monochromator's input parameters and the tristimulus values of each chromatic stimulus generated. The results showed the effectiveness of this type of neural-network-based system for the chromatic characterization of the stimuli produced by any monochromator.

  15. Voltammetry as a Tool for Characterization of CdTe Quantum Dots

    PubMed Central

    Sobrova, Pavlina; Ryvolova, Marketa; Hubalek, Jaromir; Adam, Vojtech; Kizek, Rene

    2013-01-01

    Electrochemical detection of quantum dots (QDs) has already been used in numerous applications. However, QDs have not been well characterized using voltammetry, with respect to their characterization and quantification. Therefore, the main aim was to characterize CdTe QDs using cyclic and differential pulse voltammetry. The obtained peaks were identified and the detection limit (3 S/N) was estimated down to 100 fg/mL. Based on the convincing results, a new method for how to study stability and quantify the dots was suggested. Thus, the approach was further utilized for the testing of QDs stability. PMID:23807507

  16. Remendable Polymeric Materials Using Reversible Covalent Bonds

    DTIC Science & Technology

    2008-12-01

    Synthesis and characterization of melamine - urea - formaldehyde microcapsules containing ENB-based self-healing agents. International Conference on Smart...R. Wang, X. He, W. Liu, and H. Hao, 2007: Preparation and characterization of self-healing poly ( urea - formaldehyde ) microcapsules. International...captured much attention. In one method, polymer networks are made to self-heal by adding particles filled with uncured resin . The resin held

  17. Reflexion measurements for inverse characterization of steel diffusion bond mechanical properties

    NASA Astrophysics Data System (ADS)

    Le Bourdais, Florian; Cachon, Lionel; Rigal, Emmanuel

    2017-02-01

    The present work describes a non-destructive testing method aimed at securing high manufacturing quality of the innovative compact heat exchanger developed under the framework of the CEA R&D program dedicated to the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID). The heat exchanger assembly procedure currently proposed involves high temperature and high pressure diffusion welding of stainless steel plates. The aim of the non-destructive method presented herein is to characterize the quality of the welds obtained through this assembly process. Based on a low-frequency model developed by Baik and Thompson [1], pulse-echo normal incidence measurements are calibrated according to a specific procedure and allow the determination of the welding interface stiffness using a nonlinear fitting procedure in the frequency domain. Performing the characterization of plates after diffusion welding using this method allows a useful assessment of the material state as a function of the diffusion bonding process.

  18. Characterization of a Laser-Generated Perturbation in High-Speed Flow for Receptivity Studies

    NASA Technical Reports Server (NTRS)

    Chou, Amanda; Schneider, Steven P.; Kegerise, Michael A.

    2014-01-01

    A better understanding of receptivity can contribute to the development of an amplitude-based method of transition prediction. This type of prediction model would incorporate more physics than the semi-empirical methods, which are widely used. The experimental study of receptivity requires a characterization of the external disturbances and a study of their effect on the boundary layer instabilities. Characterization measurements for a laser-generated perturbation were made in two different wind tunnels. These measurements were made with hot-wire probes, optical techniques, and pressure transducer probes. Existing methods all have their limitations, so better measurements will require the development of new instrumentation. Nevertheless, the freestream laser-generated perturbation has been shown to be about 6 mm in diameter at a static density of about 0.045 kg/cubic m. The amplitude of the perturbation is large, which may be unsuitable for the study of linear growth.

  19. Correlation Characterization of Particles in Volume Based on Peak-to-Basement Ratio

    PubMed Central

    Vovk, Tatiana A.; Petrov, Nikolay V.

    2017-01-01

    We propose a new express method of the correlation characterization of the particles suspended in the volume of optically transparent medium. It utilizes inline digital holography technique for obtaining two images of the adjacent layers from the investigated volume with subsequent matching of the cross-correlation function peak-to-basement ratio calculated for these images. After preliminary calibration via numerical simulation, the proposed method allows one to quickly distinguish parameters of the particle distribution and evaluate their concentration. The experimental verification was carried out for the two types of physical suspensions. Our method can be applied in environmental and biological research, which includes analyzing tools in flow cytometry devices, express characterization of particles and biological cells in air and water media, and various technical tasks, e.g. the study of scattering objects or rapid determination of cutting tool conditions in mechanisms. PMID:28252020

  20. Characterization of the Distance Relationship Between Localized Serotonin Receptors and Glia Cells on Fluorescence Microscopy Images of Brain Tissue.

    PubMed

    Jacak, Jaroslaw; Schaller, Susanne; Borgmann, Daniela; Winkler, Stephan M

    2015-08-01

    We here present two new methods for the characterization of fluorescent localization microscopy images obtained from immunostained brain tissue sections. Direct stochastic optical reconstruction microscopy images of 5-HT1A serotonin receptors and glial fibrillary acidic proteins in healthy cryopreserved brain tissues are analyzed. In detail, we here present two image processing methods for characterizing differences in receptor distribution on glial cells and their distribution on neural cells: One variant relies on skeleton extraction and adaptive thresholding, the other on k-means based discrete layer segmentation. Experimental results show that both methods can be applied for distinguishing classes of images with respect to serotonin receptor distribution. Quantification of nanoscopic changes in relative protein expression on particular cell types can be used to analyze degeneration in tissues caused by diseases or medical treatment.

  1. A global parallel model based design of experiments method to minimize model output uncertainty.

    PubMed

    Bazil, Jason N; Buzzard, Gregory T; Rundell, Ann E

    2012-03-01

    Model-based experiment design specifies the data to be collected that will most effectively characterize the biological system under study. Existing model-based design of experiment algorithms have primarily relied on Fisher Information Matrix-based methods to choose the best experiment in a sequential manner. However, these are largely local methods that require an initial estimate of the parameter values, which are often highly uncertain, particularly when data is limited. In this paper, we provide an approach to specify an informative sequence of multiple design points (parallel design) that will constrain the dynamical uncertainty of the biological system responses to within experimentally detectable limits as specified by the estimated experimental noise. The method is based upon computationally efficient sparse grids and requires only a bounded uncertain parameter space; it does not rely upon initial parameter estimates. The design sequence emerges through the use of scenario trees with experimental design points chosen to minimize the uncertainty in the predicted dynamics of the measurable responses of the system. The algorithm was illustrated herein using a T cell activation model for three problems that ranged in dimension from 2D to 19D. The results demonstrate that it is possible to extract useful information from a mathematical model where traditional model-based design of experiments approaches most certainly fail. The experiments designed via this method fully constrain the model output dynamics to within experimentally resolvable limits. The method is effective for highly uncertain biological systems characterized by deterministic mathematical models with limited data sets. Also, it is highly modular and can be modified to include a variety of methodologies such as input design and model discrimination.

  2. Systematic screening and characterization of flavonoid glycosides in Carthamus tinctorius L. by liquid chromatography/UV diode-array detection/electrospray ionization tandem mass spectrometry.

    PubMed

    Jin, Yu; Xiao, Yuan-sheng; Zhang, Fei-fang; Xue, Xing-ya; Xu, Qing; Liang, Xin-miao

    2008-02-13

    The traditional Chinese medicine (TCM) is a complex system, which always consists of numerous compounds with significant difference in the content and physical and chemical properties. In this paper, a screening method based on target molecular weights was developed to characterize the flavonoid glycosides in the flower of Carthamus tinctorius L. The screening tables of aglycone and glycan were designed, respectively, in order to select and combine freely. The multiple reaction monitoring (MRM) scan mode with higher sensitivity and selectivity was adopted in the screening, which benefit the characterization for the minor components. Seventy-seven flavonoid glycosides were screened out finally, and their structures were characterized by tandem mass spectrometric method in both positive and negative ion modes. The glycosylation mode, aglycone, sequence and/or the interglycosidic linkages of the glycan portion and glycosylation position were elucidated by the fragmentation rule in the MS. Numerous compounds screened out with this method showed the structure variety in secondary plant metabolites, and the purposeful screening systemically and subsequent structure characterization offered more information about the chemical constitutions of TCM.

  3. Bayesian aggregation versus majority vote in the characterization of non-specific arm pain based on quantitative needle electromyography

    PubMed Central

    2010-01-01

    Background Methods for the calculation and application of quantitative electromyographic (EMG) statistics for the characterization of EMG data detected from forearm muscles of individuals with and without pain associated with repetitive strain injury are presented. Methods A classification procedure using a multi-stage application of Bayesian inference is presented that characterizes a set of motor unit potentials acquired using needle electromyography. The utility of this technique in characterizing EMG data obtained from both normal individuals and those presenting with symptoms of "non-specific arm pain" is explored and validated. The efficacy of the Bayesian technique is compared with simple voting methods. Results The aggregate Bayesian classifier presented is found to perform with accuracy equivalent to that of majority voting on the test data, with an overall accuracy greater than 0.85. Theoretical foundations of the technique are discussed, and are related to the observations found. Conclusions Aggregation of motor unit potential conditional probability distributions estimated using quantitative electromyographic analysis, may be successfully used to perform electrodiagnostic characterization of "non-specific arm pain." It is expected that these techniques will also be able to be applied to other types of electrodiagnostic data. PMID:20156353

  4. Automated On-tip Affinity Capture Coupled with Mass Spectrometry to Characterize Intact Antibody-Drug Conjugates from Blood

    NASA Astrophysics Data System (ADS)

    Li, Ke Sherry; Chu, Phillip Y.; Fourie-O'Donohue, Aimee; Srikumar, Neha; Kozak, Katherine R.; Liu, Yichin; Tran, John C.

    2018-05-01

    Antibody-drug conjugates (ADCs) present unique challenges for ligand-binding assays primarily due to the dynamic changes of the drug-to-antibody ratio (DAR) distribution in vivo and in vitro. Here, an automated on-tip affinity capture platform with subsequent mass spectrometry analysis was developed to accurately characterize the DAR distribution of ADCs from biological matrices. A variety of elution buffers were tested to offer optimal recovery, with trastuzumab serving as a surrogate to the ADCs. High assay repeatability (CV 3%) was achieved for trastuzumab antibody when captured below the maximal binding capacity of 7.5 μg. Efficient on-tip deglycosylation was also demonstrated in 1 h followed by affinity capture. Moreover, this tip-based platform affords higher throughput for DAR characterization when compared with a well-characterized bead-based method.

  5. Application of solid/liquid extraction for the gravimetric determination of lipids in royal jelly.

    PubMed

    Antinelli, Jean-François; Davico, Renée; Rognone, Catherine; Faucon, Jean-Paul; Lizzani-Cuvelier, Louisette

    2002-04-10

    Gravimetric lipid determination is a major parameter for the characterization and the authentication of royal jelly quality. A solid/liquid extraction was compared to the reference method, which is based on liquid/liquid extraction. The amount of royal jelly and the time of the extraction were optimized in comparison to the reference method. Boiling/rinsing ratio and spread of royal jelly onto the extraction thimble were identified as critical parameters, resulting in good accuracy and precision for the alternative method. Comparison of reproducibility and repeatability of both methods associated with gas chromatographic analysis of the composition of the extracted lipids showed no differences between the two methods. As the intra-laboratory validation tests were comparable to the reference method, while offering rapidity and a decrease in amount of solvent used, it was concluded that the proposed method should be used with no modification of quality criteria and norms established for royal jelly characterization.

  6. Asymmetrical flow field flow fractionation methods to characterize submicron particles: application to carbon-based aggregates and nanoplastics.

    PubMed

    Gigault, Julien; El Hadri, Hind; Reynaud, Stéphanie; Deniau, Elise; Grassl, Bruno

    2017-11-01

    In the last 10 years, asymmetrical flow field flow fractionation (AF4) has been one of the most promising approaches to characterize colloidal particles. Nevertheless, despite its potentialities, it is still considered a complex technique to set up, and the theory is difficult to apply for the characterization of complex samples containing submicron particles and nanoparticles. In the present work, we developed and propose a simple analytical strategy to rapidly determine the presence of several submicron populations in an unknown sample with one programmed AF4 method. To illustrate this method, we analyzed polystyrene particles and fullerene aggregates of size covering the whole colloidal size distribution. A global and fast AF4 method (method O) allowed us to screen the presence of particles with size ranging from 1 to 800 nm. By examination of the fractionating power F d , as proposed in the literature, convenient fractionation resolution was obtained for size ranging from 10 to 400 nm. The global F d values, as well as the steric inversion diameter, for the whole colloidal size distribution correspond to the predicted values obtained by model studies. On the basis of this method and without the channel components or mobile phase composition being changed, four isocratic subfraction methods were performed to achieve further high-resolution separation as a function of different size classes: 10-100 nm, 100-200 nm, 200-450 nm, and 450-800 nm in diameter. Finally, all the methods developed were applied in characterization of nanoplastics, which has received great attention in recent years. Graphical Absract Characterization of the nanoplastics by asymmetrical flow field flow fractionation within the colloidal size range.

  7. Microstructural characterization of Ti-6Al-4V alloy subjected to the duplex SMAT/plasma nitriding.

    PubMed

    Pi, Y; Faure, J; Agoda-Tandjawa, G; Andreazza, C; Potiron, S; Levesque, A; Demangel, C; Retraint, D; Benhayoune, H

    2013-09-01

    In this study, microstructural characterization of Ti-6Al-4V alloy, subjected to the duplex surface mechanical attrition treatment (SMAT)/nitriding treatment, leading to improve its mechanical properties, was carried out through novel and original samples preparation methods. Instead of acid etching which is limited for morphological characterization by scanning electron microscopy (SEM), an original ion polishing method was developed. Moreover, for structural characterization by transmission electron microscopy (TEM), an ion milling method based with the use of two ions guns was also carried out for cross-section preparation. To demonstrate the efficiency of the two developed methods, morphological investigations were done by traditional SEM and field emission gun SEM. This was followed by structural investigations through selected area electron diffraction (SAED) coupled with TEM and X-ray diffraction techniques. The results demonstrated that ionic polishing allowed to reveal a variation of the microstructure according to the surface treatment that could not be observed by acid etching preparation. TEM associated to SAED and X-ray diffraction provided information regarding the nanostructure compositional changes induced by the duplex SMAT/nitriding process. Copyright © 2013 Wiley Periodicals, Inc.

  8. Automatic approach to deriving fuzzy slope positions

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi

    2018-03-01

    Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.

  9. Characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs.

    PubMed Central

    Brouwer, A; Longnecker, M P; Birnbaum, L S; Cogliano, J; Kostyniak, P; Moore, J; Schantz, S; Winneke, G

    1999-01-01

    This article addresses issues related to the characterization of endocrine-related health effects resulting from low-level exposures to polychlorinated biphenyls (PCBs). It is not intended to be a comprehensive review of the literature but reflects workshop discussions. "The Characterizing the Effects of Endocrine Disruptors on Human Health at Environmental Exposure Levels," workshop provided a forum to discuss the methods and data needed to improve risk assessments of endocrine disruptors. This article contains an overview of endocrine-related (estrogen and thyroid system) interactions and other low-dose effects of PCBs. The data set on endocrine effects includes results obtained from mechanistic methods/ and models (receptor based, metabolism based, and transport protein based), as well as from (italic)in vivo(/italic) models, including studies with experimental animals and wildlife species. Other low-dose effects induced by PCBs, such as neurodevelopmental and reproductive effects and endocrine-sensitive tumors, have been evaluated with respect to a possible causative linkage with PCB-induced alterations in endocrine systems. In addition, studies of low-dose exposure and effects in human populations are presented and critically evaluated. A list of conclusions and recommendations is included. PMID:10421775

  10. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology.

    PubMed

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-03-22

    A protein complex consists of two or more proteins that are linked together through protein-protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples.

  11. Method for the evaluation 3D noncontact inspection systems

    NASA Astrophysics Data System (ADS)

    Harding, Kevin

    2011-08-01

    Three dimensional, optical measurement systems are becoming more widely used in applications ranging from aerospace to automotive. These systems offer the potential for high speed, good accuracy, and more complete information than older contact based technology. However, the primary standards employed by many to evaluate these systems were specifically designed around touch probe based coordinate measurement machines (CMMs). These standards were designed to work with the limitations of touch probes, and in many cases cannot measure the types of features and errors associated with non-contact systems. This paper will discuss the deficiencies of employing contact based characterization tests to non-contact systems, and suggest a new set of tests specifically to cover the many aspects pertinent to non-contact, optical 3D measurement systems. Some of the performance aspects addressed in this characterization method include: sensitivity to surface reflectivity and roughness, the effect of angle of incidence of measurements, means to characterize volumetric variations that may fit complex functions, and considerations of both spatial and depth resolutions. Specific application areas will be discussed as well as the use of artifacts to provide practical functional data that can predict system performance on real world parts.

  12. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology

    PubMed Central

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-01-01

    A protein complex consists of two or more proteins that are linked together through protein–protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples. PMID:27011181

  13. New method for the temperature-programmed desorption (TPD) of ammonia experiment for characterization of zeolite acidity: a review.

    PubMed

    Niwa, Miki; Katada, Naonobu

    2013-10-01

    In this review, a method for the temperature-programmed desorption (TPD) of ammonia experiment for the characterization of zeolite acidity and its improvement by simultaneous IR measurement and DFT calculation are described. First, various methods of ammonia TPD are explained, since the measurements have been conducted under the concepts of kinetics, equilibrium, or diffusion control. It is however emphasized that the ubiquitous TPD experiment is governed by the equilibrium between ammonia molecules in the gas phase and on the surface. Therefore, a method to measure quantitatively the strength of the acid site (∆H upon ammonia desorption) under equilibrium-controlled conditions is elucidated. Then, a quantitative relationship between ∆H and H0 function is proposed, based on which the acid strength ∆H can be converted into the H0 function. The identification of the desorption peaks and the quantitative measurement of the number of acid sites are then explained. In order to overcome a serious disadvantage of the method (i.e., no information is provided about the structure of acid sites), the simultaneous measurement of IR spectroscopy with ammonia TPD, named IRMS-TPD (infrared spectroscopy/mass spectrometry-temperature-programmed desorption), is proposed. Based on this improved measurement, Brønsted and Lewis acid sites were differentiated and the distribution of Brønsted OH was revealed. The acidity characterized by IRMS-TPD was further supported by the theoretical DFT calculation. Thus, the advanced study of zeolite acidity at the molecular level was made possible. Advantages and disadvantages of the ammonia TPD experiment are discussed, and understanding of the catalytic cracking activity based on the derived acidic profile is explained. Copyright © 2013 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Prediction of the Chapman-Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics.

    PubMed

    Guo, Dezhou; Zybin, Sergey V; An, Qi; Goddard, William A; Huang, Fenglei

    2016-01-21

    The combustion or detonation of reacting materials at high temperature and pressure can be characterized by the Chapman-Jouguet (CJ) state that describes the chemical equilibrium of the products at the end of the reaction zone of the detonation wave for sustained detonation. This provides the critical properties and product kinetics for input to macroscale continuum simulations of energetic materials. We propose the ReaxFF Reactive Dynamics to CJ point protocol (Rx2CJ) for predicting the CJ state parameters, providing the means to predict the performance of new materials prior to synthesis and characterization, allowing the simulation based design to be done in silico. Our Rx2CJ method is based on atomistic reactive molecular dynamics (RMD) using the QM-derived ReaxFF force field. We validate this method here by predicting the CJ point and detonation products for three typical energetic materials. We find good agreement between the predicted and experimental detonation velocities, indicating that this method can reliably predict the CJ state using modest levels of computation.

  15. A Microwave Method for Dielectric Characterization Measurement of Small Liquids Using a Metamaterial-Based Sensor.

    PubMed

    Liu, Weina; Sun, Haoran; Xu, Lei

    2018-05-05

    We present a microwave method for the dielectric characterization of small liquids based on a metamaterial-based sensor The proposed sensor consists of a micro-strip line and a double split-ring resonator (SRR). A large electric field is observed on the two splits of the double SRRs at the resonance frequency (1.9 GHz). The dielectric property data of the samples under test (SUTs) were obtained with two measurements. One is with the sensor loaded with the reference liquid (REF) and the other is with the sensor loaded with the SUTs. Additionally, the principle of extracting permittivity from measured changes of resonance characteristics changes of the sensor loaded with REF and SUTs is given. Some measurements were carried out at 1.9 GHz, and the calculated results of methanol⁻water mixtures with different molar fractions agree well with the time-domain reflectometry method. Moreover, the proposed sensor is compact and highly sensitive for use of sub-wavelength resonance. In comparison with literature data, relative errors are less than 3% for the real parts and 2% for the imaginary parts of complex permittivity.

  16. Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors

    NASA Astrophysics Data System (ADS)

    Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos

    2018-04-01

    The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.

  17. Portraying the Expression Landscapes of B-Cell Lymphoma-Intuitive Detection of Outlier Samples and of Molecular Subtypes

    PubMed Central

    Hopp, Lydia; Lembcke, Kathrin; Binder, Hans; Wirth, Henry

    2013-01-01

    We present an analytic framework based on Self-Organizing Map (SOM) machine learning to study large scale patient data sets. The potency of the approach is demonstrated in a case study using gene expression data of more than 200 mature aggressive B-cell lymphoma patients. The method portrays each sample with individual resolution, characterizes the subtypes, disentangles the expression patterns into distinct modules, extracts their functional context using enrichment techniques and enables investigation of the similarity relations between the samples. The method also allows to detect and to correct outliers caused by contaminations. Based on our analysis, we propose a refined classification of B-cell Lymphoma into four molecular subtypes which are characterized by differential functional and clinical characteristics. PMID:24833231

  18. Physicochemical characterization of modified clay based composites obtained by a novel method

    NASA Astrophysics Data System (ADS)

    Kalra, Swati; Dudi, D.; Singh, G. P.; Verma, S. K.; Bhojak, N.

    2018-05-01

    Material science is one of the important fields where, absorption spectra of lanthanide ions have been a subject of several investigations because of their possible use as laser materials, diagnostic tools and sensors. Study of absorption spectra in visible and near infrared regions yields useful information regarding energy and intensity parameters, and nature and probabilities of transitions. Chemical physics provides fundamental tool to develop lanthanide chemistry, which has been increasingly significant in the last few years due to the wide variety of potential applications of their complexes in many important areas of biology and medicines. The present work describes the development of a novel method of composite preparation based on clay and its physiochemical characterization. Simultaneous measurement of some thermal properties has made study more useful. Results match with accepted models.

  19. High-throughput electrical measurement and microfluidic sorting of semiconductor nanowires.

    PubMed

    Akin, Cevat; Feldman, Leonard C; Durand, Corentin; Hus, Saban M; Li, An-Ping; Hui, Ho Yee; Filler, Michael A; Yi, Jingang; Shan, Jerry W

    2016-05-24

    Existing nanowire electrical characterization tools not only are expensive and require sophisticated facilities, but are far too slow to enable statistical characterization of highly variable samples. They are also generally not compatible with further sorting and processing of nanowires. Here, we demonstrate a high-throughput, solution-based electro-orientation-spectroscopy (EOS) method, which is capable of automated electrical characterization of individual nanowires by direct optical visualization of their alignment behavior under spatially uniform electric fields of different frequencies. We demonstrate that EOS can quantitatively characterize the electrical conductivities of nanowires over a 6-order-of-magnitude range (10(-5) to 10 S m(-1), corresponding to typical carrier densities of 10(10)-10(16) cm(-3)), with different fluids used to suspend the nanowires. By implementing EOS in a simple microfluidic device, continuous electrical characterization is achieved, and the sorting of nanowires is demonstrated as a proof-of-concept. With measurement speeds two orders of magnitude faster than direct-contact methods, the automated EOS instrument enables for the first time the statistical characterization of highly variable 1D nanomaterials.

  20. Material characterization in partially filled waveguides using inverse scattering and multiple sample orientations

    NASA Astrophysics Data System (ADS)

    Sjöberg, Daniel; Larsson, Christer

    2015-06-01

    We present a method aimed at reducing uncertainties and instabilities when characterizing materials in waveguide setups. The method is based on measuring the S parameters for three different orientations of a rectangular sample block in a rectangular waveguide. The corresponding geometries are modeled in a commercial full-wave simulation program, taking any material parameters as input. The material parameters of the sample are found by minimizing the squared distance between measured and calculated S parameters. The information added by the different sample orientations is quantified using the Cramér-Rao lower bound. The flexibility of the method allows the determination of material parameters of an arbitrarily shaped sample that fits in the waveguide.

  1. Mechanics of ultrasound elastography

    PubMed Central

    Li, Guo-Yang

    2017-01-01

    Ultrasound elastography enables in vivo measurement of the mechanical properties of living soft tissues in a non-destructive and non-invasive manner and has attracted considerable interest for clinical use in recent years. Continuum mechanics plays an essential role in understanding and improving ultrasound-based elastography methods and is the main focus of this review. In particular, the mechanics theories involved in both static and dynamic elastography methods are surveyed. They may help understand the challenges in and opportunities for the practical applications of various ultrasound elastography methods to characterize the linear elastic, viscoelastic, anisotropic elastic and hyperelastic properties of both bulk and thin-walled soft materials, especially the in vivo characterization of biological soft tissues. PMID:28413350

  2. Non-gel Based Proteomics to Study Steroid Receptor Agonists in the Fathead Minnow

    EPA Science Inventory

    Toxicoproteomics is an emerging field that is greatly enabled by non-gel based methods using LC MS/MS for biomarker discovery and characterization for endocrine disrupting chemicals. Using iTRAQ (isobaric tagging for relative and absolute quantitation), we quantified a diverse r...

  3. A Field-Based Aquatic Life Benchmark for Conductivity in Central Appalachian Streams (Final Report)

    EPA Science Inventory

    EPA announced the availability of the final report, A Field-Based Aquatic Life Benchmark for Conductivity in Central Appalachian Streams. This report describes a method to characterize the relationship between the extirpation (the effective extinction) of invertebrate g...

  4. Data-centric method for object observation through scattering media

    NASA Astrophysics Data System (ADS)

    Tanida, Jun; Horisaki, Ryoichi

    2018-03-01

    A data-centric method is introduced for object observation through scattering media. A large number of training pairs are used to characterize the relation between the object and the observation signals based on machine learning. Using the method object information can be retrieved even from strongly-disturbed signals. As potential applications, object recognition, imaging, and focusing through scattering media were demonstrated.

  5. Development and application of a multilocus sequence analysis method for the identification of genotypes within genus Bradyrhizobium and for establishing nodule occupancy of soybean (Glycine max L. Merr)

    USDA-ARS?s Scientific Manuscript database

    A Multilocus Sequence Typing (MLST) method based on allelic variation of 7 chromosomal loci was developed for characterizing genotypes within the genus Bradyrhizobium. With the method 29 distinct multilocus genotypes (GTs) were identified among 191 culture collection soybean strains. The occupancy ...

  6. Dynamic characterization of high damping viscoelastic materials from vibration test data

    NASA Astrophysics Data System (ADS)

    Martinez-Agirre, Manex; Elejabarrieta, María Jesús

    2011-08-01

    The numerical analysis and design of structural systems involving viscoelastic damping materials require knowledge of material properties and proper mathematical models. A new inverse method for the dynamic characterization of high damping and strong frequency-dependent viscoelastic materials from vibration test data measured by forced vibration tests with resonance is presented. Classical material parameter extraction methods are reviewed; their accuracy for characterizing high damping materials is discussed; and the bases of the new analysis method are detailed. The proposed inverse method minimizes the residue between the experimental and theoretical dynamic response at certain discrete frequencies selected by the user in order to identify the parameters of the material constitutive model. Thus, the material properties are identified in the whole bandwidth under study and not just at resonances. Moreover, the use of control frequencies makes the method insensitive to experimental noise and the efficiency is notably enhanced. Therefore, the number of tests required is drastically reduced and the overall process is carried out faster and more accurately. The effectiveness of the proposed method is demonstrated with the characterization of a CLD (constrained layer damping) cantilever beam. First, the elastic properties of the constraining layers are identified from the dynamic response of a metallic cantilever beam. Then, the viscoelastic properties of the core, represented by a four-parameter fractional derivative model, are identified from the dynamic response of a CLD cantilever beam.

  7. Modeling and prediction of peptide drift times in ion mobility spectrometry using sequence-based and structure-based approaches.

    PubMed

    Zhang, Yiming; Jin, Quan; Wang, Shuting; Ren, Ren

    2011-05-01

    The mobile behavior of 1481 peptides in ion mobility spectrometry (IMS), which are generated by protease digestion of the Drosophila melanogaster proteome, is modeled and predicted based on two different types of characterization methods, i.e. sequence-based approach and structure-based approach. In this procedure, the sequence-based approach considers both the amino acid composition of a peptide and the local environment profile of each amino acid in the peptide; the structure-based approach is performed with the CODESSA protocol, which regards a peptide as a common organic compound and generates more than 200 statistically significant variables to characterize the whole structure profile of a peptide molecule. Subsequently, the nonlinear support vector machine (SVM) and Gaussian process (GP) as well as linear partial least squares (PLS) regression is employed to correlate the structural parameters of the characterizations with the IMS drift times of these peptides. The obtained quantitative structure-spectrum relationship (QSSR) models are evaluated rigorously and investigated systematically via both one-deep and two-deep cross-validations as well as the rigorous Monte Carlo cross-validation (MCCV). We also give a comprehensive comparison on the resulting statistics arising from the different combinations of variable types with modeling methods and find that the sequence-based approach can give the QSSR models with better fitting ability and predictive power but worse interpretability than the structure-based approach. In addition, though the QSSR modeling using sequence-based approach is not needed for the preparation of the minimization structures of peptides before the modeling, it would be considerably efficient as compared to that using structure-based approach. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Sum-of-Squares-Based Region of Attraction Analysis for Gain-Scheduled Three-Loop Autopilot

    NASA Astrophysics Data System (ADS)

    Seo, Min-Won; Kwon, Hyuck-Hoon; Choi, Han-Lim

    2018-04-01

    A conventional method of designing a missile autopilot is to linearize the original nonlinear dynamics at several trim points, then to determine linear controllers for each linearized model, and finally implement gain-scheduling technique. The validation of such a controller is often based on linear system analysis for the linear closed-loop system at the trim conditions. Although this type of gain-scheduled linear autopilot works well in practice, validation based solely on linear analysis may not be sufficient to fully characterize the closed-loop system especially when the aerodynamic coefficients exhibit substantial nonlinearity with respect to the flight condition. The purpose of this paper is to present a methodology for analyzing the stability of a gain-scheduled controller in a setting close to the original nonlinear setting. The method is based on sum-of-squares (SOS) optimization that can be used to characterize the region of attraction of a polynomial system by solving convex optimization problems. The applicability of the proposed SOS-based methodology is verified on a short-period autopilot of a skid-to-turn missile.

  9. Characterization of holding brake friction pad surface after pin-on-plate wear test

    NASA Astrophysics Data System (ADS)

    Drago, N.; Gonzalez Madruga, D.; De Chiffre, L.

    2018-03-01

    This article concerns the metrological characterization of the surface on a holding brake friction material pin after a pin-on-plate (POP) wear test. The POP test induces the formation of surface plateaus that affect brake performances such as wear, friction, noise and heat. Three different materials’ surfaces have been characterized after wear from data obtained with a focus variation 3D microscope. A new surface characterization approach with plateau identification is proposed, using the number of plateau on the surface, equivalent diameter, length and breadth as measurands. The identification method is based on determining and imposing ISO 27158-2 lower plateau limit (LPL) in material probability curves; and on applying a combined criterion of height segmentation threshold and equivalent diameter threshold. The method determines the criterion thresholds for each material since LPL appears typical by material. The proposed method has allowed quantifying the surface topography at two different levels of wear. An expanded measurement uncertainty of 3.5 µm for plateau dimensions in the range 50–2000 µm and one of 0.15 µm for plateau heights up to 10 µm have been documented.

  10. The Evolution of Advanced Molecular Diagnostics for the Detection and Characterization of Mycoplasma pneumoniae.

    PubMed

    Diaz, Maureen H; Winchell, Jonas M

    2016-01-01

    Over the past decade there have been significant advancements in the methods used for detecting and characterizing Mycoplasma pneumoniae, a common cause of respiratory illness and community-acquired pneumonia worldwide. The repertoire of available molecular diagnostics has greatly expanded from nucleic acid amplification techniques (NAATs) that encompass a variety of chemistries used for detection, to more sophisticated characterizing methods such as multi-locus variable-number tandem-repeat analysis (MLVA), Multi-locus sequence typing (MLST), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), single nucleotide polymorphism typing, and numerous macrolide susceptibility profiling methods, among others. These many molecular-based approaches have been developed and employed to continually increase the level of discrimination and characterization in order to better understand the epidemiology and biology of M. pneumoniae. This review will summarize recent molecular techniques and procedures and lend perspective to how each has enhanced the current understanding of this organism and will emphasize how Next Generation Sequencing may serve as a resource for researchers to gain a more comprehensive understanding of the genomic complexities of this insidious pathogen.

  11. Experimental Detection and Characterization of Void using Time-Domain Reflection Wave

    NASA Astrophysics Data System (ADS)

    Zahari, M. N. H.; Madun, A.; Dahlan, S. H.; Joret, A.; Zainal Abidin, M. H.; Mohammad, A. H.; Omar, A. H.

    2018-04-01

    Recent technologies in engineering views have brought the significant improvement in terms of performance and precision. One of those improvements is in geophysics studies for underground detection. Reflection method has been demonstrated to able to detect and locate subsurface anomalies in previous studies, including voids. Conventional method merely involves field testing only for limited areas. This may lead to undiscovered of the void position. Problems arose when the voids were not recognised in early stage and thus, causing hazards, costs increment, and can lead to serious accidents and structural damages. Therefore, to achieve better certainty of the site investigation, a dynamic approach is needed to be implemented. To estimate and characterize the anomalies signal in a better way, an attempt has been made to model air-filled void as experimental testing at site. Robust detection and characterization of voids through inexpensive cost using reflection method are proposed to improve the detectability and characterization of the void. The result shows 2-Dimensional and 3-Dimensional analyses of void based on reflection data with P-waves velocity at 454.54 m/s.

  12. Isolation and Characterization of Circulating Tumor Cells in Squamous Cell Carcinoma of the Lung Using a Non-EpCAM-Based Capture Method.

    PubMed

    Bozzetti, Cecilia; Quaini, Federico; Squadrilli, Anna; Tiseo, Marcello; Frati, Caterina; Lagrasta, Costanza; Azzoni, Cinzia; Bottarelli, Lorena; Galetti, Maricla; Alama, Angela; Belletti, Silvana; Gatti, Rita; Passaro, Antonio; Gradilone, Angela; Cavazzoni, Andrea; Alfieri, Roberta; Petronini, Pier Giorgio; Bonelli, Mara; Falco, Angela; Carubbi, Cecilia; Pedrazzi, Giuseppe; Nizzoli, Rita; Naldi, Nadia; Pinto, Carmine; Ardizzoni, Andrea

    2015-01-01

    The exclusion of circulating tumor cells (CTCs) that have lost epithelial antigens during the epithelial-to-mesenchymal transition (EMT) process by using Epithelial Cell Adhesion Molecule (EpCAM) based capture methods is still a matter of debate. In this study, cells obtained after depletion procedure from blood samples of squamous cell lung cancer (SQCLC) patients were identified based on morphology and characterized with the combination of FISH assessment and immunophenotypic profile. Five mL blood samples, collected from 55 advanced SQCLC patients, were analyzed by a non-EpCAM-based capture method. After depletion of leukocytes and erythroid cells, the negative fraction was characterized by both FISH using a fibroblast growth factor receptor 1 (FGFR1) probe and by immunocytochemistry. Thirty healthy donors were also tested. Based on morphology (nuclear dimension ≥10 μm, shape and hypercromatic aspect) suspicious circulating cells clearly distinguishable from contaminant leukocytes were observed in 49/55 (89%) SQCLC patients. Thirty-four of the 44 (77%) samples evaluable for FGFR1 FISH showed ≥ 6 FGFR1 gene copy number on average per cell. Vimentin expression involved 43% (18/42) of pooled circulating SQCLC cells, whereas only 29% (14/48) were EpCAM positive. Confocal microscopy confirmed the localization of FGFR1 probe in suspicious circulating cells. Suspicious circulating elements were also observed in healthy donors and did not show any epithelial associated antigens. A significantly lower number of suspicious circulating cells in healthy donors compared to SQCLC patients was found. Among the heterogeneous cell population isolated by depletion procedure, the coexistence of cells with epithelial and/or mesenchymal phenotype suggests that EMT may participate to transendothelial invasion and migration of tumor cells in advanced SQCLC. The finding of cells with neither EpCAM or EMT phenotype, retrieved after non-EpCAM-based systems, underlines the presence of suspicious elements in the blood of both SQCLC patients and healthy donors. Further phenotyping and molecular analyses are necessary to fully characterize these circulating elements.

  13. Remediation of a Former USAF Radioactive Material Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, D. E.; Cushman, M; Tupyi, B.

    2003-02-25

    This paper describes the remediation of a low-level radiological waste burial site located at the former James Connally Air Force Base in Waco, Texas. Burial activities at the site occurred during the 1950's when the property was under the ownership of the United States Air Force. Included is a discussion of methods and strategies that were used to successfully exhume and characterize the wastes for proper disposal at offsite disposal facilities. Worker and environmental protection measures are also described. Information gained from this project may be used at other similar project sites. A total of nine burial tubes had beenmore » identified for excavation, characterization, and removal from the site. The disposal tubes were constructed of 4-ft lengths of concrete pipe buried upright with the upper ends flush with ground surface. Initial ground level observations of the burial tubes indicated that some weathering had occurred; however, the condition of the subsurface portions of the tubes was unknown. Soil excavation occurred in 1-foot lifts in order that the tubes could be inspected and to allow for characterization of the soils at each stage of the excavation. Due to the weight of the concrete pipe and the condition of the piping joints it was determined that special measures would be required to maintain the tubes intact during their removal. Special tube anchoring and handling methods were required to relocate the tubes from their initial positions to a staging area where they could be further characterized. Characterization of the disposal tubes was accomplished using a combination of gamma spectroscopy and activity mapping methods. Important aspects of the project included the use of specialized excavation and disposal tube reinforcement measures to maintain the disposal tubes intact during excavation, removal and subsequent characterization. The non-intrusive gamma spectroscopy and data logging methods allowed for effective characterization of the wastes while minimizing disposal costs. In addition, worker exposures were maintained ALARA as a result of the removal and characterization methods employed.« less

  14. Introduction to optical methods for characterizing liquid crystals at interfaces.

    PubMed

    Miller, Daniel S; Carlton, Rebecca J; Mushenheim, Peter C; Abbott, Nicholas L

    2013-03-12

    This Instructional Review describes methods and underlying principles that can be used to characterize both the orientations assumed spontaneously by liquid crystals (LCs) at interfaces and the strength with which the LCs are held in those orientations (so-called anchoring energies). The application of these methods to several different classes of LC interfaces is described, including solid and aqueous interfaces as well as planar and nonplanar interfaces (such as those that define a LC-in-water emulsion droplet). These methods, which enable fundamental studies of the ordering of LCs at polymeric, chemically functionalized, and biomolecular interfaces, are described in this Instructional Review on a level that can be easily understood by a nonexpert reader such as an undergraduate or graduate student. We focus on optical methods because they are based on instrumentation that is found widely in research and teaching laboratories.

  15. Comparison of Standard Culture-Based Method to Culture-Independent Method for Evaluation of Hygiene Effects on the Hand Microbiome.

    PubMed

    Zapka, C; Leff, J; Henley, J; Tittl, J; De Nardo, E; Butler, M; Griggs, R; Fierer, N; Edmonds-Wilson, S

    2017-03-28

    Hands play a critical role in the transmission of microbiota on one's own body, between individuals, and on environmental surfaces. Effectively measuring the composition of the hand microbiome is important to hand hygiene science, which has implications for human health. Hand hygiene products are evaluated using standard culture-based methods, but standard test methods for culture-independent microbiome characterization are lacking. We sampled the hands of 50 participants using swab-based and glove-based methods prior to and following four hand hygiene treatments (using a nonantimicrobial hand wash, alcohol-based hand sanitizer [ABHS], a 70% ethanol solution, or tap water). We compared results among culture plate counts, 16S rRNA gene sequencing of DNA extracted directly from hands, and sequencing of DNA extracted from culture plates. Glove-based sampling yielded higher numbers of unique operational taxonomic units (OTUs) but had less diversity in bacterial community composition than swab-based sampling. We detected treatment-induced changes in diversity only by using swab-based samples ( P < 0.001); we were unable to detect changes with glove-based samples. Bacterial cell counts significantly decreased with use of the ABHS ( P < 0.05) and ethanol control ( P < 0.05). Skin hydration at baseline correlated with bacterial abundances, bacterial community composition, pH, and redness across subjects. The importance of the method choice was substantial. These findings are important to ensure improvement of hand hygiene industry methods and for future hand microbiome studies. On the basis of our results and previously published studies, we propose recommendations for best practices in hand microbiome research. IMPORTANCE The hand microbiome is a critical area of research for diverse fields, such as public health and forensics. The suitability of culture-independent methods for assessing effects of hygiene products on microbiota has not been demonstrated. This is the first controlled laboratory clinical hand study to have compared traditional hand hygiene test methods with newer culture-independent characterization methods typically used by skin microbiologists. This study resulted in recommendations for hand hygiene product testing, development of methods, and future hand skin microbiome research. It also demonstrated the importance of inclusion of skin physiological metadata in skin microbiome research, which is atypical for skin microbiome studies. Copyright © 2017 Zapka et al.

  16. Use of bioclimatic indexes to characterize phenological phases of apple varieties in Northern Italy.

    PubMed

    Valentini, N; Me, G; Ferrero, R; Spanna, F

    2001-11-01

    The research was designed to characterize the phenological behaviour of different apple varieties and to compare different bioclimatic indexes in order to evaluate their adaptability in describing the phenological phases of fruit species. A field study on the requirement for chilling units (winter chilling requirement) and the accumulation of growing degree hours of 15 native apple cultivars was carried out in a fruit-growing area in North West Italy (Cuneo Province, Piedmont). From 1991 to 1993, climatic data were collected at meteorological stations installed in an experimental orchard (Verzuolo, Cuneo). Four methods were compared to determine the winter chilling requirement: Hutchins, Weinberger-Eggert, Utah and North Carolina. The Utah method was applied to determine the time when the chilling units accumulated become effective in meeting the rest requirements. A comparison of the different methods indicated that the Weinberger-Eggert method is the best: as it showed the lowest statistical variability during the 3 years of observations. The growing degree hour requirement (GDH) was estimated by the North Carolina method with two different base temperatures: 4.4 degrees C and 6.1 degrees C. More difficulties were met when the date of rest completion and the beginning of GDH accumulation was determined. The best base temperature for the estimation of GDH is 4.4 degrees C. Phenological and climatic characterizations are two basic tools for giving farmers and agricultural advisors important information about which varieties to choose and which are the best and the most correct cultivation practices to follow.

  17. Characterization of Bond Strength of U-Mo Fuel Plates Using the Laser Shockwave Technique: Capabilities and Preliminary Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. A. Smith; D. L. Cottle; B. H. Rabin

    2013-09-01

    This report summarizes work conducted to-date on the implementation of new laser-based capabilities for characterization of bond strength in nuclear fuel plates, and presents preliminary results obtained from fresh fuel studies on as-fabricated monolithic fuel consisting of uranium-10 wt.% molybdenum alloys clad in 6061 aluminum by hot isostatic pressing. Characterization involves application of two complementary experimental methods, laser-shock testing and laser-ultrasonic imaging, collectively referred to as the Laser Shockwave Technique (LST), that allows the integrity, physical properties and interfacial bond strength in fuel plates to be evaluated. Example characterization results are provided, including measurement of layer thicknesses, elastic properties ofmore » the constituents, and the location and nature of generated debonds (including kissing bonds). LST provides spatially localized, non-contacting measurements with minimum specimen preparation, and is ideally suited for applications involving radioactive materials, including irradiated materials. The theoretical principles and experimental approaches employed in characterizing nuclear fuel plates are described, and preliminary bond strength measurement results are discussed, with emphasis on demonstrating the capabilities and limitations of these methods. These preliminary results demonstrate the ability to distinguish bond strength variations between different fuel plates. Although additional development work is necessary to validate and qualify the test methods, these results suggest LST is viable as a method to meet fuel qualification requirements to demonstrate acceptable bonding integrity.« less

  18. Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts - Methods and Systematics Characterization

    DOE PAGES

    Gatti, M.

    2018-02-22

    We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing (WL) source galaxies from the Dark Energy Survey Year 1 (DES Y1) sample with redMaGiC galaxies (luminous red galaxies with secure photometric red- shifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We also apply the method to three photo-z codes run in our simulated data: Bayesian Photometric Redshift (BPZ), Directional Neighborhoodmore » Fitting (DNF), and Random Forest-based photo-z (RF). We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering vs photo-z's. The systematic uncertainty in the mean redshift bias of the source galaxy sample is z ≲ 0.02, though the precise value depends on the redshift bin under consideration. Here, we discuss possible ways to mitigate the impact of our dominant systematics in future analyses.« less

  19. Dark Energy Survey Year 1 Results: Cross-Correlation Redshifts - Methods and Systematics Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatti, M.

    We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing (WL) source galaxies from the Dark Energy Survey Year 1 (DES Y1) sample with redMaGiC galaxies (luminous red galaxies with secure photometric red- shifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We also apply the method to three photo-z codes run in our simulated data: Bayesian Photometric Redshift (BPZ), Directional Neighborhoodmore » Fitting (DNF), and Random Forest-based photo-z (RF). We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering vs photo-z's. The systematic uncertainty in the mean redshift bias of the source galaxy sample is z ≲ 0.02, though the precise value depends on the redshift bin under consideration. Here, we discuss possible ways to mitigate the impact of our dominant systematics in future analyses.« less

  20. Purification and high-resolution top-down mass spectrometric characterization of human salivary α-amylase.

    PubMed

    Peng, Ying; Chen, Xin; Sato, Takuya; Rankin, Scott A; Tsuji, Ryohei F; Ge, Ying

    2012-04-03

    Human salivary α-amylase (HSAMY) is a major component of salivary secretions, possessing multiple important biological functions. Here we have established three methods to purify HSAMY in human saliva for comprehensive characterization of HSAMY by high-resolution top-down mass spectrometry (MS). Among the three purification methods, the affinity method based on the enzyme-substrate specific interaction between amylase and glycogen is preferred, providing the highest purity HSAMY with high reproducibility. Subsequently, we employed Fourier transform ion cyclotron resonance MS to analyze the purified HSAMY. The predominant form of α-amylase purified from saliva of various races and genders is nonglycosylated with the same molecular weight of 55,881.2, which is 1885.8 lower than the calculated value based on the DNA-predicted sequence. High-resolution MS revealed the truncation of the first 15 N-terminal amino acids (-1858.96) and the subsequent formation of pyroglutamic acid at the new N-terminus Gln (-17.03). More importantly, five disulfide bonds in HSAMY were identified (-10.08) and effectively localized by tandem MS in conjunction with complete and partial reduction by tris (2-carboxyethyl) phosphine. Overall, this study demonstrates that top-down MS combined with affinity purification and partial reduction is a powerful method for rapid purification and complete characterization of large proteins with complex and overlapping disulfide bond patterns.

  1. A New Approach in the Preparation of Dendrimer-Based Bifunctional Diethylenetriaminepentaacetic Acid MR Contrast Agent Derivatives

    PubMed Central

    Nwe, Kido; Xu, Heng; Regino, Celeste Aida S.; Bernardo, Marcelino; Ileva, Lilia; Riffle, Lisa; Wong, Karen J.; Brechbiel, Martin W.

    2009-01-01

    In this paper we report a new method to prepare and characterize a contrast agent based on a fourth-generation (G4) polyamidoamine (PAMAM) dendrimer conjugated to the gadolinium complex of the bifunctional diethylenetriamine pentaacetic acid derivative (1B4M-DTPA). The method involves pre-forming the metal-ligand chelate in alcohol prior to conjugation to the dendrimer. The dendrimer-based agent was purified by a Sephadex® G-25 column and characterized by elemental analysis. The analysis and SEHPLC data gave a chelate to dendrimer ratio of 30:1 suggesting conjugation at approximately every other amine terminal on the dendrimer. Molar relaxivity of the agent measured at pH 7.4 displayed a higher value than that of the analogous G4 dendrimer based agent prepared by the post-metal incorporation method (r1 = 26.9 vs. 13.9 mM-1s-1 at 3T and 22°C). This is hypothesized to be due to the higher hydrophobicity of this conjugate, and the lack of available charged carboxylate groups from non-complexed free ligands that might coordinate to the metal and thus also reduce water exchange sites. Additionally, the distribution populations of compounds that result from the post-metal incorporation route are eliminated from the current product simplifying characterization as quality control issues pertaining to the production of such agents for clinical use as MR contrast agents. In vivo imaging in mice showed a reasonably fast clearance (t1/2 = 24 min) suggesting a viable agent for use in clinical application. PMID:19555072

  2. A new approach in the preparation of dendrimer-based bifunctional diethylenetriaminepentaacetic acid MR contrast agent derivatives.

    PubMed

    Nwe, Kido; Xu, Heng; Regino, Celeste Aida S; Bernardo, Marcelino; Ileva, Lilia; Riffle, Lisa; Wong, Karen J; Brechbiel, Martin W

    2009-07-01

    In this paper, we report a new method to prepare and characterize a contrast agent based on a fourth-generation (G4) polyamidoamine (PAMAM) dendrimer conjugated to the gadolinium complex of the bifunctional diethylenetriamine pentaacetic acid derivative (1B4M-DTPA). The method involves preforming the metal-ligand chelate in alcohol prior to conjugation to the dendrimer. The dendrimer-based agent was purified by a Sephadex G-25 column and characterized by elemental analysis. The analysis and SE-HPLC data gave a chelate to dendrimer ratio of 30:1 suggesting conjugation at approximately every other amine terminal on the dendrimer. Molar relaxivity of the agent measured at pH 7.4 displayed a higher value than that of the analogous G4 dendrimer based agent prepared by the postmetal incorporation method (r(1) = 26.9 vs 13.9 mM(-1) s(-1) at 3 T and 22 degrees C). This is hypothesized to be due to the higher hydrophobicity of this conjugate and the lack of available charged carboxylate groups from noncomplexed free ligands that might coordinate to the metal and thus also reduce water exchange sites. Additionally, the distribution populations of compounds that result from the postmetal incorporation route are eliminated from the current product simplifying characterization as quality control issues pertaining to the production of such agents for clinical use as MR contrast agents. In vivo imaging in mice showed a reasonably fast clearance (t(1/2) = 24 min) suggesting a viable agent for use in clinical application.

  3. Combined application of imaging techniques for the characterization and authentication of ancient weapons

    NASA Astrophysics Data System (ADS)

    Salvemini, Filomena; Grazzi, Francesco; Kardjilov, Nikolay; Wieder, Frank; Manke, Ingo; Edge, David; Williams, Alan; Zoppi, Marco

    2017-05-01

    Non-invasive experimental methods play an important role in the field of cultural heritage. Benefiting from the technical progress in recent years, neutron imaging has been demonstrated to complement effectively studies based on surface analysis, allowing for a non-invasive characterization of the whole three-dimensional volume. This study focuses on a kris and a kanjar, two weapons from ancient Asia, to show the potential of the combined use of X-ray and neutron imaging techniques for the characterisation of the manufacturing methods and the authentication of objects of cultural and historical interest.

  4. Prediction and characterization of application power use in a high-performance computing environment

    DOE PAGES

    Bugbee, Bruce; Phillips, Caleb; Egan, Hilary; ...

    2017-02-27

    Power use in data centers and high-performance computing (HPC) facilities has grown in tandem with increases in the size and number of these facilities. Substantial innovation is needed to enable meaningful reduction in energy footprints in leadership-class HPC systems. In this paper, we focus on characterizing and investigating application-level power usage. We demonstrate potential methods for predicting power usage based on a priori and in situ characteristics. Lastly, we highlight a potential use case of this method through a simulated power-aware scheduler using historical jobs from a real scientific HPC system.

  5. Atherosclerotic plaque characterization by spatial and temporal speckle pattern analysis

    NASA Astrophysics Data System (ADS)

    Tearney, Guillermo J.; Bouma, Brett E.

    2002-04-01

    Improved methods are needed to identify the vulnerable coronary plaques responsible for acute myocardial infraction or sudden cardiac death. We describe a method for characterizing the structure and biomechanical properties of atherosclerotic plaques based on speckle pattern fluctuations. Near-field speckle images were acquired from five human aortic specimens ex vivo. The speckle decorrelation time constant varied significantly for vulnerable aortic plaques (τ = 40 ms) versus stable plaques (τ = 400 ms) and normal aorta (τ = 500 ms). These initial results indicate that different atherosclerotic plaque types may be distinguished by analysis of temporal and spatial speckle pattern fluctuations.

  6. Consistent characterization of semiconductor saturable absorber mirrors with single-pulse and pump-probe spectroscopy.

    PubMed

    Fleischhaker, R; Krauss, N; Schättiger, F; Dekorsy, T

    2013-03-25

    We study the comparability of the two most important measurement methods used for the characterization of semiconductor saturable absorber mirrors (SESAMs). For both methods, single-pulse spectroscopy (SPS) and pump-probe spectroscopy (PPS), we analyze in detail the time-dependent saturation dynamics inside a SESAM. Based on this analysis, we find that fluence-dependent PPS at complete spatial overlap and zero time delay is equivalent to SPS. We confirm our findings experimentally by comparing data from SPS and PPS of two samples. We show how to interpret this data consistently and we give explanations for possible deviations.

  7. Risk-based prioritization method for the classification of groundwater pesticide pollution from agricultural regions.

    PubMed

    Yang, Yu; Lian, Xin-Ying; Jiang, Yong-Hai; Xi, Bei-Dou; He, Xiao-Song

    2017-11-01

    Agricultural regions are a significant source of groundwater pesticide pollution. To ensure that agricultural regions with a significantly high risk of groundwater pesticide contamination are properly managed, a risk-based ranking method related to groundwater pesticide contamination is needed. In the present paper, a risk-based prioritization method for the classification of groundwater pesticide pollution from agricultural regions was established. The method encompasses 3 phases, including indicator selection, characterization, and classification. In the risk ranking index system employed here, 17 indicators involving the physicochemical properties, environmental behavior characteristics, pesticide application methods, and inherent vulnerability of groundwater in the agricultural region were selected. The boundary of each indicator was determined using K-means cluster analysis based on a survey of a typical agricultural region and the physical and chemical properties of 300 typical pesticides. The total risk characterization was calculated by multiplying the risk value of each indicator, which could effectively avoid the subjectivity of index weight calculation and identify the main factors associated with the risk. The results indicated that the risk for groundwater pesticide contamination from agriculture in a region could be ranked into 4 classes from low to high risk. This method was applied to an agricultural region in Jiangsu Province, China, and it showed that this region had a relatively high risk for groundwater contamination from pesticides, and that the pesticide application method was the primary factor contributing to the relatively high risk. The risk ranking method was determined to be feasible, valid, and able to provide reference data related to the risk management of groundwater pesticide pollution from agricultural regions. Integr Environ Assess Manag 2017;13:1052-1059. © 2017 SETAC. © 2017 SETAC.

  8. Biodegradable baked foam made with chayotextle starch mixed with plantain flour and wood fiber

    USDA-ARS?s Scientific Manuscript database

    New renewable materials are needed to reduce petroleum-based plastic packaging. The effect of plantain flour (PF) and wood fiber (WF) on the properties of starch-based foams (SBFs) were investigated. The SBFs were characterized using physical, thermal, and mechanical methods to better understand the...

  9. Line-scan hyperspectral imaging platform for agro-food safety and quality evaluation: System enhancement and characterization

    USDA-ARS?s Scientific Manuscript database

    Line-scan-based hyperspectral imaging techniques have often served as a research tool to develop rapid multispectral methods based on only a few spectral bands for rapid online applications. With continuing technological advances and greater accessibility to and availability of optoelectronic imagin...

  10. Evaluating the effect of tillage on soil structural properties using the pedostructure concept

    USDA-ARS?s Scientific Manuscript database

    The pedostructure (PS) concept is a physically-based method of soil characterization that defines a soil based on its structure and the relationship between structure and soil water behavior. There are fifteen unique pedostructure parameters that define the macropore and micropore soil water behavio...

  11. The Effect of Brain Gym® on Academic Engagement for Children with Developmental Disabilities

    ERIC Educational Resources Information Center

    Watson, Andrea; Kelso, Ginger L.

    2014-01-01

    Following recent legislative initiatives in education requiring evidence-based practices, schools have implemented various instructional programs characterized as "evidence-based." However, it is important to question whether these methods are truly effective. One example of a methodology currently promoted and used in schools is an…

  12. Characterization of GM events by insert knowledge adapted re-sequencing approaches

    PubMed Central

    Yang, Litao; Wang, Congmao; Holst-Jensen, Arne; Morisset, Dany; Lin, Yongjun; Zhang, Dabing

    2013-01-01

    Detection methods and data from molecular characterization of genetically modified (GM) events are needed by stakeholders of public risk assessors and regulators. Generally, the molecular characteristics of GM events are incomprehensively revealed by current approaches and biased towards detecting transformation vector derived sequences. GM events are classified based on available knowledge of the sequences of vectors and inserts (insert knowledge). Herein we present three insert knowledge-adapted approaches for characterization GM events (TT51-1 and T1c-19 rice as examples) based on paired-end re-sequencing with the advantages of comprehensiveness, accuracy, and automation. The comprehensive molecular characteristics of two rice events were revealed with additional unintended insertions comparing with the results from PCR and Southern blotting. Comprehensive transgene characterization of TT51-1 and T1c-19 is shown to be independent of a priori knowledge of the insert and vector sequences employing the developed approaches. This provides an opportunity to identify and characterize also unknown GM events. PMID:24088728

  13. Characterization of GM events by insert knowledge adapted re-sequencing approaches.

    PubMed

    Yang, Litao; Wang, Congmao; Holst-Jensen, Arne; Morisset, Dany; Lin, Yongjun; Zhang, Dabing

    2013-10-03

    Detection methods and data from molecular characterization of genetically modified (GM) events are needed by stakeholders of public risk assessors and regulators. Generally, the molecular characteristics of GM events are incomprehensively revealed by current approaches and biased towards detecting transformation vector derived sequences. GM events are classified based on available knowledge of the sequences of vectors and inserts (insert knowledge). Herein we present three insert knowledge-adapted approaches for characterization GM events (TT51-1 and T1c-19 rice as examples) based on paired-end re-sequencing with the advantages of comprehensiveness, accuracy, and automation. The comprehensive molecular characteristics of two rice events were revealed with additional unintended insertions comparing with the results from PCR and Southern blotting. Comprehensive transgene characterization of TT51-1 and T1c-19 is shown to be independent of a priori knowledge of the insert and vector sequences employing the developed approaches. This provides an opportunity to identify and characterize also unknown GM events.

  14. Towards a method to characterize temporary groundwater dynamics during droughts

    NASA Astrophysics Data System (ADS)

    Heudorfer, Benedikt; Stahl, Kerstin

    2016-04-01

    In order to improve our understanding of the complex mechanisms involved in the development, propagation and termination of drought events, a major challenge is to grasp the role of groundwater systems. Research on how groundwater responds to meteorological drought events (i.e. short-term climate anomalies) is still limited. Part of the problem is that there is as yet no generic method to characterize the response of different groundwater systems to extreme climate anomalies. In order to explore possibilities for such a methodology, we evaluate two statistical approaches to characterize groundwater dynamics on short time scales by applying them on observed groundwater head data from different pre- and peri-mountainous groundwater systems in humid central Europe (Germany). The first method is based on the coefficient of variation in moving windows of various lengths, the second method is based on streamflow recession characteristics applied on groundwater data. With these methods, the gauges behavior during low head events and its response to precipitation was explored. Findings regarding the behavior of the gauges make it possible to distinguish between gauges with a dominance of cyclic patterns, and gauges with a dominance of patterns on seasonal or event scale (commonly referred to as slow/fast responding gauges, respectively). While some clues on what factors that might control these patterns are present, the specific controls are general unclear for the gauges in this study. However as the key conclusion stands the question if the variety of manifestations of groundwater dynamics, as they occur in real systems, is subsumable with one unique method. Further studies on the topic are in progress.

  15. Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies.

    PubMed

    Zhang, Hao; Cui, Weidong; Gross, Michael L

    2014-01-21

    Monoclonal antibodies (mAbs) are powerful therapeutics, and their characterization has drawn considerable attention and urgency. Unlike small-molecule drugs (150-600 Da) that have rigid structures, mAbs (∼150 kDa) are engineered proteins that undergo complicated folding and can exist in a number of low-energy structures, posing a challenge for traditional methods in structural biology. Mass spectrometry (MS)-based biophysical characterization approaches can provide structural information, bringing high sensitivity, fast turnaround, and small sample consumption. This review outlines various MS-based strategies for protein biophysical characterization and then reviews how these strategies provide structural information of mAbs at the protein level (intact or top-down approaches), peptide, and residue level (bottom-up approaches), affording information on higher order structure, aggregation, and the nature of antibody complexes. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Surveillance of traumatic firefighter fatalities: an assessment of four systems.

    PubMed

    Estes, Chris R; Marsh, Suzanne M; Castillo, Dawn N

    2011-01-01

    Firefighters regularly respond to hazardous situations that put them at risk for fatal occupational injuries. Traumatic occupational fatality surveillance is a foundation for understanding the problem and developing prevention strategies. We assessed four surveillance systems for their utility in characterizing firefighter fatalities and informing prevention measures. We examined three population-based systems (the Bureau of Labor Statistics' Census of Fatal Occupational Injuries and systems maintained by the United States Fire Administration and the National Fire Protection Association) and one case-based system (data collected through the National Institute for Occupational Safety and Health Fire Fighter Fatality Investigation and Prevention Program). From each system, we selected traumatic fatalities among firefighters for 2003-2006. Then we compared case definitions, methods for case ascertainment, variables collected, and rate calculation methods. Overall magnitude of fatalities differed among systems. The population-based systems were effective in characterizing the circumstances of traumatic firefighter fatalities. The case-based surveillance system was effective in formulating detailed prevention recommendations, which could not be made based on the population-based data alone. Methods for estimating risk were disparate and limited fatality rate comparisons between firefighters and other workers. The systems included in this study contribute toward a greater understanding of firefighter fatalities. Areas of improvement for these systems should continue to be identified as they are used to direct research and prevention efforts.

  17. Lidar-Based Rock-Fall Hazard Characterization of Cliffs

    USGS Publications Warehouse

    Collins, Brian D.; Greg M.Stock,

    2017-01-01

    Rock falls from cliffs and other steep slopes present numerous challenges for detailed geological characterization. In steep terrain, rock-fall source areas are both dangerous and difficult to access, severely limiting the ability to make detailed structural and volumetric measurements necessary for hazard assessment. Airborne and terrestrial lidar survey methods can provide high-resolution data needed for volumetric, structural, and deformation analyses of rock falls, potentially making these analyses straightforward and routine. However, specific methods to collect, process, and analyze lidar data of steep cliffs are needed to maximize analytical accuracy and efficiency. This paper presents observations showing how lidar data sets should be collected, filtered, registered, and georeferenced to tailor their use in rock fall characterization. Additional observations concerning surface model construction, volumetric calculations, and deformation analysis are also provided.

  18. High-throughput characterization of film thickness in thin film materials libraries by digital holographic microscopy.

    PubMed

    Lai, Yiu Wai; Krause, Michael; Savan, Alan; Thienhaus, Sigurd; Koukourakis, Nektarios; Hofmann, Martin R; Ludwig, Alfred

    2011-10-01

    A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.

  19. PREPARATION AND CHARACTERIZATION OF ORALLY DISINTEGRATING LORATADINE TABLETS MANUFACTURED WITH CO-PROCESSED MIXTURES.

    PubMed

    Amelian, Aleksandra; Szekalska, Marta; Wilczewska, Agnieszka Zofia; Basa, Anna; Winnicka, Katarzyna

    2016-01-01

    The aim of this study was to develop orally disintegrated tablets (ODT) with loratadine using Parteck ODT and Ludiflash--new commercially available tableting excipients based on co-processed mannitol. ODT containing loratadine were prepared with 3% addition of various superdisintegrants (AcDiSol, Kollidon CL-F and Kollidon CL-SF) by direct compression method. Obtained tablets were characterized for friability, pore structure, and wetting and disintegration time measured by four independents methods. In order to identify possible interactions between loratadine and the excipients, differential scanning calorimetry was used. The results showed that all formulated ODT were characterized by appropriate mechanical properties (friability < 1%), the uniform content of the drug substance and pleasant mouth feeling. Disintegration time below 30 s was observed in formulations with crospovidones as disintegrant.

  20. The integrated contaminant elution and tracer test toolkit, ICET3, for improved characterization of mass transfer, attenuation, and mass removal

    NASA Astrophysics Data System (ADS)

    Brusseau, Mark L.; Guo, Zhilin

    2018-01-01

    It is evident based on historical data that groundwater contaminant plumes persist at many sites, requiring costly long-term management. High-resolution site-characterization methods are needed to support accurate risk assessments and to select, design, and operate effective remediation operations. Most subsurface characterization methods are generally limited in their ability to provide unambiguous, real-time delineation of specific processes affecting mass-transfer, transformation, and mass removal, and accurate estimation of associated rates. An integrated contaminant elution and tracer test toolkit, comprising a set of local-scale groundwater extraction-and injection tests, was developed to ameliorate the primary limitations associated with standard characterization methods. The test employs extended groundwater extraction to stress the system and induce hydraulic and concentration gradients. Clean water can be injected, which removes the resident aqueous contaminant mass present in the higher-permeability zones and isolates the test zone from the surrounding plume. This ensures that the concentrations and fluxes measured within the isolated area are directly and predominantly influenced by the local mass-transfer and transformation processes controlling mass removal. A suite of standard and novel tracers can be used to delineate specific mass-transfer and attenuation processes that are active at a given site, and to quantify the associated mass-transfer and transformation rates. The conceptual basis for the test is first presented, followed by an illustrative application based on simulations produced with a 3-D mathematical model and a brief case study application.

  1. Evaluation of fecal indicator and pathogenic bacteria originating from swine manure applied to agricultural lands using culture-based and quantitative real-time PCR methods.

    EPA Science Inventory

    Fecal bacteria, including those originating from concentrated animal feeding operations, are a leading contributor to water quality impairments in agricultural areas. Rapid and reliable methods are needed that can accurately characterize fecal pollution in agricultural settings....

  2. Evaluation of Fecal Indicator and Pathogenic Bacteria Originating from Swine Manure Applied to Agricultural Lands Using Culture-Based and Quantitative Real-Time PCR Methods

    EPA Science Inventory

    Fecal bacteria, including those originating from concentrated animal feeding operations, are a leading contributor to water quality impairments in agricultural areas. Rapid and reliable methods are needed that can accurately characterize fecal pollution in agricultural settings....

  3. To Infinity and Beyond: Using a Narrative Approach to Identify Training Needs for Unknown and Dynamic Situations

    ERIC Educational Resources Information Center

    Dachner, Alison M.; Saxton, Brian M.; Noe, Raymond A.; Keeton, Kathryn E.

    2013-01-01

    Training effectiveness depends on conducting a thorough needs assessment. Traditional needs assessment methods are insufficient for today's business environment characterized by rapid pace, risk, and uncertainty. To overcome the deficiencies of traditional needs assessment methods, a narrative-based unstructured interview approach with subject…

  4. Image-Based Rapid Phenotyping Method of Chickpeas Seed Size Characterization

    USDA-ARS?s Scientific Manuscript database

    The value of a chickpea crop is influenced by both total seed yield and also by the size of the harvested seed. Larger seeds are used for canning, salads, and fresh markets and have a higher value than smaller seeds, which are typically processed into hummus. The standard method for determining seed...

  5. Integration of Flux-Based Methods and Triad Principles for DNAPL Site Management, Part II: Review of Flux Measurement Methods

    EPA Science Inventory

    Managing dense nonaqueous phase liquid (DNAPL) contaminated sites continues to be among the most pressing environmental problems currently faced. One approach that has recently been investigated for use in DNAPL site characterization and remediation is mass flux (mass per unit ar...

  6. Physicochemical characterization of allergens: quantity, identity, purity, aggregation and conformation.

    PubMed

    Koppelman, Stef J; Luykx, Dion M A M; de Jongh, Harmen H J; Veldhuizen, Willem Jan

    2009-01-01

    Allergens and allergoids can be characterized by means of physicochemical methods, resulting in a description of the protein on different structural levels. Several techniques are available and their suitability depends on the composition of the particular sample. Current European legislation on allergen products demands characterization of final products in particular focusing on identity, degree of modification (for allergoids) and stability of the composition. Structural parameters of allergens may be used to investigate the stability of an allergen product. The challenge is to identify and optimize techniques that allow determination of protein structure in the context of a formulated pharmaceutical product. As the majority of the products currently marketed are formulated with aluminium hydroxide or aluminium phosphate as a depot, most of the methods and techniques used for protein characterization in solution are not applicable. An additional hurdle is that allergen products are based on natural extracts, comprising a mixture of proteins, both allergens and non-allergens, sometimes in the presence of other uncharacterized components from the raw material. This paper describes which methods are suitable for the different stages of allergen product manufacturing, and how these relate to the current regulatory requirements. Some of the techniques are demonstrated using a model allergen, cod parvalbumin, and a chemically modified form thereof. We conclude that a variety of methods is available for characterization of proteins in solution, and that a limited number of techniques appear to be suitable for modified allergens (allergoids). Adaptation of existing methods, e.g. mass spectroscopy and infrared spectroscopy may be helpful to obtain protein parameters of allergens in a formulated allergen product. By choosing a combination of techniques, including those additional to physicochemical approaches, relevant parameters of allergens in formulated allergen products can be assessed in order to achieve a well-characterized pharmaceutical product.

  7. Circulating Tumor Cells: A Review of Non-EpCAM-Based Approaches for Cell Enrichment and Isolation.

    PubMed

    Gabriel, Marta Tellez; Calleja, Lidia Rodriguez; Chalopin, Antoine; Ory, Benjamin; Heymann, Dominique

    2016-04-01

    Circulating tumor cells (CTCs) are biomarkers for noninvasively measuring the evolution of tumor genotypes during treatment and disease progression. Recent technical progress has made it possible to detect and characterize CTCs at the single-cell level in blood. Most current methods are based on epithelial cell adhesion molecule (EpCAM) detection, but numerous studies have demonstrated that EpCAM is not a universal marker for CTC detection because it fails to detect both carcinoma cells that undergo epithelial-mesenchymal transition (EMT) and CTCs of mesenchymal origin. Moreover, EpCAM expression has been found in patients with benign diseases. A large proportion of the current studies and reviews about CTCs describe EpCAM-based methods, but there is evidence that not all tumor cells can be detected using this marker. Here we describe the most recent EpCAM-independent methods for enriching, isolating, and characterizing CTCs on the basis of physical and biological characteristics and point out the main advantages and disadvantages of these methods. CTCs offer an opportunity to obtain key biological information required for the development of personalized medicine. However, there is no universal marker of these cells. To strengthen the clinical utility of CTCs, it is important to improve existing technologies and develop new, non-EpCAM-based systems to enrich and isolate CTCs. © 2016 American Association for Clinical Chemistry.

  8. Seismic instantaneous frequency extraction based on the SST-MAW

    NASA Astrophysics Data System (ADS)

    Liu, Naihao; Gao, Jinghuai; Jiang, Xiudi; Zhang, Zhuosheng; Wang, Ping

    2018-06-01

    The instantaneous frequency (IF) extraction of seismic data has been widely applied to seismic exploration for decades, such as detecting seismic absorption and characterizing depositional thicknesses. Based on the complex-trace analysis, the Hilbert transform (HT) can extract the IF directly, which is a traditional method and susceptible to noise. In this paper, a robust approach based on the synchrosqueezing transform (SST) is proposed to extract the IF from seismic data. In this process, a novel analytical wavelet is developed and chosen as the basic wavelet, which is called the modified analytical wavelet (MAW) and comes from the three parameter wavelet. After transforming the seismic signal into a sparse time-frequency domain via the SST taking the MAW (SST-MAW), an adaptive threshold is introduced to improve the noise immunity and accuracy of the IF extraction in a noisy environment. Note that the SST-MAW reconstructs a complex trace to extract seismic IF. To demonstrate the effectiveness of the proposed method, we apply the SST-MAW to synthetic data and field seismic data. Numerical experiments suggest that the proposed procedure yields the higher resolution and the better anti-noise performance compared to the conventional IF extraction methods based on the HT method and continuous wavelet transform. Moreover, geological features (such as the channels) are well characterized, which is insightful for further oil/gas reservoir identification.

  9. Characterization of an Aerosol Microconcentrator for Analysis Using Microscale Optical Spectroscopies

    PubMed Central

    Zheng, Lina; Kulkarni, Pramod; Zavvos, Konstantinos; Liang, Huayan; Birch, M. Eileen; Dionysiou, Dionysios D.

    2017-01-01

    Efficient microconcentration of aerosols to a substrate is essential for effectively coupling the collected particles to microscale optical spectroscopies such as laser-induced or spark microplasma, or micro-Raman or infrared spectroscopies. In this study, we present detailed characterization of a corona-based aerosol microconcentration technique developed previously (Diwakar and Kulkarni, 2012). The method involves two coaxial electrodes separated by a few millimeters, one held at a high electrical potential and the other grounded. The particles are collected on the collection (i.e., ground) electrode from a coaxial aerosol flow in a one-step charge-and-collect scheme using corona discharge and electrical precipitation between the two electrodes. Performance of the corona microconcentration method was determined experimentally by measuring collection efficiency, wall losses, and particle deposition density. An intrinsic spectroscopic sensitivity was experimentally determined for the aerosol microconcentrator. Using this sensitivity, we show that corona-based microconcentration is much superior to alternative methods, including filtration, focused impaction using aerodynamic lens, and spot collection using condensational growth. The method offers unique advantages for compact, hand-held aerosol analytical instrumentation. PMID:28626243

  10. Speech rhythm analysis with decomposition of the amplitude envelope: characterizing rhythmic patterns within and across languages.

    PubMed

    Tilsen, Sam; Arvaniti, Amalia

    2013-07-01

    This study presents a method for analyzing speech rhythm using empirical mode decomposition of the speech amplitude envelope, which allows for extraction and quantification of syllabic- and supra-syllabic time-scale components of the envelope. The method of empirical mode decomposition of a vocalic energy amplitude envelope is illustrated in detail, and several types of rhythm metrics derived from this method are presented. Spontaneous speech extracted from the Buckeye Corpus is used to assess the effect of utterance length on metrics, and it is shown how metrics representing variability in the supra-syllabic time-scale components of the envelope can be used to identify stretches of speech with targeted rhythmic characteristics. Furthermore, the envelope-based metrics are used to characterize cross-linguistic differences in speech rhythm in the UC San Diego Speech Lab corpus of English, German, Greek, Italian, Korean, and Spanish speech elicited in read sentences, read passages, and spontaneous speech. The envelope-based metrics exhibit significant effects of language and elicitation method that argue for a nuanced view of cross-linguistic rhythm patterns.

  11. Authorship attribution based on Life-Like Network Automata

    PubMed Central

    Machicao, Jeaneth; Corrêa, Edilson A.; Miranda, Gisele H. B.; Amancio, Diego R.

    2018-01-01

    The authorship attribution is a problem of considerable practical and technical interest. Several methods have been designed to infer the authorship of disputed documents in multiple contexts. While traditional statistical methods based solely on word counts and related measurements have provided a simple, yet effective solution in particular cases; they are prone to manipulation. Recently, texts have been successfully modeled as networks, where words are represented by nodes linked according to textual similarity measurements. Such models are useful to identify informative topological patterns for the authorship recognition task. However, there is no consensus on which measurements should be used. Thus, we proposed a novel method to characterize text networks, by considering both topological and dynamical aspects of networks. Using concepts and methods from cellular automata theory, we devised a strategy to grasp informative spatio-temporal patterns from this model. Our experiments revealed an outperformance over structural analysis relying only on topological measurements, such as clustering coefficient, betweenness and shortest paths. The optimized results obtained here pave the way for a better characterization of textual networks. PMID:29566100

  12. Proposed acceptance, qualification, and characterization tests for thin-film PV modules

    NASA Technical Reports Server (NTRS)

    Waddington, D.; Mrig, L.; Deblasio, R.; Ross, R.

    1988-01-01

    Details of a proposed test program for PV thin-film modules which the Department of Energy has directed the Solar Energy Research Institute (SERI) to prepare are presented. Results of one of the characterization tests that SERI has performed are also presented. The objective is to establish a common approach to testing modules that will be acceptable to both users and manufacturers. The tests include acceptance, qualification, and characterization tests. Acceptance tests verify that randomly selected modules have similar characteristics. Qualification tests are based on accelerated test methods designed to simulate adverse conditions. Characterization tests provide data on performance in a predefined environment.

  13. Extraction of agar from Gelidium sesquipedale (Rhodopyta) and surface characterization of agar based films.

    PubMed

    Guerrero, P; Etxabide, A; Leceta, I; Peñalba, M; de la Caba, K

    2014-01-01

    The chemical structure of the agar obtained from Gelidium sesquipedale (Rhodophyta) has been determined by (13)C nuclear magnetic resonance ((13)C NMR) and Fourier transform infrared spectroscopy (FTIR). Agar (AG) films with different amounts of soy protein isolate (SPI) were prepared using a thermo-moulding method, and transparent and hydrophobic films were obtained and characterized. FTIR analysis provided a detailed description of the binding groups present in the films, such as carboxylic, hydroxyl and sulfonate groups, while the surface composition was examined using X-ray photoelectron spectroscopy (XPS). The changes observed by FTIR and XPS spectra suggested interactions between functional groups of agar and SPI. This is a novel approach to the characterization of agar-based films and provides knowledge about the compatibility of agar and soy protein for further investigation of the functional properties of biodegradable films based on these biopolymers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Characterization of Adrenal Adenoma by Gaussian Model-Based Algorithm.

    PubMed

    Hsu, Larson D; Wang, Carolyn L; Clark, Toshimasa J

    2016-01-01

    We confirmed that computed tomography (CT) attenuation values of pixels in an adrenal nodule approximate a Gaussian distribution. Building on this and the previously described histogram analysis method, we created an algorithm that uses mean and standard deviation to estimate the percentage of negative attenuation pixels in an adrenal nodule, thereby allowing differentiation of adenomas and nonadenomas. The institutional review board approved both components of this study in which we developed and then validated our criteria. In the first, we retrospectively assessed CT attenuation values of adrenal nodules for normality using a 2-sample Kolmogorov-Smirnov test. In the second, we evaluated a separate cohort of patients with adrenal nodules using both the conventional 10HU unit mean attenuation method and our Gaussian model-based algorithm. We compared the sensitivities of the 2 methods using McNemar's test. A total of 183 of 185 observations (98.9%) demonstrated a Gaussian distribution in adrenal nodule pixel attenuation values. The sensitivity and specificity of our Gaussian model-based algorithm for identifying adrenal adenoma were 86.1% and 83.3%, respectively. The sensitivity and specificity of the mean attenuation method were 53.2% and 94.4%, respectively. The sensitivities of the 2 methods were significantly different (P value < 0.001). In conclusion, the CT attenuation values within an adrenal nodule follow a Gaussian distribution. Our Gaussian model-based algorithm can characterize adrenal adenomas with higher sensitivity than the conventional mean attenuation method. The use of our algorithm, which does not require additional postprocessing, may increase workflow efficiency and reduce unnecessary workup of benign nodules. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Treatability and characterization of Natural Organic Matter (NOM) in South African waters using newly developed methods

    NASA Astrophysics Data System (ADS)

    Nkambule, T. I.; Krause, R. W. M.; Haarhoff, J.; Mamba, B. B.

    Managing the removal of Natural Organic Matter (NOM) or problematic components from water has become increasingly important. NOM is a heterogeneous mixture of organic compounds of human origin and derived from plant and microbial residues. The inadequate removal of NOM has a bearing on the capacity of the other treatment processes to remove organic micro-pollutants or inorganic species that may be present in the water. In addition the action of certain disinfection processes has been shown to lead to the formation of harmful disinfection by-products (DBPs). Owing to the complexity, in composition and structure, of NOM, the techniques currently employed for its characterization have a number of limitations, both in terms of quantification and removal of the NOM within short periods of time. The dissolved organic carbon (DOC), biodegradable dissolved organic carbon (BDOC) and Fluorescence Emission Excitation Matrices (FEEM) were used to characterize NOM from various water samples collected around South Africa. Characterization results gave an indication of the character of NOM present in all the water samples. FEEM and UV-Vis results indicated that most of the water samples were aromatic in nature, since they had high hydrophobic and humic acid-like materials content. Generally, the characterization data indicated a varying composition of NOM amongst the various sampling points. The polarity rapid assessment method (PRAM) was then employed as a rapid NOM characterization tool. The characterization under PRAM is based on preferential adsorption of dissolved organic matter (DOM) fractions onto solid phase extraction (SPE) sorbents. The PRAM also allows the separation of DOM into fractions by polarity, hence reducing the molecular heterogeneity of NOM and thus aiding the removal of specific NOM fractions from water. The PRAM provided a quick characterization of the NOM character. However, DOC quantification by the PRAM analysis was hindered by excessive carbon leaching from the SPE cartridges. The BDOC method of analysis is based on the bacteria fixed on the biologically active sand and gives a ratio of the biodegradable NOM versus the non-biodegradable NOM. For the BDOC analysis, the percentage DOC removal for the samples ranged from 12% to 61%.

  16. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws.

    PubMed

    Xiao, Xiao; White, Ethan P; Hooten, Mevin B; Durham, Susan L

    2011-10-01

    Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain.

  17. [Lithology feature extraction of CASI hyperspectral data based on fractal signal algorithm].

    PubMed

    Tang, Chao; Chen, Jian-Ping; Cui, Jing; Wen, Bo-Tao

    2014-05-01

    Hyperspectral data is characterized by combination of image and spectrum and large data volume dimension reduction is the main research direction. Band selection and feature extraction is the primary method used for this objective. In the present article, the authors tested methods applied for the lithology feature extraction from hyperspectral data. Based on the self-similarity of hyperspectral data, the authors explored the application of fractal algorithm to lithology feature extraction from CASI hyperspectral data. The "carpet method" was corrected and then applied to calculate the fractal value of every pixel in the hyperspectral data. The results show that fractal information highlights the exposed bedrock lithology better than the original hyperspectral data The fractal signal and characterized scale are influenced by the spectral curve shape, the initial scale selection and iteration step. At present, research on the fractal signal of spectral curve is rare, implying the necessity of further quantitative analysis and investigation of its physical implications.

  18. Spectrum of the Laplace-Beltrami operator and the phase structure of causal dynamical triangulations

    NASA Astrophysics Data System (ADS)

    Clemente, Giuseppe; D'Elia, Massimo

    2018-06-01

    We propose a new method to characterize the different phases observed in the nonperturbative numerical approach to quantum gravity known as causal dynamical triangulations. The method is based on the analysis of the eigenvalues and the eigenvectors of the Laplace-Beltrami operator computed on the triangulations: it generalizes previous works based on the analysis of diffusive processes and proves capable of providing more detailed information on the geometric properties of the triangulations. In particular, we apply the method to the analysis of spatial slices, showing that the different phases can be characterized by a new order parameter related to the presence or absence of a gap in the spectrum of the Laplace-Beltrami operator, and deriving an effective dimensionality of the slices at the different scales. We also propose quantities derived from the spectrum that could be used to monitor the running to the continuum limit around a suitable critical point in the phase diagram, if any is found.

  19. Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor.

    PubMed

    Mohanram, Rajamani; Jagtap, Chandrakant; Kumar, Pradeep

    2016-04-15

    Diverse marine bacterial species predominantly found in oil-polluted seawater produce diverse surface-active agents. Surface-active agents produced by bacteria are classified into two groups based on their molecular weights, namely biosurfactants and bioemulsifiers. In this study, surface-active agent-producing, oil-degrading marine bacteria were isolated using a modified Bushnell-Haas medium with high-speed diesel as a carbon source from three oil-polluted sites of Mumbai Harbor. Surface-active agent-producing bacterial strains were screened using nine widely used methods. The nineteen bacterial strains showed positive results for more than four surface-active agent screening methods; further, these strains were characterized using biochemical and nucleic acid sequencing methods. Based on the results, the organisms belonged to the genera Acinetobacter, Alcanivorax, Bacillus, Comamonas, Chryseomicrobium, Halomonas, Marinobacter, Nesterenkonia, Pseudomonas, and Serratia. The present study confirmed the prevalence of surface-active agent-producing bacteria in the oil-polluted waters of Mumbai Harbor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1994-01-01

    In this Progress Report, we describe our continuing research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the inspection and characterization of complex composite structures. We explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. As an initial step toward the application of linear array imaging technology to the interrogation of a wide range of complex composite structures, we present images obtained using an unmodified medical ultrasonic imaging system of two epoxy-bonded aluminum plate specimens, each with intentionally disbonded regions. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to assess whether these images can detect disbonded regions and provide information regarding the nature of the disbonded region. We present a description of a standoff/delay fixture which has been designed, constructed, and implemented on a Hewlett-Packard SONOS 1500 medical imaging system. This standoff/delay fixture, when attached to a 7.5 MHz linear array probe, greatly enhances our ability to interrogate flat plate specimens. The final section of this Progress Report describes a woven composite plate specimen that has been specially machined to include intentional flaws. This woven composite specimen will allow us to assess the feasibility of applying linear array imaging technology to the inspection and characterization of complex textile composite materials. We anticipate the results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology.

  1. Strategic characterization of anti-drug antibody responses for the assessment of clinical relevance and impact.

    PubMed

    Tatarewicz, Suzanna M; Mytych, Daniel T; Manning, Marta Starcevic; Swanson, Steven J; Moxness, Michael S; Chirmule, Narendra

    2014-06-01

    All therapeutic proteins have the potential to induce anti-drug antibodies (ADA). Clinically relevant ADA can impact efficacy and/or safety of a biological therapeutic. Immunogenicity assessment strategy evaluates binding and neutralizing ADA, and the need for additional characterization (e.g., epitope, titer and so on) is determined using a risk-based approach. The choice of characterization assays depends on the type, application and immunogenicity of the therapeutic. ADA characterization can impact the interpretation of the risk profile of a given therapeutic, and offers insight into opportunities for risk mitigation and management. This article describes common ADA characterization methods. Strategic assessment and characterization of clinically relevant ADA are discussed, in order to support clinical options for safe and effective patient care and disease management.

  2. Applications of Ground-based Mobile Atmospheric Monitoring: Real-time Characterization of Source Emissions and Ambient Concentrations

    NASA Astrophysics Data System (ADS)

    Goetz, J. Douglas

    Gas and particle phase atmospheric pollution are known to impact human and environmental health as well as contribute to climate forcing. While many atmospheric pollutants are regulated or controlled in the developed world uncertainty still remains regarding the impacts from under characterized emission sources, the interaction of anthropogenic and naturally occurring pollution, and the chemical and physical evolution of emissions in the atmosphere, among many other uncertainties. Because of the complexity of atmospheric pollution many types of monitoring have been implemented in the past, but none are capable of perfectly characterizing the atmosphere and each monitoring type has known benefits and disadvantages. Ground-based mobile monitoring with fast-response in-situ instrumentation has been used in the past for a number of applications that fill data gaps not possible with other types of atmospheric monitoring. In this work, ground-based mobile monitoring was implemented to quantify emissions from under characterized emission sources using both moving and portable applications, and used in a novel way for the characterization of ambient concentrations. In the Marcellus Shale region of Pennsylvania two mobile platforms were used to estimate emission rates from infrastructure associated with the production and transmission of natural gas using two unique methods. One campaign investigated emissions of aerosols, volatile organic compounds (VOCs), methane, carbon monoxide (CO), nitrogen dioxide (NO2), and carbon dioxide (CO 2) from natural gas wells, well development practices, and compressor stations using tracer release ratio methods and a developed fenceline tracer release correction factor. Another campaign investigated emissions of methane from Marcellus Shale gas wells and infrastructure associated with two large national transmission pipelines using the "Point Source Gaussian" method described in the EPA OTM-33a. During both campaigns ambient concentrations of methane, CO and other pollutants were continuously monitored while driving throughout the region. A smoothing technique was developed to remove contributions of direct unmixed emissions to produce a dataset that can be used in comparison with other monitoring techniques (e.g. stationary, aircraft). Finally, a portable mobile lab equipped with fast-response aerosol instrumentation including an Aerosol Mass Spectrometer (AMS) was used to characterize non-refractory aerosol and black carbon emissions from common, but under characterized emission sources in South Asia (i.e. brick kilns, cookstoves, open garbage burning, irrigation pumps). Speciated submicron aerosol emission factors, size distributions, and mass spectral profiles were retrieved for each emission source. This work demonstrates that ground-based mobile laboratory measurements are useful for characterizing emissions and ambient concentrations in authentic conditions outside of the conventional laboratory environment, and in ways not possible with other atmospheric monitoring platforms.

  3. Atomic force microscopy-based characterization and design of biointerfaces

    NASA Astrophysics Data System (ADS)

    Alsteens, David; Gaub, Hermann E.; Newton, Richard; Pfreundschuh, Moritz; Gerber, Christoph; Müller, Daniel J.

    2017-03-01

    Atomic force microscopy (AFM)-based methods have matured into a powerful nanoscopic platform, enabling the characterization of a wide range of biological and synthetic biointerfaces ranging from tissues, cells, membranes, proteins, nucleic acids and functional materials. Although the unprecedented signal-to-noise ratio of AFM enables the imaging of biological interfaces from the cellular to the molecular scale, AFM-based force spectroscopy allows their mechanical, chemical, conductive or electrostatic, and biological properties to be probed. The combination of AFM-based imaging and spectroscopy structurally maps these properties and allows their 3D manipulation with molecular precision. In this Review, we survey basic and advanced AFM-related approaches and evaluate their unique advantages and limitations in imaging, sensing, parameterizing and designing biointerfaces. It is anticipated that in the next decade these AFM-related techniques will have a profound influence on the way researchers view, characterize and construct biointerfaces, thereby helping to solve and address fundamental challenges that cannot be addressed with other techniques.

  4. Mechanical characterization of thin TiO2 films by means of microelectromechanical systems-based cantilevers

    NASA Astrophysics Data System (ADS)

    Adami, A.; Decarli, M.; Bartali, R.; Micheli, V.; Laidani, N.; Lorenzelli, L.

    2010-01-01

    The measurement of mechanical parameters by means of microcantilever structures offers a reliable and accurate alternative to traditional methods, especially when dealing with thin films, which are extensively used in microfabrication technology and nanotechnology. In this work, microelectromechanical systems (MEMS)-based piezoresistive cantilevers were realized and used for the determination of Young's modulus and residual stress of thin titanium dioxide (TiO2) deposited by sputtering from a TiO2 target using a rf plasma discharge. Films were deposited at different thicknesses, ranging from a few to a hundred nanometers. Dedicated silicon microcantilevers were designed through an optimization of geometrical parameters with the development of analytical as well as numerical models. Young's modulus and residual stress of sputtered TiO2 films were assessed by using both mechanical characterization based on scanning profilometers and piezoresistive sensing elements integrated in the silicon cantilevers. Results of MEMS-based characterization were combined with the tribological and morphological properties measured by microscratch test and x-ray diffraction analysis.

  5. Rapid analysis method for the determination of 14C specific activity in irradiated graphite

    PubMed Central

    Remeikis, Vidmantas; Lagzdina, Elena; Garbaras, Andrius; Gudelis, Arūnas; Garankin, Jevgenij; Juodis, Laurynas; Duškesas, Grigorijus; Lingis, Danielius; Abdulajev, Vladimir; Plukis, Artūras

    2018-01-01

    14C is one of the limiting radionuclides used in the categorization of radioactive graphite waste; this categorization is crucial in selecting the appropriate graphite treatment/disposal method. We propose a rapid analysis method for 14C specific activity determination in small graphite samples in the 1–100 μg range. The method applies an oxidation procedure to the sample, which extracts 14C from the different carbonaceous matrices in a controlled manner. Because this method enables fast online measurement and 14C specific activity evaluation, it can be especially useful for characterizing 14C in irradiated graphite when dismantling graphite moderator and reflector parts, or when sorting radioactive graphite waste from decommissioned nuclear power plants. The proposed rapid method is based on graphite combustion and the subsequent measurement of both CO2 and 14C, using a commercial elemental analyser and the semiconductor detector, respectively. The method was verified using the liquid scintillation counting (LSC) technique. The uncertainty of this rapid method is within the acceptable range for radioactive waste characterization purposes. The 14C specific activity determination procedure proposed in this study takes approximately ten minutes, comparing favorably to the more complicated and time consuming LSC method. This method can be potentially used to radiologically characterize radioactive waste or used in biomedical applications when dealing with the specific activity determination of 14C in the sample. PMID:29370233

  6. Rapid analysis method for the determination of 14C specific activity in irradiated graphite.

    PubMed

    Remeikis, Vidmantas; Lagzdina, Elena; Garbaras, Andrius; Gudelis, Arūnas; Garankin, Jevgenij; Plukienė, Rita; Juodis, Laurynas; Duškesas, Grigorijus; Lingis, Danielius; Abdulajev, Vladimir; Plukis, Artūras

    2018-01-01

    14C is one of the limiting radionuclides used in the categorization of radioactive graphite waste; this categorization is crucial in selecting the appropriate graphite treatment/disposal method. We propose a rapid analysis method for 14C specific activity determination in small graphite samples in the 1-100 μg range. The method applies an oxidation procedure to the sample, which extracts 14C from the different carbonaceous matrices in a controlled manner. Because this method enables fast online measurement and 14C specific activity evaluation, it can be especially useful for characterizing 14C in irradiated graphite when dismantling graphite moderator and reflector parts, or when sorting radioactive graphite waste from decommissioned nuclear power plants. The proposed rapid method is based on graphite combustion and the subsequent measurement of both CO2 and 14C, using a commercial elemental analyser and the semiconductor detector, respectively. The method was verified using the liquid scintillation counting (LSC) technique. The uncertainty of this rapid method is within the acceptable range for radioactive waste characterization purposes. The 14C specific activity determination procedure proposed in this study takes approximately ten minutes, comparing favorably to the more complicated and time consuming LSC method. This method can be potentially used to radiologically characterize radioactive waste or used in biomedical applications when dealing with the specific activity determination of 14C in the sample.

  7. Identifying cancer biomarkers by mass spectrometry-based glycomics

    PubMed Central

    Mechref, Yehia; Hu, Yunli; Garcia, Aldo; Hussein, Ahmed

    2013-01-01

    Correlations between aberrant glycosylation and cancer have been established for decades. The major advances in mass spectrometry (MS) and separation science have rapidly advanced detailed characterization of the changes associated with cancer development and progression. Over the past 10 years, many reports have described MS-based glycomic methods directed toward comparing the glycomic profiles of different human specimens collected from disease-free individuals and patients with cancers. Glycomic profiling of glycoproteins isolated from human specimens originating from disease-free individuals and patients with cancers have also been performed. Profiling of native, labeled, and permethylated glycans has been acquired using MALDI-MS and LC-MS. This review focuses on describing, discussing, and evaluating the different glycomic methods employed to characterize and quantify glycomic changes associated with cancers of different organs, including breast, colon, esophagus, liver, ovarian, pancreas, and prostate. PMID:22740464

  8. Collision induced unfolding of isolated proteins in the gas phase: past, present, and future.

    PubMed

    Dixit, Sugyan M; Polasky, Daniel A; Ruotolo, Brandon T

    2018-02-01

    Rapidly characterizing the three-dimensional structures of proteins and the multimeric machines they form remains one of the great challenges facing modern biological and medical sciences. Ion mobility-mass spectrometry based techniques are playing an expanding role in characterizing these functional complexes, especially in drug discovery and development workflows. Despite this expansion, ion mobility-mass spectrometry faces many challenges, especially in the context of detecting small differences in protein tertiary structure that bear functional consequences. Collision induced unfolding is an ion mobility-mass spectrometry method that enables the rapid differentiation of subtly-different protein isoforms based on their unfolding patterns and stabilities. In this review, we summarize the modern implementation of such gas-phase unfolding experiments and provide an overview of recent developments in both methods and applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A New Method to Quantify the Isotopic Signature of Leaf Transpiration: Implications for Landscape-Scale Evapotranspiration Partitioning Studies

    NASA Astrophysics Data System (ADS)

    Wang, L.; Good, S. P.; Caylor, K. K.

    2010-12-01

    Characterizing the constituent components of evapotranspiration is crucial to better understand ecosystem-level water budgets and water use dynamics. Isotope based evapotranspiration partitioning methods are promising but their utility lies in the accurate estimation of the isotopic composition of underlying transpiration and evaporation. Here we report a new method to quantify the isotopic signature of leaf transpiration under field conditions. This method utilizes a commercially available laser-based isotope analyzer and a transparent leaf chamber, modified from Licor conifer leaf chamber. The method is based on the water mass balance in ambient air and leaf transpired air. We verified the method using “artificial leaves” and glassline extracted samples. The method provides a new and direct way to estimate leaf transpiration isotopic signatures and it has wide applications in ecology, hydrology and plant physiology.

  10. Distribution of correlated spiking events in a population-based approach for Integrate-and-Fire networks.

    PubMed

    Zhang, Jiwei; Newhall, Katherine; Zhou, Douglas; Rangan, Aaditya

    2014-04-01

    Randomly connected populations of spiking neurons display a rich variety of dynamics. However, much of the current modeling and theoretical work has focused on two dynamical extremes: on one hand homogeneous dynamics characterized by weak correlations between neurons, and on the other hand total synchrony characterized by large populations firing in unison. In this paper we address the conceptual issue of how to mathematically characterize the partially synchronous "multiple firing events" (MFEs) which manifest in between these two dynamical extremes. We further develop a geometric method for obtaining the distribution of magnitudes of these MFEs by recasting the cascading firing event process as a first-passage time problem, and deriving an analytical approximation of the first passage time density valid for large neuron populations. Thus, we establish a direct link between the voltage distributions of excitatory and inhibitory neurons and the number of neurons firing in an MFE that can be easily integrated into population-based computational methods, thereby bridging the gap between homogeneous firing regimes and total synchrony.

  11. Characterization of Haemophilus parasuis isolated from Brazilian swine through serotyping, AFLP and PFGE.

    PubMed

    Castilla, Karina Salvagni; de Gobbi, Débora Dirani Sena; Moreno, Luisa Zanolli; Paixão, Renata; Coutinho, Tania Alen; dos Santos, José Lúcio; Moreno, Andrea Micke

    2012-06-01

    Haemophilus parasuis infection in pigs is characterized by fibrinous polyserositis, arthritis and meningitis. Despite the fact that traditional diagnosis is based on herd history, clinical signs, bacterial isolation and serotyping, molecular-based methods are alternatives for species-specific tests and epidemiological studies. The aim of this study was to characterize H. parasuis field strains from different states of Brazil, employing serotyping and genotyping methods. Serotyping revealed that serovar 4 was the most prevalent (26.1%), followed by serovars 5 (17.4%), 14 (8.7%), 13 (4.4%) and 2 (4.4%), whereas 39% of the strains were considered as untypeable. AFLP with a single enzyme and PFGE were able to type all isolates tested, generating 34 and 20 different profiles, respectively, including untypeable strains. Besides the slightly higher discrimination index presented by AFLP, PFGE with Not I restriction enzyme showed a better correlation with epidemiological data, grouping strains of the same serovar, animal or farm origin. The results indicated AFLP and PFGE as valuable tools for typing H. parasuis isolates collected in Brazil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. A novel image-based quantitative method for the characterization of NETosis

    PubMed Central

    Zhao, Wenpu; Fogg, Darin K.; Kaplan, Mariana J.

    2015-01-01

    NETosis is a newly recognized mechanism of programmed neutrophil death. It is characterized by a stepwise progression of chromatin decondensation, membrane rupture, and release of bactericidal DNA-based structures called neutrophil extracellular traps (NETs). Conventional ‘suicidal’ NETosis has been described in pathogenic models of systemic autoimmune disorders. Recent in vivo studies suggest that a process of ‘vital’ NETosis also exists, in which chromatin is condensed and membrane integrity is preserved. Techniques to assess ‘suicidal’ or ‘vital’ NET formation in a specific, quantitative, rapid and semiautomated way have been lacking, hindering the characterization of this process. Here we have developed a new method to simultaneously assess both ‘suicidal’ and ‘vital’ NETosis, using high-speed multi-spectral imaging coupled to morphometric image analysis, to quantify spontaneous NET formation observed ex-vivo or stimulus-induced NET formation triggered in vitro. Use of imaging flow cytometry allows automated, quantitative and rapid analysis of subcellular morphology and texture, and introduces the potential for further investigation using NETosis as a biomarker in pre-clinical and clinical studies. PMID:26003624

  13. Hybrid parameter identification of a multi-modal underwater soft robot.

    PubMed

    Giorgio-Serchi, F; Arienti, A; Corucci, F; Giorelli, M; Laschi, C

    2017-02-28

    We introduce an octopus-inspired, underwater, soft-bodied robot capable of performing waterborne pulsed-jet propulsion and benthic legged-locomotion. This vehicle consists for as much as 80% of its volume of rubber-like materials so that structural flexibility is exploited as a key element during both modes of locomotion. The high bodily softness, the unconventional morphology and the non-stationary nature of its propulsion mechanisms require dynamic characterization of this robot to be dealt with by ad hoc techniques. We perform parameter identification by resorting to a hybrid optimization approach where the characterization of the dual ambulatory strategies of the robot is performed in a segregated fashion. A least squares-based method coupled with a genetic algorithm-based method is employed for the swimming and the crawling phases, respectively. The outcomes bring evidence that compartmentalized parameter identification represents a viable protocol for multi-modal vehicles characterization. However, the use of static thrust recordings as the input signal in the dynamic determination of shape-changing self-propelled vehicles is responsible for the critical underestimation of the quadratic drag coefficient.

  14. Small acid soluble proteins for rapid spore identification.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescencemore » detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.« less

  15. Model-based multi-fringe interferometry using Zernike polynomials

    NASA Astrophysics Data System (ADS)

    Gu, Wei; Song, Weihong; Wu, Gaofeng; Quan, Haiyang; Wu, Yongqian; Zhao, Wenchuan

    2018-06-01

    In this paper, a general phase retrieval method is proposed, which is based on one single interferogram with a small amount of fringes (either tilt or power). Zernike polynomials are used to characterize the phase to be measured; the phase distribution is reconstructed by a non-linear least squares method. Experiments show that the proposed method can obtain satisfactory results compared to the standard phase-shifting interferometry technique. Additionally, the retrace errors of proposed method can be neglected because of the few fringes; it does not need any auxiliary phase shifting facilities (low cost) and it is easy to implement without the process of phase unwrapping.

  16. Determination of dextrose in peritoneal dialysis solution by localized surface plasmon resonance technique based on silver nanoparticles formation

    NASA Astrophysics Data System (ADS)

    Masrournia, Mahboube; Montazarolmahdi, Maliheh; Sani, Faramarz Aliasghari

    2017-07-01

    Determination of dextrose in peritoneal dialysis with a method based on silver nanoparticles (AgNPs) formation was investigated. In a green chemistry method, silver nanoparticles (AgNPs) were synthesized in the natural polymeric matrix of gelatin. The nanoparticles were characterized with UV-Vis spectroscopy and transmission electron microscopy (TEM). Absorbance signal of AgNPs could be applied to determine the various concentrations of dextrose solutions. Drop wise and ultrasonic methods were used and compared with each other. The dynamic range of methods with limit of detection and relative standard deviations were obtained. Results for real sample (peritoneal dialysis) were satisfied.

  17. Molecular characterization and identification of members of the Anopheles subpictus complex in Sri Lanka

    PubMed Central

    2013-01-01

    Background Anopheles subpictus sensu lato is a major malaria vector in South and Southeast Asia. Based initially on polytene chromosome inversion polymorphism, and subsequently on morphological characterization, four sibling species A-D were reported from India. The present study uses molecular methods to further characterize and identify sibling species in Sri Lanka. Methods Mosquitoes from Sri Lanka were morphologically identified to species and sequenced for the ribosomal internal transcribed spacer-2 (ITS2) and the mitochondrial cytochrome c oxidase subunit-I (COI) genes. These sequences, together with others from GenBank, were used to construct phylogenetic trees and parsimony haplotype networks and to test for genetic population structure. Results Both ITS2 and COI sequences revealed two divergent clades indicating that the Subpictus complex in Sri Lanka is composed of two genetically distinct species that correspond to species A and species B from India. Phylogenetic analysis showed that species A and species B do not form a monophyletic clade but instead share genetic similarity with Anopheles vagus and Anopheles sundaicus s.l., respectively. An allele specific identification method based on ITS2 variation was developed for the reliable identification of species A and B in Sri Lanka. Conclusion Further multidisciplinary studies are needed to establish the species status of all chromosomal forms in the Subpictus complex. This study emphasizes the difficulties in using morphological characters for species identification in An. subpictus s.l. in Sri Lanka and demonstrates the utility of an allele specific identification method that can be used to characterize the differential bio-ecological traits of species A and B in Sri Lanka. PMID:24001126

  18. Relationship between pore geometric characteristics and SIP/NMR parameters observed for mudstones

    NASA Astrophysics Data System (ADS)

    Robinson, J.; Slater, L. D.; Keating, K.; Parker, B. L.; Robinson, T.

    2017-12-01

    The reliable estimation of permeability remains one of the most challenging problems in hydrogeological characterization. Cost effective, non-invasive geophysical methods such as spectral induced polarization (SIP) and nuclear magnetic resonance (NMR) offer an alternative to traditional sampling methods as they are sensitive to the mineral surfaces and pore spaces that control permeability. We performed extensive physical characterization, SIP and NMR geophysical measurements on fractured rock cores extracted from a mudstone site in an effort to compare 1) the pore size characterization determined from traditional and geophysical methods and 2) the performance of permeability models based on these methods. We focus on two physical characterizations that are well-correlated with hydraulic properties: the pore volume normalized surface area (Spor) and an interconnected pore diameter (Λ). We find the SIP polarization magnitude and relaxation time are better correlated with Spor than Λ, the best correlation of these SIP measures for our sample dataset was found with Spor divided by the electrical formation factor (F). NMR parameters are, similarly, better correlated with Spor than Λ. We implement previously proposed mechanistic and empirical permeability models using SIP and NMR parameters. A sandstone-calibrated SIP model using a polarization magnitude does not perform well while a SIP model using a mean relaxation time performs better in part by more sufficiently accounting for the effects of fluid chemistry. A sandstone-calibrated NMR permeability model using an average measure of the relaxation time does not perform well, presumably due to small pore sizes which are either not connected or contain water of limited mobility. An NMR model based on the laboratory determined portions of the bound versus mobile portions of the relaxation distribution performed reasonably well. While limitations exist, there are many opportunities to use geophysical data to predict permeability in mudstone formations.

  19. An Integrated Strategy to Qualitatively Differentiate Components of Raw and Processed Viticis Fructus Based on NIR, HPLC and UPLC-MS Analysis.

    PubMed

    Diao, Jiayin; Xu, Can; Zheng, Huiting; He, Siyi; Wang, Shumei

    2018-06-21

    Viticis Fructus is a traditional Chinese herbal drug processed by various methods to achieve different clinical purposes. Thermal treatment potentially alters chemical composition, which may impact on effectiveness and toxicity. In order to interpret the constituent discrepancies of raw versus processed (stir-fried) Viticis Fructus, a multivariate detection method (NIR, HPLC, and UPLC-MS) based on metabonomics and chemometrics was developed. Firstly, synergy interval partial least squares and partial least squares-discriminant analysis were employed to screen the distinctive wavebands (4319 - 5459 cm -1 ) based on preprocessed near-infrared spectra. Then, HPLC with principal component analysis was performed to characterize the distinction. Subsequently, a total of 49 compounds were identified by UPLC-MS, among which 42 compounds were eventually characterized as having a significant change during processing via the semiquantitative volcano plot analysis. Moreover, based on the partial least squares-discriminant analysis, 16 compounds were chosen as characteristic markers that could be in close correlation with the discriminatory near-infrared wavebands. Together, all of these characterization techniques effectively discriminated raw and processed products of Viticis Fructus. In general, our work provides an integrated way of classifying Viticis Fructus, and a strategy to explore discriminatory chemical markers for other traditional Chinese herbs, thus ensuring safety and efficacy for consumers. Georg Thieme Verlag KG Stuttgart · New York.

  20. Qualification of a Null Lens Using Image-Based Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Aronstein, David L.; Hill, Peter C.; Smith, J. Scott; Zielinski, Thomas P.

    2012-01-01

    In measuring the figure error of an aspheric optic using a null lens, the wavefront contribution from the null lens must be independently and accurately characterized in order to isolate the optical performance of the aspheric optic alone. Various techniques can be used to characterize such a null lens, including interferometry, profilometry and image-based methods. Only image-based methods, such as phase retrieval, can measure the null-lens wavefront in situ - in single-pass, and at the same conjugates and in the same alignment state in which the null lens will ultimately be used - with no additional optical components. Due to the intended purpose of a Dull lens (e.g., to null a large aspheric wavefront with a near-equal-but-opposite spherical wavefront), characterizing a null-lens wavefront presents several challenges to image-based phase retrieval: Large wavefront slopes and high-dynamic-range data decrease the capture range of phase-retrieval algorithms, increase the requirements on the fidelity of the forward model of the optical system, and make it difficult to extract diagnostic information (e.g., the system F/#) from the image data. In this paper, we present a study of these effects on phase-retrieval algorithms in the context of a null lens used in component development for the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission. Approaches for mitigation are also discussed.

  1. VizieR Online Data Catalog: Bayesian method for detecting stellar flares (Pitkin+, 2014)

    NASA Astrophysics Data System (ADS)

    Pitkin, M.; Williams, D.; Fletcher, L.; Grant, S. D. T.

    2015-05-01

    We present a Bayesian-odds-ratio-based algorithm for detecting stellar flares in light-curve data. We assume flares are described by a model in which there is a rapid rise with a half-Gaussian profile, followed by an exponential decay. Our signal model also contains a polynomial background model required to fit underlying light-curve variations in the data, which could otherwise partially mimic a flare. We characterize the false alarm probability and efficiency of this method under the assumption that any unmodelled noise in the data is Gaussian, and compare it with a simpler thresholding method based on that used in Walkowicz et al. We find our method has a significant increase in detection efficiency for low signal-to-noise ratio (S/N) flares. For a conservative false alarm probability our method can detect 95 per cent of flares with S/N less than 20, as compared to S/N of 25 for the simpler method. We also test how well the assumption of Gaussian noise holds by applying the method to a selection of 'quiet' Kepler stars. As an example we have applied our method to a selection of stars in Kepler Quarter 1 data. The method finds 687 flaring stars with a total of 1873 flares after vetos have been applied. For these flares we have made preliminary characterizations of their durations and and S/N. (1 data file).

  2. A Bayesian method for detecting stellar flares

    NASA Astrophysics Data System (ADS)

    Pitkin, M.; Williams, D.; Fletcher, L.; Grant, S. D. T.

    2014-12-01

    We present a Bayesian-odds-ratio-based algorithm for detecting stellar flares in light-curve data. We assume flares are described by a model in which there is a rapid rise with a half-Gaussian profile, followed by an exponential decay. Our signal model also contains a polynomial background model required to fit underlying light-curve variations in the data, which could otherwise partially mimic a flare. We characterize the false alarm probability and efficiency of this method under the assumption that any unmodelled noise in the data is Gaussian, and compare it with a simpler thresholding method based on that used in Walkowicz et al. We find our method has a significant increase in detection efficiency for low signal-to-noise ratio (S/N) flares. For a conservative false alarm probability our method can detect 95 per cent of flares with S/N less than 20, as compared to S/N of 25 for the simpler method. We also test how well the assumption of Gaussian noise holds by applying the method to a selection of `quiet' Kepler stars. As an example we have applied our method to a selection of stars in Kepler Quarter 1 data. The method finds 687 flaring stars with a total of 1873 flares after vetos have been applied. For these flares we have made preliminary characterizations of their durations and and S/N.

  3. Monitoring the chemical production of citrus-derived bioactive 5-demethylnobiletin using surface enhanced Raman spectroscopy

    PubMed Central

    Zheng, Jinkai; Fang, Xiang; Cao, Yong; Xiao, Hang; He, Lili

    2013-01-01

    To develop an accurate and convenient method for monitoring the production of citrus-derived bioactive 5-demethylnobiletin from demethylation reaction of nobiletin, we compared surface enhanced Raman spectroscopy (SERS) methods with a conventional HPLC method. Our results show that both the substrate-based and solution-based SERS methods correlated with HPLC method very well. The solution method produced lower root mean square error of calibration and higher correlation coefficient than the substrate method. The solution method utilized an ‘affinity chromatography’-like procedure to separate the reactant nobiletin from the product 5-demthylnobiletin based on their different binding affinity to the silver dendrites. The substrate method was found simpler and faster to collect the SERS ‘fingerprint’ spectra of the samples as no incubation between samples and silver was needed and only trace amount of samples were required. Our results demonstrated that the SERS methods were superior to HPLC method in conveniently and rapidly characterizing and quantifying 5-demethylnobiletin production. PMID:23885986

  4. Clustering methods applied in the detection of Ki67 hot-spots in whole tumor slide images: an efficient way to characterize heterogeneous tissue-based biomarkers.

    PubMed

    Lopez, Xavier Moles; Debeir, Olivier; Maris, Calliope; Rorive, Sandrine; Roland, Isabelle; Saerens, Marco; Salmon, Isabelle; Decaestecker, Christine

    2012-09-01

    Whole-slide scanners allow the digitization of an entire histological slide at very high resolution. This new acquisition technique opens a wide range of possibilities for addressing challenging image analysis problems, including the identification of tissue-based biomarkers. In this study, we use whole-slide scanner technology for imaging the proliferating activity patterns in tumor slides based on Ki67 immunohistochemistry. Faced with large images, pathologists require tools that can help them identify tumor regions that exhibit high proliferating activity, called "hot-spots" (HSs). Pathologists need tools that can quantitatively characterize these HS patterns. To respond to this clinical need, the present study investigates various clustering methods with the aim of identifying Ki67 HSs in whole tumor slide images. This task requires a method capable of identifying an unknown number of clusters, which may be highly variable in terms of shape, size, and density. We developed a hybrid clustering method, referred to as Seedlink. Compared to manual HS selections by three pathologists, we show that Seedlink provides an efficient way of detecting Ki67 HSs and improves the agreement among pathologists when identifying HSs. Copyright © 2012 International Society for Advancement of Cytometry.

  5. Automated recognition and characterization of solar active regions based on the SOHO/MDI images

    NASA Technical Reports Server (NTRS)

    Pap, J. M.; Turmon, M.; Mukhtar, S.; Bogart, R.; Ulrich, R.; Froehlich, C.; Wehrli, C.

    1997-01-01

    The first results of a new method to identify and characterize the various surface structures on the sun, which may contribute to the changes in solar total and spectral irradiance, are shown. The full disk magnetograms (1024 x 1024 pixels) of the Michelson Doppler Imager (MDI) experiment onboard SOHO are analyzed. Use of a Bayesian inference scheme allows objective, uniform, automated processing of a long sequence of images. The main goal is to identify the solar magnetic features causing irradiance changes. The results presented are based on a pilot time interval of August 1996.

  6. Analytical methods for characterization of explosives-contaminated sites on U.S. Army installations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas F.; Walsh, Marianne E.; Thorne, Philip G.

    1995-10-01

    The U.S. Army manufactures munitions at facilities throughout the United States. Many of these facilities are contaminated with residues of explosives from production, disposal of off- specification, and out-of-data munitions. The first step in remediating these sites is careful characterization. Currently sites are being characterized using a combination of on-site field screening and off-site laboratory analysis. Most of the contamination is associated with TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-tri-nitro-1,3,5-triazine) and their manufacturing impurities and environmental transformation products. Both colorimetric and enzyme immunoassay-based field screening methods have been used successfully for on-site characterization. These methods have similar detection capabilities but differ in their selectivity. Although field screening is very cost-effective, laboratory analysis is still required to fully characterize a site. Laboratory analysis for explosives residues in the United States is generally conducted using high-performance liquid chromatography equipped with a UV detector. Air-dried soils are extracted with acetonitrile in an ultrasonic bath. Water is analyzed directly if detection limits in the range of 10 - 20 (mu) g/L are acceptable, or preconcentrated using either salting-out solvent extraction with acetonitrile or solid phase extraction.

  7. Characterization and prediction of residues determining protein functional specificity.

    PubMed

    Capra, John A; Singh, Mona

    2008-07-01

    Within a homologous protein family, proteins may be grouped into subtypes that share specific functions that are not common to the entire family. Often, the amino acids present in a small number of sequence positions determine each protein's particular functional specificity. Knowledge of these specificity determining positions (SDPs) aids in protein function prediction, drug design and experimental analysis. A number of sequence-based computational methods have been introduced for identifying SDPs; however, their further development and evaluation have been hindered by the limited number of known experimentally determined SDPs. We combine several bioinformatics resources to automate a process, typically undertaken manually, to build a dataset of SDPs. The resulting large dataset, which consists of SDPs in enzymes, enables us to characterize SDPs in terms of their physicochemical and evolutionary properties. It also facilitates the large-scale evaluation of sequence-based SDP prediction methods. We present a simple sequence-based SDP prediction method, GroupSim, and show that, surprisingly, it is competitive with a representative set of current methods. We also describe ConsWin, a heuristic that considers sequence conservation of neighboring amino acids, and demonstrate that it improves the performance of all methods tested on our large dataset of enzyme SDPs. Datasets and GroupSim code are available online at http://compbio.cs.princeton.edu/specificity/. Supplementary data are available at Bioinformatics online.

  8. The Stability Analysis Method of the Cohesive Granular Slope on the Basis of Graph Theory.

    PubMed

    Guan, Yanpeng; Liu, Xiaoli; Wang, Enzhi; Wang, Sijing

    2017-02-27

    This paper attempted to provide a method to calculate progressive failure of the cohesivefrictional granular geomaterial and the spatial distribution of the stability of the cohesive granular slope. The methodology can be divided into two parts: the characterization method of macro-contact and the analysis of the slope stability. Based on the graph theory, the vertexes, the edges and the edge sequences are abstracted out to characterize the voids, the particle contact and the macro-contact, respectively, bridging the gap between the mesoscopic and macro scales of granular materials. This paper adopts this characterization method to extract a graph from a granular slope and characterize the macro sliding surface, then the weighted graph is analyzed to calculate the slope safety factor. Each edge has three weights representing the sliding moment, the anti-sliding moment and the braking index of contact-bond, respectively, . The safety factor of the slope is calculated by presupposing a certain number of sliding routes and reducing Weight repeatedly and counting the mesoscopic failure of the edge. It is a kind of slope analysis method from mesoscopic perspective so it can present more detail of the mesoscopic property of the granular slope. In the respect of macro scale, the spatial distribution of the stability of the granular slope is in agreement with the theoretical solution.

  9. Colorization and Automated Segmentation of Human T2 MR Brain Images for Characterization of Soft Tissues

    PubMed Central

    Attique, Muhammad; Gilanie, Ghulam; Hafeez-Ullah; Mehmood, Malik S.; Naweed, Muhammad S.; Ikram, Masroor; Kamran, Javed A.; Vitkin, Alex

    2012-01-01

    Characterization of tissues like brain by using magnetic resonance (MR) images and colorization of the gray scale image has been reported in the literature, along with the advantages and drawbacks. Here, we present two independent methods; (i) a novel colorization method to underscore the variability in brain MR images, indicative of the underlying physical density of bio tissue, (ii) a segmentation method (both hard and soft segmentation) to characterize gray brain MR images. The segmented images are then transformed into color using the above-mentioned colorization method, yielding promising results for manual tracing. Our color transformation incorporates the voxel classification by matching the luminance of voxels of the source MR image and provided color image by measuring the distance between them. The segmentation method is based on single-phase clustering for 2D and 3D image segmentation with a new auto centroid selection method, which divides the image into three distinct regions (gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) using prior anatomical knowledge). Results have been successfully validated on human T2-weighted (T2) brain MR images. The proposed method can be potentially applied to gray-scale images from other imaging modalities, in bringing out additional diagnostic tissue information contained in the colorized image processing approach as described. PMID:22479421

  10. Preparation of surface enhanced Raman substrate and its characterization

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wang, J. Y.; Wang, J. Q.

    2017-10-01

    Surface enhanced Raman spectroscopy (SERS) is a fast, convenient and highly sensitive detection technique, and preparing the good effect and repeatable substrate is the key to realize the trace amount and quantitative detection in the field of food safety detection. In this paper, a surface enhanced Raman substrate based on submicrometer silver particles structure was prepared by chemical deposition method, and characterized its structure and optical properties.

  11. A bioinformatics approach for identifying transgene insertion sites using whole genome sequencing data.

    PubMed

    Park, Doori; Park, Su-Hyun; Ban, Yong Wook; Kim, Youn Shic; Park, Kyoung-Cheul; Kim, Nam-Soo; Kim, Ju-Kon; Choi, Ik-Young

    2017-08-15

    Genetically modified crops (GM crops) have been developed to improve the agricultural traits of modern crop cultivars. Safety assessments of GM crops are of paramount importance in research at developmental stages and before releasing transgenic plants into the marketplace. Sequencing technology is developing rapidly, with higher output and labor efficiencies, and will eventually replace existing methods for the molecular characterization of genetically modified organisms. To detect the transgenic insertion locations in the three GM rice gnomes, Illumina sequencing reads are mapped and classified to the rice genome and plasmid sequence. The both mapped reads are classified to characterize the junction site between plant and transgene sequence by sequence alignment. Herein, we present a next generation sequencing (NGS)-based molecular characterization method, using transgenic rice plants SNU-Bt9-5, SNU-Bt9-30, and SNU-Bt9-109. Specifically, using bioinformatics tools, we detected the precise insertion locations and copy numbers of transfer DNA, genetic rearrangements, and the absence of backbone sequences, which were equivalent to results obtained from Southern blot analyses. NGS methods have been suggested as an effective means of characterizing and detecting transgenic insertion locations in genomes. Our results demonstrate the use of a combination of NGS technology and bioinformatics approaches that offers cost- and time-effective methods for assessing the safety of transgenic plants.

  12. Has the use of molecular methods for the characterization of the human oral microbiome changed our understanding of the role of bacteria in the pathogenesis of periodontal disease?

    PubMed

    Wade, William Geoffrey

    2011-03-01

    Only around half of oral bacteria can be grown in the laboratory using conventional culture methods. Molecular methods based on 16S rRNA gene sequence are now available and are being used to characterize the periodontal microbiota in its entirety. This review describes the cultural characterization of the oral and periodontal microbiotas and explores the influence of the additional data now available from culture-independent molecular analyses on current thinking on the role of bacteria in periodontitis. Culture-independent molecular analysis of the periodontal microbiota has shown it to be far more diverse than previously thought. A number of species including some that have yet to be cultured are as strongly associated with disease as those organisms traditionally regarded as periodontal pathogens. Sequencing of bacterial genomes has revealed a high degree of intra-specific genetic diversity. The use of molecular methods for the characterization of the periodontal microbiome has greatly expanded the range of bacterial species known to colonize this habitat. Understanding the interactions between the human host and its commensal bacterial community at the functional level is a priority. © 2011 John Wiley & Sons A/S.

  13. Instructional Review: An Introduction to Optical Methods for Characterizing Liquid Crystals at Interfaces

    PubMed Central

    Miller, Daniel S.; Carlton, Rebecca J.; Mushenheim, Peter C.; Abbott, Nicholas L.

    2013-01-01

    This Instructional Review describes methods and underlying principles that can be used to characterize both the orientations assumed spontaneously by liquid crystals (LCs) at interfaces and the strength with which the LCs are held in those orientations (so-called anchoring energies). The application of these methods to several different classes of LC interfaces is described, including solid and aqueous interfaces as well as planar and non-planar interfaces (such as those that define a LC-in-water emulsion droplet). These methods, which enable fundamental studies of the ordering of LCs at polymeric, chemically-functionalized and biomolecular interfaces, are described in this article at a level that can be easily understood by a non-expert reader such as an undergraduate or graduate student. We focus on optical methods because they are based on instrumentation that is found widely in research and teaching laboratories. PMID:23347378

  14. Isolation and characterization of anti-SEB peptides using magnetic sorting and bacterial peptide display library technology

    NASA Astrophysics Data System (ADS)

    Pennington, Joseph M.; Kogot, Joshua M.; Sarkes, Deborah A.; Pellegrino, Paul M.; Stratis-Cullum, Dimitra N.

    2012-06-01

    Peptide display libraries offer an alternative method to existing antibody development methods enabling rapid isolation of highly stable reagents for detection of new and emerging biological threats. Bacterial display libraries are used to isolate new peptide reagents within 1 week, which is simpler and timelier than using competing display library technology based on phage or yeast. Using magnetic sorting methods, we have isolated peptide reagents with high affinity and specificity to staphylococcal enterotoxin B (SEB), a suspected food pathogen. Flow cytometry methods were used for on-cell characterization and the binding affinity (Kd) of this new peptide reagent was determined to be 56 nm with minimal cross-reactivity to other proteins. These results demonstrated that magnetic sorting for new reagents using bacterial display libraries is a rapid and effective method and has the potential for current and new and emerging food pathogen targets.

  15. Techniques for transparent lattice measurement and correction

    NASA Astrophysics Data System (ADS)

    Cheng, Weixing; Li, Yongjun; Ha, Kiman

    2017-07-01

    A novel method has been successfully demonstrated at NSLS-II to characterize the lattice parameters with gated BPM turn-by-turn (TbT) capability. This method can be used at high current operation. Conventional lattice characterization and tuning are carried out at low current in dedicated machine studies which include beam-based measurement/correction of orbit, tune, dispersion, beta-beat, phase advance, coupling etc. At the NSLS-II storage ring, we observed lattice drifting during beam accumulation in user operation. Coupling and lifetime change while insertion device (ID) gaps are moved. With the new method, dynamical lattice correction is possible to achieve reliable and productive operations. A bunch-by-bunch feedback system excites a small fraction (∼1%) of bunches and gated BPMs are aligned to see those bunch motions. The gated TbT position data are used to characterize the lattice hence correction can be applied. As there are ∼1% of total charges disturbed for a short period of time (several ms), this method is transparent to general user operation. We demonstrated the effectiveness of these tools during high current user operation.

  16. Characterizing Graphene-modified Electrodes for Interfacing with Arduino®-based Devices.

    PubMed

    Arris, Farrah Aida; Ithnin, Mohamad Hafiz; Salim, Wan Wardatul Amani Wan

    2016-08-01

    Portable low-cost platform and sensing systems for identification and quantitative measurement are in high demand for various environmental monitoring applications, especially in field work. Quantifying parameters in the field requires both minimal sample handling and a device capable of performing measurements with high sensitivity and stability. Furthermore, the one-device-fits-all concept is useful for continuous monitoring of multiple parameters. Miniaturization of devices can be achieved by introducing graphene as part of the transducer in an electrochemical sensor. In this project, we characterize graphene deposition methods on glassy-carbon electrodes (GCEs) with the goal of interfacing with an Arduino-based user-friendly microcontroller. We found that a galvanostatic electrochemical method yields the highest peak current of 10 mA, promising a highly sensitive electrochemical sensor. An Atlas Scientific™ printed circuit board (PCB) was connected to an Arduino® microcontroller using a multi-circuit connection that can be interfaced with graphene-based electrochemical sensors for environmental monitoring.

  17. UHPLC-Q-TOF-MS/MS Method Based on Four-Step Strategy for Metabolism Study of Fisetin in Vitro and in Vivo.

    PubMed

    Zhang, Xia; Yin, Jintuo; Liang, Caijuan; Sun, Yupeng; Zhang, Lantong

    2017-12-20

    Fisetin has been identified as an anticancer agent with antiangiogenic properties in mice. However, its metabolism in vitro (rat liver microsomes) and in vivo (rats) is presently not characterized. In this study, ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) was employed for data acquiring, and a four-step analytical strategy was developed to screen and identify metabolites. First, full-scan was applied, which was dependent on a multiple mass defect filter (MMDF) combined with dynamic background subtraction (DBS). Then PeakView 1.2 and Metabolitepilot 1.5 software were used to load data to seek possible metabolites. Finally, metabolites were identified according to mass measurement and retention time. Moreover, isomers were distinguished based on Clog P parameter. Based on the proposed method, 53 metabolites in vivo and 14 metabolites in vitro were characterized. Moreover, metabolic pathways mainly included oxidation, reduction, hydrogenation, methylation, sulfation, and glucuronidation.

  18. Advanced instrumentation for aircraft icing research

    NASA Technical Reports Server (NTRS)

    Bachalo, W.; Smith, J.; Rudoff, R.

    1990-01-01

    A compact and rugged probe based on the phase Doppler method was evaluated as a means for characterizing icing clouds using airborne platforms and for advancing aircraft icing research in large scale wind tunnels. The Phase Doppler Particle Analyzer (PDPA) upon which the new probe was based is now widely recognized as an accurate method for the complete characterization of sprays. The prototype fiber optic-based probe was evaluated in simulated aircraft icing clouds and found to have the qualities essential to providing information that will advance aircraft icing research. Measurement comparisons of the size and velocity distributions made with the standard PDPA and the fiber optic probe were in excellent agreement as were the measurements of number density and liquid water content. Preliminary testing in the NASA Lewis Icing Research Tunnel (IRT) produced reasonable results but revealed some problems with vibration and signal quality at high speeds. The cause of these problems were identified and design changes were proposed to eliminate the shortcomings of the probe.

  19. A simple methodology for characterization of germanium coaxial detectors by using Monte Carlo simulation and evolutionary algorithms.

    PubMed

    Guerra, J G; Rubiano, J G; Winter, G; Guerra, A G; Alonso, H; Arnedo, M A; Tejera, A; Gil, J M; Rodríguez, R; Martel, P; Bolivar, J P

    2015-11-01

    The determination in a sample of the activity concentration of a specific radionuclide by gamma spectrometry needs to know the full energy peak efficiency (FEPE) for the energy of interest. The difficulties related to the experimental calibration make it advisable to have alternative methods for FEPE determination, such as the simulation of the transport of photons in the crystal by the Monte Carlo method, which requires an accurate knowledge of the characteristics and geometry of the detector. The characterization process is mainly carried out by Canberra Industries Inc. using proprietary techniques and methodologies developed by that company. It is a costly procedure (due to shipping and to the cost of the process itself) and for some research laboratories an alternative in situ procedure can be very useful. The main goal of this paper is to find an alternative to this costly characterization process, by establishing a method for optimizing the parameters of characterizing the detector, through a computational procedure which could be reproduced at a standard research lab. This method consists in the determination of the detector geometric parameters by using Monte Carlo simulation in parallel with an optimization process, based on evolutionary algorithms, starting from a set of reference FEPEs determined experimentally or computationally. The proposed method has proven to be effective and simple to implement. It provides a set of characterization parameters which it has been successfully validated for different source-detector geometries, and also for a wide range of environmental samples and certified materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Development and application of a robust N-glycan profiling method for heightened characterization of monoclonal antibodies and related glycoproteins.

    PubMed

    Shang, Tanya Q; Saati, Andrew; Toler, Kelly N; Mo, Jianming; Li, Heyi; Matlosz, Tonya; Lin, Xi; Schenk, Jennifer; Ng, Chee-Keng; Duffy, Toni; Porter, Thomas J; Rouse, Jason C

    2014-07-01

    A highly robust hydrophilic interaction liquid chromatography (HILIC) method that involves both fluorescence and mass spectrometric detection was developed for profiling and characterizing enzymatically released and 2-aminobenzamide (2-AB)-derivatized mAb N-glycans. Online HILIC/mass spectrometry (MS) with a quadrupole time-of-flight mass spectrometer provides accurate mass identifications of the separated, 2-AB-labeled N-glycans. The method features a high-resolution, low-shedding HILIC column with acetonitrile and water-based mobile phases containing trifluoroacetic acid (TFA) as a modifier. This column and solvent system ensures the combination of robust chromatographic performance and full compatibility and sensitivity with online MS in addition to the baseline separation of all typical mAb N-glycans. The use of TFA provided distinct advantages over conventional ammonium formate as a mobile phase additive, such as, optimal elution order for sialylated N-glycans, reproducible chromatographic profiles, and matching total ion current chromatograms, as well as minimal signal splitting, analyte adduction, and fragmentation during HILIC/MS, maximizing sensitivity for trace-level species. The robustness and selectivity of HILIC for N-glycan analyses allowed for method qualification. The method is suitable for bioprocess development activities, heightened characterization, and clinical drug substance release. Application of this HILIC/MS method to the detailed characterization of a marketed therapeutic mAb, Rituxan(®), is described. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. A versatile mass spectrometry-based method to both identify kinase client-relationships and characterize signaling network topology

    USDA-ARS?s Scientific Manuscript database

    While more than a thousand protein kinases (PK) have been identified in the Arabidopsis thaliana genome, relatively little progress has been made towards identifying their individual client proteins. Herein we describe use of a mass spectrometry-based in vitro phosphorylation strategy, termed Kinase...

  2. Written Narrative Characteristics in Adults with Language Impairment

    ERIC Educational Resources Information Center

    Suddarth, Rachael; Plante, Elena; Vance, Rebecca

    2012-01-01

    Purpose: Adults with language-based disabilities are known to have deficits in oral language; however, less is known about their written language skills. Two studies were designed to characterize the writing of adults with language-based disabilities. Method: In Study 1, 60 adults, 30 with language impairment and 30 with typical language,…

  3. Effect of particle Alignment on mechanical properties of neat cellulose nanocrystal films

    Treesearch

    Alexander B. Reising; Robert J. Moon; Jeffrey P. Youngblood

    2012-01-01

    Shear-based film casting methods were used to cast neat films from wood-based cellulose nanocrystal (CNC) suspensions. The degree of CNC alignment in dried films was characterized using the Hermans order parameter (S), and the film elastic modulus (E), ultimate tensile strength (σf ), elongation at failure (εf...

  4. Combining Watershed Variables with PCR-based Methods for Better Characterization and Management of Fecal Pollution in Small Streams

    EPA Science Inventory

    Culture- and PCR-based measurements of fecal pollution were determined and compared to hydrologic and land use indicators. Stream water samples (n = 235) were collected monthly over a two year period from ten streams draining headwatersheds with different land use intensities ra...

  5. Parameter estimation of a nonlinear Burger's model using nanoindentation and finite element-based inverse analysis

    NASA Astrophysics Data System (ADS)

    Hamim, Salah Uddin Ahmed

    Nanoindentation involves probing a hard diamond tip into a material, where the load and the displacement experienced by the tip is recorded continuously. This load-displacement data is a direct function of material's innate stress-strain behavior. Thus, theoretically it is possible to extract mechanical properties of a material through nanoindentation. However, due to various nonlinearities associated with nanoindentation the process of interpreting load-displacement data into material properties is difficult. Although, simple elastic behavior can be characterized easily, a method to characterize complicated material behavior such as nonlinear viscoelasticity is still lacking. In this study, a nanoindentation-based material characterization technique is developed to characterize soft materials exhibiting nonlinear viscoelasticity. Nanoindentation experiment was modeled in finite element analysis software (ABAQUS), where a nonlinear viscoelastic behavior was incorporated using user-defined subroutine (UMAT). The model parameters were calibrated using a process called inverse analysis. In this study, a surrogate model-based approach was used for the inverse analysis. The different factors affecting the surrogate model performance are analyzed in order to optimize the performance with respect to the computational cost.

  6. Automated characterization and assembly of individual nanowires for device fabrication.

    PubMed

    Yu, Kaiyan; Yi, Jingang; Shan, Jerry W

    2018-05-15

    The automated sorting and positioning of nanowires and nanotubes is essential to enabling the scalable manufacturing of nanodevices for a variety of applications. However, two fundamental challenges still remain: (i) automated placement of individual nanostructures in precise locations, and (ii) the characterization and sorting of highly variable nanomaterials to construct well-controlled nanodevices. Here, we propose and demonstrate an integrated, electric-field based method for the simultaneous automated characterization, manipulation, and assembly of nanowires (ACMAN) with selectable electrical conductivities into nanodevices. We combine contactless and solution-based electro-orientation spectroscopy and electrophoresis-based motion-control, planning and manipulation strategies to simultaneously characterize and manipulate multiple individual nanowires. These nanowires can be selected according to their electrical characteristics and precisely positioned at different locations in a low-conductivity liquid to form functional nanodevices with desired electrical properties. We validate the ACMAN design by assembling field-effect transistors (FETs) with silicon nanowires of selected electrical conductivities. The design scheme provides a key enabling technology for the scalable, automated sorting and assembly of nanowires and nanotubes to build functional nanodevices.

  7. Rapid kinetic characterization of glycosyl hydrolases based on oxime derivatization and nanostructure-initiator mass spectrometry (NIMS).

    PubMed

    Deng, Kai; Takasuka, Taichi E; Heins, Richard; Cheng, Xiaoliang; Bergeman, Lai F; Shi, Jian; Aschenbrener, Ryan; Deutsch, Sam; Singh, Seema; Sale, Kenneth L; Simmons, Blake A; Adams, Paul D; Singh, Anup K; Fox, Brian G; Northen, Trent R

    2014-07-18

    Glycoside hydrolases (GHs) are critical to cycling of plant biomass in the environment, digestion of complex polysaccharides by the human gut microbiome, and industrial activities such as deployment of cellulosic biofuels. High-throughput sequencing methods show tremendous sequence diversity among GHs, yet relatively few examples from the over 150,000 unique domain arrangements containing GHs have been functionally characterized. Here, we show how cell-free expression, bioconjugate chemistry, and surface-based mass spectrometry can be used to study glycoside hydrolase reactions with plant biomass. Detection of soluble products is achieved by coupling a unique chemical probe to the reducing end of oligosaccharides in a stable oxime linkage, while the use of (13)C-labeled monosaccharide standards (xylose and glucose) allows quantitation of the derivatized glycans. We apply this oxime-based nanostructure-initiator mass spectrometry (NIMS) method to characterize the functional diversity of GHs secreted by Clostridium thermocellum, a model cellulolytic organism. New reaction specificities are identified, and differences in rates and yields of individual enzymes are demonstrated in reactions with biomass substrates. Numerical analyses of time series data suggests that synergistic combinations of mono- and multifunctional GHs can decrease the complexity of enzymes needed for the hydrolysis of plant biomass during the production of biofuels.

  8. A chlorophyll fluorescence-based method for the integrated characterization of the photophysiological response to light stress.

    PubMed

    Serôdio, João; Schmidt, William; Frankenbach, Silja

    2017-02-01

    This work introduces a new experimental method for the comprehensive description of the physiological responses to light of photosynthetic organisms. It allows the integration in a single experiment of the main established manipulative chlorophyll fluorescence-based protocols. It enables the integrated characterization of the photophysiology of samples regarding photoacclimation state (generating non-sequential light-response curves of effective PSII quantum yield, electron transport rate or non-photochemical quenching), photoprotection capacity (running light stress-recovery experiments, quantifying non-photochemical quenching components) and the operation of photoinactivation and photorepair processes (measuring rate constants of photoinactivation and repair for different light levels and the relative quantum yield of photoinactivation). The new method is based on a previously introduced technique, combining the illumination of a set of replicated samples with spatially separated actinic light beams of different intensity, and the simultaneous measurement of the fluorescence emitted by all samples using an imaging fluorometer. The main novelty described here is the independent manipulation of light intensity and duration of exposure for each sample, and the control of the cumulative light dose applied. The results demonstrate the proof of concept for the method, by comparing the responses of cultures of Chlorella vulgaris acclimated to low and high light regimes, highlighting the mapping of light stress responses over a wide range of light intensity and exposure conditions, and the rapid generation of paired light-response curves of photoinactivation and repair rate constants. This approach represents a chlorophyll fluorescence 'protocol of everything', contributing towards the high throughput characterization of the photophysiology of photosynthetic organisms. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Electroanalytical Evaluation of Nanoparticles by Nano-impact Electrochemistry

    NASA Astrophysics Data System (ADS)

    Karimi, Anahita

    Applications of engineered nanoparticles in electronics, catalysis, solid oxide fuel cells, medicine and sensing continue to increase. Traditionally, nanoparticle systems are characterized by spectroscopic and microscopic techniques. These methods are cumbersome and expensive, which limit their routine use for screening purposes. Electrochemistry is a powerful, yet underutilized tool, for the detection and classification of nanoparticles. The first part of this dissertation investigates a recently developed electrochemical method -- nanoparticle collision electrochemistry -- for detection and characterization of nanoparticles. Three independent projects have been described to evaluate the use of this technique for characterizing nanoparticle based systems including: conjugation with biomolecules, interaction with environmental contaminants and fundamental investigation of conformational changes of nanoparticle capping ligands. The thesis reports the first use of nano-impact electrochemistry to quantitatively investigate bioconjugation and biomolecular recognition at conductive nanoparticles. Furthermore, we also demonstrate the potential of this method as a single step, reagentless and label-free technique for the ultra-sensitive detection of biomolecular targets. A fundamental study of biorecognition is important for the development of therapeutics and molecular diagnosis probes in the biomedical, biosensing and biotechnology fields. The second project describes the use of this method as a screening tool of particle reactivity. We study the interaction and adsorption of a toxic environmental metalloid (Arsenic) with metal oxide nanoparticles to extract mechanistic, speciation and loading information. We discuss the potential of this approach to complement or replace costly characterization techniques and enable routine study of nanoparticles and their reactivity. In the third project, we use the nano-impact method to study the pH-dependent conformational changes of polymeric capping agents on the surface of silver nanoparticles. Nano-impact elecrochemistry has demonstrated promising results for studying functionality, stability and conformational changes of stabilizing agents. The second part of this thesis explores the use of carbon nanomaterials such as graphene and Pt-doped CeO2 for the rational design of enzyme-conjugated nanostructures for biosensing applications. The dissertation reports fabrication, characterization and properties of hybrid CeO2-based bioelectrocatalytic nanostructure material with PEDOT:PSS [poly(3,4ethylenedioxythiophene):poly-styrene-sulfonic acid] on porous carbon materials as novel materials for designing high performance laccase (Lac) biocathodes and biofuel cells.

  10. High throughput single cell counting in droplet-based microfluidics.

    PubMed

    Lu, Heng; Caen, Ouriel; Vrignon, Jeremy; Zonta, Eleonora; El Harrak, Zakaria; Nizard, Philippe; Baret, Jean-Christophe; Taly, Valérie

    2017-05-02

    Droplet-based microfluidics is extensively and increasingly used for high-throughput single-cell studies. However, the accuracy of the cell counting method directly impacts the robustness of such studies. We describe here a simple and precise method to accurately count a large number of adherent and non-adherent human cells as well as bacteria. Our microfluidic hemocytometer provides statistically relevant data on large populations of cells at a high-throughput, used to characterize cell encapsulation and cell viability during incubation in droplets.

  11. Modulation Based on Probability Density Functions

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2009-01-01

    A proposed method of modulating a sinusoidal carrier signal to convey digital information involves the use of histograms representing probability density functions (PDFs) that characterize samples of the signal waveform. The method is based partly on the observation that when a waveform is sampled (whether by analog or digital means) over a time interval at least as long as one half cycle of the waveform, the samples can be sorted by frequency of occurrence, thereby constructing a histogram representing a PDF of the waveform during that time interval.

  12. Characterization of New Materials for Photovoltaic Thin Films: Aggregation Phenomena in Self-Assembled Perylene-Based Diimides

    DTIC Science & Technology

    2005-07-21

    or solution-based methods such as spin casting or drop casting,’ 1ś󈧖 self-assembly,1922 Langmuir - Blodgett techniques,23 or electrochemical methods...and Langmuir - exist. Molecules containing a perylene diimide core have Blodgett techniques.’ 8 In many situations, the molecules also been proposed for...remain soluble in the W. J. Langmuir 1996, 12, 2169. absence of other ionic species. These systems represent (35) Antonietti, M.; Conrad, J. Angew

  13. Characterization of Used MIL-L-7808 Lubricants.

    DTIC Science & Technology

    1985-05-01

    Gravimetric Finish 20 2.3.3 Separation of Mineral Oil by means of Sulphuric Acid 21 2.3.4 Rolls-Royce Method 1032 26 2.3.5 Conclusion 26 3 Minimum...and STM No. 1 i Application of Sulphuric Acid Method for MOC to:- IV Standards based upon ATL.9100 23 V Standards based upon ATL.9101 24 VI Standards...total acid numbers of the standards before, and after application of each technique. Considering firstly the volatile contaminant contents obtained by STM

  14. Electromagnetic diagnostic techniques for hypervelocity projectile detection, velocity measurement, and size characterization: Theoretical concept and first experimental test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhlig, W. Casey; Heine, Andreas, E-mail: andreas.heine@emi.fraunhofer.de

    2015-11-14

    A new measurement technique is suggested to augment the characterization and understanding of hypervelocity projectiles before impact. The electromagnetic technique utilizes magnetic diffusion principles to detect particles, measure velocity, and indicate relative particle dimensions. It is particularly suited for detection of small particles that may be difficult to track utilizing current characterization methods, such as high-speed video or flash radiography but can be readily used for large particle detection, where particle spacing or location is not practical for other measurement systems. In this work, particles down to 2 mm in diameter have been characterized while focusing on confining the detection signalmore » to enable multi-particle characterization with limited particle-to-particle spacing. The focus of the paper is on the theoretical concept and the analysis of its applicability based on analytical and numerical calculation. First proof-of-principle experimental tests serve to further validate the method. Some potential applications are the characterization of particles from a shaped-charge jet after its break-up and investigating debris in impact experiments to test theoretical models for the distribution of particles size, number, and velocity.« less

  15. Novel Accurate Bacterial Discrimination by MALDI-Time-of-Flight MS Based on Ribosomal Proteins Coding in S10-spc-alpha Operon at Strain Level S10-GERMS

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroto; Hotta, Yudai; Sato, Hiroaki

    2013-08-01

    Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is one of the most widely used mass-based approaches for bacterial identification and classification because of the simple sample preparation and extremely rapid analysis within a few minutes. To establish the accurate MALDI-TOF MS bacterial discrimination method at strain level, the ribosomal subunit proteins coded in the S 10-spc-alpha operon, which encodes half of the ribosomal subunit protein and is highly conserved in eubacterial genomes, were selected as reliable biomarkers. This method, named the S10-GERMS method, revealed that the strains of genus Pseudomonas were successfully identified and discriminated at species and strain levels, respectively; therefore, the S10-GERMS method was further applied to discriminate the pathovar of P. syringae. The eight selected biomarkers (L24, L30, S10, S12, S14, S16, S17, and S19) suggested the rapid discrimination of P. syringae at the strain (pathovar) level. The S10-GERMS method appears to be a powerful tool for rapid and reliable bacterial discrimination and successful phylogenetic characterization. In this article, an overview of the utilization of results from the S10-GERMS method is presented, highlighting the characterization of the Lactobacillus casei group and discrimination of the bacteria of genera Bacillus and Sphingopyxis despite only two and one base difference in the 16S rRNA gene sequence, respectively.

  16. Molecular Weights of Bovine and Porcine Heparin Samples: Comparison of Chromatographic Methods and Results of a Collaborative Survey.

    PubMed

    Bertini, Sabrina; Risi, Giulia; Guerrini, Marco; Carrick, Kevin; Szajek, Anita Y; Mulloy, Barbara

    2017-07-19

    In a collaborative study involving six laboratories in the USA, Europe, and India the molecular weight distributions of a panel of heparin sodium samples were determined, in order to compare heparin sodium of bovine intestinal origin with that of bovine lung and porcine intestinal origin. Porcine samples met the current criteria as laid out in the USP Heparin Sodium monograph. Bovine lung heparin samples had consistently lower average molecular weights. Bovine intestinal heparin was variable in molecular weight; some samples fell below the USP limits, some fell within these limits and others fell above the upper limits. These data will inform the establishment of pharmacopeial acceptance criteria for heparin sodium derived from bovine intestinal mucosa. The method for MW determination as described in the USP monograph uses a single, broad standard calibrant to characterize the chromatographic profile of heparin sodium on high-resolution silica-based GPC columns. These columns may be short-lived in some laboratories. Using the panel of samples described above, methods based on the use of robust polymer-based columns have been developed. In addition to the use of the USP's broad standard calibrant for heparin sodium with these columns, a set of conditions have been devised that allow light-scattering detected molecular weight characterization of heparin sodium, giving results that agree well with the monograph method. These findings may facilitate the validation of variant chromatographic methods with some practical advantages over the USP monograph method.

  17. Probabilistic Exposure Analysis for Chemical Risk Characterization

    PubMed Central

    Bogen, Kenneth T.; Cullen, Alison C.; Frey, H. Christopher; Price, Paul S.

    2009-01-01

    This paper summarizes the state of the science of probabilistic exposure assessment (PEA) as applied to chemical risk characterization. Current probabilistic risk analysis methods applied to PEA are reviewed. PEA within the context of risk-based decision making is discussed, including probabilistic treatment of related uncertainty, interindividual heterogeneity, and other sources of variability. Key examples of recent experience gained in assessing human exposures to chemicals in the environment, and other applications to chemical risk characterization and assessment, are presented. It is concluded that, although improvements continue to be made, existing methods suffice for effective application of PEA to support quantitative analyses of the risk of chemically induced toxicity that play an increasing role in key decision-making objectives involving health protection, triage, civil justice, and criminal justice. Different types of information required to apply PEA to these different decision contexts are identified, and specific PEA methods are highlighted that are best suited to exposure assessment in these separate contexts. PMID:19223660

  18. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review.

    PubMed

    Liu, Jun; Pu, Huimin; Liu, Shuang; Kan, Juan; Jin, Changhai

    2017-10-15

    In recent years, increasing attention has been paid to the grafting of phenolic acid onto chitosan in order to enhance the bioactivity and widen the application of chitosan. Here, we present a comprehensive overview on the recent advances of phenolic acid grafted chitosan (phenolic acid-g-chitosan) in many aspects, including the synthetic method, structural characterization, biological activity, physicochemical property and potential application. In general, four kinds of techniques including carbodiimide based coupling, enzyme catalyzed grafting, free radical mediated grafting and electrochemical methods are frequently used for the synthesis of phenolic acid-g-chitosan. The structural characterization of phenolic acid-g-chitosan can be determined by several instrumental methods. The physicochemical properties of chitosan are greatly altered after grafting. As compared with chitosan, phenolic acid-g-chitosan exhibits enhanced antioxidant, antimicrobial, antitumor, anti-allergic, anti-inflammatory, anti-diabetic and acetylcholinesterase inhibitory activities. Notably, phenolic acid-g-chitosan shows potential applications in many fields as coating agent, packing material, encapsulation agent and bioadsorbent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Synthesis and characterization of Mn quantum dots by bioreduction with water hyacinth.

    PubMed

    Rosano-Ortega, G; Schabes-Retchkiman, P; Zorrilla, C; Liu, H B; Canizal, G; Avila-Pérez, P; Ascencio, J A

    2006-01-01

    The bio-reduction method is reported as a part of a complimentary self-sustained technology, where bioremediation and metal particle production are related. The use of the characterization methods in this self sustainable technique open the expectative to be used for several other elements and with other plants, which will be discussed. However, the particular case of Mn nanoparticles involves an important option to generate nanoparticles in the range of 1-4 nanometers with a well controlled size and with a structure based on an fcc-like geometry for the smallest clusters and with more complex arrays for cluster greater than four shells, which involves magnetic moments significantly related to their atomistic configuration. At the same time, the use of the characterization methods establishes the dependence of the nanoparticle's size on the pH conditions used during the synthesis; small clusters in the range of 1-2 nm were generated using pH=5, and it was shown that for the smallest aggregates, simple polyhedron shapes are stable.

  20. Subsurface Void Characterization with 3-D Time Domain Full Waveform Tomography.

    NASA Astrophysics Data System (ADS)

    Nguyen, T. D.

    2017-12-01

    A new three dimensional full waveform inversion (3-D FWI) method is presented for subsurface site characterization at engineering scales (less than 30 m in depth). The method is based on a solution of 3-D elastic wave equations for forward modeling, and a cross-adjoint gradient approach for model updating. The staggered-grid finite-difference technique is used to solve the wave equations, together with implementation of the perfectly matched layer condition for boundary truncation. The gradient is calculated from the forward and backward wavefields. Reversed-in-time displacement residuals are induced as multiple sources at all receiver locations for the backward wavefield. The capability of the presented FWI method is tested on both synthetic and field experimental datasets. The test configuration uses 96 receivers and 117 shots at equal spacing (Fig 1). The inversion results from synthetic data show the ability of characterizing variable low- and high-velocity layers with embedded void (Figs 2-3). The synthetic study shows good potential for detection of voids and abnormalities in the field.

  1. Characterizing Surfaces of the Wide Bandgap Semiconductor Ilmenite with Scanning Probe Microcopies

    NASA Technical Reports Server (NTRS)

    Wilkins, R.; Powell, Kirk St. A.

    1997-01-01

    Ilmenite (FeTiO3) is a wide bandgap semiconductor with an energy gap of about 2.5eV. Initial radiation studies indicate that ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Two scanning probe microscopy methods have been used to characterize the surface of samples taken from Czochralski grown single crystals. The two methods, atomic force microscopy (AFM) and scanning tunneling microscopy (STM), are based on different physical principles and therefore provide different information about the samples. AFM provides a direct, three-dimensional image of the surface of the samples, while STM give a convolution of topographic and electronic properties of the surface. We will discuss the differences between the methods and present preliminary data of each method for ilmenite samples.

  2. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review

    PubMed Central

    Bera, Tushar Kanti

    2014-01-01

    Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends. PMID:27006932

  3. Filtered maximum likelihood expectation maximization based global reconstruction for bioluminescence tomography.

    PubMed

    Yang, Defu; Wang, Lin; Chen, Dongmei; Yan, Chenggang; He, Xiaowei; Liang, Jimin; Chen, Xueli

    2018-05-17

    The reconstruction of bioluminescence tomography (BLT) is severely ill-posed due to the insufficient measurements and diffuses nature of the light propagation. Predefined permissible source region (PSR) combined with regularization terms is one common strategy to reduce such ill-posedness. However, the region of PSR is usually hard to determine and can be easily affected by subjective consciousness. Hence, we theoretically developed a filtered maximum likelihood expectation maximization (fMLEM) method for BLT. Our method can avoid predefining the PSR and provide a robust and accurate result for global reconstruction. In the method, the simplified spherical harmonics approximation (SP N ) was applied to characterize diffuse light propagation in medium, and the statistical estimation-based MLEM algorithm combined with a filter function was used to solve the inverse problem. We systematically demonstrated the performance of our method by the regular geometry- and digital mouse-based simulations and a liver cancer-based in vivo experiment. Graphical abstract The filtered MLEM-based global reconstruction method for BLT.

  4. Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection

    NASA Astrophysics Data System (ADS)

    Yuan, Wu; Kut, Carmen; Liang, Wenxuan; Li, Xingde

    2017-03-01

    Cancer is known to alter the local optical properties of tissues. The detection of OCT-based optical attenuation provides a quantitative method to efficiently differentiate cancer from non-cancer tissues. In particular, the intraoperative use of quantitative OCT is able to provide a direct visual guidance in real time for accurate identification of cancer tissues, especially these without any obvious structural layers, such as brain cancer. However, current methods are suboptimal in providing high-speed and accurate OCT attenuation mapping for intraoperative brain cancer detection. In this paper, we report a novel frequency-domain (FD) algorithm to enable robust and fast characterization of optical attenuation as derived from OCT intensity images. The performance of this FD algorithm was compared with traditional fitting methods by analyzing datasets containing images from freshly resected human brain cancer and from a silica phantom acquired by a 1310 nm swept-source OCT (SS-OCT) system. With graphics processing unit (GPU)-based CUDA C/C++ implementation, this new attenuation mapping algorithm can offer robust and accurate quantitative interpretation of OCT images in real time during brain surgery.

  5. Measuring Mass-Based Hygroscopicity of Atmospheric Particles through in situ Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piens, Dominique` Y.; Kelly, Stephen T.; Harder, Tristan

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state determined for 158 particles broadly agreed with those of the humidified particles, indicating the potential to infer the atmospheric hygroscopic behavior from a selected subset of particles. These methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicron atmospheric particles.« less

  6. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Interference-threshold storage of optical data

    NASA Astrophysics Data System (ADS)

    Efimkov, V. F.; Zubarev, I. G.; Kolobrodov, V. V.; Sobolev, V. B.

    1989-08-01

    A method for the determination of the spatial characteristics of a laser beam is proposed and implemented. This method is based on the interaction of an interference field of two laser beams, which are spatially similar to the one being investigated, with a light-sensitive material characterized by a sensitivity threshold.

  7. Decision modeling for fire incident analysis

    Treesearch

    Donald G. MacGregor; Armando González-Cabán

    2009-01-01

    This paper reports on methods for representing and modeling fire incidents based on concepts and models from the decision and risk sciences. A set of modeling techniques are used to characterize key fire management decision processes and provide a basis for incident analysis. The results of these methods can be used to provide insights into the structure of fire...

  8. Advanced image based methods for structural integrity monitoring: Review and prospects

    NASA Astrophysics Data System (ADS)

    Farahani, Behzad V.; Sousa, Pedro José; Barros, Francisco; Tavares, Paulo J.; Moreira, Pedro M. G. P.

    2018-02-01

    There is a growing trend in engineering to develop methods for structural integrity monitoring and characterization of in-service mechanical behaviour of components. The fast growth in recent years of image processing techniques and image-based sensing for experimental mechanics, brought about a paradigm change in phenomena sensing. Hence, several widely applicable optical approaches are playing a significant role in support of experiment. The current review manuscript describes advanced image based methods for structural integrity monitoring, and focuses on methods such as Digital Image Correlation (DIC), Thermoelastic Stress Analysis (TSA), Electronic Speckle Pattern Interferometry (ESPI) and Speckle Pattern Shearing Interferometry (Shearography). These non-contact full-field techniques rely on intensive image processing methods to measure mechanical behaviour, and evolve even as reviews such as this are being written, which justifies a special effort to keep abreast of this progress.

  9. The Application of Selected Network Methods for Reliable and Safe Transport by Small Commercial Vehicles

    NASA Astrophysics Data System (ADS)

    Matuszak, Zbigniew; Bartosz, Michał; Barta, Dalibor

    2016-09-01

    In the article are characterized two network methods (critical path method - CPM and program evaluation and review technique - PERT). On the example of an international furniture company's product, it presented the exemplification of methods to transport cargos (furniture elements). Moreover, the study showed diagrams for transportation of cargos from individual components' producers to the final destination - the showroom. Calculations were based on the transportation of furniture elements via small commercial vehicles.

  10. A Lyapunov and Sacker–Sell spectral stability theory for one-step methods

    DOE PAGES

    Steyer, Andrew J.; Van Vleck, Erik S.

    2018-04-13

    Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less

  11. A Lyapunov and Sacker–Sell spectral stability theory for one-step methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steyer, Andrew J.; Van Vleck, Erik S.

    Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less

  12. Advances in self-healing materials based on vascular networks with mechanical self-repair characteristics.

    PubMed

    Lee, Min Wook; An, Seongpil; Yoon, Sam S; Yarin, Alexander L

    2018-02-01

    Here, we review the state-of-the-art in the field of engineered self-healing materials. These materials mimic the functionalities of various natural materials found in the human body (e.g., the healing of skin and bones by the vascular system). The fabrication methods used to produce these "vascular-system-like" engineered self-healing materials, such as electrospinning (including co-electrospinning and emulsion spinning) and solution blowing (including coaxial solution blowing and emulsion blowing) are discussed in detail. Further, a few other approaches involving the use of hollow fibers are also described. In addition, various currently used healing materials/agents, such as dicyclopentadiene and Grubbs' catalyst, poly(dimethyl siloxane), and bisphenol-A-based epoxy, are described. We also review the characterization methods employed to verify the physical and chemical aspects of self-healing, that is, the methods used to confirm that the healing agent has been released and that it has resulted in healing, as well as the morphological changes induced in the damaged material by the healing agent. These characterization methods include different visualization and spectroscopy techniques and thermal analysis methods. Special attention is paid to the characterization of the mechanical consequences of self-healing. The effects of self-healing on the mechanical properties such as stiffness and adhesion of the damaged material are evaluated using the tensile test, double cantilever beam test, plane strip test, bending test, and adhesion test (e.g., blister test). Finally, the future direction of the development of these systems is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, David W.; Jarman, Kenneth D.; Xu, Zhijie

    This report describes our initial research to quantify uncertainties in the identification and characterization of possible attack states in a network. As a result, we should be able to estimate the current state in which the network is operating, based on a wide variety of network data, and attach a defensible measure of confidence to these state estimates. The output of this research will be new uncertainty quantification (UQ) methods to help develop a process for model development and apply UQ to characterize attacks/adversaries, create an understanding of the degree to which methods scale to "big" data, and offer methodsmore » for addressing model approaches with regard to validation and accuracy.« less

  14. On the magnetic polarizability tensor of US coinage

    NASA Astrophysics Data System (ADS)

    Davidson, John L.; Abdel-Rehim, Omar A.; Hu, Peipei; Marsh, Liam A.; O'Toole, Michael D.; Peyton, Anthony J.

    2018-03-01

    The magnetic dipole polarizability tensor of a metallic object gives unique information about the size, shape and electromagnetic properties of the object. In this paper, we present a novel method of coin characterization based on the spectroscopic response of the absolute tensor. The experimental measurements are validated using a combination of tests with a small set of bespoke coin surrogates and simulated data. The method is applied to an uncirculated set of US coins. Measured and simulated spectroscopic tensor responses of the coins show significant differences between different coin denominations. The presented results are encouraging as they strongly demonstrate the ability to characterize coins using an absolute tensor approach.

  15. Analytical Characterization on Pulse Propagation in a Semiconductor Optical Amplifier Based on Homotopy Analysis Method

    NASA Astrophysics Data System (ADS)

    Jia, Xiaofei

    2018-06-01

    Starting from the basic equations describing the evolution of the carriers and photons inside a semiconductor optical amplifier (SOA), the equation governing pulse propagation in the SOA is derived. By employing homotopy analysis method (HAM), a series solution for the output pulse by the SOA is obtained, which can effectively characterize the temporal features of the nonlinear process during the pulse propagation inside the SOA. Moreover, the analytical solution is compared with numerical simulations with a good agreement. The theoretical results will benefit the future analysis of other problems related to the pulse propagation in the SOA.

  16. New high resolution Random Telegraph Noise (RTN) characterization method for resistive RAM

    NASA Astrophysics Data System (ADS)

    Maestro, M.; Diaz, J.; Crespo-Yepes, A.; Gonzalez, M. B.; Martin-Martinez, J.; Rodriguez, R.; Nafria, M.; Campabadal, F.; Aymerich, X.

    2016-01-01

    Random Telegraph Noise (RTN) is one of the main reliability problems of resistive switching-based memories. To understand the physics behind RTN, a complete and accurate RTN characterization is required. The standard equipment used to analyse RTN has a typical time resolution of ∼2 ms which prevents evaluating fast phenomena. In this work, a new RTN measurement procedure, which increases the measurement time resolution to 2 μs, is proposed. The experimental set-up, together with the recently proposed Weighted Time Lag (W-LT) method for the analysis of RTN signals, allows obtaining a more detailed and precise information about the RTN phenomenon.

  17. Topograph for inspection of engine cylinder walls.

    PubMed

    Franz, S; Leonhardt, K; Windecker, R; Tiziani, H J

    1999-12-20

    The microstructural inspection of engine cylinder walls is an important task for quality management in the automotive industry. Until recently, mainly tactile methods were used for this purpose. We present an optical instrument based on microscopic fringe projection that permits fast, reliable, and nondestructive measurements of microstructure. The field of view is 0.8 mm x 1.2 mm, with a spatial sampling of 1100 x 700 pixels. In contrast to conventional tactile sensors, the optical method provides fast in situ three-dimensional surface characterizations that provide more information about the surface than do line profiles. Measurements are presented, and advantages of this instrument for characterization of a surface are discussed.

  18. Accurate quantification of magnetic particle properties by intra-pair magnetophoresis for nanobiotechnology

    NASA Astrophysics Data System (ADS)

    van Reenen, Alexander; Gao, Yang; Bos, Arjen H.; de Jong, Arthur M.; Hulsen, Martien A.; den Toonder, Jaap M. J.; Prins, Menno W. J.

    2013-07-01

    The application of magnetic particles in biomedical research and in-vitro diagnostics requires accurate characterization of their magnetic properties, with single-particle resolution and good statistics. Here, we report intra-pair magnetophoresis as a method to accurately quantify the field-dependent magnetic moments of magnetic particles and to rapidly generate histograms of the magnetic moments with good statistics. We demonstrate our method with particles of different sizes and from different sources, with a measurement precision of a few percent. We expect that intra-pair magnetophoresis will be a powerful tool for the characterization and improvement of particles for the upcoming field of particle-based nanobiotechnology.

  19. Composite Characterization Using Laser Doppler Vibrometry and Multi-Frequency Wavenumber Analysis

    NASA Technical Reports Server (NTRS)

    Juarez, Peter; Leckey, Cara

    2015-01-01

    NASA has recognized the need for better characterization of composite materials to support advances in aeronautics and the next generation of space exploration vehicles. An area of related research is the evaluation of impact induced delaminations. Presented is a non-contact method of measuring the ply depth of impact delamination damage in a composite through use of a Scanning Laser Doppler Vibrometer (SLDV), multi-frequency wavenumber analysis, and a wavenumber-ply correlation algorithm. A single acquisition of a chirp excited lamb wavefield in an impacted composite is post-processed into a numerous single frequency excitation wavefields through a deconvolution process. A spatially windowed wavenumber analysis then extracts local wavenumbers from the wavefield, which are then correlated to theoretical dispersion curves for ply depth determination. SLDV based methods to characterize as-manufactured composite variation using wavefield analysis will also be discussed.

  20. Review of NMR characterization of pyrolysis oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  1. Review of NMR characterization of pyrolysis oils

    DOE PAGES

    Hao, Naijia; Ben, Haoxi; Yoo, Chang Geun; ...

    2016-08-24

    Here, pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterizationmore » and critically discusses the applications of 1H, 13C, 31P, 19F, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies.« less

  2. Characterization of noncontact piezoelectric transducer with conically shaped piezoelement

    NASA Technical Reports Server (NTRS)

    Williams, James H., Jr.; Ochi, Simeon C. U.

    1988-01-01

    The characterization of a dynamic surface displacement transducer (IQI Model 501) by a noncontact method is presented. The transducer is designed for ultrasonic as well as acoustic emission measurements and, according to the manufacturer, its characteristic features include a flat frequency response range which is from 50 to 1000 kHz and a quality factor Q of less than unity. The characterization is based on the behavior of the transducer as a receiver and involves exciting the transducer directly by transient pulse input stress signals of quasi-electrostatic origin and observing its response in a digital storage oscilloscope. Theoretical models for studying the response of the transducer to pulse input stress signals and for generating pulse stress signals are presented. The characteristic features of the transducer which include the central frequency f sub o, quality factor Q, and flat frequency response range are obtained by this noncontact characterization technique and they compare favorably with those obtained by a tone burst method which are also presented.

  3. Bioinspired sensory systems for local flow characterization

    NASA Astrophysics Data System (ADS)

    Colvert, Brendan; Chen, Kevin; Kanso, Eva

    2016-11-01

    Empirical evidence suggests that many aquatic organisms sense differential hydrodynamic signals.This sensory information is decoded to extract relevant flow properties. This task is challenging because it relies on local and partial measurements, whereas classical flow characterization methods depend on an external observer to reconstruct global flow fields. Here, we introduce a mathematical model in which a bioinspired sensory array measuring differences in local flow velocities characterizes the flow type and intensity. We linearize the flow field around the sensory array and express the velocity gradient tensor in terms of frame-independent parameters. We develop decoding algorithms that allow the sensory system to characterize the local flow and discuss the conditions under which this is possible. We apply this framework to the canonical problem of a circular cylinder in uniform flow, finding excellent agreement between sensed and actual properties. Our results imply that combining suitable velocity sensors with physics-based methods for decoding sensory measurements leads to a powerful approach for understanding and developing underwater sensory systems.

  4. Multicenter validation of cancer gene panel-based next-generation sequencing for translational research and molecular diagnostics.

    PubMed

    Hirsch, B; Endris, V; Lassmann, S; Weichert, W; Pfarr, N; Schirmacher, P; Kovaleva, V; Werner, M; Bonzheim, I; Fend, F; Sperveslage, J; Kaulich, K; Zacher, A; Reifenberger, G; Köhrer, K; Stepanow, S; Lerke, S; Mayr, T; Aust, D E; Baretton, G; Weidner, S; Jung, A; Kirchner, T; Hansmann, M L; Burbat, L; von der Wall, E; Dietel, M; Hummel, M

    2018-04-01

    The simultaneous detection of multiple somatic mutations in the context of molecular diagnostics of cancer is frequently performed by means of amplicon-based targeted next-generation sequencing (NGS). However, only few studies are available comparing multicenter testing of different NGS platforms and gene panels. Therefore, seven partner sites of the German Cancer Consortium (DKTK) performed a multicenter interlaboratory trial for targeted NGS using the same formalin-fixed, paraffin-embedded (FFPE) specimen of molecularly pre-characterized tumors (n = 15; each n = 5 cases of Breast, Lung, and Colon carcinoma) and a colorectal cancer cell line DNA dilution series. Detailed information regarding pre-characterized mutations was not disclosed to the partners. Commercially available and custom-designed cancer gene panels were used for library preparation and subsequent sequencing on several devices of two NGS different platforms. For every case, centrally extracted DNA and FFPE tissue sections for local processing were delivered to each partner site to be sequenced with the commercial gene panel and local bioinformatics. For cancer-specific panel-based sequencing, only centrally extracted DNA was analyzed at seven sequencing sites. Subsequently, local data were compiled and bioinformatics was performed centrally. We were able to demonstrate that all pre-characterized mutations were re-identified correctly, irrespective of NGS platform or gene panel used. However, locally processed FFPE tissue sections disclosed that the DNA extraction method can affect the detection of mutations with a trend in favor of magnetic bead-based DNA extraction methods. In conclusion, targeted NGS is a very robust method for simultaneous detection of various mutations in FFPE tissue specimens if certain pre-analytical conditions are carefully considered.

  5. Deep Learning for Classification of Colorectal Polyps on Whole-slide Images

    PubMed Central

    Korbar, Bruno; Olofson, Andrea M.; Miraflor, Allen P.; Nicka, Catherine M.; Suriawinata, Matthew A.; Torresani, Lorenzo; Suriawinata, Arief A.; Hassanpour, Saeed

    2017-01-01

    Context: Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for patients. However, this characterization is a challenging task and suffers from significant inter- and intra-observer variability. Aims: We built an automatic image analysis method that can accurately classify different types of colorectal polyps on whole-slide images to help pathologists with this characterization and diagnosis. Setting and Design: Our method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks. Subjects and Methods: Our method covers five common types of polyps (i.e., hyperplastic, sessile serrated, traditional serrated, tubular, and tubulovillous/villous) that are included in the US Multisociety Task Force guidelines for colorectal cancer risk assessment and surveillance. We developed multiple deep-learning approaches by leveraging a dataset of 2074 crop images, which were annotated by multiple domain expert pathologists as reference standards. Statistical Analysis: We evaluated our method on an independent test set of 239 whole-slide images and measured standard machine-learning evaluation metrics of accuracy, precision, recall, and F1 score and their 95% confidence intervals. Results: Our evaluation shows that our method with residual network architecture achieves the best performance for classification of colorectal polyps on whole-slide images (overall accuracy: 93.0%, 95% confidence interval: 89.0%–95.9%). Conclusions: Our method can reduce the cognitive burden on pathologists and improve their efficacy in histopathological characterization of colorectal polyps and in subsequent risk assessment and follow-up recommendations. PMID:28828201

  6. Design of Inkjet-Printed RFID-Based Sensor on Paper: Single- and Dual-Tag Sensor Topologies.

    PubMed

    Kim, Sangkil; Georgiadis, Apostolos; Tentzeris, Manos M

    2018-06-17

    The detailed design considerations for the printed RFID-based sensor system is presented in this paper. Starting from material selection and metallization method, this paper discusses types of RFID-based sensors (single- & dual-tag sensor topologies), design procedures, and performance evaluation methods for the wireless sensor system. The electrical properties of the paper substrates (cellulose-based and synthetic papers) and the silver nano-particle-based conductive film are thoroughly characterized for RF applications up to 8 GHz. The reported technology could potentially set the foundation for truly “green”, low-cost, scalable wireless topologies for autonomous Internet-of-Things (IoT), bio-monitoring, and “smart skin” applications.

  7. SiC-Based Composite Materials Obtained by Siliconizing Carbon Matrices

    NASA Astrophysics Data System (ADS)

    Shikunov, S. L.; Kurlov, V. N.

    2017-12-01

    We have developed a method for fabrication of parts of complicated configuration from composite materials based on SiC ceramics, which employs the interaction of silicon melt with the carbon matrix having a certain composition and porosity. For elevating the operating temperatures of ceramic components, we have developed a method for depositing protective silicon-carbide coatings that is based on the interaction of the silicon melt and vapor with carbon obtained during thermal splitting of hydrocarbon molecules. The new structural ceramics are characterized by higher operating temperatures; chemical stability; mechanical strength; thermal shock, wear and radiation resistance; and parameters stability.

  8. Nanofabrication and characterization of a grating-based condenser for uniform illumination with hard X-rays.

    PubMed

    Liu, Jianpeng; Li, Xin; Chen, Shuo; Zhang, Sichao; Xie, Shanshan; Xu, Chen; Chen, Yifang; Deng, Biao; Mao, Chenwen

    2017-05-01

    In the development of full-field transmission X-ray microscopy for basic study in science and technology, a condenser capable of providing intense illumination with high uniformity and stability on tested specimens in order to achieve high-quality images is essential. The latest design of a square-shaped condenser based on diffractive gratings has demonstrated promising uniformity in illumination. This paper describes in more detail the development of such a beam shaper for hard X-rays at 10 keV with regard to its design, manufacture and optical characterization. The effect of the grating profile on the diffracted intensity has been theoretically predicted by numerical simulation using the finite-difference time-domain method. Based on this, the limitations of the grating-based condenser are discussed.

  9. Cellular automata rule characterization and classification using texture descriptors

    NASA Astrophysics Data System (ADS)

    Machicao, Jeaneth; Ribas, Lucas C.; Scabini, Leonardo F. S.; Bruno, Odermir M.

    2018-05-01

    The cellular automata (CA) spatio-temporal patterns have attracted the attention from many researchers since it can provide emergent behavior resulting from the dynamics of each individual cell. In this manuscript, we propose an approach of texture image analysis to characterize and classify CA rules. The proposed method converts the CA spatio-temporal patterns into a gray-scale image. The gray-scale is obtained by creating a binary number based on the 8-connected neighborhood of each dot of the CA spatio-temporal pattern. We demonstrate that this technique enhances the CA rule characterization and allow to use different texture image analysis algorithms. Thus, various texture descriptors were evaluated in a supervised training approach aiming to characterize the CA's global evolution. Our results show the efficiency of the proposed method for the classification of the elementary CA (ECAs), reaching a maximum of 99.57% of accuracy rate according to the Li-Packard scheme (6 classes) and 94.36% for the classification of the 88 rules scheme. Moreover, within the image analysis context, we found a better performance of the method by means of a transformation of the binary states to a gray-scale.

  10. Switching industrial production processes from complex to defined media: method development and case study using the example of Penicillium chrysogenum.

    PubMed

    Posch, Andreas E; Spadiut, Oliver; Herwig, Christoph

    2012-06-22

    Filamentous fungi are versatile cell factories and widely used for the production of antibiotics, organic acids, enzymes and other industrially relevant compounds at large scale. As a fact, industrial production processes employing filamentous fungi are commonly based on complex raw materials. However, considerable lot-to-lot variability of complex media ingredients not only demands for exhaustive incoming components inspection and quality control, but unavoidably affects process stability and performance. Thus, switching bioprocesses from complex to defined media is highly desirable. This study presents a strategy for strain characterization of filamentous fungi on partly complex media using redundant mass balancing techniques. Applying the suggested method, interdependencies between specific biomass and side-product formation rates, production of fructooligosaccharides, specific complex media component uptake rates and fungal strains were revealed. A 2-fold increase of the overall penicillin space time yield and a 3-fold increase in the maximum specific penicillin formation rate were reached in defined media compared to complex media. The newly developed methodology enabled fast characterization of two different industrial Penicillium chrysogenum candidate strains on complex media based on specific complex media component uptake kinetics and identification of the most promising strain for switching the process from complex to defined conditions. Characterization at different complex/defined media ratios using only a limited number of analytical methods allowed maximizing the overall industrial objectives of increasing both, method throughput and the generation of scientific process understanding.

  11. Switching industrial production processes from complex to defined media: method development and case study using the example of Penicillium chrysogenum

    PubMed Central

    2012-01-01

    Background Filamentous fungi are versatile cell factories and widely used for the production of antibiotics, organic acids, enzymes and other industrially relevant compounds at large scale. As a fact, industrial production processes employing filamentous fungi are commonly based on complex raw materials. However, considerable lot-to-lot variability of complex media ingredients not only demands for exhaustive incoming components inspection and quality control, but unavoidably affects process stability and performance. Thus, switching bioprocesses from complex to defined media is highly desirable. Results This study presents a strategy for strain characterization of filamentous fungi on partly complex media using redundant mass balancing techniques. Applying the suggested method, interdependencies between specific biomass and side-product formation rates, production of fructooligosaccharides, specific complex media component uptake rates and fungal strains were revealed. A 2-fold increase of the overall penicillin space time yield and a 3-fold increase in the maximum specific penicillin formation rate were reached in defined media compared to complex media. Conclusions The newly developed methodology enabled fast characterization of two different industrial Penicillium chrysogenum candidate strains on complex media based on specific complex media component uptake kinetics and identification of the most promising strain for switching the process from complex to defined conditions. Characterization at different complex/defined media ratios using only a limited number of analytical methods allowed maximizing the overall industrial objectives of increasing both, method throughput and the generation of scientific process understanding. PMID:22727013

  12. Robotics-based synthesis of human motion.

    PubMed

    Khatib, O; Demircan, E; De Sapio, V; Sentis, L; Besier, T; Delp, S

    2009-01-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.

  13. A taxonomy of adolescent health: development of the adolescent health profile-types.

    PubMed

    Riley, A W; Green, B F; Forrest, C B; Starfield, B; Kang, M; Ensminger, M E

    1998-08-01

    The aim of this study was to develop a taxonomy of health profile-types that describe adolescents' patterns of health as self-reported on a health status questionnaire. The intent was to be able to assign individuals to mutually exclusive and exhaustive groups that characterize the important aspects of their health and need for health services. Cluster analytic empirical methods and clinically based conceptual methods were used to identify patterns of health in samples of adolescents from schools and from clinics that serve adolescents with chronic conditions and acute illnesses. Individuals with similar patterns of scores across multiple domains were assigned to the same profile-type. Results from the empirical and conceptually based methods were integrated to produce a practical system for assigning youths to profile-types. Four domains of health (Satisfaction, Discomfort, Risks and Resilience) were used to group individuals into 13 distinct profile-types. The profile-types were characterized primarily by the number of domains in which health is poor, identifying the unique combinations of problems that characterize different subgroups of adolescents. This method of reporting the information available on health status surveys is potentially a more informative way of identifying and classifying the health needs of subgroups in the population than is available from global scores or multiple scale scores. The reliability and validity of this taxonomy of health profile-types for the purposes of planning and evaluating health services must be demonstrated. That is the purpose of the accompanying study.

  14. [Colorimetric characterization of LCD based on wavelength partition spectral model].

    PubMed

    Liu, Hao-Xue; Cui, Gui-Hua; Huang, Min; Wu, Bing; Xu, Yan-Fang; Luo, Ming

    2013-10-01

    To establish a colorimetrical characterization model of LCDs, an experiment with EIZO CG19, IBM 19, DELL 19 and HP 19 LCDs was designed and carried out to test the interaction between RGB channels, and then to test the spectral additive property of LCDs. The RGB digital values of single channel and two channels were given and the corresponding tristimulus values were measured, then a chart was plotted and calculations were made to test the independency of RGB channels. The results showed that the interaction between channels was reasonably weak and spectral additivity property was held well. We also found that the relations between radiations and digital values at different wavelengths varied, that is, they were the functions of wavelength. A new calculation method based on piecewise spectral model, in which the relation between radiations and digital values was fitted by a cubic polynomial in each piece of wavelength with measured spectral radiation curves, was proposed and tested. The spectral radiation curves of RGB primaries with any digital values can be found out with only a few measurements and fitted cubic polynomial in this way and then any displayed color can be turned out by the spectral additivity property of primaries at given digital values. The algorithm of this method was discussed in detail in this paper. The computations showed that the proposed method was simple and the number of measurements needed was reduced greatly while keeping a very high computation precision. This method can be used as a colorimetrical characterization model.

  15. Isolation and characterization of Conohyal-P1, a hyaluronidase from the injected venom of Conus purpurascens.

    PubMed

    Möller, Carolina; Clark, Evan; Safavi-Hemami, Helena; DeCaprio, Anthony; Marí, Frank

    2017-07-05

    Hyaluronidases are ubiquitous enzymes commonly found in venom and their main function is to degrade hyaluran, which is the major glycosaminoglycan of the extracellular matrix in animal tissues. Here we describe the purification and characterization of a 60kDa hyaluronidase found in the injected venom from Conus purpurascens, Conohyal-P1. Using a combined strategy based on transcriptomic and proteomic analysis, we determined the Conohyal-P1 sequence. Conohyal-P1 has conserved consensus catalytic and positioning domain residues characteristic of hyaluronidases and a C-terminus EGF-like domain. Additionally, the enzyme is expressed as a mixture of glycosylated isoforms at five asparagine sites. The activity of the native Conohyal-P1 was assess MS-based methods and confirmed by classical turbidimetric methods. The MS-based assay is particularly sensitive and provides the first detailed analysis of a venom hyaluronidase activity monitored with this method. The discovery of new hyaluronidases and the development of techniques to evaluate their performance can advance several therapeutic procedures, as these enzymes are widely used for enhanced drug delivery applications. Cone snail venom is a remarkable source of therapeutically important molecules, as is the case of conotoxins, which have undergone extensive clinical trials for several applications. In addition to the conotoxins, a large array of proteins have been reported in the venom of several species of cone snails, including enzymes that were found in dissected and injected Conus venom. Here we describe the isolation and characterization of the hyaluronidase Conohyal-P1 from the injected venom of C. purpurascens. We employed a combined transcriptomic and proteomic analysis to obtain the full sequence of this hyaluronidase. The activity of Conohyal-P1 was assessed by a mass spectrometry-based method, which provide the first detailed venom hyaluronidase activity analysis monitored by mass spectrometry allowing the visualization of the substrate degradation by the enzyme. Published by Elsevier B.V.

  16. Improved Phase Characterization of Far-Regional Body Wave Arrivals in Central Asia

    DTIC Science & Technology

    2008-09-30

    developing array -based methods that can more accurately characterize far-regional (14*-29*) seismic wavefield structure. Far- regional (14*-29*) seismograms...arrivals with the primary arrivals. These complexities can be region and earthquake specific. The regional seismic arrays that have been built in the last...fifteen years should be a rich data source for the study of far-regional phase behavior. The arrays are composed of high-quality borehole seismometers

  17. Electrochemically-driven large amplitude pH cycling for acid-base driven DNA denaturation and renaturation.

    PubMed

    Wang, Yong-Chun; Lin, Cong-Bin; Su, Jian-Jia; Ru, Ying-Ming; Wu, Qiao; Chen, Zhao-Bin; Mao, Bing-Wei; Tian, Zhao-Wu

    2011-06-15

    In this paper, we present an electrochemically driven large amplitude pH alteration method based on a serial electrolytic cell involving a hydrogen permeable bifacial working electrode such as Pd thin foil. The method allows solution pH to be changed periodically up to ±4~5 units without additional alteration of concentration and/or composition of the system. Application to the acid-base driven cyclic denaturation and renaturation of 290 bp DNA fragments is successfully demonstrated with in situ real-time UV spectroscopic characterization. Electrophoretic analysis confirms that the denaturation and renaturation processes are reversible without degradation of the DNA. The serial electrolytic cell based electrochemical pH alteration method presented in this work would promote investigations of a wide variety of potential-dependent processes and techniques.

  18. Semi-quantitative estimation by IR of framework, extraframework and defect Al species of HBEA zeolites.

    PubMed

    Marques, João P; Gener, Isabelle; Ayrault, Philippe; Lopes, José M; Ribeiro, F Ramôa; Guisnet, Michel

    2004-10-21

    A simple method based on the characterization (composition, Bronsted and Lewis acidities) of acid treated HBEA zeolites was developed for estimating the concentrations of framework, extraframework and defect Al species.

  19. Optimization-based methods for road image registration

    DOT National Transportation Integrated Search

    2008-02-01

    A number of transportation agencies are now relying on direct imaging for monitoring and cataloguing the state of their roadway systems. Images provide objective information to characterize the pavement as well as roadside hardware. The tasks of proc...

  20. Volumetric measurement of human red blood cells by MOSFET-based microfluidic gate.

    PubMed

    Guo, Jinhong; Ai, Ye; Cheng, Yuanbing; Li, Chang Ming; Kang, Yuejun; Wang, Zhiming

    2015-08-01

    In this paper, we present a MOSFET-based (metal oxide semiconductor field-effect transistor) microfluidic gate to characterize the translocation of red blood cells (RBCs) through a gate. In the microfluidic system, the bias voltage modulated by the particles or biological cells is connected to the gate of MOSFET. The particles or cells can be detected by monitoring the MOSFET drain current instead of DC/AC-gating method across the electronic gate. Polystyrene particles with various standard sizes are utilized to calibrate the proposed device. Furthermore, RBCs from both adults and newborn blood sample are used to characterize the performance of the device in distinguishing the two types of RBCs. As compared to conventional DC/AC current modulation method, the proposed device demonstrates a higher sensitivity and is capable of being a promising platform for bioassay analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Application of activity-based protein profiling to study enzyme function in adipocytes.

    PubMed

    Galmozzi, Andrea; Dominguez, Eduardo; Cravatt, Benjamin F; Saez, Enrique

    2014-01-01

    Activity-based protein profiling (ABPP) is a chemical proteomics approach that utilizes small-molecule probes to determine the functional state of enzymes directly in native systems. ABPP probes selectively label active enzymes, but not their inactive forms, facilitating the characterization of changes in enzyme activity that occur without alterations in protein levels. ABPP can be a tool superior to conventional gene expression and proteomic profiling methods to discover new enzymes active in adipocytes and to detect differences in the activity of characterized enzymes that may be associated with disorders of adipose tissue function. ABPP probes have been developed that react selectively with most members of specific enzyme classes. Here, using as an example the serine hydrolase family that includes many enzymes with critical roles in adipocyte physiology, we describe methods to apply ABPP analysis to the study of adipocyte enzymatic pathways. © 2014 Elsevier Inc. All rights reserved.

  2. Coupling analysis of high Q resonators in add-drop configuration through cavity ringdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Frigenti, G.; Arjmand, M.; Barucci, A.; Baldini, F.; Berneschi, S.; Farnesi, D.; Gianfreda, M.; Pelli, S.; Soria, S.; Aray, A.; Dumeige, Y.; Féron, P.; Nunzi Conti, G.

    2018-06-01

    An original method able to fully characterize high-Q resonators in an add-drop configuration has been implemented. The method is based on the study of two cavity ringdown (CRD) signals, which are produced at the transmission and drop ports by wavelength sweeping a resonance in a time interval comparable with the photon cavity lifetime. All the resonator parameters can be assessed with a single set of simultaneous measurements. We first developed a model describing the two CRD output signals and a fitting program able to deduce the key parameters from the measured profiles. We successfully validated the model with an experiment based on a fiber ring resonator of known characteristics. Finally, we characterized a high-Q, home-made, MgF2 whispering gallery mode disk resonator in the add-drop configuration, assessing its intrinsic and coupling parameters.

  3. Decision support systems and methods for complex networks

    DOEpatents

    Huang, Zhenyu [Richland, WA; Wong, Pak Chung [Richland, WA; Ma, Jian [Richland, WA; Mackey, Patrick S [Richland, WA; Chen, Yousu [Richland, WA; Schneider, Kevin P [Seattle, WA

    2012-02-28

    Methods and systems for automated decision support in analyzing operation data from a complex network. Embodiments of the present invention utilize these algorithms and techniques not only to characterize the past and present condition of a complex network, but also to predict future conditions to help operators anticipate deteriorating and/or problem situations. In particular, embodiments of the present invention characterize network conditions from operation data using a state estimator. Contingency scenarios can then be generated based on those network conditions. For at least a portion of all of the contingency scenarios, risk indices are determined that describe the potential impact of each of those scenarios. Contingency scenarios with risk indices are presented visually as graphical representations in the context of a visual representation of the complex network. Analysis of the historical risk indices based on the graphical representations can then provide trends that allow for prediction of future network conditions.

  4. An off-line method to characterize the fission product release from uranium carbide-target prototypes developed for SPIRAL2 project

    NASA Astrophysics Data System (ADS)

    Hy, B.; Barré-Boscher, N.; Özgümüs, A.; Roussière, B.; Tusseau-Nenez, S.; Lau, C.; Cheikh Mhamed, M.; Raynaud, M.; Said, A.; Kolos, K.; Cottereau, E.; Essabaa, S.; Tougait, O.; Pasturel, M.

    2012-10-01

    In the context of radioactive ion beams, fission targets, often based on uranium compounds, have been used for more than 50 years at isotope separator on line facilities. The development of several projects of second generation facilities aiming at intensities two or three orders of magnitude higher than today puts an emphasis on the properties of the uranium fission targets. A study, driven by Institut de Physique Nucléaire d'Orsay (IPNO), has been started within the SPIRAL2 project to try and fully understand the behavior of these targets. In this paper, we have focused on five uranium carbide based targets. We present an off-line method to characterize their fission product release and the results are examined in conjunction with physical characteristics of each material such as the microstructure, the porosity and the chemical composition.

  5. Real-time absorption and scattering characterization of slab-shaped turbid samples obtained by a combination of angular and spatially resolved measurements.

    PubMed

    Dam, Jan S; Yavari, Nazila; Sørensen, Søren; Andersson-Engels, Stefan

    2005-07-10

    We present a fast and accurate method for real-time determination of the absorption coefficient, the scattering coefficient, and the anisotropy factor of thin turbid samples by using simple continuous-wave noncoherent light sources. The three optical properties are extracted from recordings of angularly resolved transmittance in addition to spatially resolved diffuse reflectance and transmittance. The applied multivariate calibration and prediction techniques are based on multiple polynomial regression in combination with a Newton--Raphson algorithm. The numerical test results based on Monte Carlo simulations showed mean prediction errors of approximately 0.5% for all three optical properties within ranges typical for biological media. Preliminary experimental results are also presented yielding errors of approximately 5%. Thus the presented methods show a substantial potential for simultaneous absorption and scattering characterization of turbid media.

  6. Molecular characterization and identification of members of the Anopheles subpictus complex in Sri Lanka.

    PubMed

    Surendran, Sinnathamby N; Sarma, Devojit K; Jude, Pavilupillai J; Kemppainen, Petri; Kanthakumaran, Nadarajah; Gajapathy, Kanapathy; Peiris, Lalanthika B S; Ramasamy, Ranjan; Walton, Catherine

    2013-08-30

    Anopheles subpictus sensu lato is a major malaria vector in South and Southeast Asia. Based initially on polytene chromosome inversion polymorphism, and subsequently on morphological characterization, four sibling species A-D were reported from India. The present study uses molecular methods to further characterize and identify sibling species in Sri Lanka. Mosquitoes from Sri Lanka were morphologically identified to species and sequenced for the ribosomal internal transcribed spacer-2 (ITS2) and the mitochondrial cytochrome c oxidase subunit-I (COI) genes. These sequences, together with others from GenBank, were used to construct phylogenetic trees and parsimony haplotype networks and to test for genetic population structure. Both ITS2 and COI sequences revealed two divergent clades indicating that the Subpictus complex in Sri Lanka is composed of two genetically distinct species that correspond to species A and species B from India. Phylogenetic analysis showed that species A and species B do not form a monophyletic clade but instead share genetic similarity with Anopheles vagus and Anopheles sundaicus s.l., respectively. An allele specific identification method based on ITS2 variation was developed for the reliable identification of species A and B in Sri Lanka. Further multidisciplinary studies are needed to establish the species status of all chromosomal forms in the Subpictus complex. This study emphasizes the difficulties in using morphological characters for species identification in An. subpictus s.l. in Sri Lanka and demonstrates the utility of an allele specific identification method that can be used to characterize the differential bio-ecological traits of species A and B in Sri Lanka.

  7. The dynamic micro computed tomography at SSRF

    NASA Astrophysics Data System (ADS)

    Chen, R.; Xu, L.; Du, G.; Deng, B.; Xie, H.; Xiao, T.

    2018-05-01

    Synchrotron radiation micro-computed tomography (SR-μCT) is a critical technique for quantitative characterizing the 3D internal structure of samples, recently the dynamic SR-μCT has been attracting vast attention since it can evaluate the three-dimensional structure evolution of a sample. A dynamic μCT method, which is based on monochromatic beam, was developed at the X-ray Imaging and Biomedical Application Beamline at Shanghai Synchrotron Radiation Facility, by combining the compressed sensing based CT reconstruction algorithm and hardware upgrade. The monochromatic beam based method can achieve quantitative information, and lower dose than the white beam base method in which the lower energy beam is absorbed by the sample rather than contribute to the final imaging signal. The developed method is successfully used to investigate the compression of the air sac during respiration in a bell cricket, providing new knowledge for further research on the insect respiratory system.

  8. Mass spectrometric-based stable isotopic 2-aminobenzoic acid glycan mapping for rapid glycan screening of biotherapeutics.

    PubMed

    Prien, Justin M; Prater, Bradley D; Qin, Qiang; Cockrill, Steven L

    2010-02-15

    Fast, sensitive, robust methods for "high-level" glycan screening are necessary during various stages of a biotherapeutic product's lifecycle, including clone selection, process changes, and quality control for lot release testing. Traditional glycan screening involves chromatographic or electrophoretic separation-based methods, and, although reproducible, these methods can be time-consuming. Even ultrahigh-performance chromatographic and microfluidic integrated LC/MS systems, which work on the tens of minute time scale, become lengthy when hundreds of samples are to be analyzed. Comparatively, a direct infusion mass spectrometry (MS)-based glycan screening method acquires data on a millisecond time scale, exhibits exquisite sensitivity and reproducibility, and is amenable to automated peak annotation. In addition, characterization of glycan species via sequential mass spectrometry can be performed simultaneously. Here, we demonstrate a quantitative high-throughput MS-based mapping approach using stable isotope 2-aminobenzoic acid (2-AA) for rapid "high-level" glycan screening.

  9. Characterization of the March 2017 Tank 15 Waste Removal Slurry Sample (Combination of Slurry Samples HTF-15-17-28 and HTF-15-17-29)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reboul, S. H.; King, W. D.; Coleman, C. J.

    2017-05-09

    Two March 2017 Tank 15 slurry samples (HTF-15-17-28 and HTF-15-17-29) were collected during the second bulk waste removal campaign and submitted to SRNL for characterization. At SRNL, the two samples were combined and then characterized by a series of physical, elemental, radiological, and ionic analysis methods. Sludge settling as a function of time was also quantified. The characterization results reported in this document are consistent with expectations based upon waste type, process knowledge, comparisons between alternate analysis techniques, and comparisons with the characterization results obtained for the November 2016 Tank 15 slurry sample (the sample collected during the first bulkmore » waste removal campaign).« less

  10. Serum markers for type II diabetes mellitus

    DOEpatents

    Metz, Thomas O; Qian, Wei-Jun; Jacobs, Jon M; Polpitiya, Ashoka D; Camp, II, David G; Smith, Richard D

    2014-03-18

    A method for identifying persons with increased risk of developing type 2 diabetes mellitus utilizing selected biomarkers described hereafter either alone or in combination. The present invention allows for broad based, reliable, screening of large population bases and provides other advantages, including the formulation of effective strategies for characterizing, archiving, and contrasting data from multiple sample types under varying conditions.

  11. Time-resolved photoacoustic measurement for evaluation of viscoelastic properties of biological tissues

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Chen, Conggui; Liu, Hongwei; Yang, Sihua; Xing, Da

    2016-11-01

    In this letter, we proposed a method for viscoelastic characterization of biological tissues based on time-resolved photoacoustic measurement. The theoretical and experimental study was performed on the influence of viscoelasticity effects on photoacoustic generation. Taking the time delay between the photoacoustic signal and the exciting laser, the viscoelasticity distribution of biological tissues can be mapped. To validate our method, gelatin phantoms with different densities were measured. We also applied this method in discrimination between fat and liver to confirm the usefulness of the viscoelastic evaluation. Furthermore, pilot experiments were performed on atherosclerosis artery from an apolipoprotein E-knockout mouse to show the viscoelastic characterization of atherosclerotic plaque. Our results demonstrate that this technique has the potential for visualizing the biomechanical properties and lesions of biological tissues.

  12. Effect of doping on all TMC vertical heterointerfaces

    NASA Astrophysics Data System (ADS)

    Nair, Salil; Joy, Jolly; Patel, K. D.; Pataniya, Pratik; Solanki, G. K.; Pathak, V. M.; Sumesh, C. K.

    2018-05-01

    The present work reports the growth and basic characterizations of GeSePbx (x=0, 0.02, 0.04) layered mono chalcogenide single crystal substrates for preparation of heterojunction devices. These crystals are grown by Direct Vapour Transport (DVT) Technique [1,2]. Heterojunction interfaces on these substrates are prepared using thermal evaporation of nanocrystalline SnSe thin films having 5kÅ thickness. The electrical characterizations reveal the rectifying behavior of the devices based on which its ideality factor, barrier height, saturation current, series resistance etc. have been determined using thermionic emission model [3,4]. The device parameters have been determined and analyzed by three different methods viz. LnI-V, Cheung's method and Norde method [5]. The variation in the device parameters in light of doping is reported in the present work.

  13. Preparation and characterization of copper telluride thin films by modified chemical bath deposition (M-CBD) method

    NASA Astrophysics Data System (ADS)

    Pathan, H. M.; Lokhande, C. D.; Amalnerkar, D. P.; Seth, T.

    2003-09-01

    Copper telluride thin films were deposited using modified chemical method using copper(II) sulphate; pentahydrate [CuSO 4·5H 2O] and sodium tellurite [Na 2TeO 3] as cationic and anionic sources, respectively. Modified chemical method is based on the immersion of the substrate into separately placed cationic and anionic precursors. The preparative conditions such as concentration, pH, immersion time, immersion cycles, etc. were optimized to get good quality copper telluride thin films at room temperature. The films have been characterized for structural, compositional, optical and electrical transport properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Rutherford back scattering (RBS), optical absorption/transmission, electrical resistivity and thermoemf measurement techniques.

  14. Parameters Free Computational Characterization of Defects in Transition Metal Oxides with Diffusion Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Santana, Juan A.; Krogel, Jaron T.; Kent, Paul R.; Reboredo, Fernando

    Materials based on transition metal oxides (TMO's) are among the most challenging systems for computational characterization. Reliable and practical computations are possible by directly solving the many-body problem for TMO's with quantum Monte Carlo (QMC) methods. These methods are very computationally intensive, but recent developments in algorithms and computational infrastructures have enabled their application to real materials. We will show our efforts on the application of the diffusion quantum Monte Carlo (DMC) method to study the formation of defects in binary and ternary TMO and heterostructures of TMO. We will also outline current limitations in hardware and algorithms. This work is supported by the Materials Sciences & Engineering Division of the Office of Basic Energy Sciences, U.S. Department of Energy (DOE).

  15. Detection of 22 common leukemic fusion genes using a single-step multiplex qRT-PCR-based assay.

    PubMed

    Lyu, Xiaodong; Wang, Xianwei; Zhang, Lina; Chen, Zhenzhu; Zhao, Yu; Hu, Jieying; Fan, Ruihua; Song, Yongping

    2017-07-25

    Fusion genes generated from chromosomal translocation play an important role in hematological malignancies. Detection of fusion genes currently employ use of either conventional RT-PCR methods or fluorescent in situ hybridization (FISH), where both methods involve tedious methodologies and require prior characterization of chromosomal translocation events as determined by cytogenetic analysis. In this study, we describe a real-time quantitative reverse transcription PCR (qRT-PCR)-based multi-fusion gene screening method with the capacity to detect 22 fusion genes commonly found in leukemia. This method does not require pre-characterization of gene translocation events, thereby facilitating immediate diagnosis and therapeutic management. We performed fluorescent qRT-PCR (F-qRT-PCR) using a commercially-available multi-fusion gene detection kit on a patient cohort of 345 individuals comprising 108 cases diagnosed with acute myeloid leukemia (AML) for initial evaluation; remaining patients within the cohort were assayed for confirmatory diagnosis. Results obtained by F-qRT-PCR were compared alongside patient analysis by cytogenetic characterization. Gene translocations detected by F-qRT-PCR in AML cases were diagnosed in 69.4% of the patient cohort, which was comparatively similar to 68.5% as diagnosed by cytogenetic analysis, thereby demonstrating 99.1% concordance. Overall gene fusion was detected in 53.7% of the overall patient population by F-qRT-PCR, 52.9% by cytogenetic prediction in leukemia, and 9.1% in non-leukemia patients by both methods. The overall concordance rate was calculated to be 99.0%. Fusion genes were detected by F-qRT-PCR in 97.3% of patients with CML, followed by 69.4% with AML, 33.3% with acute lymphoblastic leukemia (ALL), 9.1% with myelodysplastic syndromes (MDS), and 0% with chronic lymphocytic leukemia (CLL). We describe the use of a F-qRT-PCR-based multi-fusion gene screening method as an efficient one-step diagnostic procedure as an effective alternative to lengthy conventional diagnostic procedures requiring both cytogenetic analysis followed by targeted quantitative reverse transcription (qRT-PCR) methods, thus allowing timely patient management.

  16. Chemical Fingerprinting of Materials Developed Due to Environmental Issues

    NASA Technical Reports Server (NTRS)

    Smith, Doris A.; McCool, A. (Technical Monitor)

    2000-01-01

    Instrumental chemical analysis methods are developed and used to chemically fingerprint new and modified External Tank materials made necessary by changing environmental requirements. Chemical fingerprinting can detect and diagnose variations in material composition. To chemically characterize each material, fingerprint methods are selected from an extensive toolbox based on the material's chemistry and the ability of the specific methods to detect the material's critical ingredients. Fingerprint methods have been developed for a variety of materials including Thermal Protection System foams, adhesives, primers, and composites.

  17. Stem mortality in surface fires: Part II, experimental methods for characterizing the thermal response of tree stems to heating by fires

    Treesearch

    D. M. Jimenez; B. W. Butler; J. Reardon

    2003-01-01

    Current methods for predicting fire-induced plant mortality in shrubs and trees are largely empirical. These methods are not readily linked to duff burning, soil heating, and surface fire behavior models. In response to the need for a physics-based model of this process, a detailed model for predicting the temperature distribution through a tree stem as a function of...

  18. Speckle: tool for diagnosis assistance

    NASA Astrophysics Data System (ADS)

    Carvalho, O.; Guyot, S.; Roy, L.; Benderitter, M.; Clairac, B.

    2006-09-01

    In this paper, we present a new approach of the speckle phenomenon. This method is based on the fractal Brownian motion theory and allows the extraction of three stochastic parameters to characterize the speckle pattern. For the first time, we present the results of this method applied to the discrimination of the healthy vs. pathologic skin. We also demonstrate, in case of the scleroderma, than this method is more accurate than the classical frequential approach.

  19. A system for online beam emittance measurements and proton beam characterization

    NASA Astrophysics Data System (ADS)

    Nesteruk, K. P.; Auger, M.; Braccini, S.; Carzaniga, T. S.; Ereditato, A.; Scampoli, P.

    2018-01-01

    A system for online measurement of the transverse beam emittance was developed. It is named 4PrOBεaM (4-Profiler Online Beam Emittance Measurement) and was conceived to measure the emittance in a fast and efficient way using the multiple beam profiler method. The core of the system is constituted by four consecutive UniBEaM profilers, which are based on silica fibers passing across the beam. The 4PrOBεaM system was deployed for characterization studies of the 18 MeV proton beam produced by the IBA Cyclone 18 MeV cyclotron at Bern University Hospital (Inselspital). The machine serves daily radioisotope production and multi-disciplinary research, which is carried out with a specifically conceived Beam Transport Line (BTL). The transverse RMS beam emittance of the cyclotron was measured as a function of several machine parameters, such as the magnetic field, RF peak voltage, and azimuthal angle of the stripper. The beam emittance was also measured using the method based on the quadrupole strength variation. The results obtained with both techniques were compared and a good agreement was found. In order to characterize the longitudinal dynamics, the proton energy distribution was measured. For this purpose, a method was developed based on aluminum absorbers of different thicknesses, a UniBEaM detector, and a Faraday cup. The results were an input for a simulation of the BTL developed in the MAD-X software. This tool allows machine parameters to be tuned online and the beam characteristics to be optimized for specific applications.

  20. Characterization of the homologs of flerovium with crown ether based extraction chromatography resins: studies in nitric acid

    DOE PAGES

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; ...

    2016-09-17

    Eichrom’s Pb resin, a crown-ether-based extraction chromatography resin, was characterized for separation of the flerovium (Fl) homologs, Pb and Sn. Batch uptake of Pb(II) and Sn(IV) radionuclides was determined from an HNO 3 matrix. Pb(II) was strongly retained on the resin at all HNO 3 concentrations, while Sn(IV) showed no uptake. Extraction kinetics for Pb(II) were examined and show suitable uptake on the second time scale. Here, separation methods for the isolation of individual homologs, Pb(II) and Sn(IV), have been established using 2 mL pre-packed vacuum flow Pb resin columns.

  1. Towards a Transferable UAV-Based Framework for River Hydromorphological Characterization

    PubMed Central

    González, Rocío Ballesteros; Leinster, Paul; Wright, Ros

    2017-01-01

    The multiple protocols that have been developed to characterize river hydromorphology, partly in response to legislative drivers such as the European Union Water Framework Directive (EU WFD), make the comparison of results obtained in different countries challenging. Recent studies have analyzed the comparability of existing methods, with remote sensing based approaches being proposed as a potential means of harmonizing hydromorphological characterization protocols. However, the resolution achieved by remote sensing products may not be sufficient to assess some of the key hydromorphological features that are required to allow an accurate characterization. Methodologies based on high resolution aerial photography taken from Unmanned Aerial Vehicles (UAVs) have been proposed by several authors as potential approaches to overcome these limitations. Here, we explore the applicability of an existing UAV based framework for hydromorphological characterization to three different fluvial settings representing some of the distinct ecoregions defined by the WFD geographical intercalibration groups (GIGs). The framework is based on the automated recognition of hydromorphological features via tested and validated Artificial Neural Networks (ANNs). Results show that the framework is transferable to the Central-Baltic and Mediterranean GIGs with accuracies in feature identification above 70%. Accuracies of 50% are achieved when the framework is implemented in the Very Large Rivers GIG. The framework successfully identified vegetation, deep water, shallow water, riffles, side bars and shadows for the majority of the reaches. However, further algorithm development is required to ensure a wider range of features (e.g., chutes, structures and erosion) are accurately identified. This study also highlights the need to develop an objective and fit for purpose hydromorphological characterization framework to be adopted within all EU member states to facilitate comparison of results. PMID:28954434

  2. Towards a Transferable UAV-Based Framework for River Hydromorphological Characterization.

    PubMed

    Rivas Casado, Mónica; González, Rocío Ballesteros; Ortega, José Fernando; Leinster, Paul; Wright, Ros

    2017-09-26

    The multiple protocols that have been developed to characterize river hydromorphology, partly in response to legislative drivers such as the European Union Water Framework Directive (EU WFD), make the comparison of results obtained in different countries challenging. Recent studies have analyzed the comparability of existing methods, with remote sensing based approaches being proposed as a potential means of harmonizing hydromorphological characterization protocols. However, the resolution achieved by remote sensing products may not be sufficient to assess some of the key hydromorphological features that are required to allow an accurate characterization. Methodologies based on high resolution aerial photography taken from Unmanned Aerial Vehicles (UAVs) have been proposed by several authors as potential approaches to overcome these limitations. Here, we explore the applicability of an existing UAV based framework for hydromorphological characterization to three different fluvial settings representing some of the distinct ecoregions defined by the WFD geographical intercalibration groups (GIGs). The framework is based on the automated recognition of hydromorphological features via tested and validated Artificial Neural Networks (ANNs). Results show that the framework is transferable to the Central-Baltic and Mediterranean GIGs with accuracies in feature identification above 70%. Accuracies of 50% are achieved when the framework is implemented in the Very Large Rivers GIG. The framework successfully identified vegetation, deep water, shallow water, riffles, side bars and shadows for the majority of the reaches. However, further algorithm development is required to ensure a wider range of features (e.g., chutes, structures and erosion) are accurately identified. This study also highlights the need to develop an objective and fit for purpose hydromorphological characterization framework to be adopted within all EU member states to facilitate comparison of results.

  3. Josephson frequency meter for millimeter and submillimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Anischenko, S. E.; Larkin, S. Y.; Chaikovsky, V. I.; Kabayev, P. V.; Kamyshin, V. V.

    1995-01-01

    Frequency measurements of electromagnetic oscillations of millimeter and submillimeter wavebands with frequency growth due to a number of reasons become more and more difficult. First, these frequencies are considered to be cutoffs for semiconductor converting devices and one has to use optical measurement methods instead of traditional ones with frequency transfer. Second, resonance measurement methods are characterized by using relatively narrow bands and optical ones are limited in frequency and time resolution due to the limited range and velocity of movement of their mechanical elements as well as the efficiency of these optical techniques decrease with the increase of wavelength due to diffraction losses. That requires a priori information on the radiation frequency band of the source involved. Method of measuring frequency of harmonic microwave signals in millimeter and submillimeter wavebands based on the ac Josephson effect in superconducting contacts is devoid of all the above drawbacks. This approach offers a number of major advantages over the more traditional measurement methods, that is one based on frequency conversion, resonance and interferometric techniques. It can be characterized by high potential accuracy, wide range of frequencies measured, prompt measurement and the opportunity to obtain a panoramic display of the results as well as full automation of the measuring process.

  4. Algorithm for repairing the damaged images of grain structures obtained from the cellular automata and measurement of grain size

    NASA Astrophysics Data System (ADS)

    Ramírez-López, A.; Romero-Romo, M. A.; Muñoz-Negron, D.; López-Ramírez, S.; Escarela-Pérez, R.; Duran-Valencia, C.

    2012-10-01

    Computational models are developed to create grain structures using mathematical algorithms based on the chaos theory such as cellular automaton, geometrical models, fractals, and stochastic methods. Because of the chaotic nature of grain structures, some of the most popular routines are based on the Monte Carlo method, statistical distributions, and random walk methods, which can be easily programmed and included in nested loops. Nevertheless, grain structures are not well defined as the results of computational errors and numerical inconsistencies on mathematical methods. Due to the finite definition of numbers or the numerical restrictions during the simulation of solidification, damaged images appear on the screen. These images must be repaired to obtain a good measurement of grain geometrical properties. Some mathematical algorithms were developed to repair, measure, and characterize grain structures obtained from cellular automata in the present work. An appropriate measurement of grain size and the corrected identification of interfaces and length are very important topics in materials science because they are the representation and validation of mathematical models with real samples. As a result, the developed algorithms are tested and proved to be appropriate and efficient to eliminate the errors and characterize the grain structures.

  5. New method for characterizing paper coating structures using argon ion beam milling and field emission scanning electron microscopy.

    PubMed

    Dahlström, C; Allem, R; Uesaka, T

    2011-02-01

    We have developed a new method for characterizing microstructures of paper coating using argon ion beam milling technique and field emission scanning electron microscopy. The combination of these two techniques produces extremely high-quality images with very few artefacts, which are particularly suited for quantitative analyses of coating structures. A new evaluation method has been developed by using marker-controlled watershed segmentation technique of the secondary electron images. The high-quality secondary electron images with well-defined pores makes it possible to use this semi-automatic segmentation method. One advantage of using secondary electron images instead of backscattered electron images is being able to avoid possible overestimation of the porosity because of the signal depth. A comparison was made between the new method and the conventional method using greyscale histogram thresholding of backscattered electron images. The results showed that the conventional method overestimated the pore area by 20% and detected around 5% more pores than the new method. As examples of the application of the new method, we have investigated the distributions of coating binders, and the relationship between local coating porosity and base sheet structures. The technique revealed, for the first time with direct evidence, the long-suspected coating non-uniformity, i.e. binder migration, and the correlation between coating porosity versus base sheet mass density, in a straightforward way. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  6. Ocean outfall plume characterization using an Autonomous Underwater Vehicle.

    PubMed

    Rogowski, Peter; Terrill, Eric; Otero, Mark; Hazard, Lisa; Middleton, William

    2013-01-01

    A monitoring mission to map and characterize the Point Loma Ocean Outfall (PLOO) wastewater plume using an Autonomous Underwater Vehicle (AUV) was performed on 3 March 2011. The mobility of an AUV provides a significant advantage in surveying discharge plumes over traditional cast-based methods, and when combined with optical and oceanographic sensors, provides a capability for both detecting plumes and assessing their mixing in the near and far-fields. Unique to this study is the measurement of Colored Dissolved Organic Matter (CDOM) in the discharge plume and its application for quantitative estimates of the plume's dilution. AUV mission planning methodologies for discharge plume sampling, plume characterization using onboard optical sensors, and comparison of observational data to model results are presented. The results suggest that even under variable oceanic conditions, properly planned missions for AUVs equipped with an optical CDOM sensor in addition to traditional oceanographic sensors, can accurately characterize and track ocean outfall plumes at higher resolutions than cast-based techniques.

  7. The Stability Analysis Method of the Cohesive Granular Slope on the Basis of Graph Theory

    PubMed Central

    Guan, Yanpeng; Liu, Xiaoli; Wang, Enzhi; Wang, Sijing

    2017-01-01

    This paper attempted to provide a method to calculate progressive failure of the cohesive-frictional granular geomaterial and the spatial distribution of the stability of the cohesive granular slope. The methodology can be divided into two parts: the characterization method of macro-contact and the analysis of the slope stability. Based on the graph theory, the vertexes, the edges and the edge sequences are abstracted out to characterize the voids, the particle contact and the macro-contact, respectively, bridging the gap between the mesoscopic and macro scales of granular materials. This paper adopts this characterization method to extract a graph from a granular slope and characterize the macro sliding surface, then the weighted graph is analyzed to calculate the slope safety factor. Each edge has three weights representing the sliding moment, the anti-sliding moment and the braking index of contact-bond, respectively, E1E2E3E1E2E3. The safety factor of the slope is calculated by presupposing a certain number of sliding routes and reducing Weight E3 repeatedly and counting the mesoscopic failure of the edge. It is a kind of slope analysis method from mesoscopic perspective so it can present more detail of the mesoscopic property of the granular slope. In the respect of macro scale, the spatial distribution of the stability of the granular slope is in agreement with the theoretical solution. PMID:28772596

  8. Recent progress in high-mobility thin-film transistors based on multilayer 2D materials

    NASA Astrophysics Data System (ADS)

    Hong, Young Ki; Liu, Na; Yin, Demin; Hong, Seongin; Kim, Dong Hak; Kim, Sunkook; Choi, Woong; Yoon, Youngki

    2017-04-01

    Two-dimensional (2D) layered semiconductors are emerging as promising candidates for next-generation thin-film electronics because of their high mobility, relatively large bandgap, low-power switching, and the availability of large-area growth methods. Thin-film transistors (TFTs) based on multilayer transition metal dichalcogenides or black phosphorus offer unique opportunities for next-generation electronic and optoelectronic devices. Here, we review recent progress in high-mobility transistors based on multilayer 2D semiconductors. We describe the theoretical background on characterizing methods of TFT performance and material properties, followed by their applications in flexible, transparent, and optoelectronic devices. Finally, we highlight some of the methods used in metal-semiconductor contacts, hybrid structures, heterostructures, and chemical doping to improve device performance.

  9. Assessment of Technologies for the Space Shuttle External Tank Thermal Protection System and Recommendations for Technology Improvement - Part III: Material Property Characterization, Analysis, and Test Methods

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Johnson, Theodore F.; Whitley, Karen S.

    2005-01-01

    The objective of this report is to contribute to the independent assessment of the Space Shuttle External Tank Foam Material. This report specifically addresses material modeling, characterization testing, data reduction methods, and data pedigree. A brief description of the External Tank foam materials, locations, and standard failure modes is provided to develop suitable background information. A review of mechanics based analysis methods from the open literature is used to provide an assessment of the state-of-the-art in material modeling of closed cell foams. Further, this report assesses the existing material property database and investigates sources of material property variability. The report presents identified deficiencies in testing methods and procedures, recommendations for additional testing as required, identification of near-term improvements that should be pursued, and long-term capabilities or enhancements that should be developed.

  10. Effective characterization of Salmonella Enteritidis by most probable number (MPN) followed by multiplex polymerase chain reaction (PCR) methods.

    PubMed

    Zappelini, Lincohn; Martone-Rocha, Solange; Dropa, Milena; Matté, Maria Helena; Tiba, Monique Ribeiro; Breternitz, Bruna Suellen; Razzolini, Maria Tereza Pepe

    2017-02-01

    Nontyphoidal Salmonella (NTS) is a relevant pathogen involved in gastroenteritis outbreaks worldwide. In this study, we determined the capacity to combine the most probable number (MPN) and multiplex polymerase chain reaction (PCR) methods to characterize the most important Salmonella serotypes in raw sewage. A total of 499 isolates were recovered from 27 raw sewage samples and screened using two previously described multiplex PCR methods. From those, 123 isolates were selected based on PCR banding pattern-identical or similar to Salmonella Enteritidis and Salmonella Typhimurium-and submitted to conventional serotyping. Results showed that both PCR assays correctly serotyped Salmonella Enteritidis, however, they presented ambiguous results for Salmonella Typhimurium identification. These data highlight that MPN and multiplex PCR can be useful methods to describe microbial quality in raw sewage and suggest two new PCR patterns for Salmonella Enteritidis identification.

  11. Potential applicability of stress wave velocity method on pavement base materials as a non-destructive testing technique

    NASA Astrophysics Data System (ADS)

    Mahedi, Masrur

    Aggregates derived from natural sources have been used traditionally as the pavement base materials. But in recent times, the extraction of these natural aggregates has become more labor intensive and costly due to resource depletion and environmental concerns. Thus, the uses of recycled aggregates as the supplementary of natural aggregates are increasing considerably in pavement construction. Use of recycled aggregates such as recycled crushed concrete (RCA) and recycled asphalt pavement (RAP) reduces the rate of natural resource depletion, construction debris and cost. Although recycled aggregates could be used as a viable alternative of conventional base materials, strength characteristics and product variability limit their utility to a great extent. Hence, their applicability is needed to be evaluated extensively based on strength, stiffness and cost factors. But for extensive evaluation, traditionally practiced test methods are proven to be unreasonable in terms of time, cost, reliability and applicability. On the other hand, rapid non-destructive methods have the potential to be less time consuming and inexpensive along with the low variability of test results; therefore improving the reliability of estimated performance of the pavement. In this research work, the experimental program was designed to assess the potential application of stress wave velocity method as a non-destructive test in evaluating recycled base materials. Different combinations of cement treated recycled concrete aggregate (RAP) and recycled crushed concrete (RCA) were used to evaluate the applicability of stress wave velocity method. It was found that, stress wave velocity method is excellent in characterizing the strength and stiffness properties of cement treated base materials. Statistical models, based on P-wave velocity were derived for predicting the modulus of elasticity and compressive strength of different combinations of cement treated RAP, Grade-1 and Grade-2 materials. Two, three and four parameter modeling were also done for characterizing the resilient modulus response. It is anticipated that, derived correlations can be useful in estimating the strength and stiffness response of cement treated base materials with satisfactory level of confidence, if the P-wave velocity remains within the range of 500 ft/sec to 1500 ft/sec.

  12. Super-resolved calibration-free flow cytometric characterization of platelets and cell-derived microparticles in platelet-rich plasma.

    PubMed

    Konokhova, Anastasiya I; Chernova, Darya N; Moskalensky, Alexander E; Strokotov, Dmitry I; Yurkin, Maxim A; Chernyshev, Andrei V; Maltsev, Valeri P

    2016-02-01

    Importance of microparticles (MPs), also regarded as extracellular vesicles, in many physiological processes and clinical conditions motivates one to use the most informative and precise methods for their characterization. Methods based on individual particle analysis provide statistically reliable distributions of MP population over characteristics. Although flow cytometry is one of the most powerful technologies of this type, the standard forward-versus-side-scattering plots of MPs and platelets (PLTs) overlap considerably because of similarity of their morphological characteristics. Moreover, ordinary flow cytometry is not capable of measurement of size and refractive index (RI) of MPs. In this study, we 1) employed the potential of the scanning flow cytometer (SFC) for identification and characterization of MPs from light scattering; 2) suggested the reference method to characterize MP morphology (size and RI) with high precision; and 3) determined the lowest size of a MP that can be characterized from light scattering with the SFC. We equipped the SFC with 405 and 488 nm lasers to measure the light-scattering profiles and side scattering from MPs, respectively. The developed two-stage method allowed accurate separation of PLTs and MPs in platelet-rich plasma. We used two optical models for MPs, a sphere and a bisphere, in the solution of the inverse light-scattering problem. This solution provides unprecedented precision in determination of size and RI of individual spherical MPs-median uncertainties (standard deviations) were 6 nm and 0.003, respectively. The developed method provides instrument-independent quantitative information on MPs, which can be used in studies of various factors affecting MP population. © 2015 International Society for Advancement of Cytometry.

  13. Characterization of Foodborne Outbreaks of Salmonella enterica Serovar Enteritidis with Whole-Genome Sequencing Single Nucleotide Polymorphism-Based Analysis for Surveillance and Outbreak Detection.

    PubMed

    Taylor, Angela J; Lappi, Victoria; Wolfgang, William J; Lapierre, Pascal; Palumbo, Michael J; Medus, Carlota; Boxrud, David

    2015-10-01

    Salmonella enterica serovar Enteritidis is a significant cause of gastrointestinal illness in the United States; however, current molecular subtyping methods lack resolution for this highly clonal serovar. Advances in next-generation sequencing technologies have made it possible to examine whole-genome sequencing (WGS) as a potential molecular subtyping tool for outbreak detection and source trace back. Here, we conducted a retrospective analysis of S. Enteritidis isolates from seven epidemiologically confirmed foodborne outbreaks and sporadic isolates (not epidemiologically linked) to determine the utility of WGS to identify outbreaks. A collection of 55 epidemiologically characterized clinical and environmental S. Enteritidis isolates were sequenced. Single nucleotide polymorphism (SNP)-based cluster analysis of the S. Enteritidis genomes revealed well supported clades, with less than four-SNP pairwise diversity, that were concordant with epidemiologically defined outbreaks. Sporadic isolates were an average of 42.5 SNPs distant from the outbreak clusters. Isolates collected from the same patient over several weeks differed by only two SNPs. Our findings show that WGS provided greater resolution between outbreak, sporadic, and suspect isolates than the current gold standard subtyping method, pulsed-field gel electrophoresis (PFGE). Furthermore, results could be obtained in a time frame suitable for surveillance activities, supporting the use of WGS as an outbreak detection and characterization method for S. Enteritidis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Toward the characterization of biological toxins using field-based FT-IR spectroscopic instrumentation

    NASA Astrophysics Data System (ADS)

    Schiering, David W.; Walton, Robert B.; Brown, Christopher W.; Norman, Mark L.; Brewer, Joseph; Scott, James

    2004-12-01

    IR spectroscopy is a broadly applicable technique for the identification of covalent materials. Recent advances in instrumentation have made Fourier Transform infrared (FT-IR) spectroscopy available for field characterization of suspect materials. Presently, this instrumentation is broadly deployed and used for the identification of potential chemical hazards. This discussion concerns work towards expanding the analytical utility of field-based FT-IR spectrometry in the characterization of biological threats. Two classes of materials were studied: biologically produced chemical toxins which were non-peptide in nature and peptide toxin. The IR spectroscopic identification of aflatoxin-B1, trichothecene T2 mycotoxin, and strychnine was evaluated using the approach of spectral searching against large libraries of materials. For pure components, the IR method discriminated the above toxins at better than the 99% confidence level. The ability to identify non-peptide toxins in mixtures was also evaluated using a "spectral stripping" search approach. For the mixtures evaluated, this method was able to identify the mixture components from ca. 32K spectral library entries. Castor bean extract containing ricin was used as a representative peptide toxin. Due to similarity in protein spectra, a SIMCA pattern recognition methodology was evaluated for classifying peptide toxins. In addition to castor bean extract the method was validated using bovine serum albumin and myoglobin as simulants. The SIMCA approach was successful in correctly classifying these samples at the 95% confidence level.

  15. Comparison of manual and semi-automatic DNA extraction protocols for the barcoding characterization of hematophagous louse flies (Diptera: Hippoboscidae).

    PubMed

    Gutiérrez-López, Rafael; Martínez-de la Puente, Josué; Gangoso, Laura; Soriguer, Ramón C; Figuerola, Jordi

    2015-06-01

    The barcoding of life initiative provides a universal molecular tool to distinguish animal species based on the amplification and sequencing of a fragment of the subunit 1 of the cytochrome oxidase (COI) gene. Obtaining good quality DNA for barcoding purposes is a limiting factor, especially in studies conducted on small-sized samples or those requiring the maintenance of the organism as a voucher. In this study, we compared the number of positive amplifications and the quality of the sequences obtained using DNA extraction methods that also differ in their economic costs and time requirements and we applied them for the genetic characterization of louse flies. Four DNA extraction methods were studied: chloroform/isoamyl alcohol, HotShot procedure, Qiagen DNeasy(®) Tissue and Blood Kit and DNA Kit Maxwell(®) 16LEV. All the louse flies were morphologically identified as Ornithophila gestroi and a single COI-based haplotype was identified. The number of positive amplifications did not differ significantly among DNA extraction procedures. However, the quality of the sequences was significantly lower for the case of the chloroform/isoamyl alcohol procedure with respect to the rest of methods tested here. These results may be useful for the genetic characterization of louse flies, leaving most of the remaining insect as a voucher. © 2015 The Society for Vector Ecology.

  16. Identification and characterization of earthquake clusters: a comparative analysis for selected sequences in Italy

    NASA Astrophysics Data System (ADS)

    Peresan, Antonella; Gentili, Stefania

    2017-04-01

    Identification and statistical characterization of seismic clusters may provide useful insights about the features of seismic energy release and their relation to physical properties of the crust within a given region. Moreover, a number of studies based on spatio-temporal analysis of main-shocks occurrence require preliminary declustering of the earthquake catalogs. Since various methods, relying on different physical/statistical assumptions, may lead to diverse classifications of earthquakes into main events and related events, we aim to investigate the classification differences among different declustering techniques. Accordingly, a formal selection and comparative analysis of earthquake clusters is carried out for the most relevant earthquakes in North-Eastern Italy, as reported in the local OGS-CRS bulletins, compiled at the National Institute of Oceanography and Experimental Geophysics since 1977. The comparison is then extended to selected earthquake sequences associated with a different seismotectonic setting, namely to events that occurred in the region struck by the recent Central Italy destructive earthquakes, making use of INGV data. Various techniques, ranging from classical space-time windows methods to ad hoc manual identification of aftershocks, are applied for detection of earthquake clusters. In particular, a statistical method based on nearest-neighbor distances of events in space-time-energy domain, is considered. Results from clusters identification by the nearest-neighbor method turn out quite robust with respect to the time span of the input catalogue, as well as to minimum magnitude cutoff. The identified clusters for the largest events reported in North-Eastern Italy since 1977 are well consistent with those reported in earlier studies, which were aimed at detailed manual aftershocks identification. The study shows that the data-driven approach, based on the nearest-neighbor distances, can be satisfactorily applied to decompose the seismic catalog into background seismicity and individual sequences of earthquake clusters, also in areas characterized by moderate seismic activity, where the standard declustering techniques may turn out rather gross approximations. With these results acquired, the main statistical features of seismic clusters are explored, including complex interdependence of related events, with the aim to characterize the space-time patterns of earthquakes occurrence in North-Eastern Italy and capture their basic differences with Central Italy sequences.

  17. Deep Learning for Classification of Colorectal Polyps on Whole-slide Images.

    PubMed

    Korbar, Bruno; Olofson, Andrea M; Miraflor, Allen P; Nicka, Catherine M; Suriawinata, Matthew A; Torresani, Lorenzo; Suriawinata, Arief A; Hassanpour, Saeed

    2017-01-01

    Histopathological characterization of colorectal polyps is critical for determining the risk of colorectal cancer and future rates of surveillance for patients. However, this characterization is a challenging task and suffers from significant inter- and intra-observer variability. We built an automatic image analysis method that can accurately classify different types of colorectal polyps on whole-slide images to help pathologists with this characterization and diagnosis. Our method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks. Our method covers five common types of polyps (i.e., hyperplastic, sessile serrated, traditional serrated, tubular, and tubulovillous/villous) that are included in the US Multisociety Task Force guidelines for colorectal cancer risk assessment and surveillance. We developed multiple deep-learning approaches by leveraging a dataset of 2074 crop images, which were annotated by multiple domain expert pathologists as reference standards. We evaluated our method on an independent test set of 239 whole-slide images and measured standard machine-learning evaluation metrics of accuracy, precision, recall, and F1 score and their 95% confidence intervals. Our evaluation shows that our method with residual network architecture achieves the best performance for classification of colorectal polyps on whole-slide images (overall accuracy: 93.0%, 95% confidence interval: 89.0%-95.9%). Our method can reduce the cognitive burden on pathologists and improve their efficacy in histopathological characterization of colorectal polyps and in subsequent risk assessment and follow-up recommendations.

  18. Design Concepts, Fabrication and Advanced Characterization Methods of Innovative Piezoelectric Sensors Based on ZnO Nanowires.

    PubMed

    Araneo, Rodolfo; Rinaldi, Antonio; Notargiacomo, Andrea; Bini, Fabiano; Pea, Marialilia; Celozzi, Salvatore; Marinozzi, Franco; Lovat, Giampiero

    2014-12-08

    Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are based on the cooperative and average response of a large number of ZnO micro/nanostructures. However, in order to assess the quality of the materials and their performance, it is fundamental to characterize and then accurately model the specific electrical and piezoelectric properties of single ZnO structures. In this paper, we report on focused ion beam machined high aspect ratio nanowires and their mechanical and electrical (by means of conductive atomic force microscopy) characterization. Then, we investigate the suitability of new power-law design concepts to accurately model the relevant electrical and mechanical size-effects, whose existence has been emphasized in recent reviews.

  19. Design Concepts, Fabrication and Advanced Characterization Methods of Innovative Piezoelectric Sensors Based on ZnO Nanowires

    PubMed Central

    Araneo, Rodolfo; Rinaldi, Antonio; Notargiacomo, Andrea; Bini, Fabiano; Pea, Marialilia; Celozzi, Salvatore; Marinozzi, Franco; Lovat, Giampiero

    2014-01-01

    Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are based on the cooperative and average response of a large number of ZnO micro/nanostructures. However, in order to assess the quality of the materials and their performance, it is fundamental to characterize and then accurately model the specific electrical and piezoelectric properties of single ZnO structures. In this paper, we report on focused ion beam machined high aspect ratio nanowires and their mechanical and electrical (by means of conductive atomic force microscopy) characterization. Then, we investigate the suitability of new power-law design concepts to accurately model the relevant electrical and mechanical size-effects, whose existence has been emphasized in recent reviews. PMID:25494351

  20. Systematic evaluation of bias in microbial community profiles induced by whole genome amplification.

    PubMed

    Direito, Susana O L; Zaura, Egija; Little, Miranda; Ehrenfreund, Pascale; Röling, Wilfred F M

    2014-03-01

    Whole genome amplification methods facilitate the detection and characterization of microbial communities in low biomass environments. We examined the extent to which the actual community structure is reliably revealed and factors contributing to bias. One widely used [multiple displacement amplification (MDA)] and one new primer-free method [primase-based whole genome amplification (pWGA)] were compared using a polymerase chain reaction (PCR)-based method as control. Pyrosequencing of an environmental sample and principal component analysis revealed that MDA impacted community profiles more strongly than pWGA and indicated that this related to species GC content, although an influence of DNA integrity could not be excluded. Subsequently, biases by species GC content, DNA integrity and fragment size were separately analysed using defined mixtures of DNA from various species. We found significantly less amplification of species with the highest GC content for MDA-based templates and, to a lesser extent, for pWGA. DNA fragmentation also interfered severely: species with more fragmented DNA were less amplified with MDA and pWGA. pWGA was unable to amplify low molecular weight DNA (< 1.5 kb), whereas MDA was inefficient. We conclude that pWGA is the most promising method for characterization of microbial communities in low-biomass environments and for currently planned astrobiological missions to Mars. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Texture characterization for joint compression and classification based on human perception in the wavelet domain.

    PubMed

    Fahmy, Gamal; Black, John; Panchanathan, Sethuraman

    2006-06-01

    Today's multimedia applications demand sophisticated compression and classification techniques in order to store, transmit, and retrieve audio-visual information efficiently. Over the last decade, perceptually based image compression methods have been gaining importance. These methods take into account the abilities (and the limitations) of human visual perception (HVP) when performing compression. The upcoming MPEG 7 standard also addresses the need for succinct classification and indexing of visual content for efficient retrieval. However, there has been no research that has attempted to exploit the characteristics of the human visual system to perform both compression and classification jointly. One area of HVP that has unexplored potential for joint compression and classification is spatial frequency perception. Spatial frequency content that is perceived by humans can be characterized in terms of three parameters, which are: 1) magnitude; 2) phase; and 3) orientation. While the magnitude of spatial frequency content has been exploited in several existing image compression techniques, the novel contribution of this paper is its focus on the use of phase coherence for joint compression and classification in the wavelet domain. Specifically, this paper describes a human visual system-based method for measuring the degree to which an image contains coherent (perceptible) phase information, and then exploits that information to provide joint compression and classification. Simulation results that demonstrate the efficiency of this method are presented.

  2. Synthesis and characterization of dialkanolamides from castor oil (Ricinus communis) as nonionic surfactant

    NASA Astrophysics Data System (ADS)

    Anwar, M.; Wahyuningsih, T. D.

    2017-12-01

    Nonionic surfactant of dialkanolamide derivates was synthesized and characterized from castor oil (Ricinus comunnis). Ricinoleic acid was isolated from castor oil by hydrolysis in alkaline (KOH) condition at 65 °C. Oxidation of ricinoleic acid by dilute potassium permanganate (KMnO4) in alkaline condition at 75-90 °C gave dicarboxylic acid which was then reacted with ethanolamine at 140-160 °C for 6 hours. The product was recrystallized with isopropanol, and the structure elucidation was performed by FTIR, 1HNMR spectrometer, and GC-MS with silylation method. Characterization of surfactants was carried out by surface tension measurement (capillary rise method), Critical Micelle Concentration (CMC) based on turbidity method and calculation of Hydrophilic-Lipophilic Balance (HLB) value with Griffin method and Bancroft rule. The result showed that ricinoleic acid in castor oil is 86.19 % and it is oxidation give an azelaic acid and octanedioic acid in 53.25 %. Amidation of a dicarboxylic acid and ethanolamine at 140-160 °C for 6 hours yielded of N1,N9-bis(2-hydroxyethyl)nona diamide in 49.35 %. Surfactant characterization indicates that dialkanolamide derivates can be used as a surfactant due to its ability to reduce the surface tension of ethanol with CMC at 1.2 g/L, HLB value is 5.58 and can be used as emulsifier water in oil (W/O).

  3. Concentration determination of methyl magnesium chloride and other Grignard reagents by potentiometric titration with in-line characterization of reaction species by FTIR spectroscopy.

    PubMed

    Chen, Yadan; Wang, Tao; Helmy, Roy; Zhou, George X; LoBrutto, Rosario

    2002-07-01

    A potentiometric titration method for methyl magnesium chloride and other Grignard reagents based on the reaction with 2-butanol in THF has been developed and validated. The method employs a commercially available platinum electrode, using an electrolyte compatible with non-aqueous solvents. Well-defined titration curves were obtained, along with excellent method precision. The endpoint was precisely determined based on the first derivative of the titration curve. Different solvents such as THF, diethyl ether and methylene chloride provided similar results with regard to sharpness of the endpoint and method precision. The method was applied to a wide array of Grignard reagents including methyl magnesium bromide, ethyl magnesium chloride, propyl magnesium chloride, vinyl magnesium chloride, phenyl magnesium chloride, and benzyl magnesium chloride with similar precision and accuracy. Application of in-line FTIR was demonstrated for in situ monitoring of the titration reaction, allowing characterization of the reaction species. An authentic spectrum of the MeMgCl-THF complex was obtained using spectral subtraction and the vibrational absorbance bands were identified. FTIR also provided an alternative for detecting the titration endpoint, and the titration results so obtained, provided a cross-validation of the accuracy of the potentiometric titration.

  4. Thermal stress characterization using the electro-mechanical impedance method

    NASA Astrophysics Data System (ADS)

    Zhu, Xuan; Lanza di Scalea, Francesco; Fateh, Mahmood

    2017-04-01

    This study examines the potential of the Electro-Mechanical Impedance (EMI) method to provide an estimation of the developed thermal stress in constrained bar-like structures. This non-invasive method features the easiness of implementation and interpretation, while it is notoriously known for being vulnerable to environmental variability. A comprehensive analytical model is proposed to relate the measured electric admittance signatures of the PZT element to temperature and uniaxial stress applied to the underlying structure. The model results compare favorably to the experimental ones, where the sensitivities of features extracted from the admittance signatures to the varying stress levels and temperatures are determined. Two temperature compensation frameworks are proposed to characterize the thermal stress states: (a) a regression model is established based on temperature-only tests, and the residuals from the thermal stress tests are then used to isolate the stress measurand; (b) the temperature-only tests are decomposed by Principle Components Analysis (PCA) and the feature vectors of the thermal stress tests are reconstructed after removal of the temperaturesensitive components. For both methods, the features were selected based on their performance in Receiver Operating Characteristic (ROC) curves. Experimental results on the Continuous Welded Rails (CWR) are shown to demonstrate the effectiveness of these temperature compensation methods.

  5. Final Report for X-ray Diffraction Sample Preparation Method Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ely, T. M.; Meznarich, H. K.; Valero, T.

    WRPS-1500790, “X-ray Diffraction Saltcake Sample Preparation Method Development Plan/Procedure,” was originally prepared with the intent of improving the specimen preparation methodology used to generate saltcake specimens suitable for XRD-based solid phase characterization. At the time that this test plan document was originally developed, packed powder in cavity supports with collodion binder was the established XRD specimen preparation method. An alternate specimen preparation method less vulnerable, if not completely invulnerable to preferred orientation effects, was desired as a replacement for the method.

  6. WE-G-204-07: Automated Characterization of Perceptual Quality of Clinical Chest Radiographs: Improvements in Lung, Spine, and Hardware Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, J; Zhang, L; Samei, E

    Purpose: To develop and validate more robust methods for automated lung, spine, and hardware detection in AP/PA chest images. This work is part of a continuing effort to automatically characterize the perceptual image quality of clinical radiographs. [Y. Lin et al. Med. Phys. 39, 7019–7031 (2012)] Methods: Our previous implementation of lung/spine identification was applicable to only one vendor. A more generalized routine was devised based on three primary components: lung boundary detection, fuzzy c-means (FCM) clustering, and a clinically-derived lung pixel probability map. Boundary detection was used to constrain the lung segmentations. FCM clustering produced grayscale- and neighborhood-based pixelmore » classification probabilities which are weighted by the clinically-derived probability maps to generate a final lung segmentation. Lung centerlines were set along the left-right lung midpoints. Spine centerlines were estimated as a weighted average of body contour, lateral lung contour, and intensity-based centerline estimates. Centerline estimation was tested on 900 clinical AP/PA chest radiographs which included inpatient/outpatient, upright/bedside, men/women, and adult/pediatric images from multiple imaging systems. Our previous implementation further did not account for the presence of medical hardware (pacemakers, wires, implants, staples, stents, etc.) potentially biasing image quality analysis. A hardware detection algorithm was developed using a gradient-based thresholding method. The training and testing paradigm used a set of 48 images from which 1920 51×51 pixel{sup 2} ROIs with and 1920 ROIs without hardware were manually selected. Results: Acceptable lung centerlines were generated in 98.7% of radiographs while spine centerlines were acceptable in 99.1% of radiographs. Following threshold optimization, the hardware detection software yielded average true positive and true negative rates of 92.7% and 96.9%, respectively. Conclusion: Updated segmentation and centerline estimation methods in addition to new gradient-based hardware detection software provide improved data integrity control and error-checking for automated clinical chest image quality characterization across multiple radiography systems.« less

  7. Morphological and molecular characterization of Fusarium spp pathogenic to pecan tree in Brazil.

    PubMed

    Lazarotto, M; Milanesi, P M; Muniz, M F B; Reiniger, L R S; Beltrame, R; Harakava, R; Blume, E

    2014-11-11

    The occurrence of Fusarium spp associated with pecan tree (Carya illinoinensis) diseases in Brazil has been observed in recent laboratory analyses in Rio Grande do Sul State. Thus, in this study, we i) obtained Fusarium isolates from plants with disease symptoms; ii) tested the pathogenicity of these Fusarium isolates to pecan; iii) characterized and grouped Fusarium isolates that were pathogenic to the pecan tree based on morphological characteristics; iv) identified Fusarium spp to the species complex level through TEF-1α sequencing; and v) compared the identification methods used in the study. Fifteen isolates collected from the inflorescences, roots, and seeds of symptomatic plants (leaf necrosis or root rot) were used for pathogenicity tests. Morphological characterization was conducted using only pathogenic isolates, for a total of 11 isolates, based on the mycelial growth rate, sporulation, colony pigmentation, and conidial length and width variables. Pathogenic isolates were grouped based on morphological characteristics, and molecular characterization was performed by sequencing TEF-1α genes. Pathogenic isolates belonging to the Fusarium chlamydosporum species complex, Fusarium graminearum species complex, Fusarium proliferatum, and Fusarium oxysporum were identified based on the TEF-1α region. Morphological characteristics were used to effectively differentiate isolates and group the isolates according to genetic similarity, particularly conidial width, which emerged as a key morphological descriptor in this study.

  8. Highly efficient evaluation of a gas mixer using a hollow waveguide based laser spectral sensor

    NASA Astrophysics Data System (ADS)

    Du, Z.; Yang, X.; Li, J.; Yang, Y.; Qiao, C.

    2017-05-01

    This paper aims to provide a fast, sensitive, and accurate characterization of a Mass Flow Controller (MFC) based gas mixer. The gas mixer was evaluated by using a hollow waveguide based laser spectral sensor with high efficiency. Benefiting from the sensor's fast response, high sensitivity and continuous operation, multiple key parameters of the mixer, including mixing uncertainty, linearity, and response time, were acquired by a one-round test. The test results show that the mixer can blend multi-compound gases quite efficiently with an uncertainty of 1.44% occurring at a flow rate of 500 ml/min, with the linearity of 0.998 43 and the response time of 92.6 s. The results' reliability was confirmed by the relative measurement of gas concentration, in which the isolation of the sensor's uncertainty was conducted. The measured uncertainty has shown well coincidence with the theoretical uncertainties of the mixer, which proves the method to be a reliable characterization. Consequently, this sort of laser based characterization's wide appliance on gas analyzer's evaluations is demonstrated.

  9. Highly efficient evaluation of a gas mixer using a hollow waveguide based laser spectral sensor.

    PubMed

    Du, Z; Yang, X; Li, J; Yang, Y; Qiao, C

    2017-05-01

    This paper aims to provide a fast, sensitive, and accurate characterization of a Mass Flow Controller (MFC) based gas mixer. The gas mixer was evaluated by using a hollow waveguide based laser spectral sensor with high efficiency. Benefiting from the sensor's fast response, high sensitivity and continuous operation, multiple key parameters of the mixer, including mixing uncertainty, linearity, and response time, were acquired by a one-round test. The test results show that the mixer can blend multi-compound gases quite efficiently with an uncertainty of 1.44% occurring at a flow rate of 500 ml/min, with the linearity of 0.998 43 and the response time of 92.6 s. The results' reliability was confirmed by the relative measurement of gas concentration, in which the isolation of the sensor's uncertainty was conducted. The measured uncertainty has shown well coincidence with the theoretical uncertainties of the mixer, which proves the method to be a reliable characterization. Consequently, this sort of laser based characterization's wide appliance on gas analyzer's evaluations is demonstrated.

  10. Quantitative Examination of Corrosion Damage by Means of Thermal Response Measurements

    NASA Technical Reports Server (NTRS)

    Rajic, Nik

    1998-01-01

    Two computational methods are presented that enable a characterization of corrosion damage to be performed from thermal response measurements derived from a standard flash thermographic inspection. The first is based upon a one dimensional analytical solution to the heat diffusion equation and presumes the lateral extent of damage is large compared to the residual structural thickness, such that lateral heat diffusion effects can be considered insignificant. The second proposed method, based on a finite element optimization scheme, addresses the more general case where these conditions are not met. Results from an experimental application are given to illustrate the precision, robustness and practical efficacy of both methods.

  11. Partitioning Ocean Wave Spectra Obtained from Radar Observations

    NASA Astrophysics Data System (ADS)

    Delaye, Lauriane; Vergely, Jean-Luc; Hauser, Daniele; Guitton, Gilles; Mouche, Alexis; Tison, Celine

    2016-08-01

    2D wave spectra of ocean waves can be partitioned into several wave components to better characterize the scene. We present here two methods of component detection: one based on watershed algorithm and the other based on a Bayesian approach. We tested both methods on a set of simulated SWIM data, the Ku-band real aperture radar embarked on the CFOSAT (China- France Oceanography Satellite) mission which launch is planned mid-2018. We present the results and the limits of both approaches and show that Bayesian method can also be applied to other kind of wave spectra observations as those obtained with the radar KuROS, an airborne radar wave spectrometer.

  12. Automatic characterization of neointimal tissue by intravascular optical coherence tomography.

    PubMed

    Ughi, Giovanni J; Steigerwald, Kristin; Adriaenssens, Tom; Desmet, Walter; Guagliumi, Giulio; Joner, Michael; D'hooge, Jan

    2014-02-01

    Intravascular optical coherence tomography (IVOCT) is rapidly becoming the method of choice for assessing vessel healing after stent implantation due to its unique axial resolution <20  μm. The amount of neointimal coverage is an important parameter. In addition, the characterization of neointimal tissue maturity is also of importance for an accurate analysis, especially in the case of drug-eluting and bioresorbable stent devices. Previous studies indicated that well-organized mature neointimal tissue appears as a high-intensity, smooth, and homogeneous region in IVOCT images, while lower-intensity signal areas might correspond to immature tissue mainly composed of acellular material. A new method for automatic neointimal tissue characterization, based on statistical texture analysis and a supervised classification technique, is presented. Algorithm training and validation were obtained through the use of 53 IVOCT images supported by histology data from atherosclerotic New Zealand White rabbits. A pixel-wise classification accuracy of 87% and a two-dimensional region-based analysis accuracy of 92% (with sensitivity and specificity of 91% and 93%, respectively) were found, suggesting that a reliable automatic characterization of neointimal tissue was achieved. This may potentially expand the clinical value of IVOCT in assessing the completeness of stent healing and speed up the current analysis methodologies (which are, due to their time- and energy-consuming character, not suitable for application in large clinical trials and clinical practice), potentially allowing for a wider use of IVOCT technology.

  13. Angular filter refractometry analysis using simulated annealing [An improved method for characterizing plasma density profiles using angular filter refractometry

    DOE PAGES

    Angland, P.; Haberberger, D.; Ivancic, S. T.; ...

    2017-10-30

    Here, a new method of analysis for angular filter refractometry images was developed to characterize laser-produced, long-scale-length plasmas using an annealing algorithm to iterative converge upon a solution. Angular filter refractometry (AFR) is a novel technique used to characterize the density pro files of laser-produced, long-scale-length plasmas. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on a minimization of themore » $$\\chi$$2 test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in average uncertainty in the density profile of 5-10% in the region of interest.« less

  14. Angular filter refractometry analysis using simulated annealing [An improved method for characterizing plasma density profiles using angular filter refractometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angland, P.; Haberberger, D.; Ivancic, S. T.

    Here, a new method of analysis for angular filter refractometry images was developed to characterize laser-produced, long-scale-length plasmas using an annealing algorithm to iterative converge upon a solution. Angular filter refractometry (AFR) is a novel technique used to characterize the density pro files of laser-produced, long-scale-length plasmas. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on a minimization of themore » $$\\chi$$2 test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in average uncertainty in the density profile of 5-10% in the region of interest.« less

  15. Suspension characterization as important key for toxicological investigations

    NASA Astrophysics Data System (ADS)

    Meißner, Tobias; Potthoff, Annegret; Richter, Volkmar

    2009-05-01

    To assess potential health risks of nanoparticles by means of in vitro or in vivo assays and to determine dose-action curves a defined and reproducible method of particle administration is required. The interpretation of the toxicological results should be based on a comprehensive chemical-physical characterization of the particles used. Therefore, we developed a method to suspend nanoparticles stably and homogenously in physiological media. Our approach consist of three steps: (1) physical-chemical characterisation of the powders as delivered, (2) preparation and characterization of a non-physiological electro-statically stabilized nanoparticle suspension and (3) assessment of the nanoparticles behaviour in physiological media with or without proteins. This approach is demonstrated on a titanium dioxide and a tungsten carbide nanopowder. Results showed that particles agglomerate in protein-free medium within minutes, whereas in the presence of bovine serum albumin or foetal bovine serum an agglomeration is hindered.

  16. Theoretical investigation of the gas-phase reactions of CrO(+) with ethylene.

    PubMed

    Scupp, Thomas M; Dudley, Timothy J

    2010-01-21

    The potential energy surfaces associated with the reactions of chromium oxide cation (CrO(+)) with ethylene have been characterized using density functional, coupled-cluster, and multireference methods. Our calculations show that the most probable reaction involves the formation of acetaldehyde and Cr(+) via a hydride transfer involving the metal center. Our calculations support previous experimental hypotheses that a four-membered ring intermediate plays an important role in the reactivity of the system. We have also characterized a number of viable reaction pathways that lead to other products, including ethylene oxide. Due to the experimental observation that CrO(+) can activate carbon-carbon bonds, a reaction pathway involving C-C bond cleavage has also been characterized. Since many of the reactions involve a change in the spin state in going from reactants to products, locations of these spin surface crossings are presented and discussed. The applicability of methods based on Hartree-Fock orbitals is also discussed.

  17. High-throughput immunomagnetic scavenging technique for quantitative analysis of live VX nerve agent in water, hamburger, and soil matrixes.

    PubMed

    Knaack, Jennifer S; Zhou, Yingtao; Abney, Carter W; Prezioso, Samantha M; Magnuson, Matthew; Evans, Ronald; Jakubowski, Edward M; Hardy, Katelyn; Johnson, Rudolph C

    2012-11-20

    We have developed a novel immunomagnetic scavenging technique for extracting cholinesterase inhibitors from aqueous matrixes using biological targeting and antibody-based extraction. The technique was characterized using the organophosphorus nerve agent VX. The limit of detection for VX in high-performance liquid chromatography (HPLC)-grade water, defined as the lowest calibrator concentration, was 25 pg/mL in a small, 500 μL sample. The method was characterized over the course of 22 sample sets containing calibrators, blanks, and quality control samples. Method precision, expressed as the mean relative standard deviation, was less than 9.2% for all calibrators. Quality control sample accuracy was 102% and 100% of the mean for VX spiked into HPLC-grade water at concentrations of 2.0 and 0.25 ng/mL, respectively. This method successfully was applied to aqueous extracts from soil, hamburger, and finished tap water spiked with VX. Recovery was 65%, 81%, and 100% from these matrixes, respectively. Biologically based extractions of organophosphorus compounds represent a new technique for sample extraction that provides an increase in extraction specificity and sensitivity.

  18. Syntheses, crystal structures and characterization of nitrogen-rich salts based on bis (1H-tetrazol-5-yl) methanone oxime

    NASA Astrophysics Data System (ADS)

    Lin, Xinyu; Guo, Weiming; Zhang, Tianhe; Huang, Jingru; Tong, Yi; Zhang, Tonglai

    2017-08-01

    Two nitrogen-rich energetic salts (NH4)2(bto) (1) and (NH3OH)2(bto)·H2O (2) [H2bto = Bis (1H-tetrazol-5-yl) methanone oxime] were synthesized by an improved method in which water was used as solvent. These compounds were characterized by FT-IR spectroscopy, elemental analysis and single crystal X-ray diffraction. Their crystal structures were confirmed to belong to monoclinic system with space group P21 for 1 and Pc for 2, respectively. The detailed thermal behaviours were investigated by using differential scanning calorimetry (DSC) and thermogravimetric method (TG) (decomposition temperature >250 °C). The enthalpies of formation were calculated through the experimental values of combustion enthalpy. In addition, the sensitivities toward impact and friction were tested with standard methods, and those results indicated that two compounds are all insensitive (impact >40 J and friction >360 N). In short, both of the compounds show potential usages as energetic materials. The improved process opens a door for exploring nitrogen-rich salts based on Bis (1H-tetrazol-5-yl) methanone oxime.

  19. Study on copper phthalocyanine and perylene-based ambipolar organic light-emitting field-effect transistors produced using neutral beam deposition method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dae-Kyu; Oh, Jeong-Do; Shin, Eun-Sol

    2014-04-28

    The neutral cluster beam deposition (NCBD) method has been applied to the production and characterization of ambipolar, heterojunction-based organic light-emitting field-effect transistors (OLEFETs) with a top-contact, multi-digitated, long-channel geometry. Organic thin films of n-type N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic diimide and p-type copper phthalocyanine were successively deposited on the hydroxyl-free polymethyl-methacrylate (PMMA)-coated SiO{sub 2} dielectrics using the NCBD method. Characterization of the morphological and structural properties of the organic active layers was performed using atomic force microscopy and X-ray diffraction. Various device parameters such as hole- and electron-carrier mobilities, threshold voltages, and electroluminescence (EL) were derived from the fits of the observed current-voltage andmore » current-voltage-light emission characteristics of OLEFETs. The OLEFETs demonstrated good field-effect characteristics, well-balanced ambipolarity, and substantial EL under ambient conditions. The device performance, which is strongly correlated with the surface morphology and the structural properties of the organic active layers, is discussed along with the operating conduction mechanism.« less

  20. Discrimination of Breast Cancer with Microcalcifications on Mammography by Deep Learning.

    PubMed

    Wang, Jinhua; Yang, Xi; Cai, Hongmin; Tan, Wanchang; Jin, Cangzheng; Li, Li

    2016-06-07

    Microcalcification is an effective indicator of early breast cancer. To improve the diagnostic accuracy of microcalcifications, this study evaluates the performance of deep learning-based models on large datasets for its discrimination. A semi-automated segmentation method was used to characterize all microcalcifications. A discrimination classifier model was constructed to assess the accuracies of microcalcifications and breast masses, either in isolation or combination, for classifying breast lesions. Performances were compared to benchmark models. Our deep learning model achieved a discriminative accuracy of 87.3% if microcalcifications were characterized alone, compared to 85.8% with a support vector machine. The accuracies were 61.3% for both methods with masses alone and improved to 89.7% and 85.8% after the combined analysis with microcalcifications. Image segmentation with our deep learning model yielded 15, 26 and 41 features for the three scenarios, respectively. Overall, deep learning based on large datasets was superior to standard methods for the discrimination of microcalcifications. Accuracy was increased by adopting a combinatorial approach to detect microcalcifications and masses simultaneously. This may have clinical value for early detection and treatment of breast cancer.

  1. Dynamics in Complex Coacervates

    NASA Astrophysics Data System (ADS)

    Perry, Sarah

    Understanding the dynamics of a material provides detailed information about the self-assembly, structure, and intermolecular interactions present in a material. While rheological methods have long been used for the characterization of complex coacervate-based materials, it remains a challenge to predict the dynamics for a new system of materials. Furthermore, most work reports only qualitative trends exist as to how parameters such as charge stoichiometry, ionic strength, and polymer chain length impact self-assembly and material dynamics, and there is little information on the effects of polymer architecture or the organization of charges within a polymer. We seek to link thermodynamic studies of coacervation phase behavior with material dynamics through a carefully-controlled, systematic study of coacervate linear viscoelasticity for different polymer chemistries. We couple various methods of characterizing the dynamics of polymer-based complex coacervates, including the time-salt superposition methods developed first by Spruijt and coworkers to establish a more mechanistic strategy for comparing the material dynamics and linear viscoelasticity of different systems. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research.

  2. Discrimination of Breast Cancer with Microcalcifications on Mammography by Deep Learning

    PubMed Central

    Wang, Jinhua; Yang, Xi; Cai, Hongmin; Tan, Wanchang; Jin, Cangzheng; Li, Li

    2016-01-01

    Microcalcification is an effective indicator of early breast cancer. To improve the diagnostic accuracy of microcalcifications, this study evaluates the performance of deep learning-based models on large datasets for its discrimination. A semi-automated segmentation method was used to characterize all microcalcifications. A discrimination classifier model was constructed to assess the accuracies of microcalcifications and breast masses, either in isolation or combination, for classifying breast lesions. Performances were compared to benchmark models. Our deep learning model achieved a discriminative accuracy of 87.3% if microcalcifications were characterized alone, compared to 85.8% with a support vector machine. The accuracies were 61.3% for both methods with masses alone and improved to 89.7% and 85.8% after the combined analysis with microcalcifications. Image segmentation with our deep learning model yielded 15, 26 and 41 features for the three scenarios, respectively. Overall, deep learning based on large datasets was superior to standard methods for the discrimination of microcalcifications. Accuracy was increased by adopting a combinatorial approach to detect microcalcifications and masses simultaneously. This may have clinical value for early detection and treatment of breast cancer. PMID:27273294

  3. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws

    USGS Publications Warehouse

    Xiao, X.; White, E.P.; Hooten, M.B.; Durham, S.L.

    2011-01-01

    Power-law relationships are among the most well-studied functional relationships in biology. Recently the common practice of fitting power laws using linear regression (LR) on log-transformed data has been criticized, calling into question the conclusions of hundreds of studies. It has been suggested that nonlinear regression (NLR) is preferable, but no rigorous comparison of these two methods has been conducted. Using Monte Carlo simulations, we demonstrate that the error distribution determines which method performs better, with NLR better characterizing data with additive, homoscedastic, normal error and LR better characterizing data with multiplicative, heteroscedastic, lognormal error. Analysis of 471 biological power laws shows that both forms of error occur in nature. While previous analyses based on log-transformation appear to be generally valid, future analyses should choose methods based on a combination of biological plausibility and analysis of the error distribution. We provide detailed guidelines and associated computer code for doing so, including a model averaging approach for cases where the error structure is uncertain. ?? 2011 by the Ecological Society of America.

  4. Amorphous Phase Characterization Through X-Ray Diffraction Profile Modeling: Implications for Amorphous Phases in Gale Crater Rocks and Soils

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Downs, G. W.; Downs, R. T.; Morris, R. V.; Rampe, E. B.; Ming, D. W.; Chipera, S. J.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; hide

    2018-01-01

    The CheMin X-ray diffraction instrument on the Mars Science Laboratory rover has analyzed 18 rock and soil samples in Gale crater. Diffraction data allow for the identification of major crystalline phases based on the positions and intensities of well-defined peaks and also provides information regarding amorphous and poorly-ordered materials based on the shape and positions of broad scattering humps. The combination of diffraction data, elemental chemistry from APXS (Alpha Particle X-ray Spectrometer) and evolved gas analyses (EGA) from SAM (Sample Analysis at Mars) help constrain possible amorphous materials present in each sample (e.g., glass, opal, iron oxides, sulfates) but are model dependent. We present a novel method to characterize amorphous material in diffraction data and, through this approach, aim to characterize the phases collectively producing the amorphous profiles in CheMin diffraction data. This method may be applied to any diffraction data from samples containing X-ray amorphous materials, not just CheMin datasets, but we re-strict our discussion to Martian-relevant amorphous phases and diffraction data measured by CheMin or CheMin-like instruments.

  5. Measurement of drug-target engagement in live cells by two-photon fluorescence anisotropy imaging.

    PubMed

    Vinegoni, Claudio; Fumene Feruglio, Paolo; Brand, Christian; Lee, Sungon; Nibbs, Antoinette E; Stapleton, Shawn; Shah, Sunil; Gryczynski, Ignacy; Reiner, Thomas; Mazitschek, Ralph; Weissleder, Ralph

    2017-07-01

    The ability to directly image and quantify drug-target engagement and drug distribution with subcellular resolution in live cells and whole organisms is a prerequisite to establishing accurate models of the kinetics and dynamics of drug action. Such methods would thus have far-reaching applications in drug development and molecular pharmacology. We recently presented one such technique based on fluorescence anisotropy, a spectroscopic method based on polarization light analysis and capable of measuring the binding interaction between molecules. Our technique allows the direct characterization of target engagement of fluorescently labeled drugs, using fluorophores with a fluorescence lifetime larger than the rotational correlation of the bound complex. Here we describe an optimized protocol for simultaneous dual-channel two-photon fluorescence anisotropy microscopy acquisition to perform drug-target measurements. We also provide the necessary software to implement stream processing to visualize images and to calculate quantitative parameters. The assembly and characterization part of the protocol can be implemented in 1 d. Sample preparation, characterization and imaging of drug binding can be completed in 2 d. Although currently adapted to an Olympus FV1000MPE microscope, the protocol can be extended to other commercial or custom-built microscopes.

  6. Advanced continuous cultivation methods for systems microbiology.

    PubMed

    Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo

    2015-09-01

    Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories.

  7. Identification and immunophenotypic characterization of normal and pathological mast cells.

    PubMed

    Morgado, José Mário; Sánchez-Muñoz, Laura; Teodósio, Cristina; Escribano, Luís

    2014-01-01

    Mast cells (MCs) are secretory cells that are central players in human allergic disease and immune responses. With the exception of a few pathological situations, MCs are usually present at relatively low frequencies in most tissues. Since their first description, MCs in tissues were identified mostly using their morphological characteristics and their typical coloration when stained with aniline dyes. However, increasing availability of highly specific antibodies now permits the use of fluorescence-based flow cytometry as the method of choice for the quantification, characterization, and purification of cells in suspension. This technique allows for a rapid analysis of thousands of events and for the identification of cells present at frequencies as low as one event in 10(6) unwanted cells. This method also permits for simultaneous characterization of multiple antigens at a single-cell level, which is ideal in order to study rare populations of cells like MCs. Here we describe the basis of flow cytometry-based immunophenotyping applied to the study of MC. The protocol focuses on the study of human MCs present in body fluids (mainly bone marrow) but can easily be adapted to study MCs from other tissues and species.

  8. Beam Characterization at the Neutron Radiography Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarah Morgan; Jeffrey King

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured themore » beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.« less

  9. Recent Developments of Graphene Oxide-Based Membranes: A Review

    PubMed Central

    Ma, Jinxia; Ping, Dan; Dong, Xinfa

    2017-01-01

    Membrane-based separation technology has attracted great interest in many separation fields due to its advantages of easy-operation, energy-efficiency, easy scale-up, and environmental friendliness. The development of novel membrane materials and membrane structures is an urgent demand to promote membrane-based separation technology. Graphene oxide (GO), as an emerging star nano-building material, has showed great potential in the membrane-based separation field. In this review paper, the latest research progress in GO-based membranes focused on adjusting membrane structure and enhancing their mechanical strength as well as structural stability in aqueous environment is highlighted and discussed in detail. First, we briefly reviewed the preparation and characterization of GO. Then, the preparation method, characterization, and type of GO-based membrane are summarized. Finally, the advancements of GO-based membrane in adjusting membrane structure and enhancing their mechanical strength, as well as structural stability in aqueous environment, are particularly discussed. This review hopefully provides a new avenue for the innovative developments of GO-based membrane in various membrane applications. PMID:28895877

  10. Recent Developments of Graphene Oxide-Based Membranes: A Review.

    PubMed

    Ma, Jinxia; Ping, Dan; Dong, Xinfa

    2017-09-12

    Membrane-based separation technology has attracted great interest in many separation fields due to its advantages of easy-operation, energy-efficiency, easy scale-up, and environmental friendliness. The development of novel membrane materials and membrane structures is an urgent demand to promote membrane-based separation technology. Graphene oxide (GO), as an emerging star nano-building material, has showed great potential in the membrane-based separation field. In this review paper, the latest research progress in GO-based membranes focused on adjusting membrane structure and enhancing their mechanical strength as well as structural stability in aqueous environment is highlighted and discussed in detail. First, we briefly reviewed the preparation and characterization of GO. Then, the preparation method, characterization, and type of GO-based membrane are summarized. Finally, the advancements of GO-based membrane in adjusting membrane structure and enhancing their mechanical strength, as well as structural stability in aqueous environment, are particularly discussed. This review hopefully provides a new avenue for the innovative developments of GO-based membrane in various membrane applications.

  11. Structural damage identification using damping: a compendium of uses and features

    NASA Astrophysics Data System (ADS)

    Cao, M. S.; Sha, G. G.; Gao, Y. F.; Ostachowicz, W.

    2017-04-01

    The vibration responses of structures under controlled or ambient excitation can be used to detect structural damage by correlating changes in structural dynamic properties extracted from responses with damage. Typical dynamic properties refer to modal parameters: natural frequencies, mode shapes, and damping. Among these parameters, natural frequencies and mode shapes have been investigated extensively for their use in damage characterization by associating damage with reduction in local stiffness of structures. In contrast, the use of damping as a dynamic property to represent structural damage has not been comprehensively elucidated, primarily due to the complexities of damping measurement and analysis. With advances in measurement technologies and analysis tools, the use of damping to identify damage is becoming a focus of increasing attention in the damage detection community. Recently, a number of studies have demonstrated that damping has greater sensitivity for characterizing damage than natural frequencies and mode shapes in various applications, but damping-based damage identification is still a research direction ‘in progress’ and is not yet well resolved. This situation calls for an overall survey of the state-of-the-art and the state-of-the-practice of using damping to detect structural damage. To this end, this study aims to provide a comprehensive survey of uses and features of applying damping in structural damage detection. First, we present various methods for damping estimation in different domains including the time domain, the frequency domain, and the time-frequency domain. Second, we investigate the features and applications of damping-based damage detection methods on the basis of two predominant infrastructure elements, reinforced concrete structures and fiber-reinforced composites. Third, we clarify the influential factors that can impair the capability of damping to characterize damage. Finally, we recommend future research directions for advancing damping-based damage detection. This work holds the promise of (a) helping researchers identify crucial components in damping-based damage detection theories, methods, and technologies, and (b) leading practitioners to better implement damping-based structural damage identification.

  12. Improvement of the Correlative AFM and ToF-SIMS Approach Using an Empirical Sputter Model for 3D Chemical Characterization.

    PubMed

    Terlier, T; Lee, J; Lee, K; Lee, Y

    2018-02-06

    Technological progress has spurred the development of increasingly sophisticated analytical devices. The full characterization of structures in terms of sample volume and composition is now highly complex. Here, a highly improved solution for 3D characterization of samples, based on an advanced method for 3D data correction, is proposed. Traditionally, secondary ion mass spectrometry (SIMS) provides the chemical distribution of sample surfaces. Combining successive sputtering with 2D surface projections enables a 3D volume rendering to be generated. However, surface topography can distort the volume rendering by necessitating the projection of a nonflat surface onto a planar image. Moreover, the sputtering is highly dependent on the probed material. Local variation of composition affects the sputter yield and the beam-induced roughness, which in turn alters the 3D render. To circumvent these drawbacks, the correlation of atomic force microscopy (AFM) with SIMS has been proposed in previous studies as a solution for the 3D chemical characterization. To extend the applicability of this approach, we have developed a methodology using AFM-time-of-flight (ToF)-SIMS combined with an empirical sputter model, "dynamic-model-based volume correction", to universally correct 3D structures. First, the simulation of 3D structures highlighted the great advantages of this new approach compared with classical methods. Then, we explored the applicability of this new correction to two types of samples, a patterned metallic multilayer and a diblock copolymer film presenting surface asperities. In both cases, the dynamic-model-based volume correction produced an accurate 3D reconstruction of the sample volume and composition. The combination of AFM-SIMS with the dynamic-model-based volume correction improves the understanding of the surface characteristics. Beyond the useful 3D chemical information provided by dynamic-model-based volume correction, the approach permits us to enhance the correlation of chemical information from spectroscopic techniques with the physical properties obtained by AFM.

  13. TU-F-BRB-01: Resolving and Characterizing Breathing Motion for Radiotherapy with MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tryggestad, E.

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has highmore » temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.« less

  14. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization.

    PubMed

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K Kirk; Zhou, Qifa

    2015-02-01

    Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 
147 µm with an effective FOV of 2 mm in depth. The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system's improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. All together high resolution HMI appears to be a promising ultrasound-only technology for characterizing tissue biomechanical properties at the microstructural level to improve the image-based diseases diagnosis in multiple clinical applications.

  15. Histogram of gradient and binarized statistical image features of wavelet subband-based palmprint features extraction

    NASA Astrophysics Data System (ADS)

    Attallah, Bilal; Serir, Amina; Chahir, Youssef; Boudjelal, Abdelwahhab

    2017-11-01

    Palmprint recognition systems are dependent on feature extraction. A method of feature extraction using higher discrimination information was developed to characterize palmprint images. In this method, two individual feature extraction techniques are applied to a discrete wavelet transform of a palmprint image, and their outputs are fused. The two techniques used in the fusion are the histogram of gradient and the binarized statistical image features. They are then evaluated using an extreme learning machine classifier before selecting a feature based on principal component analysis. Three palmprint databases, the Hong Kong Polytechnic University (PolyU) Multispectral Palmprint Database, Hong Kong PolyU Palmprint Database II, and the Delhi Touchless (IIDT) Palmprint Database, are used in this study. The study shows that our method effectively identifies and verifies palmprints and outperforms other methods based on feature extraction.

  16. Genetic engineering of stem cells for enhanced therapy.

    PubMed

    Nowakowski, Adam; Andrzejewska, Anna; Janowski, Miroslaw; Walczak, Piotr; Lukomska, Barbara

    2013-01-01

    Stem cell therapy is a promising strategy for overcoming the limitations of current treatment methods. The modification of stem cell properties may be necessary to fully exploit their potential. Genetic engineering, with an abundance of methodology to induce gene expression in a precise and well-controllable manner, is particularly attractive for this purpose. There are virus-based and non-viral methods of genetic manipulation. Genome-integrating viral vectors are usually characterized by highly efficient and long-term transgene expression, at a cost of safety. Non-integrating viruses are also highly efficient in transduction, and, while safer, offer only a limited duration of transgene expression. There is a great diversity of transfectable forms of nucleic acids; however, for efficient shuttling across cell membranes, additional manipulation is required. Both physical and chemical methods have been employed for this purpose. Stem cell engineering for clinical applications is still in its infancy and requires further research. There are two main strategies for inducing transgene expression in therapeutic cells: transient and permanent expression. In many cases, including stem cell trafficking and using cell therapy for the treatment of rapid-onset disease with a short healing process, transient transgene expression may be a sufficient and optimal approach. For that purpose, mRNA-based methods seem ideally suited, as they are characterized by a rapid, highly efficient transfection, with outstanding safety. Permanent transgene expression is primarily based on the application of viral vectors, and, due to safety concerns, these methods are more challenging. There is active, ongoing research toward the development of non-viral methods that would induce permanent expression, such as transposons and mammalian artificial chromosomes.

  17. Depth of interaction decoding of a continuous crystal detector module.

    PubMed

    Ling, T; Lewellen, T K; Miyaoka, R S

    2007-04-21

    We present a clustering method to extract the depth of interaction (DOI) information from an 8 mm thick crystal version of our continuous miniature crystal element (cMiCE) small animal PET detector. This clustering method, based on the maximum-likelihood (ML) method, can effectively build look-up tables (LUT) for different DOI regions. Combined with our statistics-based positioning (SBP) method, which uses a LUT searching algorithm based on the ML method and two-dimensional mean-variance LUTs of light responses from each photomultiplier channel with respect to different gamma ray interaction positions, the position of interaction and DOI can be estimated simultaneously. Data simulated using DETECT2000 were used to help validate our approach. An experiment using our cMiCE detector was designed to evaluate the performance. Two and four DOI region clustering were applied to the simulated data. Two DOI regions were used for the experimental data. The misclassification rate for simulated data is about 3.5% for two DOI regions and 10.2% for four DOI regions. For the experimental data, the rate is estimated to be approximately 25%. By using multi-DOI LUTs, we also observed improvement of the detector spatial resolution, especially for the corner region of the crystal. These results show that our ML clustering method is a consistent and reliable way to characterize DOI in a continuous crystal detector without requiring any modifications to the crystal or detector front end electronics. The ability to characterize the depth-dependent light response function from measured data is a major step forward in developing practical detectors with DOI positioning capability.

  18. DNA binding site characterization by means of Rényi entropy measures on nucleotide transitions.

    PubMed

    Perera, A; Vallverdu, M; Claria, F; Soria, J M; Caminal, P

    2008-06-01

    In this work, parametric information-theory measures for the characterization of binding sites in DNA are extended with the use of transitional probabilities on the sequence. We propose the use of parametric uncertainty measures such as Rényi entropies obtained from the transition probabilities for the study of the binding sites, in addition to nucleotide frequency-based Rényi measures. Results are reported in this work comparing transition frequencies (i.e., dinucleotides) and base frequencies for Shannon and parametric Rényi entropies for a number of binding sites found in E. Coli, lambda and T7 organisms. We observe that the information provided by both approaches is not redundant. Furthermore, under the presence of noise in the binding site matrix we observe overall improved robustness of nucleotide transition-based algorithms when compared with nucleotide frequency-based method.

  19. Application of STEM characterization for investigating radiation effects in BCC Fe-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parish, Chad M.; Field, Kevin G.; Certain, Alicia G.

    2015-04-20

    This paper provides a general overview of advanced scanning transmission electron microscopy (STEM) techniques used for characterization of irradiated BCC Fe-based alloys. Advanced STEM methods provide the high-resolution imaging and chemical analysis necessary to understand the irradiation response of BCC Fe-based alloys. The use of STEM with energy dispersive x-ray spectroscopy (EDX) for measurement of radiation-induced segregation (RIS) is described, with an illustrated example of RIS in proton- and self-ion irradiated T91. Aberration-corrected STEM-EDX for nanocluster/nanoparticle imaging and chemical analysis is also discussed, and examples are provided from ion-irradiated oxide dispersion strengthened (ODS) alloys. In conclusion, STEM techniques for void,more » cavity, and dislocation loop imaging are described, with examples from various BCC Fe-based alloys.« less

  20. Characterizing structural transitions using localized free energy landscape analysis.

    PubMed

    Banavali, Nilesh K; Mackerell, Alexander D

    2009-01-01

    Structural changes in molecules are frequently observed during biological processes like replication, transcription and translation. These structural changes can usually be traced to specific distortions in the backbones of the macromolecules involved. Quantitative energetic characterization of such distortions can greatly advance the atomic-level understanding of the dynamic character of these biological processes. Molecular dynamics simulations combined with a variation of the Weighted Histogram Analysis Method for potential of mean force determination are applied to characterize localized structural changes for the test case of cytosine (underlined) base flipping in a GTCAGCGCATGG DNA duplex. Free energy landscapes for backbone torsion and sugar pucker degrees of freedom in the DNA are used to understand their behavior in response to the base flipping perturbation. By simplifying the base flipping structural change into a two-state model, a free energy difference of upto 14 kcal/mol can be attributed to the flipped state relative to the stacked Watson-Crick base paired state. This two-state classification allows precise evaluation of the effect of base flipping on local backbone degrees of freedom. The calculated free energy landscapes of individual backbone and sugar degrees of freedom expectedly show the greatest change in the vicinity of the flipping base itself, but specific delocalized effects can be discerned upto four nucleotide positions away in both 5' and 3' directions. Free energy landscape analysis thus provides a quantitative method to pinpoint the determinants of structural change on the atomic scale and also delineate the extent of propagation of the perturbation along the molecule. In addition to nucleic acids, this methodology is anticipated to be useful for studying conformational changes in all macromolecules, including carbohydrates, lipids, and proteins.

Top